WorldWideScience

Sample records for anticancer ether lipid

  1. Mechanistic Study of the sPLA2 Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid

    DEFF Research Database (Denmark)

    Linderoth, Lars; Fristrup, Peter; Hansen, Martin

    2009-01-01

    Secretory phospholipase A2 (sPLA2) is an interesting enzyme for triggered liposomal drug delivery to tumor tissue due the overexpression of sPLA2 in cancerous tissue. A drug delivery system based on the triggered release of therapeutics from sPLA2-sensitive liposomes constituted of pro anticancer...... ether lipids, which become cytotoxic upon sPLA2-catalyzed hydrolysis has previously been established. To optimize the hydrolysis rate of the lipids and thereby optimizing the release profile of the drugs from the liposomes, we have synthesized a thio-ester pro anticancer ether lipid. Liposomes...... constituted of this lipid showed an altered rate of hydrolysis by sPLA2. We have tested the cytotoxicity of the thio-ester pro anticancer ether lipids toward cancer cells, and the results showed that the cytotoxicity is indeed maintained upon sPLA2 exposure. To further understand the origin for the observed...

  2. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine.

    Directory of Open Access Journals (Sweden)

    Janny A Villa-Pulgarín

    2017-08-01

    Full Text Available Leishmaniasis is the world's second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated.Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast.The present study shows that the

  3. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  4. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high......, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria...

  5. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  6. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  7. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    OpenAIRE

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells c...

  8. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...... performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described...

  9. Early steps of biosynthesis of ether lipids in archaebacteria; Eteru shishitsu seigosei no shoki dankai

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, T. [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-05-20

    Membrane lipids in archaebacteria are different from those of eubacteria and eukaryote which are fatty acid esters of glycerol. Archaebacterial lipids are mainly ether-linked lipids composed of glycerol linked to two molecules of isoprenoid phytanyl groups or of ether-linked glycerol with phytanyl group. This structural feature is one of the origins of survival and growth of archaebacteria in extreme conditions of high temperature, strong acid or alkali. It is considered that geranylgeranyl phosphate (GGPP) is synthesized and attached to glycerol phosphate, followed by reduction of the double bond in the geranylgeranyl moieties to form the diether lipids while the head-to-heat condensation of the phytanyl groups produces the tetraether lipids. Aiming to elucidate the lipid biosynthesis mechanism in a hyperthermophilic archaebacterium, Sulfolobus acidocaldarius, the gene of GGPP synthase was cloned with the aid of carotenoid synthesis in phytopathogenic Erwinia uredovora and its sequence was studied. 29 refs., 9 figs.

  10. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  11. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    Science.gov (United States)

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  12. Lipid Accumulation in Peripheral Blood Dendritic Cells and Anticancer Immunity in Patients with Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryo Arai

    2018-01-01

    Full Text Available We studied the subsets of peripheral blood dendritic cells (DCs and lipid accumulation in DCs to investigate the involvement of DCs in the decreased anticancer immunity of advanced lung cancer patients. We analyzed the population of DC subsets in peripheral blood using flow cytometry. We then determined lipid accumulation in the DCs using BODIPY 650/665, a fluorophore with an affinity for lipids. Compared with healthy controls, the number of DCs in the peripheral blood of treatment-naive cancer patients was significantly reduced. In patients with stage III + IV disease, the numbers of myeloid DCs (mDCs and plasmacytoid DCs were also significantly reduced. Lipid accumulation in DCs evaluated based on the fluorescence intensity of BODIPY 650/665 was significantly higher in stage III + IV lung cancer patients than in the controls. In the subset analysis, the fluorescence was highest for mDCs. The intracellularly accumulated lipids were identified as triglycerides. A decreased mixed leukocyte reaction was observed in the mDCs from lung cancer patients compared with those from controls. Taken together, the results show that lung cancer patients have a notably decreased number of peripheral blood DCs and their function as antigen-presenting cells is decreased due to their high intracellular lipid accumulation. Thereby, anticancer immunity is suppressed.

  13. The influence of some anticancer preparations on photo induced lipid preoxidation

    International Nuclear Information System (INIS)

    Sargsyan, N.A.

    2004-01-01

    In nowadays it is very important in medicine to investigate mechanisms of actions of different pharmacological preparations including anticancer ones. As it is known during cancer there is the disruption of balance between free radical oxidative processes and amount of antioxidants. That is why it was investigated the possibility of cooperation of some anticancer preparations with membrane structures and the influence of these preparations on photo induced free radical oxidative process. For investigations of the influence of some anticancer preparations - sarkolizin and cyclophosphane - on the intensivity of chemiluminescence as a biological target it were taken homogenates of brains of cows in tris-HCL buffer solution (1:10, pH=7.4). Irradiation was done with UV-light for 1 minute. Also it was used the model-system of oleinic acid for investigation of action studied preparations on lipid peroxidation. All experiments were done at 40 degree C. It was found out that anticancer preparations suppressed lipid peroxidation and that it is expressed by decreasing of level of photo chemiluminescence. By the way it was discovered that maximal inhibition of photo chemiluminescence was at the moment of adding preparation to the biological target. And then level of photo chemiluminescence increased till some point, which was lower than normal one. Also it was found that the inhibition degree for these preparations was different. For example, sarkolizin decreased the level of photo chemiluminescence on 58%, and cyclophosphane - on 52%. Because chemiluminescence of oleinic acid very well imitates the chemiluminescence of different lipid structures, so it was used as a model-system for testing investigated preparations. And in this experiment also it was found that sarkolizin and cyclophosphane decreased the level of induced chemiluminescence. And this action depended on the concentration of preparations. In conclusion it can be said that sarkolizin and cyclophosphane inhibited

  14. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model

    International Nuclear Information System (INIS)

    Buller, R. Mark; Owens, Gelita; Schriewer, Jill; Melman, Lora; Beadle, James R.; Hostetler, Karl Y.

    2004-01-01

    Cidofovir (CDV) is a highly effective inhibitor of orthopoxvirus replication and may be used intravenously to treat smallpox or complications arising from the smallpox vaccine under an investigational new drug application (IND). However, CDV is absorbed poorly following oral administration and is inactive orally. To improve the bioavailability of CDV, others synthesized alkoxyalkanol esters of CDV and observed >100-fold more activity than unmodified CDV against cowpox, vaccinia, and variola virus (VARV) replication. These ether lipid analogs of CDV have high oral bioavailability in mice. In this study, we compared the oral activity of CDV with the hexadecyloxypropyl (HDP)-, octadecyloxyethyl-, oleyloxypropyl-, and oleyloxyethyl-esters of CDV in a lethal, aerosol ectromelia virus (ECTV) challenge model in A/NCR mice. Octadecyloxyethyl-CDV appeared to be the most potent CDV analog as a dose regimen of 5 mg/kg started 4 h following challenge completely blocked virus replication in spleen and liver, and protected 100% of A/NCR mice, although oral, unmodified CDV was inactive. These results suggest that this family of compounds deserves further evaluation as poxvirus antiviral

  15. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core

  16. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach.

    Science.gov (United States)

    Bhise, Ketki; Kashaw, Sushil Kumar; Sau, Samaresh; Iyer, Arun K

    2017-06-30

    Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amphiphilic lipid derivatives of 3'-hydroxyurea-deoxythymidine: preparation, properties, molecular self-assembly, simulation and in vitro anticancer activity.

    Science.gov (United States)

    Li, Miao; Qi, Shuo; Jin, Yiguang; Yao, Weishang; Zhang, Sa; Zhao, Jingyu

    2014-11-01

    Lipid derivatives of nucleoside analogs and their nanoassemblies have become the research hotspot due to their unique function in cancer therapy. Six lipid derivatives of 3'-hydroxyurea-deoxythymidine were prepared with zidovudine as the raw material. The 5'-substituted lipid chains in the derivatives were from the various fatty acids including octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecanoic acid corresponding to the derivatives OHT, DHT, DDHT, TDHT, HDHT and ODHT. The amphiphilic derivatives formed Langmuir monolayers at the air/water interface with different surface pressure-molecular area isotherms depending on the length of lipid chains. The nanoassemblies of OHT, DHT, DDHT, TDHT and HDHT and the nanoscale precipitates of ODHT were obtained after we injected their tetrahydrofuran solutions doped with hydrophilic long chained polymers into water. Electron microscopy showed that the morphology of nanoassemblies may be vesicles or nanotubes depending on the length of lipid chains. The shorter the lipid chains were, the softer the nanoassemblies. Computer simulation supported the experimental results. The nanoassemblies and the nanoscale precipitates showed much higher anticancer effects on SW620 cells than the parent drug hydroxyurea. The nanostructures of the derivatives are promising anticancer nanomedicines. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    Science.gov (United States)

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  19. Multiple QSAR models, pharmacophore pattern and molecular docking analysis for anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues

    Science.gov (United States)

    Masand, Vijay H.; El-Sayed, Nahed N. E.; Bambole, Mukesh U.; Quazi, Syed A.

    2018-04-01

    Multiple discrete quantitative structure-activity relationships (QSARs) models were constructed for the anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues with a variety of substituents like sbnd Br, sbnd OH, -OMe, etc. at different positions. A big pool of descriptors was considered for QSAR model building. Genetic algorithm (GA), available in QSARINS-Chem, was executed to choose optimum number and set of descriptors to create the multi-linear regression equations for a dataset of sixty-nine compounds. The newly developed five parametric models were subjected to exhaustive internal and external validation along with Y-scrambling using QSARINS-Chem, according to the OECD principles for QSAR model validation. The models were built using easily interpretable descriptors and accepted after confirming statistically robustness with high external predictive ability. The five parametric models were found to have R2 = 0.80 to 0.86, R2ex = 0.75 to 0.84, and CCCex = 0.85 to 0.90. The models indicate that frequency of nitrogen and oxygen atoms separated by five bonds from each other and internal electronic environment of the molecule have correlation with the anticancer activity.

  20. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Bukhave, Klaus

    2001-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were...... characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether...... + H - H2O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra...

  1. Phospholipid studies of marine organisms: 14. Ether lipids of the sponge Tethya aurantia

    International Nuclear Information System (INIS)

    Smith, G.M.; Djerassi, C.

    1987-01-01

    The novel unesterified alkyl glycerol monoethers, (2S)-1-(hexadecyloxy)-2,3-propanediol (1), (2S)-1-(16-methylheptadecyloxy)-2,3-propanediol (2) and (2S)-1-(15-methylheptadecyloxy)-2,3-propanediol (3) were isolated from the marine sponge Tethya aurantia and were characterized by spectroscopic methods. These three saturated ethers as well as a series of alk-1'-enyl glycerol monoethers were also encountered in the phospholipids of the same sponge after reduction with LiAlH4. Incorporation experiments with dissociated cells of T. aurantia indicated that [1- 14 C]-hexadecanol was incorporated into the unesterified alkyl glycerol monoethers

  2. The HSP90 inhibitor 17-AAG potentiates the antileishmanial activity of the ether lipid edelfosine.

    Science.gov (United States)

    Varela-M, Rubén E; Mollinedo-Gajate, Cristina; Muro, Antonio; Mollinedo, Faustino

    2014-03-01

    HSP90 is an abundant protein in Leishmania parasites that plays a major role in the parasite survival under stress conditions. Here we found that the HSP90 inhibitor 17-AAG (≥100nM 17-AAG) induced cell cycle arrest at G0/G1 in Leishmania infantum and Leishmania panamensis promastigotes, and highly potentiated the induction of cell death by an apoptotic-like process mediated by the ether phospholipid edelfosine (5-20μM). These data suggest that the combined treatment of 17-AAG and edelfosine might be a novel and effective approach of combination therapy in the treatment of leishmaniasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wood Paul L

    2011-12-01

    Full Text Available Abstract Introduction Docosahexaenoic acid (DHA and DHA-containing ethanolamine plasmalogens (PlsEtn are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn. Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3

  4. Development of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy.

    Science.gov (United States)

    Fang, Dai-Long; Chen, Yan; Xu, Bei; Ren, Ke; He, Zhi-Yao; He, Li-Li; Lei, Yi; Fan, Chun-Mei; Song, Xiang-Rong

    2014-02-25

    Salidroside (Sal) is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs) loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%), submicron size (150 nm) and negatively charged surface (-23 mV). DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation.

  5. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Dai-Long Fang

    2014-02-01

    Full Text Available Salidroside (Sal is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%, submicron size (150 nm and negatively charged surface (−23 mV. DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation.

  6. Ether lipid vesicle-based antigens impart protection against experimental listeriosis

    Directory of Open Access Journals (Sweden)

    Ansari MA

    2012-06-01

    Full Text Available Mairaj Ahmed Ansari,1 Swaleha Zubair,2 Saba Tufail,1 Ejaj Ahmad,1 Mohsin Raza Khan,1 Zainuddin Quadri,1 Mohammad Owais,11Interdisciplinary Biotechnology Unit, 2Women's College, Aligarh Muslim University, Aligarh, UP, IndiaBackground: Incidence of food-borne infections from Listeria monocytogenes, a parasite that has adapted intracellular residence to avoid antibody onslaught, has increased dramatically in the past few years. The apparent lack of an effective vaccine that is capable of evoking the desired cytotoxic T cell response to obliterate this intracellular pathogen has encouraged the investigation of alternate prophylactic strategies. It should also be noted that Archaebacteria (Archae lipid-based adjuvants enhance the efficacy of subunit vaccines. In the present study, the adjuvant properties of archaeosomes (liposomes prepared from total polar lipids of archaebacteria, Halobacterium salinarum combined with immunogenic culture supernatant antigens of L. monocytogenes have been exploited in designing a vaccine candidate against experimental listeriosis in murine model.Methods: Archaeosome-entrapped secretory protein antigens (SAgs of L. monocytogenes were evaluated for their immunological responses and tendency to deplete bacterial burden in BALB/c mice challenged with sublethal listerial infection. Various immunological studies involving cytokine profiling, lymphocyte proliferation assay, detection of various surface markers (by flowcytometric analysis, and antibody isotypes (by enzyme-linked immunosorbent assay were used for establishing the vaccine potential of archaeosome-entrapped secretory proteins.Results: Immunization schedule involving archaeosome-encapsulated SAgs resulted in upregulation of Th1 cytokine production along with boosted memory in BALB/c mice. It also showed protective effect by reducing listerial burden in various vital organs (liver and spleen of the infected mice. However, the soluble form of the antigens (SAgs

  7. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    Science.gov (United States)

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  8. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor

    Directory of Open Access Journals (Sweden)

    Wood Paul L

    2011-10-01

    Full Text Available Abstract Background Childhood peroxisomal disorders and leukodystrophies are devastating diseases characterized by dysfunctional lipid metabolism. Plasmalogens (ether glycerophosphoethanolamine lipids are decreased in these genetic disorders. The biosynthesis of plasmalogens is initiated in peroxisomes but completed in the endoplasmic reticulum. We therefore undertook a study to evaluate the ability of a 3-substituted, 1-alkyl, 2-acyl glyceryl ether lipid (PPI-1011 to replace plasmalogens in rhizomelic chrondrodysplasia punctata type 1 (RCDP1 and rhizomelic chrondrodysplasia punctata type 2 (RCDP2 lymphocytes which possess peroxisomal mutations culminating in deficient plasmalogen synthesis. We also examined plasmalogen synthesis in Pelizaeus-Merzbacher disease (PMD lymphocytes which possess a proteolipid protein-1 (PLP1 missense mutation that results in abnormal PLP1 folding and it's accumulation in the endoplasmic reticulum (ER, the cellular site of the last steps in plasmalogen synthesis. In vivo incorporation of plasmalogen precursor into tissue plasmalogens was also evaluated in the Pex7 mouse model of plasmalogen deficiency. Results In both RCDP1 and RCDP2 lymphocytes, PPI-1011 repleted the target ethanolamine plasmalogen (PlsEtn16:0/22:6 in a concentration dependent manner. In addition, deacylation/reacylation reactions resulted in repletion of PlsEtn 16:0/20:4 in both RCDP1 and RCDP2 lymphocytes, repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP2 lymphocytes, and partial repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP1 lymphocytes. In the Pex7 mouse, oral dosing of labeled PPI-1011 demonstrated repletion of tissue levels of the target plasmalogen PlsEtn 16:0/22:6 with phospholipid remodeling also resulting in significant repletion of PlsEtn 16:0/20:4 and PlsEtn 16:0/18:1. Metabolic conversion of PPI-1011 to the target plasmalogen was most active in the liver. Conclusions Our data demonstrate that PPI-1011 is activated

  9. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    Science.gov (United States)

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Cationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects

    Directory of Open Access Journals (Sweden)

    Brody LP

    2017-09-01

    Full Text Available Leigh P Brody,1,* Meliz Sahuri-Arisoylu,1,* James R Parkinson,1 Harry G Parkes,2 Po Wah So,3 Nabil Hajji,4 E Louise Thomas,1 Gary S Frost,5 Andrew D Miller,6,* Jimmy D Bell1,* 1Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 2CR-UK Clinical MR Research Group, Institute of Cancer Research, Sutton, Surrey, 3Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 4Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, 5Faculty of Medicine, Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6Institute of Pharmaceutical Science, King’s College London, London, UK *These authors contributed equally to this work Abstract: Metabolic reengineering using nanoparticle delivery represents an innovative therapeutic approach to normalizing the deregulation of cellular metabolism underlying many diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment of malignancy using a short-chain fatty acid (SCFA-encapsulated lipid-based delivery system – liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN. We assessed chronic in vivo administration of our nanoparticle in three separate murine models of colorectal cancer. We demonstrated a substantial reduction in tumor growth in the xenograft model of colorectal cancer cell lines HT-29, HCT-116 p53+/+ and HCT-116 p53-/-. Nanoparticle-induced reductions in histone deacetylase gene expression indicated a potential mechanism for these anti-proliferative effects. Together, these results indicated that LITA-CAN could be used as an effective direct or adjunct therapy to treat malignant transformation in vivo. Keywords: lipid-based nanoparticles, liposomes

  11. Development of curcumin-loaded solid lipid nanoparticles utilizing glyceryl monostearate as single lipid using QbD approach: Characterization and Evaluation of anticancer activity against human breast cancer cell line.

    Science.gov (United States)

    Bhatt, Himanshu; Rompicharla, Sri Vishnu Kiran; Komanduri, Neeraja; Shah, Aashma; Paradkar, Sateja; Ghosh, Balaram; Biswas, Swati

    2018-05-03

    Solid lipid nanoparticles (SLNs) represent an affordable, easily scalable, stable and biocompatible drug delivery system with a high drug to lipid ratio which also improves solubility of poorly soluble drugs. SLNs were developed by using glyceryl monostearate as the single lipid in presence of surfactant Poloxamer 188 and evaluated the efficiency of the SLNs to load the therapeutic cargo, curcumin (CUR). The nano-formulation was optimized by Quality by Design approach to understand the effect of various process parameters on various quality attributes, including drug loadability, particle size and polydispersity. The nanoparticles were characterized using Differential scanning calorimetry (DSC), Fourier Transform Infra-red Spectroscopy (FT-IR) and X-Ray Diffraction (XRD) analysis. These novel SLNs were evaluated for in-vitro anticancer activity using breast adenocarcinoma cells (MDA-MB-231). The optimized formulation had particle size of 226.802±3.92 nm with low polydispersity index of 0.244±0.018. The % encapsulation of CUR into SLNs was found to be 67.88±2.08 %. DSC, FT-IR and XRD confirmed that the CUR was encapsulated stably into the lipid matrix, thereby improving the solubility of the drug. CUR-SLN showed sustained drug release in comparison to the free CUR solution. CUR-SLNs exhibited higher cellular uptake in human breast adenocarcinoma cells compared to free CUR at both 1 and 4 h time points. CUR-SLNs demonstrated decreased cell viability (43.97±1.53%) compared to free CUR (59.33±0.95%) at a concentration of 50 μg/mL after 24 h treatment. Further, treatment of MDA-MB-231 cells with CUR-SLNs for 24 h induced significantly higher apoptosis (37.28±5.3%) in cells compared to the free CUR (21.06±0.97%). The results provide strong rationale for further exploration of the newly developed CUR-SLN to be utilized as a potent chemotherapeutic agent in cancer therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  13. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  14. Misconceptions about the ether

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Several misconceptions concerning the ether concept and ether models are reviewed and clarified so that the relationship between modern ether theory and orthodox relativity may be better understood. The question of the ether's supposed superfluidity as a concept, and its status in modern physics remains to be answered. (author)

  15. Determination of ether extract digestibility and energy content of specialty lipids with different fatty acid and free fatty acid content, and the effect of lecithin, for nursery pigs

    Science.gov (United States)

    Various specialty lipids are commercially available and used in nursery pig diets, but may have FA profiles and FFA content that affect their caloric value. In each of 2 experiments, 54 barrows (28-d of age) were fed a common diet for 7-d, allotted to dietary treatments and fed their respective expe...

  16. Archaeal lipids in oral delivery of therapeutic peptides

    DEFF Research Database (Denmark)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert

    2017-01-01

    Archaea contain membrane lipids that differ from those found in the other domains of life (Eukarya and Bacteria). These lipids consist of isoprenoid chains attached via ether bonds to the glycerol carbons at the sn-2,3 positions. Two types of ether lipids are known, polar diether lipids and bipolar...

  17. New cytotoxic butyltin complexes with 2-sulfobenzoic acid: Molecular interaction with lipid bilayers and DNA as well as in vitro anticancer activity

    Czech Academy of Sciences Publication Activity Database

    Pruchnik, H.; Kral, Teresa; Poradowski, D.; Drynda, A.; Obmińska-Mrukowicz, B.; Hof, Martin

    2016-01-01

    Roč. 243, JAN 2016 (2016), s. 107-118 ISSN 0009-2797 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Butyltin 2-sulfobenzoates * Antitumor activity * Lipid bilayer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.143, year: 2016

  18. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use

    Directory of Open Access Journals (Sweden)

    Denny Joseph Manual Kollareth

    2018-03-01

    Full Text Available Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments. Keywords: Cholesteryl ether, J774 A2 macrophages, Soy oil emulsion, Thin layer chromatography, triDHA emulsion

  19. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.

    Science.gov (United States)

    Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J

    2018-03-01

    Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.

  20. Ether formulations of relativity

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Contemporary ether theories are surveyed and criticised, especially those formally identical to orthodox Relativity. The historical development of Relativity, Special and General, in terms of an ether, is briefly indicated. Classical interpretations of Generalized Relativity using ether are compared to Euclidean formulations using a background space. The history of a sub-group of theories, formulating a 'new' Relativity involving modified transforms, is outlined. According to the theory with which they agree, recent supposed detections of drift are classified and criticised. Cosmological evidence suggesting an ether is mentioned. Only ether theories formally identical to Relativity have been published in depth. They stand criticised as being contrary to the positivist spirit. The history of mechanical analogues is traced, from Hartley's representing gravitating matter as spherical standing waves, to recent suggestions that vortex-sponge might model electromagnetic, quantum, uncertainty and faster-than-light phenomena. Contemporary theories are particular physical theories, themselves 'second interpretations' of a primary mathematical model. Mechanical analogues are auxiliary, not necessary, to other theory, disclosing relationships between classical and non-classical descriptions of assemblies charging state. The ether-relativity polemic, part of a broader dispute about relativity, is founded on mistaken conceptions of the roles of mathematical and physical models, mechanical analogues; and a distored view of history, which indicates that ether theories have become relativistic. (author)

  1. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  2. Anticancer peptides from bacteria

    OpenAIRE

    Tomasz M. Karpiński; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  3. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  4. Usage of the word 'ether'

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Confusion has been caused by scientists using the one word 'ether' to classify models differing from each other in important respects. Major roles assigned to the word are examined, and the nature of modern ether theories surveyed. The part played by the several meanings attached to the word, in the ether concept, is outlined. (author)

  5. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  6. Anticancer properties of brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Swaczynová, Jana; Malíková, J.; Hoffmannová, L.; Kohout, Ladislav; Strnad, Miroslav

    2007-01-01

    Roč. 72, č. 11 (2007), - ISSN 0032-0943. [Annual Congress on Medicinal Plant Research /54./. 29.08.2006-02.09.2006, Helsinki] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : brassinosteroids * anticancer activity * proliferation * apoptosis Subject RIV: CC - Organic Chemistry

  7. Anticancer drugs during pregnancy.

    Science.gov (United States)

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    Science.gov (United States)

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  9. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.

  10. Ether the nothing that connects everything

    CERN Document Server

    Milutis, Joe

    2006-01-01

    In Ether, the histories of the unseen merge with discussions of the technology of electromagnetism. Navigating more than three hundred years of the ether''s cultural and artistic history, Joe Milutis reveals its continuous reinvention and tangible impact without ever losing sight of its ephemeral, elusive nature. The true meaning of ether, Milutis suggests, may be that it can never be fully grasped.

  11. Anticancer Properties of Lamellarins

    Directory of Open Access Journals (Sweden)

    Christian Bailly

    2015-02-01

    Full Text Available In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.

  12. Chemoselective Deprotection of Triethylsilyl Ethers

    Science.gov (United States)

    Chandra, Tilak; Broderick, William E.; Broderick, Joan B.

    2009-01-01

    An efficient and selective method was developed for the deprotection of triethylsilyl (TES) ethers using formic acid in methanol (5–10%) or in methylene chloride 2–5%) with excellent yields. TES ethers are selectively deprotected to the corresponding alcohols in high yields using formic acid in methanol under mild reaction conditions. Other hydroxyl protecting groups like t-butyldimethylsilyl (TBDMS) remain unaffected. PMID:20183570

  13. Rearrangements of Cycloalkenyl Aryl Ethers

    Directory of Open Access Journals (Sweden)

    Mercedesz Törincsi

    2016-04-01

    Full Text Available Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed.

  14. Ether: Bitcoin's competitor or ally?

    OpenAIRE

    Bouoiyour, Jamal; Selmi, Refk

    2017-01-01

    Although Bitcoin has long been dominant in the crypto scene, it is certainly not alone. Ether is another cryptocurrency related project that has attracted an intensive attention because of its additional features. This study seeks to test whether these cryptocurrencies differ in terms of their volatile and speculative behaviors, hedge, safe haven and risk diversification properties. Using different econometric techniques, we show that a) Bitcoin and Ether are volatile and relatively more resp...

  15. Biomedical potentials of crown ethers: prospective antitumor agents.

    Science.gov (United States)

    Kralj, Marijeta; Tusek-Bozić, Ljerka; Frkanec, Leo

    2008-10-01

    Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.

  16. and in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Monika Toma

    2014-09-01

    Full Text Available Nowadays, cancer and anticancer therapy are increasingly mentioned topics. Groups of researchers keep looking for a tool that will specifically and efficiently eliminate abnormal cells without any harm for the normal ones. Such method entails the reduction of therapy’s side effects, thus also improving patient’s recovery. Discovery of synthetic lethality has become a new hope to create effective, personalized therapy of cancer. Researchers noted that pairs of simultaneously mutated genes can lead to cell death, whereas each gene from that pair mutated individually does not result in cell lethality. Cancer cells accumulate numerous changes in their genetic material. By defining the pairs of genes interacting in cell pathways we are able to identify a potential anticancer therapy. It is believed that such a process has evolved to create cell resistance for a single gene mutation. Proper functioning of a pathway is not dependent on a single gene. Such a solution, however, also led to the evolution of multifactorial diseases such as cancer. Research techniques using iRNA, shRNA or small molecule libraries allow us to find genes that are connected in synthetic lethality interactions. Synthetic lethality may be applied not only as an anticancer therapy but also as a tool for identifying the functions of recently recognized genes. In addition, studying synthetic lethality broadens our understanding of the molecular mechanisms governing cancer cells, which should be helpful in designing highly effective personalized cancer therapies.

  17. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  18. Melatonin Anticancer Effects: Review

    Directory of Open Access Journals (Sweden)

    Luigi Di Bella

    2013-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine, MLT, the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate. The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation. All these particular characteristics suggest the use of MLT in oncological diseases.

  19. Development of New Lipid-Based Paclitaxel Nanoparticles Using Sequential Simplex Optimization

    Science.gov (United States)

    Dong, Xiaowei; Mattingly, Cynthia A.; Tseng, Michael; Cho, Moo; Adams, Val R.; Mumper, Russell J.

    2008-01-01

    The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 μg/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4°C over three months and in PBS at 37°C over 102 hours as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol®. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with complete retention of original physicochemical properties, in-vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes. PMID:19111929

  20. The simple ethers of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.

    1998-01-01

    From glycerin derivatives the considerable interest is present simple ethers because many of them are biological active and found wide practical using as an effect drugs, inters for thin organic synthesis, vehicle for injections, regulators of plants growth, reagents, components for perfumery-cosmetic goods and etc

  1. Trial Watch: Anticancer radioimmunotherapy.

    Science.gov (United States)

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in

  2. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  3. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  4. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  5. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  6. Acupuncture as anticancer treatment?

    Directory of Open Access Journals (Sweden)

    Paulina Frączek

    2017-01-01

    Full Text Available The mystery of Traditional Chinese Medicine has been attracting people for years. Acupuncture, ranked among the most common services of Complementary and Alternative Medicine, has recently gained a lot of interest in the scientific world. Contemporary researchers have been continuously trying to shed light on its possible mechanism of action in human organism. Numerous studies pertaining to acupuncture’s application in cancer symptoms or treatment-related side effects management have already been published. Moreover, since the modern idea of acupuncture’s immunomodulating effect seems to be promising, scientists have propounded a concept of its potential application as part of direct anti-tumor therapy. In our previous study we summarized possible use of acupuncture in management of cancer symptoms and treatment-related ailments, such as chemotherapy-induced nausea and vomiting, pain, xerostomia, vasomotor symptoms, neutropenia, fatigue, anxiety, insomnia, lymphoedema after mastectomy and peripheral neuropathy. This article reviews the studies concerning acupuncture as a possible tool in modern anticancer treatment.

  7. Sulfonated polyphenyl ether by electropolymerization

    International Nuclear Information System (INIS)

    Hou Hongying; Vacandio, Florence; Di Vona, Maria Luisa; Knauth, Philippe

    2012-01-01

    Highlights: ► Sulfonated polyphenyl ether was for the first time electropolymerized. ► This technique allows the economical preparation of ionomeric membranes for electrochemical energy technologies. ► The mechanism of electropolymerization was discussed in detail. - Abstract: Electropolymerization of sulfonated phenol was for the first time achieved and studied by cyclic voltammetry (CV) and chronoamperometry on stainless steel substrates. The obtained sulfonated polyphenyl ether was characterized in terms of impedance spectroscopy, nuclear magnetic resonance (NMR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and Fourier-Transform Infrared (FTIR) spectroscopy. Dense films of micrometer thickness can be obtained; the proton conductivity is about 3 mS/cm at room temperature.

  8. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  9. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids

    Science.gov (United States)

    An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% of soybean oil (SO), choice white grease (CWG), palm oil (PO), or 2 different distillers corn oils (DCO-1 and DC...

  10. Polypharmacology of Approved Anticancer Drugs.

    Science.gov (United States)

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Critical properties of some aliphatic symmetrical ethers

    International Nuclear Information System (INIS)

    Nikitin, Eugene D.; Popov, Alexander P.; Bogatishcheva, Nataliya S.

    2014-01-01

    Highlights: • Critical properties of simple aliphatic ethers were measured. • The ethers decompose at near-critical temperatures. • Pulse-heating method with short residence times was used. -- Abstract: The critical temperatures T c and the critical pressures p c of dihexyl, dioctyl, and didecyl ethers have been measured. According to the measurements, the coordinates of the critical points are T c = (665 ± 7) K, p c = (1.44 ± 0.04) MPa for dihexyl ether, T c = (723 ± 7) K, p c = (1.19 ± 0.04) MPa for dioctyl ether, and T c = (768 ± 8) K, p c = (1.03 ± 0.03) MPa for didecyl ether. All the ethers studied degrade chemically at near-critical temperatures. A pulse-heating method applicable to measuring the critical properties of thermally unstable compounds has been used. The times from the beginning of a heating pulse to the moment of reaching the critical temperature were from 0.06 to 0.46 ms. The short residence times provide little decomposition of the substances in the course of the experiments. The critical properties of the ethers investigated in this work have been discussed together with those of methyl to butyl ethers. The experimental critical constants of the ethers have been compared with those estimated by the group-contribution methods of Wilson and Jasperson and Marrero and Gani. The Wilson/Jasperson method provides a better estimation of the critical temperatures and pressures of simple aliphatic ethers in comparison with the Marrero/Gani method if reliable normal boiling temperatures are used in the method of Wilson and Jasperson

  12. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  13. Numerical analysis of spray characteristics of dimethyl ether and diethyl ether fuel

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Yu, Wenbin; Tay, Kun Lin

    2017-01-01

    Highlights: • Thermo-physical properties of liquid DME and DEE are reported. • Ether fuels tend to cavitate higher compared to that of diesel fuel. • Spray tip penetration and SMD are found to be lesser for ether fuels. • Ether fuels shows excellent atomization behavior. - Abstract: In this work, the spray characteristics of ether fuels such as dimethyl ether (DME) and diethyl ether (DEE) have been numerically investigated using KIVA-4 CFD code. A new hybrid spray model developed by coupling the standard KHRT model to cavitation sub model was used. The detailed thermo-physical properties of ether fuels have been predicted and validated with experimental results available from literature. The cavitation inception inside the injector nozzle hole has been studied for ether fuels in comparison with diesel fuel. It was found that ether fuels cavitates higher compared to that of conventional diesel fuel because of its low viscosity. The spray tip penetration of diesel fuel was longer than that of ether fuels due to high viscosity and density of diesel fuel. Ether fuels characterized by low Ohnesorge number and high Reynolds number showed better atomization behavior compared to that of the diesel fuel.

  14. Unitary information ether and its possible applications

    International Nuclear Information System (INIS)

    Horodecki, R.

    1991-01-01

    The idea of information ether as the unitary information field is developed. It rests on the assumption that the notion of information is a fundamental category in the description of reality and that it can be defined independently from the notion of probability itself. It is shown that the information ether provides a deterministic background for the nonlinear wave hypothesis and quantum cybernetics. (orig.)

  15. Polyether ether ketone film. Polyether ether ketone film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. (Sumitomo Chemical Co. Ltd., Tokyo (Japan))

    1990-07-05

    The characteristics and the film making process of polyether ether ketone (PEEK) resin, and the characteristics and the applications of PEEK film, are described. PEEK is aromatic polyketone with super thermal resistance. Though it is a crystalline polymer of which the crystallinity is controlled to 48% in a highest degree, it has also amorphous property, thus it shows unique property. The characteristics of PEEK resin are found in thermal resistance, incombusti-bility, transparency, chemical resistance, light resistance and radiation resistance. As for the film making process, casting method by T-die is generally adopted. The general properties of PEEK film are excellent in high thermal resistance, good electrical properties, chemical resistance, hydrolysis resistance, radiation resistance and imcombusti-bility. In the application of PEEK film, new development is expected in following fields; a high performance composite, flexible print substrate with high thermal resistance, insulating tape with thermal resistance, and a general film in the nuclear energy industry. 5 figs., 5 tabs.

  16. Anticancer Activity of Amauroderma rude

    Science.gov (United States)

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  17. Anticancer activity of Amauroderma rude.

    Directory of Open Access Journals (Sweden)

    Chunwei Jiao

    Full Text Available More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.

  18. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  19. Lipid Raft: A Floating Island Of Death or Survival

    Science.gov (United States)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  20. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground......-breaking identification of a number of lipid scramblases....

  1. Potential Anticancer Properties of Grape Antioxidants

    Directory of Open Access Journals (Sweden)

    Kequan Zhou

    2012-01-01

    Full Text Available Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera, one of the world’s largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted.

  2. Anticancer potential of Hericium erinaceus extracts against particular human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Younis AM

    2017-06-01

    Full Text Available Cancer is a leading cause of death worldwide. Cancer resulted in 8.2 million human deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2013 to 22 million within the next two decades. Mushrooms are extensively used as nutritional supplements in many countries. Moreover, mushrooms have many medicinal properties, including anticancer activity. In this study, the anticancer activity of different polar and non-polar extracts of Hericium erinaceus were evaluated against different human cancer cell lines including human liver carcinoma (Hep G2, the human colonic epithelial carcinoma (HCT 116, the human cervical cancer cells (HeLa and the human breast adenocarcinoma (MCF-7 using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Furthermore, as a control, the cytotoxicity effect of the different extracts were tested against isolated mouse hepatocytes. It was observed that the extracts by water and methanol from fresh and lyophilized fruiting bodies of H. erinaceus had the strongest anticancer effect. In contrast, the extracts by ether and ethyl acetate from mycelia and broth of H. erinaceus showed lower anticancer activity against the tested carcinoma cell lines. The highest anticancer activity was recorded for aqueous extract of lyophilized fruiting bodies with half maximal inhibitory concentration (IC50 values of 6.1±0.2, 5.1±0.1, 5.7±0.2 and 5.8±0.3 µg/ml against Hep G2, HCT 116, HeLa and MCF-7 cells, respectively with non-significant effect on the normal mouse hepatocytes. To summarise, polar extracts of H. erinaceus can be good sources for isolating natural anticancer compounds. I recommend further chemical studies to isolate the active principles of the extract of H. erinaceus evaluated in the present.

  3. Recent discoveries of anticancer flavonoids.

    Science.gov (United States)

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    Science.gov (United States)

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections.

  5. Activity relationships for aromatic crown ethers

    International Nuclear Information System (INIS)

    Wilson, Mark James

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities from molecular modelling and this rational has been applied to the study of proton ionisable and lariating crown ethers. The incorporation of crown ethers into polyamic acid and polyimide frameworks has also been investigated, where the resulting materials have been found to exhibit unusual cation binding and uptake properties. These results imply that the combination of the crown ethers' macrocycle and adjacent carboxylic acid residues, from the polyamic acids, are conducive to effective cationic binding. NMR measurements, in conjunction with molecular modelling, have been used to explore the geometry changes encountered as the crown ether goes from it's uncomplexed to its complexed state. The energy requirement for these geometry changes has subsequently been used to examine the cation selectivity of these materials. The electronic charge changes associated with the complexation have also been investigated and correlated with the theoretical results. (author)

  6. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  7. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  8. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    Science.gov (United States)

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  9. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    Science.gov (United States)

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  10. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  11. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  12. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  13. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  14. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency.

    Science.gov (United States)

    Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing

    2017-10-02

    Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.

  15. Dissociative Photoionization of Diethyl Ether.

    Science.gov (United States)

    Voronova, Krisztina; Mozaffari Easter, Chrissa M; Covert, Kyle J; Bodi, Andras; Hemberger, Patrick; Sztáray, Bálint

    2015-10-29

    The dissociative photoionization of internal energy selected diethyl ether ions was investigated by imaging photoelectron photoion coincidence spectroscopy. In a large, 5 eV energy range Et2O(+) cations decay by two parallel and three sequential dissociative photoionization channels, which can be modeled well using statistical theory. The 0 K appearance energies of the CH3CHOCH2CH3(+) (H-loss, m/z = 73) and CH3CH2O═CH2(+) (methyl-loss, m/z = 59) fragment ions were determined to be 10.419 ± 0.015 and 10.484 ± 0.008 eV, respectively. The reemergence of the hydrogen-loss ion above 11 eV is attributed to transition-state (TS) switching, in which the second, outer TS is rate-determining at high internal energies. At 11.81 ± 0.05 eV, a secondary fragment of the CH3CHOCH2CH3(+) (m/z = 73) ion, protonated acetaldehyde, CH3CH═OH(+) (m/z = 45) appears. On the basis of the known thermochemical onset of this fragment, a reverse barrier of 325 meV was found. Two more sequential dissociation reactions were examined, namely, ethylene and formaldehyde losses from the methyl-loss daughter ion. The 0 K appearance energies of 11.85 ± 0.07 and 12.20 ± 0.08 eV, respectively, indicate no reverse barrier in these processes. The statistical model of the dissociative photoionization can also be used to predict the fractional ion abundances in threshold photoionization at large temperatures, which could be of use in, for example, combustion diagnostics.

  16. Chrysin-piperazine conjugates as antioxidant and anticancer agents.

    Science.gov (United States)

    Patel, Rahul V; Mistry, Bhupendra; Syed, Riyaz; Rathi, Anuj K; Lee, Yoo-Jung; Sung, Jung-Suk; Shinf, Han-Seung; Keum, Young-Soo

    2016-06-10

    Synthesis of 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one intermediate treating chrysin with 1,4-dibromobutane facilitated combination of chrysin with a wide range of piperazine moieties which were equipped via reacting the corresponding amines with bis(2-chloroethyl)amine hydrochloride in diethylene glycol monomethyl ether solvent. Free radical scavenging potential of prepared products was analyzed in vitro adopting DPPH and ABTS bioassay in addition to the evaluation of in vitro anticancer efficacies against cervical cancer cell lines (HeLa and CaSki) and an ovarian cancer cell line SK-OV-3 using SRB assay. Bearable toxicity of 7a-w was examined employing Madin-Darby canine kidney (MDCK) cell line. In addition, cytotoxic nature of the presented compounds was inspected utilizing Human bone marrow derived mesenchymal stem cells (hBM-MSCs). Overall, 7a-w indicated remarkable antioxidant power in scavenging DPPH(·) and ABTS(·+), particularly analogs 7f, 7j, 7k, 7l, 7n, 7q, 7v, 7w have shown promising free radical scavenging activity. Analogs 7j and 7o are identified to be highly active candidates against HeLa and CaSki cell lines, whereas 7h and 7l along with 7j proved to be very sensitive towards ovarian cancer cell line SKOV-3. None of the newly prepared scaffolds showed cytotoxic nature toward hBM-MSCs cells. From the structure-activity point of view, nature and position of the electron withdrawing and electron donating functional groups on the piperazine core may contribute to the anticipated antioxidant and anticancer action. Different spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, Mass) and elemental analysis (CHN) were utilized to confirm the desired structure of final compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ganoderma: insights into anticancer effects.

    Science.gov (United States)

    Kladar, Nebojša V; Gavarić, Neda S; Božin, Biljana N

    2016-09-01

    The genus Ganoderma includes about 80 species growing on cut or rotten trees. The most commonly used species is Ganoderma ludicum. Biomolecules responsible for the health benefits of Ganoderma are polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic action. For more than 2000 years, it has been used traditionally in the treatment of various pathological conditions and recently, its immunoregulatory, antiviral, antibacterial, antioxidant, hepatoprotective, and anticancer potential has been confirmed. A wide range of Ganoderma extracts and preparations arrest the cell cycle in different phases and consequently inhibit the growth of various types of cancer cells. Extracts containing polysaccharides stimulate immunological reactions through the production of various cytokines and mobilization of immune system cells. In-vivo studies have confirmed the anticancer potential and the antimetastatic effects of compounds originating from Ganoderma. There is also evidence for the chemopreventive action of Ganoderma extracts in bladder, prostate, liver, and breast cancer. The results of clinical studies suggest the combined use of G. lucidum with conventional chemotherapy/radiotherapy, but the methodology and the results of these studies are being questioned. Therefore, a constant need for new clinical trials exists.

  18. Injection characteristics of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.

    1996-09-01

    Dimethyl ether (DME) has proved to be a new ultra-clean alternative fuel for diesel engines. Engine tests have shown considerably lower NO{sub x} emissions, no particle emissions and lower noise compared to that obtained from normal diesel engine operation. DME also has demonstrated favorable response to Exhaust Gas Recirculation (EGR). The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME. Fundamental spray behaviour was characterized by fuel spray penetration and angle, atomization and droplet size and evaporation. The influence of fuel characteristics, nozzle geometry and ambient pressure on the DME and diesel spray behavior was investigated. Fuel was injected into an unheated injection chamber with a ambient pressure of 15 bar and 25 bar, respectively, giving a simplified simulation of the environment in an operating engine. Two nozzles were studied: a single hole nozzle and a pintle nozzle. A conventional fuel injection system was used for both nozzles. Injection parameters of RPM, throttle position, fuel line length and chamber environment were held constant for both nozzles. The sprays were visualized using schlieren and high speed photography. Results show that the general appearance of the DME spray is similar to that of diesel spray. The core of the DME spray seems less dense and the spray tip less sharp compared to diesel spray, indicating smaller droplets with a lower momentum in the core of the DME spray. Schlieren film shows that with both DME and diesel fuel, the spray tip only consists of liquid and that evaporation occurs after a brief time interval. Penetration of DME is about one third that of diesel using the pintle nozzle. Also, the spray angle is considerably larger for the DME spray compared to the diesel spray. A comparatively smaller difference in penetration is observed using the hole nozzle. Differences in penetration for the hole nozzle are within the limit of the penetration

  19. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The

  20. Radiation-induced transformations of cellulose ethers

    International Nuclear Information System (INIS)

    Nud'ga, L.A.; Petropavlovskii, G.S.; Plisko, E.A.; Isakova, O.V.; Ershov, B.G.

    1988-01-01

    The purpose of this investigation was to study the transformation which take place under the action of γ-radiation in a number of cellulose ethers containing both saturated (carboxymethyl, hydroxyethyl) and unsaturated (allyl, methacryloyl) groups. Irradiation was carried out on a 60 Co unit in air at 77 and 300 K; the dose rate was 37 and 50 kGy/h respectively. The EPR spectra of γ-irradiated hydroxyethyl- and allylhydroxyethylcelluloses are identical. Under the action of γ-radiation extensive changes took place in cellulose ethers which are exhibited in degradation or the formation of three-dimensional structures and are accompanied by a change in the functional composition. The efficiency in the formation of radicals and their localization are determined by the nature and number of substituents in the cellulose ethers

  1. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    Directory of Open Access Journals (Sweden)

    Man Young Chun

    2014-07-01

    Full Text Available Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba, Pine (Pinus densiflora, Platanus (Platanus, and Metasequoia (Metasequoia glyptostroboides. These were used as passive air sampler (PAS of atmospheric polybrominated diphenyl ethers (PBDEs. Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry, whereas pine (4.85 mg/g dry, Platanus (3.61 mg/g dry, and Metasequoia (0.97 mg/g dry had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry, followed by Ginkgo (53,538.4 pg/g dry, Pine (20,266.4 pg/g dry, and Platanus (12,572.0 pg/g dry. There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682. Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6% of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  2. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks.

    Science.gov (United States)

    Chun, Man Young

    2014-07-17

    This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks (R(2)=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  3. Lipid Nanotechnology

    Directory of Open Access Journals (Sweden)

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  4. [Anticancer propaganda: myth or reality?].

    Science.gov (United States)

    Demin, E V; Merabishvili, V M

    2014-01-01

    The authors raise a very important problem of anticancer propaganda aimed at the early detection of cancer to be solved nowadays by means of screening and constructive interaction between oncologists and the public. To increase the level of knowledge of the population in this area it is necessary to expand the range of its adequate awareness of tumor diseases. Only joint efforts can limit the destructive effect of cancer on people's minds, so that every person would be responsible for his own health, clearly understanding the advantages of early visit to a doctor. This once again highlights the need of educational work with the public, motivational nature of which allows strengthening the value of screening in the whole complex of measures to fight cancer.

  5. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  6. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Esau, Luke E.

    2014-01-01

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  7. On new physical reality (on ψ-ether)

    International Nuclear Information System (INIS)

    Isaev, P.S.

    2002-01-01

    It is shown that there exists a new physical reality - the ψ-ether. All the achievements of quantum mechanics and quantum field theory are due to the fact that both the theories include the influence of ψ-ether on the physical processes occurring in the Universe. Physics of the XX century was first of all the physics of ψ-ether

  8. Levels and distribution of polybrominated diphenyl ethers in various tissues of birds of prey

    International Nuclear Information System (INIS)

    Voorspoels, Stefan; Covaci, Adrian; Lepom, Peter; Jaspers, Veerle L.B.; Schepens, Paul

    2006-01-01

    In the present study, concentrations and tissue distribution of polybrominated diphenyl ethers (PBDEs; IUPAC nos. 28, 47, 99, 100, 153, 154, 183, and 209) were examined in brain, adipose tissue, liver, muscle, and serum of birds of prey. Median ΣPBDE levels (BDE 28-183) in the tissues of sparrowhawks ranged from 360 to 1900 ng/g lipid weight (lw), which was in general one order of magnitude higher than in the tissues of common buzzards (26-130 ng/g lw). There were no differences in PBDE congener patterns between the various tissues within individuals of a certain species. Inter-species differences in PBDE patterns and in particular the percentage of BDE 99, 100 and 153 were, however, pronounced between sparrowhawk and common buzzard. BDE 209 was detected in nearly all serum and in some liver samples, but not in any other tissues. This observation suggests that exposure to BDE 209 is low or that this congener is poorly accumulated. Passive (lipid content related) diffusion could not completely describe the PBDE tissue distribution, e.g. the lowest PBDE-load was measured in brain, a fairly lipid rich tissue. - Distribution of polybrominated diphenyl ethers in birds of prey is tissue dependent

  9. Lipid Panel

    Science.gov (United States)

    ... A routine cardiac risk assessment typically includes a fasting lipid panel. Beyond that, research continues into the usefulness of other non-traditional markers of cardiac risk, such as Lp-PLA 2 . A health practitioner may choose to evaluate one or more ...

  10. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.

    Science.gov (United States)

    Deslouches, Berthony; Di, Y Peter

    2017-07-11

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  11. Children's exposure to polybrominated diphenyl ethers.

    NARCIS (Netherlands)

    Zuurbier, M.; Leijs, M.; Schoeters, G.; Tusscher, G. Ten; Koppe, J.G.

    2006-01-01

    Background: Polybrominated biphenyl ethers (PBDEs), a class of brominated flame retardants, are frequently used in consumer products. PBDEs levels in environmental and human samples have increased in recent decades. Children are exposed to PBDEs through diet, mainly through fish, meat and milk.

  12. Polybrominated diphenyl ethers and novel flame retardants

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Vorkamp, Katrin; Nielsen, Jesper Bo

    ,4,6-tribromophenyl ether (TBP-DBPE) and dechlorane plus (DDC-CO) have been detected in the same dust samples previously analysed for PBDEs and are currently being analysed in the corresponding human milk samples. [1] Stapleon H.M., Eagle S., Sjödin A., Webster T.F. (2012). Serum PBDEs in a North Carolina Toddler...

  13. [Visualisation methods for etheric formative forces].

    Science.gov (United States)

    Burkhard, B; Kittel, R

    2009-09-01

    Rudolf Steiner, the founder of anthroposophy, suggested the development of visualisation methods for "etheric formative forces". The essential methods, their "spiritual scientific" basis and indications are described and their claims critically tested. The methods are not validated, the key criteria for diagnostic tests (reproducibility, sensitivity, specifity) are not given.

  14. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  15. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  16. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  17. Ion-Selective Ionic Polymer Metal Composite (IPMC) actuator based on crown ether containing sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.; Vancso, G.J.; Nijmeijer, K.

    2017-01-01

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  18. Occurrence of polybrominated diphenyl ethers (PBDEs) in brown trout bile and liver from Swiss rivers

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Paul C. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Burkhardt-Holm, Patricia [Department of Environmental Science, University of Basel, Vesalgasse 1, 4051 Basel (Switzerland)]. E-mail: patricia.holm@unibas.ch; Giger, Walter [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland)]. E-mail: giger@eawag.ch

    2007-03-15

    The ranges of total polybrominated diphenyl ethers (PBDEs) in fish from four Swiss rivers were 0.8-240 ng/g in the bile and 16-7400 ng/g lipid in the liver. PBDE concentrations varied within each river and among the various rivers. Female fish tended to have higher concentrations in the liver, while the male fish had higher concentrations in the bile. From the resulting PBDE concentrations in fish it could not be infered that these contaminants contribute to the causes of the observed fish catch decline in Swiss rivers. - PBDEs with the most abundant BDE-47 were determined in brown trout bile and liver from Swiss rivers.

  19. Occurrence of polybrominated diphenyl ethers (PBDEs) in brown trout bile and liver from Swiss rivers

    International Nuclear Information System (INIS)

    Hartmann, Paul C.; Burkhardt-Holm, Patricia; Giger, Walter

    2007-01-01

    The ranges of total polybrominated diphenyl ethers (PBDEs) in fish from four Swiss rivers were 0.8-240 ng/g in the bile and 16-7400 ng/g lipid in the liver. PBDE concentrations varied within each river and among the various rivers. Female fish tended to have higher concentrations in the liver, while the male fish had higher concentrations in the bile. From the resulting PBDE concentrations in fish it could not be infered that these contaminants contribute to the causes of the observed fish catch decline in Swiss rivers. - PBDEs with the most abundant BDE-47 were determined in brown trout bile and liver from Swiss rivers

  20. Process for making propenyl ethers and photopolymerizable compositions containing them

    Science.gov (United States)

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  1. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  2. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Renil [Department of Mechanical Engineering, Ohio University, Athens, OH (United States); Stuart, Ben, E-mail: stuart@ohio.edu [Department of Civil Engineering, Ohio University, Athens, OH (United States)

    2015-01-20

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  3. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    International Nuclear Information System (INIS)

    Anthony, Renil; Stuart, Ben

    2015-01-01

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  4. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  5. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  6. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  7. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  8. Polybrominated diphenyl ethers in birds of prey from Northern China.

    Science.gov (United States)

    Chen, Da; Mai, Bixian; Song, Jie; Sun, Quanhui; Luo, Yong; Luo, Xiaojun; Zeng, Eddy Y; Hale, Robert C

    2007-03-15

    Birds of prey from Northern China (Beijing area) were examined for polybrominated diphenyl ethers (PBDEs). A total of 47 specimens from eight different species were analyzed. Muscle and liver were analyzed separately for each bird. Kidneys were pooled by species. Common kestrels exhibited the highest PBDE levels (mean muscle and liver concentrations of 12300 and 12200 ng/g lipid weight, respectively), with maxima in an individual bird of 31700 in muscle and 40900 ng/g lw in liver. Congener profiles differed between some species, but were generally dominated by the more brominated congeners (e.g., BDE-153, -209, -183, -207). BDE-209 was especially elevated compared to other published reports. Interspecies differences in congener concentrations and profiles may be due to diet, behavior, or biotransformation capacities. BDE-209 was detected in 79.4% of the samples. Common kestrels contained the highest BDE-209 levels (mean/maxima of 2150/6220 in muscle and 2870/12200 ng/g lw in liver). BDE-209 was the dominant congener in tissues from some buzzards, scops owls, and long-eared owls. It was the second most abundant congener in common kestrels. The remarkable levels and dominance of BDE-209 may relate to significant production, usage, or disposal of deca-containing products in China. These observations reinforce the growing view that organisms using terrestrial food chains may have greater exposure to BDE-209.

  9. Model for Photodegradation of Polybrominated Diphenyl Ethers

    Czech Academy of Sciences Publication Activity Database

    Veselý, M.; Vajglová, Zuzana; Kotas, Petr; Křišťál, Jiří; Ponec, Robert; Jiřičný, Vladimír

    2015-01-01

    Roč. 22, č. 7 (2015), s. 4949-4963 ISSN 0944-1344 R&D Projects: GA ČR GA104/09/0880; GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 ; RVO:67179843 Keywords : polybrominated diphenyl ethers * photodegradation model * quantum chemical calculation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.760, year: 2015

  10. Promoting environmentally sound management of polybrominated diphenyl ethers in Asia.

    Science.gov (United States)

    Li, Jinhui; Zhao, Nana; Liu, Xue; Wu, Xiaoyang

    2014-06-01

    Polybrominated diphenyl ethers with persistent organic pollutant properties are required to be controlled by the Stockholm Convention. Recently, polybrominated diphenyl ether contamination has become widespread in Asia, mainly because of the disposal and recycling processes of polybrominated diphenyl ether-containing wastes. The management status, production, usage, import/export, treatment, and disposal, as well as implementation deficiencies for the environmentally sound management of polybrominated diphenyl ethers and polybrominated diphenyl ether-containing materials in ten Asian countries were investigated and assessed in this study. This information could help the participating countries implement the Stockholm Convention and could promote the regional environmentally sound management of polybrominated diphenyl ether-containing articles and products. The results obtained were as follows. (1) Most of the countries studied lacked environmental policies and regulations, or even standards of polybrominated diphenyl ether pollution management and emission control actions. Accurate data on the consumption and importation of polybrominated diphenyl ether-containing materials, however, were not available for all the participating countries. In addition, there were no special treatment or disposal systems for polybrominated diphenyl ether-containing materials, or emission-cutting measures for the treatment of waste in these countries, owing to the lack of sufficient funding or technologies. (2) The improper dismantling of e-waste is a major source of polybrominated diphenyl ether emissions in these countries. (3) Proper e-waste management could result in a breakthrough in the environmentally sound management of this major polybrominated diphenyl ether-containing material flow, and could significantly reduce polybrominated diphenyl ether emissions. Finally, based on the study results, this article puts forward some recommendations for improving the environmentally

  11. Nikola Tesla, the Ether and his Telautomaton

    Science.gov (United States)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  12. Polybrominated diphenyl ethers: a case study for using biomonitoring data to address risk assessment questions.

    Science.gov (United States)

    Birnbaum, Linda S; Cohen Hubal, Elaine A

    2006-11-01

    The use of biomonitoring data holds promise for characterizing exposure and informing risk assessment. Biomonitoring data have been used successfully to track population trends, identify susceptible populations, and provide indications of emerging environmental health issues. However, there remain challenges associated with interpreting biomonitoring data for risk assessment. An international biomonitoring workshop was convened in September 2004 to explore the use of biomonitoring data in the context of risk assessment. Six compounds were examined as case studies for this workshop, including polybrominated diphenyl ethers (PBDEs). The PBDE case study was developed to provide an example of a persistent compound for which relatively few data are available for human exposure, biomonitoring, and health outcomes. PBDEs are used in hard plastics, electronics, textiles, and polyurethane foam products. The congener pattern downstream of production facilities often resembles the commercial mixture. However, because these compounds persist in the environment and in biota, the patterns of congeners evolve. PBDEs partition into body lipids, and direct measurement of bromodiphenyl ether congeners in biologic specimens provides a good marker of exposure. Data indicate significant variability (> 100-fold range) in lipid-adjusted levels for PBDEs in the general population. It is hypothesized that both exposure and pharmacokinetics may play a role in observed congener profiles. Significant gaps in our ability to interpret PBDE biomonitoring data to address public health and risk assessment questions include limited knowledge of environmental fate and transport of PBDE congeners, limited population-based data for adults, and lack of data for potentially vulnerable populations such as children.

  13. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  14. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2018-02-01

    Full Text Available Poly-ether-ether-ketone (PEEK fabricated by fused deposition modeling for medical applications was evaluated in terms of mechanical strength and in vitro cytotoxicity in this study. Orthogonal experiments were firstly designed to investigate the significant factors on tensile strength. Nozzle temperature, platform temperature, and the filament diameter were tightly controlled for improved mechanical strength performance. These sensitive parameters affected the interlayer bonding and solid condition in the samples. Fourier transform infrared (FTIR spectrometry analysis was secondly conducted to compare the functional groups in PEEK granules, filaments, and printed parts. In vitro cytotoxicity test was carried out at last, and no toxic substances were introduced during the printing process.

  15. Anticancer Properties of Capsaicin Against Human Cancer.

    Science.gov (United States)

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp.

    Directory of Open Access Journals (Sweden)

    Renil eAnthony

    2015-01-01

    Full Text Available Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (UTEX LB2396. Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. All solvent extracts contained hexadecanoic acid, linoleic acid and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%, cyclohexane (0.14% and hexane (0.11%. This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  17. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  18. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  19. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  20. Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice.

    Science.gov (United States)

    Praveen, T K; Dharmaraj, S; Bajaj, Jitendra; Dhanabal, S P; Manimaran, S; Nanjan, M J; Razdan, Rema

    2009-06-01

    The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice. The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay. The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.

  1. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  2. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  3. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  4. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  5. The failure of poly (ether ether ketone) in high speed contacts

    Science.gov (United States)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  6. An Exposure Assessment of Polybrominated Diphenyl Ethers ...

    Science.gov (United States)

    EPA announced the availability of the final report, An Exposure Assessment of Polybrominated Diphenyl Ethers. This report provides a comprehensive assessment of the exposure of Americans to this class of persistent organic pollutants. Individual chapters in this document address: the production, use, and lifecycle of PBDEs; environmental fate; environmental levels; and human exposure. This final report addresses the exposure assessment needs identified in the OPBDE Workgroup project plan. It provides a comprehensive assessment of the exposure of Americans to this class of persistent organic pollutants. Individual chapters in this document address: the production, use, and lifecycle of PBDEs; environmental fate; environmental levels; and human exposure.

  7. Copper Promoted Synthesis of Diaryl Ethers

    OpenAIRE

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2004-01-01

    An efficient protocol using copper based reagents for the coupling of aryl halides with phenols to generate diaryl ethers is described. Acopper( I) complex, [ Cu( CH3CN) (4)] ClO4, or the readily available copper( II) source, CuCO3 . Cu( OH) (2) . H2O ( in combination with potassium phosphate), can be used. Aryl halides and phenols with different steric and electronic demands have been used to assess the efficiency of the procedure. The latter source of copper gives better yields under all co...

  8. Gamma-radiolysis of benzosubstituted crown ethers

    International Nuclear Information System (INIS)

    Grigor'ev, E.I.; Nesterov, S.V.; Mikhalitsyna, O.V.; Trakhtenberg, L.I.; Myasoedova, T.G.

    1992-01-01

    The products of gamma-radiolysis of benzosubstituted crown ethers, which are distiguished by the size of polyether ring, and alkylsubstituted DB18C6 are studied by the methods of ESR and mass-spectrometry. A mechanism of the radiolysis of the radiolysis of the studied compounds in the solid phase is proposed. It is shown that the prinicple radiolysis process is the rupture of C-O bond resulting in the stabilization of H atoms from group -CH 2 - of polyether ring is realized with a lower probability

  9. LipidPioneer : A Comprehensive User-Generated Exact Mass Template for Lipidomics

    Science.gov (United States)

    Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.; Bowden, John A.

    2017-03-01

    Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g., serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user-generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data.

  10. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.

    Science.gov (United States)

    Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K

    2013-01-01

    The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  11. Bauhinia variegata Leaf Extracts Exhibit Considerable Antibacterial, Antioxidant, and Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Amita Mishra

    2013-01-01

    Full Text Available The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL. Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  12. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  13. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  14. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  15. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  16. Anticancer and antiproliferative activity of natural brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Malíková, J.; Swaczynová, Jana; Kolář, Z.; Strnad, Miroslav

    2008-01-01

    Roč. 69, č. 2 (2008), s. 418-426 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroids * Anticancer activity * Cell cycle Subject RIV: CE - Biochemistry Impact factor: 2.946, year: 2008

  17. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  18. The Ether Wind and the Global Positioning System.

    Science.gov (United States)

    Muller, Rainer

    2000-01-01

    Explains how students can perform a refutation of the ether theory using information from the Global Positioning System (GPS). Discusses the functioning of the GPS, qualitatively describes how position determination would be affected by an ether wind, and illustrates the pertinent ideas with a simple quantitative model. (WRM)

  19. Dimethyl ether as a drift-chamber gas

    International Nuclear Information System (INIS)

    Bari, G.; Basile, M.; Bonvicini, G.; Cara Romeo, G.; Casaccia, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; D'Ali, G.; Del Papa, C.; Focardi, S.; Iacobucci, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Prisco, G.; Sartorelli, G.; Susinno, G.; Votano, L.; Zichichi, A.; Istituto Nazionale di Fisica Nucleare, Bologna; European Organization for Nuclear Research, Geneva; Istituto Nazionale di Fisica Nucleare, Frascati; Michigan Univ., Ann Arbor; Palermo Univ.

    1986-01-01

    We have continued the testing of dimethyl ether as a drift-chamber gas in order to improve the understanding of its properties. In particular, we report on measurement accuracy, on systematic effects, and some preliminary data on the ageing of a detector filled with dimethyl ether. (orig.)

  20. Influence of structure of crown ethers on their radiation stability

    International Nuclear Information System (INIS)

    Grigor'ev, E.I.; Myasoedova, T.G.; Nesterov, S.V.; Trakhtenberg, L.I.

    1988-01-01

    Primary products of γ-radiolysis of crown ethers with the same size of the macrocyclic ring and different substituents were studied by EPR and mass spectrometry. It was shown that introduction of substituents into the polyether ring increases the radiation stability of crown ethers due to intramolecular transfer of energy from the polyether ring to a substituent

  1. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  2. Application of simplified PC-SAFT to glycol ethers

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  3. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  4. Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts

    NARCIS (Netherlands)

    Gomez-Monedero, B.; Faria, J.; Bimbela, F.; Ruiz, M.P.

    2017-01-01

    The catalytic hydroprocessing of phenethyl phenyl ether (PPE), a model compound of one of the most significant ether linkages within lignin structure, β-O-4, has been studied. Reactions were carried out using two ruthenium-based catalysts, supported on different materials: 3.8 wt.% Ru/C and 3.9 wt.%

  5. New Lipids From Cultured Archaea and Environmental Samples

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Hebting, Y.; Jahnke, L. L.; Embaye, T.; Orphan, V. J.

    2006-12-01

    The intact polar lipids of Archaea comprise cores with isoprenoid hydrocarbon chains with 20, 25 or 40 carbon atoms linked through ether bonds to glycerol. These cores can take the form of diethers or membrane- spanning tetraethers. Together with their wide array of polar head groups, these compounds are structurally diverse and potentially very useful as taxonomic markers for making assessments of microbial diversity independently of genomic approaches. Furthermore, the recalcitrant hydrocarbon chains of these lipids are the only really effective means to identify the presence of Archaea in ancient sedimentary environments. The advent of new LC-MS methods has enabled ready identification and quantification of intact polar lipids in cultures and environmental samples based on comparisons with appropriate standard compounds [1, 2]. However, these LC-MS analyses of intact lipids have also revealed the presence of additional compounds and it is likely that many of these represent chemical structures that are new to science. Elucidating these structures is a major analytical challenge because, generally, only minute amounts of material available for chemical characterization. In order to study these potentially new structures, one layer of information can be obtained by chemical degradation to remove and identify the polar head groups [2]. Cleavage of the ether bonds releases the hydrocarbon chains for their further characterization. One class of core lipids, the 3-hydroxyarchaeols, escaped detection for many years because strong acid treatments in the analysis protocols had destroyed hydroxyl-containing isoprenoid chains. We have now re-examined the lipids of a thermophilic methanogen, M. thermolithotrophicus, using mild procedures and avoiding strong acids. As well as the known compounds archaeol, sn-2-hydroxyarchaeol and sn-3-hydroxyarchaeol, we encountered dihydroxyarchaeol. Moreover, the hydroxylated archaeols were found to exist as a very complex mixture of

  6. Qualitative composition of the lipids of the wood of scotch pine

    Energy Technology Data Exchange (ETDEWEB)

    Fuksman, I.L.; Pon' kina, N.A.

    1984-01-01

    The ether extract of Pinus sylvestris contained 87.43% neutral lipids and resin acids, 10.85% galacto lipids, and 1.71% phospholipids. The predominant component of phospholipids was phorphatidylcholine, accounting for 62.10% of the total. The other components of phospholipids were diphosphatidylethanolamine (14.00%), phosphatidylglycerol and phosphatidylethanolamine (together accounting for 14.64%), phosphatidylylinositol (5.78%), and phosphatidic acid (1.04%). The acid part of the extract was determined by gas-liquid chromatography to contain 52 carboxylic acids, of which 44 were fatty acids and 8 were resin acids. The composition of the lipids was determined by thin-layer chromatography.

  7. Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres

    International Nuclear Information System (INIS)

    Feng, Y.; Gottmann, J.; Kreutz, E.W.

    2003-01-01

    Structuring of poly ether ether ketone (PEEK) by 193 nm ArF excimer laser radiation has been investigated. Experiments were carried out in different atmospheres (air, vacuum, Ar, O 2 ) in order to study its influence on the quality of the structures and the formation of the debris. Repetition rate makes little effect on the ablation rate and roughness of the structure in presence of any kind of atmosphere, indicating for the structuring of PEEK by ArF laser radiation a large window of processing. The roughness at the bottom of the structures and the morphology of the side walls are strongly affected by the properties of the atmosphere. The smallest roughness is achieved at 0.6 J/cm 2 for all kinds of processing gases. Debris around the structures can be diminished by structuring in vacuum. Plasma expansion speed has been measured by using high speed photography

  8. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  9. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    International Nuclear Information System (INIS)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-01-01

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  10. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  11. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  12. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    International Nuclear Information System (INIS)

    Conceicao, T.F.; Bertolino, J.R.; Barra, G.M.O.; Pires, A.T.N.

    2009-01-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with 1 H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10 -2 S cm -1 , an important characteristic in some applications, such as in fuel cells

  13. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  14. Analysis of electron-irradiated poly-ether ether ketone by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Kobayashi, Yoshinori; Seguchi, Tadao; Sasuga, Tsuneo; Kudoh, Hisaaki.

    1995-01-01

    Organic polymers used in atomic power plants or space are damaged by ionizing irradiation. Radicals produced by irradiation cause oxidation, chain scission and crosslinking, all of which lead to degradation of the material. In this paper, the surface of electron-irradiated poly-ether ether ketone (PEEK) was studied by X-ray photoelectron spectroscopy (XPS). The irradiation in air was found to oxidize the PEEK surface producing carboxyl groups, the content of which dependant on the dose. Carboxyl groups were not produced in helium gas. Quantitative spectral analysis indicated that the aromatic structure might be decomposed. Some comparison was made between the semicrystalline and amorphous samples. The oxygen content resulting from irradiation, of semicrystalline PEEK increased more than that of amorphous PEEK. (author)

  15. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Science.gov (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  17. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, T.F.; Bertolino, J.R. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barra, G.M.O. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Pires, A.T.N. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)], E-mail: alfredotiburcio@pq.cnpq.br

    2009-03-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with {sup 1}H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10{sup -2} S cm{sup -1}, an important characteristic in some applications, such as in fuel cells.

  18. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  19. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  20. Crown ether derivatives of EDTA: Pt. 6

    International Nuclear Information System (INIS)

    Liu Zhongqun; Qin Shengying; Chen Shaojin; Tan Lin

    1988-01-01

    EDTA-diaminodibenzo-18-crown-6 (cis- and trans-) condensation polymer is a new compound of crown ether derivatives of EDTA. In this paper the adsorption behaviors of U(IV) and U(VI) on this polymer from chloride solutions and effects of hydrochloric acid concentrations, salting-out agents and organic solvents on distribution coefficient (K d ) of uranium are investigated. Adsorption mechanism of uranyl ion (UO 2 2+ ) on this polymer was studied with IR spectra and by means of the adsorption behaviors of compounds of similar structure. Experimental results show that both polyether section and carboxyl groups in EDTA-diaminodibenzo-18-crown-6 take part in complexation with uranyl ion and synergistic effect appeared

  1. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    Science.gov (United States)

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  2. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  3. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers.

    Science.gov (United States)

    Sjödin, A; Hagmar, L; Klasson-Wehler, E; Kronholm-Diab, K; Jakobsson, E; Bergman, A

    1999-08-01

    Polybrominated diphenyl ethers (PBDEs) are used as additives in polymers and textiles to prohibit the development of fires. Because of the production and use of PBDEs, their lipophilic characteristics, and persistence, these compounds have become ubiquitous environmental contaminants. The aim of the present study was to determine potential exposures of PBDEs to clerks working full-time at computer screens and personnel at an electronics-dismantling plant, with hospital cleaners as a control group. Five PBDE congeners--2,2',4,4'-tetraBDE; 2,2',4,4',5,5'-hexaBDE; 2,2',4,4',5, 6'-hexaBDE; 2,2',3,4,4',5',6-heptaBDE; and decaBDE--were quantified in blood serum from all three categories of workers. Subjects working at the dismantling plant showed significantly higher levels of all PBDE congeners in their serum as compared to the control group. Decabromodiphenyl ether is present in concentrations of 5 pmol/g lipid weight (lw) in the personnel dismantling electronics; these concentrations are comparable to the concentrations of 2,2',4, 4'-tetraBDE. The latter compound was the dominating PBDE congener in the clerks and cleaners. The major compound in personnel at the dismantling plant was 2,2',3,4,4',5',6-heptaBDE. Concentrations of this PBDE congener are almost twice as high as for 2,2',4, 4'-tetraBDE in these workers and seventy times the level of this heptaBDE in cleaners. The total median PBDE concentrations in the serum from workers at the electronics-dismantling plant, clerks, and cleaners were 37, 7.3, and 5.4 pmol/g lw, respectively. The results show that decabromodiphenyl ether is bioavailable and that occupational exposure to PBDEs occurs at the electronics-dismantling plant.

  4. Characterization of Microsolvated Crown Ethers from Broadband Rotational Spectroscopy

    Science.gov (United States)

    Perez, Cristobal; Schnell, Melanie; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    Since they were first synthetized, crown ethers have been extensively used in organometallic chemistry due to their unparalleled binding selectivity with alkali metal cations. From a structural point of view, crown ethers are heterocycles containing oxygen and/or other heteroatoms, although the most common ones are formed from ethylene oxide unit. Crown ethers are conventionally seen as being hydrophilic inside and hydrophobic outside when the structures found for the metal cation complexes are considered. However, crown ethers are extremely flexible and in isolation may present a variety of stable conformations so that their structure may be easily adapted in presence of a strong ligand as an alkali metal cation minimize the energy of the resulting complex. Water can be considered a soft ligand which interacts with crown ethers through moderate hydrogen bonds. It is thus interesting to investigate which conformers are selected by water to form complexes, the preferred interaction sites and the possible conformational changes due to the presence of one or more water molecules. Previous studies identified microsolvated crown ethers but in all cases with a chromophore group attached to the structure. Here we present a broadband rotational spectroscopy study of microsolvated crown ethers produced in a pulsed molecular jet expansion. Several 1:1 and 1:2 crown ether:water aggregates are presented for 12-crown-4, 15-crown-5 and 18-crown-6. Unambiguous identification of the structures has been achieved using isotopic substitution within the water unit. The subtle changes induced in the structures of the crown ether monomer upon complexation and the hydrogen-bonding network that hold them together will be also discussed. F. Gámez, B. Martínez-Haya, S. Blanco,J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2014, 14 12912-12918 V. A. Shubert, C.W. Müller and T. Zwier, J. Phys. Chem. A 2009, 113 8067-8079

  5. Metabolic immune restraints: implications for anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  6. Isocorydine Derivatives and Their Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Mei Zhong

    2014-08-01

    Full Text Available In order to improve the anticancer activity of isocorydine (ICD, ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8 and 6a,7-dihydrogen-isocorydione (10 could inhibit the growth of human lung (A549, gastric (SGC7901 and liver (HepG2 cancer cell lines in vitro. Isocorydione (2 could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11, a pro-drug of 8-amino-isocorydine (8, which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent.

  7. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  8. Some medicinal plants as natural anticancer agents

    OpenAIRE

    Govind Pandey; S Madhuri

    2009-01-01

    India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. These plants may promote host resistance agai...

  9. Proteomics of anti-cancer drugs

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Hajdůch, M.; Gadher, S. J.

    2009-01-01

    Roč. 276, Supplement 1 (2009), s. 84-84 E-ISSN 1742-4658. [34th FEBS Congress. 04.07.2009-09.07.2009, Praha] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * anti-cancer drugs * biomarkers Subject RIV: FD - Oncology ; Hematology

  10. Apoptin towards safe and efficient anticancer therapies.

    Science.gov (United States)

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  11. Evaluation of factors affecting on lipid extraction for recovery of fatty acids from Nannochloropsis oculata micro-algae to biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-11-01

    Full Text Available Background: This study aimed at determining the appropriate method for dewatering and drying biomass and selecting a suitable organic solvent for lipid extraction. Methods: NannochloropsisOculata was cultured in Gillard F/2 medium and after reaching the end of the stationary growth phase, algal biomass was separated from aqueous by centrifuge and dried through three methods: Oven, Air-dried and Lyophilized. Soxhlet apparatus achieved lipid extraction of all samples: diethyl ether, n-hexane and n-pentane using three solvents. At each stage, the quantity and quality of the extracted lipids were determined by Gas Chromatography. Results: In all three drying methods, palmitic acid and palmitoleic acid, and most significantly fatty acid composition of microalgae were extracted. The fatty acid composition of palmitic acid extracted by Diethyl ether was significantly more than the other two solvents. Maximum production of triglyceride was observed in Lyophilized and air-dried microalgae where lipid extraction was performed with diethyl ether solvents and are 75.03% and 76.72% of fatty acid. Conclusion: The use of Lyophilized method for dewatering and drying of biomass and Diethyl ether as solvent for the extraction of lipids from biomass, studied in this paper, as compared to other methods, had higher yields and researches proved that the production of biodiesel from microalgae’s lipid was more efficient.

  12. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    International Nuclear Information System (INIS)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-01-01

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria

  13. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yohei; Nagamatsu, Yusuke [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Miyamoto, Tomofumi [Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan); Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ito, Makoto, E-mail: makotoi@agr.kyushu-u.ac.jp [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  14. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  15. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  16. Green tea phytocompounds as anticancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-04-01

    Full Text Available Green tea is universally considered significant and its benefits have been experimentally explored by researchers and scientists. Anticancer potential of green tea has been completely recognized now. Green tea contains anti-cancerous constituents and nutrients that have powerful remedial effects. By using electronic data base (1998–2015, different compounds in green tea possessing anticancer activity including epigallocatechin-3-gallate, paclitaxel and docetaxel combinations, ascorbic acid, catechins, lysine, synergistic arginine, green tea extract, proline, and green tea polyphenols has been reported. Green tea extracts exhibited remedial potential against cancer of lung, colon, liver, stomach, leukemic cells, prostate, breast, human cervical cells, head, and neck. For centuries, green tea has been utilized as medicine for therapeutic purposes. It originated in China and extensively used in Asian countries for blood pressure depression and as anticancer medicine. Green tea has therapeutic potential against many diseases such as lowering of blood pressure, Parkinson’s disease, weight loss, esophageal disease, skin-care, cholesterol, Alzheimer’s disease and diabetes.

  17. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  18. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  19. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  20. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  1. Polybrominated diphenyl ethers in the serum and breast milk of the resident population from production area, China.

    Science.gov (United States)

    Jin, Jun; Wang, Ying; Yang, Congqiao; Hu, Jicheng; Liu, Weizhi; Cui, Jian; Tang, Xiaoyan

    2009-10-01

    Polybrominated diphenyl ethers (PBDEs) have been produced in the south coast area of Laizhou Bay, Shandong Province in China, but little is known about the PBDE exposure level of residents to these compounds. We set out to assess potential health risks of PBDEs in the south coast area of the Laizhou Bay by determining the concentrations of PBDEs in serum and breast milk. We measured concentrations of eight PBDE congeners in serum and breast milk. The arithmetic means of Sigma(8)PBDE in pooled serum and breast milk were 613 ng/g lipid and 81.5 ng/g lipid, respectively. The highest concentration for Sigma(8)PBDE in all serum pools was 1830 ng/g lipid from the 41-50 year old female group. BDE-209 was the predominant congener, with the mean concentrations of 403 ng/g lipid in serum and 45.6 ng/g lipid in breast milk, respectively. BDE-209 averagely accounted for 65.8% and 54.2% of the total PBDEs, respectively. Our results suggest that high exposures to PBDEs have led to very high PBDE concentrations in serum and breast milk from the residents living in the south coast area of Laizhou Bay. High PBDE concentrations in human serum, particularly in women, pose a potential public health threat to local residents.

  2. Evaluation of crystallization kinetics of poly (ether-ketone-ketone and poly (ether-ether-ketone by DSC

    Directory of Open Access Journals (Sweden)

    Gibran da Cunha Vasconcelos

    2010-08-01

    Full Text Available The poly (aryl ether ketones are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affect the developed structure, and the properties of the final product. The objective of this work was to evaluate the thermoplastics polymers PEKK e PEEK by DSC, aiming to obtain the relationship between kinetics, content, nucleation and geometry of the crystalline phases, according to the parameters of the Avrami and Kissinger models. The analysis of the Avrami exponents obtained for the studied polymers indicates that both showed the formation of crystalline phases with heterogeneous nucleation and growth geometry of the type sticks or discs, depending on the cooling conditions. It was also found that the PEEK has a higher crystallinity than PEKK.

  3. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    Science.gov (United States)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  4. Design and Synthesis of Archaea-Inspired Tetraether Lipids

    Science.gov (United States)

    Koyanagi, Takaoki

    Maintaining the correct ion homeostasis across membranes is a major challenge in both nature and artificial systems. Archaea, have evolved to solve membrane permeability problems to survive in extreme environments by incorporating unique structural features found in their lipid. Specifically, inclusion of phytanyl side chains, ether glycerol linkages, tethering of lipids, cycloalkanes, and different polar lipid headgroups into their lipid membrane are believed to contribute to membrane stability. We sought to gain a better understanding of the functional benefits attributed to these structural features to membrane stability to design a new class of synthetic Archaea inspired lipid membranes that can be used to overcome limitations (i.e. unstable in serum environment, high background leakage, and prone to hydrolysis) found in current lipid based technologies. Leakage experiments revealed liposomes made from GMGTPC (glycerol monoalkyl glycerol tetraether lipid with phosphatidylcholine headgroup) demonstrated a two order magnitude reduction in membrane leakage to small ions when compared with liposomes made from EggPC. Additionally, liposomes composed of GMGTPC-CH (cyclohexane integrated) lipid displayed an additional 40% decrease in membrane leakage to small ions when compared with liposomes made from GMGTPC lipids. Furthermore, leakage experiments revealed a higher degree of tolerance to headgroup modifications to membrane leakage for liposomes made from GMGT lipid analogs when compared with liposomes made from POPC. After designing an optimal tetraether lipid scaffold that incorporates key Archaeal structural features for membrane leakage, we explored to integrate strategies employed by eukaryotes to improve membrane properties (i.e. addition of cholesterol). Liposomes made from the hybrid lipid, GcGTPC-CH, displayed a five-fold decrease in membrane leakage when compared with liposomes made from GMGTPC-CH, while maintaining functional membrane properties similar to

  5. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    MURUGAN SUBARAMANIAN

    Nickel catalysis; alcohol; paraformaldehyde; ether; solvent-free condition. 1. Introduction ..... oxidation and Dopamine Release with Protective Effects. Against Central ... P, Ghosh A, Saha R and Saha B 2016 A Review on the. Advancement of ...

  6. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  7. Chemical Composition and Cytotoxic Activities of Petroleum Ether ...

    African Journals Online (AJOL)

    Methods: The composition of petroleum ether extract was analyzed by gas ... acids, sterides, pregnanones, terpenes, alkaloids, alkenes, alcohols, ketones, aldehydes and other compounds. .... and mass spectra with those obtained from the.

  8. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli; Nunes, Suzana Pereira

    2017-01-01

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl

  9. Spatial trends of polybrominated diphenyl ether (PBDE) congeners

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial trends of polybrominated diphenyl ether (PBDE) congeners were analyzed in young of the year bluefish collected along the U.S. Atlantic coastline from...

  10. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  11. Investigation of ammonium trinitratouranylate complexing with diethyl ether

    International Nuclear Information System (INIS)

    Khod'ko, N.N.; Kolevich, T.A.; Umrejko, D.S.

    1989-01-01

    Interaction of ammonium trinitratouranylate (ATNU) with diethyl ether is investigated. It is shown, that adduct of UO 2 (NO 3 ) 2 · 2(C 2 H 5 ) 2 O coposition is formed in the indicated solvent due to incongruent solubility of ANTU. Analogous compound is obtained at ether effect on uranyl anhydrous nitrate. The matter is determined and investigated by means of chemical, thermal analyses and oscillating spectroscopy

  12. Glycerol tertiary butyl ethers via etherification of glycerol with isobutene

    Energy Technology Data Exchange (ETDEWEB)

    Behr, A. [Dortmund Univ. (Germany). Chair of Chemical Process Development/Technical Chemistry A

    2007-07-01

    Glycerol and isobutene can react to a mixture of glycerol tertiary butyl ethers (GTBE) which can be used as additives for gasoline, diesel or biodiesel. This reaction was investigated in lab scale yielding a proposal for a process flow diagram containing reaction, extraction, flash and rectification units. This process has the advantages that only the suitable higher ethers are formed and that both glycerol and isobutene are fully converted. The homogeneous acid catalyst is low-priced and can be completely recycled. (orig.)

  13. “Click” Synthesis of Dextran Macrostructures for Combinatorial-Designed Self-Assembled Nanoparticles Encapsulating Diverse Anticancer Therapeutics

    Science.gov (United States)

    Abeylath, Sampath C.; Amiji, Mansoor

    2011-01-01

    With the non-specific toxicity of anticancer drugs to healthy tissues upon systemic administration, formulations capable of enhanced selectivity in delivery to the tumor mass and cells are highly desirable. Based on the diversity of the drug payloads, we have investigated a combinatorial-designed strategy where the nano-sized formulations are tailored based on the physicochemical properties of the drug and the delivery needs. Individually functionalized C2 to C12 lipid-, thiol-, and poly(ethylene glycol) (PEG)-modified dextran derivatives were synthesized via “click” chemistry from O-pentynyl dextran and relevant azides. These functionalized dextrans in combination with anticancer drugs form nanoparticles by self-assembling in aqueous medium having PEG surface functionalization and intermolecular disulfide bonds. Using anticancer drugs with logP values ranging from −0.5 to 3.0, the optimized nanoparticles formulations were evaluated for preliminary cellular delivery and cytotoxic effects in SKOV3 human ovarian adenocarcinoma cells. The results show that with the appropriate selection of lipid-modified dextran, one can effectively tailor the self-assembled nano-formulation for intended therapeutic payload. PMID:21978947

  14. Children's exposure to polybrominated diphenyl ethers.

    Science.gov (United States)

    Zuurbier, Moniek; Leijs, Marike; Schoeters, Greet; ten Tusscher, Gavin; Koppe, Janna G

    2006-10-01

    Polybrominated biphenyl ethers (PBDEs), a class of brominated flame retardants, are frequently used in consumer products. PBDEs levels in environmental and human samples have increased in recent decades. Children are exposed to PBDEs through diet, mainly through fish, meat and milk. Total dietary exposure of children in Europe was calculated to be 2-3 ng/kg b.w./day. For nursing infants the main source of PBDE exposure is breast milk; exposure levels are around 15 ng/kg b.w./day. PBDE exposure levels in North America are 10 to a 100 times higher. Because of their persistence and their similarity to polychlorinated biphenyls (PCBs), concern has been raised about the effects of PBDEs on human health. Exposure to penta- and octa-BDE led to learning impairment and impaired motor behaviour in rodents. Exposure to penta-, octa- and also deca-BDE caused effects on thyroid homeostasis in animals. The EU has banned the production and use of penta- and octa-BDE since 2004; however, exposure will continue during the coming decades. Based upon current toxicological evidence, human exposure to deca-BDEs is not expected to lead to health effects, but data on exposure to deca-BDE and data on toxicity of deca-BDE are scarce. Therefore, monitoring studies and toxicity studies on deca-BDEs and other BDEs should continue.

  15. Radiation induced crosslinking of cellulose ethers

    International Nuclear Information System (INIS)

    Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T.

    2002-01-01

    The effects of high-energy radiation on four ethers of cellulose: carboxymethyl (CMC); hydroxypropyl (HPC), hydroxyethyl (HEC) and methylcellulose (MC) were investigated. Polymers are irradiated in solid state and in aqueous solutions at various concentrations. Degree of substitution (DS) of the derivatives, the concentration of their aqueous solutions and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid state and in diluted aqueous solutions resulted in their degradation. However, it was found that for concentrated solutions gel formation occurred. Paste-like form of the initial material, when water plasticizes the bulk of polymer as well as the high dose rate, what prevents oxygen penetration of the polymer during irradiation, have been found favourable for hydrogel formation. Up to 95% of gel fraction was obtained from solutions of CMC with concentration over 50% irradiated by γ-rays or electron beam. It was pointed out that the ability to the formation of the three-dimensional network is related to the DS of anhydroglucose units and a type of chemical group introduced to main chain of cellulose. Produced hydrogels swelled markedly in water. Despite of the crosslinked structure they underwent degradation by the action of cellulase enzyme or microorganisms from compost, and can be included into the group of biodegradable materials. (author)

  16. Bulbophyllum sterile petroleum ether fraction induces apoptosis in vitro and ameliorates tumor progression in vivo.

    Science.gov (United States)

    Biswas, Subhankar; Pardeshi, Rashmi; Reddy, Neetinkumar D; Shoja, Muhammed Haneefa; Nayak, Pawan G; Setty, M Manjunath; Pai, K Sreedhara R

    2016-12-01

    Orchids of the genus Bulbophyllum have been reported to possess antitumor activity. Present study investigated the possible antitumor activity of the active fraction of bulb and root of Bulbophyllum sterile. Alcoholic extract along with petroleum ether, dichloromethane and ethyl acetate fractions were subjected to SRB assay in HCT-116, MDA-MB-231 and A549 cell lines. The active fractions were further evaluated for apoptosis, expression of apoptotic signaling proteins, comet assay and cell cycle analysis. Furthermore, they were assessed for in vivo antitumor activity in Ehrlich ascites carcinoma model. Petroleum fraction of bulbs (PFB) and roots (PFR) was found to be most active in HCT-116 cell lines with IC 50 value of 94.2±6.0 and 75.7±9.8, respectively. Apoptosis was evident from acridine orange/ethidium bromide staining along with the expression of phospho-p53 and phospho-Bad. Both PFB and PFR arrested G 2 /M phase of the cell cycle with 32.6% and 49.4% arrest, respectively compared to 17.5% arrest with control. An increase in mean life span and hepatic antioxidant levels was observed with PFB and PFR treatment in EAC inoculated mice. The results suggested that the active fractions of bulbs and roots possess anticancer activity likely by inducing apoptosis through phospho-p53 dependent pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Concentrations of Polybrominated Diphenyl Ethers (PBDEs) and 2,4,6-Tribromophenol in Human Placental Tissues

    Science.gov (United States)

    Leonetti, Christopher; Butt, Craig M.; Hoffman, Kate; Miranda, Marie Lynn; Stapleton, Heather M.

    2015-01-01

    Legacy environmental contaminants such as polybrominated diphenyl ethers (PBDEs) are widely detected in human tissues. However, few studies have measured PBDEs in placental tissues, and there are no reported measurements of 2,4,6-tribromophenol (2,4,6-TBP) in placental tissues. Measurements of these contaminants are important for understanding potential fetal exposures, as these compounds have been shown to alter thyroid hormone regulation in vitro and in vivo. In this study, we measured a suite of PBDEs and 2,4,6-TBP in 102 human placental tissues collected between 2010–2011 in Durham County, North Carolina, USA. The most abundant PBDE congener detected was BDE-47, with a mean concentration of 5.09 ng/g lipid (range: 0.12–141 ng/g lipid; detection frequency 91%); however, 2,4,6-TBP was ubiquitously detected and present at higher concentrations with a mean concentration of 15.4 ng/g lipid (range:1.31–316 ng/g lipid; detection frequency 100%). BDE-209 was also detected in more than 50% of the samples, and was significantly associated with 2,4,6-TBP in placental tissues, suggesting they may have a similar source, or that 2,4,6-TBP may be a degradation product of BDE-209. Interestingly, BDE-209 and 2,4,6-TBP were negatively associated with age (rs=−0.16; p=0.10 and rs=−0.17; p=0.08, respectively). The results of this work indicate that PBDEs and 2,4,6-TBP bioaccumulate in human placenta tissue and likely contribute to prenatal exposures to these environmental contaminants. Future studies are needed to determine if these joint exposures are associated with any adverse health measures in infants and children. PMID:26700418

  18. Current situation and future usage of anticancer drug databases.

    Science.gov (United States)

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  19. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Oral anticancer agent medication adherence by outpatients.

    Science.gov (United States)

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  1. Artemisinin–Second Career as Anticancer Drug?

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2015-10-01

    Full Text Available Artemisinin represents a showcase example not only for the activity of medicinal herbs deriving from traditional chinese medicine, but for phytotherapy in general. Its isolation from Sweet Wormwood (qinhao, Artemisia annua L. represents the starting point for an unprecedent success story in the treatment of malaria worldwide. Beyond the therapeutic value against Plasmodium parasites, it turned out in recent years that the bioactivity of artemisinin is not restricted to malaria. We and others found that this sesquiterpenoid also exerts profound anticancer activity in vitro and in vivo. Artemisinin-type drugs exert multi-factorial cellular and molecular actions in cancer cells. Ferrous iron reacts with artemisinin, which leads to the formation of reactive oxygen species and ultimately to a plethora anticancer effects of artemisinins, e.g. expression of antioxidant response genes, cell cycle arrest (G1 as well as G2 phase arrests, DNA damage that is repaird by base excision repair, homogous recombination and non-homologous end-joining, as well as different modes of cell death (intrinsic and extrinsic apoptosis, autophagy, necrosis, necroptosis, oncosis, and ferroptosis. Furthermore, artemisinins inhibit neoangiogenesis in tumors. The signaling of major transcription factors (NF-κB, MYC/MAX, AP-1, CREBP, mTOR etc. and signaling pathways are affected by artemisinins (e.g. Wnt/β-catenin pathway, AMPK pathway, metastatic pathways, nitric oxide signaling, and others. Several case reports on the compassionate use of artemisinins as well as clinical Phase I/II pilot studies indicate the clinical activity of artemisinins in veterinary and human cancer patients. Larger scale of Phase II and III clinical studies are required now to further develop artemisinin-type compounds as novel anticancer drugs.

  2. Polybrominated diphenyl ethers (PBDEs) and thyroid hormones in cord blood

    International Nuclear Information System (INIS)

    Ding, Guodong; Yu, Jing; Chen, Limei; Wang, Caifeng; Zhou, Yijun; Hu, Yi; Shi, Rong; Zhang, Yan; Cui, Chang; Gao, Yu; Tian, Ying; Liu, Fang

    2017-01-01

    Human exposure to polybrominated diphenyl ethers (PBDEs) has been increasing over the last three decades in China and around the world. Animal studies suggest that PBDEs could reduce blood levels of thyroid hormones, but it is unclear whether PBDEs disrupt thyroid function in humans. We used data from a prospective birth cohort of 123 pregnant women who were enrolled between September 2010 and March 2011 in Shandong, China. We measured the concentrations of eight PBDE congeners (n = 106) and five thyroid hormones (n = 107) in cord serum samples. We examined the relationship between prenatal exposure to PBDEs and thyroid function (n = 90). Median concentrations of BDEs 47, 99, 100, and 153 (detection frequencies > 75%) were 3.96, 8.27, 3.31, and 1.89 ng/g lipid, respectively. A 10-fold increase in BDE-99 and Σ 4 PBDEs (the sum of BDEs 47, 99, 100, and 153) concentrations was associated with a 0.41 μg/dL (95% confidence interval [CI]: 0.10 to 0.72) and 0.37 μg/dL (95% CI: 0.06 to 0.68) increase in total thyroxine levels (TT 4 ), respectively. No associations were found between other individual congeners and any of the five thyroid hormones. Our study suggests that prenatal exposure to PBDEs may be associated with higher TT 4 in cord blood. Given the inconsistent findings across existing studies, our results need to be confirmed in additional studies. - Highlights: • Human exposure to PBDEs has been increased over recent decades in China. • PBDEs reduce thyroid hormones in animal studies, but it is unclear in humans. • We examined the relation of PBDE levels with thyroid hormones in cord blood. • Prenatal exposure to PBDEs is associated with higher total thyroxine levels. • The findings may have implications for fetal development. - Exposure to PBDEs is associated with higher total thyroxine levels in cord blood, and the findings may have implications for fetal development.

  3. The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions

    Science.gov (United States)

    McMahon, Anne; Lu, Hua

    2013-01-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  4. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  5. Occurrence, bioaccumulation and potential sources of polybrominated diphenyl ethers in typical freshwater cultured fish ponds of South China

    International Nuclear Information System (INIS)

    Zhang Baozhong; Ni Honggang; Guan Yufeng; Zeng, Eddy Y.

    2010-01-01

    To determine the potential input sources of polybrominated diphenyl ethers (PBDEs) to fish farming environments in South China, samples of seven various environmental matrices were collected from October 2006-September 2007. Tri- to deca-BDEs were detected in all samples analyzed, with mean concentrations (±standard deviations) at 5.7 ± 3.6 ng/L in pond water, 15 ± 11 ng/g dry wt. in pond sediment, 12 ± 3.8 ng/g dry wt. in bank soil, 21 ± 20 ng/g lipid wt. in fish, and 93 ± 62 ng/g lipid wt. in fish feeds. In addition, BDE-209 was the major constituent in all samples except fish and BDE-47 was predominant in fish samples. Relatively high abundances of BDE-49 were detected in all the samples compared to those in the penta-BDE technical products. Several bioaccumulation factors were evaluated. Finally, statistical analyses suggested that fish feed, as well as pond water at a lesser degree, may have been the major source of PBDEs in freshwater farmed fish. - Occurrence and sources of polybrominated diphenyl ethers in typical freshwater cultured fish ponds of the Pearl River Delta, South China are examined.

  6. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  7. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    , and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  8. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  9. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  10. An improved synthesis process of calixcrown ethers and synthesis of novel calixcrown ether

    International Nuclear Information System (INIS)

    Wang Hairong; Zhang Ping; Wang Chunmiao; Wang Jianchen; Chen Jing

    2007-01-01

    The synthesis method of calixcrown ethers was simplified and improved, and 10 L- scale synthesis was carried out. In the synthesis of the intermediates of the first three steps, the synthesis of 5, 11, 17, 23-tetra-tert-butyl-25, 26, 27, 28-tetrahydroxyl-calix[4] and its dehydroxylation were considered together, the purification procedures of the former, including re-crystallization in toluene and decolorization with activated carbon, were cancelled, and thus these steps were simplified. In the synthesis of oligoethylene glycol ditosylate, the purification method was also improved and the time-consuming column chromatography was left out. In the final step, impurities were removed by repeating stirring-settlement steps, by following recrystallization, the pure product was obtained. With these measures, the whole process could be implemented easily. The industrial scale production of calixcrown ethers could be fulfilled with the improved process. In addition, a new extracant, 25, 27-bis (n-propyloxy)calix[4]-26, 28-crown-6, is prepared and identified. (authors)

  11. Development and characterization of poli composites (ether ether ketone)(PEEK)(Hydroxyapatite(HA)

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Santos, F.S.F.; Sa, M.D. de; Fook, M.V.L.

    2016-01-01

    The objective of this work was to develop PEEK / HA composites, combining the biological activity of the ceramic phase with the properties of the polymer phase, the materials used in this research were Poly (ether-ether-ketone) (PEEK) and Hydroxyapatite (HA) (50, 60, 70 and 80% m / v HA), this material was subjected to a load of two tons followed by a thermal treatment at 390 ° for a period of 30 minutes. Then they were characterized by FTIR, DRX and MO. In the physical-chemical characterization of FTIR and XRD, it was not possible to identify significant alterations. In the FTIR spectra of the composites, there is no formation of new identifiable chemical bonds. In the composites XRD diffractograms a profile similar to the ceramic phase was observed, with peaks increasing in intensity and narrowing proportional to the increase of the hydroxyapatite concentration in the composites. In optical microscopy it is possible to observe surfaces with heterogeneous morphology, with signs of roughness and in the cross section we observe a heterogeneous aspect, rich in regions with large agglomerates and lighter particles. Considering the processing aspects, the technique proved to be effective for the development of PEEK /HA composites. (author)

  12. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. α-Diazo oxime ethers for N-heterocycle synthesis.

    Science.gov (United States)

    Choi, Subin; Ha, Sujin; Park, Cheol-Min

    2017-06-01

    This Feature Article introduces the preparation and synthetic utility of α-diazo oxime ethers. α-Oximino carbenes are useful synthons for N-heterocycles, and can be easily prepared from α-diazo oxime ethers as precursors. We begin with the preparation of α-diazo oxime ethers and their application in [3+2] cycloaddition. It turns out that the nature of metals bound to carbenes plays a crucial role in modulating the reactivity of α-oximino carbenes, in which copper carbenes smoothly react with enamines, whereas the less reactive enol ethers and nitriles require gold carbenes. In Section 3.2, a discussion on N-O and C-H bond activation is presented. Carbenes derived from diazo oxime ethers show unique reactivity towards N-O and C-H bond activation, in which the proximity of the two functionalities, carbene and oxime ether, dictates the preferred reaction pathways toward pyridines, pyrroles, and 2H-azirines. In Section 3.3, the development of tandem reactions based on α-diazo oxime ethers is discussed. The nature of carbenes in which whether free carbenes or metal complexes are involved dissects the pathway and forms different types of 2H-azirines. The 2H-azirine formation turned out to be an excellent platform for the tandem synthesis of N-heterocycles including pyrroles and pyridines. In the last section, we describe the electrophilic activation of 2H-azirines with vinyl carbenes and oximino carbenes. The resulting azirinium species undergo rapid ring expansion rearrangements to form pyridines and pyrazines.

  14. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  15. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  16. Mutagenicity testing of diethylene glycol monobutyl ether.

    Science.gov (United States)

    Thompson, E D; Coppinger, W J; Valencia, R; Iavicoli, J

    1984-01-01

    The mutagenic potential of diethylene glycol monobutyl ether (diEGBE) was examined with a Tier I battery of in vitro assays followed by a Tier II in vivo Drosophila sex-linked recessive lethal assay. The in vitro battery consisted of: the Salmonella mutagenicity test, the L5178Y mouse lymphoma test, a cytogenetics assay using Chinese hamster ovary cells and the unscheduled DNA synthesis (UDS) assay in rat hepatocytes. Results of the Salmonella mutagenicity test, the cytogenetics test, and the rat hepatocyte assay were negative at concentrations up to 20 microL/plate, 7.92 microL/mL, and 4.4 microL/mL, respectively. Toxicity was clearly demonstrated at all high doses. A weak, but dose-related increase in the mutation frequency (4-fold increase over the solvent control at 5.6 microL/mL with 12% survival) was obtained in the L5178Y lymphoma test in the absence of metabolic activation. Results of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay results were assessed by performing the Tier II sex-linked recessive lethal assay in Drosophila in which the target tissue is maturing germinal cells. Both feeding (11,000 ppm for 3 days) and injection (0.3 microL of approximately 14,000 ppm solution) routes of administration were employed in the Drosophila assay. Approximately 11,000 individual crosses with an equal number of negative controls were performed for each route of administration. diEGBE produced no increase in recessive lethals under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6389113

  17. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  18. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  19. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    Yang, Danbo; Yu, Lei; Van, Sang

    2010-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  20. The anticancer effect of Ocimum tenuiflorum leaves

    Directory of Open Access Journals (Sweden)

    Lam, S.N.

    2017-11-01

    Full Text Available Breast cancer is the leading cause of cancer deaths among females in Malaysia. Ocimum tenuiflorum L., (O. tenuiflorum commonly known as ruku in Malaysia, is usually cultivated as a garden ornamental plant because of its small purplish and some yellowish flower. The specific objective of this research is to investigate the anticancer of O. tenuiflorum against human breast cancer cell lines (MCF-7 and MDA-MB-231 and human fibroblast cell line (HS-27. In addition, another objective is to determine the mineral and heavy metal determination of O. tenuiflorum. O. tenuiflorum exhibited anticancer activity against MCF-7 (a hormone-dependent breast cancer cell line. The viability of MCF-7 cells decreased significantly after treatment with various concentrations of methanolic plant extracts (25 and 100 μg/mL, as shown via 3-(4,5-dimethylthiazol-2-yl2,5-diphenyltetrazolium bromide (MTT assay. The crude extracts show the lower IC50 (less than 100 μg/mL value against the cancer cell lines and show no effect on HS-27. The high content of calcium in the leaves of O. tenuiflorum may play a role in decreasing the risk of certain cancer. The concentrations of heavy metals (Pb and As detected in O. tenuiflorum are safe for consumption.

  1. Peptides with Dual Antimicrobial and Anticancer Activities

    Science.gov (United States)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  2. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Danbo [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Yu, Lei, E-mail: yu-lei@gg.nitto.co.jp [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States); Van, Sang [Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2010-12-23

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  3. Ultrasound extraction and thin layer chromatography-flame ionization detection analysis of the lipid fraction in marine mucilage samples.

    Science.gov (United States)

    Mecozzi, M; Amici, M; Romanelli, G; Pietrantonio, E; Deluca, A

    2002-07-19

    This paper reports an analytical procedure based on ultrasound to extract lipids in marine mucilage samples. The experimental conditions of the ultrasound procedure (solvent and time) were identified by a FT-IR study performed on different standard samples of lipids and of a standard humic sample, before and after the sonication treatment. This study showed that diethyl ether was a more suitable solvent than methanol for the ultrasonic extraction of lipids from environmental samples because it allowed to minimize the possible oxidative modifications of lipids due to the acoustic cavitation phenomena. The optimized conditions were applied to the extraction of total lipid amount in marine mucilage samples and TLC-flame ionization detection analysis was used to identify the relevant lipid sub-fractions present in samples.

  4. Bioactivity-Guided Isolation of Anticancer Agents from Bauhinia ...

    African Journals Online (AJOL)

    Background: Flowers of Bauhinia kockiana were investigated for their anticancer properties. Methods: Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was ...

  5. Ethnomedicine Claim Directed in Silico Prediction of Anticancer ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... 0.70, MACCS fingerprint), and the top 346 compounds it identified were identical to compounds with proven anticancer activity on 60 cell lines (23). Given such performance of. CDRUG, our finding can be taken as a preliminary evidence of anticancer activity by many of the medicinal plants used for treating.

  6. Antimicrobial and anticancer activities of extracts from Urginea ...

    African Journals Online (AJOL)

    Background: Increasing antibiotic resistance among human pathogenic microorganisms and the failure of conventional cancer therapies attracting great attention among scientists in the field of herbal medicine to develop natural antimicrobial and anticancer drugs. Thus, the antimicrobial and anticancer activities from fruits ...

  7. Prediction of anticancer activity of aliphatic nitrosoureas using ...

    African Journals Online (AJOL)

    Design and development of new anticancer drugs with low toxicity is a very challenging task and computer aided methods are being increasingly used to solve this problem. In this study, we investigated the anticancer activity of aliphatic nitrosoureas using quantum chemical quantitative structure activity relation (QSAR) ...

  8. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  9. Polybrominated Diphenyl Ether Exposure and Thyroid Function Tests in North American Adults.

    Science.gov (United States)

    Makey, Colleen M; McClean, Michael D; Braverman, Lewis E; Pearce, Elizabeth N; He, Xue-Mei; Sjödin, Andreas; Weinberg, Janice M; Webster, Thomas F

    2016-04-01

    Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that are added to many consumer products. Multiple animal studies have shown PBDEs to be thyroid hormone (TH) disruptors. Epidemiologic evidence of PBDE exposure associated with TH disruption has been inconclusive. We used repeated measures to estimate associations between serum PBDE concentrations and THs in a North American adult cohort. From 2010 to 2011, we collected ≤ 3 serum samples at approximately 6-month intervals from 52 healthy adult office workers from Boston, Massachusetts, for analysis of PBDE congeners and THs. The geometric mean sum concentrations of the most prevalent PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, and BDE-153) were 22 ng/g lipid in winter 2010, 23 ng/g lipid in summer 2010, and 19 ng/g lipid in winter 2011. BDE-47 was the predominant congener. Based on a multivariable mixed regression model, we estimated that on average, a 1-ng/g serum increase in BDE-47 was associated with a 2.6-μg/dL decrease in total thyroxine (T4) (95% CI: -4.7, -0.35). Total T4 was inversely associated with each PBDE congener. Serum concentrations of PBDEs were not strongly associated with total triiodothyronine (T3), free T4, or thyroid-stimulating hormone (TSH). These results are consistent with those from animal studies showing that exposure to PBDEs is associated with a decrease in serum T4. Because the other TH concentrations did not appear to be associated with BDE exposures, our findings do not indicate effects on the pituitary-thyroid axis. Taken together, our findings suggest that PBDE exposure might decrease the binding of T4 to serum T4 binding proteins. Makey CM, McClean MD, Braverman LE, Pearce EN, He XM, Sjödin A, Weinberg JM, Webster TF. 2016. Polybrominated diphenyl ether exposure and thyroid function tests in North American adults. Environ Health Perspect 124:420-425; http://dx.doi.org/10.1289/ehp.1509755.

  10. On the ether-like Lorentz-breaking actions

    International Nuclear Information System (INIS)

    Petrov, A.Yu; Nascimento, J.R.; Gomes, M.; Silva, A. J. da

    2011-01-01

    We demonstrate the generation of the CPT-even, ether-like Lorentz-breaking actions for the scalar and electro-magnetic fields via their appropriate Lorentz-breaking coupling to spinor fields in three, four and five space-time dimensions. Besides, we show that the ether-like terms for the spinor field also can be generated as a consequence of the same couplings. The key result which will be presented here is the finiteness of the ether-like term for the electromagnetic field not only in three and five space-time dimensions where it is natural due to known effects of the dimensional regularization but also in four space-time dimensions. Moreover, we present the calculation of the last result within different calculational schemes and conclude that the result for the four-dimensional ether-like term for the electromagnetic field essentially depending on the calculation scheme, similarly to the result for the Carroll-Field-Jackiw (CFJ) term which probably signalizes a possibility for arising of a new anomaly. Also we discuss the dispersion relations in the theories with ether-like Lorentz-breaking terms which allows to discuss the consistency of the Lorentz-breaking modified theories for different (space-like or time-like) Lorentz-breaking vectors and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field. (author)

  11. In vitro Evaluation of Antimitotic, Antiproliferative, DNA fragmentation and Anticancer activity of Chloroform and Ethanol extracts of Revia hypocrateriformis

    Directory of Open Access Journals (Sweden)

    Saboo Shweta S

    2012-05-01

    Full Text Available Objective: The plant Rivea hypocrateriformis (RH has numerous therapeutic utility in folk medicine having antidiabetic, antidepressant, analgesic as well as pregnancy irruption and anticancer properties. This led us to carry out the evaluation of plant for antimitotic, antiproliferative and cytotoxicity studies. Materials and Method: The dried aerial parts of RH were successively extracted with petroleum ether, chloroform, ethanol and water. All extracts are subjected to in vitro Antimitotic and Antiproliferative assay by Allium cepa root inhibition and yeast model. The successive chloroform, SCH and ethanol extract, SEE was subjected to in vitro anticancer activity by SRB assay MCF-7, HOP-62, MOLT-4, HCT-15 and PRO cell lines. Results: The SCH and SEE shows significant antimitotic and antiproliferative activity. The mitotic index was found to be 12.14 and 14.24 mg/mL respectively, which was near to standard, Methothrexate 11.39. The IC50 value of antiproliferative assay was found to be 47.88 to 27.12 mg/mL for SCH and SEE respectively. Conclusions: Based on these results, it is concluded that RH may be the good candidate for the treatment of cancer as SCH and SEE are cytotoxic against various cell line in SRB assay.

  12. Selective inhibition of liver cancer growth realized by the intrinsic toxicity of a quantum dot-lipid complex

    NARCIS (Netherlands)

    Shao, D.; Li, J.; Guan, F.; Pan, Y.; Xiao, X.; Zhang, M.; Zhang, H.; Chen, L.

    2014-01-01

    Using the intrinsic toxicity of nanomaterials for anticancer therapy is an emerging concept. In this work, we discovered that CdTe/CdS quantum dots, when coated with lipids (QD-LC) instead of popular liposomes, polymers, or dendrimers, demonstrated extraordinarily high specificity for cancer cells,

  13. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Xiaohu Deng

    2018-01-01

    Full Text Available Compared to the common selective laser sintering (SLS manufacturing method, fused deposition modeling (FDM seems to be an economical and efficient three-dimensional (3D printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  14. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    Science.gov (United States)

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  15. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  16. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  17. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    Science.gov (United States)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  18. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants.

    Science.gov (United States)

    Lee, Woo-Taek; Koak, Jai-Young; Lim, Young-Jun; Kim, Seong-Kyun; Kwon, Ho-Beom; Kim, Myung-Joo

    2012-05-01

    The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental implants. Compressive loading tests were performed with glass fiber-reinforced PEEK (GFR-PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), and titanium rods. Among these tests, GFR-PEEK fatigue tests were performed according to ISO 14801. For the finite element analysis, three-dimensional models of dental implants and bone were constructed. The implants in the test groups were coated with a 0.5-mm thick and 5-mm long PEEK layer on the upper intrabony area. The strain energy densities (SED) were calculated, and the bone resorption was predicted. The fatigue limits of GFR-PEEK were 310 N and were higher than the static compressive strength of GFR-PEEK. The bone around PEEK-coated implants showed higher levels of SED than the bone in direct contact with the implants, and the wider diameter and stiffer implants showed lower levels of SED. The compressive strength of the GFR-PEEK and CFR-PEEK implants ranged within the bite force of the anterior and posterior dentitions, respectively, and the PEEK implants showed adequate fatigue limits for replacing the anterior teeth. Dental implants with PEEK coatings and PEEK implants may reduce stress shielding effects. Dental implant application of PEEK polymer-fatigue limit and stress shielding. Copyright © 2012 Wiley Periodicals, Inc.

  19. Spontaneous Generation of Chirality in Simple Diaryl Ethers.

    Science.gov (United States)

    Lennartson, Anders; Hedström, Anna; Håkansson, Mikael

    2015-07-01

    We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3-phenoxybenzaldehyde, 1; 1,3-dimethyl-2-phenoxybenzene, 2; di(4-aminophenyl) ether, 3; and di(p-tolyl) ether, 4. Compounds 1, 3, and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2-4 are crystalline, and solid-state CD-spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. © 2015 Wiley Periodicals, Inc.

  20. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...... for reactions containing 10mM alcohol and up to 280mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up....

  1. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  2. Silk nanoparticles—an emerging anticancer nanomedicine

    Directory of Open Access Journals (Sweden)

    F. Philipp Seib

    2017-03-01

    Full Text Available Silk is a sustainable and ecologically friendly biopolymer with a robust clinical track record in humans for load bearing applications, in part due to its excellent mechanical properties and biocompatibility. Our ability to take bottom-up and top-down approaches for the generation of silk (inspired biopolymers has been critical in supporting the evolution of silk materials and formats, including silk nanoparticles for drug delivery. Silk nanoparticles are emerging as interesting contenders for drug delivery and are well placed to advance the nanomedicine field. This review covers the use of Bombyx mori and recombinant silks as an anticancer nanomedicine, highlighting the emerging trends and developments as well as critically assessing the current opportunities and challenges by providing a context specific assessment of this multidisciplinary field.

  3. Nitric oxide: cancer target or anticancer agent?

    Science.gov (United States)

    Mocellin, Simone

    2009-03-01

    Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.

  4. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  5. Kefir: a powerful probiotics with anticancer properties.

    Science.gov (United States)

    Sharifi, Mohammadreza; Moridnia, Abbas; Mortazavi, Deniz; Salehi, Mahsa; Bagheri, Marzieh; Sheikhi, Abdolkarim

    2017-09-27

    Probiotics and fermented milk products have attracted the attention of scientists from various fields, such as health care, industry and pharmacy. In recent years, reports have shown that dietary probiotics such as kefir have a great potential for cancer prevention and treatment. Kefir is fermented milk with Caucasian and Tibet origin, made from the incubation of kefir grains with raw milk or water. Kefir grains are a mixture of yeast and bacteria, living in a symbiotic association. Antibacterial, antifungal, anti-allergic and anti-inflammatory effects are some of the health beneficial properties of kefir grains. Furthermore, it is suggested that some of the bioactive compounds of kefir such as polysaccharides and peptides have great potential for inhibition of proliferation and induction of apoptosis in tumor cells. Many studies revealed that kefir acts on different cancers such as colorectal cancer, malignant T lymphocytes, breast cancer and lung carcinoma. In this review, we have focused on anticancer properties of kefir.

  6. A new anticancer agent--131I BGTP

    International Nuclear Information System (INIS)

    He Jiaheng; Jiang Shubin; Wang Guanquan

    2007-12-01

    A new anticancer precursor, di-peptide[p-Boc-Gly-Tyr-NH(CH 2 ) 2 NH-PO (ONH 4 )-O-PhI*], was synthesized and labelled with 131 I using enveloped-tube technique, the labelling yield could reach 85%. Using cell coalescent method, the biological activity in vitro of the labelled compounds was evaluated, showing that the primary appetency was kept and not damaged obviously during labelling. Results on judgement of their stability, lipophilicity and toxicity demonstrated lower toxicity, higher lipophilicity and lower iodium disassociation percentage (<12% after 72 h); furthermore, a tumour-bearing animal model, was establishd successfully, on which, the biological properties of the labelled agent was studied. (authors)

  7. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. System engineering approach to planning anticancer therapies

    CERN Document Server

    Świerniak, Andrzej; Smieja, Jaroslaw; Puszynski, Krzysztof; Psiuk-Maksymowicz, Krzysztof

    2016-01-01

    This book focuses on the analysis of cancer dynamics and the mathematically based synthesis of anticancer therapy. It summarizes the current state-of-the-art in this field and clarifies common misconceptions about mathematical modeling in cancer. Additionally, it encourages closer cooperation between engineers, physicians and mathematicians by showing the clear benefits of this without stating unrealistic goals. Development of therapy protocols is realized from an engineering point of view, such as the search for a solution to a specific control-optimization problem. Since in the case of cancer patients, consecutive measurements providing information about the current state of the disease are not available, the control laws are derived for an open loop structure. Different forms of therapy are incorporated into the models, from chemotherapy and antiangiogenic therapy to immunotherapy and gene therapy, but the class of models introduced is broad enough to incorporate other forms of therapy as well. The book be...

  9. Fenbendazole as a potential anticancer drug.

    Science.gov (United States)

    Duan, Qiwen; Liu, Yanfeng; Rockwell, Sara

    2013-02-01

    To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation.

  10. Synthesis and anticancer evaluation of spermatinamine analogues

    KAUST Repository

    Moosa, Basem

    2016-02-04

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcystiene carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5 - 10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines.

  11. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  12. Optimization of personalized therapies for anticancer treatment.

    Science.gov (United States)

    Vazquez, Alexei

    2013-04-12

    As today, there are hundreds of targeted therapies for the treatment of cancer, many of which have companion biomarkers that are in use to inform treatment decisions. If we would consider this whole arsenal of targeted therapies as a treatment option for every patient, very soon we will reach a scenario where each patient is positive for several markers suggesting their treatment with several targeted therapies. Given the documented side effects of anticancer drugs, it is clear that such a strategy is unfeasible. Here, we propose a strategy that optimizes the design of combinatorial therapies to achieve the best response rates with the minimal toxicity. In this methodology markers are assigned to drugs such that we achieve a high overall response rate while using personalized combinations of minimal size. We tested this methodology in an in silico cancer patient cohort, constructed from in vitro data for 714 cell lines and 138 drugs reported by the Sanger Institute. Our analysis indicates that, even in the context of personalized medicine, combinations of three or more drugs are required to achieve high response rates. Furthermore, patient-to-patient variations in pharmacokinetics have a significant impact in the overall response rate. A 10 fold increase in the pharmacokinetics variations resulted in a significant drop the overall response rate. The design of optimal combinatorial therapy for anticancer treatment requires a transition from the one-drug/one-biomarker approach to global strategies that simultaneously assign makers to a catalog of drugs. The methodology reported here provides a framework to achieve this transition.

  13. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  14. Cholesterol-based cationic lipids for gene delivery: contribution of molecular structure factors to physico-chemical and biological properties.

    Science.gov (United States)

    Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Jingjing; Wang, Zhao; Cao, Amin

    2014-04-01

    In this work, we prepared a series of cholesterol-based cationic (Cho-cat) lipids bearing cholesterol hydrophobe, natural amino acid headgroups (lysine/histidine) and linkage (carbonate ester/ether) bonds. In which, the natural amino acid headgroups made dominant contribution to their physico-chemical and biological properties. Among the lipids, the l-lysine headgroup bearing lipids (Cho-es/et-Lys) showed higher pDNA binding affinity and were able to form larger sized and higher surface charged lipoplexes than that of l-histidine headgroup bearing lipids (Cho-es/et-His), they also demonstrated higher transfection efficacy and higher membrane disruption capacities than that of their l-histidine headgroup bearing counterparts. However, compared to the contributions of the headgroups, the (carbonate ester/ether) linkage bonds showed much less affects. Besides, it could be noted that, Cho-es/et-Lys lipids exhibited very high luciferase gene transfection efficiency that almost reached the transfection level of "gold standard" bPEI-25k, made them potential transfection reagents for practical application. Moreover, the results facilitated the understanding for the structure-activity relationship of the cholesterol-based cationic lipids, and also paved a simple and efficient way for achieving high transfection efficiency by modification of suitable headgroups on lipid gene carriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  16. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane.

    Science.gov (United States)

    Kierkegaard, Amelie; Sellström, Ulla; McLachlan, Michael S

    2009-01-16

    Methods for environmental analysis of higher brominated diphenyl ethers (PBDEs), in particular decabromodiphenyl ether (BDE209), and the recently discovered environmental contaminant decabromodiphenyl ethane (deBDethane) are reviewed. The extensive literature on analysis of BDE209 has identified several critical issues, including contamination of the sample, degradation of the analyte during sample preparation and GC analysis, and the selection of appropriate detection methods and surrogate standards. The limited experience with the analysis of deBDethane suggests that there are many commonalities with BDE209. The experience garnered from the analysis of BDE209 over the last 15 years will greatly facilitate progress in the analysis of deBDethane.

  17. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  18. Method of determining of polybrominated diphenyl ethers in fish and fish products by the method of liquid chromatography

    Directory of Open Access Journals (Sweden)

    O.N. Timofeeva

    2016-09-01

    Full Text Available The aim of the work was to develop a methodology for determining of polybrominated diphenyl ethers (PBDE in fish and fish products for the control of impurities content in the food and environmental objects in general. The conditions of chromatography (temperature conditions, the impact of the speed and magnitude of dividing of the gas-carrier stream using a HP-1 capillary columns, the DB-5, HP-50 +, DB-1; and lipids destructive and non-destructive cleaning methods of extract during the determination of PBDEs. The method of determination of 2,2,4,4-Tetrabromodiphenyl ether (BDE-47, 2,2,4,4,5-pentabromodiphenyl ether (BDE-99 and decabromodiphenyl ether (BDE-209 in fish and fish products by the liquid chromatography with electron detector was suggested. The method of PBDE is based on the extraction of samples with hexane-acetone (3:1, purification of the extract with concentrated sulfuric acid (phase ratio hexane-sulfuric acid – 5:1. The second purification step is carried out by using solid phase extraction cartridges «SiOH-H2SO4/SA» and hexane as the eluent. Gas chromatographic analysis of the determination of BDE-47 and BDE-99 is carried out on low-polar capillary column DB-5 (30 m x0.25 mm x0.25 mum with the programming of the column temperature. In determining the BDE-209 a DB-1 nonpolar capillary column was used (15 m x 0.25 mm x 0.1 mum with the column temperature programming. Calculation of the content of BDE-47 and BDE-99 is carried out with the internal standard (2,2, 3,4,4-pentabromodiphenyl ether (BDE-85, BDE-209 by absolute calibration. In determining the BDE-209 the calibration matrix was used. The range of concentrations of the calibration solutions for the determination of BDE-47 and BDE-99 is 0.005–0.05 g/cm 3 , for BDE-209 0.05–0.3 g/cm 3 . The technique allows the measurement of BDE-47 and BDE-99 in the range of 0.0002–0.05 mg/kg of the product concerned; BDE-209 – in the range of 0.002–0.3 mg/kg. The metrological

  19. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols

    DEFF Research Database (Denmark)

    Svetlichnyy, V.; Müller, P.; Günther-Pomorski, Thomas

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols...... containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids....... The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18...

  20. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  1. Maltese Mushroom (Cynomorium coccineum L. as Source of Oil with Potential Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Antonella Rosa

    2015-01-01

    Full Text Available The present study aimed to examine the potential anticancer properties of fixed oil obtained from Maltese mushroom (Cynomorium coccineum L., an edible, non-photosynthetic plant, used in traditional medicine of Mediterranean countries to treat various ailments and as an emergency food during the famine. We investigated the effect of the oil, obtained from dried stems by supercritical fractioned extraction with CO2, on B16F10 melanoma and colon cancer Caco-2 cell viability and lipid profile. The oil, rich in essential fatty acids (18:3n-3 and 18:2n-6, showed a significant growth inhibitory effect on melanoma and colon cancer cells. The incubation (24 h with non-toxic oil concentrations (25 and 50 μg/mL induced in both cancer cell lines a significant accumulation of the fatty acids 18:3n-3 and 18:2n-6 and an increase of the cellular levels of eicosapentaenoic acid (20:5n-3 with anticancer activity. Moreover, the oil exhibited the ability to potentiate the growth inhibitory effect of the antitumor drug 5-fluorouracil in Caco-2 cells and to influence the melanin content in B16F10 cells. The results qualify C. coccineum as a resource of oil, with potential benefits in cancer prevention, for nutraceutical and pharmaceutical applications.

  2. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  3. Drug loading to lipid-based cationic nanoparticles

    International Nuclear Information System (INIS)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich

    2005-01-01

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures

  4. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  5. Lysosomal lipid storage diseases.

    Science.gov (United States)

    Schulze, Heike; Sandhoff, Konrad

    2011-06-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.

  6. Lipid bilayers and interfaces

    NARCIS (Netherlands)

    Kik, R.A.

    2007-01-01

    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  7. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  8. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    Science.gov (United States)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  9. Direct transformation of silyl enol ethers into functionalized allenes.

    Science.gov (United States)

    Langer, P; Döring, M; Seyferth, D; Görls, H

    2001-02-02

    The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.

  10. Diethyl Ether Production as a Substitute for Gasoline

    Directory of Open Access Journals (Sweden)

    Alviany Riza

    2018-01-01

    Full Text Available Diethyl ether is one of alternative fuel that could be used as a significant component of a blend or as a complete replacement for transportation fuel. The aim of this research is to produce diethyl ether through dehydration reaction of ethanol with fixed bed reactor using nanocrystalline γ-Al2O3 catalyst. Nanocrystalline γ-Al2O3 catalyst was synthesized by precipitation method using Al(NO33.9H2O as precursors and NH4OH as the precipitating agent. Dehydration reaction was performed at temperature range of 125 to 225°C. The result shows that synthesized γ-Al2O3 catalyst gave higher ethanol conversion and diethyl ether yield than that of commercial Al2O3 catalyst. The use of synthesized γ-Al2O3 catalyst could reach ethanol conversion as high as 94.71% and diethyl ether yield as high as 11,29%.

  11. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  12. Poly(ether ester amide)s for tissue engineering

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; de Bruijn, Joost Dick; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Poly(ether ester amide) (PEEA) copolymers based on poly(ethylene glycol) (PEG), 1,4-butanediol and dimethyl-7,12-diaza-6,13-dione-1,18-octadecanedioate were evaluated as scaffold materials for tissue engineering. A PEEA copolymer based on PEG with a molecular weight of 300 g/mol and 25 wt% of soft

  13. Photodegradation of poly(ether sulphone). Part 2

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2004-01-01

    The photodegradation of poly(ether sulphone) (PES) was investigated systematically by time-of-flight SIMS (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The effect of varying the irradiation dose, wavelength and the atmosphere was studied along with mechanistic photooxidation studies using...

  14. Radiation chemistry of alternative fuel oxygenates - substituted ethers

    International Nuclear Information System (INIS)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-01-01

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE)

  15. Dimethyl ether in diesel engines - progress and perspectives

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    2001-01-01

    A review of recent developments related to the use of dimethyl ether (DME) in engines is presented Research work discussed is in the areas of engine performance and emissions, fuel injection systems, spray and ignition delay, and detailed chemical kinetic modeling. DME's properties and safety asp...

  16. Formation and Structural Analysis of Novel Dibornyl Ethers | Kaye ...

    African Journals Online (AJOL)

    One- and two-dimensional NMR spectroscopy has been used to establish the regio- and stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived a-hydroxybornanones. South African Journal of Chemistry Vol.55 2002: 111-118 ...

  17. Enzymatic network for production of ether amines from alcohols

    NARCIS (Netherlands)

    Palacio, Cyntia M.; Crismaru, Gica Ciprian; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John; Baldenius, Kai-Uwe; Wu, Bian; Janssen, Dick

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the

  18. Ether and interpretation of some physical phenomena and concepts

    International Nuclear Information System (INIS)

    Rzayev, S.G.

    2008-01-01

    On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown

  19. The extraction of total lipids from parsley: Petroselinum crispum (mill. Nym. Ex. A.W. Hill seeds

    Directory of Open Access Journals (Sweden)

    Stanković Mihajlo Z.

    2004-01-01

    Full Text Available The kinetics of extraction of total lipids from ground parsley (Petroselinum crispum (Mill. Nym. ex. A.W. Hill seeds with a mixture of ethanol or methanol with non-polar organic solvents, chloroform, carbon tetrachloride, trichloroethylene and petroleum ether, at various temperatures were studied. The maceration technique with reflux was used. The kinetic parameters were determined in extraction kinetic equations, as well as the optimal operation conditions for total lipids extraction. The maximum total lipids yield under optimal conditions was 33.7 g per 100 g of dry parsley seeds. Nine lipid fractions of the total lipids were separated by thin layer chromatography among which were phospholipids, sterol, mono-, di- and triacylglycerol, free fatty acids and carbohydrates.

  20. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  1. Basic randomness of nature and ether-drift experiments

    International Nuclear Information System (INIS)

    Consoli, M.; Pluchino, A.; Rapisarda, A.

    2011-01-01

    Highlights: ► We re-consider the idea of a basic randomness of nature. ► We adopt Stochastic Electro Dynamics as a heuristic model. ► We represent the vacuum as a form of turbulent ether. ► This picture can be tested with forthcoming ether-drift experiments. - Abstract: We re-consider the idea that quantum fluctuations might reflect the existence of an ‘objective randomness’, i.e. a basic property of the vacuum state which is independent of any experimental accuracy of the observations or limited knowledge of initial conditions. Besides being responsible for the observed quantum behavior, this might introduce a weak, residual form of ‘noise’ which is intrinsic to natural phenomena and could be important for the emergence of complexity at higher physical levels. By adopting Stochastic Electro Dynamics as a heuristic model, we are driven to a picture of the vacuum as a form of highly turbulent ether, which is deep-rooted into the basic foundational aspects of both quantum physics and relativity, and to search for experimental tests of this scenario. An analysis of the most precise ether-drift experiments, operating both at room temperature and in the cryogenic regime, shows that, at present, there is some ambiguity in the interpretation of the data. In fact the average amplitude of the signal has precisely the magnitude expected, in a ‘Lorentzian’ form of relativity, from an underlying stochastic ether and, as such, might not be a spurious instrumental effect. This puzzle, however, should be solved in a next future with the use of new cryogenically cooled optical resonators whose stability should improve by about two orders of magnitude. In these new experimental conditions, the persistence of the present amplitude would represent a clean evidence for the type of random vacuum we are envisaging.

  2. The lipidome in major depressive disorder: Shared genetic influence for ether-phosphatidylcholines, a plasma-based phenotype related to inflammation, and disease risk.

    Science.gov (United States)

    Knowles, E E M; Huynh, K; Meikle, P J; Göring, H H H; Olvera, R L; Mathias, S R; Duggirala, R; Almasy, L; Blangero, J; Curran, J E; Glahn, D C

    2017-06-01

    The lipidome is rapidly garnering interest in the field of psychiatry. Recent studies have implicated lipidomic changes across numerous psychiatric disorders. In particular, there is growing evidence that the concentrations of several classes of lipids are altered in those diagnosed with MDD. However, for lipidomic abnormalities to be considered potential treatment targets for MDD (rather than secondary manifestations of the disease), a shared etiology between lipid concentrations and MDD should be demonstrated. In a sample of 567 individuals from 37 extended pedigrees (average size 13.57 people, range=3-80), we used mass spectrometry lipidomic measures to evaluate the genetic overlap between twenty-three biologically distinct lipid classes and a dimensional scale of MDD. We found that the lipid class with the largest endophenotype ranking value (ERV, a standardized parametric measure of pleiotropy) were ether-phosphodatidylcholines (alkylphosphatidylcholine, PC(O) and alkenylphosphatidylcholine, PC(P) subclasses). Furthermore, we examined the cluster structure of the twenty-five species within the top-ranked lipid class, and the relationship of those clusters with MDD. This analysis revealed that species containing arachidonic acid generally exhibited the greatest degree of genetic overlap with MDD. This study is the first to demonstrate a shared genetic etiology between MDD and ether-phosphatidylcholine species containing arachidonic acid, an omega-6 fatty acid that is a precursor to inflammatory mediators, such as prostaglandins. The study highlights the potential utility of the well-characterized linoleic/arachidonic acid inflammation pathway as a diagnostic marker and/or treatment target for MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Anticancer Activity Of Plant Genus Clerodendrum (Lamiaceae: A Review

    Directory of Open Access Journals (Sweden)

    Donald Emilio Kalonio

    2017-12-01

    Full Text Available Plants of the genus Clerodendrum (Lamiaceae is widespread in tropical and subtropical regions. Plants of this genus are used both empirically and scientifically as anti-inflammatory, antidiabetic, antimalarial, antiviral, antihypertensive, hypolipidemic, antioxidant, and antitumor. Results of the molecular docking simulation of chemical content of these plants could potentially provide an anticancer effect. This paper aims to review the anticancer activity of plant genus Clerodendrum based on scientific data. The method used in this study is the literature study. Searches were conducted online (in the database PubMed, Science Direct and Google Scholar and on various books (Farmakope Herbal Indonesia and PROSEA. A total 12 plants of the genus Clerodendrum have anticancer activity in vitro and in vivo, thus potentially to be developed as a source of new active compounds with anticancer activity.

  4. Isolation and identification of flavonoids from anticancer and ...

    African Journals Online (AJOL)

    Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonella foenum graecum. Shabina Ishtiaq Ahmed, Muhammad Qasim Hayat, Saadia Zahid, Muhammad Tahir, Qaisar Mansoor, Muhammad Ismail, Kristen Keck, Robert Bates ...

  5. Characterization and in vitro studies on anticancer activity of ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... The exopolymer produced by B. thuringiensis S13, showed potent ... Polysaccharides derived from a microorganism have specific broad .... polymer and cisplatin (an anticancer drug as standard) separately in triplicates to ...

  6. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  7. Medicinal plants combating against cancer--a green anticancer approach.

    Science.gov (United States)

    Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur

    2014-01-01

    Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

  8. Screening of potent anticancer drug taxol from Entophytic fungus ...

    African Journals Online (AJOL)

    Muthumary

    2011-02-21

    Feb 21, 2011 ... Isolation and detection of taxol, an anticancer drug produced from ... cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its .... then plotted on a graph. RESULTS AND ... Wavelength (nm).

  9. Synthesis, docking and anticancer activity studies of D-proline ...

    Indian Academy of Sciences (India)

    D-proline-incorporated wainunuamide — a cyclic octapeptide was synthesized and characterized ... Cyclic octapeptide; molecular docking; solution phase synthesis; anticancer activity ..... dynamics and their binding affinities, using free energy.

  10. Anticancer Effect of AntiMalarial Artemisinin Compounds

    African Journals Online (AJOL)

    Artemisinin is a naturally occurring antimalarial showing anticancer properties. ..... Artemisinins usually promote apoptosis rather than necrosis in most cases ... artemisinin-mediated inhibition of vascular endothelial growth factor C (VEGF-C).

  11. Synthesis of Lipidated Proteins.

    Science.gov (United States)

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  12. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  13. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  14. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  15. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  16. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  17. Anticancer Vitamin K3 Analogs: A Review.

    Science.gov (United States)

    Badave, Kirti D; Khan, Ayesha A; Rane, Sandhya Y

    2016-01-01

    Menadione (Vitamin K3) comprises of 1,4-naphthoquinone (NQ) moiety that can form redox isomers such as napthosemiquinone (NSQ) and catechol by accepting one or two electrons, respectively. The quinone redox cycling ability leads to the generation of "reactive oxygen species" (ROS) as well as arylation reactions, which are of biological relevance. This ability can be modulated with the help of suitable derivatization. A pharmacophore can be appended at suitable position of Vitamin K3 to have a synergistic or additive effect. In the present review, an attempt has been made to accrue such derivatives modified at 1 or 2 position and evaluated for their cytotoxicity activity on different series of human cancer cell lines such as HeLa, HL-60 and MCF- 7 etc. Production of reactive oxygen species (ROS) and mitochondrial dysfunction caused by Vitamin K3 derivatives leads to apoptosis and tumor inhibition. Recently, the CR-108 compound has shown to exhibit oxidative path together with non-oxidative phosphorylation of p38 MAP kinase in human breast cancer cells. Thus the chemical-biological interactions have been discussed which can be further extrapolated for the development of a potent anticancer drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Cinnamon in Anticancer Armamentarium: A Molecular Approach

    Directory of Open Access Journals (Sweden)

    Anindita Dutta

    2018-01-01

    Full Text Available In recent years, natural bioactive components draw a major attention for their potent anticarcinogenic activity. Cinnamon, one of the traditional spices, most frequently used in almost every household of tropical countries has got enormous efficacy to combat cancer. Cinnamon as a whole and/or its active components exhibited significant antineoplastic activity in different types of cancer. This review has been carried out to elicit the molecular mechanisms of action of cinnamon and its components on oncogenic regulators and related pathways. Web sites of Google Scholar, Medline, and PubMed were searched for articles written in English and published in peer-reviewed journals from 2003 to 2017. The anticarcinogenic potential of cinnamon varies with the type of cancer and also depends on the administered active compound individually or in combination with some chemicals or even extract of cinnamon as a whole. Some of its active components exert chemosensitization of well-known anticancer drugs. These outstanding properties of this spice necessitate its incorporation in both pharmaceuticals and nutraceuticals to explore possibilities of formulation of novel drug from this spice for treatment and prevention strategy of cancer.

  19. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Dmitry L. Aminin

    2015-03-01

    Full Text Available Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata. They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor, Akt (protein kinase B, ERK (extracellular signal-regulated kinases, FAK (focal adhesion kinase, MMP-9 (matrix metalloproteinase-9 and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.

  20. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. MECHANOMAGNETIC REACTOR FOR ACTIVATION OF ANTICANCER DRUGS

    Directory of Open Access Journals (Sweden)

    Orel V. E.

    2014-02-01

    Full Text Available Mechanomagnetochemical activation can increase the concentration of paramagnetic centers (free radicals in the anticancer drug, for example, doxorubicin that enables to influence its magnetic properties under external electromagnetic field and improve its magnetic sensitivity and antitumor activity. The principles of design and operation of mechanomagnetic reactor for implementation of this technology which includes mechanomagnetochemical activation and electromagnetic radiation of the drug are described in the paper. The methods of vibration magnetometry, electron paramagnetic resonance spectroscopy and high-performance liquid chromatography were used for studying of doxorubicin mechanomagnetic activation effects. The studies have shown that a generator of sinusoidal electromagnetic wave, working chambers from caprolactam, fluoroplastic or organic materials with metal inserts and working bodies made from steel or agate depending on the required doxorubicin magnetic properties are expedient to use in the designed mechanomagnic reactor. Under influence of mechanomagnetochemical activation doxorubicin, which is diamagnetic, acquires the properties of paramagnetic without changing g-factors in the spectra of electron paramagnetic resonance. Mechanomagnetochemical activation of doxorubicin satisfies pharmacopoeia condi tions according to the results of liquid chromatography that points on perspective of this method using in technology of tumor therapy with nanosized structures and external electromagnetic radiation.

  2. PP2A-Mediated Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Weibo Chen

    2013-01-01

    Full Text Available PP2A is a family of mammalian serine/threonine phosphatases that is involved in the control of many cellular functions including protein synthesis, cellular signaling, cell cycle determination, apoptosis, metabolism, and stress responses through the negative regulation of signaling pathways initiated by protein kinases. Rapid progress is being made in the understanding of PP2A complex and its functions. Emerging studies have correlated changes in PP2A with human diseases, especially cancer. PP2A is comprised of 3 subunits: a catalytic subunit, a scaffolding subunit, and a regulatory subunit. The alternations of the subunits have been shown to be in association with many human malignancies. Therapeutic agents targeting PP2A inhibitors or activating PP2A directly have shed light on the therapy of cancers. This review focuses on PP2A structure, cancer-associated mutations, and the targeting of PP2A-related molecules to restore or reactivate PP2A in anticancer therapy, especially in digestive system cancer therapy.

  3. Bioactive lipids as radioprotectors and potentiators of radiotherapy

    International Nuclear Information System (INIS)

    Das, Undurti N.

    2016-01-01

    Selective elimination of tumor cells with little or no effects on normal cells is desirable for the treatment of cancer. Radiotherapy, a well accepted form of cancer therapy, is associated with significant side effects that need to be eliminated or dampened. Our studies revealed that radiation can produce significant changes in the metabolism of essential fatty acids that could be related to its actions and side effects. It was noted that UVB exposed skin produced PGE2, PGF2a and PGE3 that accompany the erythema in the first 24-48 h, associated with increased COX-2 expression at 24 h. Leukocyte chemoattractants 11-, 12- and 8-monohydroxy-eicosatetraenoic acid (HETE) are elevated from 4 to 72 h, in association with peak dermal neutrophil influx at 24 h, and increased dermal CD3"+ lymphocytes and 12- and 15-LOX expression from 24 to 72 h. On the other hand, anti-inflammatory metabolite 15-HETE shows later expression, peaking at 72 h. Thus, skin lesions are characterized by overlapping sequential profiles of increases in COX products followed by LOX products that may regulate subsequent events and ultimately its resolution. The enhanced expression of 15-HETE at 72 h is interesting since it forms the precursor to antiinflammatory bioactive lipids. We and others also showed that the anti-cancer action of radiation and chemotherapeutic drugs can be augmented by certain polyunsaturated fatty acids with little or no action on normal cells. Even tumor cell drug resistance could be reversed by these bioactive lipids. Our recent studies revealed that these bioactive lipids also prevent genetic damage induced by radiation and other drugs. These studies imply that employing certain bioactive lipids may be exploited as radiation protective molecules and as enhancers of the anti-cancer action of radiation in the therapy of cancer. (author)

  4. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  5. Perspectives on marine zooplankton lipids

    DEFF Research Database (Denmark)

    Kattner, G.; Hagen, W.; Lee, R.F.

    2007-01-01

    We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...

  6. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  7. Temporal trend studies on tetra- and pentabrominated diphenyl ethers and hexabromocyclododecane in guillemot egg from the Baltic Sea.

    Science.gov (United States)

    Sellström, Ulla; Bignert, Anders; Kierkegaard, Amelie; Häggberg, Lisbeth; de Wit, Cynthia A; Olsson, Mats; Jansson, Bo

    2003-12-15

    Guillemot eggs from the Baltic Sea, sampled between 1969 and 2001, were analyzed for tetra- and pentabromodiphenyl ethers (2,2',4,4'-tetraBDE (BDE-47), 2,2',4,4',5-pentaBDE (BDE-99), and 2,2',4,4',6-pentaBDE (BDE-100)), and hexabromocyclododecane (HBCD). This temporal trend study indicates that the concentrations of the polybrominated diphenyl ether compounds increased from the 1970s to the 1980s, peaking around the mid- to the late-1980s. These peaks are then followed by a rapid decrease in concentrations during the rest of the study period, with the concentrations of the major BDE congener below 100 ng/g lipid weight at the end of the period. This corresponds to less than 10% of its peak values. The concentrations of HBCD show a different pattern over time. After a peak in the middle of the 1970s followed by a decrease, the concentrations increased during the latter part of the 1980s. During the recent 10-yr period no significant change has occurred, and the annual mean concentrations are more or less stable at a higher level as compared to the beginning of the study period.

  8. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  10. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Binelli, A. [Department of Biology, Via Celoria 26, University of Milan, 20133 Milan (Italy)], E-mail: andrea.binelli@unimi.it; Guzzella, L.; Roscioli, C. [IRSA-CNR, 20047 Brugherio (Milan) (Italy)

    2008-06-15

    Several congeners of polybrominated diphenyl ethers (PBDEs) were monitored in 14 different sampling stations of Lake Maggiore, the second largest Italian lake in regard to surface, volume and average depth, using the sentinel-organism Zebra mussel (Dreissena polymorpha). Results revealed a moderate contamination with {sigma}PBDE levels (BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183, -190 and -209) ranging from 40 to 447 ng g{sup -1} lipid weight which are similar to those found in environments polluted by deposition or atmospheric transport. The general order of decreasing congener contribution to the total load was BDE-47 > -99 > -100 > -209, which closely reflected patterns observed in mussels collected in freshwater ecosystems worldwide. - This study shows the first data of PBDE contamination in freshwater invertebrates from Mediterranean basin.

  11. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy)

    International Nuclear Information System (INIS)

    Binelli, A.; Guzzella, L.; Roscioli, C.

    2008-01-01

    Several congeners of polybrominated diphenyl ethers (PBDEs) were monitored in 14 different sampling stations of Lake Maggiore, the second largest Italian lake in regard to surface, volume and average depth, using the sentinel-organism Zebra mussel (Dreissena polymorpha). Results revealed a moderate contamination with ΣPBDE levels (BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183, -190 and -209) ranging from 40 to 447 ng g -1 lipid weight which are similar to those found in environments polluted by deposition or atmospheric transport. The general order of decreasing congener contribution to the total load was BDE-47 > -99 > -100 > -209, which closely reflected patterns observed in mussels collected in freshwater ecosystems worldwide. - This study shows the first data of PBDE contamination in freshwater invertebrates from Mediterranean basin

  12. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy).

    Science.gov (United States)

    Binelli, A; Guzzella, L; Roscioli, C

    2008-06-01

    Several congeners of polybrominated diphenyl ethers (PBDEs) were monitored in 14 different sampling stations of Lake Maggiore, the second largest Italian lake in regard to surface, volume and average depth, using the sentinel-organism Zebra mussel (Dreissena polymorpha). Results revealed a moderate contamination with summation operatorPBDE levels (BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183, -190 and -209) ranging from 40 to 447ngg(-1) lipid weight which are similar to those found in environments polluted by deposition or atmospheric transport. The general order of decreasing congener contribution to the total load was BDE-47>-99>-100>-209, which closely reflected patterns observed in mussels collected in freshwater ecosystems worldwide.

  13. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  14. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC.

    Science.gov (United States)

    Li, Jian; Chen, Tian; Wang, Yuwei; Shi, Zhixiong; Zhou, Xianqing; Sun, Zhiwei; Wang, Dejun; Wu, Yongning

    2017-02-01

    Two simplified sample preparation procedures for simultaneous extraction and clean-up of tetrabromobisphenol A, α-, β-, and γ-hexabromocyclododecane and polybrominated diphenyl ethers in human serum were developed and validated. The first procedure was based on solid-phase extraction. Sample extraction, purification, and lipid removal were carried out directly on an Oasis HLB cartridge. The second procedure was a quick, easy, cheap, effective, rugged, and safe-based approach using octadecyl-modified silica particles as a sorbent. After sample extraction and cleanup, tetrabromobisphenol A/hexabromocyclododecane was separated from polybrominated diphenyl ethers by using a Si-based cartridge. Tetrabromobisphenol A and hexabromocyclododecane were then detected by high-performance liquid chromatography coupled to tandem mass spectrometry, while polybrominated diphenyl ethers were detected by gas chromatography coupled to tandem mass spectrometry. The results of the spike recovery test using fetal bovine serum showed that the average recoveries of the analytes ranged from 87.3 to 115.3% with relative standard deviations equal to or lower than 13.4 %. Limits of detection of the analytes were in the range of 0.4-19 pg/mL except for decabromodiphenyl ether. The developed method was successfully applied to routine analysis of human serum samples from occupational workers and the general population. Extremely high serum polybrominated diphenyl ethers levels up to 3.32 × 10 4 ng/g lipid weight were found in occupational workers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  16. Use of proteasome inhibitors in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Sara M. Schmitt

    2011-10-01

    Full Text Available The importance of the ubiquitin-proteasome pathway to cellular function has brought it to the forefront in the search for new anticancer therapies. The ubiquitin-proteasome pathway has proven promising in targeting various human cancers. The approval of the proteasome inhibitor bortezomib for clinical treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma has validated the ubiquitin-proteasome as a rational target. Bortezomib has shown positive results in clinical use but some toxicity and side effects, as well as resistance, have been observed, indicating that further development of novel, less toxic drugs is necessary. Because less toxic drugs are necessary and drug development can be expensive and time-consuming, using existing drugs that can target the ubiquitin-proteasome pathway in new applications, such as cancer therapy, may be effective in expediting the regulatory process and bringing new drugs to the clinic. Toward this goal, previously approved drugs, such as disulfiram, as well as natural compounds found in common foods, such as green tea polyphenol (--EGCG and the flavonoid apigenin, have been investigated for their possible proteasome inhibitory and cell death inducing abilities. These compounds proved quite promising in preclinical studies and have now moved into clinical trials, with preliminary results that are encouraging. In addition to targeting the catalytic activity of the proteasome pathway, upstream regulators, such as the 19S regulatory cap, as well as E1, E2, and E3, are now being investigated as potential drug targets. This review outlines the development of novel proteasome inhibitors from preclinical to clinical studies, highlighting their abilities to inhibit the tumor proteasome and induce apoptosis in several human cancers.

  17. Nucleoside-Lipid-Based Nanocarriers for Sorafenib Delivery

    Science.gov (United States)

    Benizri, Sebastien; Ferey, Ludivine; Alies, Bruno; Mebarek, Naila; Vacher, Gaelle; Appavoo, Ananda; Staedel, Cathy; Gaudin, Karen; Barthélémy, Philippe

    2018-01-01

    Although the application of sorafenib, a small inhibitor of tyrosine protein kinases, to cancer treatments remains a worldwide option in chemotherapy, novel strategies are needed to address the low water solubility (drug. In this context, the use of nanocarriers is currently investigated in order to overcome these drawbacks. In this contribution, we report a new type of sorafenib-based nanoparticles stabilized by hybrid nucleoside-lipids. The solid lipid nanoparticles (SLNs) showed negative or positive zeta potential values depending on the nucleoside-lipid charge. Transmission electron microscopy of sorafenib-loaded SLNs revealed parallelepiped nanoparticles of about 200 nm. Biological studies achieved on four different cell lines, including liver and breast cancers, revealed enhanced anticancer activities of Sorafenib-based SLNs compared to the free drug. Importantly, contrast phase microscopy images recorded after incubation of cancer cells in the presence of SLNs at high concentration in sorafenib (> 80 μM) revealed a total cancer cell death in all cases. These results highlight the potential of nucleoside-lipid-based SLNs as drug delivery systems.

  18. Antitumor Lipids--Structure, Functions, and Medical Applications.

    Science.gov (United States)

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  19. Synthesis of hydroxylated and methoxylated polybrominated diphenyl ethers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ke-wen; GAO Li-ping; CAO Jie; YU Hai-wen; ZHANG Zhang

    2009-01-01

    Hydroxylated/methoxylated polybrominated diphenyl ethers (OH/MeO-PBDEs) are not only detected as natural products, but also regarded as metabolites formed from polybrominated diphenyl ethers (PBDEs), which are widely used as flame-retardants in various materials. The aim of the present study was to synthesize authentic OH-PBDEs and MeO-PBDEs, as reference standards for environmental exploration. Twenty OH-PBDEs and their corresponding MeO-PBDEs containing three to six bromine atoms were synthesized via a trial of reactions including coupling, oxidation, bromination, methylation, etc. The products were characterized by GC-MS and 1H-NMR spectroscopy in the work. As results show, all compounds synthesized were up to 99% on purity and be reqarded as authentic standards for detecting the chemical pollutants in the emvironment.

  20. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  1. Increasing the thermopower of crown-ether-bridged anthraquinones

    Science.gov (United States)

    Ismael, Ali K.; Grace, Iain; Lambert, Colin J.

    2015-10-01

    We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either (1) crown-ether or (2) diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The thermopowers of both 1 and 2 are negative and at room temperature are optimised by binding with TTF alone, achieving thermpowers of -600 μV K-1 and -285 μV K-1 respectively. At much lower temperatures, which are relevant to cascade coolers, we find that for 1, a combination of TTF and Na+ yields a maximum thermopower of -710 μV K-1 at 70 K, whereas a combination of TTF and Li+ yields a maximum thermopower of -600 μV K-1 at 90 K. For 2, we find that TTF doping yields a maximum thermopower of -800 μV K-1 at 90 K, whereas at 50 K, the largest thermopower (of -600 μV K-1) is obtain by a combination TTF and K+ doping. At room temperature, we obtain power factors of 73 μW m-1 K-2 for 1 (in combination with TTF and Na+) and 90 μW m-1 K-2 for 2 (with TTF). These are higher or comparable with reported power factors of other organic materials.We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either (1) crown-ether or (2) diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The

  2. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    Science.gov (United States)

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  3. Levels and distribution of polybrominated diphenyl ethers in Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Jingxian Wang

    2017-03-01

    Full Text Available Polybrominated diphenyl ethers (PBDEs were investigated in water, sediments, suspended sediments and biofilms in Three Gorges Reservoir (TGR, China. Results showed that dissolved bioavailable PBDEs in water of TGR collected with semipermeable membrane device (SPMD-based virtual organisms (VOs were very low in the range of n.d. to 811 pg/g lipid and the detected compounds were mainly low molecular BDEs such as BDE-15, 17, 28, 47, 49, 66, 99 and 100. The PBDE levels in the sediment core collected near the dam were also very low in the range of 84–300 pg/g dw and the detected compounds were mainly large molecular BDEs such as BDE-196, 197, 206, 207 and 208. In suspended sediments and biofilms, the levels of PBDEs ranged from 298 to 52,843 pg/g dw and the detected compounds were also mainly large molecular BDEs such as BDE- 196, 197, 201, 203, 206, 207, 208 and 209. The dominant compound was BDE-209 which accounted for more than 90% of the total BDEs. Therefore, large molecular BDEs tended to be attached on fine particles. The vertical profile of BDEs on suspended sediments (SS showed that SSs in the middle depth of water contained high level of BDE-209. The phenomenon indicated that most of BDE-209 did not settle into the sediment in front of the dam, instead transported further to downstream.

  4. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.

    Science.gov (United States)

    Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V

    2010-09-01

    Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

  5. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    Science.gov (United States)

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  6. Temporal variability of polybrominated diphenyl ether (PBDE) serum concentrations over one year.

    Science.gov (United States)

    Makey, Colleen M; McClean, Michael D; Sjödin, Andreas; Weinberg, Janice; Carignan, Courtney C; Webster, Thomas F

    2014-12-16

    Polybrominated diphenyl ethers (PBDEs) are flame retardant chemicals used in consumer products. They are common contaminants in human serum and associated with adverse health effects. Our objectives were to characterize PBDE serum concentrations in a New England cohort and assess temporal variability of this exposure biomarker over a one-year period. We collected three repeated measurements at six-month intervals from 52 office workers from the greater Boston (MA, United States) area from 2010 to 2011. The intraclass correlation coefficient for BDEs 28, 47, 99, 100, and 153 ranged from 0.87 to 0.99, indicating that a single serum measurement can reliably estimate exposure over a one-year period. This was true for both lipid adjusted and nonlipid adjusted concentrations. The kappa statistics, quantifying the level of agreement of categorical exposure classification, based on medians, tertiles, or quartiles ranged from 0.67 to 0.90. Some congeners showed nonsignificant increases from sampling round 1 (winter) to round 2 (summer) and significant decreases from round 2 to round 3 (winter). This study highlights the high reliability of a single serum PBDE measurement for use in human epidemiologic studies.

  7. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  8. Spino ether and its vortices: leptons and hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, R [College of Engineering, Univ. of Alabama, Alabama (USA)

    1977-03-01

    According to the theory advanced by the author, space is occupied by a spino ether lattice. Where no spino lattice exists, there are black holes. The spino is a kind of massive neutrino with a rest mass of about 7.39x10/sup -47/g and a diameter of 4.56x10/sup -34/cm. The distance between spinos in the spino lattice is about 2x10/sup -10/cm. Spino ether is ubiquitous in all matter, pervades atoms and their nuclei and penetrates matter with no resistance. In fact, hadrons and leptons are shown to be vortices of the spino ether. About one km/sup 3/ of space contains spino ether having a mass equal to 10/sup 80/ baryons, equivalent to the total mass of our universe. If the distances between spinos equaled their diameters, 4.56x10/sup -34/cm instead of 2x10/sup -10/cm, then the diameter of the mass equivalent to our universe would be about 2cm. This is in agreement with the size of the premordial universe, before its explosion, as calculated earlier by other theories. It is conjectured that explosions of energy and mass in space are more frequent on a smaller scale than those in the universe, for example novas, or even on a still smaller scale usually associated with the birth of different nuclei. The abundance of iron in the solar corona, on the surface of Mars, and in the Martin sky appears to be due to hadron formation from space itself.

  9. Percutaneous Dissolution of Gallstones using Methyl Tert-Butyl Ether

    OpenAIRE

    1990-01-01

    Radiolucent cholesterol gallstones can be dissolved rapidly by methyl terc-buryl ether (MTBE) introduced directly into the gallbladder. Percutaneous transhepatic catheter placement is a well established interventional radiology procedure and is the preferred route for MTBE administration. A small number of patients have been treated using nasobiliary placement of a gallbladder catheter. Rapid stirring automatic pump systems allow dissolution of most cholesterol stones, but s...

  10. Extraction separation of lithium isotopes with crown-ethers

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Demin, S.V.; Levkin, A.V.; Zhilov, V.I.; Nikol'skij, S.F.; Knyazev, D.A.

    1990-01-01

    By the method of extraction chromatography lithium isotope separation coefficients are measured during chemical isotope exchange between lithium aquocomplex and its complex in chloroform with crown-ethers: benzo-15-crown-5, 15crown-5, dicyclohexano-18-crown-6 and dibenzo-18-crown-6. Lithium perchlorate and trichloroacetate are the salts extracted. Values of 6 Li/ 7 Li isotope separation are 1.0032-1.020

  11. Patch test with ether extracts in salicaceae allergy

    Directory of Open Access Journals (Sweden)

    Sawhney M

    2002-01-01

    Full Text Available A total of 23 cases suggestive of airborne contact dermatitis were patch tested with ether extracts of flowers and leaves of populus sp. and salix sp. in a study conducted in Ladakh at an altitude of 3445 meters above sea level. Overall positivity was found in 12 (52.17%, with populus sp. alone in 7 (30. 43%, salix sp. alone in 4 17.39% and to both in one (8.33%.

  12. Solution of a gallstone with methyl-tertiary butyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Brambs, H J; Roeren, T; Holstege, A; Raedecke, J

    1987-08-01

    Methyl-t-butyl ether is a new agent to dissolve gallstones. The substance proves to be very successful and acts very rapidly. A percutaneous transhepatic drainage supplies an adequate access route to dissolve calculi within the bile ducts. We report the case of a patient where before insertion of an internal stent a stone in the common bile duct was dissolved within 3 1/2 hours.

  13. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  14. Hydrolysis of strained bridgehead bicyclic vinyl ethers and sulfides

    International Nuclear Information System (INIS)

    Chwang, W.K.; Kresge, A.J.; Wiseman, J.R.

    1979-01-01

    Rates of hydrolysis of the bridgehead bicyclic vinyl ether 9-oxabicyclo[3.3.1]non-1-ene(6) and its vinyl sulfide counterpart 9-thiabicyclo[3.3.1]non-1-ene(7), catalyzed by the hydronium ion, were measured in H 2 O and in D 2 O solution. These data give isotope effects, k/sub H//k/sub D/ = 2.4 and 1.9 respectively, which show that these reactions occur by the normal, rate-determining carbon protonation, mechanism. The vinyl ether 6 is less reactive than its olefin analogue, bicyclo[3.3.1]non-1-ene (relative rate 1:1/1400), as may have been expected for a constrained bicyclic system such as this, where stabilization of the bridgehead carbocation intermediate by conjugation with oxygen is severely impaired. The vinyl sulfide 7, however, is even less reactive than the vinyl ether (relative rates 1:1/140); this is a remarkable result in view of the fact that conjugation between the sulfur atom and the cationic center is presumably also strongly inhibited. 1 figure, 3 tables

  15. Isotopic exchange of cyclic ethers with deuterium over metal catalysts

    International Nuclear Information System (INIS)

    Duchet, J.C.; Cornet, D.

    1976-01-01

    The exchange reaction between deuterium and cyclic ethers (oxolane and α-methyl derivatives) has been investigated using rhodium and palladium catalysts. The first hydrogen undergoing exchange has been found to be located on a β-carbon. This fact, and the poisoning of the exchange of cyclopentane in the presence of ether, suggest that the O atom participates in the exchange mechanism of ethers. It appears, however, that the oxygen--metal bonding occurs only during this simple exchange process; simultaneous adsorption of oxygen and a vicinal carbon causes hydrogenolysis of the O--C bond. In each case multiple exchange is important. In the oxolane molecule two sets of exchangeable hydrogens are distinguished according to their reactivities, as could be expected by analogy with cycloalkanes. However, this distinction is not so clear in the exchange patterns of substituted oxolanes, since intermediate maxima are observed in these cases. It is suggested that the conformational properties of the substituted rings cause a constraint in the formation of 3,4-diadsorbed oxolanes. Thus, multiple exchange, based on α,β-process, and epimerization via the ''roll-over'' mechanism occur preferentially in certain parts of the molecules

  16. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  17. Determination of polybrominated diphenyl ethers in environmental standard reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Heather M.; Schantz, Michele M.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States); Keller, Jennifer M.; Kucklick, John R. [National Institute of Standards and Technology, Analytical Chemistry Division, Hollings Marine Laboratory, Charleston, SC (United States); Leigh, Stefan D. [National Institute of Standards and Technology, Statistical Engineering Division, Gaithersburg, MD (United States)

    2007-04-15

    Standard reference materials (SRMs) are valuable tools in developing and validating analytical methods to improve quality assurance standards. The National Institute of Standards and Technology (NIST) has a long history of providing environmental SRMs with certified concentrations of organic and inorganic contaminants. Here we report on new certified and reference concentrations for 27 polybrominated diphenyl ether (PBDE) congeners in seven different SRMs: cod-liver oil, whale blubber, fish tissue (two materials), mussel tissue and sediment (two materials). PBDEs were measured in these SRMs, with the lowest concentrations measured in mussel tissue (SRM 1974b) and the highest in sediment collected from the New York/New Jersey Waterway (SRM 1944). Comparing the relative PBDE congener concentrations within the samples, we found the biota SRMs contained primarily tetrabrominated and pentabrominated diphenyl ethers, whereas the sediment SRMs contained primarily decabromodiphenyl ether (BDE 209). The cod-liver oil (SRM 1588b) and whale blubber (SRM 1945) materials were also found to contain measurable concentrations of two methoxylated PBDEs (MeO-BDEs). Certified and reference concentrations are reported for 12 PBDE congeners measured in the biota SRMs and reference values are available for two MeO-BDEs. Results from a sediment interlaboratory comparison PBDE exercise are available for the two sediment SRMs (1941b and 1944). (orig.)

  18. Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers

    Directory of Open Access Journals (Sweden)

    Benjamin Weber

    2016-12-01

    Full Text Available Amphiphiles and, in particular, PEGylated lipids or alkyl ethers represent an important class of non-ionic surfactants and have become key ingredients for long-circulating (“stealth” liposomes. While poly-(ethylene glycol (PEG can be considered the gold standard for stealth-like materials, it is known to be neither a bio-based nor biodegradable material. In contrast to PEG, polysarcosine (PSar is based on the endogenous amino acid sarcosine (N-methylated glycine, but has also demonstrated stealth-like properties in vitro, as well as in vivo. In this respect, we report on the synthesis and characterization of polysarcosine based lipids with C14 and C18 hydrocarbon chains and their end group functionalization. Size exclusion chromatography (SEC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS analysis reveals that lipopeptoids with a degree of polymerization between 10 and 100, dispersity indices around 1.1, and the absence of detectable side products are directly accessible by nucleophilic ring opening polymerization (ROP. The values for the critical micelle concentration for these lipopolymers are between 27 and 1181 mg/L for the ones with C18 hydrocarbon chain or even higher for the C14 counterparts. The lipopolypeptoid based micelles have hydrodynamic diameters between 10 and 25 nm, in which the size scales with the length of the PSar block. In addition, C18PSar50 can be incorporated in 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC monolayers up to a polymer content of 3%. Cyclic compression and expansion of the monolayer showed no significant loss of polymer, indicating a stable monolayer. Therefore, lipopolypeptoids can not only be synthesized under living conditions, but my also provide a platform to substitute PEG-based lipopolymers as excipients and/or in lipid formulations.

  19. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  20. Comparison of the crystal structures of the potent anticancer and anti-angiogenic agent regorafenib and its monohydrate.

    Science.gov (United States)

    Sun, Meng Ying; Wu, Su Xiang; Zhou, Xin Bo; Gu, Jian Ming; Hu, Xiu Rong

    2016-04-01

    Regorafenib {systematic name: 4-[4-({[4-chloro-3-(trifluoromethy)phenyl]carbamoyl}amino)-3-fluorophenoxy]-1-methylpyridine-2-carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti-angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt-3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine-2-carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine-2-carboxamide units, due to different rotations around the ether group, as measured by the C-O-C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen-bond networks. Polymorphic form I contains two intermolecular N-H...O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N-H...O and O-H...O hydrogen-bond interactions. Thus, R4(2)(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms.

  1. Anticancer and cytotoxic compounds from seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2009-12-01

    Full Text Available Background: Pre-clinical studies for isolation and purification of marine compounds continued at an active pace since the last decade. Today, more than 60% of the anticancer drugs commercially available are of naturally origin thus the sea is a very favorable bed for the discovery of novel anticancer agents. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed databse to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Anticancer agents were isolated and purified for 8 genera. These compounds had various structures they were polypeptide, polysaccharide, glycoprotein, alkaloid, cerebroside, and cembranoid which had different mechanism of actions including induction of apoptosis, destroying the skeletal structures of the cells, immune bioactivity and inhibition of topoisomerase I. Spisulosine is the only anticancer agent which is currently under clinical trial. Conclusions: Although, the known seashells from the Persian Gulf have potential anticancer and cytotoxic compounds but a very few investigations had been reported. Further investigations for isolation and purification on bioactive compounds from seashells of the Persian Gulf is recommended.

  2. Exploring the influence of culture conditions on kefir's anticancer properties.

    Science.gov (United States)

    Hatmal, Ma'mon M; Nuirat, Abeer; Zihlif, Malek A; Taha, Mutasem O

    2018-05-01

    Cancer is a major health problem in many parts of the world. Conventional anticancer treatments are painful, expensive, and unsafe. Therefore, demand is increasing for cancer treatments preferentially in the form of functional foods or nutritional supplements. Kefir, a traditional fermented milk dairy product, has significant antimutagenic and antitumor properties. This research addresses the hypothesis that kefir's anticancer properties are affected by fermentation conditions. Initially, kefir extracts prepared under standard conditions were screened against 7 cancer cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Colon cancer and chronic myelogenous leukemia cells were found to be most susceptible to kefir extracts. Subsequently, a factorial design was implemented to assess the effects of 3 fermentation times (24, 48, and 72 h), 3 kefir-to-milk ratios (2, 5, and 10% wt/vol), and 3 fermentation temperatures (4, 25, and 40°C) on kefir's anticancer properties. Remarkably, exploration of the fermentation conditions allowed the anticancer properties of kefir to be enhanced by 5- to 8-fold against susceptible cell lines. Overall, these results demonstrate the possibility of optimizing the anticancer properties of kefir as a functional food in cancer therapy. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Anticancer effects of Ganoderma lucidum: a review of scientific evidence.

    Science.gov (United States)

    Yuen, John W M; Gohel, Mayur Danny I

    2005-01-01

    "Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available.

  4. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  5. Pharmacogenetics of lipid diseases

    Directory of Open Access Journals (Sweden)

    Ordovas Jose M

    2004-01-01

    Full Text Available Abstract The genetic basis for most of the rare lipid monogenic disorders have been elucidated, but the challenge remains in determining the combination of genes that contribute to the genetic variability in lipid levels in the general population; this has been estimated to be in the range of 40-60 per cent of the total variability. Therefore, the effect of common polymorphisms on lipid phenotypes will be greatly modulated by gene-gene and gene-environment interactions. This approach can also be used to characterise the individuality of the response to lipid-lowering therapies, whether using drugs (pharmacogenetics or dietary interventions (nutrigenetics. In this regard, multiple studies have already described significant interactions between candidate genes for lipid and drug metabolism that modulate therapeutic response--although the outcomes of these studies have been controversial and call for more rigorous experimental design and analytical approaches. Once solid evidence about the predictive value of genetic panels is obtained, risk and therapeutic algorithms can begin to be generated that should provide an accurate measure of genetic predisposition, as well as targeted behavioural modifications or drugs of choice and personalised dosages of these drugs.

  6. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  7. Poly (ether ether ketone) membranes for fuel cells; Membranas de poli (eter eter cetona) sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D., E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Hui, Wang S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Oliveira, Vivianna S. de [Escola Tecnica Rezende-Rammel, Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  8. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  9. Sulfonated Poly(Ether Ether Ketone)/Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications

    International Nuclear Information System (INIS)

    Jia, Chuankun; Cheng, Yuanhang; Ling, Xiao; Wei, Guanjie; Liu, Jianguo; Yan, Chuanwei

    2015-01-01

    A novel sulfonated poly(ether ether ketone) (SPEEK) membrane embedded with the short-carboxylic multi-walled carbon nanotube (we name it as SPEEK/SCCT membrane) for vanadium redox flow battery (VRB) has been prepared with low capacity loss, low cost and high energy efficiency. The mechanical strength, vanadium ions permeability and performance of the membrane in the VRB single cell were characterized. Results showed that the SPEEK/SCCT membrane possessed low permeability of vanadium ions, accompanied by higher mechanical strength than the Nafion 212 membrane. The VRB single cell with SPEEK/SCCT membrane showed 7% higher coulombic efficiency (CE), 6% higher energy efficiency (EE) but lower capacity loss in comparison with the one with Nafion 212. The good cell performance, low capacity loss and high vanadium ions barrier properties of the blend membrane is of significant interest for VRB applications

  10. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.

    Science.gov (United States)

    Todor, I N; Lukyanova, N Yu; Chekhun, V F

    2012-07-01

    To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.

  11. Skin secretion of Siphonops paulensis (Gymnophiona, Amphibia forms voltage-dependent ionic channels in lipid membranes

    Directory of Open Access Journals (Sweden)

    E.F. Schwartz

    2003-09-01

    Full Text Available The effect of the skin secretion of the amphibian Siphonops paulensis was investigated by monitoring the changes in conductance of an artificial planar lipid bilayer. Skin secretion was obtained by exposure of the animals to ether-saturated air, and then rinsing the animals with distilled water. Artificial lipid bilayers were obtained by spreading a solution of azolectin over an aperture of a Delrin cup inserted into a cut-away polyvinyl chloride block. In 9 of 12 experiments, the addition of the skin secretion to lipid bilayers displayed voltage-dependent channels with average unitary conductance of 258 ± 41.67 pS, rather than nonspecific changes in bilayer conductance. These channels were not sensitive to 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid or tetraethylammonium ion, but the experimental protocol used does not permit us to specify their characteristics.

  12. A Review on Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in South Asia with a Focus on Malaysia.

    Science.gov (United States)

    Kaw, Han Yeong; Kannan, Narayanan

    Malaysia is a developing country in Southeast Asia, with rapid industrial and economic growth. Speedy population growth and aggressive consumerism in the past five decades have resulted in environmental pollution issues, including products containing polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). PCBs and PBDEs are classified as persistent organic pollutants (POPs) by the Stockholm Convention due to their persistence, bioaccumulation in the environment and toxicity to humans and wildlife. These compounds are known to cause liver dysfunction, thyroid toxicity, developmental neuro-toxicity and possibly cancer. PCBs in air, mussels, pellets, seawater, fresh water, and human breast milk samples were analyzed in Malaysia, while studies on the pollution level of PBDEs in Malaysia were conducted on mussels, soils, leachate and sediment samples. PCBs in breast milk collected from Malaysia was the highest among Asian developing countries, with mean concentration of 80 ng/g lipid weight. On the other hand, the mean concentration of PCBs in mussels collected from Malaysia recorded the second lowest, with 56 ng/g and 89 ng/g lipid weight in two studies respectively. The concentrations of PBDEs in mussels taken from Malaysia fall in the range of 0.84-16 ng/g lipid weight, which is considerably low compared to 104.5 ng/g lipid weight in Philippines and 90.59 ng/g in Korea. Nevertheless, there are limited studies on these compounds in Malaysia, particularly there is no research on PBDEs in breast milk and sediment samples. This review will summarize the contamination levels of PCBs and PBDEs in different samples collected from Asian countries since 1988 until 2010 with a focus on Malaysia and will provide needed information for further research in this field.

  13. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed

    2015-06-01

    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  14. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  15. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  16. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  17. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-01

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  18. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  19. Lipid management in ramadan.

    Science.gov (United States)

    Slim, Ines; Ach, Koussay; Chaieb, Larbi

    2015-05-01

    During Ramadan fast, Muslims must refrain from smoking, eating, drinking, having sexual activity, and consuming oral medications from sunrise to sunset. It has been previously shown that Ramadan fasting induces favourable changes on metabolic parameters, reduces oxidative stress and inflammation and promotes cardiovascular benefits. Although ill people are exempted from fasting, most patients with chronic diseases are keen on performing this Islamic-ritual. During recent years, Risk stratification and treatment adjustment during Ramadan are well known and structured in several guidelines for patients with diabetes mellitus. Data related to the effect of Ramadan fast on lipid profiles are less known and several controversies have been reported. Here, we focus on lipid profile and lipid management during Ramadan taking into account comorbidities and cardiovascular risk.

  20. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  1. The breakdown of vinyl ethers as a two-center synchronous reaction

    Science.gov (United States)

    Pokidova, T. S.; Shestakov, A. F.

    2009-11-01

    The experimental data on the molecular decomposition of vinyl ethers of various structures to alkanes and the corresponding aldehydes or ketones in the gas phase were analyzed using the method of intersecting parabolas. The enthalpies and kinetic parameters of decomposition were calculated for 17 reactions. The breakdown of ethers is a two-center concerted reaction characterized by a very high classical potential barrier to the thermally neutral reaction (180-190 kJ/mol). The kinetic parameters (activation energies and rate constants) of back reactions of the formation of vinyl ethers in the addition of aldehydes or ketones to alkanes were calculated using the method of intersecting parabolas. The factors that influenced the activation energy of the decomposition and formation of ethers were discussed. Quantum-chemical calculations of several vinyl ether decomposition reactions were performed. Ether formation reactions were compared with the formation of unsaturated alcohols as competitive reactions, which can occur in the interaction of carbonyl compounds with alkenes.

  2. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines.

    Science.gov (United States)

    Doktorovova, Slavomira; Souto, Eliana B; Silva, Amélia M

    2018-01-01

    Curcumin, a phenolic compound from turmeric rhizome (Curcuma longa), has many interesting pharmacological effects, but shows very low aqueous solubility. Consequently, several drug delivery systems based on polymeric and lipid raw materials have been proposed to increase its bioavailability. Solid lipid nanoparticles (SLN), consisting of solid lipid matrix and a surfactant layer can load poorly water-soluble drugs, such as curcumin, deliver them at defined rates and enhance their intracellular uptake. In the present work, we demonstrate that, despite the drug's affinity to lipids frequently used in SLN production, the curcumin amount loaded in most SLN formulations may be too low to exhibit anticancer properties. The predictive curcumin solubility in solid lipids has been thoroughly analyzed by Hansen solubility parameters, in parallel with the lipid-screening solubility tests for a range of selected lipids. We identified the most suitable lipid materials for curcumin-loaded SLN, producing physicochemically stable particles with high encapsulation efficiency (>90%). Loading capacity of curcumin in SLN allowed preventing the cellular damage caused by cationic SLN on MCF-7 and BT-474 cells but was not sufficient to exhibit drug's anticancer properties. But curcumin-loaded SLN exhibited antioxidant properties, substantiating the conclusions that curcumin's effect in cancer cells is highly dose dependent.

  3. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  5. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York.

    Science.gov (United States)

    Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Rapaport, David P; Rodan, Bruce D

    2005-07-15

    Human adipose tissue samples (n=52) collected in New York City during 2003-2004 were analyzed for the presence of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). Concentrations of PBDEs in adipose tissues ranged from 17 to 9630 ng/g, lipid wt (median: 77; mean: 399 ng/g, lipid wt; sum all di- through hexaBDE congeners). Average PBDE concentrations in human adipose tissues from New York City were 10- to 100-times greater than those reported for European countries. A concentration of 9630 ng/g, lipid wt, found in a sample of adipose tissue, is one of the highest concentrations reported to date. PBDE 47 (2,2',4,4'-tetraBDE) was the major congener detected in human tissues, followed by PBDE congeners #99 (2,2',4,4',5-penta BDE), 100 (2,2',4,4',6-pentaBDE), and 153 (2,2',4,4',5,5'-hexaBDE). A few individuals contained PBDE 153 as the predominant congener in total PBDE concentrations, suggesting alternative exposure sources, possibly occupational. Principal component analysis of PBDE congener composition in human adipose tissues revealed the presence of five clusters, each characterized by varying composition. No significant difference was found in the concentrations of PBDEs between gender. Concentrations of PBDEs were, on average, similar to those for PCBs in human adipose tissues, and substantially higher when PBDE outliers were retained. PBDE and PCB concentrations were not correlated. PBDE concentrations did not increase with increasing age of the subjects, whereas concentrations of PCBs increased with increasing age in males but not in females in this study. These results suggest differences between PBDEs and PCBs in their sources or time course of exposure and disposition. The presence of comparable or greater concentrations of PBDEs, relative to PCBs, highlights the importance of recentvoluntary and regulatory effortsto cease production of commercial penta- and octa-BDE in North America, although these efforts do not address

  6. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  7. Gold-catalyzed alkylation of silyl enol ethers with ortho-alkynylbenzoic acid esters

    Directory of Open Access Journals (Sweden)

    Yoshinori Yamamoto

    2011-05-01

    Full Text Available Unprecedented alkylation of silyl enol ethers has been developed by the use of ortho-alkynylbenzoic acid alkyl esters as alkylating agents in the presence of a gold catalyst. The reaction probably proceeds through the gold-induced in situ construction of leaving groups and subsequent nucleophilic attack on the silyl enol ethers. The generated leaving compound abstracts a proton to regenerate the silyl enol ether structure.

  8. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  9. Interpolymer complexses of vinyl ether copolymer with polyacrylic and polymethacrylic acids

    Directory of Open Access Journals (Sweden)

    E. Shaikhutdinov

    2012-03-01

    Full Text Available The interactions between macromolecules of copolymers based on vinyl ethers (vinyl ether of monoethanolamine and vinyl buthyl ether and 2-acryloilamido-2-methylpropanesulphonic acid with polyacrylic and polymethacrylic acid and, as well as study the effect of interpolymer interactions in the adsorption of polymers at the aqueous solution-air interface were investigated. The observed synergistic increase in surface activity of macromolecules into polyelectrolyte mixtures explained by the formation of interpolymer complexes polyacid - copolymer.

  10. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S. (Keio Univ., Tokyo (Japan). School of Medicine)

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  11. Studies on anticancer activities of lactoferrin and lactoferricin.

    Science.gov (United States)

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  12. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  13. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-02-01

    Full Text Available A total of forty novel glycyrrhetinic acid (GA derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231 in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively and merits further exploration as a new anticancer agent.

  14. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S [Keio Univ., Tokyo (Japan). School of Medicine

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  15. Synthesis of Poly(vinyl ether) Thermoplastic Elastomers Having Functional Soft Segments

    OpenAIRE

    今枝, 嗣人; 漆崎, 美智遠; 阪口, 壽一; 橋本, 保; Tsuguto, IMAEDA; Michio, URUSHISAKI; Toshikazu, SAKAGUCHI; Tamotsu, HASHIMOTO

    2013-01-01

    The ABA-type triblock copolymers consisting of poly(2-adarnantyl vinyl ether) [poly(2-AdVE) as outer hard segments and poly(6-acetoxyhexyl vinyl ether) [poly(AcHVE)] poly(6-hydroxyhexyl vinyl ether) [poly(H HVE)], or poly(2-(2-methoxyethoxy)ethyl vinyl ether [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxy, and oxyethylene units in their soft segments, the two polymer seg...

  16. AIRBORNE POLYBROMINATED DIPHENYL ETHERS IN A COMPUTER CLASSROOM OF COLLEGE IN TAIWAN

    Directory of Open Access Journals (Sweden)

    F. H. Chang ، C. R. Yang ، C. Y. Tsai ، W. C. Lin

    2009-04-01

    Full Text Available This study characterized the airborne exposure of students to thirty polybrominated diphenyl ether congeners inside and outside a computer classroom in a southern Taiwan college. Arithmetic mean values of total indoor and outdoor polybrominated diphenyl ether concentrations were 125.0 pg/m3 (89.8 to 203.9 pg/m3 and 110.3 pg/m3 (83.5 to 157.0 pg/m3, respectively. Total indoor polybrominated diphenyl ether concentrations were one order of magnitude lower than those detected in homes in Birmingham, United Kingdom and in Ottawa, Canada but were several times higher than those measured in the ambient air in Ottawa, Canada and from the Bohai Sea to the Arctic. The five highest indoor concentrations of polybrominated diphenyl ether congeners were decabromodiphenyl ether (23.0 pg/m3, 4,4’-dibromodiphenyl ether (15.9 pg/m3, 2,2’,3,4,4’,5,5’,6-octabromodiphenyl ether (10.6 pg/m3, 2,4-dibromodiphenyl ether (10.3 pg/m3 and 2,2’,3,4,4’,5’,6-heptabromodiphenyl ether (10.0 pg/m3. Although indoor and outdoor total polybrominated diphenyl ether concentrations did not significantly differ, the indoor concentrations of 2,4-dibromodiphenyl ether, 2,2’,4-tribromodiphenyl ether, 2,4,4’-tribromodiphenyl ether, 2,2’,4,5’-tetrabromodiphenyl ether and 2,3’,4’,6-tetrabromodiphenyl ether were significantly higher than their outdoor concentrations. This study suggests the following measures: 1 to increase the air exchange rate and open classroom doors and windows for several minutes before classes to reduce indoor PBDE concentrations; 2 to reduce polybrominated diphenyl ether emissions from new devices, it’s better to use computer-related products that meet the Restriction of Hazardous Substances Directive adopted by the European Union.

  17. Lipid storage myopathies.

    Science.gov (United States)

    Bruno, Claudio; Dimauro, Salvatore

    2008-10-01

    The aim of this review is to provide an update on disorders of lipid metabolism affecting skeletal muscle exclusively or predominantly and to summarize recent clinical, genetic, and therapeutic studies in this field. Over the past 5 years, new clinical phenotypes and genetic loci have been described, unusual pathogenic mechanisms have been elucidated, and novel pharmacological approaches have been developed. At least one genetic defect responsible for the myopathic form of CoQ10 deficiency has been identified, causing a disorder that is allelic with the late-onset riboflavine-responsive form of multiple acyl-coenzyme A dehydrogenation deficiency. Novel mechanisms involved in the lipolytic breakdown of cellular lipid depots have been described and have led to the identification of genes and mutations responsible for multisystemic neutral lipid storage disorders, characterized by accumulation of triglyceride in multiple tissues, including muscle. Defects in lipid metabolism can affect either the mitochondrial transport and oxidation of exogenous fatty acid or the catabolism of endogenous triglycerides. These disorders impair energy production and almost invariably involve skeletal muscle, causing progressive myopathy with muscle weakness, or recurrent acute episodes of rhabdomyolysis triggered by exercise, fasting, or infections. Clinical and genetic characterization of these disorders has important implications both for accurate diagnostic approach and for development of therapeutic strategies.

  18. Lipids in airway secretions

    International Nuclear Information System (INIS)

    Bhaskar, K.R.; DeFeudis O'Sullivan, D.; Opaskar-Hincman, H.; Reid, L.M.

    1987-01-01

    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO 2 , (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors 14 C acetate and 14 C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway. (author)

  19. Exogenous lipid pneumonia

    International Nuclear Information System (INIS)

    Bernasconi, A.; Gavelli, G.; Zompatori, M.; Galleri, C.; Zanasi, A.; Fabbri, M.; Bazzocchi, F.

    1988-01-01

    Exogenous lipid pneumonia (ELP) is caused by the aspiration of animal, vegetal or, more often, mineral oils. Even though it may also be acute, ELP is most frequently a chronic disease, affecting people with predisposing factors, such as neuromuscular disorders, structural abnormalities and so on; very often exogenous lipid pneumonia is found in tracheotomized patients. The pathology of lipid pneumonia is a chronic inflammatory process evolving in foreign-body-like reaction, and eventually in ''end-stage lung'' condition. Clinically, most patients are asymptomatic; few cases only present with cough, dyspnea and chest pain. Eight cases of ELP, studied over the past 3 years, are described in this paper. All the patients were examined by chest radiographs and standard tomograms; 3 patients underwent CT. X-ray features were mono/bilateral consolidation of the lower zones, with air bronchogram and variable reduction in volume. CT density was not specific for fat tissue. In all cases the diagnosis was confirmed at biopsy. In 5 patients, followed for at least one year, clinical-radiological features showed no change. Thus, complications of ELP (especially malignant evolution) could be excluded. The authors conclude that lipid pneumonia must be considered in differential diagnosis of patients with history of usage of oils and compatible X-ray findings. The usefulness of an accurate follow-up is stressed

  20. Lipid Therapy for Intoxications

    NARCIS (Netherlands)

    Robben, Joris Henricus; Dijkman, Marieke Annet

    This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of

  1. Lipid Therapy for Intoxications

    NARCIS (Netherlands)

    Robben, Joris Henricus; Dijkman, Marieke Annet

    2017-01-01

    This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of

  2. Synthesis of alkyl-ether glycerophospholipids in rat glomerular mesangial cells: evidence for alkyldihydroxyacetone phosphate synthase activity

    International Nuclear Information System (INIS)

    Zanglis, A.; Lianos, E.A.

    1987-01-01

    We studied the ability of rat glomerular mesangial cells and their microsomal fractions to incorporate 1-[ 14 C]hexadecanol to glycerophospholipids via an O-alkyl ether linkage and assessed the presence and activity of the required enzyme: alkyl-dihydroxy acetone phosphate synthase. Suspensions of cultured mesangial cells incorporated 1-[ 14 C]hexadecanol to the phosphatidyl ethanolamine and phosphatidyl choline lipid pools, via a bond resistant to acid and base hydrolysis. When cell homogenates or microsomal fractions were incubated with palmitoyl-DHAP and 1-[ 14 C]hexadecanol, alkyl-DHAP and 1-O-alkyl glycerol were formed (alkyl:hexadecyl). The activity of the enzyme responsible for the O-alkyl product formation was calculated to be 2.5 +/- 0.3 and 544 +/- 50 pmoles/min/mg protein for mesangial cell homogenates and mesangial cell microsomes, respectively. These observations provide evidence that mesangial cells may elaborate either linked lipid precursors de novo for the biosynthesis of O-alkyl glycerophospholipids

  3. Big, Fat World of Lipids

    Science.gov (United States)

    ... offered a more quantitative and systematic approach to lipids research. Much of the effort has been led by a research consortium called LIPID MAPS. With funding from the National Institutes of ...

  4. Amphotericin B Lipid Complex Injection

    Science.gov (United States)

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did ... respond or are unable to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in ...

  5. [Early contributions from Erlangen to the theory and practice of ether and chloroform anesthesia. 1. Heyfelder's clinical trial with ether and chloroform].

    Science.gov (United States)

    Hintzenstern, U v; Schwarz, W

    1996-02-01

    The era of modern anaesthesia in Germany began on January 24th, 1847. This day, professor in ordinary Johann Ferdinand Heyfelder anaesthetized a patient with sulphuric ether in the clinic of surgery and ophthalmology of the University of Erlangen. By March 17th, 1847, Heyfelder had performed 121 surgical procedures under ether. The operations in majority were teeth-extractions, and a few more complex operations such as the treatment of a harelip or of lip cancer or the resection of the shoulder joint. Heyfelder described in detail 108 of these inhalations in a little book entitled The experiments with sulphuric ether. This monograph published in March, 1847, represents one of the first complete dissertations on sulphuric ether in the German literature. In a special chapter he analyzed the development of various physiological and psychological parameters during etherization. Heyfelder also examined blood and urine of some etherized patients and reported that he did not find any important or specific alterations. In 1847, Heyfelder was probably the first to apply salt-ether in man. After 4 administrations he concluded that salt ether acted more quickly but shorter than sulphuric ether. Advantageous were its application without problems and ease of induction. Disadvantageous were its high volatility, its price and the difficulty of getting it in a pure form. From December, 1847, on Heyfelder started to use chloroform. He was now able to perform more major operations, for example, the total resection of the hip-joint. In his book The experiments with sulphuric ether, salt ether, and chloroform he describes a great number of anaesthetic administrations using these 3 agents. In his summary Heyfelder concluded, that chloroform was undoubtly superior to sulphuric ether mainly because it was a quicker acting and longer lasting agent and leads to deeper narcosis. Moreover its application was much easier for it needed no special apparatus. However, because of its great

  6. Green mechanochemical oxidative decomposition of powdery decabromodiphenyl ether with persulfate

    International Nuclear Information System (INIS)

    Huang, Aizhen; Zhang, Zhimin; Wang, Nan; Zhu, Lihua; Zou, Jing

    2016-01-01

    Highlights: • MC process greatly enhanced the decomposition of PS into reactive sulfate radicals. • The mechanochemical (MC) activation of persulfate was applied to degrade BDE209. • This method could achieve a rapid and complete debromination and mineralization of BDE209. • No toxic low brominated polybrominated diphenyl ethers were produced and accumulated. • Sulfate radicals were the main oxidizing species for the decomposition of BDE209. - Abstract: A method was developed for efficiently degrading powdery decabromodiphenyl ether (BDE209) by using mechanochemical (MC) activation of persulfate (PS). Characteristic Raman spectra of BDE209 corresponding to C−Br and C−O bonds were decreased in intensity and finally disappeared as the MC reaction proceeded. The BDE209 removal was influenced by the molar ratio of PS to BDE209, the mass ratio of milling ball to reaction mixtures, the ball size, and the ball rotation speed. Under optimal conditions, the new method could achieve a complete degradation, debromination and mineralization of BDE209 within 3 h of milling. However, the degradation removal (or debromination efficiency) was decreased to only 51.7% (15.6%) and 67.8% (31.5%) for the use of CaO and peroxymonosulfate, respectively. The analyses of products demonstrated that once the degradation was initiated, BDE209 molecules were deeply debrominated and fully mineralized in the MC-PS system. The strong oxidizing ability of this system was due to the reactive sulfate radicals generated from the MC-enhanced activation of PS, which was confirmed with electron spin resonance spectroscopy. Because no toxic low brominated polybrominated diphenyl ethers were accumulated as byproducts, the proposed MC oxidative degradation method will have promising applications in the treatment of solid BDE209 at high concentrations.

  7. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    International Nuclear Information System (INIS)

    Shih, Yang-hsin; Chou, Hsi-Ling; Peng, Yu-Huei

    2012-01-01

    Highlights: ► BDE-3 was degraded with two anaerobes in different rates. ► Glucose addition augment the debromination efficiencies. ► Hydrogen gas was detected and relative microbes were identified. ► Extra-carbon source enhanced degradation partial due to H 2 -generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H 2 gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  8. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  9. Polybrominated diphenyl ether flame retardants in Virginia freshwater fishes (USA).

    Science.gov (United States)

    Hale, R C; La Guardia, M J; Harvey, E P; Mainor, T M; Duff, W H; Gaylor, M O

    2001-12-01

    Polybrominated diphenyl ethers (PBDEs) were examined in fish fillets collected from two large Virginia watersheds. Emphasis was on the tetra- to hexabrominated congeners since these exhibit the greatest bioaccumulation and toxicological potentials. These congeners are dominant constituents of Penta-, a commercial PBDE product used to flame retard polyurethane foam. In 1999, North America accounted for98% of global Penta-demand. Concentrations of total tetra- to hexabrominated congeners in fillets ranged from furniture and textile manufacturing, although polyurethane foam production here has been limited.

  10. Performance of long straw tubes using dimethyl ether

    International Nuclear Information System (INIS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Guaraldo, C.; Lanaro, A.; Lucherini, V.; Mecozzi, A.; Passamonti, L.; Russo, V.; Sarwar, S.

    1995-01-01

    A cylindrical tracking detector with an inner radius of one meter employing straw tubes is being envisaged for the FINUDA experiment aimed at hyper-nuclear physics at DAΦNE, the Frascati φ-factory. A prototype using several 10 mm and 20 mm diameter, two meter long aluminized mylar straws has been assembled and tested with a one GeV/c pion beam. While operating with dimethyl ether, gas gain, space resolution, and device systematics have been studied. A simple method of correction for systematics due to straw eccentricity has been developed and, once applied, a space resolution better than 40 μm can be reached. (orig.)

  11. Radiochemical determination of 210Pb using crown ether

    International Nuclear Information System (INIS)

    Vajda, N.; Bodizs, D.; Vodicska, M.

    1994-01-01

    Gamma spectrometric determination of 210 Pb following chemical separation has been performed very precisely and with high sensitivity, due to the low and constant self-absorption of the chemically pure sample. A simple and quick method for the chemical separation of lead using crown ether has been developed. Its four steps are described in detail. The new method was verified using phosphate ore and gypsum samples that were measured in an interlaboratory comparison and with a standard reference material. This method can also be used for self-absorption correction in direct gamma spectrometry of 210 Pb. (N.T.) 4 refs.; 2 figs.; 2 tabs

  12. Total syntheses of naturally occurring diacetylenic spiroacetal enol ethers.

    Science.gov (United States)

    Miyakoshi, Naoki; Aburano, Daisuke; Mukai, Chisato

    2005-07-22

    A highly stereoselective method for constructing a (2E)-methoxymethylidene-1,6-dioxaspiro[4.5]decane skeleton has been developed on the basis of the palladium(II)-catalyzed ring-closing reaction of the 3,4-dioxygenated-9-hydroxy-1-nonyn-5-one derivatives as a crucial step. The newly developed procedures could be successfully applied to the first total synthesis of five diacetylenic spiroacetal enol ether natural products starting from commercially available (R,R)- or (S,S)-diethyl tartrate.

  13. Antithrombotic/anticoagulant and anticancer activities of selected ...

    African Journals Online (AJOL)

    Antithrombotic/anticoagulant and anticancer activities of selected medicinal plants from South Africa. NLA Kee, N Mnonopi, H Davids, RJ Naudé, CL Frost. Abstract. Nine plants available in the Eastern Cape Province of South Africa were tested for antithrombotic and/or anticoagulant activity. Organic (methanol) and aqueous ...

  14. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  15. Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L.-F.; Ralph, S.J.; Neužil, Jiří

    2011-01-01

    Roč. 15, č. 12 (2011), s. 2951-2974 ISSN 1523-0864 R&D Projects: GA AV ČR(CZ) KAN200520703 Institutional research plan: CEZ:AV0Z50520701 Keywords : Targets for anticancer drugs * mitochondrial electron transport chain * mitocans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.456, year: 2011

  16. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of Toona sinensis (TS). Methods: Acetone leaf extract of TS was screened for total phenolic and flavanoid contents, and the flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant ...

  17. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.524, year: 2013

  18. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    Science.gov (United States)

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  19. Natural flora and anticancer regime: milestones and roadmap.

    Science.gov (United States)

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  20. Anticancer Activity of Extracts from some Endemic Tanzanian Plants ...

    African Journals Online (AJOL)

    Of the 52 extracts from 26 plants of different families tested, 5 demonstrated potential activity on the cells. Extract X13 had an exceptionally high activity on both cell lines while extract X29 was highly active on HeLa cells. Fractionation and isolation of constituents from the extracts that have shown anticancer activity in these ...

  1. Synthesis and anticancer evaluation of (-1)- aretigenin derivatives

    International Nuclear Information System (INIS)

    Xu, Y.; Chen, G.

    2014-01-01

    Seven (-)-arctigenin derivatives 1-7 were designed and synthesized by using Mannich and acylation methods to improve the activity and bioavailability of (-)-arctigenin. Structures of compounds 1-7 were elucidated on the basis of spectroscopic analysis and chemical evidence. Anticancer activity of these compounds on SGC7901 was assayed in vitro. (author)

  2. Synthesis and anticancer evaluation of (-1)- aretigenin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Chen, G. [Liaoning Univ. of Traditional Chinese Medicine, Dalian (China)

    2014-10-15

    Seven (-)-arctigenin derivatives 1-7 were designed and synthesized by using Mannich and acylation methods to improve the activity and bioavailability of (-)-arctigenin. Structures of compounds 1-7 were elucidated on the basis of spectroscopic analysis and chemical evidence. Anticancer activity of these compounds on SGC7901 was assayed in vitro. (author)

  3. Sphingolipid metabolism enzymes as targets for anticancer therapy

    NARCIS (Netherlands)

    Kok, JW; Sietsma, H

    Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumour cells. Unfortunately, tumour cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics.

  4. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.524, year: 2013

  5. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in ... of linalool on cell morphology and apoptotic body formation in DU145 cells ... It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent ...

  6. Identification of novel anticancer terpenoids from Prosopis juliflora ...

    African Journals Online (AJOL)

    Purpose: To identify a novel source of terpenoid anticancer compounds from P. juliflora (Sw.) DC. (Leguminosae) pods as a medicinal substitute for cancer medicines. Methods: The pods were collected, dried and pulverized. The ethanol extract was prepared by maceration. Various phyto-constituents were detected in the ...

  7. Preclinical and clinical pharmacology of oral anticancer drugs

    NARCIS (Netherlands)

    Oostendorp, R.L.

    2009-01-01

    Nowadays, more than 25% of all anticancer drugs are developed as oral formulations. Oral administration of drugs has several advantages over intravenous (i.v.) administration. It will on average be more convenient for patients, because they can take oral medication themselves, there is no need for

  8. Studies of anticancer and antipyretic activity of Bidens pilosa whole ...

    African Journals Online (AJOL)

    . (Asteraceae) has been conducted using the in – vitro comet assay for anticancer and the antipyretic action, which was done with in – vivo models. The extract from whole plant was extracted with n – hexane, chloroform and methanol extract ...

  9. Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.

    Science.gov (United States)

    Jiang, Huidi; Xuan, Guida

    2003-09-01

    The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.

  10. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  11. Observation and Analysis of Anti-cancer Drug Use and Dose ...

    African Journals Online (AJOL)

    As all anti-cancer drugs are of narrow therapeutic window so dose individualization is required to be done. A study was conducted to check the use of anti-cancer drugs in the local anti-cancer facility of Bahawalpur i.e. Bahawalpur Institute of Nuclear Medicine and Oncology (BINO). In this study, the dose individualization ...

  12. Liposomal solubilization of new 3-hydroxy-quinolinone derivatives with promising anticancer activity: a screening method to identify maximum incorporation capacity

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Styskala, Jakub; Hlaváč, Jan

    2011-01-01

    Four new 3-hydroxy-quinolinone derivatives with promising anticancer activity could be solubilized using liposomes as vehicle to an extent that allows their in vitro and in vivo testing without use of toxic solvent(s). A screening method to identify the maximum incorporation capacity of hydrophobic......, resulting in a 200-500-fold increase in apparent solubility. Drug-to-lipid ratios in the range of 2-5 µg/mg were obtained. Interestingly, the four quinolinone derivatives have shown different association tendencies with liposomes, probably due to the physicochemical properties of the different group bonded...

  13. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  14. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  15. Determination of total lipids and characterization of marigold flower extracts (Calendula officinalis

    Directory of Open Access Journals (Sweden)

    Novković Vesna M.

    2005-01-01

    Full Text Available Bioactive extracts from marigold flower are important ingredients for parapharmaceutical and cosmetic preparations. Their antiflogistic holeretic.antimicrobic, antidermatic and anticancer effects are due to the presence of flavonoids, carotenoids, etheric oils, and terpenoids. This study presents the results of spectrophotometric investigation for the overall carotene content calculated as (3-caroten (442 nm, visual and physico-chemical characteristics according to Ph.Jug. V in oil extracts of marigold flower obtained by maceration (room temperature and 70°C and percolation (room temperature with olive oil and sunflower oil by original procedures.The largest content of (3-carotene (57.5 mg/kg of oil extracts is in the oil extract obtained by maceration for 72 hours with olive oil (solvomodulus 1:5 m/m at room temperature.

  16. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  17. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  18. Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián César

    2018-04-01

    Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.

  19. Developmental toxicity of diphenyl ether herbicides in nestling American kestrels.

    Science.gov (United States)

    Hoffman, D J; Spann, J W; LeCaptain, L J; Bunck, C M; Rattner, B A

    1991-11-01

    Beginning the day after hatching, American kestrel (Falco sparverius) nestlings were orally dosed for 10 consecutive days with 5 microliters/g of corn oil (controls) or one of the diphenyl ether herbicides (nitrofen, bifenox, or oxyfluorfen) at concentrations of 10, 50, 250, or 500 mg/kg in corn oil. At 500 mg/kg, nitrofen resulted in complete nestling mortality, bifenox in high (66%) mortality, and oxyfluorfen in no mortality. Nitrofen at 250 mg/kg reduced nestling growth as reflected by decreased body weight, crown-rump length, and bone lengths including humerus, radius-ulna, femur, and tibiotarsus. Bifenox at 250 mg/kg had less effect on growth than nitrofen, but crown-rump, humerus, radius-ulna, and femur were significantly shorter than controls. Liver weight as a percent of body weight increased with 50 and 250 mg/kg nitrofen. Other manifestations of impending hepatotoxicity following nitrofen ingestion included increased hepatic GSH peroxidase activity in all nitrofen-treated groups, and increased plasma enzyme activities for ALT, AST, and LDH-L in the 250-mg/kg group. Bifenox ingestion resulted in increased hepatic GSH peroxidase activity in the 50- and 250-mg/kg groups. Nitrofen exposure also resulted in an increase in total plasma thyroxine (T4) concentration. These findings suggest that altricial nestlings are more sensitive to diphenyl ether herbicides than young or adult birds of precocial species.

  20. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  1. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  2. Mechanical properties and chemical stability of pivalolactone-based poly(ether ester)s

    NARCIS (Netherlands)

    Tijsma, E.J.; Tijsma, E.J.; van der Does, L.; Bantjes, A.; Bantjes, A.; Vulic, I.

    1994-01-01

    The processing, mechanical and chemical properties of poly(ether ester)s, prepared from pivalolactone (PVL), 1,4-butanediol (4G) and dimethyl terephthalate (DMT), were studied. The poly(ether ester)s could easily be processed by injection moulding, owing to their favourable rheological and thermal

  3. A highly sensitive and selective dimethyl ether sensor based on cataluminescence.

    Science.gov (United States)

    Zhang, Runkun; Cao, Xiaoan; Liu, Yonghui; Peng, Yan

    2010-07-15

    A sensor for detecting dimethyl ether was designed based on the cataluminescence phenomenon when dimethyl ether vapors were passing through the surface of the ceramic heater. The proposed sensor showed high sensitivity and selectivity to dimethyl ether at an optimal temperature of 279 degrees C. Quantitative analysis were performed at a wavelength of 425 nm, the flow rate of carrier air is around 300 mL/min. The linear range of the cataluminescence intensity versus concentration of dimethyl ether is 100-6.0x10(3) ppm with a detection limit of 80 ppm. The sensor response time is 2.5 s. Under the optimized conditions, none or only very low levels of interference were observed while the foreign substances such as benzene, formaldehyde, ammonia, methanol, ethanol, acetaldehyde, acetic acid, acrolein, isopropyl ether, ethyl acetate, glycol ether and 2-methoxyethanol were passing through the sensor. Since the sensor does not need to prepare and fix up the granular catalyst, the simple technology reduces cost, improves stability and extends life span. The method can be applied to facilitate detection of dimethyl ether in the air. The possible mechanism of cataluminescence from the oxidation of dimethyl ether on the surface of ceramic heater was discussed based on the reaction products. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Direct dimethyl ether fueling of a high temperature polymer fuel cell

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vassiliev, Anton; Olsen, M.I.

    2012-01-01

    Direct dimethyl ether (DME) fuel cells suffer from poor DME–water miscibility and so far peak powers of only 20–40 mW cm−2 have been reported. Based on available literature on solubility of dimethyl ether (DME) in water at ambient pressure it was estimated that the maximum concentration of DME at...

  5. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  6. Synthesis of Novel Bibrachial Lariat Ethers (BiBLEs) Containing [1,2 ...

    African Journals Online (AJOL)

    NICO

    A practical and regioselective method for the synthesis of cis-diastereomers of bibrachial lariat ethers (BiBLEs) bearing ester and amide groups is reported. The novel bibrachial lariat ethers (BiBLEs) 3a–d with neutral side chains were prepared by reaction of the corresponding aza-crown macrocycles 1a–b with ethyl ...

  7. Aspects of reaction of N-oxide radical with ethers in 13C NMR spectrum

    International Nuclear Information System (INIS)

    Kolodziejski, W.

    1980-01-01

    The stable radical N-oxide 2,2,6,6-tetramethylpiperidine was dissolved in ethers. The 13 C NMR spectra were recorded in the temperature 313K at the frequency 22,625 MHz on the spectrometers with Fourier transformation. The dissolution of the radical in ether caused the contact shifts in NMR spectra. The shifts were measured. (A.S.)

  8. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    Science.gov (United States)

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  9. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  10. Ether-Directed ortho-C–H Olefination with a PdII/MPAA Catalyst**

    Science.gov (United States)

    Li, Gang; Leow, Dasheng; Wan, Li; Yu, Jin-Quan

    2013-01-01

    Weak coordination is powerful! A PdII-catalyzed olefination of ortho-C–H bonds of arenes directed by weakly coordinating ethers is developed using mono-protected amino acid (MPAA) ligands. This finding provides a method for chemically modifying ethers, which are abundant in natural products and drug molecules. PMID:23239120

  11. Positron Lifetime Study of the Transition from Glassy to Normal Liquid State for Two Phenyl Ethers

    DEFF Research Database (Denmark)

    Pethrick, R. A.; Jacobsen, F. M.; Mogensen, O. E.

    1980-01-01

    Positron lifetime measurements are reported as a function of temperature for bis[m-(m-phenoxyphenoxy)phenyl] ether and m-phenoxyphenyl-m-(m-phenoxyphenoxy)phenyl ether. The decay curves were analysed in terms of three lifetime components; two short lifetimes of typically 200 and 500 ps associated...

  12. Anticancer Potential of Aqueous Ethanol Seed Extract of Ziziphus mauritiana against Cancer Cell Lines and Ehrlich Ascites Carcinoma

    Directory of Open Access Journals (Sweden)

    Tulika Mishra

    2011-01-01

    Full Text Available Ziziphus mauritiana (Lamk. is a fruit tree that has folkloric implications against many ailments and diseases. In the present study, anticancer potential of seed extract of Ziziphus mauritiana in vitro against different cell lines (HL-60, Molt-4, HeLa, and normal cell line HGF by MTT assay as well as in vivo against Ehrich ascites carcinoma bearing Swiss albino mice was investigated. The extract was found to markedly inhibit the proliferation of HL-60 cells. Annexin and PI binding of treated HL-60 cells indicated apoptosis induction by extract in a dose-dependent manner. The cell cycle analysis revealed a prominent increase in sub Go population at concentration of 20 μg/ml and above. Agarose gel electrophoresis confirmed DNA fragmentation in HL-60 cells after 3 h incubation with extract. The extract also exhibited potent anticancer potential in vivo. Treatment of Ehrlich ascites carcinoma bearing Swiss albino mice with varied doses (100–800 mg/kg b.wt. of plant extract significantly reduced tumor volume and viable tumor cell count and improved haemoglobin content, RBC count, mean survival time, tumor inhibition, and percentage life span. The enhanced antioxidant status in extract-treated animals was evident from decline in levels of lipid peroxidation and increased levels of glutathione, catalase, and superoxide dismutase.

  13. Induced production of halogenated diphenyl ethers from the marine-derived fungus Penicillium chrysogenum.

    Science.gov (United States)

    Yang, Guohua; Yun, Keumja; Nenkep, Viviane N; Choi, Hong Dae; Kang, Jung Sook; Son, Byeng Wha

    2010-11-01

    Manipulation of the fermentation of the marine-derived fungus Penicillium chrysogenum by addition of CaBr(2) resulted in induced production of bromodiphenyl ether analogs. Two new free-radical-scavenging polybrominated diphenyl ethers, 1 and 2, and three known diphenyl ethers, 3,3'-dihydroxy-5,5'-dimethyldiphenyl ether (3), and an inseparable mixture of violacerol-I (4) and violacerol-II (5) were isolated. The structures of the two new polybromodiphenyl ethers 1 and 2 were assigned by combined spectroscopic-data analysis, including deuterium-induced isotope effect. Compounds 1-3, and a mixture of 4 and 5 exhibited radical-scavenging activities against 1,1-diphenyl-2-picrylhydrazyl with IC(50) values of 18, 15, 42, and 6 μM, respectively. With the exception of 3, the compounds were, therefore, more active than the positive control, ascorbic acid (IC(50) 20 μM).

  14. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  15. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  16. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  17. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    Science.gov (United States)

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.

  18. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  19. Distribution of polybrominated diphenyl ethers in Japanese autopsy tissue and body fluid samples.

    Science.gov (United States)

    Hirai, Tetsuya; Fujimine, Yoshinori; Watanabe, Shaw; Nakano, Takeshi

    2012-09-01

    Brominated flame retardants are components of many plastics and are used in products such as cars, textiles, televisions, and personal computers. Human exposure to polybrominated diphenyl ether (PBDE) flame retardants has increased exponentially during the last three decades. Our objective was to measure the body burden and distribution of PBDEs and to determine the concentrations of the predominant PBDE congeners in samples of liver, bile, adipose tissue, and blood obtained from Japanese autopsy cases. Tissues and body fluids obtained from 20 autopsy cases were analyzed. The levels of 25 PBDE congeners, ranging from tri- to hexa-BDEs, were assessed. The geometric means of the sum of the concentrations of PBDE congeners having detection frequencies >50 % (ΣPBDE) in the blood, liver, bile, and adipose tissue were 2.4, 2.6, 1.4, and 4.3 ng/g lipid, respectively. The most abundant congeners were BDE-47 and BDE-153, followed by BDE-100, BDE-99, and BDE-28+33. These concentrations of PBDE congeners were similar to other reports of human exposure in Japan but were notably lower than concentrations than those reported in the USA. Significant positive correlations were observed between the concentrations of predominant congeners and ΣPBDE among the samples analyzed. The ΣPBDE concentration was highest in the adipose tissue, but PBDEs were distributed widely among the tissues and body fluids analyzed. The PBDE levels observed in the present study are similar to those reported in previous studies in Japan and significantly lower than those reported in the USA.

  20. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  1. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Sarikhani, Kaveh [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Majedi, Fatemeh S. [Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-05-01

    In the present study, polyelectrolyte membranes based on partially sulfonated poly(ether ether ketone) (sPEEK) with various degrees of sulfonation are prepared. The optimum degree of sulfonation is determined according to the transport properties and hydrolytic stability of the membranes. Subsequently, various amounts of the organically modified montmorillonite (MMT) are introduced into the sPEEK matrices via the solution intercalation technique. The proton conductivity and methanol permeability measurements of the fabricated composite membranes reveal a high proton to methanol selectivity, even at elevated temperatures. Membrane based on sPEEK and 1 wt% of MMT, as the optimum nanoclay composition, exhibits a high selectivity and power density at the concentrated methanol feed. Moreover, it is found that the optimum nanocomposite membrane not only provides higher performance compared to the neat sPEEK and Nafion {sup registered} 117 membranes, but also exhibits a high open circuit voltage (OCV) at the elevated methanol concentration. Owing to the high proton conductivity, reduced methanol permeability, high power density, convenient processability and low cost, sPEEK/MMT nanocomposite membranes could be considered as the alternative membranes for moderate temperature direct methanol fuel cell applications. (author)

  2. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  3. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  4. Low-Temperature Oxidation of Dimethyl Ether to Polyoxymethylene Dimethyl Ethers over CNT-Supported Rhenium Catalyst

    Directory of Open Access Journals (Sweden)

    Qingde Zhang

    2016-03-01

    Full Text Available Due to its excellent conductivity, good thermal stability and large specific surface area, carbon nano-tubes (CNTs were selected as support to prepare a Re-based catalyst for dimethyl ether (DME direct oxidation to polyoxymethylene dimethyl ethers (DMMx. The catalyst performance was tested in a continuous flow type fixed-bed reactor. H3PW12O40 (PW12 was used to modify Re/CNTs to improve its activity and selectivity. The effects of PW12 content, reaction temperature, gas hourly space velocity (GHSV and reaction time on DME oxidation to DMMx were investigated. The results showed that modification of CNT-supported Re with 30% PW12 significantly increased the selectivity of DMM and DMM2 up to 59.0% from 6.6% with a DME conversion of 8.9%; besides that, there was no COx production observed in the reaction under the optimum conditions of 513 K and 1800 h−1. The techniques of XRD, BET, NH3-TPD, H2-TPR, XPS, TEM and SEM were used to characterize the structure, surface properties and morphology of the catalysts. The optimum amount of weak acid sites and redox sites promotes the synthesis of DMM and DMM2 from DME direct oxidation.

  5. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  6. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  7. Molecular motions of non-crystalline poly(aryl ether-ether-ketone) PEEK and influence of electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hagiwara, M.

    1985-01-01

    The dynamic mechanical relaxation of non-crystalline poly(aryl ether-ether-ketone) PEEK and the one irradiated with electron beam were studied. The three distinct γ, β, α' relaxation maxima were observed in unirradiated PEEK from low to high temperature. It was revealed from the study on the irradiation effects that three different molecular processes are overlapped in γ relaxation peak, i.e., molecular motion of water bound to main chain, local motion of main chain, and local mode of the aligned and/or oriented moiety. The β relaxation connected with the glass transition occurred at 150 deg C and it shifted to higher temperature by irradiation. The α' relaxation which can be attributed to rearrangement of molecular chain due to crystallization was observed in unirradiated PEEK approx. 180 deg C and its magnitude decreased with the increase in irradiation dose. This effect indicates the formation of structures inhibiting crystallization such as crosslinking and/or short branching during irradiation. A new relaxation, β', appeared in the temperature range of 40 deg to 100 deg C by irradiation and its magnitude increased with dose. This relaxation was attributed to rearrangement of molecular chain from loosened packing around chain ends, which were introduced into the non-crystalline region by chain scission under irradiation, to more rigid molecular packing. (author)

  8. Effect of chemical etching on the Cu/Ni metallization of poly (ether ether ketone)/carbon fiber composites

    International Nuclear Information System (INIS)

    Di Lizhi; Liu Bin; Song Jianjing; Shan Dan; Yang Dean

    2011-01-01

    Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr 2 O 3 /H 2 SO 4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that C=O bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 deg. C for 25 min and at 70-80 deg. C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.

  9. Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone Membranes: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-03-01

    Full Text Available Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS, were synthesized inside a swollen sulfonated poly(ether ether ketone membrane (sPEEK. The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.

  10. A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells.

    Science.gov (United States)

    Mendil-Jakani, H; Zamanillo Lopez, I; Legrand, P M; Mareau, V H; Gonon, L

    2014-06-21

    The structure of a commercial sulfonated poly(ether ether ketone) (sPEEK) membrane was analyzed by Small-Angle X-Ray Scattering (SAXS) for different water uptakes obtained after immersion in liquid water at various temperatures. For low membrane swelling, the SAXS profile displays only a wide-angle peak in the 0.2-0.3 Å(-1) region. As the membrane swells, two supplementary correlation peaks arise and shift towards small angles, which are the signature of a structural evolution of the membrane, whereas the wide angle peak remains stable. The SAXS spectra of sPEEK membranes can thus display three correlation peaks simultaneously. Therefore we propose a new interpretation of these SAXS spectra which conclude that the two small angle peaks are attributed to the so-called matrix and ionomer peaks and the wide-angle peak is ascribed to the mean separation distance between sulfonic acid groups grafted onto the polymer backbone. This peak attribution implies that the sPEEK nano-phase separation is triggered by an immersion in hot water (ionomer peak apparition). Our new peak attribution was confirmed by studying the impact of temperature, electron density contrast and ionic exchange capacity.

  11. Effect of surface finishing on friction and wear of Poly-Ether-Ether-Ketone (PEEK under oil lubrication

    Directory of Open Access Journals (Sweden)

    Thiago Fontoura de Andrade

    Full Text Available Abstract The tribological properties of poly-ether-ether-ketone (PEEK containing 30% of carbon fiber were studied in an oil-lubricated environment and different surface finishing of the metallic counterbody. Four different finishing processes, commonly used in the automotive industry, were chosen for this study: turning, grinding, honing and polishing. The test system used was tri-pin on disc with pins made of PEEK and counterbody made of steel; they were fully immersed in ATF Dexron VI oil. Some test parameters were held constant, such as the apparent pressure of 2 MPa, linear velocity of 2 m/s, oil temperature at 85 °C, and the time - 120 minutes. The lubrication regime for the apparent pressure of 1 MPa to 7 MPa range was also studied at different sliding speeds. A direct correlation was found between the wear rate, friction coefficient and the lubrication regime, wherein wear under hydrodynamic lubrication was, on average, approximately 5 times lower, and the friction coefficient 3 times lower than under boundary lubrication.

  12. Environment effects on the optical properties of some fluorinated poly(oxadiazole ether)s in binary solvent mixtures

    International Nuclear Information System (INIS)

    Homocianu, Mihaela; Ipate, Alina Mirela; Hamciuc, Corneliu; Airinei, Anton

    2015-01-01

    The solvatochromic behavior of some fluorinated poly(oxadiazole ether)s was studied using UV–vis absorption and fluorescence spectroscopy in neat solvents and in their solvent mixtures at several ratios of cosolvents. Quantitative investigations of the spectral changes caused by solvent polarity were discussed using the Lippert‐Mataga, Bakhshiev and Kawski–Chamma–Viallet polarity functions. Repartitioning of cosolvent between local (solvation shell) and bulk phase was investigated by means of a solvatochromic shift method in chloroform–N,N-dimethylformamide (CHCl 3 /DMF) and chloroform–dimethyl sulfoxide (CHCl 3 /DMSO) solvent mixtures. Solvatochromic properties in the binary solvent environments were predominantly influenced by the acidity and basicity of the solvent systems. The fluorescence quenching process by nitrobenzene was characterized by Stern–Volmer plots which display a positive deviation from linearity. This was explained by static and dynamic quenching mechanisms. - Highlights: • Solvatochromic behavior in solvent mixtures was studied. • Stokes shift and local environments in binary mixed solvent were discussed. • Repartitioning of cosolvent between local and bulk phase in solvent mixture has been investigated. • Fluorescence intensity was quenched in presence of nitrobenzene

  13. A subchronic dermal exposure study of diethylene glycol monomethyl ether and ethylene glycol monomethyl ether in the male guinea pig.

    Science.gov (United States)

    Hobson, D W; D'Addario, A P; Bruner, R H; Uddin, D E

    1986-02-01

    Diethylene glycol monomethyl ether (DEGME) has been selected as a replacement anti-icing additive for ethylene glycol monomethyl ether (EGME) in Navy jet aircraft fuel. This experiment was performed to determine whether DEGME produced similar toxicity to EGME following dermal exposure. Male guinea pigs were dermally exposed to 1.00, 0.20, 0.04, or 0 (control) g/kg/day DEGME for 13 weeks, 5 days/week, 6 hr/day. Another group of animals was similarly exposed to 1.00 g/kg/day EGME. Body weights as well as testicular and splenic weights were reduced as a result of exposure to EGME, DEGME-exposed animals exhibited decreased splenic weight in the high- and medium-dose (1.00 and 0.20 g/kg/day) exposure groups only. Hematologic changes in EGME-exposed animals included mild anemia with increased erythrocytic mean corpuscular volumes and a lymphopenia with increased neutrophils. Similar hematological changes were not observed in any animals exposed to DEGME. Serum creatine kinase activity was increased in animals exposed to EGME, and serum lactate dehydrogenase activity was increased in EGME and 1.00 g/kg/day DEGME-exposed animals. In general, DEGME produced minimal toxicological changes following dermal exposure, whereas the toxicological changes observed following similar exposure to EGME were much more profound.

  14. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky...

  15. Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Brites, Pedro

    2010-01-01

    Ether-phospholipids represent an important subclass of phospholipids in animal cell membranes characterized by the presence of an ether bond at the sn-I position and the enrichment of PUFAs at the sn-2 position. Of the different ether-phospholipids, plasmalogens are the most abundant form and their

  16. Fabrication of β-chitosan nanoparticles and its anticancer potential against human hepatoma cells.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Annaian

    2017-01-01

    β-Chitosan from the gladius was enzymatically depolymerized and utilized for the synthesis of β-chitosan nanoparticles using sodium tripolyphosphate by ionotropic gelation. The size and zeta potential of β-Chitosan nanoparticles (β-CNP) were determined. The structural features were evaluated by FT-IR and NMR spectral analysis. The morphological characterization, composition and surface topography of β-CNP were explored by SEM, EDAX and AFM techniques. The thermal and crystallographic nature of β-CNP was also studied. The cell viability of HepG2 cells inhibited by β-CNP was detected in a dose-dependent manner. The inhibitory concentration of β-CNP was 30μg/ml. Various biochemical parameters such as TBARS and lipid hydroperoxides, enzymatic and non-enzymatic antioxidant (SOD, CAT, GPx and GSH) studies proved the anticancer property of β-CNP in HepG2 cells. This study suggests that β-CNP should be a promising drug for treating hepatocellular carcinoma in future. Copyright © 2016. Published by Elsevier B.V.

  17. Caleosin-based nanoscale oil bodies for targeted delivery of hydrophobic anticancer drugs

    International Nuclear Information System (INIS)

    Chiang, Chung-Jen; Lin, Li-Jen; Chen, Chih-Jung

    2011-01-01

    Nanoscale artificial oil bodies (NOBs) could be assembled from plant oil, phospholipids (PLs), and oleosin (Ole) as previously reported. NOBs have a lipid-based structure that contains a central oil space enclosed by a monolayer of Ole-bound PLs. As an oil structural protein, Ole functions to maintain the integrity of NOBs. Like Ole, caleosin (Cal) is a plant oil-associated protein. In this study, we investigated the feasibility of NOBs assembled by Cal for targeted delivery of drugs. Cal was first fused with anti-HER2/neu affibody (ZH2), and the resulting fusion gene (Cal–ZH2) was then expressed in Escherichia coli. Consequently, NOBs assembled with the fusion protein were selectively internalized by HER2/neu-positive tumor cells. The internalization efficiency could reach as high as 90%. Furthermore, a hydrophobic anticancer drug, Camptothecin (CPT), was encapsulated into Cal-based NOBs. These CPT-loaded NOBs had a size around 200 nm and were resistant to hemolysis. Release of CPT from NOBs at the non-permissive condition followed a sustained and prolonged profile. After administration of the CPT formulation, Cal–ZH2-displayed NOBs exhibited a strong antitumor activity toward HER2/neu-positive cells both in vitro and in vivo. The result indicates the potential of Cal-based NOBs for targeted delivery of hydrophobic drugs.

  18. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2013-04-01

    Full Text Available Background In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. Methods A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. Results From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. Conclusion Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  19. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  20. Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts

    OpenAIRE

    Celis Ramirez, A.M.

    2017-01-01

    Malassezia yeasts are lipid-dependent fungal species that are common members of the human and animal skin microbiota. The lipid-dependency is a crucial trait in the adaptation process to grow on the skin but also plays a role in their pathogenic life style. Malassezia species can cause several skin infections like dandruff or seborrheic dermatitis but also bloodstream infections. Understanding the lipid metabolism in Malassezia is essential to understand its life style as skin commensal and p...

  1. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    Science.gov (United States)

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Synthetic lipid nanoparticles targeting steroid organs

    International Nuclear Information System (INIS)

    Merian, Juliette; Boisgard, Raphael; Theze, Benoit; Decleves, Xavier; Texier, Isabelle; Tavitian, Bertrand

    2013-01-01

    Lipidots are original nano-particulate lipid delivery vectors for drugs and contrast agents made from materials generally regarded as safe. Here, we characterized the in vivo stability, biodistribution, and pharmacokinetics of lipidots. Lipidots 55 nm in diameter and coated with a phospholipid/poly(ethyleneglycol) surfactant shell were triply labeled with 3 H-cholesteryl-hexadecyl-ether, cholesteryl- 14 C-oleate, and the 1,19-dioctadecyl-3,3,39,39-tetramethyl-indo-tri-carbocyanine infrared fluorescent dye and injected intravenously into immunocompetent Friend virus B-type mice. The pharmacokinetics and biodistribution of lipidots were analyzed quantitatively in serial samples of blood and tissue and with in vivo optical imaging and were refined by microscopic examination of selected target tissues. The plasmatic half-life of lipidots was approximately 30 min. Radioactive and fluorescent tracers displayed a similar nanoparticle-driven biodistribution, indicative of the lipidots' integrity during the first hours after injection. Lipidots distributed in the liver and, surprisingly, in the steroid-rich organs adrenals and ovaries, but not in the spleen. This tropism was confirmed at the microscopic level by histologic detection of 1,19-dioctadecyl- 3,3,39,39-tetramethyl-indo-tri-carbocyanine. Nanoparticle loading with cholesterol derivatives increased accumulation in ovaries in a dose dependent manner. This previously unreported distribution pattern is specific to lipidots and attributed to their nano-metric size and composition, conferring on them a lipoprotein-like behavior. The affinity of lipidots for steroid hormone-rich areas is of interest to address drugs and contrast agents to lipoprotein-receptor-over-expressing cancer cells found in hormone-dependent tumors. (authors)

  3. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  4. Unraveling the Anticancer Effect of Curcumin and Resveratrol

    Science.gov (United States)

    Pavan, Aline Renata; da Silva, Gabriel Dalio Bernardes; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe dos Santos; Man Chin, Chung; dos Santos, Jean Leandro

    2016-01-01

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs. PMID:27834913

  5. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications.

    Science.gov (United States)

    Camorani, Simona; Crescenzi, Elvira; Fedele, Monica; Cerchia, Laura

    2018-04-01

    Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies.

    Science.gov (United States)

    Panebianco, Concetta; Andriulli, Angelo; Pazienza, Valerio

    2018-05-22

    Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.

  7. Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.

    Science.gov (United States)

    Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J

    2015-06-01

    The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil

    2010-09-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  9. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.; Bajic, Vladimir B.

    2010-01-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  10. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  11. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy.

    Science.gov (United States)

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-04-01

    The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.

  12. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    Science.gov (United States)

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    Directory of Open Access Journals (Sweden)

    Sun J

    2017-02-01

    Full Text Available Jiawei Sun,1 Lei Jiang,2 Yi Lin,3 Ethan Michael Gerhard,4 Xuehua Jiang,1 Li Li,3 Jian Yang,4 Zhongwei Gu3 1West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 2Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 3National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 4Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA Abstract: Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips. Compared with Taxol (free PTX, RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50 value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs. An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6% and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage

  14. Synthesis and Anticancer Activity of Novel Thiazole-5-Carboxamide Derivatives

    Directory of Open Access Journals (Sweden)

    Wen-Xi Cai

    2016-01-01

    Full Text Available A series of novel 2-phenyl-4-trifluoromethyl thiazole-5-carboxamide derivatives have been synthesized and evaluated for their anticancer activity against A-549, Bel7402, and HCT-8 cell lines. Among the tested compounds, highest activity (48% was achieved with the 4-chloro-2-methylphenyl amido substituted thiazole containing the 2-chlorophenyl group on the two position of the heterocyclic ring. Other structurally similar compounds displayed moderate activity. The key intermediates have been fully characterized.

  15. Monitoring of anti-cancer therapies and chemoresistance

    Czech Academy of Sciences Publication Activity Database

    Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Džubák, P.; Hajdúch, M.; Gadher, S. J.; Kovářová, Hana

    2009-01-01

    Roč. 6, č. 1 (2009), s. 63-63 ISSN 1109-6535. [International Conference of the Hellenic Proteomic Society /3./. 30.03.2009-01.04.2009, Nafplio] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : anti-cancer therapies Subject RIV: CE - Biochemistry

  16. Microtubule destabilising agents: far more than just antimitotic anticancer drugs

    OpenAIRE

    Bates, Darcy; Eastman, Alan

    2016-01-01

    Vinca alkaloids have been approved as anticancer drugs for more than 50 years. They have been classified as cytotoxic chemotherapy drugs that act during cellular mitosis, enabling them to target fast growing cancer cells. With the evolution of cancer drug development there has been a shift towards new “targeted” therapies to avoid the side effects and general toxicities of “cytotoxic chemotherapies” such as the vinca alkaloids. Due to their original classification, many have overlooked the fa...

  17. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  18. Calorimetric study of binding of some disaccharides with crown ethers

    Energy Technology Data Exchange (ETDEWEB)

    Davydova, Olga I.; Lebedeva, Nataliya Sh.; Parfenyuk, Elena V

    2004-11-01

    Isothermal titration calorimetry has been applied to the determination of the thermodynamic parameters of binding of {beta}-lactose, {alpha},{alpha}-trehalose and sucrose with 15-crown-5 and 18-crown-6 in water at 298.15 K. The formation of 1:1 molecular associates has been found for the systems studied except 18-crown-6 and {beta}-lactose. The associates are preferentially or completely entropy stabilized. The most stable associate is formed between {alpha},{alpha}-trehalose and 18-crown-6. The obtained values of thermodynamic parameters of binding are discussed from the point of view of solute-solvent interactions as well as conformational and structural peculiarities of the disaccharides (DS) and crown ethers (CE)

  19. Optimised mounting conditions for poly (ether sulfone) in radiation detection.

    Science.gov (United States)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Yamada, Tatsuya; Kitamura, Hisashi; Takahashi, Sentaro

    2014-09-01

    Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Polybrominated diphenyl ethers in Mississippi River suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Hites, R. [Indiana Univ., Bloomington, IN (United States)

    2004-09-15

    The Mississippi River Basin drains water from 41% of the conterminous U.S. and is a valuable resource that supplies food, transportation, and irrigation to more than 95 million people of the region. Discharge and runoff from industry, agriculture, and population centers have increased the loads of anthropogenic organic compounds in the river. There has been growing concern over the rising levels of polybrominated diphenyl ethers (PBDEs) in air, sediment, biota, and humans, but there have been no studies to measure the concentrations of these chemicals in North America's largest river system. The goal of this study was to investigate the occurrence of PBDEs (15 congeners including BDE-209) and to identify possible sources within the Mississippi River Basin. We found PBDEs to be widespread throughout the region, rivaling PCBs in their extent and magnitude of contamination. We have also calculated the total amount of PBDEs released to the Gulf of Mexico in 2002.