WorldWideScience

Sample records for anticancer drug pump

  1. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    Science.gov (United States)

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  2. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Directory of Open Access Journals (Sweden)

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  3. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T;

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  4. Serendipity in anticancer drug discovery.

    Science.gov (United States)

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-10

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind.

  5. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The major

  6. Modulation of anticancer drug toxicity by solcoseryl.

    Science.gov (United States)

    Sołtysiak-Pawluczuk, D; Jedrych, A; Jastrzebski, Z; Czyzewska-Szafran, H; Danysz, A

    1991-01-01

    The studies of the effect of solcoseryl on toxicity of selected anticancer drugs were performed in mice. The observed differential influence of solcoseryl was dependent on the type of anticancer drug as well as on the schedule of solcoseryl administration. The protective effect of the biostimulator was noticed exclusively against 5-FU toxicity. The results of our studies could provide possible implications for therapeutic approach.

  7. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  8. Reactions and interactions in handling anticancer drugs.

    Science.gov (United States)

    D'Arcy, P F

    1983-01-01

    The clinical toxicity of anticancer drugs has been well documented with regard to the adverse effects of treatment in patients. However, many of these drugs have a direct irritant effect on the skin, eyes, mucous membranes, and other tissues. Handled without due care, especially when being prepared for injection, most cytotoxic drugs can cause local toxic or allergic reactions; they also present hazards of carcinogenicity and mutagenicity. This spectrum of potential risk should be kept in mind by personnel administering or handling these drugs, especially in oncology units where just a few individuals may routinely and frequently reconstitute many doses of cytotoxic agents. This is work in which the hospital pharmacist should and must be involved; indeed, many of the techniques and skills required are identical with those used in standard aseptic procedures for preparing pharmaceutical products. Pharmacy departments should take the initiative in making hospital staff aware of the potential risks of handling neoplastic agents, and they should spearhead a multidisciplinary assessment for producing local guidelines for working with these drugs. This article warns practitioners about the inherent dangers of these practitioner-drug interactions and suggests ways in which they may be reduced. Information is given in tabular form regarding recommended procedures for reconstituting 24 anticancer drugs and precautions to protect the personnel handling them, especially when there is spillage of powdered or liquid drugs. Also, guidelines are given about incompatibilities with admixtures of such drugs, and the literature is reviewed relative to recent developments in hospital pharmacy departments where reconstitution of anticancer drugs has been incorporated into existing intravenous fluid preparation/admixture units. Not only has this been shown to be safer and more effective in terms of time and labor, but also it has cut the cost of injectable cytotoxic drugs by an

  9. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    In the first part of the thesis the work towards a new generation of liposomal drug delivery systems for anticancer agents is described. The drug delivery system takes advantage of the elevated level of secretory phospholipase A2 (sPLA2) IIA in many tumors and the enhanced permeability......-trans retinoic acid, α-tocopheryl succinate and calcitriol were examined for their ability to be incorporated into the investigated drug delivery system and syntheses of the phospholipid prodrugs are described. The majority of the phospholipid prodrugs were able to form particles with diameters close to 100 nm...... that upon sPLA2 triggering the formulated phospholipid prodrugs displayed IC50 values in range from 3–36 μM and complete cell death was observed when higher drug concentrations were applied. Promising for the drug delivery system the majority of the phospholipid prodrugs remain non-toxic in the absence...

  10. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  11. Teratogens as anti-cancer drugs.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2005-11-01

    Most anticancer drugs are teratogens, merely because they target vital cellular functions. Conversely, some plants produce agents that intentionally target embryonic signaling pathways, precisely to cause birth defects if pregnant animals eat such plants. Cyclopamine, a teratogen produced by a flowering plant, inhibits the Hh/Gli pathway, causing developmental defects such as cyclopia (one eye in the middle of the face). In theory, selective teratogens may suppress cancer cells that reactivate embryonic pathways, while sparing most normal cells. I discuss the potential (and limits) of teratogens in cancer therapy, linking diverse topics from morning sickness of pregnancy, embryonic pathways and poisonous plants to the mechanism of action of anticancer teratogens and their combinations with less selective cytotoxic agents.

  12. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    .6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...... clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines......Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...

  13. Anticancer drug sensitivity by human tumor clonogenic assay.

    Directory of Open Access Journals (Sweden)

    Hiraki,Shunkichi

    1986-10-01

    Full Text Available The anticancer drug sensitivity of human cancers was tested by the human tumor clonogenic assay (HTCA. Of 152 human cancer specimens tested, 63 (41% formed more than 30 tumor cell colonies in control plates and could be used to evaluate the drug sensitivity of tumor cells. In 42 (93% of 45 clinical trials in 24 patients, a parallel correlation was observed between the in vitro anticancer drug sensitivity measured by the HTCA and the clinical response of tumors to anticancer drugs. These results suggest that the HTCA is a good technique for the in vitro test of the anticancer drug sensitivity of human cancers.

  14. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  15. Artemisinin–Second Career as Anticancer Drug?

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2015-10-01

    Full Text Available Artemisinin represents a showcase example not only for the activity of medicinal herbs deriving from traditional chinese medicine, but for phytotherapy in general. Its isolation from Sweet Wormwood (qinhao, Artemisia annua L. represents the starting point for an unprecedent success story in the treatment of malaria worldwide. Beyond the therapeutic value against Plasmodium parasites, it turned out in recent years that the bioactivity of artemisinin is not restricted to malaria. We and others found that this sesquiterpenoid also exerts profound anticancer activity in vitro and in vivo. Artemisinin-type drugs exert multi-factorial cellular and molecular actions in cancer cells. Ferrous iron reacts with artemisinin, which leads to the formation of reactive oxygen species and ultimately to a plethora anticancer effects of artemisinins, e.g. expression of antioxidant response genes, cell cycle arrest (G1 as well as G2 phase arrests, DNA damage that is repaird by base excision repair, homogous recombination and non-homologous end-joining, as well as different modes of cell death (intrinsic and extrinsic apoptosis, autophagy, necrosis, necroptosis, oncosis, and ferroptosis. Furthermore, artemisinins inhibit neoangiogenesis in tumors. The signaling of major transcription factors (NF-κB, MYC/MAX, AP-1, CREBP, mTOR etc. and signaling pathways are affected by artemisinins (e.g. Wnt/β-catenin pathway, AMPK pathway, metastatic pathways, nitric oxide signaling, and others. Several case reports on the compassionate use of artemisinins as well as clinical Phase I/II pilot studies indicate the clinical activity of artemisinins in veterinary and human cancer patients. Larger scale of Phase II and III clinical studies are required now to further develop artemisinin-type compounds as novel anticancer drugs.

  16. Peptidomimetics and metalloprotease inhibitors as anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomimetics with three types, as the structural or functional mimetics of natural active peptides, can preserve the bioactivity and improve the bioavailability and the specificity towards the targets of the lead peptides. Peptidomimetics of high bioactivity can be designed through various ways including conformation restriction, modification and non-peptide design. Recently the concentration on the de-velopment of cancer chemotherapeutic drugs was transferred from cytotoxic drugs to target-based drugs, and many proteases and peptidases that play key roles in the process of tumor genesis and development was discovered, which means that peptidomimetics as potential cancer chemotherapeu-tic drugs should be paid close attention to. Our laboratory has focused on the development of small-molecule peptidomimetic inhibitors of APN, MMPs and HDACs as target-based anticancer agents. These three zinc-dependent metalloproteinases play very important roles in the process of tumor genesis, invasion, metastasis, angiogenesis and matrix degradation, so small-molecule peptidomimetic inhibitors based on them would be quite potential in the development of chemotherapeutic drugs with high selectivity.

  17. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  18. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  19. Clinically relevant drug interactions between anticancer drugs and psychotropic agents.

    Science.gov (United States)

    Yap, K Y-L; Tay, W L; Chui, W K; Chan, A

    2011-01-01

    Drug interactions are commonly seen in the treatment of cancer patients. Psychotropics are often indicated for these patients since they may also suffer from pre-existing psychological disorders or experience insomnia and anxiety associated with cancer therapy. Thus, the risk of anticancer drug (ACD)-psychotropic drug-drug interactions (DDIs) is high. Drug interactions were compiled from the British National Formulary (53rd edn), Lexi-Comp's Drug Information Handbook (15th edn), Micromedex (v5.1), Hansten & Horn's Drug Interactions (2000) and Drug Interaction Facts (2008 edn). Product information of the individual drugs, as well as documented literature on ACD-psychotropic interactions from PubMed and other databases was also incorporated. This paper identifies clinically important ACD-psychotropic DDIs that are frequently observed. Pharmacokinetic DDIs were observed for tyrosine kinase inhibitors, corticosteroids and antimicrotubule agents due to their inhibitory or inductive effects on cytochrome P450 isoenzymes. Pharmacodynamic DDIs were identified for thalidomide with central nervous system depressants, procarbazine with antidepressants, myelosuppressive ACDs with clozapine and anthracyclines with QT-prolonging psychotropics. Clinicians should be vigilant when psychotropics are prescribed concurrently with ACDs. Close monitoring of plasma drug levels should be carried out to avoid toxicity in the patient, as well as to ensure adequate chemotherapeutic and psychotropic coverage.

  20. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  1. MECHANOMAGNETIC REACTOR FOR ACTIVATION OF ANTICANCER DRUGS

    Directory of Open Access Journals (Sweden)

    Orel V. E.

    2014-02-01

    Full Text Available Mechanomagnetochemical activation can increase the concentration of paramagnetic centers (free radicals in the anticancer drug, for example, doxorubicin that enables to influence its magnetic properties under external electromagnetic field and improve its magnetic sensitivity and antitumor activity. The principles of design and operation of mechanomagnetic reactor for implementation of this technology which includes mechanomagnetochemical activation and electromagnetic radiation of the drug are described in the paper. The methods of vibration magnetometry, electron paramagnetic resonance spectroscopy and high-performance liquid chromatography were used for studying of doxorubicin mechanomagnetic activation effects. The studies have shown that a generator of sinusoidal electromagnetic wave, working chambers from caprolactam, fluoroplastic or organic materials with metal inserts and working bodies made from steel or agate depending on the required doxorubicin magnetic properties are expedient to use in the designed mechanomagnic reactor. Under influence of mechanomagnetochemical activation doxorubicin, which is diamagnetic, acquires the properties of paramagnetic without changing g-factors in the spectra of electron paramagnetic resonance. Mechanomagnetochemical activation of doxorubicin satisfies pharmacopoeia condi tions according to the results of liquid chromatography that points on perspective of this method using in technology of tumor therapy with nanosized structures and external electromagnetic radiation.

  2. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    Science.gov (United States)

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.

  3. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2005-02-01

    Full Text Available We previously described that betulinic acid (BetA, a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D. Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.

  4. CNS Anticancer Drug Discovery and Development Conference White Paper.

    Science.gov (United States)

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.

  5. Preclinical and clinical pharmacology of oral anticancer drugs

    NARCIS (Netherlands)

    Oostendorp, R.L.

    2009-01-01

    Nowadays, more than 25% of all anticancer drugs are developed as oral formulations. Oral administration of drugs has several advantages over intravenous (i.v.) administration. It will on average be more convenient for patients, because they can take oral medication themselves, there is no need for f

  6. Are isothiocyanates potential anti-cancer drugs?

    Institute of Scientific and Technical Information of China (English)

    Xiang WU; Qing-hua ZHOU; Ke XU

    2009-01-01

    Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anticarcinogenic activity because they reduce activation of carcinogens and increase their detoxification. Recent studies show that they exhibit anti-tumor activity by affecting multiple pathways including apoptosis, MAPK signaling, oxidative stress, and cell cycle progression. This review summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

  7. Electrolyte disorders associated with the use of anticancer drugs.

    Science.gov (United States)

    Liamis, George; Filippatos, Theodosios D; Elisaf, Moses S

    2016-04-15

    The use of anticancer drugs is beneficial for patients with malignancies but is frequently associated with the occurrence of electrolyte disorders, which can be hazardous and in many cases fatal. The review presents the electrolyte abnormalities that can occur with the use of anticancer drugs and provides the related mechanisms. Platinum-containing anticancer drugs induce hypomagnesemia, hypokalemia and hypocalcemia. Moreover, platinum-containing drugs are associated with hyponatremia, especially when combined with large volumes of hypotonic fluids aiming to prevent nephrotoxicity. Alkylating agents have been linked with the occurrence of hyponatremia [due to syndrome of inappropriate antidiuretic hormone secretion (SIADH)] and Fanconi's syndrome (hypophosphatemia, aminoaciduria, hypouricemia and/or glucosuria). Vinca alkaloids are associated with hyponatremia due to SIADH. Epidermal growth factor receptor monoclonal antibody inhibitors induce hypomagnesemia, hypokalemia and hypocalcemia. Other, monoclonal antibodies, such as cixutumumab, cause hyponatremia due to SIADH. Tyrosine kinase inhibitors are linked to hyponatremia and hypophosphatemia. Mammalian target of rapamycin inhibitors induce hyponatremia (due to aldosterone resistance), hypokalemia and hypophosphatemia. Other drugs such as immunomodulators or methotrexate have been also associated with hyponatremia. The administration of estrogens at high doses, streptozocin, azacitidine and suramin may induce hypophosphatemia. Finally, the drug-related tumor lysis syndrome is associated with hyperphosphatemia, hyperkalemia and hypocalcemia. The prevention of electrolyte derangements may lead to reduction of adverse events during the administration of anticancer drugs.

  8. CEST theranostics: label-free MR imaging of anticancer drugs

    Science.gov (United States)

    Xu, Jiadi; Yadav, Nirbhay N.; Chan, Kannie W. Y.; Luo, Liangping; McMahon, Michael T.; Vogelstein, Bert; van Zijl, Peter C.M.; Zhou, Shibin; Liu, Guanshu

    2016-01-01

    Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer. PMID:26837220

  9. Molecular dynamics study on DNA nanotubes as drug delivery vehicle for anticancer drugs.

    Science.gov (United States)

    Liang, Lijun; Shen, Jia-Wei; Wang, Qi

    2017-02-17

    In recent years, self-assembled DNA nanotubes have emerged as a type of nano-biomaterials with great potential for biomedical applications. To develop universal nanocarriers for smart and targeted drug delivery from DNA nanotubes, the understanding of interaction mechanism between DNA nanotubes and drugs is essential. In this study, the interactions between anti-cancer drugs and DNA nanotubes were investigated via molecular dynamics simulation. Our simulation results demonstrated that the DNA nanotubes could serve as a good drug delivery material by absorption of anti-cancer drugs with π-π interactions. At high concentration of anti-cancer drugs, most of the drugs could be absorbed by DNA nanotubes. Therefore, it could greatly decrease the aggregation of anti-cancer drugs in aqueous solution. In addition, the stability of DNA nanotubes could be improved with the absorption of anti-cancer drugs. These findings greatly enhance the understanding of the interaction mechanism of DNA nanotubes and anti-cancer drugs. Our study suggests that DNA nanotubes are promising delivery vehicles by strong absorption of anti-cancer drugs.

  10. Mechanisms of Anticancer Drugs Resistance: An Overview

    Directory of Open Access Journals (Sweden)

    M. R. Chorawala

    2012-01-01

    Full Text Available The management of cancer involves surgery, radiotherapy and chemotherapy. Development of chemoresistance is a persistent problem during the chemotherapy treatment. Cytotoxic drugs that selectively, but not exclusively, target actively proliferating cells include such diverse groups as DNA-alkylating agents, anti-metabolites, intercalating agents and mitotic inhibitors. Resistance constitutes a lack of response to drug-induced tumour growth inhibition; it may be inherent in a subpopulation of heterogeneous cancer cells or be acquired as a cellular response to drug exposure. Principle mechanisms may include altered membrane transport involving the p-glycoprotein product of the multidrug resistance (MDR gene as well as other associated proteins, altered target enzyme, decreased drug activation, increased drug degradation due to altered expression of drug metabolising enzymes, drug inactivation due to conjugation with increased glutathione, subcellular redistribution, drug interaction, enhanced DNA repair and failure to apoptosis as a result of mutated cell cycle proteins such as p53. Attempts to overcome resistance involves the use of combination drug therapy using different classes of drugs with minimally overlapping toxicities to allow maximal dosages, necessary for bone marrow recovery. Adjuvant therapy with p-glycoprotein inhibitors and in specific instances, the use of growth factor and protein kinase C inhibitors are newer experimental approaches that may also prove effective in delaying onset of resistance. Gene knockout using antisense molecules may be effective way of blocking drug resistance.

  11. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  12. Fenbendazole as a Potential Anticancer Drug

    Science.gov (United States)

    DUAN, QIWEN; LIU, YANFENG; ROCKWELL, SARA

    2013-01-01

    Background/Aims To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. Materials and Methods We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Results Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. Conclusion These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation. PMID:23393324

  13. Metabolic monosaccharides altered cell responses to anticancer drugs.

    Science.gov (United States)

    Chen, Long; Liang, Jun F

    2012-06-01

    Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.

  14. Mitochondrial chaperones may be targets for anti-cancer drugs

    Science.gov (United States)

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  15. Potential anti-cancer drugs commonly used for other indications.

    Science.gov (United States)

    Hanusova, Veronika; Skalova, Lenka; Kralova, Vera; Matouskova, Petra

    2015-01-01

    An increasing resistance of mammalian tumor cells to chemotherapy along with the severe side effects of commonly used cytostatics has raised the urgency in the search for new anti-cancer agents. Several drugs originally approved for indications other than cancer treatment have recently been found to have a cytostatic effect on cancer cells. These drugs could be expediently repurposed as anti-cancer agents, since they have already been tested for toxicity in humans and animals. The groups of newly recognized potential cytostatics discussed in this review include benzimidazole anthelmintics (albendazole, mebendazole, flubendazole), anti-hypertensive drugs (doxazosin, propranolol), psychopharmaceuticals (chlorpromazine, clomipramine) and antidiabetic drugs (metformin, pioglitazone). All these drugs have a definite potential to be used especially in combinations with other cytostatics; the chemotherapy targeting of multiple sites now represents a promising approach in cancer treatment. The present review summarizes recent information about the anti-cancer effects of selected drugs commonly used for other medical indications. Our aim is not to collect all the reported results, but to present an overview of various possibilities. Advantages, disadvantages and further perspectives regarding individual drugs are discussed and evaluated.

  16. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.

    Science.gov (United States)

    Pommier, Yves; Leo, Elisabetta; Zhang, HongLiang; Marchand, Christophe

    2010-05-28

    DNA topoisomerases are the targets of important anticancer and antibacterial drugs. Camptothecins and novel noncamptothecins in clinical development (indenoisoquinolines and ARC-111) target eukaryotic type IB topoisomerases (Top1), whereas human type IIA topoisomerases (Top2alpha and Top2beta) are the targets of the widely used anticancer agents etoposide, anthracyclines (doxorubicin, daunorubicin), and mitoxantrone. Bacterial type II topoisomerases (gyrase and Topo IV) are the targets of quinolones and aminocoumarin antibiotics. This review focuses on the molecular and biochemical characteristics of topoisomerases and their inhibitors. We also discuss the common mechanism of action of topoisomerase poisons by interfacial inhibition and trapping of topoisomerase cleavage complexes.

  17. Autophagy modulation as a target for anticancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Xin LI; Huai-long XU; Yong-xi LIU; Na AN; Si ZHAO; Jin-ku BAO

    2013-01-01

    Autophagy,an evolutionarily conserved catabolic process involving the engulfment and degradation of non-essential or abnormal cellular organelles and proteins,is crucial for homeostatic maintenance in living cells.This highly regulated,multi-step process has been implicated in diverse diseases including cancer.Autophagy can function as either a promoter or a suppressor of cancer,which makes it a promising and challenging therapeutic target.Herein,we overview the regulatory mechanisms and dual roles of autophagy in cancer.We also describe some of the representative agents that exert their anticancer effects by regulating autophagy.Additionally,some emerging strategies aimed at modulating autophagy are discussed as having the potential for future anticancer drug discovery.In summary,these findings will provide valuable information to better utilize autophagy in the future development of anticancer therapeutics that meet clinical requirements.

  18. Research progress in nanoparticles as anticancer drug carrier

    Institute of Scientific and Technical Information of China (English)

    Yingying Sun; Huaqing Lin ; Chuqin Yu; Suna Lin

    2014-01-01

    Nanoparticles drug delivery system has sustained and controled release features as wel as targeted drug deliv-ery, which can change the characteristics of drug distributionin vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention efect and a conjugated specific ligand or through the efects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxic-ity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system wil be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.

  19. Microfluidics: Emerging prospects for anti-cancer drug screening.

    Science.gov (United States)

    Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2010-11-10

    Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines.

  20. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  1. Computational metallomics of the anticancer drug cisplatin.

    Science.gov (United States)

    Calandrini, Vania; Rossetti, Giulia; Arnesano, Fabio; Natile, Giovanni; Carloni, Paolo

    2015-12-01

    Cisplatin, cis-diamminedichlorido-platinum(II), is an important therapeutic tool in the struggle against different tumors, yet it is plagued with the emergence of resistance mechanisms after repeated administrations. This hampers greatly its efficacy. Overcoming resistance problems requires first and foremost an integrated and systematic understanding of the structural determinants and molecular recognition processes involving the drug and its cellular targets. Here we review a strategy that we have followed for the last few years, based on the combination of modern tools from computational chemistry with experimental biophysical methods. Using hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations, validated by spectroscopic experiments (including NMR, and CD), we have worked out for the first time at atomic level the structural determinants in solution of platinated cellular substrates. These include the copper homeostasis proteins Ctr1, Atox1, and ATP7A. All of these proteins have been suggested to influence the pre-target resistance mechanisms. Furthermore, coupling hybrid QM/MM simulations with classical Molecular Dynamics (MD) and free energy calculations, based on force field parameters refined by the so-called "Force Matching" procedure, we have characterized the structural modifications and the free energy landscape associated with the recognition between platinated DNA and the protein HMGB1, belonging to the chromosomal high-mobility group proteins HMGB that inhibit the repair of platinated DNA. This may alleviate issues relative to on-target resistance process. The elucidation of the mechanisms by which tumors are sensitive or refractory to cisplatin may lead to the discovery of prognostic biomarkers. The approach reviewed here could be straightforwardly extended to other metal-based drugs.

  2. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... that Kapp for inhibition should increase linearly with the amount of pumps present in the membrane for a reverser that inhibits pumping from the cytoplasmic face. In contrast, if the reverser acts by blocking transport from the outer face, i.e., preemptively, Kapp should be independent of the number...

  3. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  4. [A novel anticancer drug delivery system -DAC-70/CDDP].

    Science.gov (United States)

    Sugitachi, Akio; Otsuka, Koki; Fujisawa, Kentaro; Itabashi, Tetsuya; Akiyama, Yuji; Sasaki, Akira; Ikeda, Kenichiro; Yoshida, Yasuo; Takamori, Yoshimori; Kurozumi, Seiji; Mori, Takatoshi; Wakabayashi, Go

    2007-11-01

    We devised a muco-adhesive anticancer drug delivery system using 70% deacetylated chitin (DAC-70) and cisplatin (CDDP) and 5-fluorouracil (5-FU). The adhesive force between the system and human colonic mucosa was measured ex vivo, and a release profile of each drug was examined in vitro. Each system demonstrated a stronger muco-adhesive force at 37 degrees C than that of 25 degrees C. The CDDP-loaded system showed a sustained release of the drug while the 5-FU-loaded system exhibited an initial bursting of the agent. We presume that the release profile of CDDP and 5-FU is closely related to both degradability of the chitin and interactions between the chitin and each drug. The DAC-70/CDDP system would be clinically promising in loco-regional cancer chemotherapy.

  5. Topological Indices Study of Molecular Structure in Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2016-01-01

    Full Text Available Numerous studies indicate that there is strong inherent relationship between the chemical characteristics of chemical compounds and drugs (e.g., boiling point and melting point and their molecular structures. Topological indices defined on these chemical molecular structures can help researchers better understand the physical features, chemical reactivity, and biological activity. Thus, the study of the topological indices on chemical structure of chemical materials and drugs can make up for lack of chemical experiments and can provide a theoretical basis for the manufacturing of drugs and chemical materials. In this paper, we focus on the family of smart polymer which is widely used in anticancer drugs manufacturing. Several topological indices are determined in view of edge dividing methods, and these results remedy the lack of chemical and medicine experiments thus providing the theoretical basis for pharmaceutical engineering.

  6. pH-dependent anticancer drug release from silk nanoparticles.

    Science.gov (United States)

    Seib, F Philipp; Jones, Gregory T; Rnjak-Kovacina, Jelena; Lin, Yinan; Kaplan, David L

    2013-12-01

    Silk has traditionally been used as a suture material because of its excellent mechanical properties and biocompatibility. These properties have led to the development of different silk-based material formats for tissue engineering and regenerative medicine. Although there have been a small number of studies about the use of silk particles for drug delivery, none of these studies have assessed the potential of silk to act as a stimulus-responsive anticancer nanomedicine. This report demonstrates that an acetone precipitation of silk allows the formation of uniform silk nanoparticles (98 nm diameter, polydispersity index 0.109), with an overall negative surface charge (-33.6 ± 5.8 mV), in a single step. Silk nanoparticles are readily loaded with doxorubicin (40 ng doxorubicin/μg silk) and show pH-dependent release (pH 4.5≫ 6.0 > 7.4). In vitro studies with human breast cancer cell lines demonstrates that the silk nanoparticles are not cytotoxic (IC50 > 120 μg mL(-1) ) and that doxorubicin-loaded silk nanoparticles are able to overcome drug resistance mechanisms. Live cell fluorescence microscopy studies show endocytic uptake and lysosomal accumulation of silk nanoparticles. In summary, the pH-dependent drug release and lysosomal accumulation of silk nanoparticles demonstrate the ability of drug-loaded silk nanoparticles to serve as a lysosomotropic anticancer nanomedicine.

  7. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates.

    Science.gov (United States)

    Xiao, Zhiyan; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2016-01-01

    Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bioisosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted.

  8. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    Science.gov (United States)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  9. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  10. CNIO cancer conference: targeted search for anticancer drugs.

    Science.gov (United States)

    Fischer, Peter M

    2003-06-01

    The topics discussed at the conference covered many aspects of cancer research, from the genetic search for new targets, target validation and drug discovery, all the way to preclinical and clinical development of oncology drugs. Here the presentations on new metabolic, angiogenic, cell cycle and other molecular targets, as well as recent developments with experimental drugs with action on some of these targets, are summarised. Particular emphasis is placed on the emerging realisation that changes in the metabolic phenotype lie at the heart of cellular transformation. New insights into the biological links between cancer cell metabolism and the balance between survival and death signalling are likely to lead to the identification of a new category of anticancer targets.

  11. Hurdles in anticancer drug development from a regulatory perspective.

    Science.gov (United States)

    Jonsson, Bertil; Bergh, Jonas

    2012-02-21

    Between January 2001 and January 2012, 48 new medicinal products for cancer treatment were licensed within the EU, and 77 new indications were granted for products already licensed. In some cases, a major improvement to existing therapies was achieved, for example, trastuzumab in breast cancer. In other cases, new fields for effective drug therapy opened up, such as in chronic myeloid leukemia, and renal-cell carcinoma. In most cases, however, the benefit-risk balance was considered to be only borderline favorable. Based on our assessment of advice procedures for marketing authorization, 'need for speed' seems to be the guiding principle in anticancer drug development. Although, for drugs that make a difference, early licensure is of obvious importance to patients, this is less evident in the case of borderline drugs. Without proper incentives and with hurdles inside and outside companies, a change in drug development cannot be expected; drugs improving benefit-risk modestly over available therapies will be brought forward towards licensure. In this Perspectives article, we discuss some hurdles to biomarker-driven drug development and provide some suggestions to overcome them.

  12. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  13. Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation

    Directory of Open Access Journals (Sweden)

    Lee P

    2012-02-01

    Full Text Available Puiyan Lee1, Ruizhong Zhang1, Vincent Li1, Xuelai Liu1, Raymond WY Sun2, Chi-Ming Che2, Kenneth KY Wong11Department of Surgery, Li Ka Shing Faculty of Medicine, 2Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Hong KongBackground: Development of anticancer drugs is challenging. Indeed, much research effort has been spent in the development of new drugs to improve clinical outcomes with minimal toxicity. We have previously reported that a formulation of lipid gold porphyrin nanoparticles reduced systemic drug toxicity when compared with free gold porphyrin. In this study, we investigated the delivery and treatment efficiency of PEG surface-modified lipid nanoparticles as a carrier platform.Methods: We encapsulated antitumor drugs into PEG-modified lipid nanoparticles and these were characterized by size, zeta potential, and encapsulation efficiency. The delivery efficiency into tumor tissue was evaluated using a biodistribution study. To evaluate antitumor efficacy, gold porphyrin or camptothecin (a DNA topoisomerase I inhibitor were encapsulated and compared using an in vivo neuroblastoma (N2A model.Results: We showed that drug encapsulation into PEG-modified lipid nanoparticles enhanced the preferential uptake in tumor tissue. Furthermore, higher tumor killing efficiency was observed in response to treatment with PEG-modified lipid nanoparticles encapsulating gold porphyrin or camptothecin when compared with free gold porphyrin or free camptothecin. The in vivo antitumor effect was further confirmed by study of tumor inhibition and positive apoptosis activity. Surface modification of lipophilic nanoparticles with PEG increased the efficiency of drug delivery into tumor tissue and subsequently more effective antitumor activity.Conclusion: This specific design of a chemotherapeutic agent using nanotechnology is important in the

  14. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  15. Genetic Interactions of STAT3 and Anticancer Drug Development

    Directory of Open Access Journals (Sweden)

    Bingliang Fang

    2014-03-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  16. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  17. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    Science.gov (United States)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  18. Halloysite Nanotubes, a Multifunctional Nanovehicle for Anticancer Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    郭明义; 王艾菲; 费海姆; 齐文秀; 任浩; 郭颖杰; 朱广山

    2012-01-01

    Targeted drug delivery systems have attracted a great deal of interest by virtue of their potential use in chemotherapy. In this study, multicomponent halloysite nanotubes (HNTs) have been evaluated as a platform to assist and direct the delivery of anticancer drug doxorubicin (DOX) into cancer cells. Folic acid (FA) and magnetite nanopar- ticles were successfully grafted onto HNTs via amide reaction whereas the drug has been introduced by capitalizing electrostatic interaction between cationic drug and anionic exterior of HNTs, which eventually leads to pH respon- sive release. The resultant DOX loaded FA-Fe304@HNTs were well characterized by transmission electron mi- croscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and XRD. The clinical efficacy of the system was validated by confocal microscopy and cell cytotoxicity assay (MTT assay). MTT assay results revealed a high biocompatibility up to a concentration of 200 μg/mL of HNTs, while, DOX loaded FA-Fe304@HNTs were markedly cytotoxic to HeLa cells. This multifunctional nanovehicle has a great po- tential for cancer diagnosis and therapy, and could further advance the clinical use of nanomedicine.

  19. The nuclear matrix as a site of anticancer drug action.

    Science.gov (United States)

    Fernandes, D J; Catapano, C V

    1995-01-01

    Many nuclear functions, including the organization of the chromatin within the nucleus, depend upon the presence of a nuclear matrix. Nuclear matrix proteins are involved in the formation of chromatin loops, control of DNA supercoiling, and regulation and coordination of transcriptional and replicational activities within individual loops. Various structural and functional components of the nuclear matrix represent potential targets for anticancer agents. Alkylating agents and ionizing radiation interact preferentially with nuclear matrix proteins and matrix-associated DNA. Other chemotherapeutic agents, such as fludarabine phosphate and topoisomerase II-active drugs, interact specifically with matrix-associated enzymes, such as DNA primase and the DNA topoisomerase II alpha isozyme. The interactions of these agents at the level of the nuclear matrix may compromise multiple nuclear functions and be relevant to their antitumor activities.

  20. Strategic development on generic anti-cancer drugs Bevacizumab and Erlotinib Hydrochloride for Harbin Pharmaceutical Group

    Institute of Scientific and Technical Information of China (English)

    Cheung Fat Ping

    2011-01-01

    @@ With improved economy, changing life styles, aging population and health care reform, China had a very potential anti-cancer drug market.The patents of popular anti-cancer drugs Avastin and Tarceva would expire in few years.Generic versions of Avastin and Tarceva were Bevacizumab and Erlotinib Hydrochloride respectively.Harbin Pharmaceutical Group was proposed to develop strategically both generic medicines to enter the high-end anti-cancer drug market for targeted cancer therapies.The vital to success of developing the generic drugs were discussed.

  1. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  2. Fermented wheat germ extract - nutritional supplement or anticancer drug?

    Directory of Open Access Journals (Sweden)

    Voigt Wieland

    2011-09-01

    Full Text Available Abstract Background Fermented wheat germ extract (FWGE is a multisubstance composition and, besides others, contains 2-methoxy benzoquinone and 2, 6-dimethoxy benzoquinone which are likely to exert some of its biological effects. FWGE interferes with anaerobic glycolysis, pentose cycle and ribonucleotide reductase. It has significant antiproliferative effects and kills tumor cells by the induction of apoptosis via the caspase-poly [ADP-ribose] polymerase-pathway. FWGE interacts synergistically with a variety of different anticancer drugs and exerted antimetastatic properties in mouse models. In addition, FWGE modulates immune response by downregulation of MHC-I complex and the induction of TNF-α and various interleukins. Data in the F-344 rat model provide evidence for a colon cancer preventing effect of FWGE. Clinical data from a randomized phase II trial in melanoma patients indicate a significant benefit for patients treated with dacarbazine in combination with FWGE in terms of progression free survival (PFS and overall survival (OS. Similarly, data from studies in colorectal cancer suggested a benefit of FWGE treatment. Besides extension of OS and PFS, FWGE improved the quality of life in several studies. Conclusion In conclusion, available data so far, justify the use of FWGE as a non-prescription medical nutriment for cancer patients. Further randomized, controlled and large scale clinical studies are mandatory, to further clarify the value of FWGE as a drug component of future chemotherapy regimens.

  3. Human recombinant RNASET2: A potential anti-cancer drug

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  4. Selective anti-cancer agents as anti-aging drugs.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  5. Human recombinant RNASET2: A potential anti-cancer drug.

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate.

  6. [Carboxyl nanodiamond as intracellular transporters of anticancer drug--podophyllotoxin].

    Science.gov (United States)

    Sun, Tao-Li; Wang, Bin; Peng, Yan; Ni, Jing-Man

    2013-01-01

    The purpose of this study is to investigate the intracellular transporters effect and the cytotoxicity of carboxyl nanodiamond (CND) - podophyllotoxin (PPT). Nanodiamond (ND) was treated with mixed carboxylic acid and finally got 64 nm CND by centrifugation, and then it was reacted with PPT to form CND-PPT. UV spectrophotometry was used to calculate the content of PPT in CND-PPT, the particle size distribution and zeta potential were measured by Dynamic laser scattering instrument. CND, PPT, CND-PPT and CND + PPT (physical mixture of CND and PPT) were characterized by Fourier transform infrared spectroscopy, at the same time, thermal analysis and element analysis were used to estimate the content of the PPT in CND-PPT. The affect of CND, PPT, CND-PPT on HeLa cell was measured with MTT assay. The results showed that content of PPT combined with CND accounted for about 10%. MTT assay showed that CND has low cytotoxicity and CND-PPT can increase the water soluble of PPT. As a conclusion, CND as a hydrophilic pharmaceutical carrier combined with PPT is able to increase the water solubility of PPT, at low concentration, CND-PPT can enhance the antitumor activity in comparison with PPT, so CND can be used as a potential anticancer drug carrier.

  7. Piperin and piplartin as natural oral anticancer drug

    Directory of Open Access Journals (Sweden)

    Berlian Bidarisugma

    2011-12-01

    Full Text Available Background: Since the last few decades, oral cancer as pathology has become an attention in medicine and dentistry. The majority cases of oral cancer are affecting people with smoking habit and alcohol consumption. Many herbs contain substances which can stop cancer cells proliferation, such as Piper retrofractum/Retrofracti fructus, an herb plant from Piperaceae family which contains piperin and piplartin. Purpose: The purpose of this study was to examine the mechanism of piperin and pilplartin as natural oral anticancer drug. Reviews: Piperin and piplartin has function as antioxidant that can protect body cell from damage caused by free radicals. Piperin works synergistically with another bioactive substance like capsaicin and curcumin. Piperin increase the number of serum and life time of serum from a few nutrition substance like co-enzyme Q10 and beta-carotene. Beta-carotene can catch reactive O2 and peroxil radicals. The activity of anticancer piplartin related with obstruction of proliferation cell rate, observe form Ki67 reduction as antigen in nucleus that associated with G1, S, G2, and M phase in cell cycle. Comparing with piplartin, piperin is more potential to inhibit proliferation rate of Ki67, but piplartin’s antiproliferation mechanism will increase if supported by piperin. Conclusion: Piperin and piplartin contained in Javanese chili are potential for natural oral anticancer, by directly or indirectly suppress tumor cell development by increasing the number of immunity cells (immunomodulator, and by inhibiting cell proliferation with reduction of Ki67, nucleus antigen that associated with G1,S,G2, dan M phase of cell cycle.Latar belakang: Sejak beberapa dekade terakhir, patologi kanker rongga mulut telah banyak menjadi perhatian di bidang kedokteran dan kedokteran gigi. Risiko paling tinggi ditemukan pada penderita perokok dan peminum alkohol. Banyak tanaman herbal yang memiliki kandungan untuk menghambat pertumbuhan sel kanker

  8. [The history of developing anticancer Drugs and their evaluation guidelines in Japan].

    Science.gov (United States)

    Maeda, Hideki; Kurokawa, Tatsuo

    2014-01-01

    The cancer therapies currently available do not yet offer fully satisfactory treatments, even in 21st century, and efforts and progress are being made daily in the area of drug development. Anticancer drugs, which play the leading role in cancer therapy, are being developed dynamically around the world, and Japan is not an exception. Looking back on the history of developing anticancer drugs, cytotoxic drugs were the mainstream of drug development until the end of the 20th century. In the 21st century, they have been replaced by molecularly targeted drugs, and thus the development of cytotoxic drugs has been declining rapidly. There were various approaches to the development of anticancer drugs and clinical trial endpoints until the 1980s. In 1991, the "Guidelines for Clinical Evaluation Methods of Anti-Cancer Drugs in Japan" was issued. From 2000 onwards, there was vigorous discussion on the clinical trial endpoints of anticancer drugs in the United States. In conjunction with this discussion, the "Guidelines for Clinical Evaluation Methods of Anti-Cancer Drugs in Japan" was revised in 2005. The revised guidelines required survival data at the time of filing a new drug application (NDA) as a general rule. Around 2005, a bridging strategy was promoted as the "International Conference on Harmonization E5" was promulgated among Japan, the U.S. and EU, resulting in an outflow of clinical trials to overseas, with more non-Japanese survival data generated outside of Japan used for NDAs than Japanese data. Subsequently, the "Guideline for Basic Principles on Global Clinical Trials" was issued in 2007, which promoted the change in the mainstream approach from a bridging strategy to a pivotal, global study involving Japan. Thus, an era of full-fledged globalization in clinical trials began. We believe Japan will need systems to enhance the motivation for anticancer drug development, such as an expedited program or pediatric program, from now on. We hope that the

  9. Antiplatelet drug interactions with proton pump inhibitors

    Science.gov (United States)

    Scott, Stuart A; Obeng, Aniwaa Owusu; Hulot, Jean-Sébastien

    2014-01-01

    Introduction Non-aspirin antiplatelet agents (e.g., clopidogrel, prasugrel, ticagrelor) are commonly prescribed for the prevention of recurrent cardiovascular events among patients with acute coronary syndromes (ACS) and/or those undergoing percutaneous coronary intervention (PCI). In addition, combination therapy with proton pump inhibitors (PPIs) is often recommended to attenuate gastrointestinal bleeding risk, particularly during dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Importantly, a pharmacological interaction between clopidogrel and some PPIs has been proposed based on mutual CYP450-dependent metabolism, but available evidence is inconsistent. Areas covered This article provides an overview of the currently approved antiplatelet agents and PPIs, including their metabolic pathways. Additionally, the CYP450 isoenzyme at the center of the drug interaction, CYP2C19, is described in detail, and the available evidence on both the potential pharmacological interaction and influence on clinical outcomes are summarized and evaluated. Expert opinion Although concomitant DAPT and PPI use reduces clopidogrel active metabolite levels and ex vivo-measured platelet inhibition, the influence of the drug interaction on clinical outcomes has been conflicting and largely reported from non-randomized observational studies. Despite this inconsistency, a clinically important interaction cannot be definitively excluded, particularly among patient subgroups with higher overall cardiovascular risk and potentially among CYP2C19 loss-of-function allele carriers. PMID:24205916

  10. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  11. Bioequivalence study designs for generic solid oral anticancer drug products: scientific and regulatory considerations.

    Science.gov (United States)

    Kaur, Paramjeet; Chaurasia, Chandra S; Davit, Barbara M; Conner, Dale P

    2013-12-01

    The demonstration of bioequivalence (BE) between the test and reference products is an integral part of generic drug approval process. A sound BE study design is pivotal to the successful demonstration of BE of generic drugs to their corresponding reference listed drug product. Generally, BE of systemically acting oral dosage forms is demonstrated in a crossover, single-dose in vivo study in healthy subjects. The determination of BE of solid oral anticancer drug products is associated with its own unique challenges due to the serious safety risks involved. Unlike typical BE study in healthy subjects, the safety issues often necessitate conducting BE studies in cancer patients. Such BE studies of an anticancer drug should be conducted without disturbing the patients' therapeutic dosing regimen. Attributes such as drug permeability and solubility, pharmacokinetics, dosing regimen, and approved therapeutic indication(s) are considered in the BE study design of solid anticancer drug products. To streamline the drug approval process, the Division of Bioequivalence posts the Bioequivalence Recommendations for Specific Products guidances on the FDA public website. The objective of this article is to illustrate the scientific and regulatory considerations in the design of BE studies for generic solid oral anticancer drug products through examples.

  12. Quinoxaline Nucleus: A Promising Scaffold in Anti-cancer Drug Discovery.

    Science.gov (United States)

    Pinheiro, Alessandra C; Mendonça Nogueira, Thais C; de Souza, Marcus V N

    2016-01-01

    Heterocyclic compounds are a class of substances, which play a critical role in modern drug discovery being incorporated in the structure of a large variety of drugs used in many different types of diseases. Quinoxaline is an important heterocyclic nucleus with a wide spectrum of biological activities, and recently much attention has been found on anticancer drug discovery based on this class. Owing to the importance of this system, the aim of this review is to provide an update on the synthesis and anticancer activity of quinoxaline derivatives covering articles published between 2010 and 2015.

  13. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs

    NARCIS (Netherlands)

    Veldman, RJ; Mita, A; Cuvillier, O; Garcia, [No Value; Klappe, K; Medin, JA; Campbell, JD; Carpentier, S; Kok, JW; Levade, T

    2003-01-01

    Conversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected wi

  14. Double layered hydroxides as potential anti-cancer drug delivery agents.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  15. Prospective Observational Study of Adverse Drug Reactions of Anticancer Drugs Used in Cancer Treatment in a Tertiary Care Hospital

    OpenAIRE

    Saini, V. K.; Sewal, R. K.; Ahmad, Yusra; B Medhi

    2015-01-01

    Adverse drug reactions associated with the use of anticancer drugs are a worldwide problem and cannot be ignored. Adverse drug reactions can range from nausea, vomiting or any other mild reaction to severe myelosuppression. The study was planned to observe the suspected adverse drug reactions of cancer chemotherapy in patients aged >18 years having cancer attending Postgraduate Institute of Medical Education and Research, Chandigarh. During the study period, 101 patients of breast cancer and ...

  16. Nanoparticles generated by PEG-Chrysin conjugates for efficient anticancer drug delivery.

    Science.gov (United States)

    Zheng, Hui; Li, Sai; Pu, Yuji; Lai, Yusi; He, Bin; Gu, Zhongwei

    2014-08-01

    Nanoparticle-based drug delivery systems promise the safety and efficacy of anticancer drugs. Herein, we presented a facile approach to fabricate novel nanoparticles generated by PEG-Chrysin conjugates for the delivery of anticancer drug doxorubicin. Chrysin was immobilized on the terminal group of methoxy poly(ethylene glycol) (mPEG) to form mPEG-Chrysin conjugate. The conjugates were self-assembled into nanoparticles. Doxorubicin (DOX) was loaded in the nanoparticles. The self-assembly, drug release profiles, interactions between nanoparticle and drug, cellular uptake and in vitro anticancer activity of the DOX loaded nanoparticles were investigated. The results showed that the mean diameters of drug loaded nanoparticles were below 200 nm. Strong π-π stacking interaction was tested within the drug loaded nanoparticles. The drug release rate was closely related to the chain length of PEG, shorter PEG chain resulted faster release. The mPEG-Chrysin conjugate was non-toxic to both 3T3 fibroblasts and HepG2 cancer cells. The cellular uptake measurements demonstrated that the mPEG1000-Chrysin nanoparticles exhibited higher capability in endocytosis. The IC50 of drug loaded mPEG1000-Chrysin nanoparticles was 4.4 μg/mL, which was much lower than that of drug loaded mPEG2000-Chrysin nanoparticles (6.8 μg/mL). These nanoparticles provided a new strategy for fabricating antitumor drug delivery systems.

  17. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    Science.gov (United States)

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  18. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  19. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    Science.gov (United States)

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  20. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    Science.gov (United States)

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery.

  1. Proteomic Approaches in Understanding Action Mechanisms of Metal-Based Anticancer Drugs

    OpenAIRE

    Wang, Ying; Chiu, Jen-Fu

    2008-01-01

    Medicinal inorganic chemistry has been stimulating largely by the success of the anticancer drug, cisplatin. Various metal complexes are currently used as therapeutic agents (e.g., Pt, Au, and Ru) in the treatment of malignant diseases, including several types of cancers. Understanding the mechanism of action of these metal-based drugs is for the design of more effective drugs. Proteomic approaches combined with other biochemical methods can provide comprehensive understanding of responses th...

  2. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs.

    Science.gov (United States)

    Doucette, Kaitlin A; Hassell, Kelly N; Crans, Debbie C

    2016-12-01

    Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs.

  3. Microprocessor in controlled transdermal drug delivery of anti-cancer drugs.

    Science.gov (United States)

    Chandrashekar, N S; Shobha Rani, R H

    2009-12-01

    Microprocessor controlled transdermal delivery of anticancer drugs 5-Fluorouracil (5-FU) and 6-Mercaptopurine (6-MP) was developed and in vitro evaluation was done. Drugs were loaded based on the pharmacokinetics parameters. In vitro diffusion studies were carried at different current density (0.0, 0.1, 0.22, 0.50 mA/cm2). The patches were evaluated for the drug content, thickness, weight, folding endurance, flatness, thumb tack test and adhesive properties all were well with in the specification of transdermal patches with elegant and transparent in appearance. In vitro permeation studies through human cadaver skin showed, passive delivery (0.0 mA/cm2) of 6-MP was low. As the current density was progressively increased, the flux also increased. the flux also increased with 0.1 mA/cm2 for 15-20 min, but it was less than desired flux, 0.2 mA/cm2 for 30 min showed better flux than 0.1 mA/cm2 current, but lag time was more than 4 h, 0.5 mA/cm2 current for more than 1 h, flux was >159 microg/cm2 h which was desired flux for 6-MP. 5-FU flux reached the minimum effective concentration (MEC) of 54 microg/cm2 h with 0.5 mA/cm2 current for 30-45 min, drug concentration were within the therapeutic window in post-current phase. We concluded from Ohm's Law that as the resistance decreases, current increases. Skin resistance decrease with increase in time and current, increase in the drug permeation. Interestingly, for all investigated current densities, as soon as the current was switched off, 5-FU and 6-MP flux decreased fairly, but the controlled drug delivery can be achieved by switching the current for required period of time.

  4. New cancer treatment strategy using combination of green tea catechins and anticancer drugs.

    Science.gov (United States)

    Suganuma, Masami; Saha, Achinto; Fujiki, Hirota

    2011-02-01

    Green tea is now recognized as the most effective cancer preventive beverage. In one study, 10 Japanese-size cups of green tea daily supplemented with tablets of green tea extract limited the recurrence of colorectal polyps in humans to 50%. Thus, cancer patients who consume green tea and take anticancer drugs will have double prevention. We studied the effects of combining (-)-epigallocatechin gallate (EGCG) and anticancer drugs, focusing on inhibition of cell growth and induction of apoptosis. Numerous anticancer drugs, such as tamoxifen, COX-2 inhibitors, and retinoids were used for the experiments, and the combination of EGCG and COX-2 inhibitors consistently induced the enhancement of apoptosis. To study the mechanism of the enhancement, we paid special attention to the enhanced expressions of DDIT3 (growth arrest and DNA damage-inducible 153, GADD153), GADD45A, and CDKN1A (p21/WAF1/CIP1) genes, based on our previous evidence that a combination of EGCG and sulindac specifically induced upregulated expression of GADD153 and p21 genes in PC-9 lung cancer cells. The synergistic enhancements of apoptosis and GADD153 gene expression in human non-small cell lung cancer cells by the combination of EGCG and celecoxib were mediated through the activation of the MAPK signaling pathway. This article reviews the synergistic enhancement of apoptosis, gene expression, and anticancer effects using various combinations of EGCG and anticancer drugs, including the combination of (-)-epicatechin (EC) and curcumin. Based on the evidence, we present a new concept: green tea catechins as synergists with anticancer drugs.

  5. Histone Methylation by Temozolomide; A Classic DNA Methylating Anticancer Drug

    Science.gov (United States)

    Pickard, Amanda J.; Diaz, Anthony Joseph; Mura, Hugo; Nyuwen, Lila; Coello, Daniel; Sheva, Saif; Maria, Nava; Gallo, James M.; Wang, Tieli

    2017-01-01

    Background/Aim The alkylating agent, temozolomide (TMZ), is considered the standard-of-care for high-grade astrocytomas –known as glioblastoma multiforme (GBM)– an aggressive type of tumor with poor prognosis. The therapeutic benefit of TMZ is attributed to formation of DNA adducts involving the methylation of purine bases in DNA. We investigated the effects of TMZ on arginine and lysine amino acids, histone H3 peptides and histone H3 proteins. Materials and Methods Chemical modification of amino acids, histone H3 peptide and protein by TMZ was performed in phosphate buffer at physiological pH. The reaction products were examined by mass spectrometry and western blot analysis. Results Our results showed that TMZ following conversion to a methylating cation, can methylate histone H3 peptide and histone H3 protein, suggesting that TMZ exerts its anticancer activity not only through its interaction with DNA, but also through alterations of protein post-translational modifications. Conclusion The possibility that TMZ can methylate histones involved with epigenetic regulation of protein indicates a potentially unique mechanism of action. The study will contribute to the understanding the anticancer activity of TMZ in order to develop novel targeted molecular strategies to advance the cancer treatment. PMID:27354585

  6. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Supriya Baikar

    2010-01-01

    Full Text Available A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential.

  7. Application of imaging mass spectrometry approaches to facilitate metal-based anticancer drug research.

    Science.gov (United States)

    Lee, Ronald F S; Theiner, Sarah; Meibom, Anders; Koellensperger, Gunda; Keppler, Bernhard K; Dyson, Paul J

    2017-02-03

    Mass spectrometry imaging is being increasingly used in metal-based anticancer drug development to study elemental and/or molecular drug distributions in different biological systems. The main analytical tools employed are SIMS (especially nanoSIMS), LA-ICP-MSI and MALDI-MSI as well as a combination of complementary imaging techniques. Main challenges are appropriate sample preparation methods, reliable and validated quantification strategies and a trade-off between sensitivity and spatial resolution. So far, research has mostly focused on the development of analytical methods for imaging with the long term goal to study drug uptake into tumor tissue and toxicity affected organs and to identify cellular targets of metal-based drugs. In this review we cover the technological features of the mass spectrometry imaging methods used and give an overview of the applications in metal-based anticancer drug research as well as some future perspectives.

  8. The potential drug-drug interaction between proton pump inhibitors and warfarin

    DEFF Research Database (Denmark)

    Henriksen, Daniel Pilsgaard; Stage, Tore Bjerregaard; Hansen, Morten Rix

    2015-01-01

    BACKGROUND: Proton pump inhibitors (PPIs) have been suggested to increase the effect of warfarin, and clinical guidelines recommend careful monitoring of international normalized ratio (INR) when initiating PPI among warfarin users. However, this drug-drug interaction is sparsely investigated...

  9. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor

    NARCIS (Netherlands)

    Prakash, Jai; Beljaars, Leonie; Harapanahalli, Akshay K.; Zeinstra-Smith, Mieke; de Jager-Krikken, Alie; Hessing, Martin; Steen, Herman; Poelstra, Klaas

    2010-01-01

    Tumor-targeting of anticancer drugs is an interesting approach for the treatment of cancer since chemotherapies possess several adverse effects. In the present study, we propose a novel strategy to deliver anticancer drugs to the tumor cells through the mannose-6-phosphate/insulin-like growth factor

  10. Classification of stimuli-responsive polymers as anticancer drug delivery systems.

    Science.gov (United States)

    Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab

    2015-02-01

    Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.

  11. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice.

    Science.gov (United States)

    Mayer, Lawrence D; Harasym, Troy O; Tardi, Paul G; Harasym, Natashia L; Shew, Clifford R; Johnstone, Sharon A; Ramsay, Euan C; Bally, Marcel B; Janoff, Andrew S

    2006-07-01

    Anticancer drug combinations can act synergistically or antagonistically against tumor cells in vitro depending on the ratios of the individual agents comprising the combination. The importance of drug ratios in vivo, however, has heretofore not been investigated, and combination chemotherapy treatment regimens continue to be developed based on the maximum tolerated dose of the individual agents. We systematically examined three different drug combinations representing a range of anticancer drug classes with distinct molecular mechanisms (irinotecan/floxuridine, cytarabine/daunorubicin, and cisplatin/daunorubicin) for drug ratio-dependent synergy. In each case, synergistic interactions were observed in vitro at certain drug/drug molar ratio ranges (1:1, 5:1, and 10:1, respectively), whereas other ratios were additive or antagonistic. We were able to maintain fixed drug ratios in plasma of mice for 24 hours after i.v. injection for all three combinations by controlling and overcoming the inherent dissimilar pharmacokinetics of individual drugs through encapsulation in liposomal carrier systems. The liposomes not only maintained drug ratios in the plasma after injection, but also delivered the formulated drug ratio directly to tumor tissue. In vivo maintenance of drug ratios shown to be synergistic in vitro provided increased efficacy in preclinical tumor models, whereas attenuated antitumor activity was observed when antagonistic drug ratios were maintained. Fixing synergistic drug ratios in pharmaceutical carriers provides an avenue by which anticancer drug combinations can be optimized prospectively for maximum therapeutic activity during preclinical development and differs from current practice in which dosing regimens are developed empirically in late-stage clinical trials based on tolerability.

  12. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Science.gov (United States)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( Pproducts by gamma irradiation.

  13. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    Science.gov (United States)

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  14. Anticancer studies of drug encapsulated polyethylene terephthalate-Co-polylactic acid nanocapsules

    Directory of Open Access Journals (Sweden)

    K Sathish Kumar

    2011-01-01

    Full Text Available Objectives: The purpose of this study was to investigate the anticancer activity of anticancer drugs (5-fluorouracil and 6-thioguanine in polymeric nanocapsules in the presence and in the absence of gold and iron oxide nanoparticles toward Hep2 cancer cells. Materials and Methods: MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was used for quantitative measurements for the anticancer cell activity. Encapsulated drug in polyethylene terephthalate-polylactic acid copolymer (PET-co-PLA nanocapsules in the presence and absence of gold and iron oxide nanoparticles were prepared via the W/O/W emulsification solvent-evaporation method. Morphology of the nanoparticles was characterized by transmission electron microscopy and scanning electron microscopy. Conclusion: The average size of the polymeric nanocapsules, gold nanoparticles, and iron oxide nanoparticles were found to be in range of 230-260, 18 -20 nm, 5-10 nm, respectively. The findings in this study inferred that incorporated drug in polymeric nanocapsules with gold nanoparticles and iron oxide nanoparticles show better anticancer activity when compared with encapsulated drug in polymeric nanocapsules.

  15. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.

    Science.gov (United States)

    Sharma, Harshita; Kumar, Krishan; Choudhary, Chetan; Mishra, Pawan K; Vaidya, Bhuvaneshwar

    2016-01-01

    The aim of the study was to prepare chemotherapeutic agent-loaded zinc oxide nanoparticles for the intracellular delivery of drug, for better therapeutic activity. Zinc oxide nanoparticles have inherent anticancer properties, hence it was envisaged that by loading the anticancer drug into zinc oxide nanoparticles, enhanced anticancer activity might be observed. Zinc oxide nanoparticles were prepared using zinc nitrate and sodium hydroxide. Starch was used as the stabilizing agent. The nanoparticles prepared were characterized for size, shape, entrapment efficiency, and drug release. Further, cell line studies were performed to evaluate cellular uptake and cytotoxicity profile using MCF-7 cells. A hemolysis study was performed to check the acute toxicity of the nanoparticles. The nanoparticles were found to be 476.4 ± 2.51 nm in size, with low PDI (0.312 ± 0.02) and high entrapment efficiency (> 85%). The nanoparticles were stable, and did not form aggregates on storage in the dispersed form. A cytotoxicity study demonstrated that drug-loaded zinc oxide nanoparticles exhibited higher anticancer activity as compared to either blank zinc oxide nanoparticles and doxorubicin (DOX) alone, or their mixture. A hemolytic test revealed that the prepared zinc oxide nanoparticles caused negligible hemolysis. Thus, it can be concluded that zinc oxide nanoparticles loaded with DOX resulted in better uptake of the chemotherapeutic agent, and at the same time, showed low toxicity towards normal cells.

  16. Optimizing anticancer drug treatment in pregnant cancer patients : pharmacokinetic analysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel

    NARCIS (Netherlands)

    van Hasselt, J G C; van Calsteren, K; Heyns, L; Han, S; Mhallem Gziri, M; Schellens, J H M; Beijnen, J H; Huitema, A D R; Amant, F

    2014-01-01

    BACKGROUND: Pregnant patients with cancer are increasingly treated with anticancer drugs, although the specific impact of pregnancy-induced physiological changes on the pharmacokinetics (PK) of anticancer drugs and associated implications for optimal dose regimens remains unclear. Our objectives wer

  17. Origanum majorana Attenuates Nephrotoxicity of Cisplatin Anticancer Drug through Ameliorating Oxidative Stress

    OpenAIRE

    Amel M. Soliman; Shreen Desouky; Mohamed Marzouk; Sayed, Amany A.

    2016-01-01

    Despite the fact that cisplatin is an important anticancer drug, its clinical utilization is limited by nephrotoxicity during long term medication. Combined cisplatin chemotherapy with plant extracts can diminish toxicity and enhance the antitumor efficacy of the drug. This study evaluated the effect of Originum majorana ethanolic extract (OMEE) on cisplatin-induced nephrotoxicity. Eighteen male rats were divided into three groups as follows: a control group, a group treated with cisplatin (3...

  18. Exploring novel formulations and new classes of anticancer drugs in solid tumors

    OpenAIRE

    Slingerland, Marije

    2014-01-01

    Many current anticancer drugs have non-ideal pharmaceutical and pharmacological properties, which can lead to adverse consequences, including lack of or suboptimal therapeutic activity, dose-limiting side effects and poor patient quality of life. In this thesis we focused on some novel formulations, especially camptothecin glycoconjugate BAY 56-3722 and liposomal drug formulations, hoping to overcome some of these problems. We also focused on ‘old drugs’ for new indications, as an example HDA...

  19. Dendrimer-Functionalized Laponite Nanodisks as a Platform for Anticancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rania Mustafa

    2015-10-01

    Full Text Available In this study, we synthesized dendrimer-functionalized laponite (LAP nanodisks for loading and delivery of anticancer drug doxorubicin (DOX. Firstly, LAP was modified with silane coupling agents and succinic anhydride to render abundant carboxyl groups on the surface of LAP. Then, poly(amidoamine (PAMAM dendrimer of generation 2 (G2 were conjugated to form LM-G2 nanodisks. Anticancer drug DOX was then loaded on the LM-G2 with an impressively high drug loading efficiency of 98.4% and could be released in a pH-sensitive and sustained manner. Moreover, cell viability assay results indicate that LM-G2/DOX complexes could more effectively inhibit the proliferation of KB cells (a human epithelial carcinoma cell line than free DOX at the same drug concentration. Flow cytometry analysis and confocal laser scanning microscope demonstrated that LM-G2/DOX could be uptaken by KB cells more effectively than free DOX. Considering the exceptional high drug loading efficiency and the abundant dendrimer amine groups on the surface that can be further modified, the developed LM-G2 nanodisks may hold a great promise to be used as a novel platform for anticancer drug delivery.

  20. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia)], E-mail: zavisova@saske.sk; Koneracka, Martina [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Muckova, Marta [Hameln rds a.s., Horna 36, Modra (Slovakia); Kopcansky, Peter; Tomasovicova, Natalia; Lancz, Gabor; Timko, Milan [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Paetoprsta, Bozena; Bartos, Peter [Hameln rds a.s., Horna 36, Modra (Slovakia); Fabian, Martin [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Kosice (Slovakia)

    2009-05-15

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly(D,L-lactic-co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  1. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    Science.gov (United States)

    Závišová, Vlasta; Koneracká, Martina; Múčková, Marta; Kopčanský, Peter; Tomašovičová, Natália; Lancz, Gábor; Timko, Milan; Pätoprstá, Božena; Bartoš, Peter; Fabián, Martin

    2009-05-01

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly( D, L-lactic- co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol ®). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  2. Nanoscale coordination polymers for platinum-based anticancer drug delivery.

    Science.gov (United States)

    Rieter, William J; Pott, Kimberly M; Taylor, Kathryn M L; Lin, Wenbin

    2008-09-01

    Pt-containing nanoscale coordination polymer (NCP) particles with the formula of Tb2(DSCP)3(H2O)12 (where DSCP represents disuccinatocisplatin), NCP-1, were precipitated from an aqueous solution of Tb3+ ions and DSCP bridging ligands via the addition of a poor solvent. SEM and TEM images showed that as-synthesized NCP-1 exhibited a spherical morphology with a DLS diameter of 58.3 +/- 11.3 nm. NCP-1 particles were stabilized against rapid dissolution in water by encapsulation in shells of amorphous silica. The resulting silica-coated particles NCP-1' exhibited significantly longer half-lives for DSCP release from the particles (a t1/2 of 9 h for NCP-1' with 7 nm silica coating vs t1/2 of 1 h for as-synthesized NCP-1). In vitro cancer cell cytotoxicity assays with the human colon carcinoma cell line (HT-29) showed that internalized NCP-1' particles readily released the DSCP moieties which were presumably reduced to cytotoxic Pt(II) species to give the Pt-containing NCPs anticancer efficacy superior to the cisplatin standard. The generality of this degradable nanoparticle formulation should allow for the design of NCPs as effective delivery vehicles for a variety of biologically and medically important cargoes such as therapeutic and imaging agents.

  3. Are bisphosphonates the suitable anticancer drugs for the elderly?

    Science.gov (United States)

    Santini, Daniele; Fratto, Maria Elisabetta; Galluzzo, Sara; Vincenzi, Bruno; Tonini, Giuseppe

    2009-01-01

    Bone metastases represent an important problem in the elderly. These patients are exposed to a higher risk of developing skeletal-related events (SREs) with a subsequent decrease in quality of life and survival. Bisphosphonates have demonstrated to reduce and delay the appearance of SREs and to improve the quality of life also in elderly bone metastatic patients. Moreover, in vitro and in vivo preclinical studies suggest that bisphosphonates exert direct as well as indirect antitumor effect. Interestingly, recent clinical data confirm these results in bone metastatic cancer patients. However, randomized trials restricted to elderly patients with metastatic bone disease and focused to evaluate survival benefits have not yet been planned even if elderly patients, especially multiple myeloma, prostate and lung cancer patients, have been often included in trials. This review will examine in detail the preclinical rationale for using bisphosphonates as anticancer agents in elderly patients and will critically explore the first retrospective and prospective clinical evidences of an increased survival in patients treated with bisphosphonates. Moreover, we will analyze the safety of bisphosphonates in elderly population and discuss the clinical recommendations expressed by the SIOG Society for the use of bisphosphonates in elderly patients. Randomized clinical trials to assess the role of bisphosphonate therapy in the adjuvant setting are currently in progress and will be described in this review. If the results of these ongoing clinical trials will be positive, the indications for bisphosphonates could increase, including also elderly patients.

  4. Synthesis, Cytotoxicity and Mechanistic Evaluation of 4-Oxoquinoline-3-carboxamide Derivatives: Finding New Potential Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Luana da S. M. Forezi

    2014-05-01

    Full Text Available As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10–18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells.

  5. Self-assembly Polyrotaxanes Nanoparticles as Carriers for Anticancer Drug Methotrexate Delivery

    Institute of Scientific and Technical Information of China (English)

    Longgui Zhang; Ting Su; Bin He; Zhongwei Gu∗

    2014-01-01

    α-Cyclodextrin/poly(ethylene glycol) (α-CD/PEG) polyrotaxane nanoparticles were prepared via a self-assembly method. Anticancer drug methotrexate (MTX) was loaded in the nanoparticles. The interaction between MTX and polyrotaxane was investigated. The formation, morphology, drug release and in vitro anticancer activity of the MTX loaded polyrotaxane nanoparticles were studied. The results show that the MTX could be efficiently absorbed on the nanoparticles, and hydrogen bonds were formed between MTX andα-CDs. The typical channel-type stacking assembly style of polyrotaxane nanoparticles was changed after MTX was loaded. The mean diameter of drug loaded polyrotaxane nanoparticles were around 200 nm and the drug loading content was as high as about 20%. Drug release profiles show that most of the loaded MTX was released within 8 hours and the cumulated release rate was as high as 98%. The blank polyrotaxane nanoparticles were nontoxicity to cells. The in vitro anticancer activity of the MTX loaded polyrotaxane nanoparticles was higher than that of free MTX.

  6. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    Directory of Open Access Journals (Sweden)

    José A G Agúndez

    2014-08-01

    Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing is useful for patient selection, but final dosing adjustment should be carried out on the basis of clinical or analytical parameters rather than on pharmacogenomic information.Patient selection may seem a modest objective, but it constitutes a crucial improvement with regard to the pre-pharmacogenomics situation and it saves patients’ lives. However we should not overstate the current power of pharmacogenomics. At present the pharmacogenomics of anticancer drugs is not sufficiently developed for dose adjustments based on pharmacogenomics only, and no current guidelines recommend such adjustments without considering clinical and/or analytical parameters.

  7. Platinum anticancer drugs. From serendipity to rational design.

    Science.gov (United States)

    Monneret, C

    2011-11-01

    The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt

  8. Clinical Pharmacokinetic Interactions between Herbal Supplements and Anticancer Drugs

    NARCIS (Netherlands)

    Goey, A.K.L.

    2013-01-01

    In cancer treatment the response to chemotherapy is often characterized by a wide interpatient variability. The increasing popularity of herbal supplements among cancer patients may contribute to this phenomenon. Since these supplements may affect drug metabolizing cytochrome P450 (CYP) enzymes, pla

  9. Controlled release of an anti-cancer drug from DNA structured nano-films

    Science.gov (United States)

    Cho, Younghyun; Lee, Jong Bum; Hong, Jinkee

    2014-02-01

    We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with peptide via layer-by-layer (LbL) deposition method. The key to the successful application of these nanofilms requires a novel approach of the influence of DNA architecture for the drug release from functional nano-sized surface. Herein, we have taken first steps in building and controlling the drug incorporated DNA origami based multilayered nanostructure. Our finding highlights the novel and unique drug release character of LbL systems in serum condition taken full advantages of DNA origami structure. This multilayer thin film dramatically affects not only the release profiles but also the structure stability in protein rich serum condition.

  10. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs.

    Science.gov (United States)

    Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-08-01

    Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.

  11. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

    Directory of Open Access Journals (Sweden)

    Subtel’na I. Yu.

    2011-04-01

    Full Text Available The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program, among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected.

  12. Sequential-release of anticancer drugs microcapsulated with ethylcellulose

    Institute of Scientific and Technical Information of China (English)

    顾耕华; 黄剑奇; 何虹

    2002-01-01

    Objective To approach the sequential release of antitumor drugs and promote the effect of chemotherapy.Methods Adriamycin (ADM) and carboplatin (CBP) were respectively microcapsulated with ethylcellulose by organic phase separation. The morphology and sizes of the microcapsules were observed and measured with light microscope and scanning electromicroscope. The contents and the release rates of ADM and CBP in microcapsules were measured with fluorescence spectrophotometer and high-efficiency phantom chromatic (HPC) spectrum respectively. The antitumor sensitivity test in vitro was devised with MTT assay.Results The microcapsules of ADM and CBP were spherical in shape with diameters of 196?4 μm and 214?8 μm respectively. The contents of one-layer and two-layer CBP and ADM microcapsules were 51.4%, 35.7% and 39.8% respectively, with the release rates in vitro of 62.4%/day, 54.8%/day and 48.2% /8h. The results of drug sensitivity test in vitro demonstrated that the current preparation has never affected the stability and antitumor activity of CBP and ADM.Conclusion Microcapsules with different drugs and different thickness of material have different release rate. Combined arterial chemoembolization with different microcapsules could approach the sequential release and promote the effect of chemotherapy.

  13. Physicochemical Characterization and Cyclodextrin Complexation of the Anticancer Drug Lapatinib

    Directory of Open Access Journals (Sweden)

    Gergő Tóth

    2017-01-01

    Full Text Available Lapatinib (LAP, the tyrosine kinase inhibitor drug with moderate bioavailability, was characterized in terms of physicochemical properties: acid-base characteristics, lipophilicity, and solubility. The highly lipophilic nature of the drug and its extremely low water solubility (S0=0.82 nM limit the development of a parenteral formulation. In order to enhance solubility and bioavailability, inclusion complex formation with cyclodextrins (CDs is a promising method of choice. Therefore, LAP-CD interactions were also studied by a multianalytical approach. The stability constants of LAP with native cyclodextrins, determined by UV spectroscopy, identified the seven-membered β-CD as the most suitable host. Continuous variation method (Job’s plot by 1H NMR showed a 1 : 1 stoichiometry for the complexes. The geometry of the complex was elucidated by 2D ROESY NMR measurements and molecular modeling, indicating that the partial molecular encapsulation includes the fluorophenyl ring of LAP. Phase-solubility studies with four CDs, β-CD, (2-hydroxypropyl-β-cyclodextrin (HP-β-CD, randomly methylated-β- (RAMEB- cyclodextrin, and sulfobutylether-β-cyclodextrin (SBE-β-CD, show an AL type diagram and highly increased solubility via CD complexation. The results are especially promising with SBE-β-CD, exerting more than 600-fold gain in solubility. The equilibrium and structural information presented herein can offer the molecular basis for an improved drug formulation with enhanced bioavailability.

  14. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  15. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation.

    Science.gov (United States)

    Wu, Shangquan; Liu, Xiaoli; Zhou, Xiarong; Liang, Xin M; Gao, Dayong; Liu, Hong; Zhao, Gang; Zhang, Qingchuan; Wu, Xiaoping

    2016-03-15

    Cancer is a serious threat to human health. Although numerous anti-cancer drugs are available clinically, many have shown toxic side effects due to poor tumor-selectivity, and reduced effectiveness due to cancers rapid development of resistance to treatment. The development of new highly efficient and practical methods to quantify cell viability and its change under drug treatment is thus of significant importance in both understanding of anti-cancer mechanism and anti-cancer drug screening. Here, we present an approach of utilizing a nanomechanical fluctuation based highly sensitive microcantilever sensor, which is capable of characterizing the viability of cells and quantitatively screening (within tens of minutes) their responses to a drug with the obvious advantages of a rapid, label-free, quantitative, noninvasive, real-time and in-situ assay. The microcantilever sensor operated in fluctuation mode was used in evaluating the paclitaxel effectiveness on breast cancer cell line MCF-7. This study demonstrated that the nanomechanical fluctuations of the microcantilever sensor are sensitive enough to detect the dynamic variation in cellular force which is provided by the cytoskeleton, using cell metabolism as its energy source, and the dynamic instability of microtubules plays an important role in the generation of the force. We propose that cell viability consists of two parts: biological viability and mechanical viability. Our experimental results suggest that paclitaxel has little effect on biological viability, but has a significant effect on mechanical viability. This new method provides a new concept and strategy for the evaluation of cell viability and the screening of anti-cancer drugs.

  16. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin

    Science.gov (United States)

    Bakkialakshmi, S.; Chandrakala, D.

    2012-03-01

    The binding of anticancer drugs (i) Uracil (U), (ii) 5-Fluorouracil (5FU) and (iii) 5-Chlorouracil (5ClU), to bovine serum albumin (BSA) at two levels of temperature was studied by the fluorescence of quenching method. UV/Vis, time-resolved fluorescence, Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR) and scanning electron microscope (SEM) analyses were also made. Binding constants (Ka) and binding sites (n) at various levels of temperature were calculated. The obtained binding sites were found to be equal to one for all the three quenchers (U, 5FU and 5ClU) at two different temperature levels. Thermodynamic parameters ΔH, ΔG and ΔS have been calculated and were presented in tables. Change in FTIR absorption intensity shows strong binding of anticancer drugs to BSA. Changes in chemical shifts of NMR and fluorescence lifetimes of the drugs indicate the presence of interaction and binding of BSA to anticancer drugs. 1H NMR spectra and SEM photographs also conform this binding.

  17. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resista...

  18. Drug efflux pump deficiency and drug target resistance masking in growing bacteria

    Science.gov (United States)

    Fange, David; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    Recent experiments have shown that drug efflux pump deficiency not only increases the susceptibility of pathogens to antibiotics, but also seems to “mask” the effects of mutations, that decrease the affinities of drugs to their intracellular targets, on the growth rates of drug-exposed bacteria. That is, in the presence of drugs, the growth rates of drug-exposed WT and target mutated strains are the same in a drug efflux pump deficient background, but the mutants grow faster than WT in a drug efflux pump proficient background. Here, we explain the mechanism of target resistance masking and show that it occurs in response to drug efflux pump inhibition among pathogens with high-affinity drug binding targets, low cell-membrane drug-permeability and insignificant intracellular drug degradation. We demonstrate that target resistance masking is fundamentally linked to growth-bistability, i.e., the existence of 2 different steady state growth rates for one and the same drug concentration in the growth medium. We speculate that target resistance masking provides a hitherto unknown mechanism for slowing down the evolution of target resistance among pathogens. PMID:19416855

  19. Ginseng and Anticancer Drug Combination to Improve Cancer Chemotherapy: A Critical Review

    Directory of Open Access Journals (Sweden)

    Shihong Chen

    2014-01-01

    Full Text Available Ginseng, a well-known herb, is often used in combination with anticancer drugs to enhance chemotherapy. Its wide usage as well as many documentations are often cited to support its clinical benefit of such combination therapy. However the literature based on objective evidence to make such recommendation is still lacking. The present review critically evaluated relevant studies reported in English and Chinese literature on such combination. Based on our review, we found good evidence from in vitro and in vivo animal studies showing enhanced antitumor effect when ginseng is used in combination with some anticancer drugs. However, there is insufficient clinical evidence of such benefit as very few clinical studies are available. Future research should focus on clinically relevant studies of such combination to validate the utility of ginseng in cancer.

  20. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Jafargholizadeh, Naser [Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Zargar, Seyed Jalal, E-mail: Zargar@khayam.ut.ac.ir [Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Safarian, Shahrokh; Habibi-Rezaei, Mehran [Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-06-10

    Highlights: Black-Right-Pointing-Pointer For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. Black-Right-Pointing-Pointer Binding of mitoxantrone molecules to histone H1 is positive cooperative. Black-Right-Pointing-Pointer Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  1. A pH-Sensitive Injectable Nanoparticle Composite Hydrogel for Anticancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yuanfeng Ye

    2016-01-01

    Full Text Available According to previous reports, low pH-triggered nanoparticles were considered to be excellent carriers for anticancer drug delivery, for the reason that they could trigger encapsulated drug release at mild acid environment of tumor. Herein, an acid-sensitive β-cyclodextrin derivative, namely, acetalated-β-cyclodextrin (Ac-β-CD, was synthesized by acetonation and fabricated to nanoparticles through single oil-in-water (o/w emulsion technique. At the same time, camptothecin (CPT, a hydrophobic anticancer drug, was encapsulated into Ac-β-CD nanoparticles in the process of nanoparticle fabrication. Formed nanoparticles exhibited nearly spherical structure with diameter of 209±40 nm. The drug release behavior of nanoparticles displayed pH dependent changes due to hydrolysis of Ac-β-CD. In order to overcome the disadvantages of nanoparticle and broaden its application, injectable hydrogels with Ac-β-CD nanoparticles were designed and prepared by simple mixture of nanoparticles solution and graphene oxide (GO solution in this work. The injectable property was confirmed by short gelation time and good mobility of two precursors. Hydrogels were characterized by dynamic mechanical test and SEM, which also reflected some structural features. Moreover, all hydrogels underwent a reversible sol-gel transition in alkaline environment. Finally, the results of in vitro drug release profile indicated that hydrogel could control drug release or bind drug inside depending on the pH value of released medium.

  2. Anticancer compounds as leishmanicidal drugs: challenges in chemotherapy and future perspectives.

    Science.gov (United States)

    Fuertes, Miguel A; Nguewa, Paul A; Castilla, Josefina; Alonso, Carlos; Pérez, José M

    2008-01-01

    Leishmaniasis comprises a spectrum of parasitic illnesses caused by several species of the protozoan kinetoplastid parasite, Leishmania spp. The disease affects 12 million people around the world with an annual death rate of approximately 80,000 people. Several drugs are available for treating leishmaniasis. For example, pentavalent antimonial compounds, such as sodium stibogluconate and meglumine antimonite are the drugs used in first-line chemotherapy. As second-line drugs, amphotericin B and pentamidine are used. However, current treatments against leishmaniasis are usually unsatisfactory due to some limitations including the route of administration of the drugs, their unaffordable cost and toxicity. Efforts have been made to develop new leishmanicidal drugs and to find new strategies of drug design. Hence, it is interesting to point out that the effectiveness of certain molecules as both anticancer drugs and antiprotozoal agents suggested that this class of compounds and their derivatives might be useful as antileishmanial agents. This review summarizes the anticancer compounds that have been investigated against leishmaniasis. Some of such agents include: compounds with in vitro antileishmanial activities, molecules tested in clinical trials and registered patents. We finally discuss challenges in chemotherapy and future prospects in the treatment of leishmaniasis.

  3. Folate receptor targeted liposomes encapsulating anti-cancer drugs.

    Science.gov (United States)

    Chaudhury, Anumita; Das, Surajit

    2015-01-01

    Among all available lipid based nanoparticulate systems, the success of liposomal drug delivery system is evident by the number of liposomal products available in the market or under advanced stages of preclinical and clinical trials. Liposome has the ability to deliver chemotherapeutic agents to the targeted tissues or even inside the cancerous cells by enhanced intracellular penetration or improved tumour targeting. In the last decade, folate receptor mediated tumour targeting has emerged as an attractive alternative method of active targeting of cancer cells through liposomes due to its numerous advantages over other targeting methods. Folate receptors, also known as folate binding proteins, allow the binding and internalization of folate or folic acid into the cells by a method called folate receptor mediated endocytosis. They have restricted presence in normal cells and are mostly expressed during malignant transformation. In this review article, folate receptor targeting capability of liposomes has been described. This review article has focussed on the different cancer drugs which have been encapsulated in folate receptor targeted liposomes and their in vitro as well as in vivo efficacies in several tumour models.

  4. Effects of Complementary and Alternative Medicines (CAM) on the Metabolism and Transport of Anticancer Drugs

    OpenAIRE

    Mooiman, K.D.

    2013-01-01

    The use of complementary and alternative medicines (CAM), such as herbs and dietary supplements, has become more popular among cancer patients. Cancer patients use these supplements for different reasons such as reduction of side effects and improvement of their quality of life. In general, the use of CAM is considered as safe. However, concomitant use of CAM and anticancer drugs could result in serious safety issues since CAM have the potential to cause pharmacokinetic interactions with conv...

  5. Anti-VEGF Anticancer Drugs: Mind the Hypertension.

    Science.gov (United States)

    Katsi, Vasiliki; Zerdes, Ioannis; Manolakou, Stavroula; Makris, Thomas; Nihoyannopoulos, Petros; Tousoulis, Dimitris; Kallikazaros, Ioannis

    2014-01-01

    The introduction of therapies that inhibit tumor angiogenesis and particularly target to vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) (VEGF inhibitors/VEGFi) have revolutionized the treatment of various cancer types. Although their clinical benefit can be optimal for cancer-affected patients, the safety of these targeted agents is of special concern especially for longer-term adjuvant or maintenance treatment. Importantly, VEGFi therapy has been significantly associated with hypertension (HTN) as an adverse effect and therefore the control of blood pressure (BP) after the administration of these drugs remains a challenging matter to be faced. The aim of this review is to summarize studies which investigate the association of VEGFi agents with HTN manifestation and the possible risks associated with this complication. Additionally, given that the optimal management of HTN caused by VEGFi remains obscure, this review will focus on prevention strategies including BP monitoring plans and propose potential therapeutic approaches.

  6. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    Directory of Open Access Journals (Sweden)

    Miroslav Barancik

    2011-12-01

    Full Text Available The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX on P-gp-mediated multidrug resistance (MDR in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR. Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs, especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells.

  7. ACTIVITY OF LEAF EXTRACTS OF COIX LACHRYMA LINN. AND ASPARAGUS COCHINCHINENSISLINN. AS BREAST ANTICANCER DRUGS

    Directory of Open Access Journals (Sweden)

    RESMI MUSTARICHIE

    2011-11-01

    Full Text Available In the current economic crisis, the use of plant medicine forcancer prevention should be investigated. Coix lachryma Linn and Asparagus cochinchinensis Linn are among eleven of species of medicinal plants that are noted as plant medicine for cancer in Indonesia, although their mechanism of action are still unknown. The eleven plants were screened using in vitro methods, Sulforhodamin B against breast cancer cells (MCF"7 and skin (KB. The research included a maceration process using ethanol as solvent and an anti"cancer testing process in vitro using Sulforhodamin B indicated by the value of percentage viability. Extracts were classed as being 'active anticancer' if they showed IC50 values below 100 ppm.. Coix lachryma Linn. and Asparagus cochinchinensis Linn. show breast and skin anticancer activity withIC50 values 6.51 ppm and 11.3 ppm of MCF"7 cells. The ethanol plant extracts were further extracted using various solvents with increasing polarity: n"hexane, methylene chloride, and ethyl acetate. The methylene chloride extract of Coix lachryma Linn. had IC50 = 2.75 ppm against MCF"7 cells. Against KB cells, methylene chloride extracts of Coix lachryma Linn. gave IC50 = 5.16 ppm. For Asparagus cochinchinensis Linn., an ethyl acetate extract had IC50 = 3.70 ppm against KB cancer cells and IC50 = 9.80 ppm against MCF"7 cancer cells. These data indicated that both plants can be used as anticancer drugs on breast and skin cancers.

  8. [Development of anti-cancer drugs under new renewed GCP--from the viewpoint of drug development company developer].

    Science.gov (United States)

    Ueno, T; Kobayashi, T; Inoue, K; Yanagi, Y; Yamada, Y

    1998-04-01

    During the past 7 years since the enforcement of Japan's first GCP in October 1990, various standards and guidelines have been introduced in Japan. On the other hand, the harmonization of GCP has been the subject of major discussion at ICH in order to allow the mutual acceptance of clinical data from different countries. In order to further improve the reliability and consistency of clinical data and the ethics of clinical trials in Japan, the new GCP was enforced in April 1997. A clinical study is conducted by the sponsor, but will only be successful with the collaboration of trial subjects, medical institutions, heads of medical institutions, investigators, subinvestigators, pharmacists, nurses, laboratory technicians, and other assisting staff. Before the full enforcement of the new GCP, we, as sponsors of clinical trials, carried out a survey of the current status of clinical trials centering on the reactions of medical institutions to the new GCP, future of clinical trials on anti-cancer drugs in Japan, and differences in time from clinical trials to registration in Japan, the United State and Europe. We sent a questionnaire by facsimile to 21 pharmaceutical companies which have developed or are developing anti-cancer drugs and obtained replies from 20 companies (95%) from August 25 to 30, 1997. This paper reports issues concerning clinical trials on anti-cancer drugs based on the results of our survey.

  9. Applications of nanosystems to anticancer drug therapy (Part I. Nanogels, nanospheres, nanocapsules).

    Science.gov (United States)

    Talevi, Alan; Gantner, Melisa E; Ruiz, María E

    2014-01-01

    One of the greatest challenges in cancer drug therapy is to maximize the effectiveness of the active agent while reducing its systemic adverse effects. To add more, many widely-used chemoterapeutic agents present unfavorable physicochemical properties (e.g. low solubility, lack of chemical or biological stability) that hamper or limit their therapeutic applications. All these issues may be overcome by designing adequate drug delivery systems; nanocarriers are particularly suitable for this purpose. Nanosystems can be used for targeted-drug release, treatment, diagnostic imaging and therapy monitoring. They allow the formulation of drug delivery systems with user-defined characteristics regarding solubility, biodegradability, particle size, release kinetics and active targeting, among others. This review (Part I) focuses on recent patents published between 2008 and the present day, related to nanospheres, nanocapsules and nanogels applied to anticancer drug therapy. Other nanosystems is covered in a second article (Part II).

  10. Anti-cancer drug discovery: update and comparisons in yeast, Drosophila, and zebrafish.

    Science.gov (United States)

    Gao, Guangxun; Chen, Liang; Huang, Chuanshu

    2014-01-01

    Discovery of novel cancer chemotherapeutics focuses on screening and identifying compounds that can target 'cancer-specific' biological processes while causing minimal toxicity to non-tumor cells. Alternatively, model organisms with highly conserved cancer-related cellular processes relative to human cells may offer new opportunities for anticancer drug discovery when combined with chemical screening. Some organisms used for chemotherapeutic discovery include yeast, Drosophila, and zebrafish which are similar in important ways relevant to cancer study but offer distinct advantages as well. Here, we describe these model attributes and the rationale for using them in cancer drug screening research.

  11. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer...... drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms...

  12. Alkaloids from Marine Invertebrates as Important Leads for Anticancer Drugs Discovery and Development

    Directory of Open Access Journals (Sweden)

    Concetta Imperatore

    2014-12-01

    Full Text Available The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines, together with some of their synthetic analogs, are illustrated. Recent discoveries concerning the current state of the potential and/or development of some of them as new drugs, as well as the current knowledge regarding their modes of action, are also summarized. A special emphasis is given to the role of marine invertebrate alkaloids as an important source of leads for anticancer drug discovery.

  13. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery.

  14. Nano-chitosan particles in anticancer drug delivery: An up-to-date review.

    Science.gov (United States)

    Kamath, Pooja R; Sunil, Dhanya

    2017-02-27

    Cancer is one of the most awful lethal diseases all over the world and the success of its current chemotherapeutic treatment strategies is limited due to several associated drawbacks. The exploration of cancer cell physiology and its microenvironment have exposed the potential of various classes of nanocarriers to deliver anticancer chemotherapeutic agents at the tumor target site. These nanocarriers must evade the immune surveillance system and achieve target selectivity. Besides, they must gain access in to the interior of cancerous cells, evade endosomal entrapment and discharge the drugs in a sustained manner. Chitosan, the second naturally abundant polysaccharide is a biocompatible, biodegradable and mucoadhesive cationic polymer which has been exploited extensively in the last few years in the effective delivery of anticancer chemotherapeutics to the target tumor cells. Therapeutic agent-loaded surface modified chitosan nanoparticles are established to be more stable, permeable and bioactive. This review will provide an up-to-date evidence-based background on recent pharmaceutical advancements in the transformation of chitosan nanoparticles for smart anticancer therapeutic drug delivery.

  15. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery.

    Science.gov (United States)

    Lu, Kun-Ying; Li, Rou; Hsu, Chun-Hua; Lin, Cheng-Wei; Chou, Shen-Chieh; Tsai, Min-Lang; Mi, Fwu-Long

    2017-06-01

    Fucoidan, a sulfated marine polysaccharide, has many potential biological functions, including anticancer activity. Recently, fucoidan has been reported to target P-selectin expressed on metastatic cancer cells. Increasing research attention has been devoted to the developments of fucoidan-based nanomedicine. However, the application of traditional chitosan/fucoidan nanoparticles in anticancer drug delivery may be limited due to the deprotonation of chitosan at a pH greater than 6.5. In this study, a mutli-stimuli-responsive nanoparticle self-assembled by fucoidan and a cationic polypeptide (protamine) was developed, and their pH-/enzyme-responsive properties were characterized by circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and zeta potential analysis. Enzymatic digestion and acidic intracellular microenvironment (pH 4.5-5.5) in cancer cells triggered the release of an anticancer drug (doxorubicin) from the nanoparticles. The protamine/fucoidan complex nanoparticles with P-selectin mediated endocytosis, charge conversion and stimuli-tunable release properties showed an improved inhibitory effect against a metastatic breast cancer cell line (MDA-MB-231).

  16. Methods for Elucidation of DNA-Anticancer Drug Interactions and their Applications in the Development of New Drugs.

    Science.gov (United States)

    Misiak, Majus; Mantegazza, Francesco; Beretta, Giovanni L

    2016-01-01

    DNA damaging agents including anthracyclines, camptothecins and platinum drugs are among most frequently used drugs in the chemotherapeutic routine. Due to their relatively low selectivity for cancer cells, administration of these drugs is associated with adverse side effects, inherent genotoxicity with risk of developing secondary cancers. Development of new drugs, which could be spared of these drawbacks and characterize by improved antitumor efficacy, remains challenging yet vitally important task. These properties are in large part dictated by the selectivity of interaction between the drug and DNA and in this way the studies aimed at elucidating the complex interactions between ligand and DNA represent a key step in the drug development. Studies of the drug-DNA interactions encompass determination of DNA sequence specificity and mode of DNA binding as well as kinetic, dynamic and structural parameters of binding. Here, we consider the types of interactions between small molecule ligands and polynucleotides, how they are affected by DNA sequence and structure, and what is their significance for the antitumor activity. Based on this knowledge, we discuss the wide array of experimental techniques available to researchers for studying drug-DNA interactions, which include absorption and emission spectroscopies, NMR, magnetic and optical tweezers or atomic force microscopy. We show, using the clinical and experimental anticancer drugs as examples, how these methods provide various types of information and at the same time complement each other to provide full picture of drug- DNA interaction and aid in the development of new drugs.

  17. Anticancer efficacy and absorption, distribution, metabolism, and toxicity studies of Aspergiolide A in early drug development

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yuanyuan Wang, Xin Qi, Dehai Li, Tianjiao Zhu, Xiaomei Mo, Jing LiKey Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of ChinaAbstract: Since the first anthracycline was discovered, many other related compounds have been studied in order to overcome its defects and improve efficacy. In the present paper, we investigated the anticancer effects of a new anthracycline, aspergiolide A (ASP-A, from a marine-derived fungus in vitro and in vivo, and we evaluated the absorption, distribution, metabolism, and toxicity drug properties in early drug development. We found that ASP-A had activity against topoisomerase II that was comparable to adriamycin. ASP-A decreased the growth of various human cancer cells in vitro and induced apoptosis in BEL-7402 cells via a caspase-dependent pathway. The anticancer efficacy of ASP-A on the growth of hepatocellular carcinoma xenografts was further assessed in vivo. Results showed that, compared with the vehicle group, ASP-A exhibited significant anticancer activity with less loss of body weight. A pharmacokinetics and tissue distribution study revealed that ASP-A was rapidly cleared in a first order reaction kinetics manner, and was enriched in cancer tissue. The maximal tolerable dose (MTD of ASP-A was more than 400 mg/kg, and ASP-A was not considered to be potentially genotoxic or cardiotoxic, as no significant increase of micronucleus rates or inhibition of the hERG channel was seen. Finally, an uptake and transport assay of ASP-A was performed in monolayers of Caco-2 cells, and ASP-A was shown to be absorbed through the active transport pathway. Altogether, these results indicate that ASP-A has anticancer activity targeting topoisomerase II, with a similar structure and mechanism to adriamycin, but with much lower toxicity. Nonetheless, further molecular structure optimization is necessary.Keywords: aspergiolide A, anticancer

  18. Epithelial-mesenchymal transition: a new target in anticancer drug discovery.

    Science.gov (United States)

    Marcucci, Fabrizio; Stassi, Giorgio; De Maria, Ruggero

    2016-05-01

    The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial-mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.

  19. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  20. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    Science.gov (United States)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  1. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase

    Science.gov (United States)

    Hong, Areum; Lee, Hong Hee; Heo, Chae Eun; Cho, Yunju; Kim, Sunghwan; Kang, Dukjin; Kim, Hugh I.

    2016-12-01

    With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations.

  2. Mucoadhesive nanoparticles from tamarind seed polysaccharides for sustained delivery of anticancer drug irinotecan

    Directory of Open Access Journals (Sweden)

    Pranjal Saikia

    2013-01-01

    Full Text Available The present study is aimed at development and optimization of mucoadhesive nanoparticles (NPs from natural mucoadhesive polysaccharides extracted from Tamarind seeds (Tamarindus indica for the sustained delivery of anticancer drug irinotecan. The drug loaded NPs were prepared by ion gelation method with the isolated polysaccharide by homogenization followed by lyophilization. The polysaccharides were cross-linked with sodium alginate in different ratios. The formulations were optimized using two level factorial design (Design Expert - 8.0.7.1 using the polysaccharide to alginate ratio, homogenization time and homogenization speed as independent variables and particle size (PS, drug entrapment efficiency and cumulative drug release as the dependent variables. The NPs were characterized in terms of PS, entrapment efficiency, drug loading (DL, in vitro drug release and cell viability studies in mice. Stable NPs were obtained with average PS of 405 ± 25.2 nm. The preparations were homogenous showing polydispersity index of 0.497 ± 0.02. The formulation showed up to 95.36 ± 3.1% (w/w yield showing DL of 1.0 ± 0.2% (w/w. The entrapment efficiency was found to be 46.56 ± 1.5% (w/w. In vitro drug release showed initial burst release followed by controlled release pattern showing up to 60% release in 12 h. The average cell viability was found to be 80% in case of the control group, which was reduced to 36% for NPs treated groups respectively. The Fourier transform infrared studies showed no incompatibility in the formulated NPs. It may be concluded from the study that tamarind seed polysaccharides may be suitable for formulation of mucoadhesive NPs for better efficacy and sustained delivery of anticancer drug irinotecan with reduced toxicity.

  3. Recent advances in carbon nanotubes as delivery systems for anticancer drugs.

    Science.gov (United States)

    Iannazzo, Daniela; Piperno, Anna; Pistone, Alessandro; Grassi, Giovanni; Galvagno, Signorino

    2013-01-01

    Problems associated with the administration of anticancer drugs, such as limited solubility, poor biodistribution,lack of selectivity, and healthy tissue damage, can be overcome by the implementation of drug delivery systems. A wide range of materials, including liposomes, microspheres, polymers and recently, carbon nanotubes (CNTs), have been investigated for delivering anticancer drugs on the purpose of reducing the number of necessary administrations, providing more localized and better use of the active agents, and increasing patient compliance. Carbon nanotubes (CNTs) have attracted particular attention as carriers of biologically relevant molecules due to their unique physical, chemical and physiological properties. The exact relationship between the physical-chemical properties of carbon nanotubes, their cell to-cell interactions, reactivity, and biological/systemic consequences are relevant issues and it is important to know suchinter-relationships beforehand to employ the benefits of these nanomaterials without the hazardous consequences. The purpose of this review is to present highlight of recent developments in the application of carbon nanotubes as cargoes for anti cancer drugs and in the diagnosis of cancer diseases.

  4. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  5. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yi-Jun Wang

    2014-09-01

    Full Text Available The phenomenon of multidrug resistance (MDR has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs, such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.

  6. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyun, E-mail: wangjingyun67@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Cui, Shuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Bao, Yongming, E-mail: biosci@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Xing, Jishuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Hao, Wenbo [Department of Physics and Chemistry, Heihe University, Heihe 164300 (China)

    2014-10-01

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  7. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes

    Science.gov (United States)

    Chen, Jian; Zhang, Bei; Xia, Fei; Xie, Yunchang; Jiang, Sifan; Su, Rui; Lu, Yi; Wu, Wei

    2016-03-01

    Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL-1, but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using 125I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell lines

  8. The status of platinum anticancer drugs in the clinic and in clinical trials.

    Science.gov (United States)

    Wheate, Nial J; Walker, Shonagh; Craig, Gemma E; Oun, Rabbab

    2010-09-21

    Since its approval in 1979 cisplatin has become an important component in chemotherapy regimes for the treatment of ovarian, testicular, lung and bladder cancers, as well as lymphomas, myelomas and melanoma. Unfortunately its continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance. Over the last 30 years, 23 other platinum-based drugs have entered clinical trials with only two (carboplatin and oxaliplatin) of these gaining international marketing approval, and another three (nedaplatin, lobaplatin and heptaplatin) gaining approval in individual nations. During this time there have been more failures than successes with the development of 14 drugs being halted during clinical trials. Currently there are four drugs in the various phases of clinical trial (satraplatin, picoplatin, Lipoplatin and ProLindac). No new small molecule platinum drug has entered clinical trials since 1999 which is representative of a shift in focus away from drug design and towards drug delivery in the last decade. In this perspective article we update the status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials, and discuss the results in the context of where we believe the field will develop over the next decade.

  9. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib

    Directory of Open Access Journals (Sweden)

    Wang Xia

    2009-07-01

    Full Text Available Abstract The proteasome inhibitor and anti-cancer drug bortezomib was tested for in vitro activity against bloodstream forms of Trypanosoma brucei. The concentrations of bortezomib required to reduce the growth rate by 50% and to kill all trypanosomes were 3.3 nM and 10 nM, respectively. In addition, bortezomib was 10 times more toxic to trypanosomes than to human HL-60 cells. Moreover, exposure of trypanosomes to 10 nM bortezomib for 16 h was enough to kill 90% of the parasites following incubation in fresh medium. However, proteasomal peptidase activities of trypanosomes exposed to bortezomib were only inhibited by 10% and 30% indicating that the proteasome is not the main target of the drug. The results suggest that bortezomib may be useful as drug for the treatment of human African trypanosomiasis.

  10. Impedimetric toxicity assay in microfluidics using free and liposome-encapsulated anticancer drugs

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Montini, Lucia;

    2015-01-01

    In this work, we have developed a microfluidic cytotoxicity assay for a cell culture and detection platform, which enables both fluid handling and electrochemical/optical detection. The cytotoxic effect of anticancer drugs doxorubicin (DOX), oxaliplatin (OX) as well as OX-loaded liposomes......, developed for targeted drug delivery, was evaluated using real-time impedance monitoring. The time-dependent effect of DOX on HeLa cells was monitored and found to have a delayed onset of cytotoxicity in microfluidics compared with static culture conditions based on data obtained in our previous study......-dependent cytotoxic response of fibrosarcoma cells (HT1080) to free OX and OX-loaded liposomes was observed and attributed to incomplete degradation of the liposomes, which results in lower drug availability. The matrix metalloproteinase (MMP)-dependent release of OX from OX-loaded liposomes was also confirmed using...

  11. Gaojushen:a novel anti-cancer drug prepared from SEC superantigen

    Institute of Scientific and Technical Information of China (English)

    陈廷祚

    2005-01-01

    @@ 1 Clinical observations Gaojushen is a novel anti-cancer drug developed by Xiehe Bio-pharmaceutical Company,Shenyang, China. It is prepared and processed from the filtrate of Staphylococcus aureus culture. The active component contained in it has been shown to be a SEC superantigen that is a metabolite of the culture.This superantigen is marked by its ability to stimulate T cells at a high frequency, thereby giving rise to potent cell-mediated immunological responses and producing a large variety of cytokines with the final rsult of apoptosis of tumor cells. The drug was approved for trial prodoction in 1994 by the Center of the State Evaluation and Review of New Drugs,China,and was licenced for marketing by 1996 after finishing the phase III clinical trial.

  12. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  13. Microfluidic-based G-quadruplex ligand displacement assay for alkaloid anticancer drug screening.

    Science.gov (United States)

    Shen, Haihui; Zhang, Bo; Xu, Huiyan; Sun, Yue; Wu, Qiwang; Shen, Hong; Liu, Yingchun

    2017-02-05

    Some natural heterocyclic alkaloids containing planar group show potential to complex with specific promoter region of protooncogene for stabilizing the G-quadruplex (G4) structure which nowadays promises to be a target in anticancer drug design. However, in view of the polymorphic characteristics and structural complexity of heterocyclic alkaloids, it is desirable to develop high-throughput and low-consumption approach for anticancer drug screening. In this paper, an intensive study on alkaloid ligand/G4 DNA interaction has been conducted, demonstrating that the end-stacking interaction is the favorable binding mode between the oncogene-related Pu22 G4 DNA and the heterocyclic alkaloid ligand. Based on structural feasibility and energy minimization, a ligand displacement assay for screening alkaloid ligand in stabilizing the oncogene target G4 has been developed, which also helps to facilitate the assessment of drug specificity. Coupled with microfluidic-based DNAzyme-catalytic chemiluminescence detection, the approach showed the advantages of high sensitivity, high throughput with low sample and reagent consumptions.

  14. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  15. Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery.

    Science.gov (United States)

    Hu, Jingjing; Su, Yunzhang; Zhang, Hongfeng; Xu, Tongwen; Cheng, Yiyun

    2011-12-01

    In this study, dendrimers was synthesized by introducing functional groups into the interior pockets of fully acetylated dendrimers. NMR techniques including COSY and 2D-NOESY revealed the molecular structures of the synthesized dendrimers and the encapsulation of guest molecule such as methotrexate within their interior pockets. The synthesized polymeric nanocarriers showed much lower cytotoxicity on two cell lines than cationic dendrimers, and exhibited better performance than fully acetylated dendrimers in the sustained release of methotrexate. The results provided a new strategy in the design of non-toxic dendrimers with high performance in the delivery of anti-cancer drugs for clinical applications.

  16. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.

    2017-01-01

    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  17. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference.

    Science.gov (United States)

    Bardin, C; Astier, A; Vulto, A; Sewell, G; Vigneron, J; Trittler, R; Daouphars, M; Paul, M; Trojniak, M; Pinguet, F

    2011-07-01

    Stability studies performed by the pharmaceutical industry are only designed to fulfill licensing requirements. Thus, post-dilution or -reconstitution stability data are frequently limited to 24h only for bacteriological reasons regardless of the true chemical stability which could, in many cases, be longer. In practice, the pharmacy-based centralized preparation may require infusions to be made several days in advance to provide, for example, the filling of ambulatory devices for continuous infusions or batch preparations for dose banding. Furthermore, a non-justified limited stability for expensive products is obviously very costly. Thus, there is a compelling need for additional stability data covering practical uses of anticancer drugs. A European conference consensus was held in France, May 2010, under the auspices of the French Society of Oncology Pharmacy (SFPO) to propose adapted rules on stability in practical situations and guidelines to perform corresponding stability studies. For each anticancer drug, considering their therapeutic index, the pharmacokinetics/pharmacodynamics (PK/PD) variability, specific clinical use and risks related to degradation products, the classical limit of 10% of degradation can be inappropriate. Therefore, acceptance limits must be clinically relevant and should be defined for each drug individually. Design of stability studies has to reflect the different needs of the clinical practice (preparation for the week-ends, outpatient transportations, implantable devices, dose banding…). It is essential to use validated stability-indicating methods, separating degradation products being formed in the practical use of the drug. Sequential temperature designs should be encouraged to replicate problems seen in daily practice such as rupture of the cold-chain or temperature-cycling between refrigerated storage and ambient in-use conditions. Stressed conditions are recommended to evaluate not only the role of classical variables (p

  18. In vitro anticancer drug test: A new method emerges from the model of glioma stem cells

    Directory of Open Access Journals (Sweden)

    Gabriele Riva

    2014-01-01

    Full Text Available Glioblastoma multiforme (GBM is a grade IV astrocytoma and the most common malignant brain tumor. Current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. The failure of current therapies may be due to the presence, within the tumor, of cells characterized by enhanced self-renewal capacity, multilineage differentiation potential and elevated invasive behavior, called glioma stem cells (GSCs. To evaluate the pharmacological efficacy of selected drugs on six GSC lines, we set up a multiple drug responsivity assay based on the combined evaluation of cytomorphological and functional parameters, including the analysis of polymorphic nuclei, mitotic index and cell viability. In order to understand the real pharmacological efficacy of the tested drugs, we assigned a specific drug responsivity score to each GSC line, integrating the data produced by multiple assays. In this work we explored the antineoplastic effects of paclitaxel (PTX, an inhibitor of microtubule depolymerization, utilized as standard treatment in several cancers, and of valproic acid (VPA, an inhibitor of histone deacetylases (HDACs with multiple anticancer properties. We classified the six GSC lines as responsive or resistant to these drugs, on the basis of their responsivity scores. This method can also be useful to identify the best way to combine two or more drugs. In particular, we utilized the pro-differentiating effect of VPA to improve the PTX effectiveness and we observed a significant reduction of cell viability compared to single treatments.

  19. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications.

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    Full Text Available The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs and impact of hydrophilic polymer polyvinyl alcohol (PVA coating concentration as well as anticancer drug doxorubicin (DOX loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4 structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery.

  20. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues

    Directory of Open Access Journals (Sweden)

    MunJu eKim

    2013-11-01

    Full Text Available Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  1. Autophagy inhibits cell death induced by the anti-cancer drug morusin

    Science.gov (United States)

    Cho, Sang Woo; Na, Wooju; Choi, Minji; Kang, Shin Jung; Lee, Seok-Geun; Choi, Cheol Yong

    2017-01-01

    Autophagy is a cellular process by which damaged organelles and dysfunctional proteins are degraded. Morusin is an anti-cancer drug isolated from the root bark of Morus alba. Morusin induces apoptosis in human prostate cancer cells by reducing STAT3 activity. In this study, we examined whether morusin induces autophagy and also examined the effects of autophagy on the morusin-induced apoptosis. Morusin induces LC3-II accumulation and ULK1 activation in HeLa cells. In addition, we found that induction of ULK1 Ser317 phosphorylation and reduction of ULK1 Ser757 phosphorylation occurred simultaneously during morusin-induced autophagy. Consistently, morusin induces autophagy by activation of AMPK and inhibition of mTOR activity. Next, we investigated the role of autophagy in morusin-induced apoptosis. Inhibition of autophagy by treating cells with the 3-methyladenine (3-MA) autophagic inhibitor induces high levels of morusin-mediated apoptosis, while treatment of cells with morusin alone induces moderate levels of apoptosis. Cell survival was greatly reduced when cells were treated with morusin and 3-MA. Taken together, morusin induces autophagy, which is an impediment for morusin-induced apoptosis, suggesting combined treatment of morusin with an autophagic inhibitor would increase the efficacy of morusin as an anti-cancer drug.

  2. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  3. CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population.

    Science.gov (United States)

    Tsuchiya, M; Nakajima, Y; Waku, T; Hiyoshi, H; Morishita, T; Furumai, R; Hayashi, Y; Kishimoto, H; Kimura, K; Yanagisawa, J

    2015-08-27

    Many types of cancer display heterogeneity in various features, including gene expression and malignant potential. This heterogeneity is associated with drug resistance and cancer progression. Recent studies have shown that the expression of a major protein quality control ubiquitin ligase, carboxyl terminus of Hsc70-interacting protein (CHIP), is negatively correlated with breast cancer clinicopathological stages and poor overall survival. Here we show that CHIP acts as a capacitor of heterogeneous Bcl-2 expression levels and prevents an increase in the anticancer drug-resistant population in breast cancer cells. CHIP knockdown in breast cancer cells increased variation in Bcl-2 expression levels, an antiapoptotic protein, among the cells. Our results also showed that CHIP knockdown increased the proportion of anticancer drug-resistant cells. These findings suggest that CHIP buffers variation in gene expression levels, affecting resistance to anticancer drugs. In single-cell clones derived from breast cancer cell lines, CHIP knockdown did not alter the variation in Bcl-2 expression levels and the proportion of anticancer drug-resistant cells. In contrast, when clonal cells were treated with a mutagen, the variation in Bcl-2 expression levels and proportion of anticancer drug-resistant cells were altered by CHIP knockdown. These results suggest that CHIP masks genetic variations to suppress heterogeneous Bcl-2 expression levels and prevents augmentation of the anticancer drug-resistant population of breast cancer cells. Because genetic variation is a major driver of heterogeneity, our results suggest that the degree of heterogeneity in expression levels is decided by a balance between genetic variation and the buffering capacity of CHIP.

  4. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    Directory of Open Access Journals (Sweden)

    Choi J

    2015-09-01

    Full Text Available Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute for Life Sciences, 3Center for Development and Commercialization of Anti-cancer Therapeutics, 4College of Pharmacy, Duksung Women’s University, 5Bio-Synectics, 6Department of Pathology, 7Department of Internal Medicine, 8Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX, under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™ technology enabled successful nanoscale particulation of DTX (Nufs-DTX. Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in

  5. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  6. Targeted search for anticancer drugs--CNIO cancer conference. 16-18 March, Madrid, Spain.

    Science.gov (United States)

    Lacal, Juan-Carlos; Carnero, Amancio

    2003-05-01

    The Spanish National Cancer Center has launched a new series of cancer conferences devoted to timely themes in oncology. These meetings aim to bring together a maximum of 50 participants, including 20 to 25 speakers along with 25 to 30 participants for in-depth discussion of new results and ideas in frontline cancer research. There is no registration fee to attend, but participants must organize their own travel and accommodation expenses; free communications are presented as posters, but a few may be selected for short (15 min) oral presentations. This particular meeting was organized by Amancio Carnero and David H Beach, and was mostly devoted to state of the art methodologies for the identification of new targets for anticancer drug design, although the development of novel drugs was also discussed.

  7. The gender of cell lines matters when screening for novel anti-cancer drugs.

    Science.gov (United States)

    Nunes, Larissa M; Robles-Escajeda, Elisa; Santiago-Vazquez, Yahaira; Ortega, Nora M; Lema, Carolina; Muro, Almendra; Almodovar, Gladys; Das, Umashankar; Das, Swagatika; Dimmock, Johnatan R; Aguilera, Renato J; Varela-Ramirez, Armando

    2014-07-01

    Current reports indicated that the gender origin of cells is important in all facets of experimental biology. To explore this matter using an anticancer high throughput screening platform, seven male- and seven female-derived human cell lines, six from cancer patients in each group, were exposed to 81 novel cytotoxins. In this screen, the findings revealed that 79 out of 81 of the compounds consistently inflicted higher levels of toxicity towards male derived cells, emphasizing that there is indeed a gender-related difference in cell sensitivity to these anti-neoplastic agents. This gender-related drug sensitivity and toxicity explored at the molecular and cellular level emerged from a drug discovery enterprise.

  8. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Science.gov (United States)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong

    2016-11-01

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  9. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections.

    Science.gov (United States)

    Cruz-Muñiz, Martha Yumiko; López-Jacome, Luis Esau; Hernández-Durán, Melissa; Franco-Cendejas, Rafael; Licona-Limón, Paula; Ramos-Balderas, Jose Luis; Martinéz-Vázquez, Mariano; Belmont-Díaz, Javier A; Wood, Thomas K; García-Contreras, Rodolfo

    2017-01-01

    Acinetobacter baumannii is an emergent opportunistic bacterial pathogen responsible for recalcitrant infections owing to its high intrinsic tolerance to most antibiotics; therefore, suitable strategies to treat these infections are needed. One plausible approach is the repurposing of drugs that are already in use. Among them, anticancer drugs may be especially useful due their cytotoxic activities and ample similarities between bacterial infections and growing tumours. In this work, the effectiveness of four anticancer drugs on the growth of A. baumannii ATTC BAA-747 was evaluated, including the antimetabolite 5-fluorouracil and three DNA crosslinkers, namely cisplatin, mitomycin C (MMC) and merphalan. MMC was the most effective drug, having a minimum inhibitory concentration for 50% of growth in Luria-Bertani medium at ca. 7 µg/mL and completely inhibiting growth at 25 µg/mL. Hence, MMC was tested against a panel of 21 clinical isolates, including 18 multidrug-resistant (MDR) isolates, 3 of which were sensitive only to colistin. The minimum inhibitory concentrations and minimum bactericidal concentrations of MMC in all tested strains were found to be similar to those of A. baumannii ATCC BAA-747, and MMC also effectively killed stationary-phase, persister and biofilm cells. Moreover, MMC was able to increase survival of the insect larvae Galleria mellonella against an otherwise lethal A. baumannii infection from 0% to ≥53% for the antibiotic-sensitive A. baumannii ATCC BAA-747 strain and the MDR strains A560 and A578. Therefore, MMC is highly effective at killing the emergent opportunistic pathogen A. baumannii.

  10. Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity.

    Science.gov (United States)

    Hermawan, Adam; Wagner, Ernst; Roidl, Andreas

    2016-03-01

    Chemoresistance is a major challenge for the successful therapy of breast cancer. The discovery of salinomycin as an anticancer stem cell drug provides progress in overcoming chemoresistance. However, it remains to be elucidated whether salinomycin treatment is able to sensitize cancer cells to chemotherapeutic drugs. In the present study, we consecutively treated epithelial MCF-7 and BT-474 breast cancer cells as well as mesenchymal MDA-MB 231 and MDA-MB 436 cells with salinomycin, and analyzed the gene expression of the two prominent multiple drug resistance (MDR) genes, MDR1 and BCRP1. We found that repeated treatment with salinomycin generated resistance against this drug in all cell lines and increased the chemosensitivity towards doxorubicin. Drug efflux pump gene expression and pump activity of MDR1 and BCRP1 were downregulated in almost all cell lines, except for MDR1 in the MDA-MB 231 cells. Consequently, the intracellular doxorubicin accumulation was increased compared to the respective parental cells. Our findings suggest a novel treatment option for MDR tumors by sensitizing these tumors via salinomycin pretreatment.

  11. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core

  12. Multidrug resistance in oncology and beyond : from imaging of drug efflux pumps to cellular drug targets

    NARCIS (Netherlands)

    Nagengast, Wouter B; Oude Munnink, Thijs H; Dijkers, Eli; Hospers, Geesiena; Brouwers, Adrienne H; Schröder, Carolien P; Lub-de Hooge, Marjolijn; de Vries, Elisabeth G E

    2010-01-01

    Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such a

  13. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10(4) L mol(-1) and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  14. Prospective Observational Study of Adverse Drug Reactions of Anticancer Drugs Used in Cancer Treatment in a Tertiary Care Hospital.

    Science.gov (United States)

    Saini, V K; Sewal, R K; Ahmad, Yusra; Medhi, B

    2015-01-01

    Adverse drug reactions associated with the use of anticancer drugs are a worldwide problem and cannot be ignored. Adverse drug reactions can range from nausea, vomiting or any other mild reaction to severe myelosuppression. The study was planned to observe the suspected adverse drug reactions of cancer chemotherapy in patients aged >18 years having cancer attending Postgraduate Institute of Medical Education and Research, Chandigarh. During the study period, 101 patients of breast cancer and 73 patients of lung cancer were screened for occurrence of adverse drug reactions during their treatment with chemotherapy. About 87.36% patients experienced adverse drug reactions, 90.09% and 83.56% of breast and lung cancer patients experienced at least one adverse drug reaction respectively. In breast cancer patients, 41.58% patients were prescribed fluorouracil+doxorubicin+cyclophosphamide while paclitaxel was prescribed to 22.77% patients. Alopecia (54.94%), nail discolouration (43.96%), dysgeusia (38.46%), anorexia (30.77%), nausea (29.67%), and neuropathy (29.67%) were found to be very common in breast cancer patients treated with single/combined regimen. In lung cancer group of patients, cisplatin with docetaxel, cisplatin with pemetrexed and cisplatin with irinotecan were prescribed to 30.14, 24.65 and 17.81% patients, respectively. Dysgeusia (40.98%), diarrhoea (39.34%), anorexia (32.77%) and constipation (31.15%) and alopecia (31.15%) were commonly observed adverse drug reactions having lung cancer patients. Causality assessments using World Health Organization causality assessment scale showed that observed adverse drug reactions were of probable (64.67%) and possible (35.33%) categories. Alopecia, dysgeusia, anorexia, constipation diarrhoea, nausea, nail discoloration were more prevalent amongst the cancer patients undergoing chemotherapy.

  15. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA.

    Science.gov (United States)

    Ilkhani, Hoda; Hughes, Taylor; Li, Jing; Zhong, Chuan Jian; Hepel, Maria

    2016-06-15

    Widely used anti-cancer treatments involving chemotherapeutic drugs result in cancer cell damage due to their strong interaction with DNA. In this work, we have developed laboratory biosensors for screening chemotherapeutic drugs and to aid in the assessment of DNA modification/damage caused by these drugs. The sensors utilize surface-enhanced Raman scattering (SERS) spectroscopy and electrochemical methods to monitor sensory film modification and observe the drug-DNA reactivity. The self-assembled monolayer protected gold-disk electrode (AuDE) was coated with a reduced graphene oxide (rGO), decorated with plasmonic gold-coated Fe2Ni@Au magnetic nanoparticles functionalized with double-stranded DNA (dsDNA), a sequence of the breast cancer gene BRCA1. The nanobiosensors AuDE/SAM/rGO/Fe2Ni@Au/dsDNA were then subjected to the action of a model chemotherapeutic drug, doxorubicin (DOX), to assess the DNA modification and its dose dependence. The designed novel nanobiosensors offer SERS/electrochemical transduction, enabling chemically specific and highly sensitive analytical signals generation. The SERS measurements have corroborated the DOX intercalation into the DNA duplex whereas the electrochemical scans have indicated that the DNA modification by DOX proceeds in a concentration dependent manner, with limit of detection LOD=8 µg/mL (S/N=3), with semilog linearity over 3 orders of magnitude. These new biosensors are sensitive to agents that interact with DNA and facilitate the analysis of functional groups for determination of the binding mode. The proposed nanobiosensors can be applied in the first stage of the drug development for testing the interactions of new drugs with DNA before the drug efficacy can be assessed in more expensive testing in vitro and in vivo.

  16. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Malformin C, a fungal cyclic pentapeptide, has been claimed to have anti-cancer potential, but no in vivo study was available to substantiate this property. Therefore, we conducted in vitro and in vivo experiments to investigate its anti-cancer effects and toxicity. Our studies showed Malformin C inhibited Colon 38 and HCT 116 cell growth dose-dependently with an IC50 of 0.27±0.07μM and 0.18±0.023μM respectively. This inhibition was explicated by Malformin C's effect on G2/M arrest. Moreover, we observed up-regulated expression of phospho-histone H2A.X, p53, cleaved CASPASE 3 and LC3 after Malformin C treatment, while the apoptosis assay indicated an increased population of necrotic and late apoptotic cells. In vivo, the pathological study exhibited the acute toxicity of Malformin C at lethal dosage in BDF1 mice might be caused by an acute yet subtle inflammatory response, consistent with elevated IL-6 in the plasma cytokine assay. Further anti-tumor and toxicity experiments proved that 0.3mg/kg injected weekly was the best therapeutic dosage of Malformin C in Colon 38 xenografted BDF1 mice, whereas 0.1mg/kg every other day showed no effect with higher resistance, and 0.9mg/kg per week either led to fatal toxicity in seven-week old mice or displayed no advantage over 0.3mg/kg group in nine-week old mice. Overall, we conclude that Malformin C arrests Colon 38 cells in G2/M phase and induces multiple forms of cell death through necrosis, apoptosis and autophagy. Malformin C has potent cell growth inhibition activity, but the therapeutic index is too low to be an anti-cancer drug.

  17. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  18. Successful analysis of anticancer drug sensitivity by CD-DST using pleural fluid and ascites from patients with advanced ovarian cancer: case reports.

    Science.gov (United States)

    Kawaguchi, Makiko; Banno, Kouji; Susumu, Nobuyuki; Yanokura, Megumi; Kuwabara, Yoshiko; Hirao, Nobumaru; Tsukazaki, Katsumi; Nozawa, Shiro

    2005-01-01

    In vitro anticancer drug sensitivity tests have been performed for various types of cancers, and a relationship with clinical response has been observed. The collagen gel droplet-embedded culture drug sensitivity test (CD-DST) is a new in vitro anticancer drug sensitivity test by Yabushita et al., recently reported to be useful in ovarian cancer. CD-DST allows analysis of a small number of cells, compared to other anticancer drug sensitivity tests. Here, we report a successful analysis of anticancer drug sensitivity by CD-DST using cancerous ascites and pleural fluid samples from 2 patients with advanced ovarian cancer. To our knowledge, this is only the second report of the application of CD-DST in ovarian cancer, and our results suggest that CD-DST could be helpful in the selection of anticancer drugs for neoadjuvant chemotherapy in advanced ovarian cancer.

  19. New challenges and inspired answers for anticancer drug discovery and development.

    Science.gov (United States)

    Utsugi, Teruhiro

    2013-10-01

    Many pharmaceutical companies worldwide specialize in oncology drug development and marketing. Among them, we have continued to take up the challenge of understanding the metabolism of pyrimidines as essential components of deoxyribonucleic acid for many years, and have provided unique products such as UFT(®) and TS-1 for cancer patients. Using our cumulative experience and knowledge, we are currently developing novel agents such as TAS-114, a dual inhibitor of deoxyuridine triphosphatase and dihydropyrimidine dehydrogenase, and TAS-102, a unique pyrimidine derivative inducing deoxyribonucleic acid dysfunction in cancer cells. Regarding molecular-targeted drugs, we have made huge efforts to establish ideal drug discovery platforms for the last several years. For kinase inhibitors, we established three core platforms such as a kinase-directed chemical library, a kinase assay panel and a target selection informatics system. The core platforms were further combined with peripheral technologies to measure essential parameters such as physicochemical properties, pharmacokinetics, efficacy and toxicities. Unique drug candidates have been identified at an early stage by assessing all important parameters. Several promising programs are proceeding simultaneously in the clinical or preclinical development stage such as TAS-115, a dual inhibitor of c-Met and vascular endothelial growth factor receptor, TAS-2104, a selective Aurora A inhibitor, TAS-117, an allosteric Akt inhibitor, TAS-2985, an irreversible fibroblast growth factor receptor inhibitor and TAS-2913, a T790M mutant selective epidermal growth factor receptor inhibitor. Other than kinase inhibitors, another drug discovery engine was established based on the fragment-based drug discovery technology. TAS-116, a new class of Hsp-90α/β inhibitor, is one of the products. Taiho's final goal is to provide innovative anticancer drugs together with companion diagnostics that are truly beneficial for patients.

  20. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  1. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.

    Science.gov (United States)

    Wang, Wenlong; Chen, Shu; Zhang, Liang; Wu, Xi; Wang, Jiexin; Chen, Jian-Feng; Le, Yuan

    2015-01-01

    Poly(lactic acid) (PLA) is a kind of non-toxic biological materials with excellent absorbability, biocompatibility and biodegradability, which can be used for drug release, tissue engineering and surgical treatment applications. In this study, we prepared chitosan modified PLA nanoparticles as carriers for encapsulation of docetaxel by anti-solvent precipitation method. The morphology, particle size, zeta potential and composition of the PLA/chitosan were characterized by SEM, DLS, FTIR and XPS. As-prepared PLA/chitosan particles exhibited average size of 250 nm and showed very narrow distribution with polydispersity index of 0.098. Their large surface charge-ability was confirmed by zeta potential value of 53.9 mV. Docetaxel was released from PLA/chitosan nanoparticles with 40% initial burst release in 5 h and 70% cumulative release within 24 h, while from PLA nanoparticles 65% of docetaxel was released in 5h. In vitro drug release study demonstrated that PLA/chitosan nanoparticles prolonged drug release and decreased the burst release over the unmodified PLA nanoparticles. These results illustrated high potential of chitosan modified PLA nanoparticles for usage as anticancer drug carriers.

  2. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  3. Steady Increase In Prices For Oral Anticancer Drugs After Market Launch Suggests A Lack Of Competitive Pressure.

    Science.gov (United States)

    Bennette, Caroline S; Richards, Catherine; Sullivan, Sean D; Ramsey, Scott D

    2016-05-01

    The cost of treating cancer has risen to unprecedented heights, putting tremendous financial pressure on patients, payers, and society. Previous studies have documented the rising prices of cancer drugs at launch, but less critical attention has been paid to the cost of these drugs after launch. We used pharmacy claims for commercially insured individuals to examine trends in postlaunch prices over time for orally administered anticancer drugs recently approved by the Food and Drug Administration (FDA). In the period 2007-13, inflation-adjusted per patient monthly drug prices increased 5 percent each year. Certain market changes also played a role, with prices rising an additional 10 percent with each supplemental indication approved by the FDA and declining 2 percent with the FDA's approval of a competitor drug. Our findings suggest that there is currently little competitive pressure in the oral anticancer drug market. Policy makers who wish to reduce the costs of anticancer drugs should consider implementing policies that affect prices not only at launch but also later.

  4. The anti-cancer drug-induced pica in rats is related to their clinical emetogenic potential.

    Science.gov (United States)

    Yamamoto, Kouichi; Nakai, Miho; Nohara, Kyoko; Yamatodani, Atsushi

    2007-01-05

    Cancer chemotherapy is frequently accompanied by severe emesis. The anti-cancer drugs are classified according to their clinical emetogenic potential. We have already found that kaolin ingestion behavior "pica" is analogous to emesis in rats. The aim of this study was to examine the effects of the clinical emetogenic potential of anti-cancer drugs on the induction of the pica in rats. Rats were housed in individual cages with free access to food and kaolin pellets and the daily food and kaolin intakes were measured for 3 days after the intraperitoneal administration of anti-cancer drugs (cisplatin, cyclophosphamide, actinomycin D, 5-fluorouracil and vincristine). The drugs with high potential for inducing emesis, such as cisplatin and cyclophosphamide, induced pica in all animals on the day of administration and the behavior lasted during the observation period. The drugs with moderate emetogenic potential, i.e. actinomycin D and 5-fluorouracil, also induced pica on the first and second day after the drug administration but the kaolin intake was less than that of the drugs with high potential. Vincristine, a drug with low emetogenic potential, slightly increased the kaolin intake in rats on the only first day of the administration. Cyclophosphamide, actinomycin D and vincristine induced anorexia and decreased their body weight during the observation period. These results suggested that the both amounts of kaolin intake and duration of behavior in the anti-cancer drug-induced pica are related to the clinical emetogenic potential of the drugs and the incidence of the anorexia is not related to their emetogenic potential.

  5. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  6. Applying fluorescence lifetime imaging microscopy to evaluate the efficacy of anticancer drugs

    Science.gov (United States)

    Kawanabe, Satoshi; Araki, Yoshie; Uchimura, Tomohiro; Imasaka, Totaro

    2015-06-01

    Fluorescence lifetime imaging microscopy was applied to evaluate the efficacy of anticancer drugs. A decrease in the fluorescence lifetime of the nucleus in apoptotic cancer cells stained by SYTO 13 dye was detected after treatment with antitumor antibiotics such as doxorubicin or epirubicin. It was confirmed that the change in fluorescence lifetime occurred earlier than morphological changes in the cells. We found that the fluorescence lifetime of the nucleus in the cells treated with epirubicin decreased more rapidly than that of the cells treated with doxorubicin. This implies that epirubicin was more efficacious than doxorubicin in the treatment of cancer cells. The change in fluorescence lifetime was, however, not indicated when the cells were treated with cyclophosphamide. The decrease in fluorescence lifetime was associated with the processes involving caspase activation and chromatin condensation. Therefore, this technique would provide useful information about apoptotic cells, particularly in the early stages.

  7. Nano drug delivery Study of Anticancer Properties on Jackfruit using QM/MM Methods

    Directory of Open Access Journals (Sweden)

    Behnaz Bonsakhteh

    2014-12-01

    Full Text Available Nano-biotechnology takes most of its fundamentals from nanotechnology which most of the equipment designed for nano-biotechnological are based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with chemistry, biology and nano-medicine. In this investigation, the ab initio calculations were implemented using Gaussian program package based on density functional level of theory (DFT to achieve the drug delivery technic for unraveling of linkage of Jackfruit to single walled carbon nanotubes . NMR investigation gives deeper physical insight into the impact of different structures . In this work NMR parameters were calculated at the Ethyl isovalerate, Propylisovalerate, Isobutyl isovalerate and 3-methyl butyl acetate extracted of Jack fruit with different functional groups in their active sites so, the anticancer properties of this compound have been clarified.

  8. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design.

    Science.gov (United States)

    Soldevila-Barreda, Joan J; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J

    2015-03-20

    Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD(+) to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells.

  9. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.

    Directory of Open Access Journals (Sweden)

    Naiqian Zhang

    Full Text Available The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated with different drugs and selecting genomic or functional genomic features to regress or classify the drug response. Here, we propose a dual-layer integrated cell line-drug network model, which uses both cell line similarity network (CSN data and drug similarity network (DSN data to predict the drug response of a given cell line using a weighted model. Using the Cancer Cell Line Encyclopedia (CCLE and Cancer Genome Project (CGP studies as benchmark datasets, our single-layer model with CSN or DSN and only a single parameter achieved a prediction performance comparable to the previously generated elastic net model. When using the dual-layer model integrating both CSN and DSN, our predicted response reached a 0.6 Pearson correlation coefficient with observed responses for most drugs, which is significantly better than the previous results using the elastic net model. We have also applied the dual-layer cell line-drug integrated network model to fill in the missing drug response values in the CGP dataset. Even though the dual-layer integrated cell line-drug network model does not specifically model mutation information, it correctly predicted that BRAF mutant cell lines would be more sensitive than BRAF wild-type cell lines to three MEK1/2 inhibitors tested.

  10. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  11. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  12. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Massimo Fantini

    2015-04-01

    Full Text Available Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  13. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment.

    Science.gov (United States)

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-04-24

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  14. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    Science.gov (United States)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  15. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery.

    Science.gov (United States)

    Kundu, Tanay; Mitra, Shouvik; Patra, Prasun; Goswami, Arunava; Díaz Díaz, David; Banerjee, Rahul

    2014-08-11

    A Gd(III) -based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9×1.2 nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release.

  16. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy.

    Science.gov (United States)

    Han, Jing; Michel, Andrew R; Lee, Han Seung; Kalscheuer, Stephen; Wohl, Adam; Hoye, Thomas R; McCormick, Alon V; Panyam, Jayanth; Macosko, Christopher W

    2015-12-07

    We have investigated particle size, interior structure, drug release kinetics, and anticancer efficacy of PEG-b-PLGA-based nanoparticles loaded with a series of paclitaxel (PTX)-silicate prodrugs [PTX-Si(OR)3]. Silicate derivatization enabled us to adjust the hydrophobicity and hydrolytic lability of the prodrugs by the choice of the alkyl group (R) in the silicate derivatives. The greater hydrophobicity of these prodrugs allows for the preparation of nanoparticles that are stable in aqueous dispersion even when loaded with up to ca. 75 wt % of the prodrug. The hydrolytic lability of silicates allows for facile conversion of prodrugs back to the parent drug, PTX. A suite of eight PTX-silicate prodrugs was investigated; nanoparticles were made by flash nanoprecipitation (FNP) using a confined impingement jet mixer with a dilution step (CIJ-D). The resulting nanoparticles were 80-150 nm in size with a loading level of 47-74 wt % (wt %) of a PTX-silicate, which corresponds to 36-59 effective wt % of free PTX. Cryogenic transmission electron microscopy images show that particles are typically spherical with a core-shell structure. Prodrug/drug release profiles were measured. Release tended to be slower for prodrugs having greater hydrophobicity and slower hydrolysis rate. Nanoparticles loaded with PTX-silicate prodrugs that hydrolyze most rapidly showed in vitro cytotoxicity similar to that of the parent PTX. Nanoparticles loaded with more labile silicates also tended to show greater in vivo efficacy.

  17. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction.

    Science.gov (United States)

    Wolf, Matthew B; Baynes, John W

    2006-02-01

    The anticancer drug doxorubicin (DOX) is toxic to target cells, but also causes endothelial dysfunction and edema, secondary to oxidative stress in the vascular wall. Thus, the mechanism of action of this drug may involve chemotoxicity to both cancer cells and to the endothelium. Indeed, we found that the permeability of monolayers of bovine pulmonary artery endothelial cells (BPAEC) to albumin was increased by approximately 10-fold above control, following 24-h exposure to clinically relevant concentrations of DOX (up to 1 microM). DOX also caused >4-fold increases in lactate dehydrogenase leakage and large decreases in ATP and reduced glutathione (GSH) in BPAECs, which paralleled the increases in endothelial permeability. A large part of the ATP loss could be attributed to DOX-induced hydrogen peroxide production which inhibited key thiol-enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH). Depletion of reduced nicotinamide adenine dinucleotide phosphate (NADPH) appeared to be a major factor leading to DOX-induced GSH depletion. At low concentrations, the sulfhydryl reagent, iodoacetate (IA), inhibited GAPDH, caused a decrease in ATP and increased permeability, without inhibiting G6PDH or decreasing GSH. These results, coupled with those of previous work on a related quinone, menadione, suggest that depletion of either GSH or ATP may lead independently to endothelial dysfunction during chemotherapy, contributing to the cardiotoxicity and other systemic side-effects of the drug.

  18. Bio-modified carbon nanoparticles loaded with methotrexate Possible carrier for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, Thangavelu [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India); Prabhavathi, Sundaram [Department of Biotechnology, SRM University, Kattankulathur, Chennai 603 203 (India); Chamundeeswari, Munusamy [St. Joseph' s College of Engineering, Sholinganallur, Chennai 600119 (India); Sastry, Thotapalli Parvathaleswara, E-mail: sastrytp@hotmail.com [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India)

    2014-03-01

    The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM). Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures have exhibited the spherical nature of the composite and coating of the proteins on CNPs. The prepared CBM biocomposite has exhibited a sustained release of drug. MTT assay using A549 lung cancer cell lines has revealed 83% cell death at 150 μg/ml concentration of CBM. These results indicate that CNPs based biocomposites may be tried as therapeutic agents in treatment of cancer like diseases. - Highlights: • It's a cost effective method with maximum anticancer activity. • Maximum drug loading (methotrexate) and release have been achieved. • The prepared CBM was found to be biocompatible and hemocompatible. • About 83% of A549 lung cancer cell line apoptosis was observed with CBM.

  19. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  20. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles

    Science.gov (United States)

    Kim, Haneul; Jo, Ara; Baek, Seulgi; Lim, Daeun; Park, Soon-Yong; Cho, Soo Kyung; Chung, Jin Woong; Yoon, Jinhwan

    2017-01-01

    Targeted drug delivery has long been extensively researched since drug delivery and release at the diseased site with minimum dosage realizes the effective therapy without adverse side effects. In this work, to achieve enhanced intracellular uptake of anticancer drug carriers for efficient chemo-therapy, we have designed targeted multifunctional anticancer drug carrier hydrogels. Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel core containing superparamagnetic magnetite nanoparticles (MNP) were prepared using precipitation polymerization, and further polymerized with amine-functionalized copolymer shell to facilitate the conjugation of targeting ligand. Then, folic acid, specific targeting ligand for cervical cancer cell line (HeLa), was conjugated on the hydrogel surface, yielding the ligand conjugated hybrid hydrogels. We revealed that enhanced intracellular uptake by HeLa cells in vitro was enabled by both magnetic attraction and receptor-mediated endocytosis, which were contributed by MNP and folic acid, respectively. Furthermore, site-specific uptake of the developed carrier was confirmed by incubating with several other cell lines. Based on synergistically enhanced intracellular uptake, efficient cytotoxicity and apoptotic activity of HeLa cells incubated with anticancer drug loaded hybrid hydrogels were successfully achieved. The developed dual-targeted hybrid hydrogels are expected to provide a platform for the next generation intelligent drug delivery systems.

  1. Anticancer medicines (Doxorubicin and methotrexate) conjugated with magnetic nanoparticles for targeting drug delivery through iron.

    Science.gov (United States)

    Samra, Zahoor Qadir; Ahmad, Snober; Javeid, Mehwish; Dar, Nadia; Aslam, Muhammad Shahbaz; Gull, Iram; Ahmad, Mubashar Mustaneer

    2013-01-01

    The uptake of iron is increased by cancer cells. Iron magnetic nanoparticles (MNP) can be used as a nanovehicle for immobilization of anticancer medicines and to integrate them at a target site. The anticancer medicines doxorubicin (DOX) and methotrexate (MTX) were immobilized separately and in combination onto MNP by a glutaraldehyde activation method and confirmed by magnetic nanoparticles linked immunosorbent assay (MagLISA) and Fourier-transform infrared (FTIR) spectroscopy. The phenol peaks of DOX and MTX at 2896.6 cm⁻¹ to 2912.5 cm⁻¹ in FTIR spectra of immobilized medicines indicated the conjugation. Affinity-purified anti-DOX and anti-MTX antibodies were used to evaluate the coupling of DOX and MTX onto MNP, and the binding was found 34.6% to 37.2% and 51.8% to 54.3% separately, respectively. The immobilization of DOX and MTX in combination onto MNP was 18% and 27%, respectively. HeLa and B cells were cultured with DOX-MNP, MTX-MNP, and DOX-MNP-MTX separately, and MagLISA indicated that the binding of DOX-MNP/MTX-MNP was 41.5% to 45% with HeLa cells and 20% to 26% with B cells. No significant difference was observed in binding of DOX-MNP-MTX with HeLa and B cells. Results also indicated that the release of medicines at pH 5.0 is more (39% to 44%) than at pH 7.4 (3.7% to 10.2%). Sixteen to 22% more killing effect was observed on HeLa cells than on B cells. In immunohistochemical staining, more deposition of brown color on HeLa cells than on B cells may be due to more expression of iron-binding sites on cancer cells. The dual property of MNP can be used for binding of medicines and for targeting drug delivery.

  2. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Lee SJ

    2015-08-01

    Full Text Available Sang Joon Lee,1,* Young-Il Jeong,2,* Hyung-Kyu Park,3 Dae Hwan Kang,2,4 Jong-Suk Oh,3 Sam-Gyu Lee,5 Hyun Chul Lee31Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 2Biomedical Research Institute, Pusan National University Hospital, Busan, 3Department of Microbiology, Chonnam National University Medical School, Gwangju, 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, 5Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea*These authors contributed equally to this workBackground: Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol (MPEG-doxorubicin (DOX conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting.Methods: Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid of carbodiimide chemistry (abbreviated as DendGDP. Dendrimer-MPEG-DOX conjugates without Gly-Phe-Leu-Gly peptide linkage was also synthesized for comparison (DendDP. Nanoparticles were then prepared using a dialysis procedure.Results: The synthesized DendGDP was confirmed with 1H nuclear magnetic resonance spectroscopy. The DendDP and DendGDP nanoparticles had a small particle size of less than 200 nm and had a spherical morphology. DendGDP had cathepsin B-sensitive drug release properties while DendDP did not show cathepsin B sensitivity. Further, DendGDP had improved anticancer activity when compared with doxorubicin or DendDP in an in vivo CT26 tumor xenograft model, ie, the volume of the CT26 tumor xenograft was significantly inhibited when compared with xenografts treated with doxorubicin or DendDP nanoparticles. The DendGDP nanoparticles were found to be relatively concentrated in the tumor tissue and

  3. The new generation drug candidate molecules: Spectral, electrochemical, DNA-binding and anticancer activity properties

    Science.gov (United States)

    Gölcü, Ayşegül; Muslu, Harun; Kılıçaslan, Derya; Çeşme, Mustafa; Eren, Özge; Ataş, Fatma; Demirtaş, İbrahim

    2016-09-01

    The new generation drug candidate molecules [Cu(5-Fu)2Cl2H2O] (NGDCM1) and [Zn(5-Fu)2(CH3COO)2] (NGDCM2) were obtained from the reaction of copper(II) and zinc(II) salts with the anticancer drug 5-fluoracil (5-Fu). These compounds have been characterized by spectroscopic and analytical techniques. Thermal behavior of the compounds were also investigated. The electrochemical properties of the compounds have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the NGDCM1 and NGDCM2 has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSdsDNA) with UV spectroscopy. UV studies of the interaction of the 5-Fu and metal derivatives with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. Thermal decomposition of the compounds lead to the formation of CuO and ZnO as final products. The effect of proliferation 5-Fu, NGDCM1 and NGDCM2 were examined on the HeLa cells using real-time cell analyzer with three different concentrations.

  4. Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Directory of Open Access Journals (Sweden)

    Yang Zhuoli

    2009-01-01

    Full Text Available Abstract A series of monomethoxy poly(ethylene glycol-poly(lactide (mPEG-PLA diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug.

  5. Origanum majorana Attenuates Nephrotoxicity of Cisplatin Anticancer Drug through Ameliorating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Amel M. Soliman

    2016-05-01

    Full Text Available Despite the fact that cisplatin is an important anticancer drug, its clinical utilization is limited by nephrotoxicity during long term medication. Combined cisplatin chemotherapy with plant extracts can diminish toxicity and enhance the antitumor efficacy of the drug. This study evaluated the effect of Originum majorana ethanolic extract (OMEE on cisplatin-induced nephrotoxicity. Eighteen male rats were divided into three groups as follows: a control group, a group treated with cisplatin (3 mg/kg body weight, and a group that received both cisplatin and OMEE (500 mg/kg body weight for 14 days. Cisplatin induced a significant increase in creatinine, urea, uric acid, blood urea nitrogen, malondialdehyde, and nitric oxide levels. However, glutathione, superoxide dismutase, and catalase levels were significantly diminished. Conversely, OMEE significantly modulated the renal and oxidative markers negatively impacted by cisplatin. OMEE significantly reduced the effects of cisplatin-induced changes in renal and oxidative markers, possibly through its free radical scavenging activity. Thus, OMEE may be combined with cisplatin to alleviate nephrotoxicity in cancer chemotherapy.

  6. Role of pharmacists in optimizing the use of anticancer drugs in the clinical setting

    Directory of Open Access Journals (Sweden)

    Ma CSJ

    2014-02-01

    Full Text Available Carolyn SJ Ma Department of Pharmacy Practice, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Honolulu, HI, USA Abstract: Oncology pharmacists, also known as oncology pharmacy specialists (OPSs have specialized knowledge of anticancer medications and their role in cancer. As essential member of the interdisciplinary team, OPSs optimize the benefits of drug therapy, help to minimize toxicities and work with patients on supportive care issues. The OPSs expanded role as experts in drug therapy extends to seven major key elements of medication management that include: selection, procurement, storage, preparation/dispensing, prescribing/dosing/transcribing, administration and monitoring/evaluation/education. As front line caregivers in hospital, ambulatory care, long-term care facilities, and community specialty pharmacies, the OPS also helps patients in areas of supportive care including nausea and vomiting, hematologic support, nutrition and infection control. This role helps the patient in the recovery phase between treatment cycles and adherence to chemotherapy treatment schedules essential for optimal treatment and outcome. Keywords: oncology pharmacist, oncology pharmacy specialist, medication management, chemotherapy

  7. ABC transporters in anticancer drug transport – Less ons for Therapy, Drug Development and Delivery Systems

    Directory of Open Access Journals (Sweden)

    Suresh P.K

    2015-03-01

    Full Text Available The structural aspects as well as the classification of the ABC superfamily (the largest group of transmembrane proteins has been highlighted. Over-expression of one or more of these transporters, barring exceptions, can correlate with an increased drug resistance (the multidrug resistance phenotype. Hence, studying these proteins, using experimental and in silico approaches, has tremendous benefit for patient selection as well as stratification into “good” and “poor” drug responders. Further, the need to obtain a better insight into “intrinsic” and “extrinsic” mechanisms of resistance were reiterated upon, based on the relative recruitment of the different signal transduction molecules. The concept of the reversal of the MDR phenotype, has been discussed and extended in the context of combination therapy. This form of therapy involves the use of a cocktail of synthetic and biopharmaceutical drugs as well as nanotechnology-based approaches, for improvements in their pharmacokinetic (PK and pharmacodynamic (PD profile. Such strategies have targeted the heterogeneous cancer and cancer stem cells, signaling molecules, marker enzymes as well as the microenvironment for improved efficacy and safety as well as to minimize the chance of relapse

  8. Synergistic Cytotoxicity of Melatonin and New-generation Anticancer Drugs Against Leukemia Lymphocytes But Not Normal Lymphocytes.

    Science.gov (United States)

    Zhelev, Zhivko; Ivanova, Donika; Bakalova, Rumiana; Aoki, Ichio; Higashi, Tatsuya

    2017-01-01

    The present study demonstrates specific sensitization of leukemia lymphocytes towards anticancer drugs using melatonin and clarifies the role of reactive oxygen species (ROS) for induction of apoptosis. The study covers four conventional and 11 new-generation anticancer drugs. Four parameters were analyzed simultaneously in leukemia and normal lymphocytes treated with drug, melatonin, or their combination: cell viability, induction of apoptosis, level of reactive oxygen species (ROS), and level of protein-carbonyl products. Almost all investigated combinations of melatonin with new-generation anticancer drugs were characterized by synergistic cytotoxicity towards leukemia lymphocytes, while the combinations with conventional drugs exhibited additive or antagonistic effects on cell viability. In leukemia lymphocytes, the additive cytotoxicity of doxorubicin plus melatonin was accompanied by low levels of ROS and protein-carbonyl products, as well as by suppression of apoptosis. In normal lymphocytes, none of the studied parameters changed significantly compared to cells treated with doxorubicin only. The combinations of everolimus plus melatonin and barasertib plus melatonin exhibited impressive synergistic cytotoxic effects on leukemia lymphocytes but did not affect the viability of normal lymphocytes. In leukemia cells, the synergistic cytotoxicity was accompanied by strong induction of apoptosis but a decrease of ROS to a level below that of the control. In normal lymphocytes, these combinations did not affect the level of ROS nor of protein-carbonyl products, and did not induce apoptosis. The data suggest that melatonin is a promising supplementary component in chemotherapy which allows the therapeutic doses of anticancer drugs to be reduced, minimizing their side-effects.

  9. Prospective observational study to evaluate the pattern of adverse drug events in cancer patients receiving anti-cancer agents in a tertiary care hospital

    OpenAIRE

    Pooja B. Joshi; Neha G. Kadhe

    2016-01-01

    Background: Adverse drug reactions (ADRs) associated with the use of anticancer drugs are a worldwide problem and cannot be overlooked. They range from nausea, vomiting or any other mild reaction to severe myelosuppression. The study was planned to evaluate the pattern of adverse drug events to anti-cancer agents in a tertiary care hospital. Methods: This observational prospective study was carried out in a tertiary care hospital from 1st January 2011 to 31st December 2011. A total of 213 ...

  10. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.

    Science.gov (United States)

    Geromichalos, George D; Alifieris, Constantinos E; Geromichalou, Elena G; Trafalis, Dimitrios T

    2016-01-01

    Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Nowadays, new generation of anti- cancer drugs, able to inhibit more than one pathway, is believed to play a major role in contemporary anticancer drug research. In this way, polypharmacology, focusing on multi-target drugs, has emerged as a new paradigm in drug discovery. A number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. Increasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets, for anticancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. The result is the rapid discovery of new anticancer drugs. In this article we discuss the application of molecular modeling, molecular docking and virtual high-throughput screening to multi-targeted anticancer drug discovery. Efforts have been made to employ in silico methods for facilitating the search and design of selective multi-target agents. These computer aided molecular design methods have shown promising potential in facilitating drug discovery directed at selective multiple targets and is expected to contribute to intelligent lead anticancer drugs.

  11. Natural product Celastrol destabilizes tubulin heterodimer and facilitates mitotic cell death triggered by microtubule-targeting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Hakryul Jo

    Full Text Available BACKGROUND: Microtubule drugs are effective anti-cancer agents, primarily due to their ability to induce mitotic arrest and subsequent cell death. However, some cancer cells are intrinsically resistant or acquire a resistance. Lack of apoptosis following mitotic arrest is thought to contribute to drug resistance that limits the efficacy of the microtubule-targeting anti-cancer drugs. Genetic or pharmacological agents that selectively facilitate the apoptosis of mitotic arrested cells present opportunities to strengthen the therapeutic efficacy. METHODOLOGY AND PRINCIPAL FINDINGS: We report a natural product Celastrol targets tubulin and facilitates mitotic cell death caused by microtubule drugs. First, in a small molecule screening effort, we identify Celastrol as an inhibitor of neutrophil chemotaxis. Subsequent time-lapse imaging analyses reveal that inhibition of microtubule-mediated cellular processes, including cell migration and mitotic chromosome alignment, is the earliest events affected by Celastrol. Disorganization, not depolymerization, of mitotic spindles appears responsible for mitotic defects. Celastrol directly affects the biochemical properties of tubulin heterodimer in vitro and reduces its protein level in vivo. At the cellular level, Celastrol induces a synergistic apoptosis when combined with conventional microtubule-targeting drugs and manifests an efficacy toward Taxol-resistant cancer cells. Finally, by time-lapse imaging and tracking of microtubule drug-treated cells, we show that Celastrol preferentially induces apoptosis of mitotic arrested cells in a caspase-dependent manner. This selective effect is not due to inhibition of general cell survival pathways or mitotic kinases that have been shown to enhance microtubule drug-induced cell death. CONCLUSIONS AND SIGNIFICANCE: We provide evidence for new cellular pathways that, when perturbed, selectively induce the apoptosis of mitotic arrested cancer cells, identifying a

  12. A novel platform for accelerated pharmacodynamic profiling for lead optimization of anticancer drug candidates.

    Science.gov (United States)

    Szwaya, Jeffrey; Bruseo, Charles; Nakuci, Enkeleda; McSweeney, Denise; Xiang, Xiaoqin; Senator, David; France, Dennis; Chen, Chang-Rung

    2007-03-01

    Oncology drug discovery is, by definition, a target-rich enterprise. High-throughput screening (HTS) laboratories have supported a wide array of molecularly targeted and chemical genomic approaches for anticancer lead generation, and the number of hits emerging from such campaigns has increased dramatically. Although automation of HTS processes has eliminated primary screening as a bottleneck, the demands on secondary screening in appropriate cell-based assays have increased concomitantly with the numbers of hits delivered to therapeutic area laboratories. The authors describe herein the implementation of a novel platform using off-the-shelf solutions that have allowed them to efficiently characterize hundreds of HTS hits using a palette of Western blot-based pharmacodynamic assays. The platform employs a combination of a flatbed bufferless SDS-PAGE system, a dry ultra-rapid electroblotting apparatus, and a highly sensitive and quantitative infrared imaging system. Cumulatively, this platform has significantly reduced the cycle time for HTS hit evaluation. In addition, the routine use of this platform has resulted in higher quality data that have allowed the development of structure-activity databases that have tangibly improved lead optimization. The authors describe in detail the application of this platform, designated the Accelerated Pharmaco-Dynamic Profiler (APDP), to the annotation of inhibitors of 2 attractive oncology targets, BRAF kinase and Hsp90.

  13. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  14. Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach.

    Science.gov (United States)

    Yoshida, Makoto; Takimoto, Rishu; Murase, Kazuyuki; Sato, Yasushi; Hirakawa, Masahiro; Tamura, Fumito; Sato, Tsutomu; Iyama, Satoshi; Osuga, Takahiro; Miyanishi, Koji; Takada, Kohichi; Hayashi, Tsuyoshi; Kobune, Masayoshi; Kato, Junji

    2012-01-01

    Owing to its aggressiveness and the lack of effective therapies, pancreatic ductal adenocarcinoma has a dismal prognosis. New strategies to improve treatment and survival are therefore urgently required. Numerous fucosylated antigens in sera serve as tumor markers for cancer detection and evaluation of treatment efficacy. Increased expression of fucosyltransferases has also been reported for pancreatic cancer. These enzymes accelerate malignant transformation through fucosylation of sialylated precursors, suggesting a crucial requirement for fucose by pancreatic cancer cells. With this in mind, we developed fucose-bound nanoparticles as vehicles for delivery of anticancer drugs specifically to cancer cells. L-fucose-bound liposomes containing Cy5.5 or Cisplatin were effectively delivered into CA19-9 expressing pancreatic cancer cells. Excess L-fucose decreased the efficiency of Cy5.5 introduction by L-fucose-bound liposomes, suggesting L-fucose-receptor-mediated delivery. Intravenously injected L-fucose-bound liposomes carrying Cisplatin were successfully delivered to pancreatic cancer cells, mediating efficient tumor growth inhibition as well as prolonging survival in mouse xenograft models. This modality represents a new strategy for pancreatic cancer cell-targeting therapy.

  15. On the hydrolysis mechanism of the second-generation anticancer drug carboplatin.

    Science.gov (United States)

    Pavelka, Matej; Lucas, Maria Fatima A; Russo, Nino

    2007-01-01

    The hydrolysis reaction mechanisms of carboplatin, a second-generation anticancer drug, have been explored by combining density functional theory (DFT) with the conductor-like dielectric continuum model (CPCM) approach. The decomposition of carboplatin in water is expected to take place through a biphasic mechanism with a ring-opening process followed by the loss of the malonato ligand. We have investigated this reaction in water and acid conditions and established that the number of protons present in the malonato ligand has a direct effect on the energetics of this system. Close observation of the optimised structures revealed a necessary systematic water molecule in the vicinity of the amino groups of carboplatin. For this reason we have also investigated this reaction with an explicit water molecule. From the computed potential-energy surfaces it is established that the water hydrolysis takes place with an activation barrier of 30 kcal mol(-1), confirming the very slow reaction observed experimentally. The decomposition of carboplatin upon acidification was also investigated and we have computed a 21 kcal mol(-1) barrier to be overcome (experimental value 23 kcal mol(-1)). We have also established that the rate-limiting process is the first hydration, and ascertained the importance of a water molecule close to the two amine groups in lowering the activation barriers for the ring-opening reaction.

  16. Preliminary neutron diffraction studies of Escherichia coli dihydrofolate reductase bound to the anticancer drug methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brad C. [University of Tennessee, Knoxville (UTK); Meilleur, Flora [Institut Laue-Langevin (ILL); Myles, Dean A A [ORNL; Howell, Elizabeth E. [University of Tennessee, Knoxville (UTK); Dealwis, Chris G. [University of Tennessee, Knoxville (UTK)

    2005-01-01

    The contribution of H atoms in noncovalent interactions and enzymatic reactions underlies virtually all aspects of biology at the molecular level, yet their 'visualization' is quite difficult. To better understand the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR), a neutron diffraction study is under way to directly determine the accurate positions of H atoms within its active site. Despite exhaustive investigation of the catalytic mechanism of DHFR, controversy persists over the exact pathway associated with proton donation in reduction of the substrate, dihydrofolate. As the initial step in a proof-of-principle experiment which will identify ligand and residue protonation states as well as precise solvent structures, a neutron diffraction data set has been collected on a 0.3 mm{sup 3} D{sub 2}O-soaked crystal of ecDHFR bound to the anticancer drug methotrexate (MTX) using the LADI instrument at ILL. The completeness in individual resolution shells dropped to below 50% between 3.11 and 3.48 {angstrom} and the I/{sigma}(I) in individual shells dropped to below 2 at around 2.46 {angstrom}. However, reflections with I/{sigma}(I) greater than 2 were observed beyond these limits (as far out as 2.2 {angstrom}). To our knowledge, these crystals possess one of the largest primitive unit cells (P6{sub 1}, a = b = 92, c = 73 {angstrom}) and one of the smallest crystal volumes so far tested successfully with neutrons.

  17. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    Science.gov (United States)

    Cui, Jingjie; Chen, Jing; Chen, Shaowei; Gao, Li; Xu, Ping; Li, Hong

    2016-03-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs and molecular biology research.

  18. 1-[2-(2-Methoxyphenylaminoethylamino]-3-(naphthalene-1- yloxypropan-2-ol May Be a Promising Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nishizaki

    2014-12-01

    Full Text Available We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylaminoethylamino]-3-(naphthalene-1-yloxypropan-2-ol (HUHS 1015 as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.

  19. Training data selection method for prediction of anticancer drug effects using a genetic algorithm with local search.

    Science.gov (United States)

    Hiroyasu, Tomoyuki; Miyabe, Yota; Yokouchi, Hisatake

    2011-01-01

    Here, we propose a training data selection method using a Support Vector Machine (SVM) to predict the effects of anticancer drugs. Conventionally, SVM is used for distinguishing between several types of data. However, in the method proposed here, the SVM is used to distinguish areas with only one or two types of data. The proposed method treats training data selection as an optimization problem and involves application of a genetic algorithm (GA). Moreover, GA with local search was applied to find the solution as the target problem was difficult to find. The composition method of GA for proposed method was examined. To determine its effectiveness, the proposed method was applied to an artificial anticancer drug data set. The verification results showed that the proposed method can be used to create a verifiable and predictable discriminant function by training data selection.

  20. Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO® Micro Infusion Pump: Programmable, Refillable, and Implantable

    OpenAIRE

    Tan, Tsung; Watts, Stephanie W.; Davis, Robert Patrick

    2011-01-01

    Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable, and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized cathet...

  1. Folate-conjugated chitosan-polylactide nanoparticles for enhanced intracellular uptake of anticancer drug

    Science.gov (United States)

    Huang, Shengtang; Wan, Ying; Wang, Zheng; Wu, Jiliang

    2013-12-01

    Chitosan was conjugated with folic acid (FA) and the resulting chitosan derivatives with a FA-substitution degree of around 6 % was used to synthesize FA-conjugated chitosan-polylactide (FA-CH-PLA) copolymers to build a drug carrier with active targeting characteristics for the anticancer drug of paclitaxel (PTX). Selected FA-CH-PLAs with various polylactide percentages of about 40 wt% or lower were employed to fabricate nanoparticles using sodium tripolyphosphate as a crosslinker, and different types of nanoparticles were endued with similar average particle-sizes located in a range between 100 and 200 nm. Certain types of PTX-loaded FA-CH-PLA nanoparticles having encapsulation efficiency of around 90 % and initial load of about 12 % were able to release PTX in a controlled manner with significant regulation by polylactide content in FA-CH-PLAs. Targeting characteristic of achieved nanoparticles was confirmed using FA-receptor-expressed MCF-7 breast cancer cells. The uptake of PTX revealed that optimized FA-CH-PLA nanoparticles with an equivalent PTX-dose of around 1 μg/mL could have more than sixfold increasing abilities to facilitate intracellular paclitaxel accumulation in MCF-7 cells after 24 h treatment as compared to free PTX. At a relatively safe equivalent PTX-dose for normal MCF-10A mammary epithelial cells, the obtained results from Hoechst 33342 staining indicated that optimized PTX-loaded FA-CH-PLA nanoparticles had more than threefold increasing abilities to induce MCF-7 cell apoptosis in comparison to free PTX.

  2. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.

    Science.gov (United States)

    Guo, Jing; Liu, Hui; Zheng, Jie

    2016-01-04

    Synthetic lethality (SL) is a type of genetic interaction between two genes such that simultaneous perturbations of the two genes result in cell death or a dramatic decrease of cell viability, while a perturbation of either gene alone is not lethal. SL reflects the biologically endogenous difference between cancer cells and normal cells, and thus the inhibition of SL partners of genes with cancer-specific mutations could selectively kill cancer cells but spare normal cells. Therefore, SL is emerging as a promising anticancer strategy that could potentially overcome the drawbacks of traditional chemotherapies by reducing severe side effects. Researchers have developed experimental technologies and computational prediction methods to identify SL gene pairs on human and a few model species. However, there has not been a comprehensive database dedicated to collecting SL pairs and related knowledge. In this paper, we propose a comprehensive database, SynLethDB (http://histone.sce.ntu.edu.sg/SynLethDB/), which contains SL pairs collected from biochemical assays, other related databases, computational predictions and text mining results on human and four model species, i.e. mouse, fruit fly, worm and yeast. For each SL pair, a confidence score was calculated by integrating individual scores derived from different evidence sources. We also developed a statistical analysis module to estimate the druggability and sensitivity of cancer cells upon drug treatments targeting human SL partners, based on large-scale genomic data, gene expression profiles and drug sensitivity profiles on more than 1000 cancer cell lines. To help users access and mine the wealth of the data, we developed other practical functionalities, such as search and filtering, orthology search, gene set enrichment analysis. Furthermore, a user-friendly web interface has been implemented to facilitate data analysis and interpretation. With the integrated data sets and analytics functionalities, SynLethDB would

  3. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery.

    Science.gov (United States)

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-21

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.

  4. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Jianhua Cao

    2016-12-01

    Full Text Available Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects.

  5. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying

    2015-04-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  6. Cytochrome P450 1B1 gene polymorphisms as predictors of anticancer drug activity: studies with in vitro models.

    Science.gov (United States)

    Laroche-Clary, Audrey; Le Morvan, Valérie; Yamori, Takao; Robert, Jacques

    2010-12-01

    Cytochrome P450 1B1 (CYP1B1) is found in tumor tissue and is suspected to play a role in oncogenesis and drug resistance. CYP1B1 gene polymorphisms have been associated with the risk of developing lung and other cancers. They may be associated with tumor response to anticancer drugs. We have determined 4 frequent nonsynonymous gene polymorphisms of CYP1B1 in the human tumor cell lines panels of the National Cancer Institute (NCI) and the Japanese Foundation for Cancer Research (JFCR): rs10012 (R48G), rs1056827 (A119S), rs1056836 (L432V), and rs1800440 (N453S). Numerous anticancer drugs have been tested against these panels that offer the opportunity to detect associations between gene polymorphisms and drug sensitivity. CYP1B1 single nucleotide polymorphisms were in marked linkage disequilibrium. The L432V allelic variants were significantly associated with reduced sensitivity to DNA-interacting anticancer agents, alkylators, camptothecins, topoisomerase II inhibitors, and some antimetabolites. For instance, in the NCI panel, cell lines homozygous for the V432 allele were globally 2-fold resistant to alkylating agents (P = 5 × 10(-10)) and 4.5-fold to camptothecins (P = 6.6 × 10(-9)) than cell lines homozygous for the L432 allele. Similar features were exhibited by the JFCR panel. Cell lines homozygous for the V432 allele were globally less sensitive to DNA-interfering drugs than cell lines having at least 1 common allele. There was no significant association between mRNA expression of CYP1B1 and CYP1B1 genotype, and no significant association between CYP1B1 mRNA expression and drug cytotoxicity. These observations open the way to clinical studies exploring the role of CYP1B1 gene polymorphisms for predicting tumor sensitivity to chemotherapy.

  7. Evaluation of efflux pump gene expression among drug susceptible and drug resistant strains of Mycobacterium tuberculosis from Iran.

    Science.gov (United States)

    Kardan Yamchi, Jalil; Haeili, Mehri; Gizaw Feyisa, Seifu; Kazemian, Hossein; Hashemi Shahraki, Abdolrazagh; Zahednamazi, Fatemeh; Imani Fooladi, Abbas Ali; Feizabadi, Mohammad Mehdi

    2015-12-01

    Absence of mutations within the genes encoding drug targets in some phenotypically drug resistant strains of Mycobacterium tuberculosis suggests possible involvement of alternative mechanisms such as over-expression of efflux pumps. We investigated the expression level of Rv1410c, Rv2459, Rv1218c and Rv1273c efflux pumps gene by real-time quantitative reverse transcription PCR (qRT-PCR) in 31 clinical isolates of M. tuberculosis. Susceptibility to first-line drugs was performed using the proportion method. Twenty one isolates were characterized with drug resistance (DR), and among them 12 showed a significantly elevated level of expression (>4 fold) for at least one of the studied genes encoding for efflux pumps. Point mutations in the katG (codons 315 or 335) and rpoB (codons 456 and 441) genes were found in 42.85% and 66.6% of drug resistant isolates, respectively. Only one isolate showed mutation at position -15 of the inhA promoter region. Among the 7 isolates (33.33%) which had no mutation in the studied regions of drug target genes, 5 isolates showed over-expression for efflux pumps. Our results demonstrated that over-expression of efflux pumps can contribute to drug resistance in M. tuberculosis.

  8. The role played by drug efflux pumps in bacterial multidrug resistance.

    Science.gov (United States)

    Chitsaz, Mohsen; Brown, Melissa H

    2017-02-28

    Antimicrobial resistance is a current major challenge in chemotherapy and infection control. The ability of bacterial and eukaryotic cells to recognize and pump toxic compounds from within the cell to the environment before they reach their targets is one of the important mechanisms contributing to this phenomenon. Drug efflux pumps are membrane transport proteins that require energy to export substrates and can be selective for a specific drug or poly-specific that can export multiple structurally diverse drug compounds. These proteins can be classified into seven groups based on protein sequence homology, energy source and overall structure. Extensive studies on efflux proteins have resulted in a wealth of knowledge that has made possible in-depth understanding of the structures and mechanisms of action, substrate profiles, regulation and possible inhibition of many clinically important efflux pumps. This review focuses on describing known families of drug efflux pumps using examples that are well characterized structurally and/or biochemically.

  9. Overview on the current status on virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part II.

    Science.gov (United States)

    Geromichalos, George D; Alifieris, Constantinos E; Geromichalou, Elena G; Trafalis, Dimitrios T

    2016-01-01

    Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Nowadays, new generation of anticancer drugs, able to inhibit more than one pathway, is believed to play a major role in contemporary anticancer drug research. In this way, polypharmacology, focusing on multi-target drugs, has emerged as a new paradigm in drug discovery. A number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. In this part II we will review the role and methodology of ligand-, structure- and fragment-based computer-aided drug design computer aided drug desing (CADD), virtual high throughput screening (vHTS), de novo drug design, fragment-based design and structure-based molecular docking, homology modeling, combinatorial chemistry and library design, pharmacophore model chemistry and informatics in modern drug discovery.

  10. Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M.; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A. Ulises; McMaster, Christopher R.; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-01-01

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane. PMID:23335509

  11. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A Ulises; McMaster, Christopher R; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-03-22

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.

  12. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  13. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jianquan; Zeng, Fang, E-mail: mcfzeng@scut.edu.cn; Xu, Jiangsheng; Wu, Shuizhu, E-mail: shzhwu@scut.edu.cn [South China University of Technology, College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-09-15

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of {approx}100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  14. Evaluation by quantitative image analysis of anticancer drug activity on multicellular spheroids grown in 3D matrices

    Science.gov (United States)

    Gomes, Aurélie; Russo, Adrien; Vidal, Guillaume; Demange, Elise; Pannetier, Pauline; Souguir, Zied; Lagarde, Jean-Michel; Ducommun, Bernard; Lobjois, Valérie

    2016-01-01

    Pharmacological evaluation of anticancer drugs using 3D in vitro models provides invaluable information for predicting in vivo activity. Artificial matrices are currently available that scale up and increase the power of such 3D models. The aim of the present study was to propose an efficient and robust imaging and analysis pipeline to assess with quantitative parameters the efficacy of a particular cytotoxic drug. HCT116 colorectal adenocarcinoma tumor cell multispheres were grown in a 3D physiological hyaluronic acid matrix. 3D microscopy was performed with structured illumination, whereas image processing and feature extraction were performed with custom analysis tools. This procedure makes it possible to automatically detect spheres in a large volume of matrix in 96-well plates. It was used to evaluate drug efficacy in HCT116 spheres treated with different concentrations of topotecan, a DNA topoisomerase inhibitor. Following automatic detection and quantification, changes in cluster size distribution with a topotecan concentration-dependent increase of small clusters according to drug cytotoxicity were observed. Quantitative image analysis is thus an effective means to evaluate and quantify the cytotoxic and cytostatic activities of anticancer drugs on 3D multicellular models grown in a physiological matrix. PMID:28105152

  15. Sandwich-like mesoporous silica flakes for anticancer drug transport-Synthesis, characterization and kinetics release study.

    Science.gov (United States)

    Mijowska, E; Cendrowski, K; Barylak, M; Konicki, W

    2015-12-01

    In this paper, we present the technology of synthesis, characterization and release kinetics of anticancer drug molecules from sandwich-like mesoporous silica nanoflakes. Mesoporous silica nanoflakes are a very attractive material due to their versatility, low cytotoxicity, large surface area, high pore volume and unique feature of containing parallel pores openon both sides. Nanosilica flakes were prepared through the formation of a mesoporous silica layer on a graphene oxide surface. After graphene oxide removal, the silica nanostructures were filled by an anticancer drug-methotrexate. Release kinetics studies were performed in different temperatures, imitating the conditions in living organisms. Release data was analyzed using the zero-order model, first-order model, Higuchi model and Korsmeyer-Peppas model. The optical properties of samples, and the kinetics of drug release from the nanostructure, were examined by UV-vis spectrophotometer. Data obtained from long term studies showed that the system can serve as an anticancer drug carrier system, since a significant amount of methotrexate was loaded to the material and released. The mechanism of MTX release from mesoporous silica nanoflakes appeared to be a parallel processes of diffusion through water-filled mesopores and degradation of the mSiO2 matrix. Physical and chemical characterization was undertaken by transmission electron microscopy (TEM) and X-ray dispersion spectroscopy (EDX). The specific surface area of the samples was measured through the adsorption of N2 isotherm, interpreted with the Brunauer-Emmett-Teller model (BET). TGA and UV-vis analyses were conducted in order to estimate the amount of the released drug.

  16. Polypyrrole-Based Implantable Electroactive Pump for Controlled Drug Microinjection.

    Science.gov (United States)

    Yan, Bingxi; Li, Boyi; Kunecke, Forest; Gu, Zhen; Guo, Liang

    2015-07-15

    Implantable devices for long-lasting controlled insulin microinjection are of great value to diabetic patients. To address this need, we develop a flexible electroactive pump based on a biocompatible polypyrrole composite film that comprises a polypyrrole matrix and a macromolecular dopant of polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone. Using phosphate-buffered saline as the electrolyte, this film demonstrates much higher electroactivity and reproducibility than conventional Cl--doped polypyrrole, making it an excellent actuator for driving an implantable pump. At a driving current density of 1 mA/cm2, the pump demonstrates a consistent output capacity of 10.5 at 0.35 μL/s over 20 cycles. This work paves the way for the development of an implantable electroactive pump to improve the quality of life of diabetics.

  17. Mixed PEG-PE/Vitamin E Tumor-Targeted Immunomicelles as Carriers for Poorly Soluble Anti-Cancer Drugs: Improved Drug Solubilization and Enhanced In Vitro Cytotoxicity

    Science.gov (United States)

    Sawant, Rupa R.; Sawant, Rishikesh M.; Torchilin, Vladimir P.

    2008-01-01

    Two poorly soluble, potent anticancer drugs, paclitaxel and camptothecin, were successfully solubilized by mixed micelles of polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) and vitamin E. Drug containing micelles were additionally modified with anti-nucleosome monoclonal antibody 2C5 (mAb 2C5), which can specifically bring micelles to tumor cells in vitro. The optimized micelles had an average size of about 13-to-22 nm and the immuno-modification of micelles did not significantly change it. The solubilization of both drugs by the mixed micelles was more efficient than by micelles made of PEG-PE alone. Solubilization of camptothecin in micelles prevented also the hydrolysis of active lactone form of the drug to inactive carboxylate form. Drug loaded mixed micelles and mAb 2C5-immunomicelles demonstrated significantly higher in vitro cytotoxicity than free drug against various cancer cell lines. PMID:18583114

  18. Stable polymer micelle systems as anti-cancer drug delivery carriers

    Science.gov (United States)

    Zeng, Yi

    2005-07-01

    Several temporarily stable polymer micelle systems that might be used as ultrasonic-activated drug delivery carriers were synthesized and investigated. These polymeric micelle systems were PlurogelRTM, Tetronic RTM, poly(ethylene oxide)-b-poly(N-isopropylacrylamide) and poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n). In previous work in our lab, Pruitt et al. developed a stabilized drug carrier named PlurogelRTM [5, 6]. Unfortunately, the rate of the successful PlurogelRTM synthesis was only about 30% by simply following Pruitt's process. In this work, this rate was improved to 60% by combining the process of adding 0.15 M NaCl and/or 10 mul/ml n-butanol and by preheating the solution before polymerization. TetronicsRTM were proved not to be good candidates to form temporarily stable polymeric micelle system by polymerizing interpenetrating networks inside their micelle cores. Tetronic micelle systems treated by this process still were not stable at concentrations below their critical micelle concentration (CMC). Poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-N,N-bis(acryloyl)cystamine micelle-like nanoparticles were developed and characterized. When the N,N-bis(acryloyl)cystamine (BAC) was from 0.2 wt% to 0.75 wt% of the mass of poly(N-isopropylacrylamide), diameters of the nanoparticles at 40°C were less than 150 nm. The cores of the nanoparticles were hydrophobic enough to sequester 1,6-diphenylhexatriene (DPH) and the anti-cancer drug doxorubicin (DOX). Nanoparticles with 0.5 wt% BAC stored at room temperature in 0.002 mg/ml solutions were stable for up to two weeks. Poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n) micelle systems were synthesized and characterized. The degree of polymerization of lactate side group, n, was 3 or 5. The copolymers with N-isopropylacrylamide:2-hydroxyethyl methacrylate-lactate3: poly(ethylene oxide) (NIPAAm:HEMA-lactate 3:PEO) ratios of

  19. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    Science.gov (United States)

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-03

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs.

  20. Photophysical characterization of anticancer drug valrubicin in rHDL nanoparticles and its use as an imaging agent.

    Science.gov (United States)

    Shah, Sunil; Chib, Rahul; Raut, Sangram; Bermudez, Jaclyn; Sabnis, Nirupama; Duggal, Divya; Kimball, Joseph D; Lacko, Andras G; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2016-02-01

    Nanoparticles are target-specific drug delivery agents that are increasingly used in cancer therapy to enhance bioavailability and to reduce off target toxicity of anti-cancer agents. Valrubicin is an anti-cancer drug, currently approved only for vesicular bladder cancer treatment because of its poor water solubility. On the other hand, valrubicin carrying reconstituted high density lipoprotein (rHDL) nanoparticles appear ideally suited for extended applications, including systemic cancer chemotherapy. We determined selected fluorescence properties of the free (unencapsulated) drug vs. valrubicin incorporated into rHDL nanoparticles. We have found that upon encapsulation into rHDL nanoparticles the quantum yield of valrubicin fluorescence increased six fold while its fluorescence lifetime increased about 2 fold. Accordingly, these and potassium iodide (KI) quenching data suggest that upon incorporation, valrubicin is localized deep in the interior of the nanoparticle, inside the lipid matrix. Fluorescence anisotropy of the rHDL valrubicin nanoparticles was also found to be high along with extended rotational correlation time. The fluorescence of valrubicin could also be utilized to assess its distribution upon delivery to prostate cancer (PC3) cells. Overall the fluorescence properties of the rHDL: valrubicin complex reveal valuable novel characteristics of this drug delivery vehicle that may be particularly applicable when used in systemic (intravenous) therapy.

  1. Mapping Novel Metabolic Nodes Targeted by Anti-Cancer Drugs that Impair Triple-Negative Breast Cancer Pathogenicity.

    Science.gov (United States)

    Roberts, Lindsay S; Yan, Peter; Bateman, Leslie A; Nomura, Daniel K

    2017-03-08

    Triple-negative breast cancers (TNBCs) are estrogen receptor, progesterone receptor, and HER2 receptor-negative subtypes of breast cancers that show the worst prognoses and lack targeted therapies. Here, we have coupled the screening of ∼400 anticancer agents that are under development or in the clinic with chemoproteomic and metabolomic profiling to identify novel metabolic mechanisms for agents that impair TNBC pathogenicity. We identify 20 anticancer compounds that significantly impaired cell survival across multiple types of TNBC cells. Among these 20 leads, the phytoestrogenic natural product licochalcone A was of interest, since TNBCs are unresponsive to estrogenic therapies, indicating that licochalcone A was likely acting through another target. Using chemoproteomic profiling approaches, we reveal that licochalcone A impairs TNBC pathogenicity, not through modulating estrogen receptor activity but rather through inhibiting prostaglandin reductase 1, a metabolic enzyme involved in leukotriene B4 inactivation. We also more broadly performed metabolomic profiling to map additional metabolic mechanisms of compounds that impair TNBC pathogenicity. Overlaying lipidomic profiling with drug responses, we find that deubiquitinase inhibitors cause dramatic elevations in acyl carnitine levels, which impair mitochondrial respiration and contribute to TNBC pathogenic impairments. We thus put forth two unique metabolic nodes that are targeted by drugs or drug candidates that impair TNBC pathogenicity. Our results also showcase the utility of coupling drug screens with chemoproteomic and metabolomic profiling to uncover unique metabolic drivers of TNBC pathogenicity.

  2. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity.

    Science.gov (United States)

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W Y; Cheng, Christopher H K; Au, Doris W T; Teng, Gao-Jun; Ahuja, Anil T; Wang, Yi-Xiang J

    2012-09-21

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 ± 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC(50)) was 0.05 ± 0.03 μg ml(-1) for DOX/SPIO, while it was 0.13 ± 0.02 μg ml(-1) for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  3. Combination Anticancer Nanopreparations of Novel Proapoptotic Drug, TRAIL and siRNA

    Science.gov (United States)

    Riehle, Robert D.

    . The addition of TNFa-related apoptosis-inducing ligand (TRAIL) bound to the surface of the micelle creates a combination micelle with excellent cytotoxic effects. TRAIL has been shown to be an effective apoptosis inducing ligand in a variety of in vitro and in vivo studies. TRAIL receptors are preferentially expressed on many cancer cell types as compared to healthy cells making this ligand an intriguing potential therapy. The combination of TRAIL and PIP3-PH inhibitors in a micellar delivery system has the potential to create a powerful anti-cancer therapeutic. Including modified siRNA to down regulate cancer defense mechanisms can further sensitize the cell to apoptosis. siRNA delivery has been shown to be a difficult task. Rapid metabolism and clearance in the blood hinders their ability to reach the tumor. Additionally, their large size and negative charge prevents them from crossing the cell membrane to reach their location of action. Reversibly conjugating a modified siRNA to a lipid thereby creating an siRNA-S-S-PE, allows for their incorporation into PEG-PE micelles. These mixed micelles have been shown to protect the siRNA and successfully transfect cells. This study aimed to combine the aforementioned therapeutics into a multifunctional PEG-PE based micelle delivery system. Novel proapoptotic drugs targeting the PIP3-PH binding domain have been successfully incorporated into the lipid core of the micelle. These drugs were able to effectively sensitize the cell to the effects of surface-bound TRAIL. Additionally, siRNA targeting the anti-apoptotic protein survivin was shown to be incorporated into the micelles and further sensitize the tumor to the effects of the above compounds. Lastly, conjugating transferrin (TF) to the surface of the micelle was shown increase the tumor cell targeting and cytotoxicity in vitro. Critical evaluation of this system was performed along the following specific aims: (1) characterization of PIP3-PH inhibition and cytotoxicity of

  4. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  5. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    Science.gov (United States)

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  6. Importance of Kier-Hall topological indices in the QSAR of anticancer drug design.

    Science.gov (United States)

    Nandi, Sisir; Bagchi, Manish C

    2012-06-01

    , the structural model of an assembled entity (e.g. a molecule consisting of atoms) may be defined as the pattern of relationship among its parts as distinct from the values associated with them. Constitutional formulae of molecules are graphs where vertices represent the set of atoms and edges represent chemical bonds. The pattern of connectedness of atoms in a molecule is preserved by constitutional graphs. A graph (more correctly a non-directed graph) G = [V, E] consists of a finite non-empty set V of points together with a prescribed set E of unordered pairs of distinct points of V. Thus the mathematical characterization of structures represents structural invariants having successful applications in chemical documentation, characterization of molecular branching, enumeration of molecular constitutional associated with a particular empirical formula, calculation of quantum chemical parameters for the generation of quantitative structure-property-activity correlations. Kier developed a number of structural invariants which are now-a-days called as topological indices with wide range of practical applications for QSAR and drug design. The present paper is restricted to the review of Kier-Hall topological indices for QSAR and anticancer drug design for 2,5-bis(1-aziridinyl) 1,4-benzoquinone (BABQ), pyridopyrimidine, 4-anilinoquinazoline and 2-Phenylindoles compounds utilizing various statistical multivariate regression analyses.

  7. Human DNA ligase and DNA polymerase as molecular targets for heavy metals and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.

    1992-01-01

    DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase [alpha] are the molecular targets for two metal ions, Zn[sup 2+] and Cd[sup 2+], and an anticancer drug, F-ara-ATP. The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP. A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex. F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3[prime]-terminus of DNA nick by DNA polymerase [alpha]. All steps of the DNA ligation reaction were inhibited by Zn[sup 2+] and Cd[sup 2+] in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn[sup 2+] and Cd[sup 2+] showed their contradictory effects on the fidelity of the reaction by human DNA polymerase [alpha]. Zn[sup 2+] decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd[sup 2+] increased the frequencies of both misinsertion and mispair extension at very low concentration. The data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported.

  8. Anticancer Drug Resistance of HeLa Cells Transfected With Rat Glutathione S-transferase pi Gene

    Institute of Scientific and Technical Information of China (English)

    WEI CAO; JIN ZUO; YAN MENG; QIANG WEI; ZHAO-HU SHI; LI-MEI JU; FU-DE FANG

    2003-01-01

    Objective To establish a cytologic expressing system of rat glutathione S-transferase pi(GST-pi) cDNA for detecting the resistance of HeLa cells to anticancer drugs. Methods Theassessment was made with various anticancer drugs (adriamycin, mitomycin, cisplatinum andvincristine) that showed different cytotoxicities in transfectant HeLa cells with pSV-GT containing ratGST-pi cDNA (HeLa/pSV-GT) or control pSV-neo (HeLa/pSV-neo). Expression levels of GST-pimRNA in HeLa/pSV-GT and HeLa/pSV-neo were measured by in situ hybridization usingDigoxin-labelled cDNA probe. Results HeLa/pSV-GT expressed significantly high degree ofGST-pi mRNA, whereas both HeLa/pSV-neo and HeLa cells had very low expression. Cytotoxicitiesof HeLa/pSV-GT and HeLa/pSV-neo with 4 anticancer drugs were measured by MTT assay. Drugconcentrations for yielding 50% inhibition (IC50) in HeLa/pSV-GT by adriamycin, mitomycin andcisplatinum were 70.13 μg/mL, 10.95 μg/mL and 16.52 μg/mL, respectively. In contrast, IC50 inHeLa/pSV-neo was 10.34 μg/mL, 7.48 μg/mL and 13.70 μg/mL, respectively. The cytotoxicities ofvincristine on both HeLa/pSV-GT and HeLa/pSV-neo were not significantly different. ConclusionsOur findings suggest that HeLa/pSV-GT containing rat GST-pi cDNA is resistant to some anticancerdrugs due to overexpression of GST-pi. Also, HeLa/pSV-GT cell line could serve as a usefulcytogenetic model for further research.

  9. Fresh Water Cyanobacteria Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as an Anticancer Drug Resource.

    Directory of Open Access Journals (Sweden)

    Akanksha Srivastava

    Full Text Available An increasing number of cancer patients worldwide, especially in third world countries, have raised concern to explore natural drug resources, such as the less explored fresh water filamentous cyanobacteria. Six strains of cyanobacteria (Phormidium sp. CCC727, Geitlerinema sp. CCC728, Arthrospira sp. CCC729, Phormidium sp. CCC731, Phormidium sp. CCC730, and Leptolyngbya sp. CCC732 were isolated (paddy fields and ponds in the Banaras Hindu University, campus and five strains screened for anticancer potential using human colon adenocarcinoma (HT29 and human kidney adenocarcinoma (A498 cancer cell lines. Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 were the most potent as determined by examination of morphological features and by inhibition of growth by graded concentrations of crude extracts and thin-layer chromatography (TLC eluates. Cell cycle analysis and multiplex assays using cancer biomarkers also confirmed Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as cancer drug resources. Apoptotic studies in the cells of A498 (cancer and MCF-10A (normal human epithelial exposed to crude extracts and TLC fractions revealed no significant impact on MCF-10A cells emphasizing its importance in the development of anticancer drug. Identification of biomolecules from these extracts are in progress.

  10. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-15

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017.

  11. Gold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging

    Directory of Open Access Journals (Sweden)

    Yuling Xiao, Hao Hong, Vyara Z. Matson, Alireza Javadi, Wenjin Xu, Yunan Yang, Yin Zhang, Jonathan W. Engle, Robert J. Nickles, Weibo Cai, Douglas A. Steeber, Shaoqin Gong

    2012-01-01

    Full Text Available A multifunctional gold nanorod (GNR-based nanoplatform for targeted anticancer drug delivery and positron emission tomography (PET imaging of tumors was developed and characterized. An anti-cancer drug (i.e., doxorubicin (DOX was covalently conjugated onto PEGylated (PEG: polyethylene glycol GNR nanocarriers via a hydrazone bond to achieve pH-sensitive controlled drug release. Tumor-targeting ligands (i.e., the cyclo(Arg-Gly-Asp-D-Phe-Cys peptides, cRGD and 64Cu-chelators (i.e., 1,4,7-triazacyclononane-N, N', N''-triacetic acid (NOTA were conjugated onto the distal ends of the PEG arms to achieve active tumor-targeting and PET imaging, respectively. Based on flow cytometry analysis, cRGD-conjugated nanocarriers (i.e., GNR-DOX-cRGD exhibited a higher cellular uptake and cytotoxicity than non-targeted ones (i.e., GNR-DOX in vitro. However, GNR-DOX-cRGD and GNR-DOX nanocarriers had similar in vivo biodistribution according to in vivo PET imaging and biodistribution studies. Due to the unique optical properties of GNRs, this multifunctional GNR-based nanoplatform can potentially be optimized for combined cancer therapies (chemotherapy and photothermal therapy and multimodality imaging (PET, optical, X-ray computed tomography (CT, etc..

  12. [Classification of anticancer drugs with different mechanisms based on amino-acid consumption profiling in culture media].

    Science.gov (United States)

    Han, Xiaofei; Wang, Longxing; Yang, Qianxu; Xiao, Hongbin

    2011-04-01

    An approach for quantitative determination of amino-acid consumption profiling in culture media by high performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed and validated, using o-phthalic dicarboxaldehyde (OPA) as the derivatizing reagent and norvaline as the internal standard. Mobile phase A was 10 mmol/L Na2HPO4Na2B4O7 buffer (pH 7.95), and mobile phase B was acetonitrile-methanol-water (45:45:10, v/v/v). The linear elution program was 5% B at the start and 52% B at the end in 35 min. The 17 free amino-acids (FAAs) were separated satisfactorily in 33 min. Following HeLa cells incubation in conditioned medias of taxol (4 micromol/L) and mitomycin (75 micromol/L), respectively, with control for 24 h, the media 17 amino-acid consumption profilings were determined, and then analyzed by multivariate statistical analysis based on Matlab7.1 software platform. Relation analysis performed by partial least squares-discriminant analysis (PLS-DA) indicated that in comparison with the control group, the media amino-acid consumption profiling can distinguish the two anticancer drugs with different mechanisms, which provides a new perspective for the pre-classification of drug action mechanisms during the screening of new anticancer drugs. Meanwhile, the idea from the outer into the inner has convenient and economic characteristics.

  13. Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mochizuki Hidetaka

    2001-08-01

    Full Text Available Abstract Background The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. Methods LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. Results The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. Conclusions These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes.

  14. Synthesis and biological evaluation of novel thalidomide analogues as potential anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yi Hua Zhang; Shan Yu; Hui Ji; Yi Sheng Lai; Si Xun Peng

    2008-01-01

    In search of novel anticancer agents, a series of thalidomide analogs (6a-j) were designed and synthesized. Cytotoxicity of these compounds against human hepatoma cells (HepG2) was evaluated by MTT method. Compounds 6d, 6h and 6i showed significant cytotoxic activities comparable to or stronger than control 5-fluorouracil.

  15. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-12-01

    Full Text Available Yiwen Wang,* Fei Qin,* Haina Tan, Yan Zhang, Miao Jiang, Mei Lu, Xin Yao School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Carboxymethyl-β-cyclodextrin (CMβ-CD-modified glycol chitosan (GCS nanoparticles (GCS-CMβ-CD NPs were synthesized, and their pH-sensitive drug-release properties were investigated. GCS-CMβ-CD NPs could encapsulate doxorubicin hydrochloride (DOX, and the encapsulation efficiency and loading capacity increased with the amount of CMβ-CD. Drug-release studies indicate that DOX released was greater in acidic medium (pH 5.0 than in weakly basic medium (pH 7.4. The mechanism underlying the pH-sensitive properties of the carrier was analyzed. Finally, the MCF-7 (human breast cancer and SW480 cell lines (human colon cancer were used to evaluate the cytotoxicity of the NPs. The drug-loaded carriers show good inhibition of the growth of cancer cells compared with free DOX, and the carriers have good biocompatibility. In addition, the drug-loaded NPs have sustained drug-release properties. All these properties of the newly synthesized GCS-CMβ-CD NPs suggest a promising potential as an effective anticancer drug-delivery system for controlled drug release. Keywords: MCF-7, SW480, surface plasmon resonance, encapsulation efficiency, loading capacity, cell viability

  16. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-01-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  17. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-08-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  18. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  19. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates.

    Science.gov (United States)

    Balganesh, Meenakshi; Dinesh, Neela; Sharma, Sreevalli; Kuruppath, Sanjana; Nair, Anju V; Sharma, Umender

    2012-05-01

    Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

  20. Variation of Protein's Expression Correlated to the Drug Resistance after Sequential Anti-cancer Treatment in Human Lung Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    Zhi-hong Chi; Ji-ren Zhang; Peng Li; Duan-qi Liu

    2005-01-01

    @@ Multi-drug resistance is one of the leading causes for fai lure to treat patients with cancer. This study is to explore the expression of the proteins correlated with chemoresistance in a human lung cancer cell line (LPET-a-1) repeatedly treated by anti-cancer drugs.

  1. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine.

    Science.gov (United States)

    Liu, Jubo; Xiao, Yuehua; Allen, Christine

    2004-01-01

    To establish a method for predicting polymer-drug compatibility as a means to guide formulation development, we carried out physicochemical analyses of polymer-drug pairs and compared the difference in total and partial solubility parameters of polymer and drug. For these studies, we employed a range of biodegradable polymers and the anticancer agent Ellipticine as the model drug. The partial and total solubility parameters for the polymer and drug were calculated using the group contribution method. Drug-polymer pairs with different enthalpy of mixing values were analyzed by physicochemical techniques including X-ray diffraction and Fourier transform infrared. Polymers identified to be compatible [i.e., polycaprolactone (PCL) and poly-beta-benzyl-L-aspartate (PBLA)] and incompatible [i.e., poly (d,l-lactide (PLA)], by the above mentioned methods, were used to formulate Ellipticine. Specifically, Ellipticine was loaded into PBLA, PCL, and PLA films using a solvent casting method to produce a local drug formulation; while, polyethylene oxide (PEO)-b-polycaprolactone (PCL) and PEO-b-poly (d,l-lactide) (PLA) copolymer micelles were prepared by both dialysis and dry down methods resulting in a formulation for systemic administration. The drug release profiles for all formulations and the drug loading efficiency for the micelle formulations were also measured. In this way, we compared formulation characteristics with predictions from physicochemical analyses and comparison of total and partial solubility parameters. Overall, a good correlation was obtained between drug formulation characteristics and findings from our polymer-drug compatibility studies. Further optimization of the PEO-b-PCL micelle formulation for Ellipticine was also performed.

  2. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Science.gov (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  3. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening.

    Science.gov (United States)

    Heylman, Christopher; Sobrino, Agua; Shirure, Venktesh S; Hughes, Christopher Cw; George, Steven C

    2014-09-01

    Cancer is one of the leading causes of morbidity and mortality around the world. Despite some success, traditional anticancer drugs developed to reduce tumor growth face important limitations primarily due to undesirable bone marrow and cardiovascular toxicity. Many drugs fail in clinical development after showing promise in preclinical trials, suggesting that the available in vitro and animal models are poor predictors of drug efficacy and toxicity in humans. Thus, novel models that more accurately mimic the biology of human organs are necessary for high-throughput drug screening. Three-dimensional (3D) microphysiological systems can utilize induced pluripotent stem cell technology, tissue engineering, and microfabrication techniques to develop tissue models of human tumors, cardiac muscle, and bone marrow on the order of 1 mm(3) in size. A functional network of human capillaries and microvessels to overcome diffusion limitations in nutrient delivery and waste removal can also nourish the 3D microphysiological tissues. Importantly, the 3D microphysiological tissues are grown on optically clear platforms that offer non-invasive and non-destructive image acquisition with subcellular resolution in real time. Such systems offer a new paradigm for high-throughput drug screening and will significantly improve the efficiency of identifying new drugs for cancer treatment that minimize cardiac and bone marrow toxicity.

  4. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy.

    Science.gov (United States)

    Park, Soyeun

    2016-06-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.

  5. Flavaglines: potent anticancer drugs that target prohibitins and the helicase eIF4A.

    Science.gov (United States)

    Basmadjian, Christine; Thuaud, Frédéric; Ribeiro, Nigel; Désaubry, Laurent

    2013-12-01

    Flavaglines are complex natural products that are found in several medicinal plants of Southeast Asia in the genus Aglaia; these compounds have shown exceptional anticancer and cytoprotective activities. This review describes the significance of flavaglines as a new class of pharmacological agents and presents recent developments in their synthesis, structure-activity relationships, identification of their molecular targets and modes of action. Flavaglines display a unique profile of anticancer activities that are mediated by two classes of unrelated proteins: prohibitins and the translation initiation factor eIF4A. The identification of these molecular targets is expected to accelerate advancement toward clinical studies. The selectivity of cytotoxicity towards cancer cells has been shown to be due to an inhibition of the transcription factor HSF1 and an upregulation of the tumor suppressor TXNIP. In addition, flavaglines display potent anti-inflammatory, cardioprotective and neuroprotective activities; however, the mechanisms underlying these activities are yet to be elucidated.

  6. ANTICANCER ACTIVITY AND DRUG LIKELINESS OF QUINOLINE THROUGH INSILICO DOCKING AGAINST CERVICAL AND LIVER CANCER RECEPTORS

    OpenAIRE

    M.P.Santhi, G.Bupesh* , V.SenthilKumar*, K.Meenakumari, K.Prabhu, S.Sugunthan, E.Manikandan, K.Saravanan

    2016-01-01

    The oncogenic protein receptors were key molecular targets for cancers. Especially in tumor cells, they were frequently transformed or mutated at abnormal states. The normal cells encounter a programmed cell death (apoptosis). It is an imperative and striking focus for anticancer medication advancement and disclosure. Biophytum sensitivum is a medicinal plant rich in quinoline and amentoflavone.  The aqueous extract of plant was still administered for various ailments in naturopathy medicines...

  7. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    OpenAIRE

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2013-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary ther...

  8. Selective Delivery of an Anticancer Drug with Aptamer-Functionalized Liposomes to Breast Cancer Cells in Vitro and in Vivo.

    Science.gov (United States)

    Xing, Hang; Tang, Li; Yang, Xujuan; Hwang, Kevin; Wang, Wendan; Yin, Qian; Wong, Ngo Yin; Dobrucki, Lawrence W; Yasui, Norio; Katzenellenbogen, John A; Helferich, William G; Cheng, Jianjun; Lu, Yi

    2013-10-21

    Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity.

  9. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy.

    Science.gov (United States)

    Jiang, Q-L; Zhang, S; Tian, M; Zhang, S-Y; Xie, T; Chen, D-Y; Chen, Y-J; He, J; Liu, J; Ouyang, L; Jiang, X

    2015-02-01

    Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.

  10. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    Directory of Open Access Journals (Sweden)

    Choong Peter FM

    2006-06-01

    Full Text Available Abstract Cationic (positively charged liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs.

  11. A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs

    Science.gov (United States)

    Shakerzadeh, Ehsan; Noorizadeh, Siamak

    2014-03-01

    Interaction of cis-platin and neda-platin, two conventional platinum-based anticancer drugs, with pristine [8,8] and Al-doped [8,0] boron nitride nanotubes (BNNTs) are investigated using the density functional theory (DFT) method. The obtained results indicate that cis-platin and neda-platin weakly interact with pristine zig zag or armchair BNNTs with a little dependency on the adsorbing positions; while both cis-platin and neda-platin are preferentially adsorbed onto the Al atom of the Al-doped BNNT with considerable adsorption energies. Therefore the Al-doped-BNNT might be an efficient carrier for delivery of these drugs in nanomedicine domain. The electronic structures of the stable configurations are also investigated through both DOS and PDOS spectra. The obtained results introduce the Al-doped-BNNT as an efficient carrier for delivery of cis-platin and neda-platin in nanomedicine domain.

  12. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  13. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery.

    Science.gov (United States)

    Song, Erqun; Han, Weiye; Li, Cheng; Cheng, Dan; Li, Lingrui; Liu, Lichao; Zhu, Guizhi; Song, Yang; Tan, Weihong

    2014-08-13

    A novel nanohybrid of hyaluronic acid (HA)-decorated graphene oxide (GO) was fabricated as a targeted and pH-responsive drug delivery system for controlling the release of anticancer drug doxorubicin (DOX) for tumor therapy. For the preparation, DOX was first loaded onto GO nanocarriers via π-π stacking and hydrogen-bonding interactions, and then it was decorated with HA to produce HA-GO-DOX nanohybrids via H-bonding interactions. In this strategy, HA served as both a targeting moiety and a hydrophilic group, making the as-prepared nanohybrids targeting, stable, and disperse. A high loading efficiency (42.9%) of DOX on the nanohybrids was also obtained. Cumulative DOX release from HA-GO-DOX was faster in pH 5.3 phosphate-buffered saline solution than that in pH 7.4, providing the basis for pH-response DOX release in the slightly acidic environment of tumor cells, while the much-slower DOX release from HA-GO-DOX than DOX showed the sustained drug-release capability of the nanohybrids. Fluorescent images of cellular uptake and cell viability analysis studies illustrated that these HA-GO-DOX nanohybrids significantly enhanced DOX accumulation in HA-targeted HepG2 cancer cells compared to HA-nontargeted RBMEC cells and subsequently induced selective cytotoxicity to HepG2 cells. In vivo antitumor efficiency of HA-GO-DOX nanohybrids showed obviously enhanced tumor inhibition rate for H22 hepatic cancer cell-bearing mice compared with free DOX and the GO-DOX formulation. These studies suggest that the HA-GO-DOX nanohybrids have potential clinical applications for anticancer drug delivery.

  14. Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole

    Science.gov (United States)

    Punith, Reeta; Seetharamappa, J.

    2012-06-01

    The present study employed different optical spectroscopic techniques viz., fluorescence, FTIR, circular dichroism (CD) and UV-vis absorption spectroscopy to investigate the mechanism of interaction of an anticancer drug, anastrozole (AZ) with transport proteins viz., bovine serum albumin (BSA) and human serum albumin (HSA). The drug, AZ quenched the intrinsic fluorescence of protein and the analysis of results revealed the presence of dynamic quenching mechanism. The binding characteristics of drug-protein were computed. The thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be +92.99 kJ/mol and +159.18 J/mol/K for AZ-BSA and, +99.43 kJ/mol and +159.19 J/mol/K for AZ-HSA, respectively. These results indicated that the hydrophobic forces stabilized the interaction between the drug and protein. CD, FTIR, absorption, synchronous and 3D fluorescence results indicated that the binding of AZ to protein induced structural perturbation in both serum albumins. The distance, r between the drug and protein was calculated based on the theory of Förster's resonance energy transfer and found to be 5.9 and 6.24 nm, respectively for AZ-BSA and AZ-HSA.

  15. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-06-01

    High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging.

  16. 金属类抗癌药物的研究进展%Metal-based anticancer drug research progress

    Institute of Scientific and Technical Information of China (English)

    徐新华; 张国刚; 王林; 杨勤玲; 张毓萍

    2012-01-01

    在新型抗癌药物中,金属类抗癌药物已成为重要的一类.金属类抗癌药物有许多其它药物无法比拟的独特性质,近年,新的高效、低毒、具有抗癌活性的金属化合物不断被合成出来.其中有铂类抗癌药物,有机锡及其配合物、有机锗化合物、钯配合物、钌配合物、铜配位化合物、钛类化合物等,本文综述了这些化合物在抗癌领域的研究与应用新进展.%In recent years, metal - based anti - cancer drugs have become one important type among the new developing anti - cancer drugs. Metal - based anti - cancer drugs have many unique properties that are superior to those of other drugs. With the further understanding of the pharmacological action of the metal complexes, the new metal compounds with high efficiency, low toxicity, and anticancer activity were continuously synthesized. Those compounds included platinum anti - cancer drugs, organic tin complexes, organic germanium compound, palladium complexes, ruthenium complexes, copper coordination compounds, titanium compounds, etc. This article reviews research and application progress of these compounds in the anti ?cancer field.

  17. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chenchen Yu

    Full Text Available MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX loaded poly (lactic-co-glycolic-acid (PLGA nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+ cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01. The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.

  18. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Murawala, Priyanka [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); Tirmale, Amruta [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); National Centre for Cell Science, NCCS, Pune 411007 (India); Shiras, Anjali, E-mail: anjalishiras@nccs.res.in [National Centre for Cell Science, NCCS, Pune 411007 (India); Prasad, B.L.V., E-mail: pl.bhagavatula@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated.

  19. Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway.

    Science.gov (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Kawamura, Ayako; Isoyama, Shota; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-06-01

    Multiple myeloma (MM) is still an incurable hematological malignancy with a 5-year survival rate of ~35%, despite the use of various treatment options. The nuclear factor κB (NF-κB) pathway plays a crucial role in the pathogenesis of MM. Thus, inhibition of the NF-κB pathway is a potential target for the treatment of MM. In a previous study, we showed that mangiferin suppressed the nuclear translocation of NF-κB. However, the treatment of MM involves a combination of two or three drugs. In this study, we examined the effect of the combination of mangiferin and conventional anticancer drugs in an MM cell line. We showed that the combination of mangiferin and an anticancer drug decreased the viability of MM cell lines in comparison with each drug used separately. The decrease in the combination of mangiferin and an anticancer drug induced cell viability was attributed to increase the expression of p53 and Noxa and decreases the expression of XIAP, survivin, and Bcl-xL proteins via inhibition of NF-κB pathway. In addition, the combination treatment caused the induction of apoptosis, activation of caspase-3 and the accumulation of the cells in the sub-G1 phase of the cell cycle. Our findings suggest that the combination of mangiferin and an anticancer drug could be used as a new regime for the treatment of MM.

  20. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Rodrigues, Liliana; Villellas, Cristina; Bailo, Rebeca; Viveiros, Miguel; Aínsa, José A

    2013-02-01

    Efflux pumps are membrane proteins capable of actively transporting a broad range of substrates from the cytoplasm to the exterior of the cell. Increased efflux activity in response to drug treatment may be the first step in the development of bacterial drug resistance. Previous studies showed that the efflux pump Mmr was significantly overexpressed in strains exposed to isoniazid. In the work to be described, we constructed mutants lacking or overexpressing Mmr in order to clarify the role of this efflux pump in the development of resistance to isoniazid and other drugs in M. tuberculosis. The mmr knockout mutant showed an increased susceptibility to ethidium bromide, tetraphenylphosphonium, and cetyltrimethylammonium bromide (CTAB). Overexpression of mmr caused a decreased susceptibility to ethidium bromide, acriflavine, and safranin O that was obliterated in the presence of the efflux inhibitors verapamil and carbonyl cyanide m-chlorophenylhydrazone. Isoniazid susceptibility was not affected by the absence or overexpression of mmr. The fluorometric method allowed the detection of a decreased efflux of ethidium bromide in the knockout mutant, whereas the overexpressed strain showed increased efflux of this dye. This increased efflux activity was inhibited in the presence of efflux inhibitors. Under our experimental conditions, we have found that efflux pump Mmr is mainly involved in the susceptibility to quaternary compounds such as ethidium bromide and disinfectants such as CTAB. The contribution of this efflux pump to isoniazid resistance in Mycobacterium tuberculosis still needs to be further elucidated.

  1. Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ossipov, Konstantin; Foteeva, Lidia S; Seregina, Irina F; Perevalov, Sergei A; Timerbaev, Andrei R; Bolshov, Mikhail A

    2013-06-27

    The application of an inductively coupled plasma mass spectrometry (ICP-MS) assay for quantifying in vitro binding of a gallium-based anticancer drug, tris(8-quinolinolato)gallium(III), to serum albumin and transferrin and in human serum is described. The distribution of the drug between the protein-rich and protein-free fractions was assessed via ICP-MS measurement of total gallium in ultrafiltrates. Comparative kinetic studies revealed that the drug exhibits a different reactivity toward individual proteins. While the maximum possible binding to albumin (~10%) occurs practically immediately, interaction with transferrin has a step-like character and the equilibrium state (with more than 50% binding) is reached for about 48 h. Drug transformation into the bound form in serum, also very fast, results in almost quantitative binding (~95%). The relative affinity of protein-drug binding was characterized in terms of the association constants ranging from 10(3) to 10(4)M(-1). In order to further promote clinical testing of the gallium drug, the ICP-MS method was applied for direct quantification of gallium in human serum spiked with the drug. The detection limit for gallium was found to be as low as 20 ng L(-1). The repeatability was better than 8% (as RSD) and the achieved recoveries were in the range 99-103%.

  2. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available The poor bioavailability of Berberine (BBR and Betulinic acid (BA limits the development of these promising anticancer agents for clinical use. In the current study, BBR and BA in spray dried (SD mucoadhesive microparticle formulations were prepared.A patented dual channel spray gun technology established in our laboratory was used for both formulations. Gastrointestinal (GI permeability studies were carried out using Caco-2 cell monolayer grown in in-vitro system. The oral bioavailability and pharmacokinetic profile of SD formulations were studied in Sprague Dawley rats. A549 orthotopic and H1650 metastatic NSCLC models were utilized for the anticancer evaluations.Pharmacokinetic studies demonstrated that BBR and BA SD formulations resulted in 3.46 and 3.90 fold respectively, significant increase in plasma Cmax concentrations. AUC levels were increased by 6.98 and 7.41 fold in BBR and BA SD formulations, respectively. Compared to untreated controls groups, 49.8 & 53.4% decrease in the tumor volumes was observed in SD formulation groups of BBR and BA, respectively. Molecular studies done on excised tumor (A549 tissue suggested that BBR in SD form resulted in a significant decrease in the survivin, Bcl-2, cyclin D1, MMP-9, HIF-1α, VEGF and CD31 expressions. Cleaved caspase 3, p53 and TUNEL expressions were increased in SD formulations. The RT-PCR analysis on H1650 tumor tissue suggested that p38, Phospho-JNK, Bax, BAD, cleaved caspase 3&8 mRNA expressions were significantly increased in BA SD formulations. Chronic administration of BBR and BA SD formulations did not show any toxicity.Due to significant increase in oral bioavailability and superior anticancer effects, our results suggest that spray drying is a superior alternative formulation approach for oral delivery of BBR and BA.

  3. Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse.

    Science.gov (United States)

    Resnier, Pauline; Galopin, Natacha; Sibiril, Yann; Clavreul, Anne; Cayon, Jérôme; Briganti, Alessandro; Legras, Pierre; Vessières, Anne; Montier, Tristan; Jaouen, Gérard; Benoit, Jean-Pierre; Passirani, Catherine

    2017-01-31

    Metastatic melanoma has been described as a highly aggressive cancer with low sensibility to chemotherapeutic agents. New types of drug, such as metal-based drugs (ferrocifens) have emerged and could represent an alternative for melanoma treatment since they show interesting anticancer potential. Furthermore, molecular analysis has evidenced the role of apoptosis in the low sensibility of melanomas and especially of the key regulator, Bcl-2. The objective of this study was to combine two strategies in the same lipid nanocapsules (LNCs): i) gene therapy to modulate anti-apoptotic proteins by the use of Bcl-2 siRNA, and ii) ferrocifens as a new type of anticancer agent. The efficient gene silencing with LNCs was verified by the specific extinction of Bcl-2 in melanoma cells. The cellular toxicity of ferrocifens (ferrociphenol (FcDiOH) or Ansa-FcDiOH) was demonstrated, showing higher efficacy than dacarbazine. Interestingly, the association of siBcl-2 LNCs with Ansa-FcDiOH demonstrated a significant effect on melanoma cell viability. Moreover, the co-encapsulation of siRNA and ferrocifens was successfully performed into LNCs for animal experiments. A reduction of tumor volume and mass was proved after siBcl-2 LNC treatment and Ansa-FcDiOH LNC treatment, individually (around 25%). Finally, the association of both components into the same LNCs increased the reduction of tumor volume to about 50% compared to the control group. In conclusion, LNCs appeared to provide a promising tool for the co-encapsulation of a metal-based drug and siRNA.

  4. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  5. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs

    Directory of Open Access Journals (Sweden)

    Kengo eKuroda

    2015-06-01

    Full Text Available Antimicrobial peptides (AMPs play a critical role in innate host defense against microbial pathogens in many organisms. The human cathelicidin LL-37 has a net positive charge and is amphiphilic, and can eliminate pathogenic microbes directly via electrostatic attraction toward negatively charged bacterial membranes. A number of studies have shown that LL-37 participates in various host immune systems, such as inflammatory responses and tissue repair, in addition to its antibacterial properties. Moreover, recent evidence suggests that it is also involved in the regulation of cancer. Indeed, previous studies have suggested that human LL-37 is involved in carcinogenesis via multiple reporters such as FPR2 (FPRL1, EGFR, and ERBb2, although LL-37 and its fragments and analogues also show anticancer effects in various cancer cell lines. This discrepancy can be attributed to peptide-based factors, host membrane-based factors, and signal regulation. Here, we describe the association between AMPs and cancer with a focus on anticancer peptide functions and selectivity in an effort to understand potential therapeutic implications.

  6. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    Science.gov (United States)

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe3O4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  7. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency

    Science.gov (United States)

    Lovmar, Martin; Nilsson, Karin; Lukk, Eliisa; Vimberg, Vladimir; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    We characterized the effects of classical erythromycin resistance mutations in ribosomal proteins L4 and L22 of the large ribosomal subunit on the kinetics of erythromycin binding. Our data are consistent with a mechanism in which the macrolide erythromycin enters and exits the ribosome through the nascent peptide exit tunnel, and suggest that these mutations both impair passive transport through the tunnel and distort the erythromycin-binding site. The growth-inhibitory action of erythromycin was characterized for bacterial populations with wild-type and L22-mutated ribosomes in drug efflux pump deficient and proficient backgrounds. The L22 mutation conferred reduced erythromycin susceptibility in the drug efflux pump proficient, but not deficient, background. This ‘masking' of drug resistance by pump deficiency was reproduced by modelling with input data from our biochemical experiments. We discuss the general principles behind the phenomenon of drug resistance ‘masking', and highlight its potential importance for slowing down the evolution of drug resistance among pathogens. PMID:19197244

  8. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate...

  9. New generation of β-cyclodextrin-chitosan nanoparticles encapsulated quantum dots loaded with anticancer drug for tumor-target drug delivery and imaging of cancer cells

    Science.gov (United States)

    Shu, Chang; Li, Ruixin; Guo, Jin; Ding, Li; Zhong, Wenying

    2013-12-01

    The objective of this study was to report the drug delivery system that can integrate the functional building blocks for optical pH-sensing, cancer cell imaging and controlled drug release into a single nanoparticle. The CD/SAHA-QDs-CS/FA nanoparticles were prepared by in-situ immobilization of ZnSe/ZnS quantum dots (QDs) in β-cyclodextrin (CD) and chitosan (CS) polymer loaded with suberoylanilide hydroxamic acid (SAHA). Synthetic CD/SAHA-QDs-CS/FA nanoparticles were approximately 100 nm in size and with blue fluorescence. The drug encapsulation efficiency of nanoparticles was 22.36 % and the encapsulated drug was released via a controlled release mechanism after a 9 h plateau was reached. The efficiency of the drug release in tumor microenvironments (pH 5.3 buffer solutions) was higher than that in physiological pH 7.4. In vitro cytotoxicity assay results showed that the blank nanoparticles had no cytotoxicity and therefore can be used as the fluorescence tracer, and the SAHA-encapsulated nanoparticles expressed an anticancer effect. Confocal microscopy and in vivo imaging studies showed that the developed nanoparticles had cytotoxicity in resistant cancer cells and preferentially accumulated in tumors. CD/SAHA-QDs-CS/FA nanoparticles with excellent long-term optical properties have great prospects for the development of targeting tracers and anti-tumor biomedical research.

  10. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test.

    Science.gov (United States)

    Yu, Chunmei; Zhu, Zhenkun; Wang, Li; Wang, Qiuhong; Bao, Ning; Gu, Haiying

    2014-03-15

    Developing cost-effective and simple analysis tools is of vital importance for practical applications in bioanalysis. In this work, a new disposable electrochemical cell sensor with low cost and simple fabrication was proposed to study the electrochemical behavior of leukemia K562 cells and the effect of anticancer drugs on cell viability. The analytical device was integrated by using ITO glass as the substrate of working electrodes and paper as the electrolytic cell. The cyclic voltammetry of the K562 cells at the disposable electrode exhibited an irreversible anodic peak and the peak current is proportional to the cell number. This anodic peak is attributed to the oxidation of guanine in cells involving two protons per transfer of two electrons. For the drug sensitivity tests, arsenic trioxide and cyclophosphamide were added to cell culture media. As a result, the electrochemical responses of the K562 cells decreased significantly. The cytotoxicity curves and results obtained corresponded well with the results of CCK-8 assays. In comparison to conventional methods, the proposed method is simple, rapid and inexpensive. More importantly, the developed sensor is supposed to be a single-use disposable device and electrodes were prepared "as new" for each experiment. We think that such disposable electrodes with these characteristics are suitable for experimental study with cancer cells or other types of pathogens for disease diagnosis, drug selection and on-site monitoring.

  11. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug.

    Science.gov (United States)

    Dehghani, Faranak; Farhadian, Nafiseh; Golmohammadzadeh, Shiva; Biriaee, Amir; Ebrahimi, Mahmoud; Karimi, Mohammad

    2017-01-01

    The aim of this study was to prepare and characterize a new nanocarrier for oral delivery of tamoxifen citrate (TMC) as a lipophilic oral administrated drug. This drug has low oral bioavailability due to its low aqueous solubility. To enhance the solubility of this drug, the microemulsion system was applied in form of oil-in-water. Sesame oil and Tween 80 were used as drug solvent oil and surfactant, respectively. Two different formulations were prepared for this purpose. The first formulation contained edible glycerin as co-surfactant and the second formulation contained Span 80 as a mixed surfactant. The results of characterization showed that the mean droplet size of drug-free samples was in the range of 16.64-64.62nm with a PDI value of <0.5. In a period of 6months after the preparation of samples, no phase sedimentation was observed, which confirmed the high stability of samples. TMC with a mass ratio of 1% was loaded in the selected samples. No significant size enlargement and drug precipitation were observed 6months after drug loading. In addition, the drug release profile at experimental environments in buffers with pH=7.4 and 5.5 showed that in the first 24h, 85.79 and 100% of the drug were released through the first formulation and 76.63 and 66.42% through the second formulation, respectively. The in-vivo results in BALB/c female mice showed that taking microemulsion form of drug caused a significant reduction in the growth rate of cancerous tumor and weight loss of the mice compared to the consumption of commercial drug tablets. The results confirmed that the new formulation of TMC could be useful for breast cancer treatment.

  12. Study of anti-cancer drug release (tamoxifen of the nanofibers made of polycaprolactone -chitosan

    Directory of Open Access Journals (Sweden)

    Zahra Saeidi

    2016-12-01

    Full Text Available Breast cancer is a kind of cancer that begins than breast tissue. That in a kind of it, breast skin is quite involved. Than symptoms of the breast cancer is a dimple on the skin and peeling of skin and on the chest and..Natural polymers in terms of the environmental characteristics and their compatibility with the human body have vast applications in the industry: cosmetics, wound dressing, delivery of medicine scaffold, and so on.In this study, the cancer drug (tamoxifen used to complete the PCL-chitosan nanofibers made of a biocompatible polymer packag that deliver drugs will be examine. For this purpose, first the nanofibers made of PCL-chitosan-containing drugs (tamoxifen with optimal concentration of the drug was produced by electrospinning. The surface morphology of nanofibers microscopy (SEM were studied. Using infrared spectrometer instrument (FTIR evaluated the drug in nano-fibers. The effects of drug release and antimicrobial from nanofibers with standard (AATCC100 measurement and determined. According to antimicrobial test the nano-fiber manufacturing against Gram-positive and Gram-negative bacteria, Escherichia coli and Staphylococcus Cocos considerable influence along. Based on the results of tests it was found that nano-fiber PCL-chitosan-containing drug with a ratio of 70-30 and a concentration of 1 gr and 0.3 gr, speed And release better itself show compared to concentrations and the other ratios. The test results of drug release indicate a total release rate was high.

  13. Impact of the healthcare payment system on patient access to oral anticancer drugs: an illustration from the French and United States contexts

    OpenAIRE

    Benjamin, Laure; Buthion, Valérie; Vidal-Trécan, Gwenaëlle; Briot, Pascal

    2014-01-01

    Background Oral anticancer drugs (OADs) allow treating a growing range of cancers. Despite their convenience, their acceptance by healthcare professionals and patients may be affected by medical, economical and organizational factors. The way the healthcare payment system (HPS) reimburses OADs or finances hospital activities may impact patients’ access to such drugs. We discuss how the HPS in France and USA may generate disincentives to the use of OADs in certain circumstances. Discussion Fre...

  14. A water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia attenuates the small intestinal injury induced by anti-cancer drugs.

    Science.gov (United States)

    Kashimoto, Naoki; Ishii, Satomi; Myojin, Yuki; Ushijima, Mitsuyasu; Hayama, Minoru; Watanabe, Hiromitsu

    2010-01-01

    The present study investigated whether a water-soluble extract from the culture medium of Ganoderma lucidum (Reishi) mycelia (MAK) is able to protect the small intestine against damage induced by anti-cancer drugs. Six-week-old male B6C3F1/Crlj mice were fed a basal diet (MF) alone or with various doses of MAK or Agarics blazei Murrill (AGA) beginning one week before treatment with the anti-cancer drugs. Mice were sacrificed 3.5 days after injection of the anti-cancer drug, the small intestine was removed and tissue specimens were examined for the regeneration of small intestinal crypts. In experiment 1, the number of regenerative crypts after the administration of 5-fluorouracil (5FU) intravenously (250 mg/kg) or intraperitoneally (250 or 500 mg/kg) was compared after treatment with MAK or AGA. MAK protected against 5FU-induced small intestinal injury whereas AGA did not. In experiment 2, we investigated the protective effect of MAK against small intestinal injury induced by the anti-cancer drugs: UFT (tegafur with uracil; 1,000 mg/kg, orally), cisplatin (CDDP; 12.5 and 25 mg/kg, intraperitoneally), cyclophosphamide (CPA; 250 mg/kg, orally) and gefitinib (Iressa; 2,000 and 4,000 mg/kg, orally). UFT and CDDP decreased the number of regenerative crypts, but treatment with MAK attenuated the extent of UFT- or CDDP-induced small intestinal injury. CPA or Iressa plus MAK up-regulated crypt regeneration. The present results indicate that MAK ameliorates the small intestinal injury caused by several anti-cancer drugs, suggesting that MAK is a potential preventive agent against this common adverse effect of chemotherapy.

  15. Drug delivery: enabling technology for drug discovery and development.iPRECIO® Micro Infusion Pump: Programmable, refillable and implantable

    Directory of Open Access Journals (Sweden)

    Tsung eTan

    2011-07-01

    Full Text Available Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD in single animals. When combined with specialized catheters, specific administration sites have been selected. When combined with radiotelemetry, the physiologic gold standard, more sensitive and powerful means of detecting drug induced therapeutic and/or adverse effects has been possible. Numerous application examples are cited from iPRECIO® use in Japan, United States and Europe with iPRECIO® as an enabling drug delivery device where the refillable and programmability functionality were key benefits. The ability to start/stop drug delivery and to have control periods prior dosing made it possible to have equivalent effects at a much lower dose than previously studied. Five different iPRECIO® applications are described in detail with references to the original work where the implantable, refillable and programmable benefits are demonstrated with their different end-points.

  16. Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO Micro Infusion Pump: Programmable, Refillable, and Implantable.

    Science.gov (United States)

    Tan, Tsung; Watts, Stephanie W; Davis, Robert Patrick

    2011-01-01

    Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO(®), a programmable, refillable, and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized catheters, specific administration sites have been selected. When combined with radiotelemetry, the physiologic gold standard, more sensitive and powerful means of detecting drug induced therapeutic, and/or adverse effects has been possible. Numerous application examples are cited from iPRECIO(®) use in Japan, United States, and Europe with iPRECIO(®) as an enabling drug delivery device where the refillable and programmability functionality were key benefits. The ability to start/stop drug delivery and to have control periods prior dosing made it possible to have equivalent effects at a much lower dose than previously studied. Five different iPRECIO(®) applications are described in detail with references to the original work where the implantable, refillable, and programmable benefits are demonstrated with their different end-points.

  17. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+· and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+· can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4-. with a rate constant of 1.76×109 dm3·mol-1.s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  18. Potential Therapeutic Strategies for Hypertension-Exacerbated Cardiotoxicity of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Robin K. Kuriakose

    2016-01-01

    Full Text Available Despite their recognized cardiotoxic effects, anthracyclines remain an essential component in many anticancer regimens due to their superior antitumor efficacy. Epidemiologic data revealed that about one-third of cancer patients have hypertension, which is the most common comorbidity in cancer registries. The purpose of this review is to assess whether anthracycline chemotherapy exacerbates cardiotoxicity in patients with hypertension. A link between hypertension comorbidity and anthracycline-induced cardiotoxicity (AIC was first suggested in 1979. Subsequent preclinical and clinical studies have supported the notion that hypertension is a major risk factor for AIC, along with the cumulative anthracycline dosage. There are several common or overlapping pathological mechanisms in AIC and hypertension, such as oxidative stress. Current evidence supports the utility of cardioprotective modalities as adjunct treatment prior to and during anthracycline chemotherapy. Several promising cardioprotective approaches against AIC pathologies include dexrazoxane, early hypertension management, and dietary supplementation of nitrate with beetroot juice or other medicinal botanical derivatives (e.g., visnagin and Danshen, which have both antihypertensive and anti-AIC properties. Future research is warranted to further elucidate the mechanisms of hypertension and AIC comorbidity and to conduct well-controlled clinical trials for identifying effective clinical strategies to improve long-term prognoses in this subgroup of cancer patients.

  19. DNA compaction by mononuclear platinum cancer drug cisplatin and the trisplatinum anticancer agent BBR3464: Differences and similarities.

    Science.gov (United States)

    Banerjee, T; Dubey, P; Mukhopadhyay, R

    2012-02-01

    Cisplatin, a mononuclear platinum compound, which is known as a cancer drug for long time, can exhibit considerable side effects and is also not effective in many types of cancer. Therefore, the alternative platinum anticancer agents that can act at a much lower dose limit compared to the dose relevant for cisplatin treatment have been searched for. BBR3464, a trinuclear platinum compound, is found to exhibit cytotoxic effects at 10 to 1000 times lower dose limit, even in cisplatin-resistant cancer cells. The primary cellular target for cisplatin and BBR3464 is thought to be DNA. Herein, we report the nature of DNA structural changes that are induced by cisplatin and BBR3464, considering the same DNA sequence and similar sample deposition methods for comparison purpose. We have applied high-resolution atomic force microscopy (AFM) in order to obtain an idea about the molecular basis of BBR3464's effectiveness at the lower dose limit. We show from the molecularly resolved AFM images that both the compounds can compact the whole dsDNA molecules, though the degree of compaction in case of BBR3464 treatment is significantly higher. Furthermore, local compaction in terms of loop structure formation could be induced by both BBR3464 and cisplatin, though BBR3464 generated microloops and macroloops both, whereas cisplatin could generate primarily the microloops. It is a significant observation that BBR3464 could induce relatively drastic DNA structural changes in terms of loop formation as well as overall DNA compaction at a molar ratio, which is 50 times less than that applied for cisplatin treatment. Implications of such structural changes in cytotoxic effects of the platinum anticancer agents will be mentioned.

  20. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    Science.gov (United States)

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-02-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.

  1. One-step bulk preparation of calcium carbonate nanotubes and its application in anticancer drug delivery.

    Science.gov (United States)

    Tang, Jing; Sun, Dong-Mei; Qian, Wen-Yu; Zhu, Rong-Rong; Sun, Xiao-Yu; Wang, Wen-Rui; Li, Kun; Wang, Shi-Long

    2012-06-01

    Bulk fabrication of ordered hollow structural particles (HSPs) with large surface area and high biocompatibility simultaneously is critical for the practical application of HSPs in biosensing and drug delivery. In this article, we describe a smart approach for batch synthesis of calcium carbonate nanotubes (CCNTs) based on supported liquid membrane (SLM) with large surface area, excellent structural stability, prominent biocompatibility, and acid degradability. The products were characterized by transmission electron micrograph, X-ray diffraction, Fourier transform infrared spectra, UV-vis spectroscopy, zeta potential, and particle size distribution. The results showed that the tube-like structure facilitated podophyllotoxin (PPT) diffusion into the cavity of hollow structure, and the drug loading and encapsulation efficiency of CCNTs for PPT are as high as 38.5 and 64.4 wt.%, respectively. In vitro drug release study showed that PPT was released from the CCNTs in a pH-controlled and time-dependent manner. The treatment of HEK 293T and SGC 7901 cells demonstrated that PPT-loaded CCNTs were less toxic to normal cells and more effective in antitumor potency compared with free drugs. In addition, PPT-loaded CCNTs also enhanced the apoptotic process on tumor cells compared with the free drugs. This study not only provides a new kind of biocompatible and pH-sensitive nanomaterial as the feasible drug container and carrier but more importantly establishes a facile approach to synthesize novel hollow structural particles on a large scale based on SLM technology.

  2. Regulatory approval pathways for anticancer drugs in Japan, the EU and the US.

    Science.gov (United States)

    Nagai, Sumimasa; Ozawa, Keiya

    2016-07-01

    The Pharmaceuticals and Medical Devices Agency and the Ministry of Health, Labour and Welfare in Japan and the US Food and Drug Administration are responsible for reviewing applications and approving drugs, medical devices, and regenerative medicines. In the EU, the European Medicines Agency is responsible for the centralized authorization procedure of medicines including oncologic drugs. In this review, we discuss general pathways for the marketing authorization of oncologic drugs and other drugs in Japan, the EU, and the US. There are still unmet medical needs in oncology, whereas scientific innovation and clinical development in oncology are rapid and active, suggesting a reasonable scope for new regulatory schemes for expedited review. Because regulatory schemes are also evolving rapidly, clinicians and academic researchers may have difficulty following the updated regulations in other regions as well as those in their own countries. However, keeping current with new regulations is important for the conduct of translational research and clinical development of new therapeutic products efficiently. This review is intended to help an international audience better understand the essence of the regulatory frameworks for the marketing authorization of oncologic drugs in Japan, the EU, and the US.

  3. Influence of Five Potential Anticancer Drugs on Wnt Pathway and Cell Survival in Human Biliary Tract Cancer Cells

    Directory of Open Access Journals (Sweden)

    Julia WACHTER, Daniel NEUREITER, Beate ALINGER, Martin PICHLER, Julia FUEREDER, Christian OBERDANNER, Pietro Di FAZIO, Matthias OCKER, Frieder BERR, Tobias KIESSLICH

    2012-01-01

    Full Text Available Background: The role of Wnt signalling in carcinogenesis suggests compounds targeting this pathway as potential anti-cancer drugs. Several studies report activation of Wnt signalling in biliary tract cancer (BTC thus rendering Wnt inhibitory drugs as potential candidates for targeted therapy of this highly chemoresistant disease.Methods: In this study we analysed five compounds with suggested inhibitory effects on Wnt signalling (DMAT, FH535, myricetin, quercetin, and TBB for their cytotoxic efficiency, mode of cell death, time- and cell line-dependent characteristics as well as their effects on Wnt pathway activity in nine different BTC cell lines.Results: Exposure of cancer cells to different concentrations of the compounds results in a clear dose-dependent reduction of viability for all drugs in the order FH535 > DMAT > TBB > myricetin > quercetin. The first three substances show high cytotoxicity in all tested cell lines, cause a direct cytotoxic effect by induction of apoptosis and inhibit pathway-specific signal transduction in a Wnt transcription factor reporter activity assay. Selected target genes such as growth-promoting cyclin D1 and the cell cycle progression inhibitor p27 are down- and up-regulated after treatment, respectively.Conclusions: Taken together, these data demonstrate that the small molecular weight inhibitors DMAT, F535 and TBB have a considerable cytotoxic and possibly Wnt-specific effect on BTC cell lines in vitro. Further in vivo investigation of these drugs as well as of new Wnt inhibitors may provide a promising approach for targeted therapy of this difficult-to-treat tumour.

  4. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying

    2015-07-22

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve\\'s closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  5. EFFECTS OF PSYCHOTROPIC DRUGS AS BACTERIAL EFFLUX PUMP INHIBITORS ON QUORUM SENSING REGULATED BEHAVIORS

    Directory of Open Access Journals (Sweden)

    Aynur Aybey

    2014-10-01

    Full Text Available Psychotropic drugs are known to have antimicrobial activity against several groups of microorganisms. The antidepressant agents such as duloxetine, paroxetine, hydroxyzine and venlafaxine are shown to act as efflux pump inhibitors in bacterial cells. In order to the investigation of the effects of psychotropic drugs were determined for clinically significant pathogens by using standart broth microdillusion method. The anti-quorum sensing (anti-QS activity of psychotropic drugs was tested against four test pathogens using the agar well diffusion method. All drugs showed strong inhibitory effect on the growth of S. typhimurium. Additionally, quorum sensing-regulated behaviors of Pseudomonas aeruginosa, including swarming, swimming and twitching motility and alkaline protease production were investigated. Most effective drugs on swarming, swimming and twitching motility and alkaline protease production, respectively, were paroxetine and duloxetine; duloxetine; hydroxyzine and venlafaxine; paroxetine and venlafaxine; venlafaxine. Accordingly, psychotropic drugs were shown strongly anti-QS activity by acting as bacterial efflux pump inhibitors and effection on motility and alkaline protease production of P. aeruginosa.

  6. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    Miguel Muñoz; Rafael Coveñas; Francisco Esteban; Maximino Redondo

    2015-06-01

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, which are involved in their viability. This overexpression suggests the possibility of specific treatment against tumour cells using NK-1 receptor antagonists, thus promoting a considerable decrease in the side effects of the treatment. This strategy opens up new approaches for cancer treatment, since these antagonists, after binding to their molecular target, induce the death of tumour cells by apoptosis, exert an antiangiogenic action and inhibit the migration of tumour cells. The use of NK-1 receptor antagonists such as aprepitant (used in clinical practice) as antitumour agents could be a promising innovation. The value of aprepitant as an antitumour agent could be determined faster than for less well-known compounds because many studies addressing its safety and characterization have already been completed. The NK-1 receptor may be a promising target in the treatment of cancer; NK-1 receptor antagonists could act as specific drugs against tumour cells; and these antagonists could be new candidate anti-cancer drugs.

  7. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    Science.gov (United States)

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-α stimulated NF-κB activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-κB inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-κB activation, and may become useful to enhance the efficacy of cancer chemotherapy.

  8. Yolk-shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery

    Science.gov (United States)

    Li, Shunxing; Zheng, Jianzhong; Chen, Dejian; Wu, Yijin; Zhang, Wuxiang; Zheng, Fengying; Cao, Jing; Ma, Heran; Liu, Yaling

    2013-11-01

    A facile and effective way for the preparation of nano-sized Fe3O4@graphene yolk-shell nanoparticles via a hydrothermal method is developed. Moreover, the targeting properties of the materials for anticancer drug (doxorubicin hydrochloride) delivery are investigated. Excitingly, these hybrid materials possess favorable dispersibility, good superparamagnetism (the magnetic saturation value is 45.740 emu g-1), high saturated loading capacity (2.65 mg mg-1), and effective loading (88.3%). More importantly, the composites exhibit strong pH-triggered drug release response (at the pH value of 5.6 and 7.4, the release rate was 24.86% and 10.28%, respectively) and good biocompatibility over a broad concentration range of 0.25-100 μg mL-1 (the cell viability was 98.52% even at a high concentration of 100 μg mL-1) which sheds light on their potentially bright future for bio-related applications.

  9. Identification of proton-pump inhibitor drugs that inhibit Trichomonas vaginalis uridine nucleoside ribohydrolase.

    Science.gov (United States)

    Shea, Tara A; Burburan, Paola J; Matubia, Vivian N; Ramcharan, Sandy S; Rosario, Irving; Parkin, David W; Stockman, Brian J

    2014-02-15

    Trichomonas vaginalis continues to be a major health problem with drug-resistant strains increasing in prevalence. Novel antitrichomonal agents that are mechanistically distinct from current therapies are needed. The NIH Clinical Compound Collection was screened to find inhibitors of the uridine ribohydrolase enzyme required by the parasite to scavenge uracil for its growth. The proton-pump inhibitors omeprazole, pantoprazole, and rabeprazole were identified as inhibitors of this enzyme, with IC50 values ranging from 0.3 to 14.5 μM. This suggests a molecular mechanism for the in vitro antitrichomonal activity of these proton-pump inhibitors, and may provide important insights toward structure-based drug design.

  10. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation

    Science.gov (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-01-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  11. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Science.gov (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-08-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  12. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Directory of Open Access Journals (Sweden)

    Paola Rossolillo

    2012-08-01

    Full Text Available In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K, an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  13. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Directory of Open Access Journals (Sweden)

    Swatantra Kumar Singh Kushwaha

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.

  14. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-05-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  15. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar, E-mail: swatantrakushwaha@yahoo.co.in [Pranveer Singh Institute of Technology, Kanpur (India); Singh, Satyawan [Saroj Institute of Technology and Management, Lucknow (India)

    2013-10-15

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  16. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen;

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti...... with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier...

  17. Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs

    Science.gov (United States)

    Tiwari, Gargi; Sharma, Dipendra; Dwivedi, K. K.; Dwivedi, M. K.

    2016-05-01

    The drug, 8-Hydroxy-7-methoxy-pyrrolo-[2,1-c][1,4] benzodiazepine-5-one, commonly christened as DC81 belongs to the pyrrolo-[2,1-c][1,4]benzodiazepine (PBDs) family. It is a member of the group of naturally occurring antitumour antibiotics produced by various Streptomyces species. The antitumour activity of DC81 is attributed to its sequence specific interaction with G-C rich DNA region in particular, for Pu-G-Pu motifs. In the present paper, physico-chemical properties DC81 have been carried out using an ab-initio method, HF/6-31G(d,p) with GAMESS program. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the drug have been calculated. Further, drug-DNA interactions have been examined using modified second order perturbation theory along with multicentred-multipole expansion technique. Results have been discussed in the light of other theoretical and experimental observations. Efforts have been made to elucidate the binding patterns and thereby biological properties of the drug.

  18. Molecular combo of photodynamic therapeutic agent silicon(iv) phthalocyanine and anticancer drug cisplatin.

    Science.gov (United States)

    Mao, Jiafei; Zhang, Yangmiao; Zhu, Jianhui; Zhang, Changli; Guo, Zijian

    2009-02-28

    The combination of a red light PDT agent and a Pt(ii)-based chemotherapeutic drug at the molecular level maintains the intrinsic functions of each unit; the conjugated complexes exhibit remarkable photocytoxicity and demonstrate potential to serve as agents for DNA-targeting PDT as well as red light photochemotherapy.

  19. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38.

    Science.gov (United States)

    Nakatsuji, Masatoshi; Inoue, Haruka; Kohno, Masaki; Saito, Mayu; Tsuge, Syogo; Shimizu, Shota; Ishida, Atsuko; Ishibashi, Osamu; Inui, Takashi

    2015-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.

  20. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38.

    Directory of Open Access Journals (Sweden)

    Masatoshi Nakatsuji

    Full Text Available Lipocalin-type prostaglandin D synthase (L-PGDS is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38, a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.

  1. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors

    NARCIS (Netherlands)

    Verhaegh, B P M; de Vries, F; Masclee, A A M; Keshavarzian, A; de Boer, A; Souverein, P C; Pierik, M J; Jonkers, D M A E

    2016-01-01

    BACKGROUND: Microscopic colitis (MC) is a chronic bowel disorder characterised by watery diarrhoea. Nonsteroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs) and statins have been associated with MC. However, underlying mechanisms r

  2. Analytical detection and method development of anticancer drug Gemcitabine HCl using gold nanoparticles

    Science.gov (United States)

    Menon, Shobhana K.; Mistry, Bhoomika R.; Joshi, Kuldeep V.; Sutariya, Pinkesh G.; Patel, Ravindra V.

    A simple, rapid, cost effective and extractive UV spectrophotometric method was developed for the determination of Gemcitabine HCl (GMCT) in bulk drug and pharmaceutical formulation. It was based on UV spectrophotometric measurements in which the drug reacts with gold nanoparticles (AuNP) and changes the original colour of AuNP and forms a dark blue coloured solution which exhibits absorption maximum at 688 nm. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 3.95 × 10-5 l mol-1 cm-1 and 0.060 μg cm-2 respectively. Beer's law was obeyed in the concentration range of 2.0-40 μg ml-1. This method was tested and validated for various parameters according to ICH guidelines. The proposed method was successfully applied for the determination of GMCT in pharmaceutical formulation (parental formulation). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation dosage forms.

  3. Visual Servoing for Optimization of Anticancer Drug Uptake in Human Breast Cancer Cells

    Science.gov (United States)

    2000-09-01

    tumor cells. Cancer Research. 57:1590-1596. DeVita , V. T., Jr. 1997. Cancer: principles and practice of oncology . Lippincott-Raven, Philadelphia. Ethier...vitro assays to select chemotherapy regimens tailored to the tumor of the individual patient is not new ( DeVita , 1997). A summary of clinical correlations...pooled from several individual studies ( DeVita , 1997). These authors have suggested that these assays be referred to as drug-response assays, rather than

  4. Two different spectrophotometric determinations of potential anticancer drug and its toxic metabolite

    Science.gov (United States)

    Farid, Nehal F.; Abdelwahab, Nada S.

    2015-06-01

    Flutamide is a hormone therapy used for men with advanced prostate cancer. Flutamide is highly susceptible to hydrolysis with the production of 3-(trifluoromethyl)aniline, which is reported to be one of its toxic metabolites, impurities and related substances according to BP and USP. Flutamide was found to be stable when exposed to oxidation by 30% hydrogen peroxide and direct sunlight for up to 4 h. Two accurate and sensitive spectrophotometric methods were used for determination of flutamide in bulk and in pharmaceutical formulations. Method (I) is the area under curve (AUC) spectrophotometric method that depends on measuring the AUC in the wavelength ranges of 275-305 nm and 350-380 nm and using Cramer's rule. The linearity range was found to be 1-35 μg/mL and 0.5-16 μg/mL for the drug and the degradate, respectively. In method (II), combination of the isoabsorptive and dual wavelength spectrophotometric methods was used for resolving the binary mixture. The absorbance at 249.2 nm (λiso) was used for determination of total mixture concentration, while the difference in absorbance between 232 nm and 341.2 nm was used for measuring the drug concentration. By subtraction, the degradate concentration was obtained. Beer's law was obeyed in the range of 2-35 μg/mL and 0.5-20 μg/mL for the drug and its degradate, respectively. The two methods were validated according to USP guidelines and were applied for determination of the drug in its pharmaceutical dosage form. Moreover AUC method was used for the kinetic study of the hydrolytic degradation of flutamide. The kinetic degradation of flutamide was found to follow pseudo-first order kinetics and is pH and temperature dependent. Activation energy, kinetic rate constants and t1/2 at different temperatures and pH values were calculated.

  5. Deprive to kill: Glutamine closes the gate to anticancer monocarboxylic drugs

    OpenAIRE

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate tr...

  6. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    Science.gov (United States)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  7. Aptamer-functionalized hydrogel as effective anti-cancer drugs delivery agents.

    Science.gov (United States)

    Wang, Zonghua; Xia, Jianfei; Cai, Feng; Zhang, Feifei; Yang, Min; Bi, Sai; Gui, Rijun; Li, Yanhui; Xia, Yanzhi

    2015-10-01

    An aptamer-functionalized hydrogel has been developed, which can be regulated by the AS1411 aptamer with the sol-gel conversion. Also the hydrogel can be further utilized for the controlled encapsulation and release of the cancer drugs. Specially, the AS1411 initiates the hybridization of acrydite-modified oligonucleotides to form the hydrogels and the presence of the target protein nucleolin leads the gel to dissolve as a result of reducing the cross-linking density by competitive target-aptamer binding. Based on the rheology of hydrogels, it is possible to utilize this material for storing and releasing molecules. In this research, the cancer drug doxorubicin is encapsulated inside the gel during the formation of the hydrogel and then released in the presence of nucleolin. Further experiments are carried out to prove the specific recognition of target matter. In vitro researches confirm that the aptamer-functionalized hydrogels can be used as drug carriers in targeted therapy and other biotechnological applications.

  8. The study of new anticancer drug delivery system based on the boron nitride nanoparticles

    Directory of Open Access Journals (Sweden)

    I. Yu. Zhitnyak

    2016-01-01

    Full Text Available The main problem in the treatment of many cancers is multidrug resistance due to tumor progression. Using nanosized drug delivery systems allows to overcome the mechanisms of multidrug resistance of cancer, in this case, chemotherapeutic agents can effectively introduce into cancer cells by endocytosis and accumulate near the nucleus and far from ATP-binding cassette transporters. Creation of boron nitridebased drug delivery nanocarriers with high chemical and oxidative stability is one of the perspective ways. Using chemical vapor deposition spherical boron nitride particles,100–150 nm in diameter (BNNPs, with peculiar petal-like surfaces or smooth surfaces were fabricated. BNNPs were loaded with doxorubicin. Drug loading efficacy of BNNPs-DOX was about 0.095 mg/mg of particles. BNNPs-DOX were relatively stable at neutral pH, whereas DOX is effectively released from the BNNPs at acidic pH (pH 4.5–5.5. Using confocal microscopy, the uptake of BNNPs-DOX by IAR-6-1, KB-3-1, К562 cells and multidrug resistant КВ-8-5 и IS-9 cells was studied. Most of BNNPs-DOX had been co-localized with LysoTracker, indicating that BNNPs-DOX are located in the endosomes/lysosomes after intracellular delivery.

  9. Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery.

    Science.gov (United States)

    Feng, Chao; Song, Ruixi; Sun, Guohui; Kong, Ming; Bao, Zixian; Li, Yang; Cheng, Xiaojie; Cha, Dongsu; Park, Hyunjin; Chen, Xiguang

    2014-03-10

    We have designed and evaluated coacervate microcapsules-immobilized multilayer sodium alginate beads (CMs-M-ALG-Beads) for oral drug delivery. The CMs-M-ALG-Beads were prepared by immobilization of doxorubicin hydrochloride (DOX) loaded chitosan/carboxymethyl coacervate microcapsules (DOX:CS/CMCS-CMs) in the core and layers of the multilayer sodium alginate beads. The obtained CMs-M-ALG-beads exhibited layer-by-layer structure and rough surface with many nanoscale particles. The swelling characteristic and drug release results indicated that 4-layer CMs-M-ALG-Beads possessed favorable gastric acid tolerance (the swelling rate <5%, the cumulative drug release rate <3.8%). In small intestine, the intact DOX:CS/CMCS-CMs were able to rapidly release from CMs-M-ALG-Beads with the dissolution of ALG matrix. Ex vivo intestinal mucoadhesive and permeation showed that CMs-M-ALG-Beads exhibited continued growth for P(app) values of DOX, which was 1.07-1.15 folds and 1.28-1.38 folds higher than DOX:CS:CMCS-CMs in rat jejunum and ileum, respectively, demonstrating that CMs-M-ALG-Beads were able to enhance the absorption of DOX by controlled releasing DOX:CS/CMCS-CMs and prolonging the contact time between the DOX:CS/CMCS-CMs and small intestinal mucosa.

  10. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate.

    Science.gov (United States)

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-09-28

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (pACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.

  11. Molecular interaction of a kinase inhibitor midostaurin with anticancer drug targets, S100A8 and EGFR: transcriptional profiling and molecular docking study for kidney cancer therapeutics.

    Directory of Open Access Journals (Sweden)

    Zeenat Mirza

    Full Text Available The S100A8 and epidermal growth factor receptor (EGFR proteins are proto-oncogenes that are strongly expressed in a number of cancer types. EGFR promotes cellular proliferation, differentiation, migration and survival by activating molecular pathways. Involvement of proinflammatory S100A8 in tumor cell differentiation and progression is largely unclear and not studied in kidney cancer (KC. S100A8 and EGFR are potential therapeutic biomarkers and anticancer drug targets for KC. In this study, we explored molecular mechanisms of interaction profiles of both molecules with potential anticancer drugs. We undertook transcriptional profiling in Saudi KCs using Affymetrix HuGene 1.0 ST arrays. We identified 1478 significantly expressed genes, including S100A8 and EGFR overexpression, using cut-off p value <0.05 and fold change ≥2. Additionally, we compared and confirmed our findings with expression data available at NCBI's GEO database. A significant number of genes associated with cancer showed involvement in cell cycle progression, DNA repair, tumor morphology, tissue development, and cell survival. Atherosclerosis signaling, leukocyte extravasation signaling, notch signaling, and IL-12 signaling were the most significantly disrupted signaling pathways. The present study provides an initial transcriptional profiling of Saudi KC patients. Our analysis suggests distinct transcriptomic signatures and pathways underlying molecular mechanisms of KC progression. Molecular docking analysis revealed that the kinase inhibitor "midostaurin" has amongst the selected drug targets, the best ligand properties to S100A8 and EGFR, with the implication that its binding inhibits downstream signaling in KC. This is the first structure-based docking study for the selected protein targets and anticancer drug, and the results indicate S100A8 and EGFR as attractive anticancer targets and midostaurin with effective drug properties for therapeutic intervention in KC.

  12. Affinity of anticancer drug, daunomycin, to core histones in solution:comparison of free and cross-linked proteins

    Institute of Scientific and Technical Information of China (English)

    Azra RABBANI; Sayeh ABDOSAMADI; Naghmeh SARI-SARAF

    2007-01-01

    Aim: The interaction of anthracyclinc anticancer drugs with chromatin, nuclco-somes and historic H1 has been extensively studied. In the present study, for the first time, we have investigated the binding of anthracycline antibiotic, daunomycin,to free and cross-linked thymus core histones (CL-core) in solution and in the absence of DNA. Methods: Fluorescence, UV/Vis spectroscopy and equilibrium dialysis techniques were used. Results: The UV spectroscopy results show that daunomycin induces hypochromicity in the absorption spectra of the core histones.Fluorescence emission intensity is decreased upon daunomycin binding and the process is concentration dependent. The equilibrium dialysis shows that the bind-ing is positive cooperative with the binding sites as Scatchard plot and Hill Coef-ficient confirm it. Conclusion: The results suggest that daunomycin shows much higher affinity to core histories free in solution than to CL-core, implying that the binding is most likely due to the accessibility of these proteins to the environment.It is suggested that daunomycin binds strongly to open state of histones, such as in tumor cells, rather than to their compact structure seen in normal chromatin.

  13. Notch 1 signaling pathway is the potential target of novel anticancer drugs for the treatment of human nasopharyngeal cancer

    Directory of Open Access Journals (Sweden)

    Guo-Fang Guan

    2014-12-01

    Full Text Available Activation of Notch signaling pathway in cancer stem cells plays a crucial role in the regulation of self–renewal and maintenance of side population cells. In the present study, we have identified cancer stem like 2.7% side population cells from nasopharyngeal carcinoma samples whose prevalence was signifi-cantly reduced to 0.3% upon verapamil treatment. The protein level of Notch1 and Hes-1 are highly up-regulated in fluorescence-activated cell sorting purified side population cells and thus leads to the elevated expression of stem cell surface proteins (Oct-4, Sox2 and Nanog, which are essential for side population cells self-renewal. In addition, these nasopharyngeal carcinoma side population cells are CD133 and CD44 positive and they possess enhanced cell proliferation rate, highly tumorgenic and invasive. Our findings suggest that Notch1 signaling is a potential target of novel anticancer drugs, which could efficiently target and eradicate the cancer stem cells.

  14. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods

    Science.gov (United States)

    Liu, Lei V.; Bell, Caleb B.; Wong, Shaun D.; Wilson, Samuel A.; Kwak, Yeonju; Chow, Marina S.; Zhao, Jiyong; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2010-01-01

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin FeIII peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4′ hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of FeIIIBLM and ABLM as (BLM)FeIII─OH and (BLM)FeIII(η1─OOH) species, respectively. The NRVS spectra of FeIIIBLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─Nax transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways. PMID:21149675

  15. Biological evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: discovery of novel leads for anticancer drug design.

    Science.gov (United States)

    Evidente, Antonio; Kireev, Artem S; Jenkins, Aaron R; Romero, Anntherese E; Steelant, Wim F A; Van Slambrouck, Severine; Kornienko, Alexander

    2009-04-01

    Twenty-nine Amaryllidaceae alkaloids and their derivatives belonging to the five most common groups, including lycorine, lycorenine, tazettine, crinine, and narciclasine types, were evaluated for antiproliferative, apoptosis-inducing, and anti-invasive activities in vitro. The antiproliferative properties of each test compound are in agreement with those reported in the literature, while the high potency of amarbellisine is reported for the first time. It was also found that with the exception of ungeremine, amarbellisine, and hippeastrine, the antiproliferative effect of the potent compounds is apoptosis mediated. Thus, apoptosis in Jurkat cells was triggered by narciclasine, narciclasine tetraacetate, C10b-R-hydroxypancratistatin, cis-dihydronarciclasine, trans-dihydronarciclasine, lycorine, 1-O-acetyllycorine, lycorine-2-one, pseudolycorine, and haemanthamine. With the exception of narciclasine, lycorine, and haemanthamine, the apoptosis-inducing properties of these compounds are reported for the first time. The collagen type I invasion assay revealed potent anti-invasive properties associated with N-methyllycorine iodide, hippeastrine, clivimine, buphanamine, and narciclasine tetraacetate, all of which were tested at non-toxic concentrations. The anti-invasive activity of buphanamine is particularly promising because this alkaloid is not toxic to cells even at much higher doses. This work has resulted in the identification of several novel leads for anticancer drug design.

  16. Shiga Toxin 1, as DNA Repair Inhibitor, Synergistically Potentiates the Activity of the Anticancer Drug, Mafosfamide, on Raji Cells

    Directory of Open Access Journals (Sweden)

    Piero Sestili

    2013-02-01

    Full Text Available Shiga toxin 1 (Stx1, produced by pathogenic Escherichia coli, targets a restricted subset of human cells, which possess the receptor globotriaosylceramide (Gb3Cer/CD77, causing hemolytic uremic syndrome. In spite of the high toxicity, Stx1 has been proposed in the treatment of Gb3Cer/CD77-expressing lymphoma. Here, we demonstrate in a Burkitt lymphoma cell model expressing this receptor, namely Raji cells, that Stx1, at quasi-non-toxic concentrations (0.05–0.1 pM, inhibits the repair of mafosfamide-induced DNA alkylating lesions, synergistically potentiating the cytotoxic activity of the anticancer drug. Conversely, human promyelocytic leukemia cells HL-60, which do not express Gb3Cer/CD77, were spared by the toxin as previously demonstrated for CD34+ human progenitor cells, and hence, in this cancer model, no additive nor synergistic effects were observed with the combined Stx1/mafosfamide treatment. Our findings suggest that Stx1 could be used to improve the mafosfamide-mediated purging of Gb3Cer/CD77+ tumor cells before autologous bone marrow transplantation.

  17. Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures.

    Science.gov (United States)

    Kraszewski, S; Duverger, E; Ramseyer, C; Picaud, F

    2013-11-07

    Density functional theory calculations with van der Waals approximation have been conducted to analyze the functionalization of various carbon-based nanostructures (fullerene, metallic, and semi-conducting nanotubes) with amino derivative groups. The results obtained with azomethine, show the formation of a five membered ring on fullerenes, and on nanotubes consistent with experimental observations. The attachment of an azomethine plus subsequent drug like a Pt(IV) complex does not perturb the cycloaddition process. Moreover, all theoretical results show that the length of different amino derivatives with subsequent Pt(IV) complex does not affect the complexed therapeutic agent when it is attached onto these carbon-based nanostructures.

  18. Visual Servicing for Optimization of Anticancer Drug Uptake in Human Breast Cancer

    Science.gov (United States)

    2001-09-01

    sciences of the united states of america, 1991. 88(7): p. 2702-6. 15. Dickson, R.B. and M.E. Lippman, Cancer: principles and practice of oncology ...Cancer of the Breast, ed. V.T. Devita , Jr., Hellman, S., and Rosenberg, S.A. 1997, Philadelphia: Lippincott- Raven. Ch. 36, pp. 1541-1557. 16. Cotter...mechanism of drug resistance. hematology/ oncology clinics of north america, 1995. 9(2): p. 451-73. 22. Hengartner, M.O., The biochemistry of apoptosis

  19. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides....../antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway...

  20. Apoferritin Modified Magnetic Particles as Doxorubicin Carriers for Anticancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Vojtech Adam

    2013-06-01

    Full Text Available Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF. The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution.

  1. Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, G; Merico, A; Björnberg, O;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides....../antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway...

  2. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface.

  3. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  4. Arsenic-Based Drugs: From Fowler's Solution to Modern Anticancer Chemotherapy

    Science.gov (United States)

    Gibaud, Stéphane; Jaouen, Gérard

    Although arsenic is a poison and has a predominantly unfavorable reputation, it has been used as pharmaceutical agent since the first century BC. In 1786, Thomas Fowler reported the effects of arsenic in the cure of agues, remittent fevers, and periodic headaches. From this time on and despite abusive use, some interesting indications began to appear for trypanosomiasis, syphilis, and blood diseases. The first significant organoarsenical drug (atoxyl) was synthesized by Pierre Antoine Béchamp in 1859 by chemically reacting arsenic acid with aniline but additional experimentations on the properties of arsenic led Paul Ehrlich, the founder of chemotherapy, to the discovery of salvarsan in 1910. From the Second World War, Ernst A.H. Friedheim greatly improved the treatment of trypanosomiasis by melaminophenyl arsenicals. Until the 1990s some organoarsenicals were used for intestinal parasite infections but carcinogenic effects were displayed and all the drugs have been withdrawn in USA, in Europe, and elsewhere. In 2003, arsenic trioxide (Trisenox®) was re-introduced for the treatment of very specific hematological malignancies.

  5. Nanomedicine-nanoemulsion formulation improves safety and efficacy of the anti-cancer drug paclitaxel according to preclinical assessment.

    Science.gov (United States)

    Lee, King C; Maturo, Claudia; Rodriguez, Robert; Nguyen, Hoang-Lan; Shorr, Robert

    2011-08-01

    Paclitaxel is an important anticancer drug and is currently used to treat a variety of cancers, including ovarian carcinomas, breast cancer, non-small cell lung cancer, and AIDS-related Kaposi's sarcoma. The objectives of the studies were to assess and compare the safety and efficacy of EmPAC (a newly developed nanoemulsion formulation of paclitaxel) versus Taxol (the injectable formulation of paclitaxel involving the use of polyethylated or polyoxyl castor oil currently used in the clinic). The objectives were also to investigate the mechanism for the improved safety and efficacy of EmPAC over Taxol. These results showed that EmPAC had better anti-tumor efficacy than Taxol, according to in vitro cell culture studies and studies in animal tumor models. EmPAC had improved anti-tumor efficacy even in tumor cell lines that are known to be multi-drug resistant. Part of the mechanism of action for the improved efficacy may be related to EmPAC inducing greater cellular uptake of paclitaxel into tumor cells than Taxol did, according to the in vitro cell culture radioactive-labeled studies and in vitro cell culture antibody studies. It may also partly be because EmPAC delivered more paclitaxel to the tumor mass than Taxol, while the delivery of paclitaxel to other tissues (e.g., blood, muscle, liver, spleen, kidney and lung) were similar between the two formulations of paclitaxel, according to studies in animals with tumor xenograft. EmPAC also had better safety than Taxol according to toxicology studies in rabbits. This may be because EmPAC does not contain the toxic ingredients used in formulating Taxol (such as polyethylated or polyoxyl castor oil). These results support the clinical development of the nanoemulsion formulation of paclitaxel.

  6. Miktoarm star copolymers from D-(-)-salicin core aggregated into dandelion-like structures as anticancer drug delivery systems: synthesis, self-assembly and drug release.

    Science.gov (United States)

    Mielańczyk, Anna; Odrobińska, Justyna; Grządka, Sebastian; Mielańczyk, Łukasz; Neugebauer, Dorota

    2016-12-30

    The β-glucoside-based heterofunctional initiator was used in the synthesis of well-defined eight-armed miktopolymers by sequential ring opening polymerization (ROP) of ε-caprolactone (CL) and atom transfer radical (co)polymerization (ATRP) of methyl methacrylate (MMA) and/or tert-butyl methacrylate (tBMA). Consequently, methacrylic acid (MAA) repeating units were introduced via selective cleavage of pendant tert-butyl protecting groups. Both the amphiphilic copolymers and miktoarm copolymers were self-assembled at 37°C and pH 7.4. The aggregates of miktoarm polymers were larger than that formed by polymethacrylate homoarm stars (≥250nm vs ≤200nm). The critical aggregation concentrations (CAC) of (mikto)stars were relatively low (0.006-0.411mg/mL) and decreased with the increase in MAA fraction content. Both MAA-based mikto- and homoarmed (co)polymers with shorter arms exhibited lower doxorubicin (DOX) loading capacity, whereas camptothecin (CPT) was encapsulated preferably by miktostars. The kinetic profiles of drug release showed that the rate of release was higher at acidic environment (pH 5.0) than in neutral pH. In the most cases the studied miktopolymer systems demonstrated the well-controlled delivery of the model anticancer drugs, which can be adjusted by structural parameters of polymeric carriers.

  7. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    OpenAIRE

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconj...

  8. EXAFS structural study of platinum-based anticancer drugs degradation in presence of sulfur nucleophilic species.

    Science.gov (United States)

    Provost, Karine; Bouvet-Muller, Diane; Crauste-Manciet, Sylvie; Moscovici, Jacques; Olivi, Luca; Vlaic, Gilberto; Michalowicz, Alain

    2009-10-01

    Three platinum complexes, cisplatin, carboplatin and oxaliplatin are currently used worldwide. Investigation of their main structural modifications in presence of sulfur nucleophiles is of particular interest because of the implication of thiol and thioether groups in biochemical mechanism of action, resistance mechanism and in vivo or in vitro detoxification. We present the main structural results we have obtained concerning the reaction of these drugs with diverse sulfur nucleophiles (cysteine, glutathione, methionine, thiosulfate and thiocyanate), monitored in solution or as precipitates by EXAFS spectroscopy. The reactivities of the carboxylate and amine ligands of both carboplatin and oxaliplatin are compared, on the basis of first-coordination sphere modeling. Among the new results of this EXAFS study, we present the first observation of oxaliplatin diaminocyclohexane ligand displacement by sulfur nucleophiles.

  9. New Protein Vector ApE1 for Targeted Delivery of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    N. V. Pozdniakova

    2012-01-01

    Full Text Available A new chimeric gene ApE1 encoding the receptor-binding domain of the human alpha-fetoprotein fused to a sequence of 22 glutamic acid residues was constructed. A new bacterial producer strain E. coli SHExT7 ApE1 was selected for ApE1 production in a soluble state. A simplified method was developed to purify ApE1 from bacterial biomass. It was shown that the new vector protein selectively interacts with AFP receptors on the tumor cell surface and can be efficiently accumulated in tumor cells. In addition, ApE1 was shown to be stable in storage and during its chemical modification. An increased number of carboxyl groups in the molecule allows the production of cytotoxic compound conjugates with higher drug-loading capacity and enhanced tumor targeting potential.

  10. Syntheses of Macromolecular Ruthenium Compounds: A New Approach for the Search of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Andreia Valente

    2014-03-01

    Full Text Available The continuous rising of the cancer patient death rate undoubtedly shows the pressure to find more potent and efficient drugs than those in clinical use. These agents only treat a narrow range of cancer conditions with limited success and are associated with serious side effects caused by the lack of selectivity. In this frame, innovative syntheses approaches can decisively contribute to the success of “smart compounds” that might be only selective and/or active towards the cancer cells, sparing the healthy ones. In this scope, ruthenium chemistry is a rising field for the search of proficient metallodrugs by the use of macromolecular ruthenium complexes (dendrimers and dendronized polymers, coordination-cage and protein conjugates, nanoparticles and polymer-“ruthenium-cyclopentadienyl” conjugates that can take advantage of the singularities of tumor cells (vs. healthy cells.

  11. Interaction of anticancer drug methotrexate with nucleic acids analyzed by multi-spectroscopic method

    Science.gov (United States)

    Cai, Changqun; Chen, Xiaoming; Gong, Hang

    2009-02-01

    Methotrexate (MTX) as an antifolate, which is widely used as chemotherapeutic drugs. A high-dose MTX therapy has a direct toxicity influence on the non-germinal cells, especially the liver cells. It is known that the inject dose for adults is 10-30 mg and is half for children for routine use, while our experiments showed that the optimum dosage of MTX which enhanced the RLS intensities to the maximum is 4.54 ng ml -1. The interaction of methotrexate (MTX) with nucleic acids in aqueous solution in the presence of cetyltrimethylammonium bromide (CTMAB), a kind of cationic surfactant similar to the Human cells, were investigated based on the measurements of resonance light scattering (RLS), UV-vis, fluorescence and NMR spectra, etc. The interaction has been proved to give a ternary complex of MTX-CTMAB-DNA in BR buffer (pH 9.30), which exhibits strong enhanced RLS signals at 339.5 nm.

  12. Novel designed polyoxyethylene nonionic surfactant with improved safety and efficiency for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Li C

    2014-04-01

    Full Text Available Chang Li,1 Chunmeng Sun,1 Shasha Li,1 Peng Han,2 Huimin Sun,3 Ammar Ouahab,1 Yan Shen,1 Yourui Xu,1 Yerong Xiong,1 Jiasheng Tu11State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 2Chinese Pharmacopoeia Commission, Beijing, 3National Institute for Food and Drug Control, Beijing, People's Republic of ChinaAbstract: In order to limit the adverse reactions caused by polysorbate 80 in Taxotere®, a widely used formulation of docetaxel, a safe and effective nanocarrier for this drug has been developed based on micelles formed by a new class of well-defined polyoxyethylene sorbitol oleate (PSO with sorbitol as the matrix in aqueous solution. The physicochemical properties of the amphiphilic surfactant and the resulting micelles can be easily fine-tuned by the homogeneous sorbitol matrix and pure oleic acid. Composition, critical micelle concentration, and entrapment efficiency were investigated by ultraviolet visible spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, fluorospectrophotometry, and high-performance liquid chromatography. In vitro and in vivo evaluation revealed that PSO had exceptionally low hemolysis and histamine release rates compared with commercial polysorbate 80. Moreover, the tumor targeting delivery of PSO was investigated by in vivo imaging in S180 tumor-bearing mice. The results suggest that this novel delivery system, PSO, provides an acceptable alternative to polysorbate 80 for delivery of docetaxel. Further, due to the hypoallergenic nature of PSO, the mechanism of pseudoallergy caused by the polyoxyethylene nonionic surfactant was investigated. Based on in vitro cell analysis, it was assumed that the initial contact of polyoxyethylene nonionic surfactant with mast cells provoked pseudoallergy via polyamine receptor-mediated endocytosis.Keywords: polyoxyethylene nonionic surfactant, sorbitol, isosorbide, pseudoallergy

  13. Dual drug delivery using 'smart' liposomes for triggered release of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ankit; Gulbake, Arvind; Jain, Ashish; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-07-15

    Ovarian cancer is one of the most fatal gynecologic cancers. In this debut study, dual approach using synergistically active combination of paclitaxel-topotecan (Pac-Top; 20:1, w/w) is investigated with utilization of characteristic features of tumor micro-environment and additionally overexpressed folate receptors (FR-{alpha}) to achieve targeting to tumor site. Various liposomes namely liposomes, PEGylated liposomes, and FR-targeted PEGylated liposomes with lipid compositions viz. DPPC:DMPG (85.5:9.5), DPPC:DMPG:mPEG{sub 2000}-DSPE (85.5:9.5:5), and DPPC:DMPG:mPEG{sub 2000}-DSPE:DSPE-PEG-folate (85.5:9.5:4.5:0.5), respectively, were developed using thin film casting method. These were nanometric in size around 200 nm. In vitro drug release study showed initial burst release followed by sustained release for more than 72 h at physiological milieu (37 {+-} 0.5 Degree-Sign C, pH 7.4) while burst release (i.e., more than 90 %) within 5 min at simulated tumor milieu (41 {+-} 1 Degree-Sign C, pH 4). SRB cytotoxicity assay in OVCAR-3 cell line revealed Pac-Top free (20:1, w/w) to be more toxic (GI{sub 50} = 6.5 {mu}g/ml) than positive control (Adriamycin, GI{sub 50} = 9.1 {mu}g/ml) and FR-targeted PEGylated liposomes GI{sub 50} (14.7 {mu}g/ml). Moreover, florescence microscopy showed the highest cell uptake of FR-targeted PEGylated liposomes so called 'smart liposomes' which has not only mediated effective targeting to FR-{alpha} but also triggered release of drugs upon hyperthermia.

  14. Effects of two eflfux pump inhibitors on the drug susceptibility of Riemerella anatipestiferisolates from China

    Institute of Scientific and Technical Information of China (English)

    LI Ya-fei; JIANG Hong-xia; XIANG Rong; SUN Na; ZHANG Ya-nan; ZHAO Li-qing; GU Peng; WANG Li-qiao; ZENG Zhen-ling

    2016-01-01

    The objective of this study was to verify the supposition that eflfux might be involved in the drug resistance ofRiemerela anatipestiferisolates. Two broad-spectrum eflfux pump inhibitors, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and Phe-Arg-β-naphthylamide (PAβN), on the contribution of minimum inhibitory concentrations of amikacin, streptomycin, chloramphenicol, tetracycline, ceftriaxone, ceftazidime, nalidixic acid, levolfoxacin, enrolfoxacin, as wel as ciprolfoxacin against 69 clinicalR. anatipestiferisolates were investigated. We ifrst reported that the two eflfux pump inhibitors could restore the antimicrobial susceptibility ofR. anatipestifer isolates. It is suggested that active eflfux system is possible to be linked with the development of resistance inR. anatipestifer isolates.

  15. Development of an implantable infusion pump for sustained anti-HIV drug administration.

    Science.gov (United States)

    Baert, Lieven; Schueller, Laurent; Tardy, Yanik; Macbride, Doug; Klooster, Gerben van't; Borghys, Herman; Clessens, Ellen; Van Den Mooter, Guy; Van Gyseghem, Elke; Van Remoortere, Pieter; Wigerinck, Piet; Rosier, Jan

    2008-05-01

    Factors such as insufficient drug potency, non-compliance and restricted tissue penetration contribute to incomplete suppression of Human Immunodeficiency Virus (HIV) and the difficulty to control this infection. Infusion via standard catheters can be a source of infection, which is potentially life threatening in these patients. We developed an implantable infusion pump, allowing to accommodate large volumes (16-50mL) of high viscous solutions (up to 23.96mPas at 39 degrees C) of anti-HIV agents and providing sustained release of medication: a standard Codman 3000 pump, which was initially developed to release aqueous solutions ( approximately 0.7mPas) into the spinal cord such as for pain medication, was transformed for release of viscous solutions up to 40mPas by adapting the diameter of the capillary flow restrictor, the capillary length and way of catheterisation--by placing the indwelling catheter in the vena cava. A pilot study of the pump implanted in 2 dogs showed continuous steady-state release of the protease inhibitor darunavir (25mg/dog/day administered for 25 days), thereby achieving plasma concentration levels of approximately 40ng/mL. Steady-state plasma levels were reproducible after monthly refill of the pumps. In conclusion, the implantable adapted Codman 3000 constant-flow infusion pump customized to anti-HIV therapy allows sustained release of anti-HIV medication and may represent an opportunity to reduce the pill burden and complexity of dosing schemes associated with common anti-HIV therapy.

  16. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    Science.gov (United States)

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  17. Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets.

    Science.gov (United States)

    Park, Heewon; Imoto, Seiya; Miyano, Satoru

    2015-01-01

    Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.

  18. Recursive Random Lasso (RRLasso for Identifying Anti-Cancer Drug Targets.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso, for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.

  19. New metal based drugs: Spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties

    Science.gov (United States)

    Çeşme, Mustafa; Gölcü, Aysegul; Demirtaş, Ibrahim

    2015-01-01

    The NSAID piroxicam (PRX) drug was used for complex formation reactions with Cu(II), Zn(II) and Pt(II) metal salts have been synthesized. Then, these complexes have been characterized by spectroscopic and analytical techniques. Thermal behavior of the complexes were also investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSFSdsDNA) with UV spectroscopy. UV studies of the interaction of the PRX and its complexes with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. The morphology of the FSdsDNA, PRX, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with FSdsDNA has been studied by means of differential pulse voltammetry (DPV) at FSdsDNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. The effect of proliferation PRX and complexes were examined on the HeLA and C6 cells using real-time cell analyzer with four different concentrations.

  20. ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs.

    Science.gov (United States)

    Barresi, Vincenza; Spampinato, Giorgia; Musso, Nicolò; Trovato Salinaro, Angela; Rizzarelli, Enrico; Condorelli, Daniele Filippo

    2016-03-01

    Copper is a catalytic cofactor required for the normal function of many enzymes involved in fundamental biological processes but highly cytotoxic when in excess. Therefore its homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones. ATOX1 (antioxidant protein 1) is a copper chaperone that plays a role in copper homeostasis by binding and transporting cytosolic copper to ATPase proteins in the trans-Golgi network. In the present study the Caco-2 cell line, a colon carcinoma cell line, was used as an in vitro model to evaluate if ATOX1 deficiency could affect sensitivity to experimentally induced copper dyshomeostasis. Silencing of ATOX1 increased toxicity of a short treatment with a high concentration of Cu(2+). Copper ionophores, such as 5-chloro-8-hydroxyquinoline, induced a copper-dependent cell toxicity which was significantly potentiated after ATOX1 silencing. The copper chelator TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) produced a form of cell toxicity that was reversed by the addition of Cu(2+). ATOX1 silencing increased Caco-2 cell sensitivity to TPEN toxicity. Our results suggest the possibility of a therapy with copper-chelating or ionophore drugs in subtypes of tumors showing specific alterations in ATOX1 expression.

  1. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development.

    Science.gov (United States)

    Wang, Chao-Yun; Bai, Xian-Yong; Wang, Chun-Hua

    2014-01-01

    To discover and develop novel natural compounds, active ingredients, single herbs and combination formulas or prescriptions in traditional Chinese medicine (TCM) with therapeutic selectivity that can preferentially kill cancer cells and inhibit the amplification of cancer without significant toxicity is an important area in cancer therapy. A lot of valuable TCMs were applied as alternative or complementary medicines in the United States and Europe. But these TCMs, as one of the main natural resources, were widely used to research and develop new drugs in Asia. In TCMs, some specific herbs, animals, minerals and combination formulas were recorded and exploited due to their active ingredients and specific natural compounds with antitumor activities. The article focused on the antitumor properties of natural compounds and combination formulas or prescriptions in TCMs, described its influence on tumor progression, angiogenesis, metastasis, and revealed its mechanisms of antitumor and inhibitory action. Among the nature compounds, triptolide, berberine, matrine, oxymatrine, kurarinone and deoxypodophyllotoxin (DPT) with specific molecular structures have been separated, purified, and evaluated their antitumor properties in vitro and in vivo. Cancer is a multifactorial and multistep disease, so the treatment effect of combination formulas and prescriptions in TCMs involving multi-targets and multi-signal pathways on tumor may be superior than that of agents targeting a single molecular target alone. Shi Quan Da Bu Tang and Yanshu injection, as well known combination formulas and prescriptions in TCMs, have shown an excellent therapeutic effect on cancer.

  2. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.

    Science.gov (United States)

    Zhang, Nan; Tao, Jun; Hua, Haiying; Sun, Pengchao; Zhao, Yongxing

    2015-08-01

    DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity.

  3. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy.

    Science.gov (United States)

    Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.

  4. Controlled release of 5-fluorouracil or mitomycin-c from polymer matrix: Preparation by radiation polymerization and in vivo evaluation of the anticancer drug/polymer composites

    Science.gov (United States)

    Li, Ximing; Shen, Weiming; Liu, Chengjie; Nishimoto, Sei-Ichi; Kagiya, Tsutomu

    Polymer tablets containing anticancer drugs such as 5-fluorouracil (5-FU) and mitomycin-C (MMC) have been prepared to evaluate the drug-release characteristics in vitro and the effect on local control of mouse solid tumors in vivo. Radiation-induced polymerization of hydrophilic monomers (2-hydroxyethyl methacrylate and related monomers) at low temperature (-80°C) was performed to immobilize 5-FU or MMC in the polymer matrix. The drug was dispersed as microcrystallines within the polymer matrix. The rate of drug release in vitro in buffer solution (pH7.0, 37°C) increased with increase in hydrophilicity of polymer matrix. Appropriate amount of crosslinks within the polymer matrix, as formed by ethylene glycol dimethacrylate (2G) added in the polymerization system, was effective to control the rate of drug release. The drug release became faster upon the addition of increasing amount of water in the radiation-induced polymerization. The tablet consisting of drug/polymer was buried surgically near solid tumors of striate muscle sarcoma (S180) transplanted to Kunming mice and the therapeutic effect of slow releasing drugs was evaluated in vivo by reference to intraperitoneal (i.p.) injection of the corresponding drugs. The slow releasing drugs led to high chemotherapeutic gain for local control of solid tumors with remarkable reduction of toxic side effect of the drugs.

  5. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder

    Directory of Open Access Journals (Sweden)

    Amrita Banerjee

    2014-01-01

    Full Text Available Mithramycin (MTR is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin – histone proteins – as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode or both histones and chromosomal DNA (dual binding mode. The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR–DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg2+. As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies.

  6. Synthesis of novel anthraquinones: Molecular structure, molecular chemical reactivity descriptors and interactions with DNA as antibiotic and anti-cancer drugs

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; EL Gogary, Tarek M.

    2017-02-01

    Anthraquinones are well-known anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ5 and AQ5H) were synthesized and studied with 1,5-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions four conformers of AQ5 were detected within the range of about 42 kcal/mol. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the anthraquinones (AQ5 and AQ5H) were studied with different DNA namely, calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). UV-VIS electronic absorption spectral data were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis. NMR study confirms qualitatively the drug/DNA interaction in terms of peak shift and broadening.

  7. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Zheng, E-mail: wppzheng@126.com [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Zhu, Yu-Xia [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang [Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Meng, Yue-Zhong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  8. Selenium-platinum coordination compounds as novel anticancer drugs: selectively killing cancer cells via a reactive oxygen species (ROS)-mediated apoptosis route.

    Science.gov (United States)

    Zeng, Lingwu; Li, Yang; Li, Tianyu; Cao, Wei; Yi, Yu; Geng, Weijia; Sun, Zhiwei; Xu, Huaping

    2014-08-01

    We report the preparation of selenium-containing platinum-based anticancer drug EG-Se/Pt. EG-Se/Pt was obtained from the coordination of selenium-containing molecules (EG-Se) with cisplatin (CDDP). The structure of EG-Se/Pt was characterized by (1) H and (77) Se NMR spectroscopy, XPS, ESI-MS, and MALDI-TOF. In aqueous solution, EG-Se/Pt self-assembles to form spherical aggregates. EG-Se/Pt shows enhanced stability against dilution and high salt concentration compared with EG-Se. EG-Se/Pt induces cell apoptosis via reactive oxygen species (ROS), which leads to high selectivity between cancer cells and normal cells in cytotoxicity assays. More importantly, EG-Se/Pt effectively inhibits tumor growth in vivo in tumor-bearing mice. It is anticipated that tuning the ROS level through the assembly of selenium-containing molecules can be a general method to realize anticancer selectivity.

  9. Metallomics for drug development: a further insight into intracellular activation chemistry of a ruthenium(III)-based anticancer drug gained using a multidimensional analytical approach.

    Science.gov (United States)

    Matczuk, Magdalena; Prządka, Monika; Aleksenko, Svetlana S; Czarnocki, Zbigniew; Pawlak, Katarzyna; Timerbaev, Andrei R; Jarosz, Maciej

    2014-01-01

    The mechanism by which the most relevant ruthenium anticancer drugs are activated in tumors to commence their tumor-inhibiting action remains one of the challenging research tasks of present-day metallomics. This contribution aims to capture and identify eventually more reactive species of one of two bis-indazole tetrachloridoruthenate(III) compounds that are progressing in clinical trials. In view of the fact that the transport of ruthenium into cancer cells is governed by transferrin receptors, the susceptibility of the Ru drug adduct with holo-transferrin to exposure by glutathione and ascorbic acid (at their cancer cytosol concentrations) was studied by inductively coupled plasma mass spectrometry (ICP-MS), following isolation of the reaction products by ultrafiltration. Next, capillary electrophoresis coupled to ICP-MS was applied to monitor changes in the Ru speciation both under simulated cancer cytosol conditions and in real cytosol and to assign the charge state of novel metal species. The latter were identified by using tandem electrospray ionization MS in the respective ion mode. The formation of ruthenium(II) species was for the first time revealed, in which the central metal is coordinated by the reduced (GSH) or the oxidized (GSSG) form of glutathione, i.e. [Ru(II)HindCl4(GSH)](2-) and [Ru(II)HindCl4(GSSG)](2-), respectively (Hind = indazole). Ascorbic acid released the ruthenium functionality from the protein-bound form in a different way, the products of adduct cleavage containing aqua ligands. Distribution of low-molecular mass species of Ru in human cytosol was found to have very much in common with the ruthenium speciation assayed under simulated cytosol conditions.

  10. The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: An evidence-based view.

    Science.gov (United States)

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G

    2017-03-01

    3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents.

  11. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    Science.gov (United States)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system.

  12. A New Anticancer Drug

    Institute of Scientific and Technical Information of China (English)

    Guo Haiyan; Zhao Baohua

    2002-01-01

    @@ After some six years of hard work, a research team headed by Prof. Liu Zhivu (Z.Y. Liu) at the Shanghai Institute of Organic Chemistry, CAS, has scored major progress in independently generating a novel cancer killer called epothilone. Their findings have been granted three patents, and their research paper Total Synthesis of Epothilone: A Thorough Stereospecific Expoxidation of the 3-0-(4-methoxy) Benzyl Ether of Epothilone C has been accepted for publication in the Chemistry - European Journal.

  13. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery.

    Science.gov (United States)

    Wang, Guoying; Maciel, Dina; Wu, Yilun; Rodrigues, João; Shi, Xiangyang; Yuan, Yuan; Liu, Changsheng; Tomás, Helena; Li, Yulin

    2014-10-08

    The development of pH-sensitive drug delivery nanosystems that present a low drug release at the physiological pH and are able to increase the extent of the release at a lower pH value (like those existent in the interstitial space of solid tumors (pH 6.5) and in the intracellular endolysosomal compartments (pH 5.0)) is very important for an efficient and safe cancer therapy. Laponite (LP) is a synthetic silicate nanoparticle with a nanodisk structure (25 nm in diameter and 0.92 nm in thickness) and negative-charged surface, which can be used for the encapsulation of doxorubicin (DOX, a cationic drug) through electrostatic interactions and exhibit good pH sensitivity in drug delivery. However, the colloidal instability of LP still limits its potential clinical applications. In this study, we demonstrate an elegant strategy to develop stable Laponite-based nanohybrids through the functionalization of its surface with an amphiphile PEG-PLA copolymer by a self-assembly process. The hydrophobic block of PEG-PLA acts as an anchor that binds to the surface of drug-loaded LP nanodisks, maintaining the core structure, whereas the hydrophilic PEG part serves as a protective stealth shell that improves the whole stability of the nanohybrids under physiological conditions. The resulting nanocarriers can effectively load the DOX drug (the encapsulation efficiency is 85%), and display a pH-enhanced drug release behavior in a sustained way. In vitro biological evaluation indicated that the DOX-loaded nanocarriers can be effectively internalized by CAL-72 cells (an osteosarcoma cell line), and exhibit a remarkable higher anticancer cytotoxicity than free DOX. The merits of Laponite/PEG-PLA nanohybrids, such as good cytocompatibility, excellent physiological stability, sustained pH-responsive release properties, and improved anticancer activity, make them a promising platform for the delivery of other therapeutic agents beyond DOX.

  14. A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy

    Science.gov (United States)

    Chen, Chunping; Yee, Lee Kim; Gong, Hua; Zhang, Yong; Xu, Rong

    2013-05-01

    In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy.In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after

  15. Establishment of HRAS(G12V transgenic medaka as a stable tumor model for in vivo screening of anticancer drugs.

    Directory of Open Access Journals (Sweden)

    Yuriko Matsuzaki

    Full Text Available Most targeted anticancer drugs have been identified by screening at the molecular or cellular level in vitro. However, many compounds selected by such costly and time-consuming screening do not prove effective against tumors in vivo. The development of anticancer drugs would thus be facilitated by the availability of an in vivo screening system based on a multicellular organism. We have now established a transgenic line of the freshwater fish medaka in which melanophores (melanocytes proliferate in a manner dependent on heat shock-induced signaling by a human RAS oncoprotein. The human HRAS(G12V oncogene was expressed under the control of a melanophore-specific gene promoter in order to allow visualization of tumor growth in live fish maintained in a water tank. The expression of HRAS(G12V was induced as a result of Cre-mediated recombination by exposure of the fish to a temperature of 37°C for 30 min, given that the Cre gene was placed under the control of a medaka heat shock promoter. One of the stable transgenic lines developed abnormal pigment cell proliferation in the eyes and epidermis with 100% penetrance by 6 months postfertilization. Sorafenib, an inhibitor of RAS signaling, was administered to the transgenic fish and was found both to reduce the extent of melanophore proliferation and to improve survival. The transgenic medaka established here thus represents a promising in vivo system with which to screen potential anticancer drugs that target RAS signaling, and this system can readily be adapted for the screening of agents that target other oncogenes.

  16. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    Science.gov (United States)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip

    2016-03-01

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  17. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Directory of Open Access Journals (Sweden)

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  18. 常用抗肿瘤药物基因组学研究进展%Research progress on pharmacogenomics of anti-cancer drugs

    Institute of Scientific and Technical Information of China (English)

    郝志英; 李云娥

    2013-01-01

    药物基因组学的研究进展在指导临床个体化用药、阐明个体差异方面具有重要作用。常用抗肿瘤药物在肿瘤治疗中使用频率最高,是一线方案的首选药物。通过对常用抗肿瘤药物基因组学的分析研究,找到不同患者在基因层面的个体差异,达到预测化疗疗效、选定最佳剂量、减少不良反应的目的,从而实现真正意义上的个体化用药。%Research progress on pharmacogenomics plays an important role in aspects such as guiding individualized medication in clinical setting and illustrating difference between individuals. Commonly anti-cancer drugs in the treatment of tumor in the highest frequency of use, is the preferred first-line drugs regimen.Through analysis and research on pharmacogenomics of commonly anti-cancer drugs, differences of the genetic level between patients are identified with the aim of predicting effects of chemotherapy, determining optimal dosage and reducing adverse reaction. As a result, true individualized medication can be realized.

  19. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  20. Isolation and Identification of Cancer Stem Cells from Human Osteosarcom by Serum-free Three-dimensional Culture Combined with Anticancer Drugs

    Institute of Scientific and Technical Information of China (English)

    周松; 李锋; 肖骏; 熊伟; 方忠; 陈文坚; 牛鹏彦

    2010-01-01

    The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by trypsin to prepare a single-cell suspension,and mixed homogeneously into 1.2% alginate gel.Single-cell alginate gel was cultured with serum-free DMEM/F12 medium.Epirubicin(0.8μg/mL)was added to the medium to enrich CSCs.After cultured conventionally for 7 to 10 days,most of cells suspended in ...

  1. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs

    Directory of Open Access Journals (Sweden)

    Patrick Denis R

    2004-10-01

    Full Text Available Abstract Background As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog, fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog. Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the Aurora kinase family. Results Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor. Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the ATP-binding active site, only three were variant and all were specific to Aurora-A. Conclusions In

  2. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo

    Science.gov (United States)

    Quyen Tran, Ngoc; Khoa Nguyen, Cuu; Phuong Nguyen, Thi

    2013-12-01

    Dendrimer, a new class of hyper-branched polymer with predetermined molecular weight and well-controlled size, has received much attention in nanobiomedical applications such as drug carrier, gene therapy, disease diagnosis, etc. In this study, pegylated polyamidoamine (PAMAM) dendrimer at generation 3.0 (G 3.0) and carboxylated PAMAM dendrimer G 2.5 were prepared for loading anticancer drugs. For loading cisplatin, carboxylated dendrimer could carry 26.64 wt/wt% of cisplatin. The nanocomplexes have size ranging from 10 to 30 nm in diameter. The drug nanocarrier showed activity against NCI-H460 lung cancer cell line with half maximal inhibitory (IC50) of 23.11 ± 2.08 μg ml-1. Pegylated PAMAM dendrimers (G 3.0) were synthesized below 40 nm in diameter for carrying 5-fluorouracil (5-FU). For 5-FU encapsulation, pegylated dendrimer showed a high drug-loading efficiency of the drug and a slow release profile of 5-FU. The drug nanocarrier system exhibited an antiproliferative activity against MCF-7 cells (breast cancer cell) with a half maximal inhibitory (IC50) of 9.92 ± 0.19 μg ml-1. In vivo tumor xenograft study showed that the 5-FU encapsulated pegylation of dendrimer exhibited a significant decrement in volume of tumor which was generated by MCF-7 cancer cells. These positive results from our studies could pave the ways for further research of drugs dendrimer nanocarriers toward cancer chemotherapy.

  3. Implantable MicroPump for Drug Delivery in Patients with Diabetic Macular Edema

    Science.gov (United States)

    Humayun, Mark; Santos, Arturo; Altamirano, Juan Carlos; Ribeiro, Ramiro; Gonzalez, Roberto; de la Rosa, Alejandro; Shih, Jason; Pang, Changling; Jiang, Fukang; Calvillo, Philip; Huculak, John; Zimmerman, Jenna; Caffey, Sean

    2014-01-01

    Purpose To demonstrate the safety and surgical feasibility of the first-in-man ocular implant of a novel Posterior MicroPump Drug Delivery System (PMP) in patients with diabetic macular edema (DME) and to report on the device capabilities for delivering a programmable microdose. Methods This was a single center, single arm, open-label, prospective study. Eleven patients with DME and visual acuity equal to or worse than 20/40 were included. The PMP prefilled with ranibizumab was implanted into the subconjunctival space. After implantation, the PMP was wirelessly controlled to deliver a programmed microdose. Comprehensive ophthalmic exams and optical coherence tomography were performed biweekly for 90 days. At the end of the study, the PMP was explanted and the subjects thereafter received standard of care for DME (i.e., laser or intravitreal injections). Results All 11 surgical implantations were without complications and within the skill sets of a retinal surgeon. No serious adverse events occurred during the follow-up period. At no point were visual acuity and central foveal thickness worse than baseline in the implanted eye. The PMP delivered the programmed ranibizumab dosage in seven subjects. The remaining four patients received a lower than target dose, and the treatment was complemented with standard intravitreal injection. Conclusions This study demonstrates the first-in-man safety of the Replenish MicroPump implant for a period of 90 days and its capability to deliver a microdose into the vitreous cavity. Further studies to enable longer-term safety and to demonstrate the feasibility of multiple programmable drug delivery are necessary. PMID:25653883

  4. Engineer Novel Anticancer Bioagents

    Science.gov (United States)

    2010-10-01

    selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic...5 Food and Drug Administration (FDA) as a new class of anticancer drug for the treatment of 1 cutaneous T-cell lymphoma (CTCL) (1). FK228

  5. The influence of changes in hospital drug formulary on the prescription of proton pump inhibitors

    Directory of Open Access Journals (Sweden)

    Raquel Vázquez-Mourelle

    2017-01-01

    Full Text Available Objective: To analyze the impact of introducing omeprazole in the drug formulary of the Hospital de Barbanza on prescriptions made in hospital and out-of-hospital (Outpatient Units and Primary Care for all Proton Pump Inhibitors (PPIs. Material and methods: A 36-month retrospective descriptive study in a level I hospital. The basic units of work are Dose-Population- Day in the outpatient setting, and the Defined Daily Dose/stays-day for hospitalized patients; the proportion of DDDs for omeprazole vs. the rest of PPIs is used as measure of efficiency. For statistical analysis, we built a segmented regression model. Results: In the outpatient units, there are statistically significant changes for pantoprazole and rabeprazole. The first drug, which was stable before the intervention, suffered an immediate decrease; rabeprazole, which was increasing before the intervention, presented a subsequent downward trend. In Primary Care, a statistically significant change was confirmed for pantoprazole, with a long-term decreasing trend. In hospitalization, statistically significant changes were observed for pantoprazole and omeprazole; the first one with an immediate decrease and a long-term tendency to decrease, while omeprazole experienced an immediate increase and long-term growth. The evolution of the omeprazole percentage vs. all PPIs showed increases in all three scenarios. Conclusions: A shift to a more efficient prescription of PPIs was observed in all healthcare settings following the introduction of omeprazole in the hospital drug formulary. The inclusion of efficient drugs, or the removal of those inefficient, can be a potentially useful tool in order to improve prescription profiles.

  6. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs.

    Science.gov (United States)

    Fouquet, Grégory; Debuysscher, Véronique; Ouled-Haddou, Hakim; Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Al Bagami, Mohammed; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael; Marcq, Ingrid; Bouhlal, Hicham

    2016-05-31

    Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.

  7. Developing Anticancer Copper(II) Pro-drugs Based on the Nature of Cancer Cells and the Human Serum Albumin Carrier IIA Subdomain.

    Science.gov (United States)

    Gou, Yi; Qi, Jinxu; Ajayi, Joshua-Paul; Zhang, Yao; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2015-10-01

    To synergistically enhance the selectivity and efficiency of anticancer copper drugs, we proposed and built a model to develop anticancer copper pro-drugs based on the nature of human serum albumin (HSA) IIA subdomain and cancer cells. Three copper(II) compounds of a 2-hydroxy-1-naphthaldehyde benzoyl hydrazone Schiff-base ligand in the presence pyridine, imidazole, or indazole ligands were synthesized (C1-C3). The structures of three HSA complexes revealed that the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. Among them, the pyridine and imidazole ligands of C1 and C2 are replaced by Lys199, and His242 directly coordinates with Cu(II). The indazole and Br ligands of C3 are replaced by Lys199 and His242, respectively. Compared with the Cu(II) compounds alone, the HSA complexes enhance cytotoxicity in MCF-7 cells approximately 3-5-fold, but do not raise cytotoxicity levels in normal cells in vitro through selectively accumulating in cancer cells to some extent. We find that the HSA complex has a stronger capacity for cell cycle arrest in the G2/M phase of MCF-7 by targeting cyclin-dependent kinase 1 (CDK1) and down-regulating the expression of CDK1 and cyclin B1. Moreover, the HSA complex promotes MCF-7 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.

  8. 香豆素类化合物在肿瘤治疗上的应用%Application of Anticancer Drugs with Coumarin Structures

    Institute of Scientific and Technical Information of China (English)

    黄月芬

    2015-01-01

    Coumarins are a group of compounds with anα-benzopyrone structure.In recent years,the researchers have explored the influence of coumarins on enzymes and cell pathways related to the metabolism of tumor cells,and isolated or synthesized many structurally specific coumarin derivatives with excellent anti-tumor activity,which proves adequately the importance of coumarin skeleton in the research and development of anticancer drugs.In this paper, we reviewed the application of many natural and synthetic coumarins which are classified by classical coumarin struc-tures on exploring new anticancer drugs.%香豆素( Coumarins)的基本结构是苯骈α-吡喃酮的一类化合物。近年来研究者报道了在肿瘤细胞信号转导通路和代谢的影响上香豆素具有的作用,从而发现了香豆素类化合物具有的抗肿瘤活性,并充分证明了目前香豆素类化合物在抗癌药物研发中的重要性。本文以香豆素的基本结构进行分类,对香豆素类化合物的抗肿瘤作用的研究进展进行综述。

  9. Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: current trends.

    Science.gov (United States)

    Saha, Santu Kumar; Khuda-Bukhsh, Anisur Rahman

    2013-08-15

    Several natural products and their derivatives, either in purified or structurally identified form, exhibit immense pharmacological and biological properties, some of them showing considerable anticancer potential. Although the molecular mechanisms of action of some of these products are yet to be elucidated, extensive research in this area continues to generate new data that are clinically exploitable. Recent advancement in molecular biology, high throughput screening, biomarker identifications, target selection and genomic approaches have enabled us to understand salient interactions of natural products and their derivatives with cancer cells vis-à-vis normal cells. In this review we highlight the recent approaches and application of innovative technologies made to improve quality as well as efficiency of structurally identified natural products and their derivatives, particularly in small molecular forms capable of being used in "targeted therapies" in oncology. These products preferentially involve multiple mechanistic pathways and overcome chemo-resistance in tumor types with cumulative action. We also mention briefly a few physico-chemical features that compare natural products with drugs in recent natural product discovery approaches. We further report here a few purified natural products as examples that provide molecular interventions in cancer therapeutics to give the reader a glimpse of the current trends of approach for discovering useful anticancer drugs.

  10. MOLECULAR MODELING AND DRUG DISCOVERY OF POTENTIAL INHIBITORS FOR ANTICANCER TARGET GENE MELK (MATERNAL EMBRYONIC LEUCINE ZIPPER KINASE

    Directory of Open Access Journals (Sweden)

    Sabitha. K

    2011-12-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK, a member of the AMP serine/threonine kinase family, exhibits multiple features consistent with the potential utility of this gene as an anticancer target. Reports show that MELK functions as a cancer-specific protein kinase, and that down-regulation of MELK results in growth suppression of breast cancer cells. There are many inhibitors which bind to kinases and are in clinical trials too. In our study we have taken a library of different inhibitors and docked those using GLIDE Induced Fit. From docking result we can conclude that Syk inhibitor II, Rho kinase inhibitor IV, p38 MAP Kinase Inhibitor III, HA 1004, Dihydrochloride and IKK -2 inhibitor VI have good binding affinity towards MELK and may have anticancer activity.

  11. Presurgical window of opportunity trial design as a platform for testing anticancer drugs: Pros, cons and a focus on breast cancer.

    Science.gov (United States)

    Maugeri-Saccà, Marcello; Barba, Maddalena; Vici, Patrizia; Pizzuti, Laura; Sergi, Domenico; Catenaro, Teresa; Di Lauro, Luigi; Mottolese, Marcella; Santini, Daniele; Milella, Michele; De Maria, Ruggero

    2016-10-01

    The high attrition rate is a major issue in anticancer drug development. Among the alternative trial designs, presurgical window of opportunity trials envision a short course treatment in the time window between diagnostic biopsy and surgery in a moderately-sized patient population. This approach allows testing therapeutics when pre- and post-treatment tumor tissues are available for comprehensive molecular analyses. The emerging evidence may help define the ability of a given agent to modulate its target(s) and help obtain a broader picture of the molecular changes operated by the treatment. The resulting gain may outweigh the potential harms for patients in the early disease setting. Window of opportunity trials have been extensively applied to breast cancer. Overall, a wider use of these trial designs might lead to the identification of potential responders, ineffective drugs or combinations, and ultimately contribute to enhance the efficiency of the clinical developmental process.

  12. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment

    Directory of Open Access Journals (Sweden)

    Simon Wolfgang

    2006-04-01

    Full Text Available Abstract Background Sensitivity of breast tumors to anticancer drugs depends upon dynamic interactions between epithelial tumor cells and their microenvironment including stromal cells and extracellular matrix. To study drug-sensitivity within different compartments of an individual tumor ex vivo, culture models directly established from fresh tumor tissues are absolutely essential. Methods We prepared 0.2 mm thick tissue slices from freshly excised tumor samples and cultivated them individually in the presence or absence of taxol for 4 days. To visualize viability, cell death, and expression of surface molecules in different compartments of non-fixed primary breast cancer tissues we established a method based on confocal imaging using mitochondria- and DNA-selective dyes and fluorescent-conjugated antibodies. Proliferation and apoptosis was assessed by immunohistochemistry in sections from paraffin-embedded slices. Overall viability was also analyzed in homogenized tissue slices by a combined ATP/DNA quantification assay. Results We obtained a mean of 49 tissue slices from 22 breast cancer specimens allowing a wide range of experiments in each individual tumor. In our culture system, cells remained viable and proliferated for at least 4 days within their tissue environment. Viability of tissue slices decreased significantly in the presence of taxol in a dose-dependent manner. A three-color fluorescence viability assay enabled a rapid and authentic estimation of cell viability in the different tumor compartments within non-fixed tissue slices. Conclusion We describe a tissue culture method combined with a novel read out system for both tissue cultivation and rapid assessment of drug efficacy together with the simultaneous identification of different cell types within non-fixed breast cancer tissues. This method has potential significance for studying tumor responses to anticancer drugs in the complex environment of a primary cancer tissue.

  13. Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, Maciej [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Matczuk, Magdalena, E-mail: mmatczuk@ch.pw.edu.pl [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Pawlak, Katarzyna [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Timerbaev, Andrei R. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin St. 19, 119991 Moscow (Russian Federation)

    2014-12-03

    Highlights: • Extra- and intra-cellular interactions of Ru(III) anticancer drug candidate. • ESI-TOF-MS mapping of the ruthenium species bound to transferring. • ESI-QqQ-MS identification of released Ru species under cytosol simulated conditions. - Abstract: Electrospray ionization mass spectrometry (ESI-MS) techniques have been used to characterize the speciation of a Ru(III) anticancer drug, indazolium trans-[tetrachloridobis(1H-indazole) ruthenate(III)], upon its binding to transferrin and the impact of cellular reducing components on drug–transferrin adducts. Using time-of-flight ESI-MS, the polymorphism of apo- (iron-free) and holo-form (iron-saturated) of the protein was confirmed. While the ruthenium moieties bound to each of five isoforms under simulated extracellular conditions are essentially identical in numbers for apo- and holo-transferrin, distinct differences were found in the composition of Ru(III) species attached to either of the protein forms, which are dominated by differently coordinated aquated complexes. On the other hand, at least one of the Ru-N bonds in metal-organic framework remains intact even after prolonged interaction with the protein. Triple quadrupole tandem ESI-MS measurements demonstrated that the ruthenium species released from drug adducts with holo-transferrin in simulated cancer cytosol are underwent strong ligand exchange (as compared to the protein-bound forms) but most strikingly, they contain the metal center in the reduced Ru(II) state. In vitro probing the extra- and intracellular interactions of promising Ru(III) drug candidate performed by ESI-MS is thought to shed light on the transportation to tumor cells by transferrin and on the activation to more reactive species by the reducing environment of solid tumors.

  14. Research progress in nanoparticles as anticancer drug carrier%纳米粒作为抗肿瘤药物载体的研究进展

    Institute of Scientific and Technical Information of China (English)

    林苏娜(综述); 林华庆(审校)

    2013-01-01

      纳米粒载药系统可以改变药物的体内分布特征,具有缓控释和靶向给药特性,增加药物的稳定性,提高药物的生物利用度。纳米粒的靶向选择性可以通过增强渗透滞留效应(EPR)、偶联特定的配体,或由于生理条件如pH值、温度等的改变实现。纳米粒可以由多种材料制备并且用于包合各种化学治疗药物以降低药物不良反应,其中,磁性纳米粒作为抗肿瘤药物载体不仅可以用来治疗还能用于成像诊断。本文综述了纳米粒被动靶向、主动靶向、物理化学靶向给药系统用于抗肿瘤药物载体的研究进展。%A nanoparticle drug carrier system that can change the characteristics of drug distribution in vivo has sustained and controlled release features as well as targeted drug delivery. The system can increase the stability of the drug and raise drug bioavailabil-ity. The selective targeting of nanoparticle (NPs) can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity with which the magnetic nanoparti-cles as the anticancer drug carrier can be used for imaging, therapy, and diagnosis. In our study, we reviewed recent progress on nanoparticles as a targeted drug delivery system, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carrier.

  15. Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

    Science.gov (United States)

    Cosco, Donato; Paolino, Donatella; De Angelis, Francesco; Cilurzo, Felisa; Celia, Christian; Di Marzio, Luisa; Russo, Diego; Tsapis, Nicolas; Fattal, Elias; Fresta, Massimo

    2015-01-01

    Novel PEGylated PLA nanocapsules (PEG-AcPLA nanocapsules), loading high percentage of water soluble drugs have been formulated by using multiple emulsion technique without using conventional stabilizers. In particular, sodium deoxycholate hydrate has been used to obtain nanocapsules having a mean diameter of about 200 nm and a polydispersity index of ∼ 0.1. Gemcitabine hydrochloride (GEM) was used as a model of hydrophilic drug. GEM-loaded PEG-AcPLA nanocapsules demonstrated a high encapsulation efficacy and the drug-release followed a zero-order kinetic. MTT-assay evidenced an increased antitumor effect of GEM-loaded PEG-AcPLA nanocapsules compared to the free drug on different cancer cell lines and confocal laser scanning microscopy showed a significant improvement of cell interaction at 6h of incubation. In vivo anticancer activity of GEM-loaded PEG-AcPLA nanocapsules using two xenograft murine models of human solid tumors further supported the efficacy of this nano-drug, thus providing preliminary results about the potential clinical application of this innovative nanotherapeutic.

  16. Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: stability, solubility, lipophilicity and ionization.

    Science.gov (United States)

    See, Esther; Zhang, Wenli; Liu, Jianping; Svirskis, Darren; Baguley, Bruce C; Shaw, John P; Wang, Guangji; Wu, Zimei

    2014-10-01

    To facilitate the development of a liposomal formulation for cancer therapy, the physicochemical properties of asulacrine (ASL), an anticancer drug candidate, were characterized. Nano-liposomes were prepared by thin-film hydration in conjugation with active drug loading using ammonium sulphate and post-insertion with Poloxamer 188. A stability-indicating HPLC assay with diode array detection was developed for the determination of ASL concentrations. The U-shaped pH-solubility profile in aqueous solutions, with a lowest solubility at pH 7.4 (0.843 μg/mL), indicated that ASL is an ampholyte, and dilution or neutralization of acidic drug solutions used in clinical trials with physiological fluids may cause drug precipitation. The basic pKa value measured by absorbance spectroscopy was 6.72. The logD value at pH 3.8 was 1.15 which increased to 3.24 as pH increased to 7.4. ASL was found to be the most stable in acidic conditions and degraded most rapidly in alkaline conditions. An extra-liposomal pH of 5.6 during drug loading was found to be optimal to achieve the highest drug loading (DL) of 4.76% and entrapment efficiency (EE) of 99.9%. At this pH, >90% of ASL was ionized conferring high drug solubility (1mg/mL) and acted as a reservoir of unionized ASL to be transported into liposomal cores. As a suspension the optimized liposomes showed great physicochemical stability for five months at 4°C. In summary, the obtained physicochemical parameters provided insightful information useful to maximise DL into the liposomes, and explain a tendency of drug precipitation of pH-solubilized formulations following intravenous infusion.

  17. Identification and physiological evaluation of the components from Citrus fruits as potential drugs for anti-corpulence and anticancer

    OpenAIRE

    Hirata, Toshifumi; Fujii, Misato; Akita, Kazuhiro; Yanaka, Noriyuki; Ogawa, Kaori; Kuroyanagi, Masanori; Hongo, Daiki

    2009-01-01

    On the basis of monitoring the prevention of accumulation of lipid droplets in mouse 3T3-L1 preadipocyte cells and inhibition of the proliferation of human colon cancer HT-29 cells, effective anti-corpulence and anticancer compounds were isolated from the peel of Citrus fruits. These bioactive components were identified as polymethoxyflavones and coumarin derivatives by spectroscopic analyses. 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone had the greatest anti-corpulence effects and 3,5,6,7,8,3′,...

  18. Development of Liposomal Formulation for Delivering Anticancer Drug to Breast Cancer Stem-Cell-Like Cells and its Pharmacokinetics in an Animal Model.

    Science.gov (United States)

    Ahmad, Ajaz; Mondal, Sujan Kumar; Mukhopadhyay, Debabrata; Banerjee, Rajkumar; Alkharfy, Khalid M

    2016-03-07

    The objective of the present study is to develop a liposomal formulation for delivering anticancer drug to breast cancer stem-cell-like cells, ANV-1, and evaluate its pharmacokinetics in an animal model. The anticancer drug ESC8 was used in dexamethasone (Dex)-associated liposome (DX) to form ESC8-entrapped liposome named DXE. ANV-1 cells showed high-level expression of NRP-1. To enhance tumor regression, we additionally adapted to codeliver the NRP-1 shRNA-encoded plasmid using the established DXE liposome. In vivo efficacy of DXE-NRP-1 was carried out in mice bearing ANV-1 cells as xenograft tumors and the extent of tumor growth inhibition was evaluated by tumor-size measurement. A significant difference in tumor volume started to reveal between DXE-NRP-1 group and DXE-Control group. DXE-NRP-1 group showed ∼4 folds and ∼2.5 folds smaller tumor volume than exhibited by untreated and DXE-Control-treated groups, respectively. DXE disposition was evaluated in Sprague-Dawley rats following an intraperitoneal dose (3.67 mg/kg of ESC8 in DXE). The plasma concentrations of ESC8 in the DXE formulation were measured by liquid chromatography mass spectrometry and pharmacokinetic parameters were determined using a noncompartmental analysis. ESC8 had a half-life of 11.01 ± 0.29 h, clearance of 2.10 ± 3.63 L/kg/h, and volume of distribution of 33.42 ± 0.83 L/kg. This suggests that the DXE liposome formulation could be administered once or twice daily for therapeutic efficacy. In overall, we developed a potent liposomal formulation with favorable pharmacokinetic and tumor regressing profile that could sensitize and kill highly aggressive and drug-resistive cancer stem-cell-like cells.

  19. Risk assessment of human myelotoxicity of anticancer drugs: a predictive model and the in vitro colony forming unit granulocyte/macrophage (CFU-GM) assay.

    Science.gov (United States)

    Masubuchi, N

    2006-02-01

    Myelotoxicity is one of the major limitations to the use of anticancer drugs. It is desirable to evaluate human myelotoxicity before a Phase I study, however, this is difficult because of the differences in susceptibility between humans and animals. The purpose of this study was to establish a reliable method to predict the human maximum tolerated dose (MTD) of five camptothecin derivatives: SN-38, DX-8951f, topotecan (TPT), 9-aminocamptothecin (9-AC), and camptothecin (CAM). The myelotoxicity of camptothecin derivatives was evaluated on bone marrow from mice, dogs, and humans using a 14-day colony-forming unit-granulocyte/macrophage (CFU-GM) assay to determine the 50%, 75%, and 90% inhibitory concentration values (IC50, IC75, and IC90, respectively). Then, using human and murine IC90 values for myelotoxicity of these compounds, in vivo toxicological data, and pharmacokinetic parameters (data referred to the literature), human MTDs were predicted retrospectively. The mechanism-based prediction model which is proposed uses the in vitro CFU-GM assay and in vivo parameters on the basis of free fraction of area under the concentration-curve (AUC) at the MTD (r2 = 0.887) and suggests that the human MTDs were well predicted for the five camptothecin derivatives by this model rather than by other models. The application of this model for in vitro hematotoxicology could be very useful in the development of new anticancer agents.

  20. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase.

    Science.gov (United States)

    Coulibaly, Safiatou T; Rossolillo, Paola; Winter, Flore; Kretzschmar, Franziska K; Brayé, Mélanie; Martin, Darren P; Lener, Daniela; Negroni, Matteo

    2015-01-01

    Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK) mutant (G12) that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36) that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC), for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.

  1. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase.

    Directory of Open Access Journals (Sweden)

    Safiatou T Coulibaly

    Full Text Available Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK mutant (G12 that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36 that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC, for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.

  2. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells.

    Science.gov (United States)

    Jung, Il Lae; Lee, Ju Hye; Kang, Se Chan

    2015-09-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44-52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers.

  3. Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide.

    Science.gov (United States)

    Saikia, Nabanita; Deka, Ramesh C

    2013-09-01

    The application of graphene and related nanomaterials like boron nitride (BN) nanosheets, BN-graphene hybrid nanomaterials, and graphene oxide (GO) for adsorption of anticancer chemotherapeutic camptothecin (CPT) along with the effect on electronic properties prior to functionalization and after functionalization has been reported using density functional theory (DFT) calculations. The inclusion of dispersion correction to DFT is instrumental in accounting for van der Waals π-π stacking between CPT and the nanomaterial. The adsorption of CPT exhibits significant strain within the nanosheets and noncovalent adsorption of CPT is thermodynamically favoured onto the nanosheets. In case of GO, surface incorporation of functional groups result in significant crumpling along the basal plane and the interaction is basically mediated by H-bonding rather than π-π stacking. Docking studies predict the plausible binding of CPT, CPT functionalized graphene and GO with topoisomerase I (top 1) signifying that CPT interacts through π stacking with AT and GC base pairs of DNA and in presence of nano support, DNA bases preferentially gets bound to the basal plane of graphene and GO rather than the edges. At a theoretical level of understanding, our studies point out the noncovalent interaction of CPT with graphene based nanomaterials and GO for loading and delivery of anticancer chemotherapeutic along with active binding to Top1 protein.

  4. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an "off-target" effect?

    Science.gov (United States)

    Havelka, Aleksandra Mandic; Berndtsson, Maria; Olofsson, Maria Hägg; Shoshan, Maria C; Linder, Stig

    2007-10-01

    DNA damage induces apoptosis of cells of hematological origin. Apoptosis is also widely believed to be the major antiproliferative mechanism of DNA damaging anticancer drugs in other cell types, and a large number of laboratories have studied drug-induced acute apoptosis (within 24 hours) of carcinoma cells. It is, however, often overlooked that induction of apoptosis of carcinoma cells generally requires drug concentrations that are at least one order of magnitude higher than those required for loss of clonogenicity. This is true for different DNA damaging drugs such as cisplatin, doxorubicin and camptothecin. We here discuss apoptosis induction by DNA damaging agents using cisplatin as an example. Recent studies have shown that cisplatin induces caspase activation in enucleated cells (cytoplasts lacking a cell nucleus). Cisplatin-induced apoptosis in both cells and cytoplasts is associated with rapid induction of cellular reactive oxygen species and increases in [Ca(2+)](i). Cisplatin has also been reported to induce clustering of Fas/CD95 in the plasma membrane. Available data suggest that the primary responses to cisplatin-induced DNA damage are induction of long-term growth arrest ("premature cell senescence") and mitotic catastrophe, whereas acute apoptosis may be due to "off-target effects" not necessarily involving DNA damage.

  5. [Clopidogrel--proton pump inhibitors drug interaction: implications to clinical practice].

    Science.gov (United States)

    Fontes-Carvalho, Ricardo; Albuquerque, Aníbal

    2010-10-01

    Recent studies have raised the concern that proton pump inhibitors (PPIs) could potentially interfere with clopidogrel antiplatelet effect. This association is frequent in clinical practice and is recommended by recent consensus guidelines in patients taking dual antiplatelet therapy to prevent gastrointestinal (GI) bleeding. Clopidogrel is a pro-drug which needs to be metabolized into its active metabolite, by cytochrome P450, especially by CYP2C19 isoenzyme. Various PPIs can inhibit CYP2C19, which could possibly decrease clopidogrel bioactivation process and, therefore, its antiplatelet effect. Various platelet function studies have shown that omeprazol can significantly decrease clopidogrel inhibitory effect on platelet P2Y12 receptor, leading to an increase in the number of patients who are "nonresponders" to clopidogrel. These pharmacokinetic studies also shown that this is not probably a class effect of PPIs, because they are metabolized to varying degrees by CYP2C19. The clinical impact of these observations remains uncertain, because various observational studies have shown conflicting results, and remains to demonstrate if PPIs can really increase the risk of cardiovascular events in patients taking clopidogrel. In this review we will discuss the pharmacokinetic basis underlying this drug interaction, the effect of different PPIs on platelet function tests and we will analyze in detail the potential clinical implications of using this association, both on cardiovascular and gastrointestinal events. Until further data is available, some clinical strategies can be recommended: (1) individual gastrointestinal risk assessment, with PPIs administration only to patients on dual anti-platelet therapy with additional GI risk factors; (2) preferential use of PPIs that have shown less interference with clopidogrel efficacy; (3) wide separation of PPI and clopidogrel dosing to minimize the risk of interaction (PPI may be given before breakfast and clopidogrel at

  6. Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump.

    Science.gov (United States)

    Mazard, Thibault; Causse, Annick; Simony, Joelle; Leconet, Wilhem; Vezzio-Vie, Nadia; Torro, Adeline; Jarlier, Marta; Evrard, Alexandre; Del Rio, Maguy; Assenat, Eric; Martineau, Pierre; Ychou, Marc; Robert, Bruno; Gongora, Celine

    2013-10-01

    Despite recent advances in the treatment of colorectal cancer (CRC), tumor resistance is a frequent cause of chemotherapy failure. Therefore, new treatment options are needed to improve survival of patients with irinotecan-refractory CRCs, particularly those bearing KRAS mutations that preclude the use of anti-EGFR therapies. In this study, we investigated whether sorafenib could reverse irinotecan resistance, thereby enhancing the therapeutic efficacy of routinely used irinotecan-based chemotherapy. We used both in vitro (the HCT116, SW48, SW620, and HT29 colon adenocarcinoma cell lines and four SN-38-resistant HCT-116 and SW48 clones) and in vivo models (nude mice xenografted with SN-38-resistant HCT116 cells) to test the efficacy of sorafenib alone or in combination with irinotecan or its active metabolite, SN-38. We have shown that sorafenib improved the antitumoral activity of irinotecan in vitro, in both parental and SN-38-resistant colon adenocarcinoma cell lines independently of their KRAS status, as well as in vivo, in xenografted mice. By inhibiting the drug-efflux pump ABCG2, sorafenib favors irinotecan intracellular accumulation and enhances its toxicity. Moreover, we found that sorafenib improved the efficacy of irinotecan by inhibiting the irinotecan-mediated p38 and ERK activation. In conclusion, our results show that sorafenib can suppress resistance to irinotecan and suggest that sorafenib could be used to overcome resistance to irinotecan-based chemotherapies in CRC, particularly in KRAS-mutated tumors.

  7. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression.

    Science.gov (United States)

    Zhang, Jie-Yu; Liu, Jin-Hui; Liu, Fa-Di; Xia, Yan-Hua; Wang, Jing; Liu, Xi; Zhang, Zhi-Qin; Zhu, Na; Yan-Yan; Ying, Ying; Huang, Xiao-Tian

    2014-10-01

    The increasing incidence of vulvovaginal candidiasis (VVC) and the emergence of fluconazole resistance are an indisputable fact. However, little information is available regarding the correlation between fluconazole resistance in vaginal Candida albicans and the expression of drug efflux pump genes. In this study, we investigated the species distribution, fluconazole susceptibility profiles and the mechanisms of fluconazole resistance in Candida strains. In total, 785 clinical Candida isolates were collected from patients with VVC. C. albicans was the most frequently isolated species(n = 529) followed by C. glabrata (n = 164) and C. krusei (n = 57). Of all Candida isolates, 4.7% were resistant to fluconazole. We randomly selected 18 fluconazole resistant isolates of C. albicans to evaluate the expression of CDR1, CDR2, MDR1 and FLU1 genes. Compared with fluconazole-susceptible C. albicans isolates, CDR1 gene expression displayed 3.16-fold relative increase, which was statistically significant. CDR2, MDR1 and FLU1 overexpression was observed in several fluconazole-resistant C. albicans isolates, but statistical significance was not achieved. These results demonstrate a high frequency of non-albicans species (32.6%); however, C. albicans is the most common Candida species implicated in vaginitis, and this strain displays considerable fluconazole resistance. Meanwhile, our study further indicates that fluconazole resistance in C. albicans may correlate with CDR1 gene overexpression.

  8. Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells.

    Science.gov (United States)

    Buroni, Silvia; Matthijs, Nele; Spadaro, Francesca; Van Acker, Heleen; Scoffone, Viola C; Pasca, Maria Rosalia; Riccardi, Giovanna; Coenye, Tom

    2014-12-01

    Burkholderia cenocepacia is notorious for causing respiratory tract infections in people with cystic fibrosis. Infections with this organism are particularly difficult to treat due to its high level of intrinsic resistance to most antibiotics. Multidrug resistance in B. cenocepacia can be ascribed to different mechanisms, including the activity of efflux pumps and biofilm formation. In the present study, the effects of deletion of the 16 operons encoding resistance-nodulation-cell division (RND)-type efflux pumps in B. cenocepacia strain J2315 were investigated by determining the MICs of various antibiotics and by investigating the antibiofilm effect of these antibiotics. Finally, the expression levels of selected RND genes in treated and untreated cultures were investigated using reverse transcriptase quantitative PCR (RT-qPCR). Our data indicate that the RND-3 and RND-4 efflux pumps are important for resistance to various antimicrobial drugs (including tobramycin and ciprofloxacin) in planktonic B. cenocepacia J2315 populations, while the RND-3, RND-8, and RND-9 efflux systems protect biofilm-grown cells against tobramycin. The RND-8 and RND-9 efflux pumps are not involved in ciprofloxacin resistance. Results from the RT-qPCR experiments on the wild-type strain B. cenocepacia J2315 suggest that there is little regulation at the level of mRNA expression for these efflux pumps under the conditions tested.

  9. Novel anticancer agents from plant sources

    Institute of Scientific and Technical Information of China (English)

    Shah Unnati; Shah Ripal; Acharya Sanjeev; Acharya Niyati

    2013-01-01

    Plants remain an important source of new drugs,new drug leads and new chemical entities.Plant based drug discovery resulted mainly in the development of anticancer and anti-infectious agents,and continues to contribute to the new leads in clinical trials.Natural product drugs play a dominant role in pharmaceutical care.Several plant-derived compounds are currently successfully employed in cancer treatment.There are many classes of plant-derived cytotoxic natural products studied for further improvement and development of drugs.New anticancer drugs derived from research on plant antitumor agents will be continuously discovered.The basic aim of this review is to explore the potential of newly discovered anticancer compounds from medicinal plants,as a lead for anticancer drug development.It will be helpful to explore the medicinal value of plants and for new drug discovery from them for the researchers and scientists around the globe.

  10. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol.

    Science.gov (United States)

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3-taxol bioconjugate was confirmed by UV-vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC).

  11. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  12. Can Be a Bimetal Oxide ZnO-MgO Nanoparticles Anticancer Drug Carrier and Deliver? Doxorubicin Adsorption/Release Study.

    Science.gov (United States)

    Kumar, Raju; Gokulakrishnan, Narasimhan; Kumar, Randhir; Krishna, Vemula Mohana; Saravanan, Arumugam; Supriya, Subrahmanian; Somanathan, Thirunavukkarasu

    2015-02-01

    Bimetal oxide ZnO-MgO nanoparticles were synthesised by precipitation method at low temperature and characterised by analytical techniques such as XRD, SEM and FT-IR. In order to know the efficiency of uptake and release of anticancer drug, the adsorption and release of doxorubicin, on bimetal oxide nanoparticles was performed in dark room at room temperature. The adsorption models such as Henry, Freundlich and Langmuir models were validated with obtained experimental data. Due to heterogeneous surface of bimetal oxides, data followed well with Henry and Freundlich models but not Langmuir that proposed homogeneous adsorbent surface. The strong affinity between drug and nanoparticles is certainly due to the electrostatic interaction between positively charged doxorubicin molecules and negatively charged surface of ZnO-MgO nanoparticles and hydrogen bonding between them that confirmed from FT-IR analysis. The doxorubicin release from ZnO-MgO nanoparticles was performed at pH 4 and 7 to evaluate the kinetic of drug release using various mathematical models. At neutral pH, the doxo release was found to be ~14% whereas at acidic pH (pH 4) nearly 68% of doxo was released at 6.5 hours due to dissolution and neutralising the surface charge of ZnO-MgO nanoparticles. Various mathematical models such as zero order, first order, Higuchi and Hixson-Crowell were approached to evaluate the kinetic release of drug from the nanoparticles. The obtained release data for acidic pH followed Hixson-Crowell model, proposes erosion dependent release system, compared to Higuchi that confirmed doxo release is due to dissolution of ZnO-MgO nanoparticles. In this study, it is concluded that ZnO-MgO nanoparticles will be a promising drug vehicle in drug delivery system.

  13. A comprehensive biological insight of trinuclear copper(II)-tin(IV) chemotherapeutic anticancer drug entity: in vitro cytotoxicity and in vivo systemic toxicity studies.

    Science.gov (United States)

    Zaidi, Yusra; Arjmand, Farukh; Zaidi, Nida; Usmani, Jawed Ahmad; Zubair, Haseeb; Akhtar, Kafil; Hossain, Mobarak; Shadab, G G H A

    2014-08-01

    Cisplatin (cis-diamminedichloroplatinum(II), CDDP) causes severe systemic toxicity, which limits its application in cancer treatment. Nevertheless, incorporation of endogenously present essential metal ions (copper) in anticancer drug regimes in a heterometallic ligand scaffold can substantially modulate the toxic effects of non-essential metals (platinum), thereby reducing unwanted toxic side effects. A chiral l-tryptophan derived [bis(1,2-diaminobenzene) copper(II)] chloride complex [CuSn2(Trp)] was previously synthesized by us as an active chemotherapeutic agent. Furthermore, we have explored CuSn2(Trp) induced in vitro cytotoxicity in a panel of human cancer cell lines and in vivo acute and systemic toxicities in healthy female Rattus norvegicus (Wistar) rats. MTT assay showed that CuSn2(Trp) exhibits strong anticancer potency against ovarian (PA-1) and prostate carcinomas (PC-3) but lower potency towards liver (HepG2) and breast carcinomas (MCF-7). Further, flow cytometric analysis demonstrated that CuSn2(Trp) kills PA-1 cells dose-dependently after 48 h treatment. Fluorescence microscopy and western blotting revealed that the plausible mechanism behind CuSn2(Trp) cytotoxicity was apoptosis, which was substantiated by cleavage of caspase-3 and poly-(ADP-ribose) polymerase (PARP). Furthermore, it has lower toxicity than CDDP in rats as evident from its eight fold (98.11 mg kg(-1)) more medial lethal dose (LD50) than CDDP (12 mg kg(-1)). Besides, the safety profile of CuSn2(Trp) was also established and no measurable DNA damage, nephrotoxicity, hepatotoxicity and neurotoxicity were observed when assessed as a function of oxidative stress markers in contrast to CDDP at equivalent lower doses. Our findings are of high importance in the context of further in vivo cancer studies on the CuSn2(Trp) drug entity.

  14. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin)

    Science.gov (United States)

    Naik, Pradeep K.; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N.; Joshi, Harish C.

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group—a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (Δ G bind) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant ( K d value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC50 in the range of 15-40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC50 in the range of 0.3-1.5 μM).

  15. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    Science.gov (United States)

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity.

  16. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin).

    Science.gov (United States)

    Naik, Pradeep K; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N; Joshi, Harish C

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group-a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (ΔG (bind)) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant (K (d) value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC(50) in the range of 15-40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC(50) in the range of 0.3-1.5 μM).

  17. Polymer Nanoparticles Prepared by Sup ercritical Carb on Dioxide for in Vivo Anti-cancer Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    Maofang Hua; Xiufu Hua

    2014-01-01

    A new approach for producing polymer nanoparticles made of bovine serum albumin-poly(methyl methacrylate) conjugate by precipitating in supercritical CO2 is reported. The nanoparticles were loaded with the anti-tumor drug camptothecin. With albumin serving as a nutrient to cells, the drug-encapsulated nanoparticle shows an enhanced ability to kill cancer cells compared to that of the free drug in solution both in vitro and in vivo.

  18. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Alyautdin, Renat N.; Torshina, N.L.; Kuznetsov, O.A. E-mail: oleg@louisiana.edu

    2001-07-01

    Magnetic liposomes containing submicron-sized ferromagnetic particles were prepared encapsulating the muscle relaxant drugs, diadony or diperony, for local anesthesia. Alternatively, metal phthalocyanines (Photosense or Teraphthal), sensitizers for photodynamic or catalytic cancer therapy were loaded into the magnetic liposomes. Animal trials demonstrated successful magnetically guided transport of the drug-loaded liposomes.

  19. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery.

    Science.gov (United States)

    Du, Jin-Zhi; Du, Xiao-Jiao; Mao, Cheng-Qiong; Wang, Jun

    2011-11-09

    Efficient delivery of therapeutics into tumor cells to increase the intracellular drug concentration is a major challenge for cancer therapy due to drug resistance and inefficient cellular uptake. Herein, we have designed a tailor-made dual pH-sensitive polymer-drug conjugate nanoparticulate system to overcome the challenges. The nanoparticle is capable of reversing its surface charge from negative to positive at tumor extracellular pH (∼6.8) to facilitate cell internalization. Subsequently, the significantly increased acidity in subcellular compartments such as the endosome (∼5.0) further promotes doxorubicin release from the endocytosed drug carriers. This dual pH-sensitive nanoparticle has showed enhanced cytotoxicity in drug-resistant cancer stem cells, indicating its great potential for cancer therapy.

  20. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  1. Increases in Xu Zheng and Yu Zheng among Patients with Breast Cancer Receiving Different Anticancer Drug Therapies

    Directory of Open Access Journals (Sweden)

    Sheng-Miauh Huang

    2013-01-01

    Full Text Available Aim. The objectives of this study were to compare yang-xu, yin-xu, and yu among patients with breast cancer right before, one month after, and three months after receiving target, chemo, or combined therapy. Method. After recruiting 126 patients from 4 hospitals in northern Taiwan, a longitudinal study was carried out with 61 patients receiving chemotherapy, 30 receiving target therapy, and 35 receiving combined therapy. Yang-xu, yin-xu, and yu were assessed using the Traditional Chinese Medical Constitutional Scale (TCMCS, with higher scores indicating more xu and yu. Results. There were significant increases in yang-xu, yin-xu, and yu at 1 month and 3 months after than before the start of the chemotherapy, target, or combined therapy. Patients receiving combined therapy had significantly higher scores in yang-xu and yin-xu than patients receiving chemo or target therapy. A history of coronary heart disease was associated with more yin-xu. Those patients who had undergone a mastectomy were associated with less yu zheng than those patients who had not. Conclusion and Implications. TCM doctors should focus their treatment on dealing with xu and yu in order to support their patients, as they complete their modern anticancer treatments.

  2. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  3. Anticancer chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    This document examines chemotherapeutic agents for use in veterinary oncology. It lists some of the most common categories of chemotherapeutic drugs, such as alkylating agents and corticosteroids. For each category, the paper lists some example drugs, gives their mode of action, tumors usually susceptible to the drug, and common side effects. A brief discussion of mechanisms of drug resistance is also provided. (MHB)

  4. Exploration of Electrochemical Intermediates of the Anticancer Drug Doxorubicin Hydrochloride Using Cyclic Voltammetry and Simulation Studies with an Evaluation for Its Interaction with DNA

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Guin

    2014-01-01

    Full Text Available Electrochemical behavior of the anticancer drug doxorubicin hydrochloride was studied using cyclic voltammetry in aqueous medium using Hepes buffer (pH~7.4. At this pH, doxorubicin hydrochloride undergoes a reversible two-electron reduction with E1/2 value −665±5 mV (versus Ag/AgCl, saturated KCl. Depending on scan rates, processes were either quasireversible (at low scan rates or near perfect reversible (at high scan rates. This difference in behavior of doxorubicin hydrochloride with scan rate studied over the same potential range speaks of differences in electron transfer processes in doxorubicin hydrochloride. Attempt was made to identify and understand the species involved using simulation. The information obtained was used to study the interaction of doxorubicin hydrochloride with calf thymus DNA. Cathodic peak current gradually decreased as more calf thymus DNA was added. The decrease in cathodic peak current was used to estimate the interaction of the drug with calf thymus DNA. Nonlinear curve fit analysis was applied to evaluate the intrinsic binding constant and site size of interaction that was compared with previous results on doxorubicin hydrochloride-DNA interaction monitored by cyclic voltammetry or spectroscopic techniques.

  5. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release.

    Science.gov (United States)

    Fu, Chaoping; Li, Hailiang; Li, Nannan; Miao, Xiangwan; Xie, Minqiang; Du, Wenjun; Zhang, Li-Ming

    2015-09-05

    A prodrug gelation strategy was developed for the sustained and dual stimuli-response release of doxorubicin hydrochloride (DOX·HCl), a commonly used anticancer drug. For this purpose, the chemical conjugation of DOX·HCl onto thiolated hyaluronic acid (HA) was carried out by an acid liable hydrazone linkage and verified by (1)H NMR analyses. When exposed to the air, such a polysaccharide conjugate showed unique self-gelation ability in aqueous solution. The gelation time and extent depended mainly on the content of thiol groups on thiolated HA. The resultant hydrogel exhibited a dominant elastic response and a thixotropic property. In particular, it could release sustainably conjugated DOX·HCl in dual pH- and reduction-responsive modes. The cumulative drug release was found to be significantly accelerated under the conditions mimicking the intracellular environments of cancer cells. The in vitro cytotoxicity assays for the human nasopharyngeal carcinoma CNE2 cells treated with various release media confirmed the effectiveness of this conjugate hydrogel for cancer cell inhibition.

  6. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    Science.gov (United States)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution.

  7. 靶向抗肿瘤药物个体化用药的研究现状%Research current situation and prospect on personalized medicine by targeted anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    丁征; 宋洪涛

    2012-01-01

    随着靶向抗肿瘤药物在肿瘤治疗中地位日益提高,越来越多作用于不同靶点的药物在临床上应用;通过对药物生物标志物的研究来预测疗效和预后,对患者进行个体化治疗.本文对靶向抗肿瘤药物在个体化用药的现状和应用前景作一综述.%As the growing importance of targeted anticancer drugs in the tumor treatment, more and more drugs working through different targets are widely available in clinic. The study of biomarkers makes it possible for predicting efficacy and prognosis and personalized medicine. The research progress on current situation and prospect on personalized medicine by targeted anticancer drugs was summarized in this paper.

  8. The influence of hospital drug formulary policies on the prescribing patterns of proton pump inhibitors in primary care

    DEFF Research Database (Denmark)

    Larsen, Michael Due; Schou, Mette; Kristiansen, Anja Sparre;

    2014-01-01

    for the recommended PPIs pantoprazole and lansoprazole to 14.6 and 26.1 %, respectively. The effect of a large discount on expensive PPI to hospital was 14.7 %, and this decreased to 2.6 % when coordinating drug policy in hospital and primary care. CONCLUSION: The likelihood of having an expensive PPI prescribed......AIM: This study had two aims: Firstly, to describe how prescriptions for proton pump inhibitor (PPI) in primary care were influenced by a change of the hospital drug policy, and secondly, to describe if a large discount on an expensive PPI (esomeprazole) to a hospital would influence prescribing...... policy on prescribings in primary care was measured by the likelihood of having a high-cost PPI prescribed before and after change of drug policy. RESULTS: In total, 9,341 hospital stays in 2009 and 2010 were included. The probability of a patient to be prescribed an expensive PPI after discharge...

  9. Interaction of the recently approved anticancer drug nintedanib with human acute phase reactant α 1-acid glycoprotein

    Science.gov (United States)

    Abdelhameed, Ali Saber; Ajmal, Mohammad Rehan; Ponnusamy, Kalaiarasan; Subbarao, Naidu; Khan, Rizwan Hasan

    2016-07-01

    A comprehensive study of the interaction of the newly approved tyrosine kinase inhibitor, Nintedanib (NTB) and Alpha-1 Acid Glycoprotein (AAG) has been carried out by utilizing UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, dynamic light scattering and molecular docking techniques. The obtained results showed enhancement of the UV-Vis peak of the protein upon binding to NTB with the fluorescence intensity of AAG is being quenched by NTB via the formation of ground state complex (i.e. Static quenching). Forster distance (Ro) obtained from fluorescence resonance energy transfer (FRET) is found to be 2.3 nm. The calculated binding parameters from the modified Stern-Volmer equation showed that NTB binds to AAG with a binding constant in the order of 103. Conformational alteration of the protein upon its binding to NTB was confirmed by the circular dichroism. Dynamic light scattering results showed that the binding interaction of NTB leads to the reduction in hydrodynamic radii of AAG. Dynamic molecular docking results showed that the NTB fits into the central binding cavity in AAG and hydrophobic interaction played the key role in the binding process also the docking studies were performed with methotrexate and clofarabine drugs to look into the common binding regions of these drugs on AAG molecule, it was found that five amino acid residues namely Phe 113, Arg 89, Tyr 126, Phe 48 and Glu 63 were common among the binding regions of three studied drugs this phenomenon of overlapping binding regions may influence the drug transport by the carrier molecule in turn affecting the metabolism of the drug and treatment outcome.

  10. In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells.

    Science.gov (United States)

    Murawala, Priyanka; Tirmale, Amruta; Shiras, Anjali; Prasad, B L V

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment.

  11. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    Science.gov (United States)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  12. Preparation and Application of a Nano α-Fe2O3/SAPO-34 Photocatalyst for Removal of the Anti-cancer Drug Doxorubicin using the Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Bigtan Mohammad Hosein

    2016-01-01

    Full Text Available The synthesis of α-Fe2O3/SAPO-34 nano photocatalyst was the first step of this study. The α-Fe2O3 nanocatalyst was synthesized applying forced hydrolysis and reflux condensation followed by solid-state dispersion that was used for supporting α-Fe2O3 on SAPO-34. The next step was a characterization of the catalyst that was performed using X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier Transform Infrared Spectroscopy (FT-IR. Then, for optimizing the operational parameters in Doxorubicin’s degradation process the effect of Doxorubicin concentration, the amount of α-Fe2O3/SAPO-34 nano photocatalyst, the pH, and H2O2 concentration was studied via the Taguchi method. The AL9 orthogonal array was adjusted and nine crucial runs were conducted. For calculating Signal/Noise ratio, each run was repeated three times. As the results showed, the concentration of Doxorubicin is the most effective parameter. Optimized conditions for removing the anti-cancer drug (based on Signal/Noise ratio were Doxorubicin concentration (20 ppm, H2O2 concentration (3 mol/L, catalyst amount (50 mg/L and pH = 8.

  13. A comparative study of the vibrational spectra of the anticancer drug melphalan and its fundamental molecules 3-phenylpropionic acid and L-phenylalanine

    Science.gov (United States)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-04-01

    The structural stability and the vibrational spectra of the anticancer drug melphalan and its parent compounds 3-phenylpropionic acid and L-phenylalanine were investigated by the DFT B3LYP/6-311G** calculations. Melphalan and its fundamental compounds were predicted to exist predominantly in non-planar structures. The vibrational frequencies of the low energy structures of melphalan, 3-phenylpropionic acid, and phenylalanine were computed at the DFT B3LYP level of theory. Complete vibrational assignments of the normal modes of melphalan, 3-phenylpropionic acid, and phenylalanine were provided by combined theoretical and experimental data of the molecules. The experimental infrared spectra of phenylalanine and melphalan show a significantly different pattern of the Cdbnd O stretching mode as compared to those of normal carboxylic acids. A comparison of the 3700-2000 cm-1 infrared spectral region of the three molecules suggests the presence of similar intermolecular H-bonding in their condensed phases. The observed infrared and Raman spectra are consistent with the presence of one predominant melphalan conformation at room temperature.

  14. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-05-12

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

  15. Characterization, anticancer drug susceptibility and atRA-induced growth inhibition of a novel cell line (HUMEMS) established from pleural effusion of alveolar rhabdomyosarcoma of breast tissue.

    Science.gov (United States)

    Ohi, Satoshi

    2007-05-01

    We recently established a cell line derived from pleural effusion from a 13-year-old girl with primary alveolar rhabdomyosarcoma (RMS with a chromosomal translocation t[2;13]) in the breast tissue. The cell line was designated as HUMEMS. Cases of primary alveolar RMS swelling in the breast are extremely rare (about 0.2% of all RMSs). Therefore, the HUMEMS cell line is an important material for studying therapeutics for malignant tumors in children. The HUMEMS cell line we isolated consisted of two morphological subtypes. One type (SSN cells) is small in size and has a single nucleus. Another (LMN cells) is large in size and has two or more nuclei. Both SSN cells and LMN cells were immunohistochemically positive for desmin and slightly positive for myoglobin. Our data suggested LMN cells are well-differentiated SSN cells. Moreover, in some of the LMN cells, rapid cell contractions (1-5 times/10 sec) were observed. We investigated the anticancer drug susceptibility of the HUMEMS cell line with an oxygen electrode apparatus (Daikin, DOX-10, JPN) and effect of all-trans-retinoic acid (atRA) to the cell line. The atRA-treatment inhibited proliferation of the HUMEMS cells.

  16. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Xi-Nan Shi

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Surgical resection and conventional chemotherapy and radiotherapy ultimately fail due to tumor recurrence and HCC's resistance. The development of novel therapies against HCC is thus urgently required. The cyclin-dependent kinase (CDK pathways are important and well-established targets for cancer treatment. In particular, CDK2 is a key factor regulating the cell cycle G1 to S transition and a hallmark for cancers. In this study, we utilized our free and open-source protein-ligand docking software, idock, prospectively to identify potential CDK2 inhibitors from 4,311 FDA-approved small molecule drugs using a repurposing strategy and an ensemble docking methodology. Sorted by average idock score, nine compounds were purchased and tested in vitro. Among them, the anti-psychotic drug fluspirilene exhibited the highest anti-proliferative effect in human hepatocellular carcinoma HepG2 and Huh7 cells. We demonstrated for the first time that fluspirilene treatment significantly increased the percentage of cells in G1 phase, and decreased the expressions of CDK2, cyclin E and Rb, as well as the phosphorylations of CDK2 on Thr160 and Rb on Ser795. We also examined the anti-cancer effect of fluspirilene in vivo in BALB/C nude mice subcutaneously xenografted with human hepatocellular carcinoma Huh7 cells. Our results showed that oral fluspirilene treatment significantly inhibited tumor growth. Fluspirilene (15 mg/kg exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil (10 mg/kg. Moreover, the cocktail treatment with fluspirilene and 5-fluorouracil exhibited the highest therapeutic effect. These results suggested for the first time that fluspirilene is a potential CDK2 inhibitor and a candidate anti-cancer drug for the treatment of human hepatocellular carcinoma. In view of the fact that fluspirilene has a long history

  17. New insights into the RNA-based mechanism of action of the anticancer drug 5'-fluorouracil in eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Laura Mojardín

    Full Text Available 5-Fluorouracil (5FU is a chemotherapeutic drug widely used in treating a range of advanced, solid tumours and, in particular, colorectal cancer. Here, we used high-density tiling DNA microarray technology to obtain the specific transcriptome-wide response induced by 5FU in the eukaryotic model Schizosaccharomyces pombe. This approach combined with real-time quantitative PCR analysis allowed us to detect splicing defects of a significant number of intron-containing mRNA, in addition to identify some rRNA and tRNA processing defects after 5FU treatment. Interestingly, our studies also revealed that 5FU specifically induced the expression of certain genes implicated in the processing of mRNA, tRNA and rRNA precursors, and in the post-transcriptional modification of uracil residues in RNA. The transcription of several tRNA genes was also significantly induced after drug exposure. These transcriptional changes might represent a cellular response mechanism to counteract 5FU damage since deletion strains for some of these up-regulated genes were hypersensitive to 5FU. Moreover, most of these RNA processing genes have human orthologs that participate in conserved pathways, suggesting that they could be novel targets to improve the efficacy of 5FU-based treatments.

  18. Ca(II, Zn(II and Au(III sulfamethoxazole sulfa-drug complexes: Synthesis, spectroscopic and anticancer evaluation studies

    Directory of Open Access Journals (Sweden)

    Fatima A.I. Al-Khodir

    2015-09-01

    Full Text Available Herein in this article, three new Ca(II, Zn(II and Au(III complexes of sulfamethoxazole (SZ (sulfa-drug have been synthesized for the first time. The sulfa-drugs have a great attentions because of their therapeutic applications against bacterial infections. The SZ complexes were discussed with the help of elemental analyses, molar conductance and spectroscopic instruments e.g. IR, 1H-NMR, and electronic spectra. Investigations of the infrared spectra of the SZ and their metal complexes indicated the vibrations due to the sulfonamido (SO2 and –NH and isoxazole (C=N groups are shifted with respect to the free molecule in line with their coordination to the metal. In case of calcium(II an zinc(II complexes, the coordination site of SZ are the sulfonyl oxygen and SO2-NH sulfonamide nitrogen, but in gold(III complex, the gold metal ions coordinates through the sulfonyl oxygen and isoxazole nitrogen. These complexes are formulated as: [Ca(SZ(Cl2].8H2O (1, [Zn(SZ(Cl2].2H2O (2 and [Au(SZ(Cl2].Cl (3. The molar conductance data reveals that both Ca(II and Zn(II complexes are non-electrolyte but gold(III complex is electrolyte. The morphological nano structures of SZ complexes were checked using X-ray powder diffraction (XRD, scanning electron microscope (SEM and transmission electron microscopy (TEM. The gold(III complex was recorded good anticancer behavior against Human colon carcinoma (HCT-116 cells and human hepatocellular carcinoma (HepG-2 cells.

  19. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery.

    Science.gov (United States)

    Zhang, Can Yang; Yang, You Qiang; Huang, Tu Xiong; Zhao, Bin; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2012-09-01

    A series of amphiphilic pH-responsive poly (ethylene glycol) methyl ether-b-(poly lactic acid-co-poly (β-amino esters)) (MPEG-b-(PLA-co-PAE)) block copolymers with different PLA/PAE ratios were designed and synthesized via a Michael-type step polymerization. The molecular structures of the copolymers were confirmed with (1)H NMR and gel permeation chromatography (GPC). These amphiphilic copolymers were shown to self-assemble into core/shell micelles in aqueous solution at low concentrations, and their critical micelle concentrations (CMC) in water were 1.2-9.5 mg/L. The pH-responsive PAE segment was insoluble at pH 7.4, but it became positively charged and soluble via protonation of amino groups at pH lower than 6.5. The average particle size and zeta potential of micelles increased from 180 nm and 15 mV to 220 nm and 40 mV, respectively, when the pH decreased from 7.4 to 5.0. Doxorubicin (DOX) was loaded into the core of these micelles with a high drug loading of 18%. The in vitro DOX release from the micelles was significantly accelerated when solution pH decreased from 7.4 to 5.0. DOX release in the first 10 h appeared to follow Fickian diffusion mechanism. Toxicity test showed that the copolymers had low toxicity whereas the DOX-loaded micelles remained high cytotoxicity for HepG2 cells. The results indicate the pH-sensitive MPEG-b-(PLA-co-PAE) micelle may be a potential hydrophobic drug delivery carrier for cancer targeting therapy with sustained release.

  20. [Continuous intrathecal opiate therapy with a portable drug pump in cancer pain].

    Science.gov (United States)

    Motsch, J; Bleser, W; Ismaily, A J; Distler, L

    1988-10-01

    Terminal cancer patients report substantial pain frequently. Pain control can be achieved in many patients with conventional methods and analgesics. However, significant numbers of patients remain in pain. For these patients, continuous intrathecal narcotics delivered by an external portable pump via a subcutaneous port, offer substantially improved pain control with minimal risk of serious systemic complications. Duration of treatment in our 40 cancer patients lasted up to 11 month. Continuous intrathecal morphine or fentanyl relieved pain till death due to cancer. Supraspinal side effects of opioids were only seen during the first week of intrathecal narcotic treatment. No serious complications like meningitis or other infections were observed. Postmortem examination also could not detect changes of the cord or signs of arachnoiditis due to intrathecal narcotics or the implanted catheter. We conclude, that continuous intrathecal narcotic infusion by means of small portable pump is a very efficient method to control terminal cancer pain and enables treatment on an outpatient basis until death.

  1. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles.

    Science.gov (United States)

    Li, Xin; Yu, Yang; Ji, Qian; Qiu, Liyan

    2015-01-01

    Aptamers are single-stranded RNA or DNA ligands that can specifically bind to various molecular targets with high affinity. Owing to this unique character, they have become increasingly attractive in the field of drug delivery. In this study, we developed a multifunctional composite micelle (CM) with surface modification of aptamer AS1411 (Ap) for targeted delivery of doxorubicin (DOX) to human breast tumors. This binary mixed system consisting of AS1411 modified Pluronic F127 and beta-cyclodextrin-linked poly(ethylene glycol)-b-polylactide could enhance DOX-loading capacity and increase micelle stability. Cellular uptake of CM-Ap was found to be higher than that of untargeted CM due to the nucleolin-mediated endocytosis effect. In vivo study in MCF-7 tumor-bearing mice demonstrated that the AS1411-functionalized composite micelles showed prolonged circulation time in blood, enhanced accumulation in tumor, improved antitumor activity, and decreased cardiotoxicity. In conclusion, aptamer-conjugated multifunctional composite micelles could be a potential delivery vehicle for cancer therapy.

  2. Profound activity of the anti-cancer drug bortezomib against Echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    2014-12-01

    Full Text Available A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ, a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

  3. Profound activity of the anti-cancer drug bortezomib against Echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes.

    Science.gov (United States)

    Stadelmann, Britta; Aeschbacher, Denise; Huber, Cristina; Spiliotis, Markus; Müller, Joachim; Hemphill, Andrew

    2014-12-01

    A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

  4. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Science.gov (United States)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  5. Moving out: from sterol transport to drug resistance - the ABCG subfamily of efflux pumps.

    Science.gov (United States)

    Moitra, Karobi; Silverton, Latoya; Limpert, Katy; Im, Kate; Dean, Michael

    2011-01-01

    The ATP binding cassette (ABC) proteins are typically ATP-driven transmembrane pumps that have been evolutionarily conserved from bacteria to humans. In humans these transporters are subdivided into seven subfamilies, ranging from A to G. The ABCG subfamily of transporters is the primary focus of this review. This subfamily of proteins has been conserved throughout evolution and plays a central role in several cellular processes, such as sterol homeostasis and multidrug resistance. Functional polymorphisms/mutations in some of these G-subfamily transporters have clinical consequences in humans.

  6. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Vijaya Bharathi Srinivasan

    Full Text Available BACKGROUND: Multidrug resistant Klebsiella pneumoniae have caused major therapeutic problems worldwide due to the emergence of the extended-spectrum β-lactamase producing strains. Although there are >10 major facilitator super family (MFS efflux pumps annotated in the genome sequence of the K. pneumoniae bacillus, apparently less is known about their physiological relevance. PRINCIPAL FINDINGS: Insertional inactivation of kpnGH resulting in increased susceptibility to antibiotics such as azithromycin, ceftazidime, ciprofloxacin, ertapenem, erythromycin, gentamicin, imipenem, ticarcillin, norfloxacin, polymyxin-B, piperacillin, spectinomycin, tobramycin and streptomycin, including dyes and detergents such as ethidium bromide, acriflavine, deoxycholate, sodium dodecyl sulphate, and disinfectants benzalkonium chloride, chlorhexidine and triclosan signifies the wide substrate specificity of the transporter in K. pneumoniae. Growth inactivation and direct fluorimetric efflux assays provide evidence that kpnGH mediates antimicrobial resistance by active extrusion in K. pneumoniae. The kpnGH isogenic mutant displayed decreased tolerance to cell envelope stressors emphasizing its added role in K. pneumoniae physiology. CONCLUSIONS AND SIGNIFICANCE: The MFS efflux pump KpnGH involves in crucial physiological functions besides being an intrinsic resistance determinant in K. pneumoniae.

  7. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model.

    Science.gov (United States)

    Hayama, Kazumi; Ishibashi, Hiroko; Ishijima, Sanae A; Niimi, Kyoko; Tansho, Shigeru; Ono, Yasuo; Monk, Brian C; Holmes, Ann R; Harding, David R K; Cannon, Richard D; Abe, Shigeru

    2012-03-01

    Clinical management of patients undergoing treatment of oropharyngeal candidiasis with azole antifungals can be impaired by azole resistance. High-level azole resistance is often caused by the overexpression of Candida albicans efflux pump Cdr1p. Inhibition of this pump therefore represents a target for combination therapies that reverse azole resistance. We assessed the therapeutic potential of the D-octapeptide derivative RC21v3, a Cdr1p inhibitor, in the treatment of murine oral candidiasis caused by either the azole-resistant C. albicans clinical isolate MML611 or its azole-susceptible parental strain MML610. RC21v3, fluconazole (FLC), or a combination of both drugs were administered orally to immunosuppressed ICR mice at 3, 24, and 27 h after oral inoculation with C. albicans. FLC protected the mice inoculated with MML610 from oral candidiasis, but was only partially effective in MML611-infected mice. The co-application of RC21v3 (0.02 μmol per dose) potentiated the therapeutic performance of FLC for mice infected with either strain. It caused a statistically significant decrease in C. albicans cfu isolated from the oral cavity of the infected mice and reduced oral lesions. RC21v3 also enhanced the therapeutic activity of itraconazole against MML611 infection. These results indicate that RC21v3 in combination with azoles has potential as a therapy against azole-resistant oral candidiasis.

  8. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    Science.gov (United States)

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity.

  9. In vitro effects of combinations of cis-amminedichloro (2-methylpyridine) platinum (II) (ZD0473) with other novel anticancer drugs on the growth of SBC-3, a human small cell lung cancer cell line.

    Science.gov (United States)

    Kanzawa, F; Akiyama, Y; Saijo, N; Nishio, K

    2003-06-01

    Among numerous clinical regimens of combination chemotherapy, synergy has been observed to be particularly marked with combinations containing cisplatin (CDDP). However, the clinical use of CDDP has sometimes been limited by acquired resistance. The new-generation platinum drug, ZD0473, was synthesized with the aim of hindering the reaction of the drug with thiols, by the introduction of a 2-methylpyridine ligand. This enables the drug to exert antitumor activity against cisplatin-resistant cancer cells with elevated glutathione and/or metallothionein levels. The drug was also shown experimentally to overcome cisplatin resistance due to impaired drug accumulation, and enhanced DNA repair/tolerance to platinum-DNA adducts. We investigated the effects of combinations of ZD0473 with other anticancer drugs on the growth of a human small-cell lung cancer cell line (SBC-3). Six novel anticancer drugs were tested: docetaxel (TXT), paclitaxel (TXL), vinorelbine (VNB), irinotecan (CPT-11), gemcitabine (GEM) and pemetrexed (MTA). The growth inhibitory effect of the drugs was measured by MTT assay and the effects of the combination regimens were evaluated by the combination index analysis method developed by Chou and Talalay. Synergy was demonstrated for the combination regimens of ZD0473-GEM and ZD0473-TXL, while an additive effect was observed with combinations containing TXT, VNB, CPT-11 or MTA. In the case of the ZD0473-GEM combination, synergy was observed over a wide range of inhibition levels at dose ratios of 50:1, 100:1 and 250:1. The level of synergy was equivalent to that observed for combinations of CDDP-etoposide, CDDP-GEM and nedaplatin-CPT-11. The results suggest that the combination of ZD0473 with GEM merits further investigation in small cell lung cancer.

  10. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Arulselvan, Palanisamy [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  11. Removal of the anti-cancer drug methotrexate from water by advanced oxidation processes: Aerobic biodegradation and toxicity studies after treatment.

    Science.gov (United States)

    Lutterbeck, Carlos Alexandre; Baginska, Ewelina; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-12-01

    Anti-cancer drugs are discussed as high risk substances in regard to human health and considered as problematic for the environment. They are of potential environmental relevance due to their poor biodegradability and toxicological properties. Methotrexate (MTX) is an antimetabolite that was introduced in the pharmaceutical market in the 40's and still today is one of the most consumed cytotoxic compounds around the world. In the present study MTX was only partially biodegraded in the closed bottle test (CBT). Therefore, it was submitted to three different advanced oxidation processes (AOPs): UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The irradiation was carried out with a Hg medium-pressure lamp during 256min whereas the analytical monitoring was done through LC-UV-MS/MS and DOC analysis. MTX was easily removed in all the irradiation experiments, while the highest mineralization values and rates were achieved by the UV/Fe(2+)/H2O2 treatment. The lowest resulted from the UV/H2O2 reactions. The UV/H2O2 treatment resulted in little biodegradable transformation products (TPs). However, the same treatment resulted in a reduction of the toxicity of MTX by forming less toxic TPs. Analysis by LC-UV-MS/MS revealed the existence of nine TPs formed during the photo-catalytic treatments. The pH of the solutions decreased from 6.4 (t 0min) to 5.15 in the UV/H2O2 and from 6.4 (t 0min) to 5.9 in the UV/TiO2 at the end of the experiments. The initial pH of the UV/Fe(2+)/H2O2 experiments was adjusted to 5 and after the addition of H2O2 the pH decreased to around 3 and remained in this range until the end of the treatments.

  12. Fungal metabolites with anticancer activity.

    Science.gov (United States)

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  13. Drug-Induced Subacute Cutaneous Lupus Erythematosus Associated with Proton Pump Inhibitors.

    Science.gov (United States)

    Aggarwal, Nitish

    2016-06-01

    Subacute cutaneous lupus erythematosus (SCLE) is an autoimmune disease that may be induced by proton pump inhibitors (PPIs) in at-risk populations. The US FDA does not recognize SCLE as an adverse event associated with PPIs. We queried the FDA Adverse Event Reporting System database, which contains adverse event case reports submitted by the public as well as by industry, and analyzed the data to quantify passive pharmacovigilance signals for SCLE associated with PPIs. A disproportionality analysis of the signals yielded a significant association between SCLE and PPIs. Discontinuation of PPI resulted in remission, with PPI re-challenge causing SCLE to reoccur. A follow-up analysis also yielded a significant association between SCLE and H2 receptor antagonists. We conducted a brief literature survey of published case reports and studies to discern the validity of PPI-induced SCLE signals. Healthcare prescribers and patients should be made aware that SCLE can be induced by PPIs. In such cases, PPIs should be discontinued and alternative clinical treatment sought. Regulatory bodies such as the FDA should incorporate the adverse reaction in PPI prescription labels.

  14. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    Science.gov (United States)

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-05

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  15. Synthetic interaction between the TipN polarity factor and an AcrAB-family efflux pump implicates cell polarity in bacterial drug resistance.

    Science.gov (United States)

    Kirkpatrick, Clare L; Viollier, Patrick H

    2014-05-22

    Quinolone antibiotics are clinically important drugs that target bacterial DNA replication and chromosome segregation. Although the AcrAB-family efflux pumps generally protect bacteria from such drugs, the physiological role of these efflux systems and their interplay with other cellular events are poorly explored. Here, we report an intricate relationship between antibiotic resistance and cell polarity in the model bacterium Caulobacter crescentus. We show that a polarity landmark protein, TipN, identified by virtue of its ability to direct flagellum placement to the new cell pole, protects cells from toxic misregulation of an AcrAB efflux pump through a cis-encoded nalidixic acid-responsive transcriptional repressor. Alongside the importance of polarity in promoting the inheritance and activity of virulence functions including motility, we can now ascribe to it an additional role in drug resistance that is distinct from classical efflux mechanisms.

  16. CancerHSP: anticancer herbs database of systems pharmacology

    Science.gov (United States)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-01-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php. PMID:26074488

  17. Self-assembled drug delivery systems. Part 6: in vitro/in vivo studies of anticancer N-octadecanoyl gemcitabine nanoassemblies.

    Science.gov (United States)

    Jin, Yiguang; Lian, Yanju; Du, Lina; Wang, Shuangmiao; Su, Chang; Gao, Chunsheng

    2012-07-01

    The nanoassemblies were prepared from N-octadecanoyl gemcitabine (NOG)/cholesteryl succinyl poly(ethylene glycol) 1500 (CHS-PEG(1500)) (5:1, mol/mol). They showed higher cytotoxicity than gemcitabine on HpG2 cell model. The amphiphilicity of NOG may improve permeation of prodrugs and destruction of cell membrane. The nanoassemblies were rapidly eliminated from circulation after bolus intravenous administration to healthy and tumor-bearing mice. The in vivo distribution sites of NOG were mainly liver and spleen though the distribution in tumor was not high. The non-spherical shape and high surface charge of the nanoassemblies may affect distribution. The nanoassemblies had similar anticancer efficacy to free gemcitabine solutions when the former contained about 1/3 dose of the latter in gemcitabine form. The nanoassemblies would be a promising anticancer nanomedicine.

  18. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    Science.gov (United States)

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs.

  19. Telomerase activity and telomere length in human tumor cells with acquired resistance to anticancer agents.

    Science.gov (United States)

    Smith, V; Dai, F; Spitz, M; Peters, G J; Fiebig, H H; Hussain, A; Burger, A M

    2009-11-01

    Telomeres and telomerase are targets for anticancer drug development and specific inhibitors are currently under clinical investigation. However, it has been reported that standard cytotoxic agents can affect telomere length and telomerase activity suggesting that they also have of a role in drug resistance. in this study, telomere lengths and telomerase activity as well as drug efflux pump expression, glutathione (GSH) levels and polyadenosine-ribose polymerase (PARP) cleavage were assessed in a panel of human tumor cell lines made resistant to vindesine, gemcitabine and cisplatin. these included two lung cancer cell lines resistant to vindesine (LXFL 529L/Vind, LXFA 526L/Vind), a renal cancer cell line (RXF944L/Gem) and an ovarian cancer cell line (AG6000) resistant to gemcitabine, and one resistant to cisplatin (ADDP). The resistant clones were compared to their parental lines and evaluated for cross resistance to other cytotoxic agents. Several drug specific resistance patterns were found, and various complex patterns of cross resistance emerged from some cell lines, but these mechanisms of resistance could not be related to drug efflux pump expression, GSH levels or pARp cleavage. However, all displayed changes in telomerase activity and/or telomere length. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics.

  20. RNA expression analysis of efflux pump genes in clinical isolates of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in South Korea.

    Science.gov (United States)

    Oh, Tae Sang; Kim, Young Jin; Kang, Hee Yoon; Kim, Chang-Ki; Cho, Sun Young; Lee, Hee Joo

    2017-04-01

    Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis, is an important communicable disease. Various mechanisms of resistance to antituberculosis drugs have been reported; these are principally mutations in target genes. However, not all M. tuberculosis resistance can be explained by mutations in such genes. Other resistance mechanisms associated with drug transport, such as efflux pumps, have also been reported. In this study, we investigated the expression levels of three putative efflux pumps and mutations in target genes associated with injectable agents and fluoroquinolones with clinical MDR and XDR-TB isolates. Thirty clinical isolates of M. tuberculosis that had been phenotypically characterized were obtained from the Korean Institute of Tuberculosis. Of these, 14 were MDR-TB isolates resistant to at least one injectable aminoglycoside (amikacin; AMK, kanamycin; KAN, and/or capreomycin; CPM) and 16 were XDR-TB isolates. M. tuberculosis H37Rv (ATCC 27249) was used as a reference strain. Five putative genes (Rv1258c, Rv2686c, Rv2687c, Rv2688c and pstB) were selected for analysis in this study. Sequencing was performed to detect mutations in rrs and eis genes. qRT-PCR was performed to investigate expression levels of five efflux pump genes. Of the 30 isolates, 25 strains had mutations in rrs associated with resistance to KAN, CPM and AMK and two strains had eis mutations, as well as mutations in rrs. pstB (Rv0933) exhibited increased expression and Rv2687c and Rv2688c exhibited decreased expression compared to the reference strain. Increased expression of pstB in clinical drug-resistant tuberculosis isolates may contribute to drug resistance in M. tuberculosis. In our case, overexpression of Rv1258c may have been associated with resistance to kanamycin. No correlation was evident between Rv2686c, Rv2687c or Rv2688c expression and fluoroquinolone resistance. To explore the details of efflux pump drug-resistance mechanisms, further studies on

  1. Anticancer molecular mechanisms of resveratrol

    Directory of Open Access Journals (Sweden)

    Elena Maria Varoni

    2016-04-01

    Full Text Available Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Despite it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to: extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin and developmental pathways; signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; immune-surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multi-drug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  2. SOME IMPORTANT ANTICANCER HERBS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Pandey Govind

    2011-07-01

    Full Text Available A great deal of pharmaceutical research has considerably improved the quality of herbal drugs used against various types of cancer. With the advanced knowledge of molecular science and the refinement in isolation and structure elucidation techniques, we are in a much better position now to identify various anticancer herbs. Scientists all over the world are concentrating on the use of herbs to boost immune system of the body against cancer. Scientists have contributed for a number of years to identify hundreds of anticancer herbs, and developed various herbal formulations from their active principles that inhibit growth and spread of cancer without any side effect. Such herbs possess anticancer, immunoenhancing, antiangiogenesis, antioxidant and antimutagenic properties. They inhibit growth and spread of cancer by modulating the activity of hormones, enzymes and other biological factors. The therapeutic effect of these herbs is executed by the complex synergistic interaction among their various active principles. Some important anticancer herbs have been discussed here.

  3. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation.

    Science.gov (United States)

    Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan

    2015-01-01

    In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.

  4. The anti-cancer activity of noscapine: a review.

    Science.gov (United States)

    Mahmoudian, Massoud; Rahimi-Moghaddam, Parvaneh

    2009-01-01

    Noscapine is an isoqiunoline alkaloid found in opium latex. Unlike most other alkaloids obtained from opium latex, noscapine is not sedative and has been used as antitussive drug in various countries. Recently, it has been introduced as an anti-mitotic agent. This drug can be used orally. When the resistance to other anti-cancer drugs such as paclitaxel manifests, noscapine might be effective. Therefore, noscapine and its analogs have great potential as novel anti-cancer agents.

  5. Polymeric micelles in anticancer therapy : Targeting, imaging and triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  6. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  7. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Xue Xue; Xing-Jie Liang

    2012-01-01

    Multidrug resistance (MDR),which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence,has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades.Several mechanisms of overcoming drug resistance have been postulated.Well known Pglycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure.Innovative theranostic (therapeutic and diagnostic)strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits.In this review,we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improv