WorldWideScience

Sample records for anticancer drug pump

  1. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    OpenAIRE

    Fais Stefano; Citro Gennaro; Spugnini Enrico P

    2010-01-01

    Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through th...

  2. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Directory of Open Access Journals (Sweden)

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  3. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T;

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based-nanocarriers in the...

  4. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The major

  5. Toxicities of anticancer drugs and its management

    Directory of Open Access Journals (Sweden)

    Ambili Remesh

    2012-02-01

    Full Text Available One of the characteristics that distinguish anticancer agents from other drugs is the frequency and severity of side effects at therapeutic doses. Most cytotoxic drugs target rapidly multiplying cells and the putative targets are the nucleic acids and their precursors, which are rapidly synthesised during cell division. Many solid tumours have a lower growth fraction than the normal bone marrow, gastro intestinal lining, reticuloendothelial system and gonads. Drugs affect these tissues in a dose dependant manner and there is individual susceptibility also. So toxicities are more frequently associated with these tissues. The side effects may be acute or chronic, self-limited, permanent, mild or potentially life threatening. Management of these side effects is of utmost importance because they affect the treatment, tolerability and overall quality of life. This paper gives an overview of different toxicities of anticancer drugs and its management. [Int J Basic Clin Pharmacol 2012; 1(1.000: 2-12

  6. ATP-triggered anticancer drug delivery

    Science.gov (United States)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  7. Current situation and future usage of anticancer drug databases.

    Science.gov (United States)

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes. PMID:27193464

  8. Peptidomimetics and metalloprotease inhibitors as anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    SU Li; XU WenFang

    2009-01-01

    Peptidomimetics with three types, as the structural or functional mimetica of natural active peptides, can preserve the bioactivity and improve the bioavailability and the specificity towards the targets of the lead peptides. Peptidomimetica of high bioectivity can be designed through various ways including conformation restriction, modification and non-peptide design. Recently the concentration on the de-velopment of cancer chemotherapeutic drugs was transferred from cytotoxic drugs to target-baeed drugs, and many proteasee and peptidases that play key roles in the process of tumor genesis and development was discovered, which means that peptidomimetice as potential cancer chemotherapeu-tic drugs should be paid close attention to. Our laboratory has focused on the development of small-molecule peplldomimetic inhibitora of APN, MMPs and HDACs as target-based anticancer agents. These three zinc-dependent metalloproteinaees play very important roles in the process of tumor genesis, invasion, metastasis, angiogenesis and matrix degradation, so small-molecule peptidomimetic inhibitora based on them would be quite potential in the development of chemotherapeutic drugs with high selectivity.

  9. Peptidomimetics and metalloprotease inhibitors as anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomimetics with three types, as the structural or functional mimetics of natural active peptides, can preserve the bioactivity and improve the bioavailability and the specificity towards the targets of the lead peptides. Peptidomimetics of high bioactivity can be designed through various ways including conformation restriction, modification and non-peptide design. Recently the concentration on the de-velopment of cancer chemotherapeutic drugs was transferred from cytotoxic drugs to target-based drugs, and many proteases and peptidases that play key roles in the process of tumor genesis and development was discovered, which means that peptidomimetics as potential cancer chemotherapeu-tic drugs should be paid close attention to. Our laboratory has focused on the development of small-molecule peptidomimetic inhibitors of APN, MMPs and HDACs as target-based anticancer agents. These three zinc-dependent metalloproteinases play very important roles in the process of tumor genesis, invasion, metastasis, angiogenesis and matrix degradation, so small-molecule peptidomimetic inhibitors based on them would be quite potential in the development of chemotherapeutic drugs with high selectivity.

  10. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  11. Assessing Specificity of Anticancer Drugs In Vitro.

    Science.gov (United States)

    Kluwe, Lan

    2016-01-01

    A procedure for assessing specificity of anticancer drugs in vitro using cultures containing both tumor and non-tumor cells is demonstrated. The key element is the quantitative determination of a tumor-specific genetic alteration in relation to a universal sequence using a dual-probe digital PCR assay and the subsequent calculation of the proportion of tumor cells. The assay is carried out on a culture containing tumor cells of an established line and spiked-in non-tumor cells. The mixed culture is treated with a test drug at various concentrations. After the treatment, DNA is prepared directly from the survived adhesive cells in wells of 96-well plates using a simple and inexpensive method, and subjected to a dual-probe digital PCR assay for measuring a tumor-specific genetic alteration and a reference universal sequence. In the present demonstration, a heterozygous deletion of the NF1 gene is used as the tumor-specific genetic alteration and a RPP30 gene as the reference gene. Using the ratio NF1/RPP30, the proportion of tumor cells was calculated. Since the dose-dependent change of the proportion of tumor cells provides an in vitro indication for specificity of the drug, this genetic and cell-based in vitro assay will likely have application potential in drug discovery. Furthermore, for personalized cancer-care, this genetic- and cell-based tool may contribute to optimizing adjuvant chemotherapy by means of testing efficacy and specificity of candidate drugs using primary cultures of individual tumors. PMID:27078035

  12. MECHANOMAGNETIC REACTOR FOR ACTIVATION OF ANTICANCER DRUGS

    Directory of Open Access Journals (Sweden)

    Orel V. E.

    2014-02-01

    Full Text Available Mechanomagnetochemical activation can increase the concentration of paramagnetic centers (free radicals in the anticancer drug, for example, doxorubicin that enables to influence its magnetic properties under external electromagnetic field and improve its magnetic sensitivity and antitumor activity. The principles of design and operation of mechanomagnetic reactor for implementation of this technology which includes mechanomagnetochemical activation and electromagnetic radiation of the drug are described in the paper. The methods of vibration magnetometry, electron paramagnetic resonance spectroscopy and high-performance liquid chromatography were used for studying of doxorubicin mechanomagnetic activation effects. The studies have shown that a generator of sinusoidal electromagnetic wave, working chambers from caprolactam, fluoroplastic or organic materials with metal inserts and working bodies made from steel or agate depending on the required doxorubicin magnetic properties are expedient to use in the designed mechanomagnic reactor. Under influence of mechanomagnetochemical activation doxorubicin, which is diamagnetic, acquires the properties of paramagnetic without changing g-factors in the spectra of electron paramagnetic resonance. Mechanomagnetochemical activation of doxorubicin satisfies pharmacopoeia condi tions according to the results of liquid chromatography that points on perspective of this method using in technology of tumor therapy with nanosized structures and external electromagnetic radiation.

  13. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  14. Anticancer drug-induced kidney disorders.

    Science.gov (United States)

    Kintzel, P E

    2001-01-01

    Nephrotoxicity is an inherent adverse effect of certain anticancer drugs. Renal dysfunction can be categorised as prerenal uraemia, intrinsic damage or postrenal uraemia according to the underlying pathophysiological process. Renal hypoperfusion promulgates prerenal uraemia. Intrinsic renal damage results from prolonged hypoperfusion, exposure to exogenous or endogenous nephrotoxins, renotubular precipitation of xenobiotics or endogenous compounds, renovascular obstruction, glomerular disease, renal microvascular damage or disease, and tubulointerstitial damage or disease. Postrenal uraemia is a consequence of clinically significant urinary tract obstruction. Clinical signs of nephrotoxicity and methods used to assess renal function are discussed. Mechanisms of chemotherapy-induced renal dysfunction generally include damage to vasculature or structures of the kidneys, haemolytic uraemic syndrome and prerenal perfusion deficits. Patients with cancer are frequently at risk of renal impairment secondary to disease-related and iatrogenic causes. This article reviews the incidence, presentation, prevention and management of anticancer drug-induced renal dysfunction. Dose-related nephrotoxicity subsequent to administration of certain chloroethylnitrosourea compounds (carmustine, semustine and streptozocin) is commonly heralded by increased serum creatinine levels, uraemia and proteinuria. Additional signs of streptozocin-induced nephrotoxicity include hypophosphataemia, hypokalaemia, hypouricaemia, renal tubular acidosis, glucosuria, aceturia and aminoaciduria. Cisplatin and carboplatin cause dose-related renal dysfunction. In addition to increased serum creatinine levels and uraemia, electrolyte abnormalities, such as hypomagnesaemia and hypokalaemia, are commonly reported adverse effects. Rarely, cisplatin has been implicated as the underlying cause of haemolytic uraemic syndrome. Pharmaceutical antidotes to cisplatin-induced nephrotoxicity include amifostine, sodium

  15. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing

    OpenAIRE

    Zhang, Qi; Wang, Shanshan; Yang, Dexuan; PAN, KEVIN; Li, Linna; Yuan, Shoujun

    2016-01-01

    The established urinary antibiotic nitroxoline has recently regained considerable attention, due to its potent activities in inhibiting angiogenesis, inducing apoptosis and blocking cancer cell invasion. These features make nitroxoline an excellent candidate for anticancer drug repurposing. To rapidly advance nitroxoline repurposing into clinical trials, the present study performed systemic preclinical pharmacodynamic evaluation of its anticancer activity, including a methyl thiazolyl tetrazo...

  16. Pharmacogenetics of anticancer drugs in non-Hodgkin lymphomas

    OpenAIRE

    Loni, L; Tacca, M Del; Danesi, R

    2001-01-01

    The variability of tumour responses to chemotherapeutic agents is a topic of major interest in current oncology research. Advances in the knowledge of molecular pathology of cancer make available strategies by which tumour cells can be profiled for their genetic background in order to select anticancer agents that might selectively kill cells in a molecular context that matches the mechanism of action of drugs. The next generation of anticancer treatments might thus be tailored on the basis o...

  17. Therapeutic aptamers: developmental potential as anticancer drugs

    OpenAIRE

    Lee, Ji Won; Kim, Hyun Jung; Heo, Kyun

    2015-01-01

    Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a seco...

  18. Are isothiocyanates potential anti-cancer drugs?

    Institute of Scientific and Technical Information of China (English)

    Xiang WU; Qing-hua ZHOU; Ke XU

    2009-01-01

    Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anticarcinogenic activity because they reduce activation of carcinogens and increase their detoxification. Recent studies show that they exhibit anti-tumor activity by affecting multiple pathways including apoptosis, MAPK signaling, oxidative stress, and cell cycle progression. This review summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

  19. Polymer anticancer drugs with peptide targeting

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Pola, Robert; Pechar, Michal; Ulbrich, Karel; Hovorka, Ondřej

    Long Beach : Controlled Release Society, 2007, 771/1-771/2. [Annual Meeting and Exposition of the Controlled Release Society /34./. Long Beach (US), 07.07.2007-11.07.2007] R&D Projects: GA ČR GA204/05/2255 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : angiogenesis * anticancer agents * conjugates * HPMA copolymers Subject RIV: CE - Biochemistry http://www.controlledreleasesociety.org/meeting/program/pdfs/ProgramBook.pdf

  20. The application of radioimmunoassay for virus and anticancer drugs

    International Nuclear Information System (INIS)

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated. (Tsunoda, M.)

  1. Polymeric anticancer drugs with pH-controlled activation

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Etrych, Tomáš; Chytil, Petr; Jelínková, Markéta; Říhová, Blanka

    Istanbul: Hacettepe University Pharmacy Faculty, 2002, s. 9-10. ISBN 975-491-126-6. [International Pharmaceutical Technology Symposium /11./ Intelligent Drug Delivery Systems Better and Safer Therapy. Istanbul (TR), 09.09.2002-11.09.2002] R&D Projects: GA ČR GA305/02/1425; GA AV ČR IBS5020101; GA AV ČR IAA4050201 Keywords : anticancer drugs Subject RIV: CD - Macromolecular Chemistry

  2. Research progress in nanoparticles as anticancer drug carrier

    Institute of Scientific and Technical Information of China (English)

    Yingying Sun; Huaqing Lin ; Chuqin Yu; Suna Lin

    2014-01-01

    Nanoparticles drug delivery system has sustained and controled release features as wel as targeted drug deliv-ery, which can change the characteristics of drug distributionin vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention efect and a conjugated specific ligand or through the efects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxic-ity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system wil be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.

  3. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    -trans retinoic acid, α-tocopheryl succinate and calcitriol were examined for their ability to be incorporated into the investigated drug delivery system and syntheses of the phospholipid prodrugs are described. The majority of the phospholipid prodrugs were able to form particles with diameters close to 100 nm...

  4. Fluorescence optical imaging in anticancer drug delivery

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Lucas, H.; Janoušková, Olga; Chytil, Petr; Mueller, T.; Mäder, K.

    2016-01-01

    Roč. 226, 28 March (2016), s. 168-181. ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : fluorescence imaging * drug delivery * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.705, year: 2014

  5. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates

    Science.gov (United States)

    Li, Fei; Zhou, Xiaofei; Zhou, Hongyu; Jia, Jianbo; Li, Liwen; Zhai, Shumei; Yan, Bing

    2016-01-01

    Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance. PMID:27467397

  6. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew; Seib, F. Philipp

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals is e...... to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines....

  7. Multivariate statistical analysis for anti-cancer drug treatment evaluation

    Czech Academy of Sciences Publication Activity Database

    Hrabáková, Rita; Martinková, Jiřina; Skalníková, Helena; Novák, Petr; Radová, L.; Džubák, P.; Kollareddy, M. R.; Hajduch, M.; Gadher, S. J.; Kovářová, Hana

    Budapešť : Hungarian Chemical Society, 2009, s. 119-119. ISBN 978-963-9319-99-8. [3rd Central and Eastern European Proteomics Conference. Budapešť (HU), 06.10.2009-09.10.2009] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50450515 Keywords : drug resistance * anti-cancer therapy * proteomics Subject RIV: CE - Biochemistry

  8. Anticancer drug: oxaliplatin, studied by density functional theory

    International Nuclear Information System (INIS)

    Density functional calculations at the B3LYP level were performed to understanding into the structure of the third generation anticancer drug, oxaliplatin. The structure and frequency spectrum were calculated, and oxaliplatin monohydrates were studied. The calculated structure parameters were agreed with the experimental data. While there were some differences in frequency spectrum between the calculated data and the experimental data. The calculation also give out the most probably structure of oxaliplatin monohydrate. (author)

  9. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  10. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  11. Computational metallomics of the anticancer drug cisplatin.

    Science.gov (United States)

    Calandrini, Vania; Rossetti, Giulia; Arnesano, Fabio; Natile, Giovanni; Carloni, Paolo

    2015-12-01

    Cisplatin, cis-diamminedichlorido-platinum(II), is an important therapeutic tool in the struggle against different tumors, yet it is plagued with the emergence of resistance mechanisms after repeated administrations. This hampers greatly its efficacy. Overcoming resistance problems requires first and foremost an integrated and systematic understanding of the structural determinants and molecular recognition processes involving the drug and its cellular targets. Here we review a strategy that we have followed for the last few years, based on the combination of modern tools from computational chemistry with experimental biophysical methods. Using hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations, validated by spectroscopic experiments (including NMR, and CD), we have worked out for the first time at atomic level the structural determinants in solution of platinated cellular substrates. These include the copper homeostasis proteins Ctr1, Atox1, and ATP7A. All of these proteins have been suggested to influence the pre-target resistance mechanisms. Furthermore, coupling hybrid QM/MM simulations with classical Molecular Dynamics (MD) and free energy calculations, based on force field parameters refined by the so-called "Force Matching" procedure, we have characterized the structural modifications and the free energy landscape associated with the recognition between platinated DNA and the protein HMGB1, belonging to the chromosomal high-mobility group proteins HMGB that inhibit the repair of platinated DNA. This may alleviate issues relative to on-target resistance process. The elucidation of the mechanisms by which tumors are sensitive or refractory to cisplatin may lead to the discovery of prognostic biomarkers. The approach reviewed here could be straightforwardly extended to other metal-based drugs. PMID:26490711

  12. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

    Science.gov (United States)

    Moku, Gopikrishna; Gulla, Suresh Kumar; Nimmu, Narendra Varma; Khalid, Sara; Chaudhuri, Arabinda

    2016-04-22

    Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties. PMID:26806172

  13. Effect of selected ABC-drug transporters and anticancer drug disposition in vitro and in vivo

    OpenAIRE

    Marchetti, S

    2013-01-01

    Studies described in the thesis that is lying in front of you aim to address the possible implications of selected ABC-drug transporters on the disposition of a number of important anticancer drugs. Although variability in drug disposition has been known for as long as pharmacological studies supported drug development and clinical therapeutics general molecular pharmacological concepts explaining the given interpatient variation in drug disposition have been lacking for many decades. Firm ex...

  14. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  15. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    International Nuclear Information System (INIS)

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: ► BSA-doped calcium carbonate microspheres with porous structure were prepared. ► Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. ► The release of encapsulated camptothecin is pH dependent ► In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  16. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows that...... rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  17. Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy.

    Science.gov (United States)

    Abellan-Pose, Raquel; Csaba, Noemi; Alonso, Maria Jose

    2016-01-01

    The lymphatic system represents a major route of dissemination in metastatic cancer. Given the lack of selectivity of conventional chemotherapy to prevent lymphatic metastasis, in the last years there has been a growing interest in the development of nanocarriers showing lymphotropic characteristics. The goal of this lymphotargeting strategy is to facilitate the delivery of anticancer drugs to the lymph node-resident cancer cells, thereby enhancing the effectiveness of the anti-cancer therapies. This article focuses on the nanosystems described so far for the active or passive targeting of oncological drugs to the lymphatic circulation. To understand the design and performance of these nanosystems, we will discuss first the physiology of the lymphatic system and how physiopathological changes associated to tumor growth influence the biodistribution of nanocarriers. Second, we provide evidence on how the tailoring of the physicochemical characteristics of nanosystems, i.e. particle size, surface charge and hydrophilicity, allows the modulation of their access to the lymphatic circulation. Finally, we provide an overview of the relationship between the biodistribution and antimetastatic activity of the nanocarriers loaded with oncological drugs, and illustrate the most promising active targeting approaches investigated so far. PMID:26675222

  18. Deep sea as a source of novel-anticancer drugs

    OpenAIRE

    Russo, Patrizia; Del Bufalo, Alessandra; Fini, Massimo

    2015-01-01

    The deep-sea habitat is a source of very potent marine-derived agents that may inhibit the growth of human cancer cells “in vitro” and “in vivo”. Salinosporamide-A, Marizomib, by Salinispora species is a proteasome inhibitor with promising anticancer activity (Phase I/II trials). Different deep-sea-derived drugs are under preclinical evaluation. Cancer is a complex disease that may be represented by network medicine. A simple consequence is the change of the concept of target entity from a si...

  19. Selective anti-cancer agents as anti-aging drugs

    OpenAIRE

    Blagosklonny, Mikhail V.

    2013-01-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are inv...

  20. PEPTIDE TARGETING OF PLATINUM ANTI-CANCER DRUGS

    OpenAIRE

    Ndinguri, Margaret W.; Solipuram, Rajasree; Gambrell, Robert P.; Aggarwal, Sita; Hansel, William; Hammer, Robert P.

    2009-01-01

    Besides various side effects caused by platinum anticancer drugs, they are not efficiently absorbed by the tumor cells. Two Pt-peptide conjugates; cyclic mPeg-CNGRC-Pt (7) and cyclic mPeg-CNGRC-Pten (8) bearing the Asn-Gly-Arg (NGR) targeting sequence, a malonoyl linker and low molecular weight miniPEG groups have been synthesized. The platinum ligand was attached to the peptide via the carboxylic end of the malonate group at the end of the peptide. The pegylated peptide is non toxic and high...

  1. A drug-specific nanocarrier design for efficient anticancer therapy

    Science.gov (United States)

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-07-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here we customize telodendrimers (linear dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug-binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumour targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery.

  2. Hurdles in anticancer drug development from a regulatory perspective.

    Science.gov (United States)

    Jonsson, Bertil; Bergh, Jonas

    2012-04-01

    Between January 2001 and January 2012, 48 new medicinal products for cancer treatment were licensed within the EU, and 77 new indications were granted for products already licensed. In some cases, a major improvement to existing therapies was achieved, for example, trastuzumab in breast cancer. In other cases, new fields for effective drug therapy opened up, such as in chronic myeloid leukemia, and renal-cell carcinoma. In most cases, however, the benefit-risk balance was considered to be only borderline favorable. Based on our assessment of advice procedures for marketing authorization, 'need for speed' seems to be the guiding principle in anticancer drug development. Although, for drugs that make a difference, early licensure is of obvious importance to patients, this is less evident in the case of borderline drugs. Without proper incentives and with hurdles inside and outside companies, a change in drug development cannot be expected; drugs improving benefit-risk modestly over available therapies will be brought forward towards licensure. In this Perspectives article, we discuss some hurdles to biomarker-driven drug development and provide some suggestions to overcome them. PMID:22349015

  3. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  4. Benefit and harms of new anti-cancer drugs.

    Science.gov (United States)

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise. PMID:23435854

  5. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.

    Science.gov (United States)

    Marchal, Sophie; El Hor, Amélie; Millard, Marie; Gillon, Véronique; Bezdetnaya, Lina

    2015-09-01

    The development of chemotherapy using conventional anticancer drugs has been hindered due to several drawbacks related to their poor water solubility and poor pharmacokinetics, leading to severe adverse side effects and multidrug resistance in patients. Nanocarriers were developed to palliate these problems by improving drug delivery, opening the era of nanomedicine in oncology. Liposomes have been by far the most used nanovectors for drug delivery, with liposomal doxorubicin receiving US FDA approval as early as 1995. Antibody drug conjugates and promising drug delivery systems based on a natural polymer, such as albumin, or a synthetic polymer, are currently undergoing advanced clinical trials or have received approval for clinical applications. However, despite attractive results being obtained in preclinical studies, many well-designed nanodrugs fell short of expectations when tested in patients, evidencing the gap between nanoparticle design and their clinical translation. The aim of this review is to evaluate the extent of nanotherapeutics used in oncology by providing an insight into the most successful concepts. The reasons that prevent nanodrugs from expanding to clinic are discussed, and the efforts that must be taken to take full advantage of the great potential of nanomedicine are highlighted. PMID:26323338

  6. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  7. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  8. [The anticancer drug Kang-Lai-Te emulsion for infusion].

    Science.gov (United States)

    Li Dapeng

    2005-01-01

    Kanglaite (KLT) emulsion for infusion is a new type of anticancer drug, prepared by extracting active antitumor components from the primary product of the Chinese plant Semen Coicis using modern technology, and formed as lipid emulsion for intravenous and intra-arterial injections. Clinical application of this drug demonstrates high efficacy of KLT in treatment of various tumors, such as lung, hepatic, stomach, and breast carcinomas. Its use leads to a significant increase of immune functions and improves life quality: when combined with radio-, chemotherapy, and auxiliary therapy, it leads to a significant increase of the therapeutic effect and reduces the toxic effects of these treatments. Deep study of the mechanism of KLT action, performed in large research centers of China, has demonstrated that the drug blocks tumor cell mitosis at the boundary of G2 and M phases of the cell cycle, induces tumor cell apoptosis, increases the expression of Fas/Apo-1 gene, which inhibits the growth of tumor cells, and reduces the expression of Bel-2 gene, which promotes it, inhibits angiogenesis, actively decreases cancer cachexy, and is able to overcome multiple drug resistance of tumor cells. PMID:16250329

  9. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs.

    Science.gov (United States)

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S; Wong, Michael K; Li, Zibo; Wang, Pin

    2013-04-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  10. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    Science.gov (United States)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  11. Halloysite Nanotubes, a Multifunctional Nanovehicle for Anticancer Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    郭明义; 王艾菲; 费海姆; 齐文秀; 任浩; 郭颖杰; 朱广山

    2012-01-01

    Targeted drug delivery systems have attracted a great deal of interest by virtue of their potential use in chemotherapy. In this study, multicomponent halloysite nanotubes (HNTs) have been evaluated as a platform to assist and direct the delivery of anticancer drug doxorubicin (DOX) into cancer cells. Folic acid (FA) and magnetite nanopar- ticles were successfully grafted onto HNTs via amide reaction whereas the drug has been introduced by capitalizing electrostatic interaction between cationic drug and anionic exterior of HNTs, which eventually leads to pH respon- sive release. The resultant DOX loaded FA-Fe304@HNTs were well characterized by transmission electron mi- croscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and XRD. The clinical efficacy of the system was validated by confocal microscopy and cell cytotoxicity assay (MTT assay). MTT assay results revealed a high biocompatibility up to a concentration of 200 μg/mL of HNTs, while, DOX loaded FA-Fe304@HNTs were markedly cytotoxic to HeLa cells. This multifunctional nanovehicle has a great po- tential for cancer diagnosis and therapy, and could further advance the clinical use of nanomedicine.

  12. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  13. Genetic Interactions of STAT3 and Anticancer Drug Development

    International Nuclear Information System (INIS)

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors

  14. Delivery of anticancer drugs and antibodies into cells using ultrasound

    Science.gov (United States)

    Wu, Junru; Pepe, Jason; Rincon, Mercedes

    2005-04-01

    It has been shown experimentally in cell suspensions that pulsed ultrasound (2.0 MHz) could be used to deliver an anti-cancer drug (Adriamycin hydrochloride) into Jurkat lymphocytes and antibodies (goat anti rabbit IgG and anti mouse IgD) into human peripheral blood mononuclear (PBMC) cells and Jurkat lymphocytes assisted by encapsulated microbubbles (Optison). When Adriamycin hydrochloride (ADR) was delivered, the delivery efficiency reached 4.80% and control baseline (no ultrasound and no ADR) was 0.17%. When anti-rabbit IgD was delivered, the efficiencies were 34.90% (control baseline was 1.33%) and 32.50% (control baseline was 1.66%) respectively for Jurkat cells and PBMC. When goat anti rabbit IgG was delivered, the efficiencies were 78.60% (control baseline was 1.60%) and 57.50% (control baseline was 11.30%) respectively for Jurkat cells and PBMC.

  15. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    OpenAIRE

    Agúndez, José A. G.; Gara eEsguevillas; Gemma eAmo; Elena eGarcía-Martín

    2014-01-01

    The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing...

  16. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs

    OpenAIRE

    Agúndez, José A. G.; Esguevillas, Gara; Amo, Gemma; García-Martín, Elena

    2014-01-01

    The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing...

  17. Using DNA devices to track anticancer drug activity.

    Science.gov (United States)

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  18. Strategic development on generic anti-cancer drugs Bevacizumab and Erlotinib Hydrochloride for Harbin Pharmaceutical Group

    Institute of Scientific and Technical Information of China (English)

    Cheung Fat Ping

    2011-01-01

    @@ With improved economy, changing life styles, aging population and health care reform, China had a very potential anti-cancer drug market.The patents of popular anti-cancer drugs Avastin and Tarceva would expire in few years.Generic versions of Avastin and Tarceva were Bevacizumab and Erlotinib Hydrochloride respectively.Harbin Pharmaceutical Group was proposed to develop strategically both generic medicines to enter the high-end anti-cancer drug market for targeted cancer therapies.The vital to success of developing the generic drugs were discussed.

  19. OSMOTIC PUMP DRUG DELIVERY SYSTEM: A NOVAL APPROACH

    Directory of Open Access Journals (Sweden)

    Kashmir Singh

    2013-09-01

    Full Text Available Conventional drug delivery systems have little control over their drug release and almost no control over the effective concentration at the target site. The major problem associated with conventional drug delivery system is unpredictable plasma concentrations. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. The present review is concerned with the study of drug release systems which are tablets coated with walls of controlled porosity. . Osmotic pump uses the basic principle of osmosis for release of drug(s. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semi permeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. Various patents available for osmotic drug delivery system like Rose-Nelson pump, Higuchi-leeper pump, higuchi-theeuwes pump and elementary osmotic pump. In this paper, various types of osmotic pump and the basic components of  osmotic system tablets have been discussed briefly. Keywords: Osmosis, component of osmotic system, Osmotic pump

  20. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    OpenAIRE

    Butt AM; Mohd Amin MC; Katas H

    2015-01-01

    Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (d-α-tocopheryl poly...

  1. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug.

    Science.gov (United States)

    Kumar, B Sathish; Raghuvanshi, Dushyant Singh; Hasanain, Mohammad; Alam, Sarfaraz; Sarkar, Jayanta; Mitra, Kalyan; Khan, Feroz; Negi, Arvind S

    2016-06-01

    2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future. PMID:27020471

  2. Tirapazamine: a bioreductive anticancer drug that exploits tumour hypoxia.

    Science.gov (United States)

    Denny, W A; Wilson, W R

    2000-12-01

    Tirapazamine is the second clinical anticancer drug (after porfiromycin) that functions primarily as a hypoxia-selective cytotoxin. Hypoxic cells in tumours are relatively resistant to radiotherapy and to some forms of chemotherapy and are also biologically aggressive, thus representing an important target population in oncology. Tirapazamine undergoes metabolism by reductases to form a transient oxidising radical that can be efficiently scavenged by molecular oxygen in normal tissues to re-form the parent compound. In the absence of oxygen, the oxidising radical abstracts a proton from DNA to form DNA radicals, largely at C4' on the ribose ring. Tirapazamine can also oxidise such DNA radicals to cytotoxic DNA strand breaks. It therefore shows substantial selective cytotoxicity for anoxic cells in culture (typically approximately 100-fold more potent than under oxic conditions) and for the hypoxic subfraction of cells in tumours. Preclinical studies showed enhanced activity of combinations of tirapazamine with radiation (to kill oxygenated cells) and with conventional cytotoxics, especially cisplatin (probably through inhibition of repair of cisplatin DNA cross-links in hypoxic cells). Phase II and III clinical studies of tirapazamine and cisplatin in malignant melanoma and non-small cell lung cancer suggest that the combination is more active than cisplatin alone and preliminary results with advanced squamous cell carcinomas of the head and neck indicate that tirapazamine may enhance the activity of cisplatin with fractionated radiotherapy. PMID:11093359

  3. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    Science.gov (United States)

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  4. Pharmacokinetics of novel anticancer drugs and dynamics of circulating tumor cells in early clinical studies

    OpenAIRE

    Devriese, L.A.

    2011-01-01

    Cancer has an enormous impact on the lives of patients and on society and there is an urgent need for improvements in therapy. In this thesis, early-clinical studies into both safety and pharmacokinetics of novel anti-cancer drugs as well as into circulating tumor cells (CTCs) are reported. Safety, tolerability and pharmacokinetics of pazopanib, a novel anti-cancer drug that targets new blood-vessel formation, was investigated in combination with oral topotecan, a topoisomerase-I inhibitor. P...

  5. Simultaneous Treatment of Cancer Cells Lines with the Anticancer Drug Cisplatin and the Antioxidant Fucoxanthin

    OpenAIRE

    Takeshi Mised; Takeshi Yasumoto

    2011-01-01

    The anti-oxidative properties and the other health benefits of fucoxanthin (Fx) make it a good candidate for a health food supplement. However, the use of antioxidant supplements in patients undergoing chemotherapy has been widely debated because of concerns that the antioxidants may interfere with the mechanisms of the anticancer drugs. To investigate this concern, we studied the effect of Fx on the anticancer drug cisplatin. Fucoxanthinol (Fxol), which is a deacetylated product produced dur...

  6. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    OpenAIRE

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-01-01

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti...

  7. Doxorubicin induces drug efflux pumps in Candida albicans.

    Science.gov (United States)

    Kofla, Grzegorz; Turner, Vincent; Schulz, Bettina; Storch, Ulrike; Froelich, Daniela; Rognon, Bénédicte; Coste, Alix T; Sanglard, Dominique; Ruhnke, Markus

    2011-02-01

    Candida albicans is one of the most important opportunistic fungal pathogens. It can cause serious fungal diseases in immunocompromised patients, including those with cancer. Treatment failures due to the emergence of drug-resistant C. albicans strains have become a serious clinical problem. Resistance incidents were often mediated by fungal efflux pumps which are closely related to the human ABC transporter P-glycoprotein (P-gp). P-gp is often overexpressed in cancer cells and confers resistance to many cytotoxic drugs. We examined whether cytotoxic drugs commonly used for cancer treatment (doxorubicin and cyclophosphamide) could alter the expression of genes responsible for the development of fluconazole resistance in Candida cells in the way they can influence homologous genes in cancer cell lines. ABC transporters (CDR1 and CDR2) and other resistance genes (MDR1 and ERG11) were tested by real-time PCR for their expression in C. albicans cells at the mRNA level after induction by antineoplastic drugs. The results were confirmed by a lacZ gene reporter system and verified at the protein level using GFP and immunoblotting. We showed that doxorubicin is a potent inducer of CDR1/CDR2 expression in C. albicans at both the mRNA and protein level and thus causes an increase in fluconazole MIC values. However, cyclophosphamide, which is not a substrate of human P-gp, did not induce ABC transporter expression in C. albicans. Neither doxorubicin nor cyclophosphamide could influence the expression of the other resistance genes (MDR1 and ERG11). The induction of CDR1/CDR2 by doxorubicin in C. albicans and the resulting alteration of antifungal susceptibility might be of clinical relevance for the antifungal treatment of Candida infections occurring after anticancer chemotherapy with doxorubicin. PMID:20818920

  8. Cell-specific intracellular anticancer drug delivery from mesoporous silica nanoparticles with pH sensitivity.

    Science.gov (United States)

    Luo, Zhong; Cai, Kaiyong; Hu, Yan; Zhang, Beilu; Xu, Dawei

    2012-05-01

    A nanoreservoir for efficient intracellular anticancer drug delivery based on mesoporous silica nanoparticles end-capped with lactobionic acid-grafted bovine serum albumin is fabricated. It demonstrates great potential for both cell-specific endocytosis and intracellular pH-responsive controlled release of drugs. A possible endocytosis pathway/mechanism of the smart controlled drug release system is proposed. PMID:23184747

  9. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-01-01

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery. PMID:27229857

  10. Second annual progress report on introduction and use of investigational anticancer agents in Australia, 1984-1985. Anticancer Subcommittee of the Australian Drug Evaluation Committee.

    Science.gov (United States)

    1986-03-31

    Since the publication of its first report, the Anticancer Subcommittee of the Australian Drug Evaluation Committee (ADEC) has provided advice to ADEC and to the Commonwealth Department of Health on investigational anticancer agents in all stages of development. This second report outlines the progress in 1984-1985. PMID:3515139

  11. Antiplatelet drug interactions with proton pump inhibitors

    Science.gov (United States)

    Scott, Stuart A; Obeng, Aniwaa Owusu; Hulot, Jean-Sébastien

    2014-01-01

    Introduction Non-aspirin antiplatelet agents (e.g., clopidogrel, prasugrel, ticagrelor) are commonly prescribed for the prevention of recurrent cardiovascular events among patients with acute coronary syndromes (ACS) and/or those undergoing percutaneous coronary intervention (PCI). In addition, combination therapy with proton pump inhibitors (PPIs) is often recommended to attenuate gastrointestinal bleeding risk, particularly during dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Importantly, a pharmacological interaction between clopidogrel and some PPIs has been proposed based on mutual CYP450-dependent metabolism, but available evidence is inconsistent. Areas covered This article provides an overview of the currently approved antiplatelet agents and PPIs, including their metabolic pathways. Additionally, the CYP450 isoenzyme at the center of the drug interaction, CYP2C19, is described in detail, and the available evidence on both the potential pharmacological interaction and influence on clinical outcomes are summarized and evaluated. Expert opinion Although concomitant DAPT and PPI use reduces clopidogrel active metabolite levels and ex vivo-measured platelet inhibition, the influence of the drug interaction on clinical outcomes has been conflicting and largely reported from non-randomized observational studies. Despite this inconsistency, a clinically important interaction cannot be definitively excluded, particularly among patient subgroups with higher overall cardiovascular risk and potentially among CYP2C19 loss-of-function allele carriers. PMID:24205916

  12. New derivatives of vitamin E as nanovectors for poorly soluble drugs and anticancer agents

    OpenAIRE

    Duhem, Nicolas

    2013-01-01

    The aim of this work was to develop novel vitamin E conjugates for the vectorization of active pharmaceutical ingredients through nanotechnologies. The physico-chemical and biological properties of vitamin E derivatives offer multiple advantages in drug delivery like biocompatibility, improvement of drug solubility and anticancer activity. Nanomedicines have shown high potential in drug delivery since (i) they are appropriate to all route of administration, (ii) they may offer better drug bio...

  13. Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater

    OpenAIRE

    Ferrando Climent, Laura; Cruz Morató, Carles; Marco Urrea, Ernest; Vicent, Teresa; Sarrà i Adroguer, Montserrat; Rodríguez Mozaz, Sara; Barceló i Cullerés, Damià

    2015-01-01

    This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at ...

  14. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208. ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.524, year: 2013

  15. Prospective Observational Study of Adverse Drug Reactions of Anticancer Drugs Used in Cancer Treatment in a Tertiary Care Hospital

    OpenAIRE

    V. K. Saini; Sewal, R. K.; Ahmad, Yusra; B Medhi

    2015-01-01

    Adverse drug reactions associated with the use of anticancer drugs are a worldwide problem and cannot be ignored. Adverse drug reactions can range from nausea, vomiting or any other mild reaction to severe myelosuppression. The study was planned to observe the suspected adverse drug reactions of cancer chemotherapy in patients aged >18 years having cancer attending Postgraduate Institute of Medical Education and Research, Chandigarh. During the study period, 101 patients of breast cancer and ...

  16. Double layered hydroxides as potential anti-cancer drug delivery agents.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  17. Hyperthermia enhances the anticancer-drug induced cytotoxicity in hepatocellular carcinoma cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Baorui Liu; Xiaoping Qian

    2006-01-01

    Objective: Hyperthermia is an attractive addition to multidisciplinary approaches to clinical cancer treatment.The efficiency of hyperthermia depends on the elevation of the temperature and the duration of treatment. It has been reported that in vitro and in vivo hyperthermia enhanced the cytotoxic effect of certain anticancer drugs. However, this enhancement varies,depending on the drug used and the scheduling of treatments. Thus, the combination effect of chemotherapy and hyperthermia remains unclear. In this study, we aimed to investigate whether concurrent exposure of human hepatocellular carcinoma cells SMMC-7721 to chemotherapeutic agents andhypenhermia could increase anticancer effects. Methods: Two chemotherapeutic agents, cisplatin and hydroxycamptothecin, were applied. The MTT assay was performed to evaluate the growth inhibition of SMMC-7721 induced by anticancer drugs with and without hyperthermia. Flow cytometric analysis was used for the assessment of apoptosis after treatments. Results: The percentages of growth inhibition of SMMC-7721 induced by cisplatin (10 μg/ml) alone,hydroxycamptothecin (1 μg/ml) alone, hyperthermia alone, cisplatin and hyperthermia, hydroxycamptothecin and hyperthermia,were 20.77%, 13.65%, 32.46%, 62.76%, 71.89%, respectively. The percentages of apoptosis of five treatments are 5.56%,3.96%, 10.16%, 24.32%, 20.42%, respectively. Conclusion: While both hyperthermia and anticancer drugs can individually induce apoptosis and anti-proliferation effect, the combination of the two treatments induce significantly higher apoptosis and cytotoxicity than hyperthermia or anticancer drugs treatment alone. These data suggest a synergistic benefit when hyperthermia and anticancer drugs used concurrently.

  18. Drug-drug interaction profiles of proton pump inhibitors.

    Science.gov (United States)

    Ogawa, Ryuichi; Echizen, Hirotoshi

    2010-08-01

    Proton pump inhibitors (PPIs) are widely prescribed for the treatment of gastric acid-related disorders and the eradication of Helicobacter pylori. In addition, they are routinely prescribed for the prevention of gastrointestinal bleeding in patients receiving a dual antiplatelet therapy consisting of clopidogrel and aspirin (acetylsalicylic acid) after myocardial infarction or percutaneous coronary intervention and stenting. Because PPIs are given to these patients for long periods, there is a concern about the potential for clinically significant drug-drug interactions (DDIs) with concomitantly administered medications. Because PPIs give rise to profound and long-lasting elevation of intragastric pH, it is not surprising that they interfere with the absorption of concurrent medications. Drug solubility may be substantially reduced at neutral pH compared with acidic conditions. In this context, PPIs have been shown to reduce the bioavailability of many clinically relevant drugs (e.g. ketoconazole, atazanavir) by 50% or more compared with the control values. Soon after the introduction of omeprazole (a prototype PPI) into the market, it was reported that omeprazole was associated with 30% and 10% reductions in systemic clearance of diazepam and phenytoin, respectively. In vitro studies demonstrating the inhibitory effects of omeprazole on the metabolism of these drugs with human liver microsomes gave a mechanistic explanation for the DDIs. Numerous subsequent studies have been performed to investigate the DDI potential of PPIs associated with the metabolic inhibition of cytochrome P450 (CYP) enzyme activities; however, most such attempts have failed to find clinically relevant results. Nevertheless, recent large-scale clinical trials have raised concerns about possible DDIs between PPIs and an antiplatelet drug, clopidogrel. It has been suggested that coadministration of PPIs with a dual antiplatelet therapy consisting of clopidogrel and aspirin may attenuate the

  19. [Novel oral anticancer drugs: a review of adverse drug reactions, interactions and patient adherence].

    Science.gov (United States)

    Bartal, Alexandra; Mátrai, Zoltán; Szucs, Attila; Belinszkaja, Galina; Langmár, Zoltán; Rosta, András

    2012-01-15

    Each aspect of oncological care is widely affected by the spread of oral anticancer agents, which raises several questions in terms of safe medication use and patient adherence. Over the past decade targeted therapies have appeared in clinical practice and revolutionized the pharmacological treatment of malignancies. Regular patient - doctor visits and proper patient education is crucial in order to comply with the therapy previously agreed upon with the oncologist, to increase patient adherence, to detect and to treat adverse effects in early stages. Since the information on the new medicines in Hungarian language is sparse it is the intention of the authors to give an overview of the basic knowledge, patient safety issues, adverse effects and interactions. Official drug information summaries and data on pharmacokinetics, interactions and adverse effects from the literature are reviewed as the basis for this overview. PMID:22217686

  20. Platination of the copper transporter ATP7A involved in anticancer drug resistance.

    Science.gov (United States)

    Calandrini, Vania; Arnesano, Fabio; Galliani, Angela; Nguyen, Trung Hai; Ippoliti, Emiliano; Carloni, Paolo; Natile, Giovanni

    2014-08-21

    The clinical efficacy of the widely used anticancer drug cisplatin is severely limited by the emergence of resistance. This is related to the drug binding to proteins such as the copper influx transporter Ctr1, the copper chaperone Atox1, and the copper pumps ATP7A and ATP7B. While the binding modes of cisplatin to the first two proteins are known, the structural determinants of platinated ATP7A/ATP7B are lacking. Here we investigate the interaction of cisplatin with the first soluble domain of ATP7A. First, we establish by ESI-MS and (1)H, (13)C, and (15)N NMR that, in solution, the adduct is a monomer in which the sulfur atoms of residues Cys19 and Cys22 are cis-coordinated to the [Pt(NH3)2](2+) moiety. Then, we carry out hybrid Car-Parrinello QM/MM simulations and computational spectroscopy calculations on a model adduct based on the NMR structure of the apo protein and featuring the experimentally determined binding mode of the metal ion. These calculations show quantitative agreement with CD spectra and (1)H, (13)C, and (15)N NMR chemical shifts, thus providing a quantitative molecular view of the 3D binding mode of cisplatin to ATP7A. Importantly, the same comparison rules out a variety of alternative models with different coordination modes, that we explored to test the robustness of the computational approach. Using this combined in silico-in vitro approach we provide here for the first time a quantitative 3D atomic view of the platinum binding to the first soluble domain of ATP7A. PMID:24983998

  1. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Supriya Baikar

    2010-01-01

    Full Text Available A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential.

  2. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery.

    Science.gov (United States)

    Xu, Zhigang; Liu, Shiying; Liu, Hui; Yang, Cangjie; Kang, Yuejun; Wang, Mingfeng

    2015-11-11

    Well-defined star-like amphiphilic polymers composed of a β-cyclodextrin core, from which 21 hydrophobic poly(lactic acid) arms and hydrophilic poly(ethylene glycol) arms are grafted sequentially, form robust and uniform unimolecular micelles that are biocompatible and efficient in the delivery of anticancer drugs. PMID:26121632

  3. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy

    Science.gov (United States)

    Na, Han-Heom; Noh, Hee-Jung; Cheong, Hyang-Min; Kang, Yoonsung; Kim, Keun-Cheol

    2016-01-01

    The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243] PMID:26949019

  4. Optimizing anticancer drug treatment in pregnant cancer patients : pharmacokinetic analysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel

    NARCIS (Netherlands)

    van Hasselt, J G C; van Calsteren, K; Heyns, L; Han, S; Mhallem Gziri, M; Schellens, J H M; Beijnen, J H; Huitema, A D R; Amant, F

    2014-01-01

    BACKGROUND: Pregnant patients with cancer are increasingly treated with anticancer drugs, although the specific impact of pregnancy-induced physiological changes on the pharmacokinetics (PK) of anticancer drugs and associated implications for optimal dose regimens remains unclear. Our objectives wer

  5. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    Science.gov (United States)

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings. PMID:22328057

  6. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Science.gov (United States)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( Pstatistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  7. RAS GTPase AS THE DRUG TARGET FOR ANTI-CANCER DESIGNING OF DRUG FROM TEMPLATE

    Directory of Open Access Journals (Sweden)

    A.S. Krishnapriya and P.K. Krishnan Namboori*

    2013-11-01

    Full Text Available Ras proteins in association with GTP and GDP act as a bio-molecular switch for signaling cell growth, cell survival and signal transduction. The presence of mutated Ras proteins is found to vary in different cancer types and the highest occurrence of about 90% is observed in pancreatic cancer. The Ras GTPase binding site is mainly involved in signal cell proliferation. Hence, this binding site has been considered as a major target. At the same time, targeting a specific protein and designing the drug molecule with respect to that is practically of no use as the target proteins are fast mutating. In this scenario, designing the template from the hot spot of proteins and fitting the template for all the target protein molecules seem to be a promising technique. The templates are initially screened on the basis of pharmacokinetic and pharmacodynamic requirements. Six templates are found to be satisfying conditions like IC50, lipophilic efficiency, ligand efficiency etc. and their efficiencies are compared with standard reference molecules. The computed enrichment factors support these templates to be leads for effective anti-cancer drugs subject to further in vitro and in vivo evaluation.

  8. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs

    OpenAIRE

    Bina Gidwani; Amber Vyas

    2015-01-01

    Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carrie...

  9. Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs

    OpenAIRE

    Giri, Archana; M. Lakshmi Narasu

    2000-01-01

    Podophyllum hexandrum Royle of family Berberidaceae is an endangered medicinal plant. Rhizome ofP.hexandrum contains several lignans which posses antitumor activity. Podphyllotoxin is the most active cytotoxic natural product. It is used as starting compound for the synthesis of anticancer drug etoposide and teniposide. Podophyllotoxin acts as an inhibitor of microtubule assembly. These drugs are used for lung cancer, testicular cancer, neuroblastoma, hepatoma and other tumors. Besides this, ...

  10. A pH-Sensitive Injectable Nanoparticle Composite Hydrogel for Anticancer Drug Delivery

    OpenAIRE

    Yuanfeng Ye; Xiaohong Hu

    2016-01-01

    According to previous reports, low pH-triggered nanoparticles were considered to be excellent carriers for anticancer drug delivery, for the reason that they could trigger encapsulated drug release at mild acid environment of tumor. Herein, an acid-sensitive β-cyclodextrin derivative, namely, acetalated-β-cyclodextrin (Ac-β-CD), was synthesized by acetonation and fabricated to nanoparticles through single oil-in-water (o/w) emulsion technique. At the same time, camptothecin (CPT), a hydrophob...

  11. Designing anti-cancer drugs and directing anti-cancer therapy

    OpenAIRE

    Velasquez, Elinor; Soto-Andrade, Jorge; Bongalon, Ben

    2014-01-01

    A prototype for a web application was designed and implemented as a guide to be used by clinicians when designing the best drug therapy for a specific cancer patient, given biological data derived from the patients tumor tissue biopsy. A representation of the patients metabolic pathways is displayed as a graph in the application, with nodes as substrates and products and edges as enzymes. The top metabolically active sub- paths in the pathway, ranked using an algorithm based on both the patie...

  12. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C

    International Nuclear Information System (INIS)

    Our recent study showed that tetrathiomolybdate (TM), a drug to treat copper overload disorders, can sensitize drug-resistant endometrial cancer cells to reactive oxygen species (ROS)-generating anticancer drug doxorubicin. To expand these findings in the present study we explore TM efficacy in combination with a spectrum of ROS-generating anticancer drugs including mitomycin C, fenretinide, 5-fluorouracil and doxorubicin in ovarian cancer cells as a model system. The effects of TM alone or in combination with doxorubicin, mitomycin C, fenretinide, or 5-fluorouracil were evaluated using a sulforhodamine B assay. Flow cytometry was used to detect the induction of apoptosis and ROS generation. Immunoblot analysis was carried out to investigate changes in signaling pathways. TM potentiated doxorubicin-induced cytotoxicity and modulated key regulators of apoptosis (PARP, caspases, JNK and p38 MAPK) in SKOV-3 and A2780 ovarian cancer cell lines. These effects were linked to the increased production of ROS, as shown in SKOV-3 cells. ROS scavenging by ascorbic acid blocked the sensitization of cells by TM. TM also sensitized SKOV-3 to mitomycin C, fenretinide, and 5-fluorouracil. The increased cytotoxicity of these drugs in combination with TM was correlated with the activity of ROS, loss of a pro-survival factor (e.g. XIAP) and the appearance of a pro-apoptotic marker (e.g. PARP cleavage). Our data show that TM increases the efficacy of various anticancer drugs in ovarian cancer cells in a ROS-dependent manner

  13. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    Science.gov (United States)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  14. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia)], E-mail: zavisova@saske.sk; Koneracka, Martina [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Muckova, Marta [Hameln rds a.s., Horna 36, Modra (Slovakia); Kopcansky, Peter; Tomasovicova, Natalia; Lancz, Gabor; Timko, Milan [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Paetoprsta, Bozena; Bartos, Peter [Hameln rds a.s., Horna 36, Modra (Slovakia); Fabian, Martin [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Kosice (Slovakia)

    2009-05-15

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly(D,L-lactic-co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  15. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    Science.gov (United States)

    Závišová, Vlasta; Koneracká, Martina; Múčková, Marta; Kopčanský, Peter; Tomašovičová, Natália; Lancz, Gábor; Timko, Milan; Pätoprstá, Božena; Bartoš, Peter; Fabián, Martin

    2009-05-01

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly( D, L-lactic- co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol ®). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  16. Topological Indices Study of Molecular Structure in Anticancer Drugs

    OpenAIRE

    Wei Gao; Weifan Wang; Mohammad Reza Farahani

    2016-01-01

    Numerous studies indicate that there is strong inherent relationship between the chemical characteristics of chemical compounds and drugs (e.g., boiling point and melting point) and their molecular structures. Topological indices defined on these chemical molecular structures can help researchers better understand the physical features, chemical reactivity, and biological activity. Thus, the study of the topological indices on chemical structure of chemical materials and drugs can make up for...

  17. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    International Nuclear Information System (INIS)

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  18. Synthesis, Cytotoxicity and Mechanistic Evaluation of 4-Oxoquinoline-3-carboxamide Derivatives: Finding New Potential Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Luana da S. M. Forezi

    2014-05-01

    Full Text Available As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10–18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells.

  19. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    Science.gov (United States)

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  20. Access to innovation: is there a difference in the use of expensive anticancer drugs between French hospitals?

    Science.gov (United States)

    Bonastre, Julia; Chevalier, Julie; Van der Laan, Chantal; Delibes, Michel; De Pouvourville, Gerard

    2014-06-01

    In DRG-based hospital payment systems, expensive drugs are often funded separately. In France, specific expensive drugs (including a large proportion of anticancer drugs) are fully reimbursed up to national reimbursement tariffs to ensure equity of access. Our objective was to analyse the use of expensive anticancer drugs in public and private hospitals, and between regions. We had access to sales per anticancer drug and per hospital in the year 2008. We used a multilevel model to study the variation in the mean expenditure of expensive anticancer drugs per course of chemotherapy and per hospital. The mean expenditure per course of chemotherapy was €922 [95% CI: 890-954]. At the hospital level, specialisation in chemotherapies for breast cancers was associated with a higher expenditure of anticancer drugs per course for those hospitals with the highest proportion of cancers at this site. There were no differences in the use of expensive drugs between the private and the public hospital sector after controlling for case mix. There were no differences between the mean expenditures per region. The absence of disparities in the use of expensive anticancer drugs between hospitals and regions may indicate that exempting chemotherapies from DRG-based payments and providing additional reimbursement for these drugs has been successful at ensuring equal access to care. PMID:24314625

  1. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    Directory of Open Access Journals (Sweden)

    José A G Agúndez

    2014-08-01

    Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing is useful for patient selection, but final dosing adjustment should be carried out on the basis of clinical or analytical parameters rather than on pharmacogenomic information.Patient selection may seem a modest objective, but it constitutes a crucial improvement with regard to the pre-pharmacogenomics situation and it saves patients’ lives. However we should not overstate the current power of pharmacogenomics. At present the pharmacogenomics of anticancer drugs is not sufficiently developed for dose adjustments based on pharmacogenomics only, and no current guidelines recommend such adjustments without considering clinical and/or analytical parameters.

  2. Self-assembly Polyrotaxanes Nanoparticles as Carriers for Anticancer Drug Methotrexate Delivery

    Institute of Scientific and Technical Information of China (English)

    Longgui Zhang; Ting Su; Bin He; Zhongwei Gu∗

    2014-01-01

    α-Cyclodextrin/poly(ethylene glycol) (α-CD/PEG) polyrotaxane nanoparticles were prepared via a self-assembly method. Anticancer drug methotrexate (MTX) was loaded in the nanoparticles. The interaction between MTX and polyrotaxane was investigated. The formation, morphology, drug release and in vitro anticancer activity of the MTX loaded polyrotaxane nanoparticles were studied. The results show that the MTX could be efficiently absorbed on the nanoparticles, and hydrogen bonds were formed between MTX andα-CDs. The typical channel-type stacking assembly style of polyrotaxane nanoparticles was changed after MTX was loaded. The mean diameter of drug loaded polyrotaxane nanoparticles were around 200 nm and the drug loading content was as high as about 20%. Drug release profiles show that most of the loaded MTX was released within 8 hours and the cumulated release rate was as high as 98%. The blank polyrotaxane nanoparticles were nontoxicity to cells. The in vitro anticancer activity of the MTX loaded polyrotaxane nanoparticles was higher than that of free MTX.

  3. Application of CellDesigner to the Selection of Anticancer Drug Targets: Test Case using P53

    OpenAIRE

    Isea, Raul; Hoebeke, Johan; Mayo, Rafael; Alvarez, Fernando; Holmes, David S.

    2013-01-01

    Cancer is a disease involving many genes, consequently it has been difficult to design anticancer drugs that are efficacious over a broad range of cancers. The robustness of cellular responses to gene knockout and the need to reduce undesirable side effects also contribute to the problem of effective anti-cancer drug design. To promote the successful selection of drug targets, each potential target should be subjected to a systems biology scrutiny to locate effective and specific targets whil...

  4. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  5. The practical stability of anticancer drugs: SFPO and ESOP recommendations

    Directory of Open Access Journals (Sweden)

    Jean Vigneron

    2010-01-01

    Full Text Available The publication of European recommendations for the storage conditions of reconstituted and diluted solutions of oncology drugs as they are used in practice is a major achievement. These recommendations will be referred to frequently by hospital and oncology pharmacists.

  6. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

    Directory of Open Access Journals (Sweden)

    Subtel’na I. Yu.

    2011-04-01

    Full Text Available The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program, among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected.

  7. Synergistic enhancement effect of magnetic nanoparticles on anticancer drug accumulation in cancer cells

    Science.gov (United States)

    Zhang, Renyun; Wang, Xuemei; Wu, Chunhui; Song, Min; Li, Jingyuan; Lv, Gang; Zhou, Jian; Chen, Chen; Dai, Yongyuan; Gao, Feng; Fu, Degang; Li, Xiaomao; Guan, Zhiqun; Chen, Baoan

    2006-07-01

    Three kinds of magnetic nanoparticle, tetraheptylammonium capped nanoparticles of Fe3O4, Fe2O3 and Ni have been synthesized, and the synergistic effect of these nanoparticles on the drug accumulation of the anticancer drug daunorubicin in leukaemia cells has been explored. Our observations indicate that the enhancement effect of Fe3O4 nanoparticles is much stronger than that of Fe2O3 and Ni nanoparticles, suggesting that nanoparticle surface chemistry and size as well as the unique properties of the magnetic nanoparticles themselves may contribute to the synergistic enhanced effect of the drug uptake of targeted cancer cells.

  8. Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo.

    Science.gov (United States)

    Zhou, Mengjiao; Zhang, Xiujuan; Yu, Caitong; Nan, Xueyan; Chen, Xianfeng; Zhang, Xiaohong

    2016-01-01

    In this paper, shape regulated anticancer activities as well as systematic toxicities of hydroxycamptothecin nanorods and nanoparticles (HCPT NRs and NPs) were systematically studied. In vitro and in vivo therapeutic efficacies were evaluated in cancer cells and tumor-bearing mice, indicating that NRs possessed superior antitumor efficacy over NPs at the equivalent dose, while systematic toxicity of the differently shaped nanodrugs assessed in healthy mice, including the maximum tolerated dose, blood analysis and histology examinations and so on, suggested that the NRs also caused higher toxicities than NPs, and also had a long-term toxicity. These results imply that the balance between anticancer efficiency and systematic toxicity of drug nanocrystals should be fully considered in practice, which will provide new concept in the future design of drug nanocrystals for cancer therapy. From the Clinical Editor: Advances in nanotechnology have enabled the design of novel nanosized drugs for the treatment of cancer. One of the interesting findings thus far is the different biological effects seen with different shaped nanoparticles. In this article, the authors investigated and compared the anticancer activities of hydroxycamptothecin nanorods and nanoparticles. The experimental data would provide a better understanding for future drug design. PMID:26427356

  9. Systematic repurposing screening in xenograft models identifies approved drugs with novel anti-cancer activity.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Roix

    Full Text Available Approved drugs target approximately 400 different mechanisms of action, of which as few as 60 are currently used as anti-cancer therapies. Given that on average it takes 10-15 years for a new cancer therapeutic to be approved, and the recent success of drug repurposing for agents such as thalidomide, we hypothesized that effective, safe cancer treatments may be found by testing approved drugs in new therapeutic settings. Here, we report in-vivo testing of a broad compound collection in cancer xenograft models. Using 182 compounds that target 125 unique target mechanisms, we identified 3 drugs that displayed reproducible activity in combination with the chemotherapeutic temozolomide. Candidate drugs appear effective at dose equivalents that exceed current prescription levels, suggesting that additional pre-clinical efforts will be needed before these drugs can be tested for efficacy in clinical trials. In total, we suggest drug repurposing is a relatively resource-intensive method that can identify approved medicines with a narrow margin of anti-cancer activity.

  10. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Jafargholizadeh, Naser [Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Zargar, Seyed Jalal, E-mail: Zargar@khayam.ut.ac.ir [Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Safarian, Shahrokh; Habibi-Rezaei, Mehran [Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-06-10

    Highlights: Black-Right-Pointing-Pointer For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. Black-Right-Pointing-Pointer Binding of mitoxantrone molecules to histone H1 is positive cooperative. Black-Right-Pointing-Pointer Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  11. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    Science.gov (United States)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  12. Pharmaceutical development of selected novel anticancer agents : from drugs substance to dosage form

    OpenAIRE

    Brok, M.W.J. (Monique Wilhelmina Johanna) den

    2004-01-01

    Despite the substantial progress made over the last decades in the treatment of cancer, there still is a great need for novel therapies. Especially for patients with advanced disease, chemotherapy is the best option. Nature is the primary source of anticancer drugs with compounds isolated from plants or micro-organisms. Moreover, the marine ecosystem provides for a growing number of promising agents in clinical trials. Besides natural resources, the increasing knowledge of tumour pathology an...

  13. Fit-for-purpose biomarker method validation for application in clinical trials of anticancer drugs

    OpenAIRE

    Cummings, J.; Raynaud, F; Jones, L.; Sugar, R; Dive, C

    2010-01-01

    Clinical development of new anticancer drugs can be compromised by a lack of qualified biomarkers. An indispensable component to successful biomarker qualification is assay validation, which is also a regulatory requirement. In order to foster flexible yet rigorous biomarker method validation, the fit-for-purpose approach has recently been developed. This minireview focuses on many of the basic issues surrounding validation of biomarker assays utilised in clinical trials. It also provides an ...

  14. Role of pharmacists in optimizing the use of anticancer drugs in the clinical setting

    OpenAIRE

    Ma CSJ

    2014-01-01

    Carolyn SJ Ma Department of Pharmacy Practice, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Honolulu, HI, USA Abstract: Oncology pharmacists, also known as oncology pharmacy specialists (OPSs) have specialized knowledge of anticancer medications and their role in cancer. As essential member of the interdisciplinary team, OPSs optimize the benefits of drug therapy, help to minimize toxicities and work with patients on supportive care issues. The OPSs expanded role as ex...

  15. Chemotherapeutic properties of phospho-nonsteroidal anti-inflammatory drugs, a new class of anticancer compounds

    OpenAIRE

    Huang, Liqun; Mackenzie, Gerardo G; Sun, Yu; Ouyang, Nengtai; Xie, Gang; Vrankova, Kvetoslava; Komninou, Despina; Rigas, Basil

    2011-01-01

    Non-steroidal anti-Inflammatory drugs (NSAIDs) exhibit antineoplastic properties, but conventional NSAIDs do not fully meet safety and efficacy criteria for use as anti-cancer agents. In this study, we evaluated the chemotherapeutic efficacy of five novel phospho-NSAIDs, each of which includes in addition to the NSAID moiety a diethylphosphate linked through a butane moiety. All five compounds inhibited the growth of human breast, colon and pancreatic cancer cell lines with micromolar potency...

  16. Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jessica L. Woodman

    2015-01-01

    Full Text Available Carboxymethyl hyaluronic acid (CMHA is a semisynthetic derivative of HA that is recognized by HA binding proteins but contains an additional carboxylic acid on some of the 6-hydroxyl groups of the N-acetyl glucosamine sugar units. These studies tested the ability of CMHA to stabilize the formation of calcium phosphate nanoparticles and evaluated their potential to target therapy resistant, CD44+/CD24−/low human breast cancer cells (BT-474EMT. CMHA stabilized particles (nCaPCMHA were loaded with the chemotherapy drug cis-diamminedichloroplatinum(II (CDDP to form nCaPCMHACDDP. nCaPCMHACDDP was determined to be poorly crystalline hydroxyapatite, 200 nm in diameter with a −43 mV zeta potential. nCaPCMHACDDP exhibited a two-day burst release of CDDP that tapered resulting in 86% release by 7 days. Surface plasmon resonance showed that nCaPCMHACDDP binds to CD44, but less effectively than CMHA or hyaluronan. nCaPCMHA-AF488 was taken up by CD44+/CD24− BT-474EMT breast cancer cells within 18 hours. nCaPCMHACDDP was as cytotoxic as free CDDP against the BT-474EMT cells. Subcutaneous BT-474EMT tumors were more reproducibly inhibited by a near tumor dose of 2.8 mg/kg CDDP than a 7 mg/kg dose nCaPCMHACDDP. This was likely due to a lack of distribution of nCaPCMHACDDP throughout the dense tumor tissue that limited drug diffusion.

  17. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    Directory of Open Access Journals (Sweden)

    Miroslav Barancik

    2011-12-01

    Full Text Available The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX on P-gp-mediated multidrug resistance (MDR in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR. Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs, especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells.

  18. ACTIVITY OF LEAF EXTRACTS OF COIX LACHRYMA LINN. AND ASPARAGUS COCHINCHINENSISLINN. AS BREAST ANTICANCER DRUGS

    Directory of Open Access Journals (Sweden)

    RESMI MUSTARICHIE

    2011-11-01

    Full Text Available In the current economic crisis, the use of plant medicine forcancer prevention should be investigated. Coix lachryma Linn and Asparagus cochinchinensis Linn are among eleven of species of medicinal plants that are noted as plant medicine for cancer in Indonesia, although their mechanism of action are still unknown. The eleven plants were screened using in vitro methods, Sulforhodamin B against breast cancer cells (MCF"7 and skin (KB. The research included a maceration process using ethanol as solvent and an anti"cancer testing process in vitro using Sulforhodamin B indicated by the value of percentage viability. Extracts were classed as being 'active anticancer' if they showed IC50 values below 100 ppm.. Coix lachryma Linn. and Asparagus cochinchinensis Linn. show breast and skin anticancer activity withIC50 values 6.51 ppm and 11.3 ppm of MCF"7 cells. The ethanol plant extracts were further extracted using various solvents with increasing polarity: n"hexane, methylene chloride, and ethyl acetate. The methylene chloride extract of Coix lachryma Linn. had IC50 = 2.75 ppm against MCF"7 cells. Against KB cells, methylene chloride extracts of Coix lachryma Linn. gave IC50 = 5.16 ppm. For Asparagus cochinchinensis Linn., an ethyl acetate extract had IC50 = 3.70 ppm against KB cancer cells and IC50 = 9.80 ppm against MCF"7 cancer cells. These data indicated that both plants can be used as anticancer drugs on breast and skin cancers.

  19. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery. PMID:21133071

  20. Curcumin: From Exotic Spice to Modern Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Gaurisankar Sa

    2010-01-01

    Full Text Available Inhibition of defined molecular steps of tumourigenesis by natural non-toxic compounds may be an efficient means to tackle the population cancer burden. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane, a relatively non-toxic plant derived polyphenol. Curcumin is used for centuries in cuisine and indigenous medicine against several major human diseases. Cancer is the second leading cause of death worldwide. Disruption of a proper regulation of cell proliferation can ultimately cause cancer. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this regard, curcumin, the yellow pigment of the spice turmeric, has been reported to have immense potentialility for being used in cancer chemotherapy because of its control over the cell growth regulatory mechanisms and for its anti-inflammatory, anti-toxic and anti-oxidative properties. Increasingly reports are showing that curcumin can induce apoptosis in a wide variety of cancer cells. The mechanisms implicated in the inhibition of tumorigenesis by curcumin are diverse and seem to involve a combination of cell signalling pathways at multiple levels. When curcumin is combined with some cytotoxic drugs or certain other diet-derived polyphenols, synergistic effects have been demonstrated. Taken together, this review seeks to summarise the unique properties of curcumin that may be exploited for successful clinical cancer prevention.

  1. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen;

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer...... drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with...

  2. Alkaloids from Marine Invertebrates as Important Leads for Anticancer Drugs Discovery and Development

    Directory of Open Access Journals (Sweden)

    Concetta Imperatore

    2014-12-01

    Full Text Available The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines, together with some of their synthetic analogs, are illustrated. Recent discoveries concerning the current state of the potential and/or development of some of them as new drugs, as well as the current knowledge regarding their modes of action, are also summarized. A special emphasis is given to the role of marine invertebrate alkaloids as an important source of leads for anticancer drug discovery.

  3. Salt-bridge-supported bilayer lipid membrane biosensor for determination of anticancer drug cyclophosphamide

    Science.gov (United States)

    Zhang, Yanli; Wang, Tao; Zhang, Chunxu; Shen, Hanxi; Chao, Fuhuan

    2001-09-01

    A novel biosensor for assaying anticancer drug cyclophosphamide was constructed with salt-bridge supported bilayer lipid membrane modified with tetraphenylborate- cyclophosphamide complex. The modification was achieved by the introduction of the complex into the membrane forming solution. The biosensor show a linear response to the drug over the concentration range 8.96 X 10-6 mol L-1. The effects of coexistent substances and pH on assay were evaluated. The results show that the distinguish merits of this kind of biosensor is the excellently biological compatibility and no need of mediator for ions exchange. It also shows good selectivity and sensitivity for cyclophosphamide assay.

  4. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development.

    Directory of Open Access Journals (Sweden)

    Yvonne K Girard

    Full Text Available The development of a suitable three dimensional (3D culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid (PLGA and a block copolymer of polylactic acid (PLA and mono-methoxypolyethylene glycol (mPEG designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment.

  5. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs.

    Science.gov (United States)

    Veldman, Robert Jan; Mita, Alain; Cuvillier, Olivier; Garcia, Virginie; Klappe, Karin; Medin, Jeffrey A; Campbell, John D; Carpentier, Stéphane; Kok, Jan Willem; Levade, Thierry

    2003-06-01

    Conversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected with a vector encoding GCS (GM95/GCS). Enzymatic and metabolic analysis demonstrated that GM95/GCS cells expressed a fully functional enzyme, resulting in normal ceramide glycosylation. However, cytotoxicity assays, as well as caspase activation and cytochrome c release studies, did not reveal any difference between the two cell lines with respect to their sensitivity toward doxorubicin, vinblastine, paclitaxel, cytosine arabinoside, or short-chain ceramide analogs. Administration of doxorubicin resulted in ceramide accumulation in both cell lines, with similar kinetics and amplitude. Although glucosylceramide formation was detected in doxorubicin-treated GM95/GCS cells, metabolism of drug-induced ceramide did not appear to be instrumental in cell survival. Furthermore, N-(n-butyl)deoxynojirimycin, a potent and non-toxic GCS inhibitor, had no chemosensitizing effect on wild-type melanoma cells. Altogether, both genetic and pharmacological alterations of the cellular ceramide glycosylation capacity failed to sensitize melanoma cells to anticancer drugs, therefore moderating the importance of ceramide glucosylation in drug-resistance mechanisms. PMID:12692077

  6. HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor.

    Science.gov (United States)

    Calce, Enrica; Monfregola, Luca; Saviano, Michele; De Luca, Stefania

    2015-01-01

    HER2 receptor, for its involvement in tumorigenesis, has been largely studied as topic in cancer research. In particular, the employment of trastuzumab (Herceptin), a humanized anti-HER2 antibody, showed several clinical benefits in the therapy against the breast cancer. Moreover, for its accessible extracellular domain, this receptor is considered an ideal target to deliver anticancer drugs for the receptormediated anticancer therapy. By now, monoclonal antibody and its fragments, affibody, and some peptides have been employed as targeting agents in order to deliver various drugs to HER2 positive tumor cells. In particular, the ability to perform a fast and reliable screening of a large number of peptide molecules would make possible the selection of highly specific compounds to the receptor target. In this regard, the availability of preparing a simplified synthetic model which is a good mimetic of the receptor target and can be used in a reliable screening method of ligands would be of a strategic importance for the development of selective HER2-targeting peptide molecules. Herein, we illustrate the importance of HER2-targeted anticancer therapies. We also report on a synthetic and effective mimetic of the receptor, which revealed to be a useful tool for the selection of specific HER2 ligands. PMID:25994863

  7. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    Science.gov (United States)

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  8. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    Science.gov (United States)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  9. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  10. Mucoadhesive nanoparticles from tamarind seed polysaccharides for sustained delivery of anticancer drug irinotecan

    Directory of Open Access Journals (Sweden)

    Pranjal Saikia

    2013-01-01

    Full Text Available The present study is aimed at development and optimization of mucoadhesive nanoparticles (NPs from natural mucoadhesive polysaccharides extracted from Tamarind seeds (Tamarindus indica for the sustained delivery of anticancer drug irinotecan. The drug loaded NPs were prepared by ion gelation method with the isolated polysaccharide by homogenization followed by lyophilization. The polysaccharides were cross-linked with sodium alginate in different ratios. The formulations were optimized using two level factorial design (Design Expert - 8.0.7.1 using the polysaccharide to alginate ratio, homogenization time and homogenization speed as independent variables and particle size (PS, drug entrapment efficiency and cumulative drug release as the dependent variables. The NPs were characterized in terms of PS, entrapment efficiency, drug loading (DL, in vitro drug release and cell viability studies in mice. Stable NPs were obtained with average PS of 405 ± 25.2 nm. The preparations were homogenous showing polydispersity index of 0.497 ± 0.02. The formulation showed up to 95.36 ± 3.1% (w/w yield showing DL of 1.0 ± 0.2% (w/w. The entrapment efficiency was found to be 46.56 ± 1.5% (w/w. In vitro drug release showed initial burst release followed by controlled release pattern showing up to 60% release in 12 h. The average cell viability was found to be 80% in case of the control group, which was reduced to 36% for NPs treated groups respectively. The Fourier transform infrared studies showed no incompatibility in the formulated NPs. It may be concluded from the study that tamarind seed polysaccharides may be suitable for formulation of mucoadhesive NPs for better efficacy and sustained delivery of anticancer drug irinotecan with reduced toxicity.

  11. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  12. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    International Nuclear Information System (INIS)

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  13. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyun, E-mail: wangjingyun67@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Cui, Shuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Bao, Yongming, E-mail: biosci@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Xing, Jishuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Hao, Wenbo [Department of Physics and Chemistry, Heihe University, Heihe 164300 (China)

    2014-10-01

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  14. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes

    Science.gov (United States)

    Chen, Jian; Zhang, Bei; Xia, Fei; Xie, Yunchang; Jiang, Sifan; Su, Rui; Lu, Yi; Wu, Wei

    2016-03-01

    Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL-1, but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using 125I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell lines

  15. Pharmacokinetic Interaction of Rifampicin with Oral Versus Intravenous Anticancer Drugs: Challenges, Dilemmas and Paradoxical Effects Due to Multiple Mechanisms.

    Science.gov (United States)

    Srinivas, Nuggehally R

    2016-06-01

    Since many drugs are cytochrome P450 (CYP)-3A4 substrates, it has become common practice to assess drug-drug interaction (DDI) potential with a CYP3A4 inhibitor (ketoconazole) or inducer (rifampicin) in early drug development. Such an evaluation is relevant to anticancer drugs with metabolism governed by CYP3A4. DDIs with rifampicin are complex, involving other physiological mechanisms that may impact overall pharmacokinetics. Our objective was to study and delineate such mechanisms for oral versus intravenous anticancer drugs. We hypothesized that DDIs between anticancer drugs and rifampicin were primarily driven by CYP3A4 induction. This hypothesis was proven for the oral anticancer drugs; however, in some cases, other intrinsic mechanisms such as P-glycoprotein (Pgp)/UDP glucuronosyl transferase (UGT) induction and transporter inhibition may have played an important role alongside the induced CYP3A4 enzymes. The hypothesis that CYP3A4 induction would decrease drug exposure appeared paradoxical for intravenous romidepsin and-to a somewhat lesser extent-for cabazitaxel. In light of this dilemma in the interpretation of the pharmacokinetic data with rifampicin, several questions require further consideration. Given the complexity and paradoxical effects arising with DDIs with rifampicin, the continued preference for rifampicin as CYP3A4 inducer needs immediate re-appraisal. PMID:27098526

  16. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib

    Directory of Open Access Journals (Sweden)

    Wang Xia

    2009-07-01

    Full Text Available Abstract The proteasome inhibitor and anti-cancer drug bortezomib was tested for in vitro activity against bloodstream forms of Trypanosoma brucei. The concentrations of bortezomib required to reduce the growth rate by 50% and to kill all trypanosomes were 3.3 nM and 10 nM, respectively. In addition, bortezomib was 10 times more toxic to trypanosomes than to human HL-60 cells. Moreover, exposure of trypanosomes to 10 nM bortezomib for 16 h was enough to kill 90% of the parasites following incubation in fresh medium. However, proteasomal peptidase activities of trypanosomes exposed to bortezomib were only inhibited by 10% and 30% indicating that the proteasome is not the main target of the drug. The results suggest that bortezomib may be useful as drug for the treatment of human African trypanosomiasis.

  17. Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions.

    Science.gov (United States)

    Senapati, Sudipta; Thakur, Ravi; Verma, Shiv Prakash; Duggal, Shivali; Mishra, Durga Prasad; Das, Parimal; Shripathi, T; Kumar, Mohan; Rana, Dipak; Maiti, Pralay

    2016-02-28

    Hydrophobic anticancer drug, raloxifene hydrochloride (RH) is intercalated into a series of magnesium aluminum layered double hydroxides (LDHs) with various charge density anions through ion exchange technique for controlled drug delivery. The particle nature of the LDH in presence of drug is determined through electron microscopy and surface morphology. The release of drug from the RH intercalated LDHs was made very fast or sustained by altering the exchangeable anions followed by the modified Freundlich and parabolic diffusion models. The drug release rate is explained from the interactions between the drug and LDHs along with order-disorder structure of drug intercalated LDHs. Nitrate bound LDH exhibits greater interaction with drug and sustained drug delivery against the loosely interacted phosphate bound LDH-drug, which shows fast release. Cell viability through MTT assay suggests drug intercalated LDHs as better drug delivery vehicle for cancer cell line against poor bioavailability of the pure drug. In vivo study with mice indicates the differential tumor healing which becomes fast for greater drug release system but the body weight index clearly hints at damaged organ in the case of fast release system. Histopathological experiment confirms the damaged liver of the mice treated either with pure drug or phosphate bound LDH-drug, fast release system, vis-à-vis normal liver cell morphology for sluggish drug release system with steady healing rate of tumor. These observations clearly demonstrate that nitrate bound LDH nanoparticle is a potential drug delivery vehicle for anticancer drugs without any side effect. PMID:26774219

  18. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours.

    OpenAIRE

    J. M. Brown

    1993-01-01

    SR 4233 (3-amino-1,2,4-benzotriazine 1,4-dioxide, WIN 59075, tirapazamine) is the lead compound in a new class of bioreductive anticancer drugs, the benzotriazine di-N-oxides. It is currently undergoing Phase I clinical testing. The preferential tumour cell killing of SR 4233 is a result of its high specific toxicity to cells at low oxygen tensions. Such hypoxic cells are a common feature of solid tumours, but not normal tissues, and are resistant to cancer therapies including radiation and s...

  19. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    OpenAIRE

    Richard J Epstein

    2009-01-01

    Two problems now threaten the future of anticancer drug development: (i) the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii) high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios...

  20. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced the...

  1. Structural and stability investigation of the anticancer drug Cyclophosphamide via quantum chemical calculations :A nanotube drug delivery

    Directory of Open Access Journals (Sweden)

    Z. Felegari

    2014-12-01

    Full Text Available Cyclophosphamide is a medicine used to interfere with the growth and spread of tumor cells and treat cancers and autoimmune disorders.This work reports the study of anticancer drugs with density functional theory (DFT and electronic structures.Its structure was optimized with B3LYP/6-311G* level in the gas phase and different solvents (SCRF calculation. NBO analysis,NMR parameter,thermodynamic properties,HOMO and LUMO,HOMO-LUMO band gap, and the electronic chemical potential (µ were calculated. The results indicated that the Cyclophosphamide in water solvent is more stable than the gas phase orother solvents.

  2. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shashwat S; Chen, D.-H. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: chendh@mail.ncku.edu.tw

    2008-07-02

    A novel magnetic nanocarrier (CD-GAMNPs) was fabricated for targeted anticancer drug delivery by grafting cyclodextrin (CD) onto gum arabic modified magnetic nanoparticles (GAMNPs) using hexamethylene diisocyanate (HMDI) as a linker. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 17.1 nm and a mean hydrodynamic diameter of 44.1 nm. The CD grafting was confirmed by Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) indicated that the amount of CD grafted on the GAMNPs was 16.8 mg g{sup -1}. The study on the loading of anticancer drug all-trans-retinoic acid (retinoic acid) revealed that the newly fabricated magnetic nanocarrier possessed a considerably higher adsorption capability as compared to GAMNPs due to the special hydrophobic cavity structure of CD, which could act as a host-guest complex with retinoic acid. Furthermore, it was found that the complexation of CD-GAMNPs with retinoic acid was exothermic and the presence of a surfactant (sodium dodecyl sulfate) led to the decrease in the inclusion of retinoic acid because the linear structure of sodium dodecyl sulfate made it easier to enter the cavity of CD as compared to less linear retinoic acid. In addition, the in vitro release profile of retinoic acid from CD-GAMNPs was characterized by an initial fast release followed by a delayed release phase.

  3. A novel candidate compound with urethane structure for anticancer drug development.

    Science.gov (United States)

    Matsuoka, Atsuko; Isama, Kazuo; Tanimura, Susumu; Kohno, Michiaki; Yamori, Takao

    2007-08-01

    Diethyl-4,4'-methylenebis(N-phenylcarbamate) (MDU) is a urethane compound that we originally synthesized, along with three other compounds, to investigate how polyurethane is hydrolysed. We tested the four compounds for cytotoxicity in two Chinese hamster cell lines (CHL and V79) and a human cancer cell line (HeLa S3). MDU showed the strongest cytotoxicity in all the cell lines with an IC50 of around 0.1 microg/ml. We further investigated MDU for its ability to induce chromosome aberrations (CAs) and micronuclei (MN) in CHL cells. MDU induced around 100% polyploid cells at 0.5 microg/ml after 24- and 48-h treatment in the CA test and a significantly increased frequency of micronuclei, polynuclear cells, and mitotic cells in the MN test, suggesting that it may induce numerical CAs. MDU's ability to cause mitotic arrest in CHL cells was greater than that of taxol and colchicine. Based on a COMPARE analysis using JFCR39, a panel of cancer cell lines, we predicted MDU to be a tubulin inhibitor. We confirmed this possibility in nerve growth factor-stimulated PC12 cells as well as in HT1080 cells, in which MDU exhibited the activity to inhibit tubulin polymerization. MDU is simpler in structure than existing anticancer drugs taxol and vincristine and can be synthesized relatively easily. Here we offer MDU as a potential new type of anticancer drug, stable even at room temperature, and inexpensive. PMID:17691911

  4. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    Science.gov (United States)

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  5. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    Directory of Open Access Journals (Sweden)

    Choi J

    2015-09-01

    Full Text Available Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute for Life Sciences, 3Center for Development and Commercialization of Anti-cancer Therapeutics, 4College of Pharmacy, Duksung Women’s University, 5Bio-Synectics, 6Department of Pathology, 7Department of Internal Medicine, 8Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX, under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™ technology enabled successful nanoscale particulation of DTX (Nufs-DTX. Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in

  6. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  7. pH-responsive polymeric micelles with core–shell–corona architectures as intracellular anti-cancer drug carriers

    International Nuclear Information System (INIS)

    Polymeric micelles with core–shell–corona nanoarchitecture were designed for intracellular therapeutic anti-cancer drug carriers. Poly(styrene-b-acrylic acid-b-ethylene glycol) (PS-b-PAA-b-PEG) asymmetric triblock copolymer underwent self-assembly in aqueous solution to form spherical micelles with hydrophobic PS core, anionic PAA shell and hydrophilic PEG corona. The anti-cancer drug (doxorubicin, DOX) was successfully incorporated into the polymeric micelles. The in vitro release experiment confirmed that the release of DOX from the micelles was inhibited at pH 7.4. In contrast, an accelerated release of DOX was observed at mildly acidic conditions such as pH 4.5. The excellent biocompatibility of our PS-b-PAA-b-PEG-based micelles made the synthesized nano-carrier best suited for the delivery of anti-cancer drugs. (paper)

  8. Stability of amoxicillin in portable pumps is drug concentration dependent.

    Science.gov (United States)

    Arlicot, N; Marie, A; Cade, C; Laffon, M; Antier, D

    2011-08-01

    Continuous amoxicillin infusion for deep infection's intravenous treatment is performed using elastomeric portable pumps carried under clothing and requires high doses of antibiotic. Therefore, we evaluated the stability of amoxicillin in those medical devices, with particular focus on both drug concentration and storage temperature. Stability of 20, 40, and 60g/L amoxicillin solutions in 300 mL portable pumps stored at 20 or 35 degrees C was studied by visual examination and drug concentration measurements at T0; T0 + 12 h; T0 + 24 h and; T0 + 48 h. Twenty and 40 g/L amoxicillin solutions were stable over 48 h, with a degradation rate that never exceeded 12% at T0 + 24 h, and 18% at T 0 + 48 h. However, the 60 g/L amoxicillin solution degradation rate was significant (p pump is guarantied over 48 h up to concentrations of 40 g/L. At 60 g/L major degradation of the antibiotic was observed. PMID:21901990

  9. Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database

    International Nuclear Information System (INIS)

    The effect of current therapies in improving the survival of lung cancer patients remains far from satisfactory. It is consequently desirable to find more appropriate therapeutic opportunities based on informed insights. A molecular pharmacological analysis was undertaken to design an improved chemotherapeutic strategy for advanced lung cancer. We related the cytotoxic activity of each of commonly used anti-cancer agents (docetaxel, paclitaxel, gemcitabine, vinorelbine, 5-FU, SN38, cisplatin (CDDP), and carboplatin (CBDCA)) to corresponding expression pattern in each of the cell lines using a modified NCI program. We performed gene expression analysis in lung cancer cell lines using cDNA filter and high-density oligonucleotide arrays. We also examined the sensitivity of these cell lines to these drugs via MTT assay. To obtain our reproducible gene-drug sensitivity correlation data, we separately analyzed two sets of lung cancer cell lines, namely 10 and 19. In our gene-drug correlation analyses, gemcitabine consistently belonged to an isolated cluster in a reproducible fashion. On the other hand, docetaxel, paclitaxel, 5-FU, SN-38, CBDCA and CDDP were gathered together into one large cluster. These results suggest that chemotherapy regimens including gemcitabine should be evaluated in second-line chemotherapy in cases where the first-line chemotherapy did not include this drug. Gene expression-drug sensitivity correlations, as provided by the NCI program, may yield improved therapeutic options for treatment of specific tumor types

  10. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA.

    Science.gov (United States)

    Ilkhani, Hoda; Hughes, Taylor; Li, Jing; Zhong, Chuan Jian; Hepel, Maria

    2016-06-15

    Widely used anti-cancer treatments involving chemotherapeutic drugs result in cancer cell damage due to their strong interaction with DNA. In this work, we have developed laboratory biosensors for screening chemotherapeutic drugs and to aid in the assessment of DNA modification/damage caused by these drugs. The sensors utilize surface-enhanced Raman scattering (SERS) spectroscopy and electrochemical methods to monitor sensory film modification and observe the drug-DNA reactivity. The self-assembled monolayer protected gold-disk electrode (AuDE) was coated with a reduced graphene oxide (rGO), decorated with plasmonic gold-coated Fe2Ni@Au magnetic nanoparticles functionalized with double-stranded DNA (dsDNA), a sequence of the breast cancer gene BRCA1. The nanobiosensors AuDE/SAM/rGO/Fe2Ni@Au/dsDNA were then subjected to the action of a model chemotherapeutic drug, doxorubicin (DOX), to assess the DNA modification and its dose dependence. The designed novel nanobiosensors offer SERS/electrochemical transduction, enabling chemically specific and highly sensitive analytical signals generation. The SERS measurements have corroborated the DOX intercalation into the DNA duplex whereas the electrochemical scans have indicated that the DNA modification by DOX proceeds in a concentration dependent manner, with limit of detection LOD=8µg/mL (S/N=3), with semilog linearity over 3 orders of magnitude. These new biosensors are sensitive to agents that interact with DNA and facilitate the analysis of functional groups for determination of the binding mode. The proposed nanobiosensors can be applied in the first stage of the drug development for testing the interactions of new drugs with DNA before the drug efficacy can be assessed in more expensive testing in vitro and in vivo. PMID:26851584

  11. In vivo organ specific drug delivery with implantable peristaltic pumps.

    Science.gov (United States)

    Speed, Joshua S; Hyndman, Kelly A

    2016-01-01

    Classic methods for delivery of agents to specific organs are technically challenging and causes superfluous stress. The current study describes a method using programmable, implantable peristaltic pumps to chronically deliver drugs in vivo, while allowing animals to remain undisturbed for accurate physiological measurements. In this study, two protocols were used to demonstrate accurate drug delivery to the renal medulla. First, the vasopressin receptor-2 agonist, dDAVP, was delivered to the renal medulla resulting in a significant increase in water retention, urine osmolality and aquaporin-2 expression and phosphorylation. Second, in a separate group of rats, the histone deacetylase (HDAC) inhibitor, MS275, was delivered to the renal medulla. HDAC inhibition resulted in a significant increase in histone H3-acetylation, the hallmark for histone deacetylase inhibition. However, this was confined to the medulla, as the histone H3-acetylation was similar in the cortex of vehicle and MS275 infused rats, suggesting targeted drug delivery without systemic spillover. Thus, implantable, peristaltic pumps provide a number of benefits compared to externalized chronic catheters and confer specific delivery to target organs. PMID:27185292

  12. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs.

    Science.gov (United States)

    Murray, Michael; Hraiki, Adam; Bebawy, Mary; Pazderka, Curtis; Rawling, Tristan

    2015-06-01

    Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer. PMID:25603423

  13. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Malformin C, a fungal cyclic pentapeptide, has been claimed to have anti-cancer potential, but no in vivo study was available to substantiate this property. Therefore, we conducted in vitro and in vivo experiments to investigate its anti-cancer effects and toxicity. Our studies showed Malformin C inhibited Colon 38 and HCT 116 cell growth dose-dependently with an IC50 of 0.27±0.07μM and 0.18±0.023μM respectively. This inhibition was explicated by Malformin C's effect on G2/M arrest. Moreover, we observed up-regulated expression of phospho-histone H2A.X, p53, cleaved CASPASE 3 and LC3 after Malformin C treatment, while the apoptosis assay indicated an increased population of necrotic and late apoptotic cells. In vivo, the pathological study exhibited the acute toxicity of Malformin C at lethal dosage in BDF1 mice might be caused by an acute yet subtle inflammatory response, consistent with elevated IL-6 in the plasma cytokine assay. Further anti-tumor and toxicity experiments proved that 0.3mg/kg injected weekly was the best therapeutic dosage of Malformin C in Colon 38 xenografted BDF1 mice, whereas 0.1mg/kg every other day showed no effect with higher resistance, and 0.9mg/kg per week either led to fatal toxicity in seven-week old mice or displayed no advantage over 0.3mg/kg group in nine-week old mice. Overall, we conclude that Malformin C arrests Colon 38 cells in G2/M phase and induces multiple forms of cell death through necrosis, apoptosis and autophagy. Malformin C has potent cell growth inhibition activity, but the therapeutic index is too low to be an anti-cancer drug.

  14. Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Purpose: The present report reviews the preclinical data on combined chemotherapy/vascular targeting agent treatments. Basic principles are illustrated in studies evaluating the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) when combined with the anticancer drug cisplatin in experimental rodent (KHT sarcoma) and human renal (Caki-1) tumor models. Methods and Materials: C3H/HeJ and NCR/nu-nu mice bearing i.m. tumors were injected i.p. with ZD6126 (0-150 mg/kg) or cisplatin (0-20 mg/kg) either alone or in combination. Tumor response to treatment was assessed by clonogenic cell survival. Results: Treatment with ZD6126 was found to damage existing neovasculature, leading to a rapid vascular shutdown. Histologic evaluation showed dose-dependent morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. ZD6126 doses that led to pathophysiologic effects also enhanced the tumor cell killing of cisplatin when administered either 24 h before or 1-24 h after chemotherapy. In both tumor models, the administration of a 150 mg/kg dose of ZD6126 1 h after a range of doses of cisplatin resulted in an increase in tumor cell kill 10-500-fold greater than that seen with chemotherapy alone. In contrast, the inclusion of the antivascular agent did not increase bone marrow stem cell toxicity associated with this anticancer drug. Conclusion: The results obtained in the KHT and Caki-1 tumor models indicate that ZD6126 effectively enhanced the antitumor effects of cisplatin therapy. These findings are representative of the marked enhancements generally observed when vascular targeting agents are combined with chemotherapy in solid tumor therapy

  15. Anticancer activity of drug conjugates in head and neck cancer cells.

    Science.gov (United States)

    Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M

    2016-01-01

    Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212). PMID:27100344

  16. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    Science.gov (United States)

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. PMID:27238442

  17. Multidrug resistance in oncology and beyond : from imaging of drug efflux pumps to cellular drug targets

    NARCIS (Netherlands)

    Nagengast, Wouter B; Oude Munnink, Thijs H; Dijkers, Eli; Hospers, Geesiena; Brouwers, Adrienne H; Schröder, Carolien P; Lub-de Hooge, Marjolijn; de Vries, Elisabeth G E

    2010-01-01

    Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such a

  18. Steady Increase In Prices For Oral Anticancer Drugs After Market Launch Suggests A Lack Of Competitive Pressure.

    Science.gov (United States)

    Bennette, Caroline S; Richards, Catherine; Sullivan, Sean D; Ramsey, Scott D

    2016-05-01

    The cost of treating cancer has risen to unprecedented heights, putting tremendous financial pressure on patients, payers, and society. Previous studies have documented the rising prices of cancer drugs at launch, but less critical attention has been paid to the cost of these drugs after launch. We used pharmacy claims for commercially insured individuals to examine trends in postlaunch prices over time for orally administered anticancer drugs recently approved by the Food and Drug Administration (FDA). In the period 2007-13, inflation-adjusted per patient monthly drug prices increased 5 percent each year. Certain market changes also played a role, with prices rising an additional 10 percent with each supplemental indication approved by the FDA and declining 2 percent with the FDA's approval of a competitor drug. Our findings suggest that there is currently little competitive pressure in the oral anticancer drug market. Policy makers who wish to reduce the costs of anticancer drugs should consider implementing policies that affect prices not only at launch but also later. PMID:27140986

  19. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    Science.gov (United States)

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. PMID:23683834

  20. Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, L. E-mail: lalitv@magnum.barc.ernet.in; Dodke, P.B

    2004-12-01

    Two anticancer drugs, cyclophosphamide (CPH) and doxorubicin hydrochloride (DOXO), in powder form were exposed to a range of doses of {sup 60}Co gamma and electron beam radiation to study the effects of ionizing radiation. Pharmacopoeia tests, discolouration, degradation products, effect of irradiation temperature and dose rate were investigated. CPH undergoes less than 2% degradation at 30 kGy. Chromatographic studies revealed formation of several trace level degradation products, discolouration and free radicals in the irradiated CPH. N,N-bis (2-chloroethyl) group in the molecule is particularly sensitive to radiation degradation. Irradiation to 5 kGy at low temperature (77 K) did not result in significant changes. DOXO was observed to be quite radiation resistant and did not undergo significant changes in its physico-chemical properties and degradation product profile. It can be radiation sterilized at normal sterilization dose of 25 kGy.

  1. Codelivery of anticancer drugs and siRNA by mesoporous silica nanoparticles.

    Science.gov (United States)

    Hanafi-Bojd, Mohammad Yahya; Ansari, Legha; Malaekeh-Nikouei, Bizhan

    2016-09-01

    The most common method for cancer treatment is chemotherapy. Multidrug resistance (MDR) is one of the major obstacles in chemotherapeutic treatment of many human cancers. One strategy to overcome this challenge is the delivery of anticancer drugs and siRNA simultaneously using nanoparticles. Mesoporous silica nanoparticles are one of the most popular nanoparticles for cargo delivery because of their intrinsic porosity. This paper highlights recent advances in codelivery of chemotherapeutic and siRNA with mesoporous silica nanoparticles for cancer therapy. In addition, synthesis and functionalization approaches of these nanoparticles are summarized. This review presents insight into the utilization of nanoparticles and combination therapy to achieve more promising results in chemotherapy. PMID:27582236

  2. Nano drug delivery Study of Anticancer Properties on Jackfruit using QM/MM Methods

    Directory of Open Access Journals (Sweden)

    Behnaz Bonsakhteh

    2014-12-01

    Full Text Available Nano-biotechnology takes most of its fundamentals from nanotechnology which most of the equipment designed for nano-biotechnological are based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with chemistry, biology and nano-medicine. In this investigation, the ab initio calculations were implemented using Gaussian program package based on density functional level of theory (DFT to achieve the drug delivery technic for unraveling of linkage of Jackfruit to single walled carbon nanotubes . NMR investigation gives deeper physical insight into the impact of different structures . In this work NMR parameters were calculated at the Ethyl isovalerate, Propylisovalerate, Isobutyl isovalerate and 3-methyl butyl acetate extracted of Jack fruit with different functional groups in their active sites so, the anticancer properties of this compound have been clarified.

  3. Quadruplex-targeting anticancer drug BRACO-19 voltammetric and AFM characterization

    International Nuclear Information System (INIS)

    The quadruplex-targeting anticancer drug BRACO-19 adsorption and redox behaviour were investigated by atomic force microscopy (AFM) on a highly oriented pyrolytic graphite surface and by cyclic, differential pulse and square-wave voltammetry at a glassy carbon electrode. The AFM and voltammetric results demonstrated that the BRACO-19 orientation and strong adsorption, with the acridine aromatic core parallel or perpendicular to the carbon electrode surface depending on solution pH, directly influences the peak potentials and redox behaviour. BRACO-19 oxidation was a complex, pH-dependent, four-step electrode process. The first oxidation step was reversible, the second, third and fourth oxidation steps irreversible, and an electroactive irreversibly oxidized BRACO-19 oxidation product was formed. BRACO-19 reduction occurred in two irreversible, pH-independent steps. The proposed redox mechanisms are related to the pyrrolidine and acridine moieties

  4. Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization

    International Nuclear Information System (INIS)

    Two anticancer drugs, cyclophosphamide (CPH) and doxorubicin hydrochloride (DOXO), in powder form were exposed to a range of doses of 60Co gamma and electron beam radiation to study the effects of ionizing radiation. Pharmacopoeia tests, discolouration, degradation products, effect of irradiation temperature and dose rate were investigated. CPH undergoes less than 2% degradation at 30 kGy. Chromatographic studies revealed formation of several trace level degradation products, discolouration and free radicals in the irradiated CPH. N,N-bis (2-chloroethyl) group in the molecule is particularly sensitive to radiation degradation. Irradiation to 5 kGy at low temperature (77 K) did not result in significant changes. DOXO was observed to be quite radiation resistant and did not undergo significant changes in its physico-chemical properties and degradation product profile. It can be radiation sterilized at normal sterilization dose of 25 kGy

  5. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  6. A simple preparation of Ag@graphene nanocomposites for surface-enhanced Raman spectroscopy of fluorescent anticancer drug

    Science.gov (United States)

    Meng, Ying; Yan, Xueying; Wang, Yi

    2016-05-01

    A simple method was developed to synthesize Ag@graphene nanocomposites with rough Ag nanoparticles (AgNPs) conjugated with graphene nanosheets, and the nanocomposites could be used as substrates for effective surface-enhanced Raman spectroscopy (SERS) of fluorescent anticancer drug (Dox) since they could not only enhance the Raman signals but also suppress the fluorescent signals.

  7. Bio-modified carbon nanoparticles loaded with methotrexate Possible carrier for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, Thangavelu [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India); Prabhavathi, Sundaram [Department of Biotechnology, SRM University, Kattankulathur, Chennai 603 203 (India); Chamundeeswari, Munusamy [St. Joseph' s College of Engineering, Sholinganallur, Chennai 600119 (India); Sastry, Thotapalli Parvathaleswara, E-mail: sastrytp@hotmail.com [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India)

    2014-03-01

    The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM). Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures have exhibited the spherical nature of the composite and coating of the proteins on CNPs. The prepared CBM biocomposite has exhibited a sustained release of drug. MTT assay using A549 lung cancer cell lines has revealed 83% cell death at 150 μg/ml concentration of CBM. These results indicate that CNPs based biocomposites may be tried as therapeutic agents in treatment of cancer like diseases. - Highlights: • It's a cost effective method with maximum anticancer activity. • Maximum drug loading (methotrexate) and release have been achieved. • The prepared CBM was found to be biocompatible and hemocompatible. • About 83% of A549 lung cancer cell line apoptosis was observed with CBM.

  8. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Bina Gidwani

    2015-01-01

    Full Text Available Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carriers, and various approaches used for the delivery. The present review article aims to assess the utility of cyclodextrin-based carriers like liposomes, niosomes, nanoparticles, micelles, millirods, and siRNA for delivery of antineoplastic agents. These systems based on cyclodextrin complexation and nanotechnology will camouflage the undesirable properties of drug and lead to synergistic or additive effect. Cyclodextrin-based nanotechnology seems to provide better therapeutic effect and sustain long life of healthy and recovered cells. Still, considerable study on delivery system and administration routes of cyclodextrin-based carriers is necessary with respect to their pharmacokinetics and toxicology to substantiate their safety and efficiency. In future, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents.

  9. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent

    Science.gov (United States)

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  10. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent.

    Science.gov (United States)

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  11. Caleosin-based nanoscale oil bodies for targeted delivery of hydrophobic anticancer drugs

    International Nuclear Information System (INIS)

    Nanoscale artificial oil bodies (NOBs) could be assembled from plant oil, phospholipids (PLs), and oleosin (Ole) as previously reported. NOBs have a lipid-based structure that contains a central oil space enclosed by a monolayer of Ole-bound PLs. As an oil structural protein, Ole functions to maintain the integrity of NOBs. Like Ole, caleosin (Cal) is a plant oil-associated protein. In this study, we investigated the feasibility of NOBs assembled by Cal for targeted delivery of drugs. Cal was first fused with anti-HER2/neu affibody (ZH2), and the resulting fusion gene (Cal–ZH2) was then expressed in Escherichia coli. Consequently, NOBs assembled with the fusion protein were selectively internalized by HER2/neu-positive tumor cells. The internalization efficiency could reach as high as 90%. Furthermore, a hydrophobic anticancer drug, Camptothecin (CPT), was encapsulated into Cal-based NOBs. These CPT-loaded NOBs had a size around 200 nm and were resistant to hemolysis. Release of CPT from NOBs at the non-permissive condition followed a sustained and prolonged profile. After administration of the CPT formulation, Cal–ZH2-displayed NOBs exhibited a strong antitumor activity toward HER2/neu-positive cells both in vitro and in vivo. The result indicates the potential of Cal-based NOBs for targeted delivery of hydrophobic drugs.

  12. Bio-modified carbon nanoparticles loaded with methotrexate Possible carrier for anticancer drug delivery

    International Nuclear Information System (INIS)

    The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM). Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures have exhibited the spherical nature of the composite and coating of the proteins on CNPs. The prepared CBM biocomposite has exhibited a sustained release of drug. MTT assay using A549 lung cancer cell lines has revealed 83% cell death at 150 μg/ml concentration of CBM. These results indicate that CNPs based biocomposites may be tried as therapeutic agents in treatment of cancer like diseases. - Highlights: • It's a cost effective method with maximum anticancer activity. • Maximum drug loading (methotrexate) and release have been achieved. • The prepared CBM was found to be biocompatible and hemocompatible. • About 83% of A549 lung cancer cell line apoptosis was observed with CBM

  13. Individualization of anticancer therapy; molecular targets of novel drugs in oncology

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2012-11-01

    Full Text Available Deregulation of cellular signal transduction, caused by gene mutations, has been recognized as a basic factor of cancer initiation, promotion and progression. Thus, the ability to control the activity of overstimulated signal molecules by the use of appropriate inhibitors became the idea of targeted cancer therapy, which has provided an effective tool to normalize the molecular disorders in malignant cells and to treat certain types of cancer. The molecularly targeted drugs are divided into two major pharmaceutical classes: monoclonal antibodies and small-molecule kinase inhibitors. This review presents a summary of their characteristics, analyzing their chemical structures, specified molecular targets, mechanisms of action and indications for use. Also the molecules subjected to preclinical trials or phase I, II and III clinical trials evaluating their efficiency and safety are presented. Moreover, the article discusses further perspectives for development of targeted therapies focusing on three major directions: systematic searching and discovery of new targets that are oncogenic drivers, improving the pharmacological properties of currently known drugs, and developing strategies to overcome drug resistance. Finally, the role of proper pharmacodiagnostics as a key to rational anticancer therapy has been emphasized since the verification of reliable predictive biomarkers is a basis of individualized medicine in oncology. 

  14. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    Science.gov (United States)

    Choi, Jinhyang; Ko, Eunjung; Chung, Hye-Kyung; Lee, Jae Hee; Ju, Eun Jin; Lim, Hyun Kyung; Park, Intae; Kim, Kab-Sig; Lee, Joo-Hwan; Son, Woo-Chan; Lee, Jung Shin; Jung, Joohee; Jeong, Seong-Yun; Song, Si Yeol; Choi, Eun Kyung

    2015-01-01

    Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs. PMID:26457052

  15. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  16. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections.

    Science.gov (United States)

    Chen, Jin; He, Zheng-Min; Wang, Feng-Ling; Zhang, Zheng-Sheng; Liu, Xiu-zhen; Zhai, Dan-Dan; Chen, Wei-Dong

    2016-02-01

    Invasive fungal infections (IFI) are important complications of cancer, and they have become a major cause of morbidity and mortality in cancer patients. Effective anti-infection therapy is necessary to inhibit significant deterioration from these infections. However, they are difficult to treat, and increasing antifungal drug resistance often leads to a relapse. Curcumin, a natural component that is isolated from the rhizome of Curcuma longa plants, has attracted great interest among many scientists studying solid cancers over the last half century. Interestingly, curcumin provides an ideal alternative to current therapies because of its relatively safe profile, even at high doses. To date, curcumin's potent antifungal activity against different strains of Candida, Cryptococcus, Aspergillus, Trichosporon and Paracoccidioides have been reported, indicating that curcumin anticancer drugs may also possess an antifungal role, helping cancer patients to resist IFI complications. The aim of this review is to discuss curcumin's dual pharmacological activities regarding its applications as a natural anticancer and antifungal agent. These dual pharmacological activities are expected to lead to clinical trials and to improve infection survival among cancer patients. PMID:26723514

  17. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Lee SJ

    2015-08-01

    Full Text Available Sang Joon Lee,1,* Young-Il Jeong,2,* Hyung-Kyu Park,3 Dae Hwan Kang,2,4 Jong-Suk Oh,3 Sam-Gyu Lee,5 Hyun Chul Lee31Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 2Biomedical Research Institute, Pusan National University Hospital, Busan, 3Department of Microbiology, Chonnam National University Medical School, Gwangju, 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, 5Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea*These authors contributed equally to this workBackground: Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol (MPEG-doxorubicin (DOX conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting.Methods: Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid of carbodiimide chemistry (abbreviated as DendGDP. Dendrimer-MPEG-DOX conjugates without Gly-Phe-Leu-Gly peptide linkage was also synthesized for comparison (DendDP. Nanoparticles were then prepared using a dialysis procedure.Results: The synthesized DendGDP was confirmed with 1H nuclear magnetic resonance spectroscopy. The DendDP and DendGDP nanoparticles had a small particle size of less than 200 nm and had a spherical morphology. DendGDP had cathepsin B-sensitive drug release properties while DendDP did not show cathepsin B sensitivity. Further, DendGDP had improved anticancer activity when compared with doxorubicin or DendDP in an in vivo CT26 tumor xenograft model, ie, the volume of the CT26 tumor xenograft was significantly inhibited when compared with xenografts treated with doxorubicin or DendDP nanoparticles. The DendGDP nanoparticles were found to be relatively concentrated in the tumor tissue and

  18. Role of pharmacists in optimizing the use of anticancer drugs in the clinical setting

    Directory of Open Access Journals (Sweden)

    Ma CSJ

    2014-02-01

    Full Text Available Carolyn SJ Ma Department of Pharmacy Practice, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Honolulu, HI, USA Abstract: Oncology pharmacists, also known as oncology pharmacy specialists (OPSs have specialized knowledge of anticancer medications and their role in cancer. As essential member of the interdisciplinary team, OPSs optimize the benefits of drug therapy, help to minimize toxicities and work with patients on supportive care issues. The OPSs expanded role as experts in drug therapy extends to seven major key elements of medication management that include: selection, procurement, storage, preparation/dispensing, prescribing/dosing/transcribing, administration and monitoring/evaluation/education. As front line caregivers in hospital, ambulatory care, long-term care facilities, and community specialty pharmacies, the OPS also helps patients in areas of supportive care including nausea and vomiting, hematologic support, nutrition and infection control. This role helps the patient in the recovery phase between treatment cycles and adherence to chemotherapy treatment schedules essential for optimal treatment and outcome. Keywords: oncology pharmacist, oncology pharmacy specialist, medication management, chemotherapy

  19. miktoarm polymer: controlled synthesis, characterization, and application as anticancer drug carrier

    Science.gov (United States)

    Lin, Wenjing; Nie, Shuyu; Xiong, Di; Guo, Xindong; Wang, Jufang; Zhang, Lijuan

    2014-05-01

    Amphiphilic A2(BC)2 miktoarm star polymers [poly(ɛ-caprolactone)]2-[poly(2-(diethylamino)ethyl methacrylate)- b- poly(poly(ethylene glycol) methyl ether methacrylate)]2 [(PCL)2(PDEA- b-PPEGMA)2] were developed by a combination of ring opening polymerization (ROP) and continuous activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). The critical micelle concentration (CMC) values were extremely low (0.0024 to 0.0043 mg/mL), depending on the architecture of the polymers. The self-assembled empty and doxorubicin (DOX)-loaded micelles were spherical in morphologies, and the average sizes were about 63 and 110 nm. The release of DOX at pH 5.0 was much faster than that at pH 6.5 and pH 7.4. Moreover, DOX-loaded micelles could effectively inhibit the growth of cancer cells HepG2 with IC50 of 2.0 μg/mL. Intracellular uptake demonstrated that DOX was delivered into the cells effectively after the cells were incubated with DOX-loaded micelles. Therefore, the pH-sensitive (PCL)2(PDEA- b-PPEGMA)2 micelles could be a prospective candidate as anticancer drug carrier for hydrophobic drugs with sustained release behavior.

  20. The new generation drug candidate molecules: Spectral, electrochemical, DNA-binding and anticancer activity properties

    Science.gov (United States)

    Gölcü, Ayşegül; Muslu, Harun; Kılıçaslan, Derya; Çeşme, Mustafa; Eren, Özge; Ataş, Fatma; Demirtaş, İbrahim

    2016-09-01

    The new generation drug candidate molecules [Cu(5-Fu)2Cl2H2O] (NGDCM1) and [Zn(5-Fu)2(CH3COO)2] (NGDCM2) were obtained from the reaction of copper(II) and zinc(II) salts with the anticancer drug 5-fluoracil (5-Fu). These compounds have been characterized by spectroscopic and analytical techniques. Thermal behavior of the compounds were also investigated. The electrochemical properties of the compounds have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the NGDCM1 and NGDCM2 has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSdsDNA) with UV spectroscopy. UV studies of the interaction of the 5-Fu and metal derivatives with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. Thermal decomposition of the compounds lead to the formation of CuO and ZnO as final products. The effect of proliferation 5-Fu, NGDCM1 and NGDCM2 were examined on the HeLa cells using real-time cell analyzer with three different concentrations.

  1. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems.

    Science.gov (United States)

    Pan, Qixia; Lv, Yao; Williams, Gareth R; Tao, Lei; Yang, Huihui; Li, Heyu; Zhu, Limin

    2016-10-20

    In this work, we report a targeted drug delivery system built by functionalizing graphene oxide (GO) with carboxymethyl chitosan (CMC), fluorescein isothiocyanate and lactobionic acid (LA). Analogous systems without LA were prepared as controls. Doxorubicin (DOX) was loaded onto the composites through adsorption. The release behavior from both the LA-functionalized and the LA-free material is markedly pH sensitive. The modified GOs have high biocompatibility with the liver cancer cell line SMMC-7721, but can induce cell death after 24h incubation if loaded with DOX. Tests with shorter (2h) incubation times were undertaken to investigate the selectivity of the GO composites: under these conditions, neither DOX-loaded system was found to be toxic to the non-cancerous L929 cell line, but the LA-containing composite showed the ability to selectively induce cell death in cancerous (SMMC-7721) cells while the LA-free analogue was inactive here also. These findings show that the modified GO materials are strong potential candidates for targeted anticancer drug delivery systems. PMID:27474628

  2. Polylactide-based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery.

    Science.gov (United States)

    Mhlanga, Nikiwe; Sinha Ray, Suprakas; Lemmer, Yolandy; Wesley-Smith, James

    2015-10-14

    To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe3O4) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe3O4 NPs by a coprecipitation method and then PLA/DOX/Fe3O4 spheres using the solvent evaporation (oil-in-water) technique. The Fe3O4 NPs were coated with oleic acid to improve their hydrophobicity and biocompatibility for medical applications. The structure, morphology and properties of the MNPs and PLA/DOX/Fe3O4 spheres were studied using various techniques, such as FTIR, SEM, TEM, TGA, VSM, UV-vis spectroscopy, and zeta potential measurements. The in vitro DOX release from the spheres was prolonged, sustained, and pH-dependent and fit a zero-order kinetics model and an anomalous mechanism. Interestingly, the spheres did not show a DOX burst effect, ensuring the minimal exposure of the healthy cells and an increased drug payload at the tumor site. The pronounced biocompatibility of the PLA/DOX/Fe3O4 spheres with HeLa cells was proven by a WST assay. In summary, the synthesized PLA/DOX/Fe3O4 spheres have the potential for magnetic targeting of tumor cells to transform conventional methods. PMID:26390359

  3. In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release.

    Science.gov (United States)

    Weng, Lihui; Rostamzadeh, Parinaz; Nooryshokry, Navid; Le, Hung C; Golzarian, Jafar

    2013-06-01

    Natural polymer-derived materials have attracted increasing interest in the biomedical field. Polysaccharides have obvious advantages over other polymers employed for biomedical applications due to their exceptional biocompatibility and biodegradability. None of the spherical embolic agents used clinically is biodegradable. In the current study, microspheres prepared from chitosan and carboxymethyl cellulose (CMC) were investigated as a biodegradable embolic agent for arterial embolization applications. Aside from the enzymatic degradability of chitosan units, the cross-linking bonds in the matrix, Schiff bases, are susceptible to hydrolytic cleavage in aqueous conditions, which would overcome the possible shortage of enzymes inside the arteries. The size distribution, morphology, water retention capacity and degradability of the microspheres were found to be affected by the modification degree of CMC. An anticancer drug, doxorubicin, was successfully incorporated into these microspheres for local release and thus for killing cancerous cells. These microspheres demonstrated controllable degradation time, variable swelling and tunable drug release profiles. Co-culture with human umbilical vein endothelial cells revealed non-cytotoxic nature of these microspheres compared to monolayer control (P>0.95). In addition, a preliminary study on the in vivo degradation of the microspheres (100-300μm) was performed in a rabbit renal embolization model, which demonstrated that the microspheres were compatible with microcatheters for delivery, capable of occluding the arteries, and biodegradable inside arteries. These microspheres with biodegradability would be promising for embolization therapies. PMID:23419554

  4. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition.

    Science.gov (United States)

    Wilson, Catherine; Nicholes, Katrina; Bustos, Daisy; Lin, Eva; Song, Qinghua; Stephan, Jean-Philippe; Kirkpatrick, Donald S; Settleman, Jeff

    2014-09-15

    Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, "EGFR-addicted" cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erlotinib-resistant cells, we performed a small molecule screen of ~200 established anti-cancer agents using the EGFR mutant NSCLC HCC827 cell line and a corresponding mesenchymal derivative line. The mesenchymal cells were more resistant to most tested agents; however, a small number of agents showed selective growth inhibitory activity against the mesenchymal cells, with the most potent being the Abl/Src inhibitor, dasatinib. Analysis of the tyrosine phospho-proteome revealed several Src/FAK pathway kinases that were differentially phosphorylated in the mesenchymal cells, and RNAi depletion of the core Src/FAK pathway components in these mesenchymal cells caused apoptosis. These findings reveal a novel role for Src/FAK pathway kinases in drug resistance and identify dasatinib as a potential therapeutic for treatment of erlotinib resistance associated with EMT. PMID:25193862

  5. Flagging Drugs That Inhibit the Bile Salt Export Pump.

    Science.gov (United States)

    Montanari, Floriane; Pinto, Marta; Khunweeraphong, Narakorn; Wlcek, Katrin; Sohail, M Imran; Noeske, Tobias; Boyer, Scott; Chiba, Peter; Stieger, Bruno; Kuchler, Karl; Ecker, Gerhard F

    2016-01-01

    The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators. PMID:26642869

  6. Mixed PEG-PE/Vitamin E Tumor-Targeted Immunomicelles as Carriers for Poorly Soluble Anti-Cancer Drugs: Improved Drug Solubilization and Enhanced In Vitro Cytotoxicity

    OpenAIRE

    Sawant, Rupa R.; Sawant, Rishikesh M.; Torchilin, Vladimir P.

    2008-01-01

    Two poorly soluble, potent anticancer drugs, paclitaxel and camptothecin, were successfully solubilized by mixed micelles of polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) and vitamin E. Drug containing micelles were additionally modified with anti-nucleosome monoclonal antibody 2C5 (mAb 2C5), which can specifically bring micelles to tumor cells in vitro. The optimized micelles had an average size of about 13-to-22 nm and the immuno-modification of micelles did not significantly chang...

  7. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity.

    Science.gov (United States)

    Luo, Zhong; Hu, Yan; Cai, Kaiyong; Ding, Xingwei; Zhang, Quan; Li, Menghuan; Ma, Xing; Zhang, Beilu; Zeng, Yongfei; Li, Peizhou; Li, Jinghua; Liu, Junjie; Zhao, Yanli

    2014-09-01

    In this study, a type of intracellular redox-triggered hollow mesoporous silica nanoreservoirs (HMSNs) with tumor specificity was developed in order to deliver anticancer drug (i.e., doxorubicin (DOX)) to the target tumor cells with high therapeutic efficiency and reduced side effects. Firstly, adamantanamine was grafted onto the orifices of HMSNs using a redox-cleavable disulfide bond as an intermediate linker. Subsequently, a synthetic functional molecule, lactobionic acid-grafted-β-cyclodextrin (β-CD-LA), was immobilized on the surface of HMSNs through specific complexation with the adamantyl group, where β-CD served as an end-capper to keep the loaded drug within HMSNs. β-CD-LA on HMSNs could also act as a targeting agent towards tumor cells (i.e., HepG2 cells), since the lactose group in β-CD-LA is a specific ligand binding with the asialoglycoprotein receptor (ASGP-R) on HepG2 cells. In vitro studies demonstrated that DOX-loaded nanoreservoirs could be selectively endocytosed by HepG2 cells, releasing therapeutic DOX into cytoplasm and efficiently inducing the apoptosis and cell death. In vivo investigations further confirmed that DOX-loaded nanoreservoirs could permeate into the tumor sites and actively interact with tumor cells, which inhibited the tumor growth with the minimized side effect. On the whole, this drug delivery system exhibits a great potential as an efficient carrier for targeted tumor therapy in vitro and in vivo. PMID:24930850

  8. Bio-derived poly(gamma-glutamic acid) nanogels as controlled anticancer drug delivery carriers.

    Science.gov (United States)

    Bae, Hee Ho; Cho, Mi Young; Hong, Ji Hyeon; Poo, Haryoung; Sung, Moon-Hee; Lim, Yong Taik

    2012-12-01

    We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(gamma- glutamic acid) (gamma-PGA). gamma-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated gamma-PGA was synthesized by covalent coupling between the carboxyl groups of gamma-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded gamma-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated gamma-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated gamma-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked gamma-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked gamma-PGA nanogels in aqueous solution were 136.3 +/- 37.6 nm and -32.5 +/- 5.3 mV, respectively. The loading amount of Dox was approximately 38.7 microgram per mg of gamma-PGA nanogel. The Dox-loaded disulfide cross-linked gamma-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1- 10 mM). Through fluorescence microscopy and FACS, the cellular uptake of gamma-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of gamma-PGA nanogels. The bio-derived gamma-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications. PMID:23221543

  9. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers.

    Science.gov (United States)

    Filippousi, Maria; Turner, Stuart; Leus, Karen; Siafaka, Panoraia I; Tseligka, Eirini D; Vandichel, Matthias; Nanaki, Stavroula G; Vizirianakis, Ioannis S; Bikiaris, Dimitrios N; Van Der Voort, Pascal; Van Tendeloo, Gustaaf

    2016-07-25

    Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(ε-caprolactone) with d-α-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37°C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations. PMID:27235556

  10. Comparison of Two Approaches for the Attachment of a Drug to Gold Nanoparticles and Their Anticancer Activities.

    Science.gov (United States)

    Fu, Yingjie; Feng, Qishuai; Chen, Yifan; Shen, Yajing; Su, Qihang; Zhang, Yinglei; Zhou, Xiang; Cheng, Yu

    2016-09-01

    Drug attachment is important in drug delivery for cancer chemotherapy. The elucidation of the release mechanism and biological behavior of a drug is essential for the design of delivery systems. Here, we used a hydrazone bond or an amide bond to attach an anticancer drug, doxorubicin (Dox), to gold nanoparticles (GNPs) and compared the effects of the chemical bond on the anticancer activities of the resulting Dox-GNPs. The drug release efficiency, cytotoxicity, subcellular distribution, and cell apoptosis of hydrazone-linked HDox-GNPs and amide-linked SDox-GNPs were evaluated in several cancer cells. HDox-GNPs exhibited greater potency for drug delivery via triggered release comediated by acidic pH and glutathione (GSH) than SDox-GNPs triggered by GSH alone. Dox released from HDox-GNPs was released in lysosomes and exerted its drug activity by entering the nuclei. Dox from SDox-GNPs was mainly localized in lysosomes, significantly reducing its efficacy against cancer cells. In addition, in vivo studies in tumor-bearing mice demonstrated that HDox-GNPs and SDox-GNPs both accumulate in tumor tissue. However, only HDox-GNPs enhanced inhibition of subcutaneous tumor growth. This study demonstrates that HDox-GNPs display significant advantages in drug release and antitumor efficacy. PMID:27518201

  11. Electrochemical and spectrophotometric characterisation of protein kinase inhibitor and anticancer drug danusertib

    International Nuclear Information System (INIS)

    Graphical abstract: Chemical structure of danusertib and DP voltammograms recorded in 5 μM danusertib in pH = 4.5: (black curve) first and (dotted curve) second scan. - Highlights: • Clarify the redox mechanism of danusertib. • pH dependent process investigated at a glassy carbon electrode. • Number of electrons and protons determined. • Analytical determination of danusertib by voltammetry and spectrophotometry. • Different electroactive centres identified and redox mechanism proposed. - Abstract: The electrochemical oxidation mechanism of the anti-cancer drug and kinases inhibitor danusertib was studied by cyclic, differential pulse, square wave voltammetry and a glassy carbon electrode. Danusertib undergoes oxidation in a cascade mechanism and depending on the pH of the supporting electrolyte several oxidation peaks were observed. The number of electrons and protons involved in each oxidation step as well as the pKa ∼ 10.0 were determined. The analytical determination of danusertib was carried out in pH = 7.0 by square wave voltammetry with LOD = 27.4 nM and UV–VIS spectrophotometry with LOD = 0.5 μM. Different electroactive centres of danusertib were identified through comparative studies with similar compounds such as imatinib and piperazine, and an oxidation mechanism of danusertib proposed

  12. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  13. Preliminary neutron diffraction studies of Escherichia coli dihydrofolate reductase bound to the anticancer drug methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brad C. [University of Tennessee, Knoxville (UTK); Meilleur, Flora [Institut Laue-Langevin (ILL); Myles, Dean A A [ORNL; Howell, Elizabeth E. [University of Tennessee, Knoxville (UTK); Dealwis, Chris G. [University of Tennessee, Knoxville (UTK)

    2005-01-01

    The contribution of H atoms in noncovalent interactions and enzymatic reactions underlies virtually all aspects of biology at the molecular level, yet their 'visualization' is quite difficult. To better understand the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR), a neutron diffraction study is under way to directly determine the accurate positions of H atoms within its active site. Despite exhaustive investigation of the catalytic mechanism of DHFR, controversy persists over the exact pathway associated with proton donation in reduction of the substrate, dihydrofolate. As the initial step in a proof-of-principle experiment which will identify ligand and residue protonation states as well as precise solvent structures, a neutron diffraction data set has been collected on a 0.3 mm{sup 3} D{sub 2}O-soaked crystal of ecDHFR bound to the anticancer drug methotrexate (MTX) using the LADI instrument at ILL. The completeness in individual resolution shells dropped to below 50% between 3.11 and 3.48 {angstrom} and the I/{sigma}(I) in individual shells dropped to below 2 at around 2.46 {angstrom}. However, reflections with I/{sigma}(I) greater than 2 were observed beyond these limits (as far out as 2.2 {angstrom}). To our knowledge, these crystals possess one of the largest primitive unit cells (P6{sub 1}, a = b = 92, c = 73 {angstrom}) and one of the smallest crystal volumes so far tested successfully with neutrons.

  14. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  15. Controlled slow release of anticancer drugs from protein-hydrophilic vinyl polymer carriers

    International Nuclear Information System (INIS)

    The release behavior has been studied for bleomycin hydrochloride (BLM), an anticancer drug, from carrier composities prepared from mixtures of proteins and hydrophilic vinyl monomers by combined procedures of radiation polymerization and thermal denaturation. The magnitude, Q/tsup(1/2), for BLM release was the smallest when albumin was denatured by thermal treatment after the polymerization of albumin-2-hydroxyethyl methacrylate (HEMA) by radiation at -780C. This retardation was further enhanced by the use of cross-linked polymers. On the other hand, the digestion of the albumin-HEMA composite, during the release test carried out in the saline containing some proteases, was markedly suppressed with increasing the HEMA content in the composite. The digestion was lowered more than expected from the albumin content in the composite. In summary of the release tests and the scanning electron microscopic observations, it was concluded that the release of BLM and the digestion of albumin component contained in the composites can be markedly suppressed by the incorporation of the polymeric component. (author)

  16. Approaches to reducing toxicity of parenteral anticancer drug formulations using cyclodextrins.

    Science.gov (United States)

    Bhardwaj, R; Dorr, R T; Blanchard, J

    2000-01-01

    Mitomycin C (MMC) is a clinically useful anticancer drug which can cause severe dermatological problems upon injection. It can cause delayed erythema and/or ulceration occurring either at or distant from the injection site for weeks or even months after administration. In an attempt to reduce the skin necrosis, complexation of MMC with cyclodextrins was studied in order to help increase patient compliance and acceptance. The complexation of MMC with 2-Hydroxypropylbetacyclodextrin (HPBCD) in the presence and absence of mannitol was studied and it was found that the mannitol present in the commercial formulation caused an increase in the binding of MMC to HPBCD. Isotonicity adjustment of hypotonic MMC formulations by the addition of normal saline did not change the degree of complexation with MMC. The complexed formulations were then tested to determine their antitumor efficacy using the B-16 melanoma cell model. No difference in antitumor activity between the complexed and uncomplexed MMC formulations was observed. Different MMC formulations were tested for their potential to produce skin irritation and/or toxicity using intradermal injections in a BALB/c mouse model in order to find the most suitable formulation. The skin ulceration studies indicated that there were no significant differences between the isotonic MMC solution and isotonic formulations of MMC complexed with HPBCD. PMID:10927914

  17. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    Science.gov (United States)

    Cui, Jingjie; Chen, Jing; Chen, Shaowei; Gao, Li; Xu, Ping; Li, Hong

    2016-03-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs and molecular biology research.

  18. Calorimetric and spectroscopic studies on the interaction of anticancer drug mitoxantrone with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Keswani, Neelam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Kishore, Nand, E-mail: nandk@chem.iitb.ac.in [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-09-15

    Highlights: > Human serum albumin exhibits two binding sites for mitoxantrone. > Discrepancies in calorimetric and spectroscopic results clarify binding sites. > Effect of ionic strength on binding permitted detailed analysis of interactions. > Electrostatic interactions predominate in binding. > One binding site on protein does not have tryptophan in immediate vicinity. - Abstract: Binding of the anticancer drug mitoxantrone with the protein human serum albumin (HSA) has been studied by using isothermal titration calorimetry (ITC), in combination with fluorescence, UV-visible, and circular dichroism spectroscopy. The thermodynamic parameters of binding have been evaluated from ITC and spectroscopic results and compared. The ITC results demonstrate that the binding of mitoxantrone with HSA occurs according to two sets of binding sites on the protein as opposed to the fluorescence and UV-visible spectroscopic results. Blockage of one binding site on HSA for mitoxantrone in the presence of NaCl indicates strong involvement of electrostatic interactions in the binding of the drug with the protein. An insignificant temperature dependence of the association constant observed in fluorescence measurements suggests a very low enthalpy of binding which is in close agreement with the results obtained from ITC measurements. Fluorescence life time measurements suggest formation of a static complex between mitoxantrone and HSA. The discrepancies in the ITC and fluorescence results suggest that one of the binding sites on the protein for mitoxantrone does not contain tryptophan residue in its immediate vicinity. The calorimetric and spectroscopic results have provided quantitative information on the binding of mitoxantrone with HSA and suggest that the binding is dominated by electrostatic interactions.

  19. Poly(styrene-b-poly(DL-lactide copolymer-based nanoparticles for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Lee JY

    2014-06-01

    Full Text Available Jae-Young Lee,1 Jung Sun Kim,2 Hyun-Jong Cho,3 Dae-Duk Kim1 1College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; 2Division of Health Sciences, Dongseo University, Busan, Republic of Korea; 3College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea Abstract: Poly(styrene-b-poly(DL-lactide (PS-PDLLA copolymer-based nanoparticles (NPs of a narrow size distribution, negative zeta potential, and spherical shape were fabricated for the delivery of docetaxel (DCT. The particle size was consistently maintained in serum for 24 hours and a sustained drug release pattern was observed for 10 days in the tested formulations. The cytotoxicity of the developed blank NPs was negligible in prostate cancer (PC-3 cells. Cellular uptake and distribution of the constructed NPs containing a hydrophobic fluorescent dye was monitored by confocal laser scanning microscopy (CLSM for 24 hours. Anti-tumor efficacy of the PS-PDLLA/DCT NPs in PC-3 cells was significantly more potent than that of the group treated with commercially available DCT, Taxotere® (P<0.05. Blood biochemistry tests showed that no serious toxicity was observed with the blank NPs in the liver and kidney. In a pharmacokinetic study of DCT in rats, in vivo clearance of PS-PDLLA/DCT NPs decreased while the half-life in blood increased compared to the Taxotere-treated group (P<0.05. The PS-PDLLA NPs are expected to be a biocompatible and efficient nano-delivery system for anticancer drugs. Keywords: docetaxel, prolonged blood circulation, prostate cancer

  20. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.

    Science.gov (United States)

    Guo, Jing; Liu, Hui; Zheng, Jie

    2016-01-01

    Synthetic lethality (SL) is a type of genetic interaction between two genes such that simultaneous perturbations of the two genes result in cell death or a dramatic decrease of cell viability, while a perturbation of either gene alone is not lethal. SL reflects the biologically endogenous difference between cancer cells and normal cells, and thus the inhibition of SL partners of genes with cancer-specific mutations could selectively kill cancer cells but spare normal cells. Therefore, SL is emerging as a promising anticancer strategy that could potentially overcome the drawbacks of traditional chemotherapies by reducing severe side effects. Researchers have developed experimental technologies and computational prediction methods to identify SL gene pairs on human and a few model species. However, there has not been a comprehensive database dedicated to collecting SL pairs and related knowledge. In this paper, we propose a comprehensive database, SynLethDB (http://histone.sce.ntu.edu.sg/SynLethDB/), which contains SL pairs collected from biochemical assays, other related databases, computational predictions and text mining results on human and four model species, i.e. mouse, fruit fly, worm and yeast. For each SL pair, a confidence score was calculated by integrating individual scores derived from different evidence sources. We also developed a statistical analysis module to estimate the druggability and sensitivity of cancer cells upon drug treatments targeting human SL partners, based on large-scale genomic data, gene expression profiles and drug sensitivity profiles on more than 1000 cancer cell lines. To help users access and mine the wealth of the data, we developed other practical functionalities, such as search and filtering, orthology search, gene set enrichment analysis. Furthermore, a user-friendly web interface has been implemented to facilitate data analysis and interpretation. With the integrated data sets and analytics functionalities, SynLethDB would

  1. XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6-Mercaptopurine

    Science.gov (United States)

    Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.

    2015-07-01

    The single crystal of the hydrated anticancer drug, 6-Mercaptopurine (6-MP), has been grown by slow evaporation technique under room temperature. The structure was determined by single crystal X-ray diffraction. The vibrational spectral analysis was carried out using Laser Raman and FT-IR spectroscopy in the range of 3300-100 and 4000-400 cm-1. The single crystal X-ray studies shows that the crystal packing is dominated by N-H⋯O and O-H⋯N classical hydrogen bonds leading to a hydrogen bonded ensemble. This classical hydrogen bonds were further connected through O-H⋯S hydrogen bond to form two primary ring R44(16) and R44(12) motifs. These two primary ring motifs are interlinked with each other to build a ladder like structure. These ladders are connected through N-H⋯N hydrogen bond along c-axis of the unit cell through chain C(5) motifs. Further, the strength of the hydrogen bonds is studied through vibrational spectral measurements. The shifting of bands due to the intermolecular interactions was also analyzed in the solid crystalline state. Geometrical optimizations of the drug molecule were done by Density Functional Theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which show significant agreement. The natural bond orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and intramolecular charge transfer (ICT). The chemical hardness, electro-negativity and chemical potential of the molecule are carried out by HOMO-LUMO plot. In which, the frontier orbitals has lower band gap value indicating the possible pharmaceutical activity of the molecule.

  2. Characterization of the binding of an anticancer drug, lapatinib to human serum albumin.

    Science.gov (United States)

    Kabir, Md Zahirul; Mukarram, Abdul Kadir; Mohamad, Saharuddin B; Alias, Zazali; Tayyab, Saad

    2016-07-01

    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions. PMID:27128364

  3. Structural and Dynamical Effects Induced by the Anticancer Drug Topotecan on the Human Topoisomerase I – DNA Complex

    OpenAIRE

    Mancini, Giordano; D'Annessa, Ilda; Coletta, Andrea; Sanna, Nico; Chillemi, Giovanni; Desideri, Alessandro

    2010-01-01

    Background Human topoisomerase I catalyzes the relaxation of DNA supercoils in fundamental cell processes like transcription, replication and chromosomal segregation. It is the only target of the camptothecin family of anticancer drugs. Among these, topotecan has been used to treat lung and ovarian carcinoma for several years. Camptothecins reversibly binds to the covalent intermediate DNA-enzyme, stabilizing the cleavable complex and reducing the religation rate. The stalled complex then col...

  4. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models

    OpenAIRE

    HogenEsch, Harm; Yu Nikitin, Alexander

    2012-01-01

    Experiments with cultures of human tumor cell lines, xenografts of human tumors into immunodeficient mice, and mouse models of human cancer are important tools in the development and testing of anti-cancer drugs. Tumors are complex structures composed of genetically and phenotypically heterogeneous cancer cells that interact in a reciprocal manner with the stromal microenvironment and the immune system. Modeling the complexity of human cancers in cell culture and in mouse models for preclinic...

  5. Preclinical Predictors of Anticancer Drug Efficacy: Critical Assessment with Emphasis on Whether Nanomolar Potency Should Be Required of Candidate Agents

    OpenAIRE

    Wong, C. C.; Cheng, Ka-Wing; Rigas, Basil

    2012-01-01

    In the current paradigm of anticancer drug development, candidate compounds are evaluated by testing their in vitro potency against molecular targets relevant to carcinogenesis, their effect on cultured cancer cells, and their ability to inhibit cancer growth in animal models. We discuss the key assumptions inherent in these approaches. In recent years, great emphasis has been placed on selecting for development compounds with nanomolar in vitro potency, expecting that they will be efficaciou...

  6. Drug delivery: enabling technology for drug discovery and development. iPRECIO® Micro Infusion Pump: Programmable, refillable and implantable

    OpenAIRE

    TsungTan

    2011-01-01

    Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized c...

  7. Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO® Micro Infusion Pump: Programmable, Refillable, and Implantable

    OpenAIRE

    Tan, Tsung; Watts, Stephanie W.; Davis, Robert Patrick

    2011-01-01

    Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable, and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized cathet...

  8. In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property.

    Science.gov (United States)

    Yang, Tiezhu; Wan, Zhanghui; Liu, Zhiyuan; Li, Haihong; Wang, Hao; Lu, Nan; Chen, Zhenhua; Mei, Xifan; Ren, Xiuli

    2016-06-01

    In this paper, we facilitated the preparation of uniform calcium carbonate nanospheres and the encapsulation of anticancer drug (Doxorubicin, Dox) in one step by a facile bio-inspired mineralization method at room temperature. Hesperidin (Hesp), a natural originated flavanone glycoside, was introduced as crystallization modifier. The obtained Dox encapsulated CaCO3 nanospheres (Dox@CaCO3-Hesp NSs) having a narrow size range of ~200nm. The drug loading/release studies reveal that these Dox@CaCO3-Hesp NSs have a drug loading efficiency (DLE) of 83% and drug loading content (DLC) of 14wt%. Besides, the release of Dox from Dox@CaCO3-Hesp NSs was pH depended. At pH=7.4, only a small amount (~28%) of Dox was released. While at pH=5.0, all amount of incorporated Dox was released. Confocal laser scanning microscopy (CLSM) image reveals the Dox@CaCO3-Hesp NSs can internalize the cells. These results suggest the Dox@CaCO3-Hesp NSs can be potentially used to utilize pH-responsive delivery of anticancer drugs. PMID:27040233

  9. First inter-laboratory comparison exercise for the determination of anticancer drugs in aqueous samples.

    Science.gov (United States)

    Heath, Ester; Česen, Marjeta; Negreira, Noelia; de Alda, Miren Lopez; Ferrando-Climent, Laura; Blahova, Lucie; Nguyen, Tung Viet; Adahchour, Mohamed; Ruebel, Achim; Llewellyn, Neville; Ščančar, Janez; Novaković, Srdjan; Mislej, Vesna; Stražar, Marjeta; Barceló, Damià; Kosjek, Tina

    2016-08-01

    The results of an inter-laboratory comparison exercise to determine cytostatic anticancer drug residues in surface water, hospital wastewater and wastewater treatment plant effluent are reported. To obtain a critical number of participants, an invitation was sent out to potential laboratories identified to have the necessary knowledge and instrumentation. Nine laboratories worldwide confirmed their participation in the exercise. The compounds selected (based on the extent of use and laboratories capabilities) included cyclophosphamide, ifosfamide, 5-fluorouracil, gemcitabine, etoposide, methotrexate and cisplatinum. Samples of spiked waste (hospital and wastewater treatment plant effluent) and surface water, and additional non-spiked hospital wastewater, were prepared by the organising laboratory (Jožef Stefan Institute) and sent out to each participant partner for analysis. All analytical methods included solid phase extraction (SPE) and the use of surrogate/internal standards for quantification. Chemical analysis was performed using either liquid or gas chromatography mass (MS) or tandem mass (MS/MS) spectrometry. Cisplatinum was determined using inductively coupled plasma mass spectrometry (ICP-MS). A required minimum contribution of five laboratories meant that only cyclophosphamide, ifosfamide, methotrexate and etoposide could be included in the statistical evaluation. z-score and Q test revealed 3 and 4 outliers using classical and robust approach, respectively. The smallest absolute differences between the spiked values and the measured values were observed in the surface water matrix. The highest within-laboratory repeatability was observed for methotrexate in all three matrices (CV ≤ 12 %). Overall, inter-laboratory reproducibility was poor for all compounds and matrices (CV 27-143 %) with the only exception being methotrexate measured in the spiked hospital wastewater (CV = 8 %). Random and total errors were identified by means of Youden

  10. Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells.

    Science.gov (United States)

    Huang, Ou; Zhang, Weili; Zhi, Qiaoming; Xue, Xiaofeng; Liu, Hongchun; Shen, Daoming; Geng, Meiyu; Xie, Zuoquan; Jiang, Min

    2015-04-01

    Triple-negative breast cancer (TNBC) is defined as a group of primary breast cancers lacking expression of estrogen, progesterone, and human epidermal growth factor receptor-2 (HER-2) receptors, characterized by higher relapse rate and lower survival compared with other subtypes. Due to lack of identified targets and molecular heterogeneity, conventional chemotherapy is the only available option for treatment of TNBC, but non-discordant positive therapeutic efficacy could not be achieved. Here, we demonstrated that these TNBC cells were sensitive to teriflunomide, which was a well-known immunomodulatory drug for treatment of relapsing multiple sclerosis (MS). Potent anti-cancer effects in TNBC in vitro, including proliferation inhibition, cell cycle delay, cell apoptosis, and suppression of cell motility and invasiveness, could be achieved with this agent. Of note, we showed that multiple signals involved in TNBC proliferation, survival, migratory, and invasive potential were under regulation by teriflunomide. Among them, we identified down-regulation of growth factor receptors to abolish growth maintenance, suppression of c-Myc, and cyclin D1 to contribute to its anti-proliferative effect, modulation of components of cell cycle to induce S-phase arrest, degradation of Bcl-xL, and up-regulation of BAX via activation of MAPK pathway to induce apoptosis, and inhibition of epithelial-mesenchymal transition (EMT) process, matrix metalloproteinase-9 (MMP9) expression, and inactivation of Src/FAK to reduce TNBC migration and invasion. The results identified teriflunomide may be of therapeutic benefit for the more aggressive and difficult-to-treat breast cancer subtype, indicating the use of teriflunomide for clinical trials for treatment of TNBC patients. PMID:25304315

  11. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs.

    Science.gov (United States)

    Picot, Nadia; Guerrette, Roxann; Beauregard, Annie-Pier; Jean, Stéphanie; Michaud, Pascale; Harquail, Jason; Benzina, Sami; Robichaud, Gilles A

    2016-07-01

    Mammaglobin 1 (MGB1), a member of the secretoglobin family, is expressed in mammary epithelial tissues and is overexpressed in most mammary carcinomas. Despite the extensive research correlating MGB1 expression profiles to breast cancer pathogenesis and disease outcome, the biological significance of MGB1 in cancer processes is still unclear. We have thus set out to conduct a functional evaluation of the molecular and cellular roles of MGB1 in breast cancer processes leading to disease progression. Using a series of breast cancer cell models with conditional MGB1 expression, we demonstrate that MGB1 promotes cancer cell malignant features. More specifically, loss of MGB1 expression resulted in a decrease of cell proliferation, soft agar spheroid formation, migration, and invasion capacities of breast cancer cells. Concomitantly, we also observed that MGB1 expression activates signaling pathways mediated by MAPK members (p38, JNK, and ERK), the focal adhesion kinase (FAK), matrix metalloproteinases (MMPs) and NFκB. Moreover, MGB1 regulates epithelial to mesenchymal (EMT) features and modulates Snail, Twist and ZEB1 expression levels. Interestingly, we also observed that expression of MGB1 confers breast cancer cell sensitivity to anticancer drug-induced apoptosis. Together, our results support a role for MGB1 in tumor malignancy in exchange for chemosensitivity. These findings provide one of the first descriptive overview of the molecular and cellular roles of MGB1 in breast cancer processes and may offer new insight to the development of therapeutic and prognostic strategies in breast cancer patients. © 2015 Wiley Periodicals, Inc. PMID:26207726

  12. Cardiac glycosides induce resistance to tubulin-dependent anticancer drugs in androgen-independent human prostate cancer.

    Science.gov (United States)

    Huang, Dong-Ming; Guh, Jih-Hwa; Huang, Yao-Ting; Chueh, Shih-Chieh; Wang, Hui-Po; Teng, Che-Ming

    2002-01-01

    Due to high prevalence and mortality and the lack of effective therapies, prostate cancer is one of the most crucial health problems in men. Drug resistance aggravates the situation, not only in human prostate cancer but also in other cancers. In this study, we report for the first time that cardiac glycosides (e.g. ouabain and digitoxin) induced resistance of human prostate cancer cells (PC-3) in vitro to tubulin-binding anticancer drugs, such as paclitaxel, colchicine, vincristine and vinblastine. Cardiac glycosides exhibited amazing ability to reverse the G2/M arrest of the cell cycle and cell apoptosis induced by tubulin-binding agents. However, neither ionomycin (a Ca(2+) ionophore) nor veratridine (a Na(+) ionophore) mimicked the preventive action of cardiac glycosides, indicating that elevation of the intracellular Ca(2+) concentration and Na(+) accumulation were not involved in the cardiac glycoside action. Furthermore, cardiac glycosides showed little influence on the effects induced by actinomycin D, anisomycin and doxorubicin, suggesting selectivity for microtubule-targeted anticancer drugs. Using in situ immunofluorescent detection of mitotic spindles, our data showed that cardiac glycosides diminished paclitaxel-induced accumulation of microtubule spindles; however, in a non-cell assay system, cardiac glycosides had little influence on colchicine- and paclitaxel-induced microtubule dynamics. Using an isotope-labeled assay method, we found that ouabain modestly but significantly inhibited the transport of [(14)C]paclitaxel from the cytosol into the nucleus. It is suggested that cardiac glycosides inhibit the G2/M arrest induced by tubulin-binding anticancer drugs via an indirect blockade on microtubule function. The decline in transport of these drugs into the nucleus may partly explain the action of cardiac glycosides. PMID:12218360

  13. In Situ Biochemical Demonstration That P-Glycoprotein Is a Drug Efflux Pump with Broad Specificity

    OpenAIRE

    Chen, Yu; Simon, Sanford M.

    2000-01-01

    While P-glycoprotein (Pgp) is the most studied protein involved in resistance to anti-cancer drugs, its mechanism of action is still under debate. Studies of Pgp have used cell lines selected with chemotherapeutics which may have developed many mechanisms of resistance. To eliminate the confounding effects of drug selection on understanding the action of Pgp, we studied cells transiently transfected with a Pgp-green fluorescent protein (GFP) fusion protein. This method generated a mixed popul...

  14. Towards targeting anticancer drugs: ruthenium(ii)-arene complexes with biologically active naphthoquinone-derived ligand systems.

    Science.gov (United States)

    Kubanik, Mario; Kandioller, Wolfgang; Kim, Kunwoo; Anderson, Robert F; Klapproth, Erik; Jakupec, Michael A; Roller, Alexander; Söhnel, Tilo; Keppler, Bernhard K; Hartinger, Christian G

    2016-08-16

    Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays. PMID:27214822

  15. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying

    2015-04-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  16. PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability.

    Science.gov (United States)

    Obayemi, J D; Danyuo, Y; Dozie-Nwachukwu, S; Odusanya, O S; Anuku, N; Malatesta, K; Yu, W; Uhrich, K E; Soboyejo, W O

    2016-09-01

    This paper presents the synthesis and physicochemical characterization of biodegradable poly (d,l-lactide-co-glycolide) (PLGA)-based microparticles that are loaded with bacterial-synthesized prodigiosin drug obtained from Serratia marcescens subsp. Marcescens bacteria for controlled anticancer drug delivery. The micron-sized particles were loaded with anticancer drugs [prodigiosin (PG) and paclitaxel (PTX) control] using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). The effects of processing conditions (on the particle size and morphology) are investigated along with the drug release kinetics and drug-loaded microparticle degradation kinetics. The localization and apoptosis induction by prodigiosin in breast cancer cells is also elucidated along with the reduction in cell viability due to prodigiosin release. The implication of this study is for the potential application of prodigiosin PLGA-loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple negative breast tumor. PMID:27207038

  17. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity

    Science.gov (United States)

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W. Y.; Cheng, Christopher H. K.; Au, Doris W. T.; Teng, Gao-Jun; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2012-08-01

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 +/- 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC50) was 0.05 +/- 0.03 μg ml-1 for DOX/SPIO, while it was 0.13 +/- 0.02 μg ml-1 for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  18. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery

    Science.gov (United States)

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-01

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h

  19. Photophysical characterization of anticancer drug valrubicin in rHDL nanoparticles and its use as an imaging agent.

    Science.gov (United States)

    Shah, Sunil; Chib, Rahul; Raut, Sangram; Bermudez, Jaclyn; Sabnis, Nirupama; Duggal, Divya; Kimball, Joseph D; Lacko, Andras G; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2016-02-01

    Nanoparticles are target-specific drug delivery agents that are increasingly used in cancer therapy to enhance bioavailability and to reduce off target toxicity of anti-cancer agents. Valrubicin is an anti-cancer drug, currently approved only for vesicular bladder cancer treatment because of its poor water solubility. On the other hand, valrubicin carrying reconstituted high density lipoprotein (rHDL) nanoparticles appear ideally suited for extended applications, including systemic cancer chemotherapy. We determined selected fluorescence properties of the free (unencapsulated) drug vs. valrubicin incorporated into rHDL nanoparticles. We have found that upon encapsulation into rHDL nanoparticles the quantum yield of valrubicin fluorescence increased six fold while its fluorescence lifetime increased about 2 fold. Accordingly, these and potassium iodide (KI) quenching data suggest that upon incorporation, valrubicin is localized deep in the interior of the nanoparticle, inside the lipid matrix. Fluorescence anisotropy of the rHDL valrubicin nanoparticles was also found to be high along with extended rotational correlation time. The fluorescence of valrubicin could also be utilized to assess its distribution upon delivery to prostate cancer (PC3) cells. Overall the fluorescence properties of the rHDL: valrubicin complex reveal valuable novel characteristics of this drug delivery vehicle that may be particularly applicable when used in systemic (intravenous) therapy. PMID:26735001

  20. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  1. The Cost-Saving Effect of a Centralized Unit for Anticancer Drugs Processing at the Oncology Department of Tirana

    Directory of Open Access Journals (Sweden)

    Artan Shkoza

    2015-11-01

    Full Text Available The worldwide increase in cancer prevalence has led to a substantial cost rising in Medical Oncology. Of particular importance are highly expensive drugs used to treat various types of cancers in developing countries like Albania. Hence, pharmacoeconomics may play an important role in reducing the drug wastage and financial burden placed on patients, family and society in general; of course, without adversely impacting patient’s health outcomes. Our aim was to calculate cost-savings effect of a centralized unit, which allows residual amounts of unused drugs to be reused by patients whose treatments are elaborated in the same working day. We calculated in a comprehensive manner the number of saved vials (flasks for seven drugs generated from residual amounts of the same working day and, converted them into cost-saving monetary value. We did not take into account prescribed drug dosages that fitted exactly with doses contained in a vial. Over a six month period, there were: a total of 6558 prescriptions for a total of 1180 patients, a total of 1524 saved vials and, a total cost-saving of 134, 348 (•. The saved value represents 6.2 percent of the cytostatic drugs budget for 2005. Our experience confirms the economic benefit of waste reduction and cost-savings effect due to a centralized unit of anticancer drug processing. The centralized unit increases also the drug traceability from preparation to patient.

  2. Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mochizuki Hidetaka

    2001-08-01

    Full Text Available Abstract Background The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. Methods LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. Results The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. Conclusions These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes.

  3. ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging

    Science.gov (United States)

    Qian, Chenggen; Chen, Yulei; Zhu, Sha; Yu, Jicheng; Zhang, Lei; Feng, Peijian; Tang, Xin; Hu, Quanyin; Sun, Wujin; Lu, Yue; Xiao, Xuanzhong; Shen, Qun-Dong; Gu, Zhen

    2016-01-01

    Stimuli-responsive and imaging-guided drug delivery systems hold vast promise for enhancement of therapeutic efficacy. Here we report an adenosine-5'-triphosphate (ATP)-responsive and near-infrared (NIR)-emissive conjugated polymer-based nanocarrier for the controlled release of anticancer drugs and real-time imaging. We demonstrate that the conjugated polymeric nanocarriers functionalized with phenylboronic acid tags on surface as binding sites for ATP could be converted to the water-soluble conjugated polyelectrolytes in an ATP-rich environment, which promotes the disassembly of the drug carrier and subsequent release of the cargo. In vivo studies validate that this formulation exhibits promising capability for inhibition of tumor growth. We also evaluate the metabolism process by monitoring the fluorescence signal of the conjugated polymer through the in vivo NIR imaging. PMID:27217838

  4. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature.

    Science.gov (United States)

    Dutta, Sujan; Parida, Sheetal; Maiti, Chiranjit; Banerjee, Rakesh; Mandal, Mahitosh; Dhara, Dibakar

    2016-04-01

    Efficient and controlled delivery of therapeutics to tumor cells is one of the important issues in cancer therapy. In the present work, a series of pH- and temperature-responsive polymer grafted iron oxide nanoparticles were prepared by simple coupling of aminated iron oxide nanoparticle with poly(N-isopropylacrylamide-ran-poly(ethylene glycol) methyl ether acrylate)-block-poly(acrylic acid) (P(NIPA-r-PEGMEA)-b-PAA). For this, three water soluble block polymers were prepared via reversible addition fragmentation transfer (RAFT) polymerization technique. At first, three different block copolymers were prepared by polymerizing mixture of NIPA and PEGMEA (with varying mole ratio) in presence of poly(tert-butyl acrylate) (PtBA) macro chain transfer agent. Subsequently, P(NIPA-r-PEGMEA)-b-PAA copolymers were synthesized by hydrolyzing tert-butyl acrylate groups of the P(NIPA-r-PEGMEA)-b-PtBA copolymers. The resulting polymers were then grafted to iron oxide nanoparticles, and these functionalized nanoparticles were thoroughly characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), zeta potential measurements, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). Doxorubicin (DOX), an anti-cancer drug, was loaded into the polymer coated nanoparticles and its release behavior was subsequently studied at different pH and temperatures. The drug release pattern revealed a sustained release of DOX preferentially at the desired lysosomal pH of cancer cells (pH 5.0) and slightly above the physiological temperature depending upon the composition of the copolymers. The potential anticancer activity of the polymer grafted DOX loaded nanoparticles were established by MTT assay and apoptosis study of cervical cancer ME 180cells in presence of the nanoparticles. Thus, these particles can be utilized for controlled delivery of anticancer

  5. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    International Nuclear Information System (INIS)

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017

  6. Gold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging

    Directory of Open Access Journals (Sweden)

    Yuling Xiao, Hao Hong, Vyara Z. Matson, Alireza Javadi, Wenjin Xu, Yunan Yang, Yin Zhang, Jonathan W. Engle, Robert J. Nickles, Weibo Cai, Douglas A. Steeber, Shaoqin Gong

    2012-01-01

    Full Text Available A multifunctional gold nanorod (GNR-based nanoplatform for targeted anticancer drug delivery and positron emission tomography (PET imaging of tumors was developed and characterized. An anti-cancer drug (i.e., doxorubicin (DOX was covalently conjugated onto PEGylated (PEG: polyethylene glycol GNR nanocarriers via a hydrazone bond to achieve pH-sensitive controlled drug release. Tumor-targeting ligands (i.e., the cyclo(Arg-Gly-Asp-D-Phe-Cys peptides, cRGD and 64Cu-chelators (i.e., 1,4,7-triazacyclononane-N, N', N''-triacetic acid (NOTA were conjugated onto the distal ends of the PEG arms to achieve active tumor-targeting and PET imaging, respectively. Based on flow cytometry analysis, cRGD-conjugated nanocarriers (i.e., GNR-DOX-cRGD exhibited a higher cellular uptake and cytotoxicity than non-targeted ones (i.e., GNR-DOX in vitro. However, GNR-DOX-cRGD and GNR-DOX nanocarriers had similar in vivo biodistribution according to in vivo PET imaging and biodistribution studies. Due to the unique optical properties of GNRs, this multifunctional GNR-based nanoplatform can potentially be optimized for combined cancer therapies (chemotherapy and photothermal therapy and multimodality imaging (PET, optical, X-ray computed tomography (CT, etc..

  7. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-15

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017.

  8. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-12-01

    Full Text Available Yiwen Wang,* Fei Qin,* Haina Tan, Yan Zhang, Miao Jiang, Mei Lu, Xin Yao School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Carboxymethyl-β-cyclodextrin (CMβ-CD-modified glycol chitosan (GCS nanoparticles (GCS-CMβ-CD NPs were synthesized, and their pH-sensitive drug-release properties were investigated. GCS-CMβ-CD NPs could encapsulate doxorubicin hydrochloride (DOX, and the encapsulation efficiency and loading capacity increased with the amount of CMβ-CD. Drug-release studies indicate that DOX released was greater in acidic medium (pH 5.0 than in weakly basic medium (pH 7.4. The mechanism underlying the pH-sensitive properties of the carrier was analyzed. Finally, the MCF-7 (human breast cancer and SW480 cell lines (human colon cancer were used to evaluate the cytotoxicity of the NPs. The drug-loaded carriers show good inhibition of the growth of cancer cells compared with free DOX, and the carriers have good biocompatibility. In addition, the drug-loaded NPs have sustained drug-release properties. All these properties of the newly synthesized GCS-CMβ-CD NPs suggest a promising potential as an effective anticancer drug-delivery system for controlled drug release. Keywords: MCF-7, SW480, surface plasmon resonance, encapsulation efficiency, loading capacity, cell viability

  9. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-01-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  10. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-08-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  11. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    Science.gov (United States)

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants. PMID:25473933

  12. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Science.gov (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  13. Evaluation of the Association of Hand-Foot Syndrome with Anticancer Drugs Using the US Food and Drug Administration Adverse Event Reporting System (FAERS) and Japanese Adverse Drug Event Report (JADER) Databases.

    Science.gov (United States)

    Sasaoka, Sayaka; Matsui, Toshinobu; Abe, Junko; Umetsu, Ryogo; Kato, Yamato; Ueda, Natsumi; Hane, Yuuki; Motooka, Yumi; Hatahira, Haruna; Kinosada, Yasutomi; Nakamura, Mitsuhiro

    2016-01-01

      The Japanese Ministry of Health, Labor, and Welfare lists hand-foot syndrome as a serious adverse drug event. Therefore, we evaluated its association with anticancer drug therapy using case reports in the Japanese Adverse Drug Event Report (JADER) and the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). In addition, we calculated the reporting odds ratio (ROR) of anticancer drugs potentially associated with hand-foot syndrome, and applied the Weibull shape parameter to time-to-event data from JADER. We found that JADER contained 338224 reports from April 2004 to November 2014, while FAERS contained 5821354 reports from January 2004 to June 2014. In JADER, the RORs [95% confidence interval (CI)] of hand-foot syndrome for capecitabine, tegafur-gimeracil-oteracil, fluorouracil, sorafenib, and regorafenib were 63.60 (95%CI, 56.19-71.99), 1.30 (95%CI, 0.89-1.89), 0.48 (95%CI, 0.30-0.77), 26.10 (95%CI, 22.86-29.80), and 133.27 (95%CI, 112.85-157.39), respectively. Adverse event symptoms of hand-foot syndrome were observed with most anticancer drugs, which carry warnings of the propensity to cause these effects in their drug information literature. The time-to-event analysis using the Weibull shape parameter revealed differences in the time-dependency of the adverse events of each drug. Therefore, anticancer drugs should be used carefully in clinical practice, and patients may require careful monitoring for symptoms of hand-foot syndrome. PMID:26935094

  14. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity.

    Science.gov (United States)

    Lieberman, M M; Patterson, G M; Moore, R E

    2001-11-01

    In vitro growth inhibition assays were performed using human cancer cell lines at various concentrations with experimental anticancer drugs such as the cryptophycins and other cytotoxins. The effect of variations in assay parameters on the observed growth inhibition of these anticancer therapeutic agents was determined. The results demonstrated that the observed inhibitory activity of these compounds varied inversely with the cell concentrations used. The observed differences in activity between different cytotoxins were not necessarily proportionate. Thus, the relative activities of two toxins also varied with cell concentration. Furthermore, the sensitivity of these cell lines to the cytostatic purine analog, 6-mercaptopurine (used as a control), varied with cell concentration as well. The activity of this compound was dependent on the medium used for cell growth, yielding good activity in Eagle's minimum essential medium, but not in Ham's F-12 (Kaigin) medium. Moreover, growth inhibition by cryptophycin as well as 6-mercaptopurine was also dependent on the serum concentration in the medium. Finally, the sensitivity of the cancer cell lines to various organic solvents commonly used as drug vehicles for in vitro testing, such as ethanol, dimethylformamide, and dimethylsulfoxide, was likewise found to vary inversely with cell concentration. PMID:11578805

  15. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs.

    Science.gov (United States)

    Taillefer, J; Jones, M C; Brasseur, N; van Lier, J E; Leroux, J C

    2000-01-01

    pH-responsive polymeric micelles (PM) consisting of random copolymers of N-isopropylacrylamide (NIPA), methacrylic acid (MAA), and octadecyl acrylate (ODA) were prepared and characterized. The critical aggregation concentration, as determined by a fluorescence probe technique, was approximately 10 mg/L in water and phosphate-buffered saline. Phase transition pH was estimated at 5.7. The decrease in pH was accompanied by the destruction of hydrophobic clusters. Micelle size was dependent on temperature and the nature of the aqueous medium. The micelles were successfully loaded with a substantial amount of a photoactive anticancer drug, namely, aluminum chloride phthalocyanine (AlClPc). pH-responsive PM loaded with AlClPc were found to exhibit higher cytotoxicity against EMT-6 mouse mammary cells in vitro than control Cremophor EL formulation. These results show the potential of poly(NIPA-co-MAA-co-ODA) for in vivo administration of water-insoluble, photosensitizing anticancer drugs. PMID:10664538

  16. Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

    OpenAIRE

    Jung, Joohee

    2014-01-01

    Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-der...

  17. EFFECTS OF PSYCHOTROPIC DRUGS AS BACTERIAL EFFLUX PUMP INHIBITORS ON QUORUM SENSING REGULATED BEHAVIORS

    OpenAIRE

    Aynur Aybey; Alev Usta; Elif Demirkan

    2014-01-01

    Psychotropic drugs are known to have antimicrobial activity against several groups of microorganisms. The antidepressant agents such as duloxetine, paroxetine, hydroxyzine and venlafaxine are shown to act as efflux pump inhibitors in bacterial cells. In order to the investigation of the effects of psychotropic drugs were determined for clinically significant pathogens by using standart broth microdillusion method. The anti-quorum sensing (anti-QS) activity of psychotropic drugs was tested aga...

  18. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Murawala, Priyanka [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); Tirmale, Amruta [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); National Centre for Cell Science, NCCS, Pune 411007 (India); Shiras, Anjali, E-mail: anjalishiras@nccs.res.in [National Centre for Cell Science, NCCS, Pune 411007 (India); Prasad, B.L.V., E-mail: pl.bhagavatula@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated.

  19. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated

  20. Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole

    Science.gov (United States)

    Punith, Reeta; Seetharamappa, J.

    2012-06-01

    The present study employed different optical spectroscopic techniques viz., fluorescence, FTIR, circular dichroism (CD) and UV-vis absorption spectroscopy to investigate the mechanism of interaction of an anticancer drug, anastrozole (AZ) with transport proteins viz., bovine serum albumin (BSA) and human serum albumin (HSA). The drug, AZ quenched the intrinsic fluorescence of protein and the analysis of results revealed the presence of dynamic quenching mechanism. The binding characteristics of drug-protein were computed. The thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be +92.99 kJ/mol and +159.18 J/mol/K for AZ-BSA and, +99.43 kJ/mol and +159.19 J/mol/K for AZ-HSA, respectively. These results indicated that the hydrophobic forces stabilized the interaction between the drug and protein. CD, FTIR, absorption, synchronous and 3D fluorescence results indicated that the binding of AZ to protein induced structural perturbation in both serum albumins. The distance, r between the drug and protein was calculated based on the theory of Förster's resonance energy transfer and found to be 5.9 and 6.24 nm, respectively for AZ-BSA and AZ-HSA.

  1. Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway.

    Science.gov (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Kawamura, Ayako; Isoyama, Shota; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-06-01

    Multiple myeloma (MM) is still an incurable hematological malignancy with a 5-year survival rate of ~35%, despite the use of various treatment options. The nuclear factor κB (NF-κB) pathway plays a crucial role in the pathogenesis of MM. Thus, inhibition of the NF-κB pathway is a potential target for the treatment of MM. In a previous study, we showed that mangiferin suppressed the nuclear translocation of NF-κB. However, the treatment of MM involves a combination of two or three drugs. In this study, we examined the effect of the combination of mangiferin and conventional anticancer drugs in an MM cell line. We showed that the combination of mangiferin and an anticancer drug decreased the viability of MM cell lines in comparison with each drug used separately. The decrease in the combination of mangiferin and an anticancer drug induced cell viability was attributed to increase the expression of p53 and Noxa and decreases the expression of XIAP, survivin, and Bcl-xL proteins via inhibition of NF-κB pathway. In addition, the combination treatment caused the induction of apoptosis, activation of caspase-3 and the accumulation of the cells in the sub-G1 phase of the cell cycle. Our findings suggest that the combination of mangiferin and an anticancer drug could be used as a new regime for the treatment of MM. PMID:27035859

  2. Programmable Infusion Pumps in ICUs: An Analysis of Corresponding Adverse Drug Events

    OpenAIRE

    Nuckols, Teryl K; Bower, Anthony G.; Paddock, Susan M.; Hilborne, Lee H.; Wallace, Peggy; Rothschild, Jeffrey M; Griffin, Anne; Fairbanks, Rollin J; Carlson, Beverly; Panzer, Robert J.; Brook, Robert H.

    2007-01-01

    Background Patients in intensive care units (ICUs) frequently experience adverse drug events involving intravenous medications (IV-ADEs), which are often preventable. Objectives To determine how frequently preventable IV-ADEs in ICUs match the safety features of a programmable infusion pump with safety software (“smart pump”) and to suggest potential improvements in smart-pump design. Design Using retrospective medical-record review, we examined preventable IV-ADEs in ICUs before and after 2 ...

  3. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available The poor bioavailability of Berberine (BBR and Betulinic acid (BA limits the development of these promising anticancer agents for clinical use. In the current study, BBR and BA in spray dried (SD mucoadhesive microparticle formulations were prepared.A patented dual channel spray gun technology established in our laboratory was used for both formulations. Gastrointestinal (GI permeability studies were carried out using Caco-2 cell monolayer grown in in-vitro system. The oral bioavailability and pharmacokinetic profile of SD formulations were studied in Sprague Dawley rats. A549 orthotopic and H1650 metastatic NSCLC models were utilized for the anticancer evaluations.Pharmacokinetic studies demonstrated that BBR and BA SD formulations resulted in 3.46 and 3.90 fold respectively, significant increase in plasma Cmax concentrations. AUC levels were increased by 6.98 and 7.41 fold in BBR and BA SD formulations, respectively. Compared to untreated controls groups, 49.8 & 53.4% decrease in the tumor volumes was observed in SD formulation groups of BBR and BA, respectively. Molecular studies done on excised tumor (A549 tissue suggested that BBR in SD form resulted in a significant decrease in the survivin, Bcl-2, cyclin D1, MMP-9, HIF-1α, VEGF and CD31 expressions. Cleaved caspase 3, p53 and TUNEL expressions were increased in SD formulations. The RT-PCR analysis on H1650 tumor tissue suggested that p38, Phospho-JNK, Bax, BAD, cleaved caspase 3&8 mRNA expressions were significantly increased in BA SD formulations. Chronic administration of BBR and BA SD formulations did not show any toxicity.Due to significant increase in oral bioavailability and superior anticancer effects, our results suggest that spray drying is a superior alternative formulation approach for oral delivery of BBR and BA.

  4. Anticancer chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  5. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  6. Quantitation of anticancer drugs – Cyclophosphamide and ifosfamide in urine and water sewage samples by gas chromatography–mass spectrometry

    Directory of Open Access Journals (Sweden)

    Veeravan Lekskulchai

    2016-10-01

    Full Text Available Objectives: Cyclophosphamide (CP and ifosfamide (IF are effective anti-cancer drugs but their genotoxicity can harm everyone contacting them occupationally or environmentally. Therefore, a sensitive method for monitoring their amounts in biological and environmental samples is needed. This has aimed to develop a method for analyzing these drugs in urine and water sewage samples. Material and Methods: The drug spiked samples were extracted, derivatized, and analyzed by gas chromatography–mass spectrometry and the analytical parameters were validated. Results: The method gave linear calibration curves at the concentrations of 0–190 nmol/l. It had the quantitation limit of 3.8 nmol/l and showed acceptable specificity, accuracy, recovery and precision. Conclusions: The developed method can be used reliably for monitoring CP and IF concentrations in urine and water sewage. The method will be applied for preventing health risk from occupational and environmental exposures to these drugs. Int J Occup Med Environ Health 2016;29(5:815–822

  7. Surface-enhanced Raman spectroscopy of the anti-cancer drug irinotecan in presence of human serum albumin.

    Science.gov (United States)

    Vicario, A; Sergo, V; Toffoli, G; Bonifacio, A

    2015-03-01

    The development of nanotechnological devices and their clinical application in medicine has become increasingly important, especially in the context of targeted and personalized therapy. This is particularly important in cancer therapy, where antitumor drugs are highly cytotoxic and often exert their therapeutic effect at concentrations close to systemic toxicity. In the last years a growing number of studies has started to report the use of plasmonic nanoprobes in the field of theranostics, broadening the application of vibrational spectroscopies like Raman scattering and surface enhanced Raman scattering (SERS) in biomedicine. The present work aims to identify and characterize the vibrational profiles of a widely used anticancer drug, irinotecan (CPT-11). With a rational approach, SERS experiments have been performed on this analyte employing both Au and Ag colloids, starting from simple aqueous solutions up to albumin mixtures. A major step forward for drug detection in albumin solutions has been taken with the adoption of a simple deproteinization strategy, and a two-in-one-step separation and identification by coupling thin layer chromatography, TLC, with SERS (TLC-SERS). The latter has revealed to be a valid system for protein separation and simultaneous analyte detection, showing a potential to become an innovative, sensitive and low cost method for antineoplastic drug profiling in patients' body fluids. PMID:25645751

  8. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection

    OpenAIRE

    Dong, Zuoli; Zhang, Naiqian; Li, Chun; Wang, Haiyun; Fang, Yun; Wang, Jun; Zheng, Xiaoqi

    2015-01-01

    Background An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the preclinical prediction model is highly expected as it enables prediction of drug response to hundreds of cell lines in parallel. Methods Recently, two large-scale pharmacogenomic studies screened mu...

  9. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening.

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Qiu, Kangqiang; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2016-08-16

    DNA binding and DNA transcription inhibition is regarded as a promising strategy for cancer chemotherapy. Herein, chloro terpyridyl Ru(ii) complexes, [Ru(tpy)(N^N)Cl](+) (Ru1, N^N = 2,2'-bipyridine; Ru2, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene; Ru3, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]phenanthrene; Ru4, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]pyrene) were prepared as DNA intercalative and covalent binding anticancer agents. The chloro ligand hydrolysis slowly and the octanol and water partition coefficient of Ru2-Ru4 were between 0.6 and 1.2. MALDI-TOF mass, DNA gel electrophoresis confirmed covalent and intercalative DNA binding modes of Ru2-Ru4, while Ru1 can only bind DNA covalently. As a result, Ru2-Ru4 exhibited stronger DNA transcription inhibition activity, higher cell uptake efficiency and better anticancer activity than Ru1. Ru4 was the most toxic complex toward all cancer cells which inhibited DNA replication and transcription. AO/EB, Annexin V/PI, nuclear staining, JC-1 assays further confirmed that Ru2-Ru4 induced cancer cell death by an apoptosis mechanism. PMID:27294337

  10. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system

    Science.gov (United States)

    Tripathy, Nirmalya; Ahmad, Rafiq; Ko, Hyun Ah; Khang, Gilson; Hahn, Yoon-Bong

    2015-02-01

    The development of stimuli-responsive nanocarriers is becoming important in chemotherapy. Liposomes, with an appropriate triggering mechanism, can efficiently deliver their encapsulated cargo in a controlled manner. We explored the use of acid-sensitive zinc oxide nanoparticles (ZNPs) as modulators of the responsive properties of liposomes. Nanocomplexes formed by the incorporation of ZNPs in liposomes (ZNP-liposomes) were designed to demonstrate the pH-responsive release of a drug (daunorubicin) without premature drug leakage and with the maintenance of the relevant therapeutic concentrations. The nanocomplexes were spherical in shape with a narrow size distribution and showed a high drug-encapsulating efficiency. Under acidic conditions, the ZNP-liposome nanocomplexes released the loaded drug more rapidly than bare liposomes. Using flow cytometry, confocal microscopy and an MTT assay, we demonstrated that these nanocomplexes were readily taken up by cancer cells, resulting in significantly enhanced cytotoxicity. On exposure to the acidic conditions inside cancer cells, the ZNPs rapidly decomposed, releasing the entrapped drug molecules from the ZNP-liposome nanocomplexes, producing widespread cytotoxic effects. The incorporated ZNPs were multimodal in that they not only resulted in a pH-responsive drug-delivery system, but they also had a synergistic chemo-photodynamic anticancer action. This design provides a significant step towards the development of multimodal liposome structures.The development of stimuli-responsive nanocarriers is becoming important in chemotherapy. Liposomes, with an appropriate triggering mechanism, can efficiently deliver their encapsulated cargo in a controlled manner. We explored the use of acid-sensitive zinc oxide nanoparticles (ZNPs) as modulators of the responsive properties of liposomes. Nanocomplexes formed by the incorporation of ZNPs in liposomes (ZNP-liposomes) were designed to demonstrate the pH-responsive release of a drug

  11. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    International Nuclear Information System (INIS)

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide ± celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 following all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: → Celecoxib may enhance effects of anticancer drugs. → Its combination with four drugs was tested in five cancer cell

  12. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs.

    Science.gov (United States)

    Kuhl, Spencer; Voss, Edward; Scherer, Amanda; Lusche, Daniel F; Wessels, Deborah; Soll, David R

    2016-01-01

    A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis. PMID:27271907

  13. Role of p53 in Anticancer Drug Treatment- and Radiation-Induced Injury in Normal Small Intestine

    International Nuclear Information System (INIS)

    In the human gastrointestinal tract, the functional mucosa of the small intestine has the highest capacity for absorption of nutrients and rapid proliferation rates, making it vulnerable to chemoradiotherapy. Recent understanding of the protective role of p53-mediated cell cycle arrest in the small intestinal mucosa has led researchers to explore new avenues to mitigate mucosal injury during cancer treatment. A traditional p53 inhibitor and two other molecules that exhibit strong protective effects on normal small intestinal epithelium during anticancer drug treatment and radiation therapy are introduced in this work. The objective of this review was to update current knowledge regarding potential mechanisms and targets that inhibit the side effects induced by chemoradiotherapy

  14. Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide.

    Science.gov (United States)

    Zheng, Xin Ting; Ma, Xiao Qing; Li, Chang Ming

    2016-04-01

    Targeted drug delivery has become important, attractive and challenging in biomedical science and applications. Anti-HER2 antibody-conjugated poly-l-lysine functionalized reduced graphene oxide (anti-HER2-rGO-PLL) nanocarriers were prepared to efficiently deliver doxorubicin targeting at the nucleus of HER2 over-expressing cancer cells. The polycationic PLL was first covalently grafted to graphene oxide (GO) nanosheets followed by reduction to obtain rGO-PLL with high drug loading and good colloidal stability. The anti-HER2 antibodies were subsequently conjugated to the amino groups of PLL to achieve excellent cell uptake capability. Cellular uptake of anti-HER2-rGO-PLL into MCF7/HER2 cells is significantly higher than that of rGO-PLL due to the specific targeting of anti-HER2 to HER2 overexpressing breast cancer cells. Additionally the anti-HER2-rGO-PLL enables a fast accumulation of DOX inside the nucleus, its subcellular site of action. In vitro cytotoxicity measurements clearly reveal a seven fold improvement in the anticancer efficacy for anti-HER2-rGO-PLL/DOX in comparison to rGO-PLL/DOX. The enhanced anticancer efficacy could be ascribed to the different intracellular DOX distributions resulted from the different internalization routes that are energy-dependent macropinocytosis and energy-independent direct penetration by anti-HER2-rGO-PLL and rGO-PLL, respectively. The results demonstrate that anti-HER2 conjugated rGO-PLL developed is a promising vehicle for efficient nuclear delivery of chemotherapeutic agents to HER2 over-expressing tumours. PMID:26773607

  15. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels.

    Science.gov (United States)

    Wang, Jia; Liu, Changhua; Shuai, Ying; Cui, Xiaoyan; Nie, Ling

    2014-01-01

    In order to find new composite materials for the controlled release of drugs, a series of novel pH sensitive konjac glucomannan/sodium alginate (KGM/SA) and KGM/SA/graphene oxide (KGM/SA/GO) hydrogels were prepared, using GO as a drug-binding effector for anticancer drug loading and release. The hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The effects of component ratio and pH on the swelling properties of hydrogels were studied. The release amount of 5-fluorouracil (5-FU) incorporated into KGM/SA/GO-3 hydrogels was about 38.02% at pH 1.2 and 84.19% at pH 6.8 after 6 h and 12 h, respectively. Therefore, the release rate of 5-FU from the functionalized KGM/SA using GO could be effectively controlled, Go has a great potential to be a promising drug-binding effector for hydrogel functionalization in drug delivery. PMID:24096158

  16. Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis

    OpenAIRE

    LONG, JIAN-TING; Cheang, Tuck-yun; Zhuo, Shu-Yu; Zeng, Rui-Fang; Dai, Qiang-sheng; Li, He-Ping; Fang, Shi

    2014-01-01

    Background Inhalation of chemotherapeutic drugs directly into the lungs augments the drug exposure to lung cancers. The inhalation of free drugs however results in over exposure and causes severe adverse effect to normal cells. In the present study, epidermal growth factor (EGF)-modified gelatin nanoparticles (EGNP) was developed to administer doxorubicin (DOX) to lung cancers. Results The EGNP released DOX in a sustained manner and effectively internalized in EGFR overexpressing A549 and H22...

  17. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    OpenAIRE

    Choi J; Ko E; Chung HK; Ju EJ; Lim HK; Park I; Kim KS; Lee JH; Son WC; Lee JS; Jung J; Jeong SY; Song SY; Choi EK

    2015-01-01

    Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute for Life Sciences, 3Center for Development and Commercialization of Anti-cancer Therapeutics, 4College of Pharmacy, Duksung Women’s University, 5Bio-Synectics, 6Department of Pathology, ...

  18. Combinatorial effects of geopropolis produced by Melipona fasciculata Smith with anticancer drugs against human laryngeal epidermoid carcinoma (HEp-2) cells.

    Science.gov (United States)

    Bartolomeu, Ariane Rocha; Frión-Herrera, Yahima; da Silva, Livia Matsumoto; Romagnoli, Graziela Gorete; de Oliveira, Deilson Elgui; Sforcin, José Maurício

    2016-07-01

    The identification of natural products exerting a combined effect with therapeutic agents could be an alternative for cancer treatment, reducing the concentration of the drugs and side effects. Geopropolis (Geo) is produced by some stingless bees from a mixture of vegetable resins, gland secretions of the bees and soil. It has been used popularly as an antiseptic agent and to treat respiratory diseases and dermatosis. To determine whether Geo enhances the anticancer effect of carboplatin, methotrexate and doxorubicin (DOX), human laryngeal epidermoid carcinoma (HEp-2) cells were treated with Geo alone or in combination with each drug. Cell growth, cytotoxicity and apoptosis were evaluated using 3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and flow cytometry. Scratch assay was used to analyze cell migration and transmission electron microscopy to observe morphologic alterations. The influence of Geo on drug resistance was also investigated assessing P-glycoprotein (P-gp) action. Geo inhibited cell proliferation and migration. The combination Geo+DOX led to the highest cytotoxic activity and induced apoptosis, leading to loss of membrane integrity. Geo had no effect on P-gp-mediated efflux of DOX. Data indicate that Geo combined with DOX could be a potential clinical chemotherapeutic approach for laryngeal cancer treatment. PMID:27261576

  19. Structural Characterization of Anticancer Drug Paclitaxel and Its Metabolites Using Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry

    Science.gov (United States)

    Lee, Hong Hee; Hong, Areum; Cho, Yunju; Kim, Sunghwan; Kim, Won Jong; Kim, Hugh I.

    2016-02-01

    Paclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3'- p-hydroxypaclitaxel (3 p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3 p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance. In this study, electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) and collision induced dissociation (CID) are utilized for the identification and characterization of PTX and its metabolites. Ion mobility distributions of 3 p-OHP and 6α-OHP indicate that hydroxylation of PTX at different sites yields distinct gas phase structures. Addition of monovalent alkali metal and silver metal cations enhances the distinct dissociation patterns of these structural isomers. The differences observed in the CID patterns of metalated PTX and its two metabolites are investigated further by evaluating their gas-phase structures. Density functional theory calculations suggest that the observed structural changes and dissociation pathways are the result of the interactions between the metal cation and the hydroxyl substituents in PTX metabolites.

  20. Clinical Accuracy and Safety Using the SynchroMed II Intrathecal Drug Infusion Pump

    OpenAIRE

    Wesemann, Kelly; Coffey, Robert J; Wallace, Mark S.; Tan, Ye; Broste, Steven; Buvanendran, Asokumar

    2014-01-01

    Background and Objectives We evaluated the infusion accuracy and device-related safety of implantable drug infusion pumps in subjects with chronic pain or severe spasticity. Methods Nine centers in the United States enrolled patients receiving intrathecal drug delivery systems to manage chronic pain and/or severe spasticity. Infusion accuracy was assessed at 6 and 12 months by comparing syringe-measured delivered volumes to programmer-predicted volumes. Safety was evaluated through analysis o...

  1. The Role of Bile Salt Export Pump Gene Repression in Drug-Induced Cholestatic Liver Toxicity

    OpenAIRE

    Garzel, Brandy; Yang, Hui; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Wang, Hongbing

    2014-01-01

    The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between drug-induced cholestasis and attenuated BSEP activity has been proposed. However, whether repression of...

  2. Impact of the healthcare payment system on patient access to oral anticancer drugs: an illustration from the French and United States contexts

    OpenAIRE

    Benjamin, Laure; Buthion, Valérie; Vidal-Trécan, Gwenaëlle; Briot, Pascal

    2014-01-01

    Background Oral anticancer drugs (OADs) allow treating a growing range of cancers. Despite their convenience, their acceptance by healthcare professionals and patients may be affected by medical, economical and organizational factors. The way the healthcare payment system (HPS) reimburses OADs or finances hospital activities may impact patients’ access to such drugs. We discuss how the HPS in France and USA may generate disincentives to the use of OADs in certain circumstances. Discussion Fre...

  3. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    OpenAIRE

    Yasui-Furukori, Norio

    2013-01-01

    Norio Yasui-Furukori, Kojiro Hashimoto, Kazutoshi Kubo, Tetsu Tomita Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Abstract: Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 m...

  4. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    OpenAIRE

    Yasui-Furukori N; Hashimoto K; Kubo K; Tomita T

    2013-01-01

    Norio Yasui-Furukori, Kojiro Hashimoto, Kazutoshi Kubo, Tetsu Tomita Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Abstract: Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 mg...

  5. Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib

    Directory of Open Access Journals (Sweden)

    Grantab Rama H

    2012-06-01

    Full Text Available Abstract Background Limited penetration of anticancer drugs in solid tumours is a probable cause of drug resistance. Our previous results indicate that drug penetration depends on cellular packing density and adhesion between cancer cells. Methods We used epithelioid and round cell variants of the HCT-8 human colon carcinoma cell lines to generate tightly and loosely packed xenografts in nude mice. We measured packing density and interstitial fluid pressure (IFP and studied the penetration of anti-cancer drugs through multilayered cell cultures (MCC derived from epithelioid HCT-8 variants, and the distribution of doxorubicin in xenografts with and without pre-treatment with bortezomib. Results We show lower packing density in xenografts established from round cell than epithelioid cell lines, with lower IFP in xenografts. There was better distribution of doxorubicin in xenografts grown from round cell variants, consistent with previous data in MCC. Bortezomib pre-treatment reduced cellular packing density, improved penetration, and enhanced cytotoxcity of several anticancer drugs in MCC derived from epithelioid cell lines. Pre-treatment of xenografts with bortezomib enhanced the distribution of doxorubicin within them. Conclusions Our results provide a rationale for further investigation of agents that enhance the distribution of chemotherapeutic drugs in combination with conventional chemotherapy in solid tumours.

  6. Targeted drug delivery systems 6: Intracellular bioreductive activation, uptake and transport of an anticancer drug delivery system across intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Gharat, L; Taneja, R; Weerapreeyakul, N; Rege, B; Polli, J; Chikhale, P J

    2001-05-21

    We demonstrate transport across, intracellular accumulation and bioreductive activation of a conformationally constrained, anticancer drug delivery system (the CH(3)-TDDS) using Caco-2 cell monolayers (CCMs) as an in vitro model of the human intestinal mucosa. Reverse-phase High Performance Liquid Chromatography (HPLC) coupled with UV detection was used to detect CH(3)-TDDS, the bioreduction product (lactone) and the released drug (melphalan methyl ester; MME). Upon incubation of the CH(3)-TDDS with the apical (AP) surface of 21-day-old CCM, we observed rapid decrease in the AP concentration of the CH(3)-TDDS (60%/hr) as a result of cellular uptake. Rapid intracellular accumulation of the CH(3)-TDDS was followed by bioreductive activation to deplete the cellular levels of CH(3)-TDDS. The drug part (MME) and lactone, as well as CH(3)-TDDS, were detected in the basolateral (BL) chamber. Intracellular Caco-2 levels of TDDS and lactone were also detectable. Bioreductive activation of the CH(3)-TDDS was additionally confirmed by formation of lactone after incubation of the CH(3)-TDDS in the presence of freshly prepared Caco-2 cell homogenates. During transport studies of melphalan or MME alone (as control), the intact drug was not detected in the intracellular compartment or in the BL chamber. These observations demonstrate that CH(3)-TDDS has potential for improving intestinal delivery of MME. TDDS could be useful in facilitating oral absorption of MME as well as the oral delivery of other agents. PMID:11337161

  7. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    OpenAIRE

    Swatantra Kumar Singh Kushwaha; Saurav Ghoshal; Awani Kumar Rai; Satyawan Singh

    2013-01-01

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affec...

  8. The infection risk of intrathecal drug infusion pumps after multiple refill procedures.

    Science.gov (United States)

    Dario, Alessandro; Scamoni, Carlo; Picano, Marco; Fortini, Gianpaolo; Cuffari, Salvatore; Tomei, Giustino

    2005-01-01

    The objective of this study was to evaluate the long-term infection risk from refilling intrathecal drug delivery devices. We studied 25 patients (14 females and 11 males) with intrathecal infusion pumps placed for spasticity (23 patients) and chronic pain (two patients). In this study group there were 890 refill procedures (mean 35.6 ± 20.5; range 8-72 times) performed on an outpatient basis by four different physicians. All refill procedures were performed in a sterile and standardized fashion as suggested by the manufacturer, using manufacturer's approved kits for the refills. During the study period, five patients had recurrent infection of the urinary tract and three patients had recurrent infections of the respiratory tract. At the last pump refill of each patient, residual drug, extracted from the pump reservoir, was sent to a laboratory for aerobic and anaerobic cultures. All cultures, in all pumps, were negative for aerobic and anaerobic bacteria. We conclude that periodic refills of intrathecal implanted pumps do not seem to be a risk factor for infection if standard sterile refill procedures are performed. In this study, it was clear that comorbid infections from other parts of the body do not present as a risk for device contamination. PMID:22151381

  9. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers.

    Science.gov (United States)

    Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A

    2016-09-01

    Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. PMID:27137803

  10. Regulatory approval pathways for anticancer drugs in Japan, the EU and the US.

    Science.gov (United States)

    Nagai, Sumimasa; Ozawa, Keiya

    2016-07-01

    The Pharmaceuticals and Medical Devices Agency and the Ministry of Health, Labour and Welfare in Japan and the US Food and Drug Administration are responsible for reviewing applications and approving drugs, medical devices, and regenerative medicines. In the EU, the European Medicines Agency is responsible for the centralized authorization procedure of medicines including oncologic drugs. In this review, we discuss general pathways for the marketing authorization of oncologic drugs and other drugs in Japan, the EU, and the US. There are still unmet medical needs in oncology, whereas scientific innovation and clinical development in oncology are rapid and active, suggesting a reasonable scope for new regulatory schemes for expedited review. Because regulatory schemes are also evolving rapidly, clinicians and academic researchers may have difficulty following the updated regulations in other regions as well as those in their own countries. However, keeping current with new regulations is important for the conduct of translational research and clinical development of new therapeutic products efficiently. This review is intended to help an international audience better understand the essence of the regulatory frameworks for the marketing authorization of oncologic drugs in Japan, the EU, and the US. PMID:27084259

  11. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    Science.gov (United States)

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-02-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.

  12. One-step bulk preparation of calcium carbonate nanotubes and its application in anticancer drug delivery.

    Science.gov (United States)

    Tang, Jing; Sun, Dong-Mei; Qian, Wen-Yu; Zhu, Rong-Rong; Sun, Xiao-Yu; Wang, Wen-Rui; Li, Kun; Wang, Shi-Long

    2012-06-01

    Bulk fabrication of ordered hollow structural particles (HSPs) with large surface area and high biocompatibility simultaneously is critical for the practical application of HSPs in biosensing and drug delivery. In this article, we describe a smart approach for batch synthesis of calcium carbonate nanotubes (CCNTs) based on supported liquid membrane (SLM) with large surface area, excellent structural stability, prominent biocompatibility, and acid degradability. The products were characterized by transmission electron micrograph, X-ray diffraction, Fourier transform infrared spectra, UV-vis spectroscopy, zeta potential, and particle size distribution. The results showed that the tube-like structure facilitated podophyllotoxin (PPT) diffusion into the cavity of hollow structure, and the drug loading and encapsulation efficiency of CCNTs for PPT are as high as 38.5 and 64.4 wt.%, respectively. In vitro drug release study showed that PPT was released from the CCNTs in a pH-controlled and time-dependent manner. The treatment of HEK 293T and SGC 7901 cells demonstrated that PPT-loaded CCNTs were less toxic to normal cells and more effective in antitumor potency compared with free drugs. In addition, PPT-loaded CCNTs also enhanced the apoptotic process on tumor cells compared with the free drugs. This study not only provides a new kind of biocompatible and pH-sensitive nanomaterial as the feasible drug container and carrier but more importantly establishes a facile approach to synthesize novel hollow structural particles on a large scale based on SLM technology. PMID:22351100

  13. Influence of Five Potential Anticancer Drugs on Wnt Pathway and Cell Survival in Human Biliary Tract Cancer Cells

    Directory of Open Access Journals (Sweden)

    Julia WACHTER, Daniel NEUREITER, Beate ALINGER, Martin PICHLER, Julia FUEREDER, Christian OBERDANNER, Pietro Di FAZIO, Matthias OCKER, Frieder BERR, Tobias KIESSLICH

    2012-01-01

    Full Text Available Background: The role of Wnt signalling in carcinogenesis suggests compounds targeting this pathway as potential anti-cancer drugs. Several studies report activation of Wnt signalling in biliary tract cancer (BTC thus rendering Wnt inhibitory drugs as potential candidates for targeted therapy of this highly chemoresistant disease.Methods: In this study we analysed five compounds with suggested inhibitory effects on Wnt signalling (DMAT, FH535, myricetin, quercetin, and TBB for their cytotoxic efficiency, mode of cell death, time- and cell line-dependent characteristics as well as their effects on Wnt pathway activity in nine different BTC cell lines.Results: Exposure of cancer cells to different concentrations of the compounds results in a clear dose-dependent reduction of viability for all drugs in the order FH535 > DMAT > TBB > myricetin > quercetin. The first three substances show high cytotoxicity in all tested cell lines, cause a direct cytotoxic effect by induction of apoptosis and inhibit pathway-specific signal transduction in a Wnt transcription factor reporter activity assay. Selected target genes such as growth-promoting cyclin D1 and the cell cycle progression inhibitor p27 are down- and up-regulated after treatment, respectively.Conclusions: Taken together, these data demonstrate that the small molecular weight inhibitors DMAT, F535 and TBB have a considerable cytotoxic and possibly Wnt-specific effect on BTC cell lines in vitro. Further in vivo investigation of these drugs as well as of new Wnt inhibitors may provide a promising approach for targeted therapy of this difficult-to-treat tumour.

  14. Structural and dynamical effects induced by the anticancer drug topotecan on the human topoisomerase I - DNA complex.

    Directory of Open Access Journals (Sweden)

    Giordano Mancini

    Full Text Available BACKGROUND: Human topoisomerase I catalyzes the relaxation of DNA supercoils in fundamental cell processes like transcription, replication and chromosomal segregation. It is the only target of the camptothecin family of anticancer drugs. Among these, topotecan has been used to treat lung and ovarian carcinoma for several years. Camptothecins reversibly binds to the covalent intermediate DNA-enzyme, stabilizing the cleavable complex and reducing the religation rate. The stalled complex then collides with the progression of the replication fork, producing lethal double strand DNA breaks and eventually cell death. METHODOLOGY/PRINCIPAL FINDINGS: Long lasting molecular dynamics simulations of the DNA-topoisomerase I binary complex and of the DNA-topoisomerase-topotecan ternary complex have been performed and compared. The conformational space sampled by the binary complex is reduced by the presence of the drug, as observed by principal component and cluster analyses. This conformational restraint is mainly due to the reduced flexibility of residues 633-643 (the region connecting the linker to the core domain that causes an overall mobility loss in the ternary complex linker domain. During the simulation, DNA/drug stacking interactions are fully maintained, and hydrogen bonds are maintained with the enzyme. Topotecan keeps the catalytic residue Lys532 far from the DNA, making it unable to participate to the religation reaction. Arg364 is observed to interact with both the B and E rings of topotecan with two stable direct hydrogen bonds. An interesting constrain exerted by the protein on the geometrical arrangement of topotecan is also observed. CONCLUSIONS/SIGNIFICANCE: Atomistic-scale understanding of topotecan interactions with the DNA-enzyme complex is fundamental to the explaining of its poisonous effect and of the drug resistance observed in several single residue topoisomerase mutants. We observed significant alterations due to topotecan in

  15. MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model

    Directory of Open Access Journals (Sweden)

    Vinh NQ

    2015-06-01

    Full Text Available Nguyen Quoc Vinh,1 Shigeyuki Naka,1 Horacio Cabral,2 Hiroyuki Murayama,1 Sachiko Kaida,1 Kazunori Kataoka,2 Shigehiro Morikawa,3 Tohru Tani4 1Department of Surgery, Shiga University of Medical Science, Shiga, Japan; 2Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; 3Department of Nursing, Shiga University of Medical Science, Shiga, Japan; 4Biomedical Innovation Center, Shiga University of Medical Science, Shiga, Japan Abstract: Hepatocellular carcinoma (HCC is one of the most intractable and lethal cancers; most cases are diagnosed at advanced stages with underlying liver dysfunction and are frequently resistant to conventional chemotherapy and radiotherapy. The development of tumor-targeting systems may improve treatment outcomes. Nanomedicine platforms are of particular interest for enhancing chemotherapeutic efficiency, and they include polymeric micelles, which enable targeting of multiple drugs to solid tumors, including imaging and therapeutic agents. This allows concurrent diagnosis, targeting strategy validation, and efficacy assessment. We used polymeric micelles containing the T1-weighted magnetic resonance imaging contrast agent gadolinium-diethylenetriaminpentaacetic acid (Gd-DTPA and the parent complex of the anticancer drug oxaliplatin [(1,2-diaminocyclohexaneplatinum(II (DACHPt] for simultaneous imaging and therapy in an orthotopic rat model of HCC. The Gd-DTPA/DACHPt-loaded micelles were injected into the hepatic artery, and magnetic resonance imaging performance and antitumor activity against HCC, as well as adverse drug reactions were assessed. After a single administration, the micelles achieved strong and specific tumor contrast enhancement, induced high levels of tumor apoptosis, and significantly suppressed tumor size and growth. Moreover, the micelles did not induce severe adverse reactions and significantly improved survival outcomes in comparison to oxaliplatin or

  16. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; WANG Mei; ZHANG ShuPing; SHAO SiChang; SUN XiaoYu; YAO SiDe; WANG ShiLong

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+ and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+ can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4- with a rate constant of 1.76×109 dm3·mol-1·s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  17. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+· and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+· can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4-. with a rate constant of 1.76×109 dm3·mol-1.s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  18. Yolk-shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery

    Science.gov (United States)

    Li, Shunxing; Zheng, Jianzhong; Chen, Dejian; Wu, Yijin; Zhang, Wuxiang; Zheng, Fengying; Cao, Jing; Ma, Heran; Liu, Yaling

    2013-11-01

    A facile and effective way for the preparation of nano-sized Fe3O4@graphene yolk-shell nanoparticles via a hydrothermal method is developed. Moreover, the targeting properties of the materials for anticancer drug (doxorubicin hydrochloride) delivery are investigated. Excitingly, these hybrid materials possess favorable dispersibility, good superparamagnetism (the magnetic saturation value is 45.740 emu g-1), high saturated loading capacity (2.65 mg mg-1), and effective loading (88.3%). More importantly, the composites exhibit strong pH-triggered drug release response (at the pH value of 5.6 and 7.4, the release rate was 24.86% and 10.28%, respectively) and good biocompatibility over a broad concentration range of 0.25-100 μg mL-1 (the cell viability was 98.52% even at a high concentration of 100 μg mL-1) which sheds light on their potentially bright future for bio-related applications.

  19. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    Miguel Muñoz; Rafael Coveñas; Francisco Esteban; Maximino Redondo

    2015-06-01

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, which are involved in their viability. This overexpression suggests the possibility of specific treatment against tumour cells using NK-1 receptor antagonists, thus promoting a considerable decrease in the side effects of the treatment. This strategy opens up new approaches for cancer treatment, since these antagonists, after binding to their molecular target, induce the death of tumour cells by apoptosis, exert an antiangiogenic action and inhibit the migration of tumour cells. The use of NK-1 receptor antagonists such as aprepitant (used in clinical practice) as antitumour agents could be a promising innovation. The value of aprepitant as an antitumour agent could be determined faster than for less well-known compounds because many studies addressing its safety and characterization have already been completed. The NK-1 receptor may be a promising target in the treatment of cancer; NK-1 receptor antagonists could act as specific drugs against tumour cells; and these antagonists could be new candidate anti-cancer drugs.

  20. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design.

    Science.gov (United States)

    Hargrove, Tatiana Y; Friggeri, Laura; Wawrzak, Zdzislaw; Sivakumaran, Suneethi; Yazlovitskaya, Eugenia M; Hiebert, Scott W; Guengerich, F Peter; Waterman, Michael R; Lepesheva, Galina I

    2016-08-01

    Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors. PMID:27313059

  1. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    Science.gov (United States)

    Morando, Maria Agnese; Saladino, Giorgio; D’Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  2. Drug delivery: enabling technology for drug discovery and development.iPRECIO® Micro Infusion Pump: Programmable, refillable and implantable

    Directory of Open Access Journals (Sweden)

    Tsung eTan

    2011-07-01

    Full Text Available Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD in single animals. When combined with specialized catheters, specific administration sites have been selected. When combined with radiotelemetry, the physiologic gold standard, more sensitive and powerful means of detecting drug induced therapeutic and/or adverse effects has been possible. Numerous application examples are cited from iPRECIO® use in Japan, United States and Europe with iPRECIO® as an enabling drug delivery device where the refillable and programmability functionality were key benefits. The ability to start/stop drug delivery and to have control periods prior dosing made it possible to have equivalent effects at a much lower dose than previously studied. Five different iPRECIO® applications are described in detail with references to the original work where the implantable, refillable and programmable benefits are demonstrated with their different end-points.

  3. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance

    OpenAIRE

    Campos, Mônica Caroline Oliveira; Castro-Pinto, Denise Barçante; Ribeiro, Grazielle Alves; Berredo-Pinho, Márcia Moreira; Gomes, Leonardo Henrique Ferreira; da Silva Bellieny, Myrtes Santos; Goulart, Carla Marins; Echevarria, Áurea; Leon, Leonor Laura

    2013-01-01

    Drug resistance in protozoan parasites has been associated with the P-glycoprotein (Pgp), an energy-dependent efflux pump that transports substances across the membrane. Interestingly, the genes TcPGP1 and TcPGP2 have been described in Trypanosoma cruzi, although the function of these genes has not been fully elucidated. The main goal of this work was to investigate Pgp efflux pump activity and expression in T. cruzi lines submitted to in vitro induced resistance to the compounds 4-N-(2-metho...

  4. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-03-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  5. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-05-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  6. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Directory of Open Access Journals (Sweden)

    Swatantra Kumar Singh Kushwaha

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.

  7. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar, E-mail: swatantrakushwaha@yahoo.co.in [Pranveer Singh Institute of Technology, Kanpur (India); Singh, Satyawan [Saroj Institute of Technology and Management, Lucknow (India)

    2013-10-15

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  8. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent

    OpenAIRE

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P.

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and ra...

  9. Controlled release of 5-fluorouracil or mitomycin-C from polymer matrix: preparation by radiation polymerization and in vivo evaluation of the anticancer drug/polymer composites

    International Nuclear Information System (INIS)

    Polymer tablets containing anticancer drugs such as 5-fluorouracil (5-FU) and mitomycin-C (MMC) have been prepared to evaluate the drug-release characteristics in vitro and the effect on local control of mouse solid tumors in vivo. Radiation-induced polymerization of hydrophilic monomers (2-hydroxyethyl methacrylate and related monomers) at low temperature (-80degC) was performed to immobilize 5-FU or MMC in the polymer matrix. The tablet consisting of drug/polymer was buried surgically near solid tumors of striate muscle sarcoma (S180) transplanted to Kunming mice and the therapeutic effect of slow releasing drugs was evaluated in vivo by reference to intraperitoneal (i.p.) injection of the corresponding drugs. The slow releasing drugs led to high chemotherapeutic gain for local control of solid tumors with remarkable reduction of toxic side effect of the drugs. (author)

  10. Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs

    Science.gov (United States)

    Tiwari, Gargi; Sharma, Dipendra; Dwivedi, K. K.; Dwivedi, M. K.

    2016-05-01

    The drug, 8-Hydroxy-7-methoxy-pyrrolo-[2,1-c][1,4] benzodiazepine-5-one, commonly christened as DC81 belongs to the pyrrolo-[2,1-c][1,4]benzodiazepine (PBDs) family. It is a member of the group of naturally occurring antitumour antibiotics produced by various Streptomyces species. The antitumour activity of DC81 is attributed to its sequence specific interaction with G-C rich DNA region in particular, for Pu-G-Pu motifs. In the present paper, physico-chemical properties DC81 have been carried out using an ab-initio method, HF/6-31G(d,p) with GAMESS program. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the drug have been calculated. Further, drug-DNA interactions have been examined using modified second order perturbation theory along with multicentred-multipole expansion technique. Results have been discussed in the light of other theoretical and experimental observations. Efforts have been made to elucidate the binding patterns and thereby biological properties of the drug.

  11. Poly(ethylene glycol) block copolymers as carriers of anticancer drugs

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Ulbrich, Karel; Strohalm, Jiří

    Lisbon : Organising Committee of the III. SpanishPortuguese Conference, 1998. s. 117-118. [Spanish- Portuguese Conference on Controlled Drug Delivery /3./. 06.09.1998-09.09.1998, Lisbon] R&D Projects: GA ČR GV307/96/K226; GA ČR GA203/98/P096 Subject RIV: FR - Pharmacology ; Medidal Chemistry

  12. The novel polymer delivery systems for anticancer drugs selectively activated by intracellular glutathione

    Czech Academy of Sciences Publication Activity Database

    Hvězdová, Zuzana; Studenovský, Martin; Cuchalová, Lucie; Janoušková, Olga; Etrych, Tomáš; Ulbrich, Karel

    Vancouver: Keystone Symposia, 2015. 89 /J1-2001/. [Integrating Metabolism and Tumor Biology, PI 3-Kinase Signaling Pathways in Disease. 13.01.2015-18.01.2015, Vancouver] R&D Projects: GA MŠk(CZ) EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : glutathione (GSH) * drug delivery system Subject RIV: CE - Biochemistry

  13. Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro.

    Science.gov (United States)

    Akasov, Roman; Zaytseva-Zotova, Daria; Burov, Sergey; Leko, Maria; Dontenwill, Monique; Chiper, Manuela; Vandamme, Thierry; Markvicheva, Elena

    2016-06-15

    Development of novel anticancer formulations is a priority challenge in biomedicine. However, in vitro models based on monolayer cultures (2D) which are currently used for cytotoxicity tests leave much to be desired. More and more attention is focusing on 3D in vitro systems which can better mimic solid tumors. The aim of the study was to develop a novel one-step highly reproducible technique for multicellular tumor spheroid (MTS) formation using synthetic cyclic RGD-peptides, and to demonstrate availability of the spheroids as 3D in vitro model for antitumor drug testing. Cell self-assembly effect induced by addition of both linear and cyclic RGD-peptides directly to monolayer cultures was studied for 12 cell lines of various origins, including tumor cells (e.i. U-87 MG, MCF-7, M-3, HCT-116) and normal cells, in particular L-929, BNL.CL2, HepG2. Cyclo-RGDfK and its modification with triphenylphosphonium cation (TPP), namely cyclo-RGDfK(TPP) in a range of 10-100μM were found to induce spheroid formation. The obtained spheroids were unimodal with mean sizes in a range of 60-120μm depending on cell line and serum content in culture medium. The spheroids were used as 3D in vitro model, in order to evaluate cytotoxicity effects of antitumor drugs (doxorubicin, curcumin, temozolomide). The developed technique could be proposed as a promising tool for in vitro test of novel antitumor drugs. PMID:27107900

  14. cRGD-installed polymeric micelles loading platinum anticancer drugs enable cooperative treatment against lymph node metastasis.

    Science.gov (United States)

    Makino, Jun; Cabral, Horacio; Miura, Yutaka; Matsumoto, Yu; Wang, Ming; Kinoh, Hiroaki; Mochida, Yuki; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-12-28

    Lymph node metastasis (LNM) is correlated with decreased survival, indicating high tumor malignancy and being a potential source for subsequent fatal metastases. Targeted therapies inhibiting the formation of LNM, while eliminating established metastatic foci, could provide synergistic effects by reducing the incidence and growth of metastasis. Based on the inhibitory activity of cRGD peptide against the development of metastasis, and the LNM targeting ability of systemically injected drug-loaded polymeric micelles, herein, we studied the capability of cRGD-installed polymeric micelles incorporating the platinum anticancer drug (1,2-diaminocylohexane)platinum(II) (DACHPt) for cooperatively inhibiting the formation and progression of LNM. As cRGD-installed DACHPt-loaded micelles (cRGD-DACHPt/m) presented similar size, drug loading and surface charge to non-conjugated micelles (MeO-DACHPt/m), the differences in the biological performance of the micelles were endorsed to the effect of the ligand. In a syngeneic melanoma model, both MeO-DACHPt/m and cRGD-DACHPt/m showed comparable antitumor activity against the primary tumors and the established metastatic foci in lymph nodes. However, cRGD-DACHPt/m significantly enhanced the efficacy against LNM draining from primary tumors through the effective inhibition of the spreading of cancer cells. This improved inhibition was associated with the ability of cRGD-DACHPt/m to reduce the migration of melanoma cells, which was higher than that of MeO-DACHPt/m, free cRGD and their combination. These results support our strategy of using cRGD-installed micelles for attaining cooperative therapies against LNM exploiting the inhibitory function of the peptide and the cytotoxic effect of the micelles. PMID:26474676

  15. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety.

    Science.gov (United States)

    Kim, Sungwon; Park, Kyong Mi; Ko, Jin Young; Kwon, Ick Chan; Cho, Hyeon Geun; Kang, Dongmin; Yu, In Tag; Kim, Kwangmeyung; Na, Kun

    2008-05-01

    Recent researches to develop nano-carrier systems in anti-cancer drug delivery have focused on more complicated design to improve therapeutic efficacy and to reduce side effects. Although such efforts have great impact to biomedical science and engineering, the complexity has been a huddle because of clinical and economic problems. In order to overcome the problems, a simplest strategy to fabricate nano-carriers to deliver doxorubicin (DOX) was proposed in the present study. Two significant subjects (i) formation of nanoparticles loading and releasing DOX and (ii) binding specificity of them to cells, were examined. Folic acid (FA) was directly coupled with pullulan (Pul) backbone by ester linkage (FA/Pul conjugate) and the degree of substitution (DS) was varied, which were confirmed by 1H NMR and UV spectrophotometry. Light scattering results revealed that the nanogels possessed two major size distributions around 70 and 270 nm in an aqueous solution. Their critical aggregation concentrations (CACs) were less than 10 microg/mL, which are lower than general critical micelle concentrations (CMCs) of low-molecular-weight surfactants. Transmission electron microscopy (TEM) images showed well-dispersed nanogel morphology in a dried state. Depending on the DS, the nanogels showed different DOX-loading and releasing profiles. The DOX release rate from FA8/Pul (with the highest DS) for 24h was slower than that from FA4/or FA6/Pul, indicating that the FA worked as a hydrophobic moiety for drug holding. Cellular uptake of the nanogels (KB cells) was also monitored by confocal microscopy. All nanogels were internalized regardless of the DS of FA. Based on the results, the objectives of this study, to suggest a new method overcoming the complications in the drug carrier design, were successfully verified. PMID:18164602

  16. Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors.

    Science.gov (United States)

    Scaggiante, Bruna; Dapas, Barbara; Farra, Rossella; Grassi, Mario; Pozzato, Gabriele; Giansante, Carlo; Fiotti, Nicola; Tamai, Elisa; Tonon, Federica; Grassi, Gabriele

    2013-06-01

    Aptamer researches applied to the treatment of human cancers have increased since their discovery in 1990. This is due to different factors including: 1) the technical possibility to select, by SELEX-based procedures, specific aptamers targeting virtually any given molecule, 2) the aptamer favorable bio-activity in vivo, 3) the low production costs and 4) the ease synthesis and storage for the marketing. In the field of cancer treatments, aptamers have been studied as tumor-specific agents driving drugs into cancer cells; additionally they have been used as anti-neoplastic agents, able to inhibit tumor cell growth and dissemination when administered alone or in combination with conventional anti-neoplastic drugs. Aptamers are gaining an increased interest for pharmaceutical companies and some of them are under clinical evaluation trials. In this review we update the findings about the use of aptamers as "escort" molecules able to drive drugs into the cells and as antineoplastic drugs. Current anti-neoplastic treatments suffer from the intrinsic toxicity related to the un-specific targeting of both normal and tumorigenic proliferating cells. The aptamers could be useful to improve: 1) the selective targeting of molecules essential for the viability and expansion of tumor cells and/or the selective driving of chemotherapies into tumor cells, thus resulting in higher effectiveness and lower systemic side-effects compared to conventional anti-neoplastic drugs alone and 2) to improve the therapeutic index of currently used chemotherapies. Even if some problems related to the in vivo stability and pharmacokinetic/dynamics of aptamers remain to be improved, their potential use in the treatment of different human cancers is getting closer and closer to a practical therapeutic use. PMID:23687927

  17. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying

    2015-07-22

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve\\'s closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  18. Preparation of magnetite-chitosan/methylcellulose nanospheres by entrapment and adsorption techniques for targeting the anti-cancer drug 5-fluorouracil.

    Science.gov (United States)

    Şanlı, Oya; Kahraman, Aslı; Kondolot Solak, Ebru; Olukman, Merve

    2016-05-01

    In this work, we have formulated novel nanospheres that could be used in the controlled release of the anticancer drug, 5-fluorouracil (5-FU). The nanospheres are composed of magnetite, containing chitosan (CS) and methylcellulose (MC). The drug entrapment was achieved through the encapsulation and adsorption processes. The effects of the preparation conditions, such as magnetite content, CS/MC ratio, crosslinking concentration, exposure time to glutaraldehyde (GA), and the drug/polymer ratio were investigated for both processes. The 5-FU release was found to follow the Fickian mechanism, and the Langmuir isotherm for the nanospheres was achieved through encapsulation and adsorption processes, respectively. PMID:25677468

  19. EFFECTS OF PSYCHOTROPIC DRUGS AS BACTERIAL EFFLUX PUMP INHIBITORS ON QUORUM SENSING REGULATED BEHAVIORS

    Directory of Open Access Journals (Sweden)

    Aynur Aybey

    2014-10-01

    Full Text Available Psychotropic drugs are known to have antimicrobial activity against several groups of microorganisms. The antidepressant agents such as duloxetine, paroxetine, hydroxyzine and venlafaxine are shown to act as efflux pump inhibitors in bacterial cells. In order to the investigation of the effects of psychotropic drugs were determined for clinically significant pathogens by using standart broth microdillusion method. The anti-quorum sensing (anti-QS activity of psychotropic drugs was tested against four test pathogens using the agar well diffusion method. All drugs showed strong inhibitory effect on the growth of S. typhimurium. Additionally, quorum sensing-regulated behaviors of Pseudomonas aeruginosa, including swarming, swimming and twitching motility and alkaline protease production were investigated. Most effective drugs on swarming, swimming and twitching motility and alkaline protease production, respectively, were paroxetine and duloxetine; duloxetine; hydroxyzine and venlafaxine; paroxetine and venlafaxine; venlafaxine. Accordingly, psychotropic drugs were shown strongly anti-QS activity by acting as bacterial efflux pump inhibitors and effection on motility and alkaline protease production of P. aeruginosa.

  20. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs.

    Science.gov (United States)

    Roskoski, Robert

    2016-05-01

    Cyclins and cyclin-dependent protein kinases (CDKs) are important regulatory components that are required for cell cycle progression. The levels of the cell cycle CDKs are generally constant and their activities are controlled by cyclins, proteins whose levels oscillate during each cell cycle. Additional CDK family members were subsequently discovered that play significant roles in a wide range of activities including the control of gene transcription, metabolism, and neuronal function. In response to mitogenic stimuli, cells in the G1 phase of the cell cycle produce cyclins of the D type that activate CDK4/6. These activated enzymes catalyze the monophosphorylation of the retinoblastoma protein. Then CDK2-cyclin E catalyzes the hyperphosphorylation of Rb that promotes the release and activation of the E2F transcription factors, which in turn lead to the generation of several proteins required for cell cycle progression. As a result, cells pass through the G1-restriction point and are committed to complete cell division. CDK2-cyclin A, CDK1-cyclin A, and CDK1-cyclin B are required for S, G2, and M-phase progression. Increased cyclin or CDK expression or decreased levels of endogenous CDK inhibitors such as INK4 or CIP/KIP have been observed in various cancers. In contrast to the mutational activation of EGFR, Kit, or B-Raf in the pathogenesis of malignancies, mutations in the CDKs that cause cancers are rare. Owing to their role in cell proliferation, CDKs represent natural targets for anticancer therapies. Abemaciclib (LY2835219), ribociclib (Lee011), and palbociclib (Ibrance(®) or PD0332991) target CDK4/6 with IC50 values in the low nanomolar range. Palbociclib and other CDK inhibitors bind in the cleft between the small and large lobes of the CDKs and inhibit the binding of ATP. Like ATP, palbociclib forms hydrogen bonds with residues in the hinge segment of the cleft. Like the adenine base of ATP, palbociclib interacts with catalytic spine residues CS6 and CS7

  1. Deprive to kill: glutamine closes the gate to anticancer monocarboxylic drugs.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-12-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate transporter 1, whose expression is post-transcriptionally increased upon glutamine withdrawal. Overall, our results identified the metabolic condition able to increase the selectivity of 3-bromopyruvate targets in neoplastic tissues, thereby providing a stage for its use in clinical settings for targeting malignancies and represent a proof of principle that modulation of glutamine availability can influence the delivery of monocarboxylic drugs into tumors. PMID:22932475

  2. In vitro characterization of the human biotransformation of marine derived anti-cancer drugs

    OpenAIRE

    Brandon, E.F.A. (Esther Fleur Annette)

    2004-01-01

    Cancer is the second cause of death in The Netherlands. Although the treatment options over the past few decades have substantially improved, the cure rate for patients with advanced cancer remains low. In addition, hopefully new therapies will induce less severe side effects compared to the present therapies. Overall, new anti cancer drugs are still very much needed to improve treatment outcome of patients. Many active cytotoxic agents originate from natural resources, mainly plants (e.g. pa...

  3. Deprive to kill: Glutamine closes the gate to anticancer monocarboxylic drugs

    OpenAIRE

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate tr...

  4. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    Science.gov (United States)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  5. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus

    OpenAIRE

    Yu, Fang; De Luca, Vincenzo

    2013-01-01

    The presence of biologically active monoterpenoid indole alkaloids (MIAs) on the leaf surfaces of medicinally important Catharanthus roseus has led to questions about the secretion processes involved and their prevalence within MIA-producing species of plants. This report shows that a transporter closely related to those involved in cuticle assembly in plants and belonging to the pleiotropic drug resistance family of ATP-binding cassette transporters is specialized for transport of the MIA ca...

  6. Two different spectrophotometric determinations of potential anticancer drug and its toxic metabolite

    Science.gov (United States)

    Farid, Nehal F.; Abdelwahab, Nada S.

    2015-06-01

    Flutamide is a hormone therapy used for men with advanced prostate cancer. Flutamide is highly susceptible to hydrolysis with the production of 3-(trifluoromethyl)aniline, which is reported to be one of its toxic metabolites, impurities and related substances according to BP and USP. Flutamide was found to be stable when exposed to oxidation by 30% hydrogen peroxide and direct sunlight for up to 4 h. Two accurate and sensitive spectrophotometric methods were used for determination of flutamide in bulk and in pharmaceutical formulations. Method (I) is the area under curve (AUC) spectrophotometric method that depends on measuring the AUC in the wavelength ranges of 275-305 nm and 350-380 nm and using Cramer's rule. The linearity range was found to be 1-35 μg/mL and 0.5-16 μg/mL for the drug and the degradate, respectively. In method (II), combination of the isoabsorptive and dual wavelength spectrophotometric methods was used for resolving the binary mixture. The absorbance at 249.2 nm (λiso) was used for determination of total mixture concentration, while the difference in absorbance between 232 nm and 341.2 nm was used for measuring the drug concentration. By subtraction, the degradate concentration was obtained. Beer's law was obeyed in the range of 2-35 μg/mL and 0.5-20 μg/mL for the drug and its degradate, respectively. The two methods were validated according to USP guidelines and were applied for determination of the drug in its pharmaceutical dosage form. Moreover AUC method was used for the kinetic study of the hydrolytic degradation of flutamide. The kinetic degradation of flutamide was found to follow pseudo-first order kinetics and is pH and temperature dependent. Activation energy, kinetic rate constants and t1/2 at different temperatures and pH values were calculated.

  7. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition

    OpenAIRE

    Wilson, Catherine; Nicholes, Katrina; Bustos, Daisy; Lin, Eva; Song, Qinghua; Stephan, Jean-Philippe; Kirkpatrick, Donald S.; Settleman, Jeff

    2014-01-01

    Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, “EGFR-addicted” cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erl...

  8. Aptamer-functionalized hydrogel as effective anti-cancer drugs delivery agents.

    Science.gov (United States)

    Wang, Zonghua; Xia, Jianfei; Cai, Feng; Zhang, Feifei; Yang, Min; Bi, Sai; Gui, Rijun; Li, Yanhui; Xia, Yanzhi

    2015-10-01

    An aptamer-functionalized hydrogel has been developed, which can be regulated by the AS1411 aptamer with the sol-gel conversion. Also the hydrogel can be further utilized for the controlled encapsulation and release of the cancer drugs. Specially, the AS1411 initiates the hybridization of acrydite-modified oligonucleotides to form the hydrogels and the presence of the target protein nucleolin leads the gel to dissolve as a result of reducing the cross-linking density by competitive target-aptamer binding. Based on the rheology of hydrogels, it is possible to utilize this material for storing and releasing molecules. In this research, the cancer drug doxorubicin is encapsulated inside the gel during the formation of the hydrogel and then released in the presence of nucleolin. Further experiments are carried out to prove the specific recognition of target matter. In vitro researches confirm that the aptamer-functionalized hydrogels can be used as drug carriers in targeted therapy and other biotechnological applications. PMID:26142627

  9. Use of a yeast-based membrane protein expression technology to overexpress drug resistance efflux pumps.

    Science.gov (United States)

    Lamping, Erwin; Cannon, Richard D

    2010-01-01

    Azole antifungal drugs are used widely to treat people with oral fungal infections. Unfortunately, fungi can develop resistance to these drugs. This resistance can be due to the overexpression or mutation of cytochrome P450 14alpha-lanosterol demethylase, also known as ERG11 or CYP51, and/or the overexpression of membrane-located multidrug efflux pumps. We have developed a heterologous membrane protein expression system that can be used to study the structure and function of these proteins in the non-pathogenic, genetically stable, and versatile eukaryotic model organism, Saccharomyces cerevisiae. In this chapter we describe the techniques used to express the Candida albicans efflux pump Cdr1p in S. cerevisiae. PMID:20717788

  10. In situ cultured preantral follicles is a useful model to evaluate the effect of anticancer drugs on caprine folliculogenesis.

    Science.gov (United States)

    Guerreiro, Denise Damasceno; Lima, Laritza Ferreira de; Rodrigues, Giovanna Quintino; Carvalho, Adeline de Andrade; Castro, Simone Vieira; Campello, Cláudio Cabral; Pessoa, Cláudia do Ó; Gadelha, Carla Renata Figueiredo; Figueiredo, José Ricardo de; Bordignon, Vilceu; Rodrigues, Ana Paula Ribeiro

    2016-08-01

    Despite the increase in the incidence of cancer, the number of women who survive cancer treatment is growing. However, one of the principal results of chemotherapy is premature ovarian failure (POF). The aim of this study was to use the in situ culture preantral follicles as an in vitro model to evaluate the toxicity of two anticancer drugs, doxorubicin (DXR) and paclitaxel (PTX), on the integrity and development of ovarian follicles. Fragments of the ovarian cortex of goats were cultured in vitro for 1 or 7 days in α-MEM(+) supplemented with different concentrations of DXR (0.003, 0.03, or 0.3 µg/mL) and PTX (0.001, 0.01, or 0.1 µg/mL). Analyses were performed before and after culture to evaluate tissue integrity by classical histology, apoptosis by TUNEL assay, DNA laddering kit and the detection of activated caspase 3, and DNA damage by the immune detection of phosphorylated histone H2A.x (H2AXph139). Both DXR and PTX reduced the number of morphologically normal primordial and developing follicles. Positive staining for TUNEL and active caspase 3 was detected in all the samples (P < 0.05). Therefore, we propose the in situ culture of caprine preantral follicles as a useful experimental model for assessing the toxic effects of the chemotherapeutic agents on ovarian folliculogenesis. Microsc. Res. Tech. 79:773-781, 2016. © 2016 Wiley Periodicals, Inc. PMID:27311936

  11. Shiga Toxin 1, as DNA Repair Inhibitor, Synergistically Potentiates the Activity of the Anticancer Drug, Mafosfamide, on Raji Cells

    Directory of Open Access Journals (Sweden)

    Piero Sestili

    2013-02-01

    Full Text Available Shiga toxin 1 (Stx1, produced by pathogenic Escherichia coli, targets a restricted subset of human cells, which possess the receptor globotriaosylceramide (Gb3Cer/CD77, causing hemolytic uremic syndrome. In spite of the high toxicity, Stx1 has been proposed in the treatment of Gb3Cer/CD77-expressing lymphoma. Here, we demonstrate in a Burkitt lymphoma cell model expressing this receptor, namely Raji cells, that Stx1, at quasi-non-toxic concentrations (0.05–0.1 pM, inhibits the repair of mafosfamide-induced DNA alkylating lesions, synergistically potentiating the cytotoxic activity of the anticancer drug. Conversely, human promyelocytic leukemia cells HL-60, which do not express Gb3Cer/CD77, were spared by the toxin as previously demonstrated for CD34+ human progenitor cells, and hence, in this cancer model, no additive nor synergistic effects were observed with the combined Stx1/mafosfamide treatment. Our findings suggest that Stx1 could be used to improve the mafosfamide-mediated purging of Gb3Cer/CD77+ tumor cells before autologous bone marrow transplantation.

  12. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    Science.gov (United States)

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  13. Data of a fluorescent imaging-based analysis of anti-cancer drug effects on three-dimensional cultures of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Junji Itou

    2015-12-01

    Full Text Available Three-dimensional (3D cell culture is a powerful tool to study cell growth under 3D condition. To perform a simple test for anti-cancer drugs in 3D culture, visualization of non-proliferated cells is required. We propose a fluorescent imaging-based assay to analyze cancer cell proliferation in 3D culture. We used a pulse-labeling technique with a photoconvertible fluorescent protein Kaede to identify non-proliferated cells. This assay allows us to observe change in cell proliferation in 3D culture by simple imaging. Using this assay, we obtained the data of the effects of anti-cancer drugs, 5-fluorouracil and PD0332991 in a breast cancer cell line, MCF-7.

  14. Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design

    OpenAIRE

    Li, Mi; Laco, Gary S.; Jaskolski, Mariusz; Rozycki, Jan; Alexandratos, Jerry; Wlodawer, Alexander; Gustchina, Alla

    2005-01-01

    The successful development of a number of HIV-1 protease (PR) inhibitors for the treatment of AIDS has validated the utilization of retroviral PRs as drug targets and necessitated their detailed structural study. Here we report the structure of a complex of human T cell leukemia virus type 1 (HTLV-1) PR with a substrate-based inhibitor bound in subsites P5 through P5′. Although HTLV-1 PR exhibits an overall fold similar to other retroviral PRs, significant structural differences are present i...

  15. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.; Andersen, Birgit; Schnackerz, K.D.; Dobritzsch, D.; Piskur, Jure; Compagno, C.

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides....../antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was...

  16. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Science.gov (United States)

    Nakanishi, Tsukasa; Morita, Kentaro; Tsukada, Junichi; Kanazawa, Tamotsu

    2016-01-01

    We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL) inhibitor on autophagy in peripheral blood lymphocytes (PBL) isolated from adult T-cell leukemia (ATL) patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA). The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose) polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients. PMID:27190722

  17. Impact analysis of ICH S9 on non-clinical development of anticancer drugs.

    Science.gov (United States)

    Bonelli, Milton; Di Giuseppe, Francesca; Beken, Sonja

    2015-10-01

    Cancer presents a major healthcare challenge worldwide, with several millions new cases a year, and represents a therapeutic area with a high need for new drugs. To respond to this, the parties of the International Conference for Harmonization agreed in 2007 to develop a guideline on nonclinical requirements for oncology therapeutics' development (ICH S9), which came into effect in early 2010. This guideline includes recommendations to facilitate and accelerate the development and marketing of cancer therapeutic agents for serious and life threatening malignancies and aims to address this need through a refinement and a reduction in the use of experimental animals, following the 3Rs principles. To assess the impact of ICH S9 on drug development and reduction of animal use, we performed an analysis of Marketing Authorization Applications at the European Medicines Agency relevant to the period in which the development of the guideline was approaching the final steps and its early implementation period. From the analysis performed, a consistent trend towards a decrease in the average number of non-clinical studies performed (-40.7%) and number of animals used per development program (-58.1%) for new chemical entities has been detected, highlighting increasing compliance by companies to the recommendations of ICH S9. PMID:26232707

  18. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  19. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke

    OpenAIRE

    Van Kanegan, Michael J.; Dunn, Denise E.; Kaltenbach, Linda S.; Bijal Shah; Dong Ning He; Daniel D. McCoy; Peiying Yang; Jiangnan Peng; Li Shen; Lin Du; Cichewicz, Robert H.; Newman, Robert A; Lo, Donald C.

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-0...

  20. Ultrasonication assisted Layer-by-Layer technology for the preparation of multi-functional anticancer drugs paclitaxel and lapatinib

    Science.gov (United States)

    Zhang, Xingcai

    In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs. In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for the preparation of the nanoparticles of paclitaxel. For this approach, a 200 nm diameter was a kind of "magic" barrier for colloidal particles prepared. This diameter barrier may be related to the nucleation size of the solvent vapor microbubbles. Consequently, agents enhancing bubbling formation (such as NH4HCO3) were applied to decrease paclitaxel colloid particles to 100-120 nm. Those paclitaxel nanoparticles were Layer-by-Layer coated with a 10-20 nm polycation/polyanion shell to provide aqueous colloidal stability and slower particle dissolution. However, a large obstacle of these powerful ultrasonication methods was a necessity of long ca 45 minutes high power ultrasonication which resulted in TiO2 contamination from titanium electrode. The small amount of TiO2 contamination from ultrasonication did negatively affect the in vivo testing of this system in mice, and had to be removed before low toxicity of the Layer-by-Layer coated paclitaxel nanoparticles were observed. In the second part of the dissertation, the second approach for sonication, the bottom-up approach (sonicating drug in a water-miscible organic solvent followed by slow water add-in) was successfully applied for the preparation of the nanoparticles of lapatinib and paclitaxel

  1. Interaction of anticancer drug methotrexate with nucleic acids analyzed by multi-spectroscopic method

    Science.gov (United States)

    Cai, Changqun; Chen, Xiaoming; Gong, Hang

    2009-02-01

    Methotrexate (MTX) as an antifolate, which is widely used as chemotherapeutic drugs. A high-dose MTX therapy has a direct toxicity influence on the non-germinal cells, especially the liver cells. It is known that the inject dose for adults is 10-30 mg and is half for children for routine use, while our experiments showed that the optimum dosage of MTX which enhanced the RLS intensities to the maximum is 4.54 ng ml -1. The interaction of methotrexate (MTX) with nucleic acids in aqueous solution in the presence of cetyltrimethylammonium bromide (CTMAB), a kind of cationic surfactant similar to the Human cells, were investigated based on the measurements of resonance light scattering (RLS), UV-vis, fluorescence and NMR spectra, etc. The interaction has been proved to give a ternary complex of MTX-CTMAB-DNA in BR buffer (pH 9.30), which exhibits strong enhanced RLS signals at 339.5 nm.

  2. DNA G-quadruplex and its potential as anticancer drug target

    Science.gov (United States)

    Buket, ONEL; Clement, LIN; DanZhou, YANG

    2016-01-01

    G-quadruplex secondary structures are four-stranded globular nucleic acid structures form in the specific DNA and RNA G-rich sequences with biological significance such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5′ and 3′-untranslated (UTR) regions. The non-canonical G-quadruplex secondary structures can readily form under physiologically relevant ionic conditions and are considered to be new molecular target for cancer therapeutics. This review discusses the essential progress in our lab related to the structures and functions of biologically relevant DNA G-quadruplexes in human gene promoters and telomeres, and the opportunities presented for the development of G-quadruplex-targeted small- molecule drugs.

  3. Dual drug delivery using 'smart' liposomes for triggered release of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ankit; Gulbake, Arvind; Jain, Ashish; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-07-15

    Ovarian cancer is one of the most fatal gynecologic cancers. In this debut study, dual approach using synergistically active combination of paclitaxel-topotecan (Pac-Top; 20:1, w/w) is investigated with utilization of characteristic features of tumor micro-environment and additionally overexpressed folate receptors (FR-{alpha}) to achieve targeting to tumor site. Various liposomes namely liposomes, PEGylated liposomes, and FR-targeted PEGylated liposomes with lipid compositions viz. DPPC:DMPG (85.5:9.5), DPPC:DMPG:mPEG{sub 2000}-DSPE (85.5:9.5:5), and DPPC:DMPG:mPEG{sub 2000}-DSPE:DSPE-PEG-folate (85.5:9.5:4.5:0.5), respectively, were developed using thin film casting method. These were nanometric in size around 200 nm. In vitro drug release study showed initial burst release followed by sustained release for more than 72 h at physiological milieu (37 {+-} 0.5 Degree-Sign C, pH 7.4) while burst release (i.e., more than 90 %) within 5 min at simulated tumor milieu (41 {+-} 1 Degree-Sign C, pH 4). SRB cytotoxicity assay in OVCAR-3 cell line revealed Pac-Top free (20:1, w/w) to be more toxic (GI{sub 50} = 6.5 {mu}g/ml) than positive control (Adriamycin, GI{sub 50} = 9.1 {mu}g/ml) and FR-targeted PEGylated liposomes GI{sub 50} (14.7 {mu}g/ml). Moreover, florescence microscopy showed the highest cell uptake of FR-targeted PEGylated liposomes so called 'smart liposomes' which has not only mediated effective targeting to FR-{alpha} but also triggered release of drugs upon hyperthermia.

  4. 1C-gene array for toxic response using RNA isolated from HepG2 cells treated with anticancer drugs

    Science.gov (United States)

    Hong, Yulong; Bao, Yijia P.; Xie, Xinying; Mooney, Jeffrey L.; Mueller, Uwe R.; Lai, Fang

    2002-06-01

    The possibility of using microarray technology for mechanistic understanding of drug toxicity has opened up a new research field in Toxicology. In an attempt to build knowledge in the field, we have designed a 1C-gene array composed of 85 known human genes with toxicological interests and 15 control genes. HepG2 cells were treated with ethanol and two anticancer drugs, mitomycin C and doxorubicin. RNA were isolated and labeled by fluorescent dyes, then hybridized to the 1C-gene array. Our results showed that a number of cytochrome P450 genes, such as CYP4F2/3, CYP3A3, CYP24, and CYP51, were consistently responsive to the toxicant treatment. However, different genes response to different toxicants. For example, CYP24 and CYP51 were up regulated by the ethanol treatment but remained unresponsive to the other two drugs. The anticancer drugs, but not ethanol differentially regulated several other genes including CYP3A3, TNFRSF6 and CHES1, implying that the two drugs might function through a similar mechanism, which differs from that of ethanol. The reproducibility of our results suggests that microarray- based expression analysis may offer a rapid and efficient means of assessing drug toxicity.

  5. Oltipraz Ameliorizing the Oxidation and Hepatotoxicity Induced by the Anticancer Drug, Tamoxifen in Female Rats

    International Nuclear Information System (INIS)

    Although tamoxifen has been under clinical investigation as a chemopreventive agent against breast cancer for at least a decade, yet its use is still debatable, since it showed to be able to induce liver tumor. Oltipraz as an organosulpher compound, naturally found in cruciferous plants was originally developed as an antischistosomal agent and showed to possess chemopreventive activity against different classes of carcinogens. Female Sprague Dawely rats were orally supplemented with tamoxifen (200 mg/kg body wt.) and oltipraz (30 mg/kg body wt.) daily up to 28 days. Blood samples were taken after one and 4 weeks of administration. The data revealed that tamoxifen administration resulted in significant increases in serum alkaline phosphatase (ALP), gammaglutamyl transferase (gGT) and lactate dehydrogenase (LDH) activity levels indicating liver dysfunction, decreased levels of glutathione (GSH) indicating antioxidant depression associated with increased malondialdehyde, MDA (lipid peroxidation) and carbonyl (protein oxidation). The changes in the assayed parameters indicate dose and time dependent effect. Oltipraz alone caused non-significant changes in the assayed parameters except for the significant increase in GSH content indicating its safe use. The group of rats receiving both drugs showed changes in the assayed parameters less intensified than those recorded in rats received tamoxifen without oltipraz indicating a beneficial role of oltipraz in hindering the side toxic effects of tamoxifen

  6. ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs.

    Science.gov (United States)

    Barresi, Vincenza; Spampinato, Giorgia; Musso, Nicolò; Trovato Salinaro, Angela; Rizzarelli, Enrico; Condorelli, Daniele Filippo

    2016-03-01

    Copper is a catalytic cofactor required for the normal function of many enzymes involved in fundamental biological processes but highly cytotoxic when in excess. Therefore its homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones. ATOX1 (antioxidant protein 1) is a copper chaperone that plays a role in copper homeostasis by binding and transporting cytosolic copper to ATPase proteins in the trans-Golgi network. In the present study the Caco-2 cell line, a colon carcinoma cell line, was used as an in vitro model to evaluate if ATOX1 deficiency could affect sensitivity to experimentally induced copper dyshomeostasis. Silencing of ATOX1 increased toxicity of a short treatment with a high concentration of Cu(2+). Copper ionophores, such as 5-chloro-8-hydroxyquinoline, induced a copper-dependent cell toxicity which was significantly potentiated after ATOX1 silencing. The copper chelator TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) produced a form of cell toxicity that was reversed by the addition of Cu(2+). ATOX1 silencing increased Caco-2 cell sensitivity to TPEN toxicity. Our results suggest the possibility of a therapy with copper-chelating or ionophore drugs in subtypes of tumors showing specific alterations in ATOX1 expression. PMID:26784148

  7. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs.

    Science.gov (United States)

    Mercurio, Valentina; Pirozzi, Flora; Lazzarini, Edoardo; Marone, Giancarlo; Rizzo, Paola; Agnetti, Giulio; Tocchetti, Carlo G; Ghigo, Alessandra; Ameri, Pietro

    2016-06-01

    Heart failure (HF) is a complication of oncological treatments that may have dramatic clinical impact. It may acutely worsen a patient's condition or it may present with delayed onset, even years after treatment, when cancer has been cured or is in stable remission. Several studies have addressed the mechanisms of cancer therapy-related HF and some have led to the definition of disease models that hold valid for other and more common types of HF. Here, we review these models of HF based on the cardiotoxicity of antineoplastic drugs and classify them in cardiomyocyte-intrinsic, paracrine, or potentially secondary to effects on cardiac progenitor cells. The first group includes HF resulting from the combination of oxidative stress, mitochondrial dysfunction, and activation of the DNA damage response, which is typically caused by anthracyclines, and HF resulting from deranged myocardial energetics, such as that triggered by anthracyclines and sunitinib. Blockade of the neuregulin-1/ErbB4/ErbB2, vascular endothelial growth factor/vascular endothelial growth factor receptor and platelet-derived growth factor /platelet-derived growth factor receptor pathways by trastuzumab, sorafenib and sunitinib is proposed as paradigm of cancer therapy-related HF associated with alterations of myocardial paracrine pathways. Finally, anthracyclines and trastuzumab are also presented as examples of antitumor agents that induce HF by affecting the cardiac progenitor cell population. PMID:27103426

  8. Deep sea as a source of novel-anticancer drugs: update on discovery and preclinical/clinical evaluation in a systems medicine perspective.

    Science.gov (United States)

    Russo, Patrizia; Del Bufalo, Alessandra; Fini, Massimo

    2015-01-01

    The deep-sea habitat is a source of very potent marine-derived agents that may inhibit the growth of human cancer cells "in vitro" and "in vivo". Salinosporamide-A, Marizomib, by Salinispora species is a proteasome inhibitor with promising anticancer activity (Phase I/II trials). Different deep-sea-derived drugs are under preclinical evaluation. Cancer is a complex disease that may be represented by network medicine. A simple consequence is the change of the concept of target entity from a single protein to a whole molecular pathway and or cellular network. Deep-sea-derived drugs fit well to this new concept. PMID:26600744

  9. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    OpenAIRE

    Yasui-Furukori, Norio; Hashimoto, Kojiro; Kubo, Kazutoshi; Tomita, Tetsu

    2013-01-01

    Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient’s usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also rec...

  10. Characterization of a novel mechanism accounting for the adverse cholinergic effects of the anticancer drug irinotecan

    Science.gov (United States)

    Blandizzi, Corrado; De Paolis, Barbara; Colucci, Rocchina; Lazzeri, Gloria; Baschiera, Fabio; Del Tacca, Mario

    2001-01-01

    This study investigates the mechanisms accounting for the adverse cholinergic effects of the antitumour drug irinotecan. The activity of irinotecan and its active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), was assayed in models suitable for pharmacological studies on cholinergic system. Irinotecan moderately inhibited human or electric eel acetylcholinesterase activity, SN-38 had no effect, whereas physostigmine blocked both the enzymes with high potency and efficacy. Irinotecan and SN-38 did not affect spontaneous or electrically-induced contractile activity of human colonic muscle. Acetylcholine and dimethylphenylpiperazinium (DMPP) caused phasic contractions or relaxations, respectively. Physostigmine enhanced the motor responses elicited by electrical stimulation. Although irinotecan and SN-38 did not modify the basal contractile activity of guinea-pig ileum longitudinal muscle strips, irinotecan 100 μM moderately enhanced cholinergic twitch contractions. Acetylcholine or DMPP caused phasic contractions, whereas physostigmine enhanced the twitch responses. Electrically-induced [3H]-acetylcholine release was reduced by irinotecan (100 μM) or physostigmine (0.1 μM). Intravenous irinotecan stimulated gastric acid secretion in rats, but no effects were obtained with SN-38, physostigmine or i.c.v. irinotecan. Hypersecretion induced by irinotecan was partly prevented by ondansetron, and unaffected by capsazepine. In the presence of atropine, vagotomy and systemic or vagal ablation of capsaicin-sensitive afferent fibres, irinotecan did not stimulate gastric secretion. The present results indicate that irinotecan and SN-38 do not act as specific acetylcholinesterase blockers or acetylcholine receptor agonists. It is rather suggested that irinotecan promotes a parasympathetic discharge to peripheral organs, mediated by capsaicin-sensitive vagal afferent fibres, and that serotonin 5-HT3 receptors are implicated in the genesis of vago-vagal reflex

  11. Miniaturized osmotic pump for oromucosal drug delivery with external readout station.

    Science.gov (United States)

    Herrlich, Simon; Lorenz, Thomas; Marker, Michael; Spieth, Sven; Messner, Stephan; Zengerle, Roland

    2011-01-01

    We report on a miniaturized, exchangeable drug delivery cartridge for Parkinson's Disease which is integrated in a partial removable prosthesis. An osmotic pumping principle uses saliva to release constantly a separately stored drug to the buccal mucosa, thus avoiding first pass metabolism and drug plasma level fluctuations. Therapeutic relevant information and fill level of the cartridge can be determined before and after usage with an external readout station. The selected material combinations of the cartridge fulfill both, functional and regulatory aspects as well as requirements for assembly and packaging, e.g. thermal fusion bonding, solvent bonding and capillary stop bonding. By using the cartridge, highly precise release rates over 97% of its storage capacity with a rate deviation of only 1.1% can be achieved. PMID:22256291

  12. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    Science.gov (United States)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  13. Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery.

    Science.gov (United States)

    Rasouli, S; Davaran, S; Rasouli, F; Mahkam, M; Salehi, R

    2014-05-01

    The objective of this study was to develop pH-responsive silica nanoparticles by imidazole-based ionic liquid for controlled release of methotrexate. In this article, we synthesized pH-responsive cationic silica nanoparticles by graft copolymerization of vinyl functionalized silica nanoparticles and methacrylic acid (MAA) monomer. Imidazole-based ionic liquid (Im-IL) was verified by (1)HNMR and Fourier-transform infrared (FTIR) spectroscopy. The synthesized functionalized silica particles were characterized and confirmed by various technologies including the scanning electron microscopy (SEM), the infrared spectroscopy (IR) and the thermogravimetric analysis (TGA). SEM results reveal the uniformity in size/shape of silica particles. This nanosystem is modified for targeted delivery of an anticancer agent methotrexate. The nanocomposite-MTX complex was formed at physiological pH (7.4) due to the electrostatic interactions between anionic carboxylic group of MTX molecules and cationic rings in carrier, while, the release of which can be achieved through the cleavage of the nanocomposite-MTX complex by protonation of carboxyl groups in the MTX segment that are sensitive to variations in external pH at weak acidic conditions. FT-IR spectroscopy showed the presence of light interactions between the silicate silanols and the drug. MCF7 cells were incubated with the MTX-free nanocomposite and MTX-loaded nanocomposite at various concentrations for 24, 48 and 72 h, and the data showed that the nanocomposites themselves did not affect the growth of MCF7 cells. Antitumor activity of the MTX-loaded nanocomposites against the cells was kept over the whole experiment process. The results showed that the MTX could be released from the fibers without losing cytotoxicity. PMID:24107075

  14. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery.

    Science.gov (United States)

    Chen, Yu; Chen, Hangrong; Zeng, Deping; Tian, Yunbo; Chen, Feng; Feng, Jingwei; Shi, Jianlin

    2010-10-26

    A potential platform for simultaneous anticancer drug delivery and MRI cell imaging has been demonstrated by uniform hollow inorganic core/shell structured multifunctional mesoporous nanocapsules, which are composed of functional inorganic (Fe(3)O(4), Au, etc.) nanocrystals as cores, a thin mesoporous silica shell, and a huge cavity in between. The synthetic strategy for the creation of huge cavities between functional core and mesoporous silica shell is based on a structural difference based selective etching method, by which solid silica middle layer of Fe(2)O(3)@SiO(2)@mSiO(2) (or Au@SiO(2)@mSiO(2)) composite nanostructures was selectively etched away while the mesoporous silica shell could be kept relatively intact. The excellent biocompatibility of obtained multifunctional nanocapsules (Fe(3)O(4)@mSiO(2)) was demonstrated by very low cytotoxicity against various cell lines, low hemolyticity against human blood red cells and no significant coagulation effect against blood plasma. The cancer cell uptake and intracellular location of the nanocapsules were observed by confocal laser scanning microscopy and bio-TEM. Importantly, the prepared multifunctional inorganic mesoporous nanocapsules show both high loading capacity (20%) and efficiency (up to 100%) for doxorubicin simultaneously because of the formation of the cavity, enhanced surface area/pore volume and the electrostatic interaction between DOX molecules and mesoporous silica surface. Besides, the capability of Fe(3)O(4)@mSiO(2) nanocapsules as contrast agents of MRI was demonstrated both in vitro and in vivo, indicating the simultaneous imaging and therapeutic multifunctionalities of the composite nanocapsules. Moreover, the concept of multifunctional inorganic nanocapsules was extended to design and prepare Gd-Si-DTPA grafted Au@mSiO(2) nanocapsules for nanomedical applications, further demonstrating the generality of this strategy for the preparation of various multifunctional mesoporous nanocapsules

  15. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder

    Directory of Open Access Journals (Sweden)

    Amrita Banerjee

    2014-01-01

    Full Text Available Mithramycin (MTR is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin – histone proteins – as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode or both histones and chromosomal DNA (dual binding mode. The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR–DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg2+. As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies.

  16. Integrin αvβ3 expression in tongue squamous carcinoma cells Cal27 confers anticancer drug resistance through loss of pSrc(Y418).

    Science.gov (United States)

    Stojanović, Nikolina; Brozovic, Anamaria; Majhen, Dragomira; Bosnar, Maja Herak; Fritz, Gerhard; Osmak, Maja; Ambriović-Ristov, Andreja

    2016-08-01

    Integrins play key roles in the regulation of tumor cell adhesion, migration, invasion and sensitivity to anticancer drugs. In the present study we investigate the mechanism of resistance of tongue squamous carcinoma cells Cal27 with de novo integrin αvβ3 expression to anticancer drugs. Cal27-derived cell clones, obtained by transfection of plasmid containing integrin subunit β3 cDNA, as compared to control cells demonstrate: expression of integrin αvβ3; increased expression of integrin αvβ5; increased adhesion to fibronectin and vitronectin; resistance to cisplatin, mitomycin C, doxorubicin and 5-fluorouracil; increased migration and invasion, increased amount of integrin-linked kinase (ILK) and decreased amounts of non-receptor tyrosine kinase (Src) and pSrc(Y418). Knockdown of ILK and integrin β5 in cells expressing integrin αvβ3 ruled out their involvement in drug resistance. Opposite, Src knockdown in Cal27 cells which led to a reduction in pSrc(Y418), as well as treatment with the pSrc(Y418) inhibitors dasatinib and PP2, conferred resistance to all four anticancer drugs, indicating that the loss of pSrc(Y418) is responsible for the observed effect. We identified differential integrin signaling between Cal27 and integrin αvβ3-expressing cells. In Cal27 cells integrin αv heterodimers signal through pSrc(Y418) while this is not the case in integrin αvβ3-expressing cells. Finally, we show that dasatinib counteracts the effect of cisplatin in two additional head and neck squamous cell carcinoma (HNSCC) cell lines Cal33 and Detroit562. Our results suggest that pSrc(Y418) inhibitors, potential drugs for cancer therapy, may reduce therapeutic efficacy if combined with chemotherapeutics, and might not be recommended for HNSCC treatment. PMID:27108184

  17. LA-ICP-MS imaging in multicellular tumor spheroids - a novel tool in the preclinical development of metal-based anticancer drugs.

    Science.gov (United States)

    Theiner, Sarah; Schreiber-Brynzak, Ekaterina; Jakupec, Michael A; Galanski, Markus; Koellensperger, Gunda; Keppler, Bernhard K

    2016-04-01

    A novel application of advanced elemental imaging offers cutting edge in vitro assays with more predictive power on the efficacy of anticancer drugs in preclinical development compared to two dimensional cell culture models. We propose LA-ICP-MS analysis of multicellular spheroids, which are increasingly being used as three dimensional (3D) models of tumors, for improving the in vitro evaluation of anticancer metallodrugs. The presented strategy is very well suited for screening drug-tumor penetration, a key issue for drug efficacy. A major advantage of tumor spheroid models is that they enable us to create a tissue-like structure and function. With respect to 2D culture on the one hand and in vivo models on the other, multicellular spheroids thus show intermediate complexity, still allowing high repeatability and adequate through-put for drug research. This strongly argues for the use of spheroids as bridging models in preclinical anticancer drug development. Probing the lateral platinum distribution within these tumor models allows visualizing the penetration depth and targeting of platinum-based complexes. In the present study, we show for the first time that spatially-resolved metal accumulation in tumor spheroids upon treatment with platinum compounds can be appropriately assessed. The optimized LA-ICP-MS setup allowed discerning the platinum localization in different regions of the tumor spheroids upon compound treatment at biologically relevant (low micromolar) concentrations. Predominant platinum accumulation was observed at the periphery as well as in the center of the spheroids. This corresponds to the proliferating outermost layers of cells and the necrotic core, respectively, indicating enhanced platinum sequestration in these regions. PMID:26806253

  18. Analysis of damaged DNA / proteins interactions: Methodological optimizations and applications to DNA lesions induced by platinum anticancer drugs

    International Nuclear Information System (INIS)

    DNA lesions contribute to the alteration of DNA structure, thereby inhibiting essential cellular processes. Such alterations may be beneficial for chemotherapies, for example in the case of platinum anticancer agents. They generate bulky adducts that, if not repaired, ultimately cause apoptosis. A better understanding of the biological response to such molecules can be obtained through the study of proteins that directly interact with the damages. These proteins constitute the DNA lesions interactome. This thesis presents the development of tools aiming at increasing the list of platinum adduct-associated proteins. Firstly, we designed a ligand fishing system made of damaged plasmids immobilized onto magnetic beads. Three platinum drugs were selected for our study: cisplatin, oxali-platin and satra-platin. Following exposure of the trap to nuclear extracts from HeLa cancer cells and identification of retained proteins by proteomics, we obtained already known candidates (HMGB1, hUBF, FACT complex) but also 29 new members of the platinated-DNA interactome. Among them, we noted the presence of PNUTS, TOX4 and WDR82, which associate to form the recently-discovered PTW/PP complex. Their capture was then confirmed with a second model, namely breast cancer cell line MDA MB 231, and the biological consequences of such an interaction now need to be elucidated. Secondly, we adapted a SPRi bio-chip to the study of platinum-damaged DNA/proteins interactions. Affinity of HMGB1 and newly characterized TOX4 for adducts generated by our three platinum drugs could be validated thanks to the bio-chip. Finally, we used our tools, as well as analytical chemistry and biochemistry methods, to evaluate the role of DDB2 (a factor involved in the recognition of UV-induced lesions) in the repair of cisplatin adducts. Our experiments using MDA MB 231 cells differentially expressing DDB2 showed that this protein is not responsible for the repair of platinum damages. Instead, it appears to act

  19. Titanium(IV) targets phosphoesters on nucleotides: implications for the mechanism of action of the anticancer drug titanocene dichloride.

    Science.gov (United States)

    Guo, M; Guo, Z; Sadler, P J

    2001-09-01

    Abstract Reactions between the anticancer drug titanocene dichloride (Cp2TiCl2) and various nucleotides and their constituents in aqueous solution or N,N-dimethylformamide (DMF) have been investigated by 1H and 31P NMR spectroscopy and in the solid state by IR spectroscopy. In aqueous solution over the pH* (pH meter reading in D2O) range 2.3-6.5, CMP forms one new species with Ti(IV) bound only to the phosphate group. In acidic media at pH*TMP approximately AMP > CMP. At pH* > 7.0, hydrolysis of Cp2TiCl2 predominated and little reaction with the nucleotides was observed. Binding of deoxyribose 5'-phosphate and 4-nitrophenyl phosphate to Cp2TiCl2(aq) via their phosphate groups was detected by 31P NMR spectroscopy, but no reaction between Cp2TiCl2(aq) and deoxyguanosine, 9-ethylguanine or deoxy-D-ribose was observed in aqueous solution. The nucleoside phosphodiesters 3',5'-cyclic GMP and 2',3'-cyclic CMP did not react with Cp2TiCl2(aq) in aqueous solution; however, in the less polar solvent DMF, 3',5'-cyclic GMP coordination to [Cp2Ti]2+ via its phosphodiester group was readily observed. Binding of titanocene to the phosphodiester group of the dinucleotide GpC was also observed in DMF by 31P NMR. The nucleoside triphosphates ATP and GTP reacted more extensively with Cp2TiCl2(aq) than their monophosphates; complexes with bound phosphate groups were formed in acidic media and to a lesser extent at neutral pH. Cleavage of phosphate bonds in ATP (and GTP) by Cp2TiCl2(aq) to form inorganic phosphate, AMP (or GMP) and ADP (or GDP) was observed in aqueous solutions. In addition, titanocene binding to ATP was not inhibited by Mg(II), but the ternary complex titanocene-ATP-Mg appeared to form. These reactions contrast markedly with those of the drug cisplatin, which binds predominantly to the base nitrogen atoms of nucleotides and only weakly to the phosphate groups. The high affinity of Ti(IV) for phosphate groups may be important for its biological activity. PMID:11681703

  20. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research.

    Science.gov (United States)

    Harguindey, Salvador; Arranz, Jose Luis; Polo Orozco, Julian David; Rauch, Cyril; Fais, Stefano; Cardone, Rosa Angela; Reshkin, Stephan J

    2013-01-01

    In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or "proton reversal"). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies. PMID:24195657

  1. On the development of models in mice of advanced visceral metastatic disease for anti-cancer drug testing.

    Science.gov (United States)

    Man, Shan; Munoz, Raquel; Kerbel, Robert S

    2007-12-01

    It is well known clinically that advanced, bulky visceral metastatic disease is generally much less responsive to most anti-cancer therapies, compared to microscopic metastatic disease. This problem is exacerbated when treating cancers that have been previously exposed to multiple lines of therapy, and which have acquired a 'refractory' phenotype. However, mimicking such clinical treatment situations in preclinical mouse models involving the testing of new or existing cancer therapies is extremely rare. Treatment of 'metastasis', in retrospect, usually involves minimal residual disease and therapy naïve tumors. This could account in many instances for the failure to reproduce highly encouraging preclinical results in subsequent phase I or phase II clinical trials. To that end, we have embarked on an experimental program designed to develop models of advanced, visceral metastatic disease, in some cases involving tumors previously exposed to various therapies. The strategy first involves the orthotopic transplantation of a human cancer cell line, such as breast cancer cell line, into the mammary fat pads of immune deficient mice, followed by surgical resection of the resultant primary tumors that develops. Recovery of distant macroscopic metastases, usually in the lungs, is then undertaken, which can take up to 4 months to visibly form. Cell lines are established from such metastases and the process of orthotopic transplantation, surgical resection, and recovery of distant metastases is undertaken, at least one more time. Using such an approach highly metastatically aggressive variant sublines can be obtained, provided they are once again injected into an orthotopic site and the primary tumors removed by surgery. By waiting sufficient time after removal of the primary tumors, about only 1 month, mice with extensive metastatic disease in sites such as the lungs, liver, and lymph nodes can be obtained. An example of therapy being initiated in an advanced stage of such

  2. A novel hybrid drug between two potent anti-tubulin agents as a potential prolonged anticancer approach.

    Science.gov (United States)

    Marchetti, Paolo; Pavan, Barbara; Simoni, Daniele; Baruchello, Riccardo; Rondanin, Riccardo; Mischiati, Carlo; Feriotto, Giordana; Ferraro, Luca; Hsu, Lih-Ching; Lee, Ray M; Dalpiaz, Alessandro

    2016-08-25

    We report the design, synthesis and biological characterisation of a novel hybrid drug by conjugation of two tubulin inhibitors, a hemiasterlin derivative A (H-Mpa-Tle-Aha-OH), obtained by condensation of three non-natural amino acids, and cis-3,4',5-trimethoxy-3'aminostilbene (B). As we have previously demonstrated synergy between A and B, we used a monocarbonyl derivative of triethylene glycol as linker (L) to synthesise compounds A-L and A-L-B; via HPLC we analysed the release of its potential hydrolysis products A, A-L, B and B-L in physiological fluids: the hybrid A-L-B undergo hydrolysis in rat whole blood of the ester bond between A and L (half-life=118.2±9.5min) but not the carbamate bond between B and L; the hydrolysis product B-L was further hydrolyzed, but with a slower rate (half-life=288±12min). The compound A-L was the faster hydrolyzed conjugate (half-life=25.4±1.1min). The inhibitory activity of the compounds against SKOV3 ovarian cancer cell growth was analysed. The IC50 values were 7.48±1.27nM for A, 40.3±6.28nM for B, 738±38.5nM for A-L and 37.9±2.11nM for A-L-B. The anticancer effect of A-L-B was evidenced to be obtained via microtubule dynamics suppression. Finally, we stated the expression of the active efflux transporters P-gp (ABCB1) and MRP1 (ABCC1) in the human normal colon epithelial NCM460 cell line by reverse-transcription PCR. Via permeation studies across NCM460 monolayers we demonstrate the poor aptitude of A to interact with active efflux transporters (AET): indeed, the ratio between its permeability coefficients for the basolateral (B)→apical (A) and B→A transport was 1.5±0.1, near to the ratio of taltobulin (1.12±0.06), an hemiasterlin derivative able to elude AETs, and significantly different form the ratio of celiprolol (3.4±0.2), an AET substrate. PMID:27262542

  3. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes.

    Science.gov (United States)

    Wang, Hu; Khor, Tin Oo; Yang, Qian; Huang, Ying; Wu, Tien-Yuan; Saw, Constance Lay-Lay; Lin, Wen; Androulakis, Ioannis P; Kong, Ah-Ng Tony

    2012-10-01

    This study assesses the pharmacokinetics (PK) and pharmacodynamics (PD) of Nrf2-mediated increased expression of phase II drug metabolizing enzymes (DME) and antioxidant enzymes which represents an important component of cancer chemoprevention in rat lymphocytes following intravenous (iv) administration of an anticancer phytochemical sulforaphane (SFN). SFN was administered intravenously to four groups of male Sprague-Dawley JVC rats each group comprising four animals. Blood samples were drawn at selected time points. Plasma were obtained from half of each of the blood samples and analyzed using a validated LC-MS/MS method. Lymphocytes were collected from the remaining blood samples using Ficoll-Paque Plus centrifuge medium. Lymphocyte RNAs were extracted and converted to cDNA, quantitative real-time PCR analyses were performed, and fold changes were calculated against those at time zero for the relative expression of Nrf2-target genes of phase II DME/antioxidant enzymes. PK-PD modeling was conducted based on Jusko's indirect response model (IDR) using GastroPlus and bootstrap method. SFN plasma concentration declined biexponentially and the pharmacokinetic parameters were generated. Rat lymphocyte mRNA expression levels showed no change for GSTM1, SOD, NF-κB, UGT1A1, or UGT1A6. Moderate increases (2-5-fold) over the time zero were seen for HO-1, Nrf2, and NQO1, and significant increases (>5-fold) for GSTT1, GPx1, and Maf. PK-PD analyses using GastroPlus and the bootstrap method provided reasonable fitting for the PK and PD profiles and parameter estimates. Our present study shows that SFN could induce Nrf2-mediated phase II DME/antioxidant mRNA expression for NQO1, GSTT1, Nrf2, GPx, Maf, and HO-1 in rat lymphocytes after iv administration, suggesting that Nrf2-mediated mRNA expression in lymphocytes may serve as surrogate biomarkers. The PK-PD IDR model simultaneously linking the plasma concentrations of SFN and the PD response of lymphocyte mRNA expression is

  4. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Science.gov (United States)

    Yasui-Furukori, Norio; Hashimoto, Kojiro; Kubo, Kazutoshi; Tomita, Tetsu

    2013-01-01

    Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient’s usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also receiving TS-1. Retrospective analyses showed plasma concentration of paliperidone was consistently lower during the treatment with TS-1 than without TS-1. This case suggests there is drug interaction between paliperidone extended-release tablets and TS-1. PMID:23487437

  5. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Directory of Open Access Journals (Sweden)

    Yasui-Furukori N

    2013-03-01

    Full Text Available Norio Yasui-Furukori, Kojiro Hashimoto, Kazutoshi Kubo, Tetsu Tomita Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Abstract: Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also receiving TS-1. Retrospective analyses showed plasma concentration of paliperidone was consistently lower during the treatment with TS-1 than without TS-1. This case suggests there is drug interaction between paliperidone extended-release tablets and TS-1. Keywords: schizophrenia, antipsychotic, OROS, diarrhea, Positive and Negative Syndrome Scale

  6. Developing an Anticancer Copper(II) Pro-Drug Based on the His242 Residue of the Human Serum Albumin Carrier IIA Subdomain.

    Science.gov (United States)

    Qi, Jinxu; Zhang, Yao; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2016-05-01

    To increase delivery efficiency, anticancer activity, and selectivity of anticancer metal agents in vivo, we proposed to develop the anticancer metal pro-drug based on His242 residue of the human serum albumin (HSA) carrier IIA subdomain. To confirm our hypothesis, we prepared two Cu(II) compounds [Cu(P4 mT)Cl and Cu(Bp44 mT)Cl] by modifying Cu(II) compound ligand structure. Studies with two HSA complex structures revealed that Cu(P4 mT)Cl bound to the HSA subdomain IIA via hydrophobic interactions, but Cu(Bp44 mT)Cl bound to the HSA subdomain IIA via His242 replacement of a Cl atom of Cu(Bp44 mT)Cl, and a coordination to Cu(2+). Furthermore, Cu(II) compounds released from HSA could be regulated at different pHs. In vivo data revealed that the HSA-Cu(Bp44 mT) complex increased copper's selectivity and capacity of inhibiting tumor growth compared to Cu(Bp44 mT)Cl alone. PMID:27017838

  7. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Zehong Yang

    2011-02-01

    Full Text Available Zehong Yang1, Xiaojun Zhao1,21Nanomedicine Laboratory, West China Hospital and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, People’s Republic of China; 2Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: RADA16-I peptide hydrogel, a type of nanofiber scaffold derived from self-assembling peptide RADA16-I, has been extensively applied to regenerative medicine and tissue repair in order to develop novel nanomedicine systems. In this study, using RADA16-I peptide hydrogel, a three-dimensional (3D cell culture model was fabricated for in vitro culture of three ovarian cancer cell lines. Firstly, the peptide nanofiber scaffold was evaluated by transmission electron microscopy and atom force microscopy. Using phase contrast microscopy, the appearance of the representative ovarian cancer cells encapsulated in RADA16-I peptide hydrogel on days 1, 3, and 7 in 24-well Petri dishes was illustrated. The cancer cell–nanofiber scaffold construct was cultured for 5 days, and the ovarian cancer cells had actively proliferative potential. The precultured ovarian cancer cells exhibited nearly similar adhesion properties and invasion potentials in vitro between RADA16-I peptide nanofiber and type I collagen, which suggested that RADA16-I peptide hydrogel had some similar characteristics to type I collagen. The precultured ovarian cancer cells had two-fold to five-fold higher anticancer drug resistance than the conventional two-dimensional Petri dish culture. So the 3D cell model on peptide nanofiber scaffold is an optimal type of cell pattern for anticancer drug screening and tumor biology.Keywords: 3D culture, anticancer drug, nanofiber scaffold, cell viability, ovarian cancer

  8. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    Science.gov (United States)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip

    2016-03-01

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  9. Localized sequence-specific release of a chemopreventive agent and an anticancer drug in a time-controllable manner to enhance therapeutic efficacy.

    Science.gov (United States)

    Pan, Wen-Yu; Lin, Kun-Ju; Huang, Chieh-Cheng; Chiang, Wei-Lun; Lin, Yu-Jung; Lin, Wei-Chih; Chuang, Er-Yuan; Chang, Yen; Sung, Hsing-Wen

    2016-09-01

    Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment. PMID:27294541

  10. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    International Nuclear Information System (INIS)

    Highlights: → We found a novel inhibitor of Nrf2 known as a chemoresistance factor. → Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. → Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. → Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  11. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Directory of Open Access Journals (Sweden)

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  12. 常用抗肿瘤药物基因组学研究进展%Research progress on pharmacogenomics of anti-cancer drugs

    Institute of Scientific and Technical Information of China (English)

    郝志英; 李云娥

    2013-01-01

    药物基因组学的研究进展在指导临床个体化用药、阐明个体差异方面具有重要作用。常用抗肿瘤药物在肿瘤治疗中使用频率最高,是一线方案的首选药物。通过对常用抗肿瘤药物基因组学的分析研究,找到不同患者在基因层面的个体差异,达到预测化疗疗效、选定最佳剂量、减少不良反应的目的,从而实现真正意义上的个体化用药。%Research progress on pharmacogenomics plays an important role in aspects such as guiding individualized medication in clinical setting and illustrating difference between individuals. Commonly anti-cancer drugs in the treatment of tumor in the highest frequency of use, is the preferred first-line drugs regimen.Through analysis and research on pharmacogenomics of commonly anti-cancer drugs, differences of the genetic level between patients are identified with the aim of predicting effects of chemotherapy, determining optimal dosage and reducing adverse reaction. As a result, true individualized medication can be realized.

  13. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications.

    Science.gov (United States)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M; Paik, Pradip

    2016-03-29

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery. PMID:26891479

  14. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  15. Deep sea as a source of novel-anticancer drugs: update on discovery and preclinical/clinical evaluation in a systems medicine perspective

    OpenAIRE

    Russo, Patrizia; Del Bufalo, Alessandra; Fini, Massimo

    2015-01-01

    The deep-sea habitat is a source of very potent marine-derived agents that may inhibit the growth of human cancer cells “in vitro” and “in vivo”. Salinosporamide-A, Marizomib, by Salinispora species is a proteasome inhibitor with promising anticancer activity (Phase I/II trials). Different deep-sea-derived drugs are under preclinical evaluation. Cancer is a complex disease that may be represented by network medicine. A simple consequence is the change of the concept of target entity from a si...

  16. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo

    Science.gov (United States)

    Quyen Tran, Ngoc; Khoa Nguyen, Cuu; Phuong Nguyen, Thi

    2013-12-01

    Dendrimer, a new class of hyper-branched polymer with predetermined molecular weight and well-controlled size, has received much attention in nanobiomedical applications such as drug carrier, gene therapy, disease diagnosis, etc. In this study, pegylated polyamidoamine (PAMAM) dendrimer at generation 3.0 (G 3.0) and carboxylated PAMAM dendrimer G 2.5 were prepared for loading anticancer drugs. For loading cisplatin, carboxylated dendrimer could carry 26.64 wt/wt% of cisplatin. The nanocomplexes have size ranging from 10 to 30 nm in diameter. The drug nanocarrier showed activity against NCI-H460 lung cancer cell line with half maximal inhibitory (IC50) of 23.11 ± 2.08 μg ml-1. Pegylated PAMAM dendrimers (G 3.0) were synthesized below 40 nm in diameter for carrying 5-fluorouracil (5-FU). For 5-FU encapsulation, pegylated dendrimer showed a high drug-loading efficiency of the drug and a slow release profile of 5-FU. The drug nanocarrier system exhibited an antiproliferative activity against MCF-7 cells (breast cancer cell) with a half maximal inhibitory (IC50) of 9.92 ± 0.19 μg ml-1. In vivo tumor xenograft study showed that the 5-FU encapsulated pegylation of dendrimer exhibited a significant decrement in volume of tumor which was generated by MCF-7 cancer cells. These positive results from our studies could pave the ways for further research of drugs dendrimer nanocarriers toward cancer chemotherapy.

  17. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Dendrimer, a new class of hyper-branched polymer with predetermined molecular weight and well-controlled size, has received much attention in nanobiomedical applications such as drug carrier, gene therapy, disease diagnosis, etc. In this study, pegylated polyamidoamine (PAMAM) dendrimer at generation 3.0 (G 3.0) and carboxylated PAMAM dendrimer G 2.5 were prepared for loading anticancer drugs. For loading cisplatin, carboxylated dendrimer could carry 26.64 wt/wt% of cisplatin. The nanocomplexes have size ranging from 10 to 30 nm in diameter. The drug nanocarrier showed activity against NCI-H460 lung cancer cell line with half maximal inhibitory (IC50) of 23.11 ± 2.08 μg ml−1. Pegylated PAMAM dendrimers (G 3.0) were synthesized below 40 nm in diameter for carrying 5-fluorouracil (5-FU). For 5-FU encapsulation, pegylated dendrimer showed a high drug-loading efficiency of the drug and a slow release profile of 5-FU. The drug nanocarrier system exhibited an antiproliferative activity against MCF-7 cells (breast cancer cell) with a half maximal inhibitory (IC50) of 9.92 ± 0.19 μg ml−1. In vivo tumor xenograft study showed that the 5-FU encapsulated pegylation of dendrimer exhibited a significant decrement in volume of tumor which was generated by MCF-7 cancer cells. These positive results from our studies could pave the ways for further research of drugs dendrimer nanocarriers toward cancer chemotherapy. (paper)

  18. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs

    Directory of Open Access Journals (Sweden)

    Patrick Denis R

    2004-10-01

    Full Text Available Abstract Background As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog, fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog. Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the Aurora kinase family. Results Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor. Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the ATP-binding active site, only three were variant and all were specific to Aurora-A. Conclusions In

  19. Anticancer Activities of Brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Hoffmannová, Lucie; Oklešťková, Jana; Steigerová, J.; Kohout, Ladislav; Kolář, Z.; Strnad, Miroslav

    AG Bussum : Bentham Science, 2012 - (Pereira-Netto, A.), s. 84-93 ISBN 978-1-60805-298-1 Grant ostatní: GA AV ČR(CZ) IAA400550801 Institutional research plan: CEZ:AV0Z50380511 Keywords : antiangiogenic activity * anticancer drugs * apoptosis Subject RIV: CC - Organic Chemistry http://home.ueb.cas.cz/publikace/2012_Strnad_chapter.pdf

  20. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring.

    Science.gov (United States)

    Tian, Jiangwei; Luo, Yingping; Huang, Liwei; Feng, Yaqiang; Ju, Huangxian; Yu, Bo-Yang

    2016-06-15

    This work reports a graphene oxide-based nanovehicle with conjugation of pegylated folate for targeted delivery of anticancer drugs and fluorescein-labeled peptide for therapeutic self-monitoring in vitro and in vivo. The nanovehicle could absorb hydrophobic and aromatic drug molecules with high loading capacity and efficiency of more than 1.7mgmg(-1) and 90%, respectively. MTT and flow cytometric assays demonstrated that the drug-loaded nanovehicle could specifically transport and release the drugs into the folate receptor high-expressed cancer cells, which ensured a high therapeutic efficiency to cancer cells and prevented the injury to normal cells. Moreover, confocal fluorescence imaging confirmed that the drug-induced cancer cell death could be visualized with the light-up fluorescence of fluorescein activated by caspase-3. The targeted delivery of drug and self-evaluation of therapeutic efficacy were further successfully realized by living imaging in tumor-bearing mice, which broaden the applications of this theranostic system in vivo and may offer new opportunities for precise cancer treatment. PMID:26890827

  1. Analysis on anticancer drugs used in Guigang City People’s Hospital from 2011 to 2013%2011-2013年贵港市人民医院抗肿瘤药物的使用情况分析

    Institute of Scientific and Technical Information of China (English)

    林洪奇

    2014-01-01

    Objective To analyze the usage of anticancer drugs in Guigang City People’s Hospital from 2011 to 2013. Methods The data were drawn from the HIS system in the hospital retrospectively, and the consumption sum, sales volume, and component ratio of anticancer drugs were analyzed. Results Consumption sum of anticancer drugs increased year by year substantially during 2011-2013, especially antimetabolite and anticancer drugs from plants and their derivatives, but alkylating drugs showed a downward trend in demand. Consumption sum of top three drugs in anticancer drugs were gemcitabine, docetaxel, and pemetrexed. The largest sale of the anticancer drugs was fluorouracil, then was gemcitabine. Conclusion The growth rate of sales of anticancer drugs in Guigang City People’s Hospital closes to the national level. The antimetabolite and anticancer drugs from plants and their derivatives have a big demand in the market, therefore the varieties of production and optimization should be intensified.%目的:分析2011-2013年贵港市人民医院抗肿瘤药物的使用情况和用药趋势。方法通过回顾性检索贵港市人民医院HIS系统2011-2013年的数据,并对各类抗肿瘤药物的销售金额、销售量及构成比等进行统计。结果2011-2013年抗肿瘤药物的销售金额逐年增大,尤其抗代谢药和植物来源抗肿瘤药及其衍生物的增长幅度较大,烷化剂类药物的销售金额却呈下降趋势。销售金额前3位的抗肿瘤药分别是吉西他滨、多西他赛、培美曲塞。销量最大的抗肿瘤药是氟尿嘧啶,其次是吉西他滨。结论贵港市人民医院抗肿瘤药物的销售金额增长率接近全国水平,抗代谢药和植物来源抗肿瘤药及其衍生物的市场需求大,应加大对其品种的生产和优化力度。

  2. Evaluation of the toxic effects of four anti-cancer drugs in plant bioassays and its potency for screening in the context of waste water reuse for irrigation.

    Science.gov (United States)

    Lutterbeck, Carlos Alexandre; Kern, Deivid Ismael; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-09-01

    Anti-cancer drugs are compounds that are of high environmental relevance because of their lack of specific mode of action. They can be extremely harmful to living organisms even at low concentrations. The present study evaluated the toxic effects of four frequently used anti-cancer drugs against plant seedlings, namely Cyclophosphamide (CP), Methotrexate (MTX), 5-Fluorouracil (5-FU) and Imatinib (IM). The phytotoxicity experiments were performed with Lactuca sativa seedlings whereas cytotoxicity, genotoxicity and mutagenicity investigations were performed with the well-established Allium cepa assays. MTX was the most phytotoxic compound, followed by 5-FU, CP and IM. Significant differences in the Mitotic Indexes (MI) were observed in three of the studied compounds (MTX, 5-FU and CP), indicating potential cytotoxic activity of these substances. Chromosome aberrations were registered in cells that were exposed to 5-FU, CP and IM. All the four compounds caused the formation of micronucleated cells indicating mutagenic potential. Besides, the assays performed with MTX samples presented a high number of cell apoptosis (cell death). Although it is unlikely that the pharmaceuticals concentrations measured in the environment could cause lethal effects in plants, the obtained results indicate that these compounds may affect the growth and normal development of these plants. So, both tests can constitute important tools for a fast screening of environmental contamination e.g. in the context of the reuse of treated wastewater and biosolids of agricultural purpose. PMID:26002047

  3. Demonstration of fine vascular construction in abdominal organs and experimental tumors of mice and rats, and its changes by means of radiation and anti-cancer drug administration

    International Nuclear Information System (INIS)

    Using scanning electron microscope, the vascular system of the abdominal organs and experimental tumors of mouse and rat was observed, and effects of radiation and actions of anti-cancer drug administration on the fine blood vessels were investigated. The vascular constructions of several abdominal organs had characteristic features. Among them, the most marked effect was shown in the small intestine. The prominent destruction of capillary and decrease of vascular distribution in intestinal villi as well as partial vascular dilatation was observed. Complicated vascularity was made up in tumors, which could be classified by the shapes of capillary and on the aspects of vascular running. The distribution and construction of capillary pattern was almost same among four kinds of experimental tumors. Vascular patterns were classified as follows. 1. club-like vessel on the surface of tumor mass. 2. wave-like vessel under the surface. 3. tortuous vessel and sinusoidal vessel at the middle part. 4. disordered vessel other than 4 types at the inner part. 5. tapering vessel in the necrotic cavity. Effects of radiation and anti-cancer drug were observed in the club-like vessel and disordered vessel. These morphological changes were correlated with growth pattern of tumor after treatment. (author)

  4. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment

    International Nuclear Information System (INIS)

    Sensitivity of breast tumors to anticancer drugs depends upon dynamic interactions between epithelial tumor cells and their microenvironment including stromal cells and extracellular matrix. To study drug-sensitivity within different compartments of an individual tumor ex vivo, culture models directly established from fresh tumor tissues are absolutely essential. We prepared 0.2 mm thick tissue slices from freshly excised tumor samples and cultivated them individually in the presence or absence of taxol for 4 days. To visualize viability, cell death, and expression of surface molecules in different compartments of non-fixed primary breast cancer tissues we established a method based on confocal imaging using mitochondria- and DNA-selective dyes and fluorescent-conjugated antibodies. Proliferation and apoptosis was assessed by immunohistochemistry in sections from paraffin-embedded slices. Overall viability was also analyzed in homogenized tissue slices by a combined ATP/DNA quantification assay. We obtained a mean of 49 tissue slices from 22 breast cancer specimens allowing a wide range of experiments in each individual tumor. In our culture system, cells remained viable and proliferated for at least 4 days within their tissue environment. Viability of tissue slices decreased significantly in the presence of taxol in a dose-dependent manner. A three-color fluorescence viability assay enabled a rapid and authentic estimation of cell viability in the different tumor compartments within non-fixed tissue slices. We describe a tissue culture method combined with a novel read out system for both tissue cultivation and rapid assessment of drug efficacy together with the simultaneous identification of different cell types within non-fixed breast cancer tissues. This method has potential significance for studying tumor responses to anticancer drugs in the complex environment of a primary cancer tissue

  5. Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug

    International Nuclear Information System (INIS)

    Highlights: • Extra- and intra-cellular interactions of Ru(III) anticancer drug candidate. • ESI-TOF-MS mapping of the ruthenium species bound to transferring. • ESI-QqQ-MS identification of released Ru species under cytosol simulated conditions. - Abstract: Electrospray ionization mass spectrometry (ESI-MS) techniques have been used to characterize the speciation of a Ru(III) anticancer drug, indazolium trans-[tetrachloridobis(1H-indazole) ruthenate(III)], upon its binding to transferrin and the impact of cellular reducing components on drug–transferrin adducts. Using time-of-flight ESI-MS, the polymorphism of apo- (iron-free) and holo-form (iron-saturated) of the protein was confirmed. While the ruthenium moieties bound to each of five isoforms under simulated extracellular conditions are essentially identical in numbers for apo- and holo-transferrin, distinct differences were found in the composition of Ru(III) species attached to either of the protein forms, which are dominated by differently coordinated aquated complexes. On the other hand, at least one of the Ru-N bonds in metal-organic framework remains intact even after prolonged interaction with the protein. Triple quadrupole tandem ESI-MS measurements demonstrated that the ruthenium species released from drug adducts with holo-transferrin in simulated cancer cytosol are underwent strong ligand exchange (as compared to the protein-bound forms) but most strikingly, they contain the metal center in the reduced Ru(II) state. In vitro probing the extra- and intracellular interactions of promising Ru(III) drug candidate performed by ESI-MS is thought to shed light on the transportation to tumor cells by transferrin and on the activation to more reactive species by the reducing environment of solid tumors

  6. Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, Maciej [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Matczuk, Magdalena, E-mail: mmatczuk@ch.pw.edu.pl [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Pawlak, Katarzyna [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Timerbaev, Andrei R. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin St. 19, 119991 Moscow (Russian Federation)

    2014-12-03

    Highlights: • Extra- and intra-cellular interactions of Ru(III) anticancer drug candidate. • ESI-TOF-MS mapping of the ruthenium species bound to transferring. • ESI-QqQ-MS identification of released Ru species under cytosol simulated conditions. - Abstract: Electrospray ionization mass spectrometry (ESI-MS) techniques have been used to characterize the speciation of a Ru(III) anticancer drug, indazolium trans-[tetrachloridobis(1H-indazole) ruthenate(III)], upon its binding to transferrin and the impact of cellular reducing components on drug–transferrin adducts. Using time-of-flight ESI-MS, the polymorphism of apo- (iron-free) and holo-form (iron-saturated) of the protein was confirmed. While the ruthenium moieties bound to each of five isoforms under simulated extracellular conditions are essentially identical in numbers for apo- and holo-transferrin, distinct differences were found in the composition of Ru(III) species attached to either of the protein forms, which are dominated by differently coordinated aquated complexes. On the other hand, at least one of the Ru-N bonds in metal-organic framework remains intact even after prolonged interaction with the protein. Triple quadrupole tandem ESI-MS measurements demonstrated that the ruthenium species released from drug adducts with holo-transferrin in simulated cancer cytosol are underwent strong ligand exchange (as compared to the protein-bound forms) but most strikingly, they contain the metal center in the reduced Ru(II) state. In vitro probing the extra- and intracellular interactions of promising Ru(III) drug candidate performed by ESI-MS is thought to shed light on the transportation to tumor cells by transferrin and on the activation to more reactive species by the reducing environment of solid tumors.

  7. Synthesis, biological evaluation, drug-likeness, and in silico screening of novel benzylidene-hydrazone analogues as small molecule anticancer agents.

    Science.gov (United States)

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2016-02-01

    A series of fifteen benzylidene-hydrazone analogues (3a-o), including eight new compounds, were synthesized and evaluated for their cytotoxic activities in four human cancer cell lines and for their antioxidant activities using DPPH. Of the tested compounds 3e, which possesses two methoxy substituents in its benzylidene phenyl ring, was found to be potently cytotoxic to all cancer cell lines tested with IC50 values of 0.12 (lung), 0.024 (ovarian), 0.097 (melanoma), and 0.05 μM (colon), and these IC50 values were comparable to those of the doxorubicin standard (IC50 = 0.021, 0.074, 0.001, and 0.872 μM, respectively). DPPH assay showed compounds 3f, 3i, and 3g had IC50 values of 0.60, 0.99, and 1.30 μM, respectively, which were comparable to that of ascorbic acid (IC50 = 0.87 μM). Computational parameters such as, drug-likeness, ADME properties, toxicity effects, and drug scores were evaluated, and none of the fifteen compounds violated Lipinski's rule of five or Veber's rule, and thus they demonstrated good drug-likeness properties. In addition, all fifteen compounds had a higher drug score than the doxorubicin and BIBR1532. In silico screening was also conducted by docking of the active compounds on the active site of telomerase reverse transcriptase catalytic subunit, an important therapeutic target of anticancer agents, to determine the probable binding properties. The total binding energies of docked compounds are correlated well with cytotoxic potencies (pIC50) against lung, ovarian, melanoma, and colon cancer cell lines indicating that the benzylidene-hydrazones could use for the development of new anticancer agents as a telomerase inhibitor. PMID:26694484

  8. Conformational stability, spectroscopic and computational studies, hikes' occupied molecular orbital, lowest unoccupied molecular orbital, natural bond orbital analysis and thermodynamic parameters of anticancer drug on nanotube-A review.

    Science.gov (United States)

    Ghasemi, A S; Mashhadban, F; Hoseini-Alfatemi, S M; Sharifi-Rad, J

    2015-01-01

    Today the use of nanotubes (CNTs) is widely spread a versatile vector for drug delivery that can officiate as a platform for transporting a variety of bioactive molecules, such as drugs. In the present study, the interaction between the nanotube and anticancer drugs is investigated. Density functional theory (DFT) calculations were using the Gauss view and the complexes were optimized by B3LYP method using B3LYP/6-31G (d, p) and B3LYP/6-311++G (d, p) basis set in the gas phase and water solution at 298.15K. The calculated hikes' occupied molecular orbital (HOMO) and the lowest unoccupied (LUMO) energies Show that charge transfer occurs within the molecule. Furthermore, the effects of interactions on the natural bond orbital analysis (NBO) have been used to a deeper investigation into the studied compounds. These factors compete against each other to determine the adsorption behavior of the tube computer simulation is seen to be capable to optimize anticancer drug design. This review article mainly concentrates on the different protocols of loading anticancer drugs onto CNTs as well as how to control the anticancer drug release and cancer treatment. PMID:26718433

  9. SELECTED PURIFIED PLANT COMPOUNDS AS POSSIBLE INHIBITORS OF RV1819C A DRUG EFFLUX PUMP (ABC PROTEIN FROM MYCOBACTERIUM TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Sungai Mazando*, M Zimba, C Zimudzi, N Kunonga and M Gundidza

    2013-12-01

    Full Text Available Multidrug-resistant tuberculosis (MDR-TB is among the most worrisome aspects of the pandemic of antibiotic resistance because TB patients that fail treatment have a high risk of death.  The active multidrug efflux pump (EP has been described as one of the mechanisms involved in the natural drug resistance of bacteria, such as mycobacteria. Rv1819c a putative efflux pump ATP binding cassette (ABC protein gene from Mycobacterium tuberculosis, was cloned and transformed into Corynebacterium glutamicum. Susceptibility to standard anti-TB drugs and purified plant compounds, in the presence or absence of standard efflux pump inhibitors (EPIs, carbonyl cyanide m-chlorophenylhydrazone (CCCP, reserpine and verapamil was determined. A fluorometric method was used to assess the ability of the purified plant compounds to inhibit efflux pumps in comparison with three standard EPIs: reserpine, verapamil, and CCCP. Three of the plant compounds coded Ma8, IXLE1B and IXLE2FA were found to have potent antibacterial activity with the extract from Mammea africana (Ma8 being the most potent with an MIC of 4 mg/L. The three purified plant extracts were also shown to reduce the efflux of ciprofloxacin from the mycobacteria cells.  The plant extracts have the potential to augment conventional drugs in the treatment of drug resistant M. tuberculosis upon further studies.

  10. Preparation of biodegradable PEGylated pH/reduction dual-stimuli responsive nanohydrogels for controlled release of an anti-cancer drug

    Science.gov (United States)

    Zhou, Tingting; Zhao, Xubo; Liu, Lei; Liu, Peng

    2015-07-01

    A facile and efficient method was developed to prepare the monodisperse biodegradable PEGylated pH and reduction dual-stimuli sensitive poly[methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate-co-N,N-bis(acryloyl)cystamine] (PMPB) nanohydrogels with dried particle size below 200 nm via one-step distillation precipitation polymerization as a drug delivery system (DDS) for the controlled release of a wide-spectrum anti-cancer drug, doxorubicin hydrochloride (DOX). Under normal physiological media, the nanohydrogels possessed high drug encapsulation efficiency (more than 96%) within 48 h and exhibited good stability with a trifle premature drug release. However, rapid DOX release was achieved at lower pH or in the presence of reductive reagent glutathione (GSH) with a cumulative release of more than 85% within 30 h. Furthermore, the nanohydrogels manifested nontoxicity on HepG2 cells at a concentration of 10 μg mL-1 or lower. Based on the excellent characteristics of the nanohydrogels, such as low toxicity, impressive biodegradability, sharp dual responsiveness, adequate drug loading capacity and a high drug encapsulation efficiency, they were supposed to have potential application in the area of cancer therapy.A facile and efficient method was developed to prepare the monodisperse biodegradable PEGylated pH and reduction dual-stimuli sensitive poly[methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate-co-N,N-bis(acryloyl)cystamine] (PMPB) nanohydrogels with dried particle size below 200 nm via one-step distillation precipitation polymerization as a drug delivery system (DDS) for the controlled release of a wide-spectrum anti-cancer drug, doxorubicin hydrochloride (DOX). Under normal physiological media, the nanohydrogels possessed high drug encapsulation efficiency (more than 96%) within 48 h and exhibited good stability with a trifle premature drug release. However, rapid DOX release was achieved at lower pH or in the presence of

  11. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase.

    Directory of Open Access Journals (Sweden)

    Safiatou T Coulibaly

    Full Text Available Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK mutant (G12 that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36 that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC, for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.

  12. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans Fuertes, Patricia; Søndergaard, Teis Esben; Sandmann, Manuela Ilse Helga;

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens- mediated transformation (ATMT) approach to generate...... knock-out mutants of two candidate non-ribosomal peptide synthetases (NRPS29 and NRPS30). Comparative studies of secondary metabolites in the two deletion mutants and wild type confirmed the absence of sansalvamide in the NRPS30 deletion mutant, implicating this synthetase in the biosynthetic pathway...... biosynthetic pathway. Using comparative bioinformatic analyses of the catalytic domains in the destruxin and sansalvamide NRPSs, we were able to propose a model for sansalvamide biosynthesis. Orthologues of the gene clusters were also identified in species from several other genera including Acremonium...

  13. Influence of family history, irradiation and anti-cancer drug (mitomycin C) on the occurrence of multiple primary neoplasms in breast carcinoma patients

    International Nuclear Information System (INIS)

    The influence of family history, irradiation and anti-cancer drug (Mitomycin C) on the occurrence of multiple primary neoplasms was analysed using the person-year method in 1359 Japanese breast carcinoma patients. There were 111 multiple primary neoplasms, including bilaterl breast cancer, in 109 patients; the incidence rate was 0.0072 per person-year. The incidence rate in patients with a family history of cancer was 1.29 times higher than in those without. In the bilateral breast cancer group there was about a 3 times higher frequency of family history of breast cancer. Irradiation therapy raised the occurrence of multiple primary neoplasms 1.28 fold, and Mitomycin C (40 mg) had no effect on the occurrence of neoplasms during a 10-year observation period. (author)

  14. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  15. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    Science.gov (United States)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  16. Mucoadhesive elementary osmotic pump tablets of trimetazidine for controlled drug delivery and reduced variability in oral bioavailability.

    Science.gov (United States)

    Alam, Naushad; Beg, Sarwar; Rizwan, Mohammad; Ahmad, Akifa; Ahmad, Farhan Jalees; Ali, Asgar; Aqil, Mohammad

    2015-04-01

    The objectives of this work was preparation and evaluation of the mucoadhesive elementary osmotic pump tablets of trimetazidine hydrochloride to achieve desired controlled release action and augmentation of oral drug absorption. The drug-loaded core tablets were prepared employing the suitable tableting excipients and coated with polymeric blend of ethyl cellulose and hydroxypropyl methylethylcellulose E5 (4:1). The prepared tablets were characterized for various quality control tests and in vitro drug release. Evaluation of drug release kinetics through model fitting suggested the Fickian mechanism of drug release, which was regulated by osmosis and diffusion as the predominant mechanism. Evaluation of mucoadhesion property using texture analyzer suggested good mucoadhesion potential of the developed osmotic systems. Solid state characterization using Fourier-transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction spectroscopy confirmed the absence of any physiochemical incompatibilities between drug and excipients. Scanning electron microscopy analysis showed the smooth surface appearance of the coated tablets with intact polymeric membrane without any fracture. In vivo pharmacokinetic studies in rabbits revealed 3.01-fold enhancement in the oral bioavailability vis-à-vis the marketed formulation (Vastarel MR®). These studies successfully demonstrate the bioavailability enhancement potential of the mucoadhesive elementary osmotic pumps as novel therapeutic systems for other drugs too. PMID:24669975

  17. Novel anticancer agents from plant sources

    Institute of Scientific and Technical Information of China (English)

    Shah Unnati; Shah Ripal; Acharya Sanjeev; Acharya Niyati

    2013-01-01

    Plants remain an important source of new drugs,new drug leads and new chemical entities.Plant based drug discovery resulted mainly in the development of anticancer and anti-infectious agents,and continues to contribute to the new leads in clinical trials.Natural product drugs play a dominant role in pharmaceutical care.Several plant-derived compounds are currently successfully employed in cancer treatment.There are many classes of plant-derived cytotoxic natural products studied for further improvement and development of drugs.New anticancer drugs derived from research on plant antitumor agents will be continuously discovered.The basic aim of this review is to explore the potential of newly discovered anticancer compounds from medicinal plants,as a lead for anticancer drug development.It will be helpful to explore the medicinal value of plants and for new drug discovery from them for the researchers and scientists around the globe.

  18. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.

    Science.gov (United States)

    Sarisozen, Can; Vural, Imran; Levchenko, Tatyana; Hincal, A Atilla; Torchilin, Vladimir P

    2012-05-01

    The over-expression of the P-glycoprotein (P-gp) in cancer cells is one of the main reasons of the acquired Multidrug Resistance (MDR). Combined treatment of MDR cancer cells with P-gp inhibitors and chemotherapeutic agents could result in reversal of resistance in P-gp-expressing cells. In this study, paclitaxel (PTX) was co-encapsulated in actively targeted (anticancer mAb 2C5-modified) polymeric lipid-core PEG-PE-based micelles with Cyclosporine A (CycA), which is one of the most effective first generation P-gp inhibitors. Cell culture studies performed using MDCKII (parental and MDR1) cell lines to investigate the potential MDR reversal effect of the formulations. The average size of both empty and loaded PEG₂₀₀₀-PE/Vitamin E mixed micelles was found between 10 and 25 nm. Zeta potentials of the formulations were found between -7 and -35 mV. The percentage of PTX in the micelles was found higher than 3% for both formulations and cumulative PTX release of about 70% was demonstrated. P-gp inhibition with CycA caused an increase in the cytotoxicity of PTX. Dual-loaded micelles demonstrated significantly higher cytotoxicity in the resistant MDCKII-MDR1 cells than micelles loaded with PTX alone. Micelle modification with mAb 2C5 results in the highest cytotoxicity against resistant cells, with or without P-gp modulator, probably because of better internalization bypassing the P-gp mechanism. Our results suggest that micelles delivering a combination of P-gp modulator and anticancer drug or micelles loaded with only PTX, but targeted with mAb 2C5 represent a promising approach to overcome drug resistance in cancer cells. PMID:22506922

  19. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data

    OpenAIRE

    Cheng, H-W; Liang, Y-H; Kuo, Y-L.; Chuu, C-P; Lin, C-Y; Lee, M-H.; Wu, A T H; Yeh, C-T; Chen, E I-T; Whang-Peng, J; Su, C-L; Huang, C-YF

    2015-01-01

    Glioblastoma (GBM) is a common and malignant tumor with a poor prognosis. Glioblastoma stem cells (GSCs) have been reported to be involved in tumorigenesis, tumor maintenance and therapeutic resistance. Thus, to discover novel candidate therapeutic drugs for anti-GBM and anti-GSCs is an urgent need. We hypothesized that if treatment with a drug could reverse, at least in part, the gene expression signature of GBM and GSCs, this drug may have the potential to inhibit pathways essential in the ...

  20. Polymer Nanoparticles Prepared by Sup ercritical Carb on Dioxide for in Vivo Anti-cancer Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    Maofang Hua; Xiufu Hua

    2014-01-01

    A new approach for producing polymer nanoparticles made of bovine serum albumin-poly(methyl methacrylate) conjugate by precipitating in supercritical CO2 is reported. The nanoparticles were loaded with the anti-tumor drug camptothecin. With albumin serving as a nutrient to cells, the drug-encapsulated nanoparticle shows an enhanced ability to kill cancer cells compared to that of the free drug in solution both in vitro and in vivo.

  1. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    Science.gov (United States)

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  2. [Clopidogrel--proton pump inhibitors drug interaction: implications to clinical practice].

    Science.gov (United States)

    Fontes-Carvalho, Ricardo; Albuquerque, Aníbal

    2010-10-01

    Recent studies have raised the concern that proton pump inhibitors (PPIs) could potentially interfere with clopidogrel antiplatelet effect. This association is frequent in clinical practice and is recommended by recent consensus guidelines in patients taking dual antiplatelet therapy to prevent gastrointestinal (GI) bleeding. Clopidogrel is a pro-drug which needs to be metabolized into its active metabolite, by cytochrome P450, especially by CYP2C19 isoenzyme. Various PPIs can inhibit CYP2C19, which could possibly decrease clopidogrel bioactivation process and, therefore, its antiplatelet effect. Various platelet function studies have shown that omeprazol can significantly decrease clopidogrel inhibitory effect on platelet P2Y12 receptor, leading to an increase in the number of patients who are "nonresponders" to clopidogrel. These pharmacokinetic studies also shown that this is not probably a class effect of PPIs, because they are metabolized to varying degrees by CYP2C19. The clinical impact of these observations remains uncertain, because various observational studies have shown conflicting results, and remains to demonstrate if PPIs can really increase the risk of cardiovascular events in patients taking clopidogrel. In this review we will discuss the pharmacokinetic basis underlying this drug interaction, the effect of different PPIs on platelet function tests and we will analyze in detail the potential clinical implications of using this association, both on cardiovascular and gastrointestinal events. Until further data is available, some clinical strategies can be recommended: (1) individual gastrointestinal risk assessment, with PPIs administration only to patients on dual anti-platelet therapy with additional GI risk factors; (2) preferential use of PPIs that have shown less interference with clopidogrel efficacy; (3) wide separation of PPI and clopidogrel dosing to minimize the risk of interaction (PPI may be given before breakfast and clopidogrel at

  3. Lack of a clinically significant drug-drug interaction in healthy volunteers between the HCV protease inhibitor boceprevir and the proton pump inhibitor omeprazole

    OpenAIRE

    Kanter, C.T.M.M. de; Colbers, A.P.; Blonk, M.I.; Wissen, C.P.W.G.M. van; Schouwenberg, B.J.J.W.; Drenth, J.P.H.; Burger, D. M.

    2013-01-01

    OBJECTIVES: Proton pump inhibitors (PPIs) can limit the solubility of concomitant drugs, which can lead to decreased absorption and exposure. Reduced efficacy can be a consequence and in the case of an antimicrobial agent this may contribute to development of resistance. Patients chronically infected with the hepatitis C virus can be treated with a boceprevir-containing regimen and it is relevant to know if interactions between PPIs and boceprevir exist. This study was designed to investigate...

  4. Early Identification of Clinically Relevant Drug Interactions with the Human Bile Salt Export Pump (BSEP; ABCB11)

    OpenAIRE

    Pedersen, Jenny M.; Matsson, Pär; Bergström, Christel A.S.; Hoogstraate, Janet; Norén, Agneta; LeCluyse, Edward L.; Artursson, Per

    2013-01-01

    A comprehensive analysis was performed to investigate how inhibition of the human bile salt export pump (BSEP/ABCB11) relates to clinically observed drug-induced liver injury (DILI). Inhibition of taurocholate (TA) transport was investigated in BSEP membrane vesicles for a data set of 250 compounds, and 86 BSEP inhibitors were identified. Structure-activity modeling identified BSEP inhibition to correlate strongly with compound lipophilicity, whereas positive molecular charge was associated w...

  5. Increases in Xu Zheng and Yu Zheng among Patients with Breast Cancer Receiving Different Anticancer Drug Therapies

    Directory of Open Access Journals (Sweden)

    Sheng-Miauh Huang

    2013-01-01

    Full Text Available Aim. The objectives of this study were to compare yang-xu, yin-xu, and yu among patients with breast cancer right before, one month after, and three months after receiving target, chemo, or combined therapy. Method. After recruiting 126 patients from 4 hospitals in northern Taiwan, a longitudinal study was carried out with 61 patients receiving chemotherapy, 30 receiving target therapy, and 35 receiving combined therapy. Yang-xu, yin-xu, and yu were assessed using the Traditional Chinese Medical Constitutional Scale (TCMCS, with higher scores indicating more xu and yu. Results. There were significant increases in yang-xu, yin-xu, and yu at 1 month and 3 months after than before the start of the chemotherapy, target, or combined therapy. Patients receiving combined therapy had significantly higher scores in yang-xu and yin-xu than patients receiving chemo or target therapy. A history of coronary heart disease was associated with more yin-xu. Those patients who had undergone a mastectomy were associated with less yu zheng than those patients who had not. Conclusion and Implications. TCM doctors should focus their treatment on dealing with xu and yu in order to support their patients, as they complete their modern anticancer treatments.

  6. Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene.

    Science.gov (United States)

    Lohani, Neelam; Singh, Himanshu Narayan; Moganty, R Rajeswari

    2016-06-01

    The high mobility group box 1 protein has been identified as a key player in chromatin homeostasis including transcription regulation, recombination, repair, and chromatin remodeling. Emerging findings indicate HMGB1 protein over expression in nearly all types of human cancers and inflammatory disorders. Thus it is considered as a potential therapeutic target for treating various malignancies. We screened the promoter region of hmgb1 gene and selected a positive regulatory element of 25 base pair duplex (25RY) (-165 to -183) as a potential target for chemotherapeutic intervention. The molecular interaction of actinomycin (ACT) with the regulatory region of hmgb1 gene was characterized by spectroscopic, calorimetric and molecular docking studies. The hypochromic and bathochromic shift in the absorption spectrum, stabilization of 25RY duplex against thermal denaturation, perturbation of CD spectrum of duplex and enhancement of fluorescence intensity of actinomycin indicate strong binding of actinomycin to the hmgb1 promoter region (25RY).The energetics was characterized to be endothermic and entropy driven. All these results are in good agreement with in silico investigation that suggest minor groove binding with effective intercalation at GC bases of actinomycin to 25RY. This study identifies hmgb1 gene promoter region a potential target for the anticancer therapautiucs. PMID:26923673

  7. Intercalative interaction of the anticancer drug mitoxantrone with double stranded DNA: A calorimetric characterization of the energetics

    International Nuclear Information System (INIS)

    Highlights: • Mitoxantrone binds to ds DNA with equilibrium constant of the order of 106 M−1. • The binding was driven by large negative enthalpy and small positive entropy. • The binding was dominated by hydrophobic forces. • Mitoxantrone enhanced the thermal stability of DNA remarkably. - Abstract: The interaction of the anticancer agent mitoxantrone with DNA was investigated using microcalorimetry. The results show that the binding of mitoxantrone to DNA was predominantly enthalpy driven with a small but favorable entropic contribution. The equilibrium constant for the binding reaction (mitoxantrone + DNA = mitoxantrone − DNA complex) was calculated to be (5.05 ± 0.06) · 106 M−1 at T = 298.15 K and the binding stoichiometry value show that ∼2 base pairs were spanned by each mitoxantrone molecule. The equilibrium constant decreased, the standard molar enthalpy change increased and the standard molar entropy change decreased with increasing temperature. However, the change in temperature had little effect on the standard molar Gibbs energy change. The negative value of the standard molar heat capacity change along with enthalpy–entropy compensation behavior suggests the involvement of dominant hydrophobic forces in the binding process. A small but favorable electrostatic component to the binding was revealed from salt dependent calorimetric data and the parsing of the standard molar Gibbs energy change. The binding increased the thermal stability of DNA and the value of the equilibrium constant calculated from the melting data was (6.26 ± 0.17) · 106 M−1

  8. Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs.

    Science.gov (United States)

    Bhutia, Yangzom D; Babu, Ellappan; Ramachandran, Sabarish; Ganapathy, Vadivel

    2015-05-01

    Tumor cells have an increased demand for amino acids because of their rapid proliferation rate. In addition to their need in protein synthesis, several amino acids have other roles in supporting cancer growth. There are approximately two-dozen amino acid transporters in humans, and tumor cells must upregulate one or more of these transporters to satisfy their demand for amino acids. If the transporters that specifically serve this purpose in tumor cells are identified, they can be targeted for the development of a brand new class of anticancer drugs; the logical basis of such a strategy would be to starve the tumor cells of an important class of nutrients. To date, four amino acid transporters have been found to be expressed at high levels in cancer: SLC1A5, SLC7A5, SLC7A11, and SLC6A14. Their induction occurs in a cancer type-specific manner with a direct or indirect involvement of the oncogene c-Myc. Further, these transporters are functionally coupled, thus maximizing their ability to promote cancer growth and chemoresistance. Progress has been made in preclinical studies, exploiting these transporters as drug targets in cancer therapy. These transporters also show promise in development of new tumor-imaging probes and in tumor-specific delivery of appropriately designed chemotherapeutic agents. PMID:25855379

  9. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    Science.gov (United States)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. PMID:27287103

  10. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity.

    Science.gov (United States)

    He, Zhijian; Wan, Xiaomeng; Schulz, Anita; Bludau, Herdis; Dobrovolskaia, Marina A; Stern, Stephan T; Montgomery, Stephanie A; Yuan, Hong; Li, Zibo; Alakhova, Daria; Sokolsky, Marina; Darr, David B; Perou, Charles M; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V

    2016-09-01

    The poor solubility of paclitaxel (PTX), the commercially most successful anticancer drug, has long been hampering the development of suitable formulations. Here, we present translational evaluation of a nanoformulation of PTX, which is characterized by a facile preparation, extraordinary high drug loading of 50% wt. and PTX solubility of up to 45 g/L, excellent shelf stability and controllable, sub-100 nm size. We observe favorable in vitro and in vivo safety profiles and a higher maximum tolerated dose compared to clinically approved formulations. Pharmacokinetic analysis reveals that the higher dose administered leads to a higher exposure of the tumor to PTX. As a result, we observed improved therapeutic outcome in orthotopic tumor models including particularly faithful and aggressive "T11" mouse claudin-low breast cancer orthotopic, syngeneic transplants. The promising preclinical data on the presented PTX nanoformulation showcase the need to investigate new excipients and is a robust basis to translate into clinical trials. PMID:27315213

  11. Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003.

    Directory of Open Access Journals (Sweden)

    Jacqueline Chevalier

    Full Text Available BACKGROUND: The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed 'multidrug resistance' (MDR. The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (beta-lactams, quinolones, .... METHODOLOGY/PRINCIPAL FINDINGS: Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAbetaN previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAbetaN-susceptible efflux system was also identified in resistant E. aerogenes strains. CONCLUSIONS/SIGNIFICANCE: For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum beta-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study

  12. Anticancer chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    This document examines chemotherapeutic agents for use in veterinary oncology. It lists some of the most common categories of chemotherapeutic drugs, such as alkylating agents and corticosteroids. For each category, the paper lists some example drugs, gives their mode of action, tumors usually susceptible to the drug, and common side effects. A brief discussion of mechanisms of drug resistance is also provided. (MHB)

  13. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs.

    Science.gov (United States)

    Planells-Cases, Rosa; Lutter, Darius; Guyader, Charlotte; Gerhards, Nora M; Ullrich, Florian; Elger, Deborah A; Kucukosmanoglu, Asli; Xu, Guotai; Voss, Felizia K; Reincke, S Momsen; Stauber, Tobias; Blomen, Vincent A; Vis, Daniel J; Wessels, Lodewyk F; Brummelkamp, Thijn R; Borst, Piet; Rottenberg, Sven; Jentsch, Thomas J

    2015-12-14

    Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors. PMID:26530471

  14. Interaction of the recently approved anticancer drug nintedanib with human acute phase reactant α 1-acid glycoprotein

    Science.gov (United States)

    Abdelhameed, Ali Saber; Ajmal, Mohammad Rehan; Ponnusamy, Kalaiarasan; Subbarao, Naidu; Khan, Rizwan Hasan

    2016-07-01

    A comprehensive study of the interaction of the newly approved tyrosine kinase inhibitor, Nintedanib (NTB) and Alpha-1 Acid Glycoprotein (AAG) has been carried out by utilizing UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, dynamic light scattering and molecular docking techniques. The obtained results showed enhancement of the UV-Vis peak of the protein upon binding to NTB with the fluorescence intensity of AAG is being quenched by NTB via the formation of ground state complex (i.e. Static quenching). Forster distance (Ro) obtained from fluorescence resonance energy transfer (FRET) is found to be 2.3 nm. The calculated binding parameters from the modified Stern-Volmer equation showed that NTB binds to AAG with a binding constant in the order of 103. Conformational alteration of the protein upon its binding to NTB was confirmed by the circular dichroism. Dynamic light scattering results showed that the binding interaction of NTB leads to the reduction in hydrodynamic radii of AAG. Dynamic molecular docking results showed that the NTB fits into the central binding cavity in AAG and hydrophobic interaction played the key role in the binding process also the docking studies were performed with methotrexate and clofarabine drugs to look into the common binding regions of these drugs on AAG molecule, it was found that five amino acid residues namely Phe 113, Arg 89, Tyr 126, Phe 48 and Glu 63 were common among the binding regions of three studied drugs this phenomenon of overlapping binding regions may influence the drug transport by the carrier molecule in turn affecting the metabolism of the drug and treatment outcome.

  15. Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs.

    Science.gov (United States)

    Izquierdo, M A; Scheffer, G L; Flens, M J; Shoemaker, R H; Rome, L H; Scheper, R J

    1996-01-01

    Multidrug resistance (MDR) has been related to two members of the ABC-superfamily of transporters, P-glycoprotein (Pgp) and Multidrug Resistance-associated Protein (MRP). We have described a 110 kD protein termed the Lung Resistance-related Protein (LRP) that is overexpressed in several non-Pgp MDR cells lines of different histogenetic origin. Reversal of MDR parallels a decrease in LRP expression. In a panel of 61 cancer cell lines which have not been subjected to laboratory drug selection, LRP was a superior predictor for in vitro resistance to MDR-related drugs when compared to Pgp and MRP, and LRP's predictive value extended to MDR unrelated drugs, such as platinum compounds. LRP is widely distributed in clinical cancer specimens, but the frequency of LRP expression inversely correlates with the known chemosensitivity of different tumour types. Furthermore, LRP expression at diagnosis has been shown to be a strong and independent prognostic factor for response to chemotherapy and outcome in acute myeloid leukemia and ovarian carcinoma (platinum-based treatment) patients. Recently, LRP has been identified as the human major protein. Vaults are novel cellular organelles broadly distributed and highly conserved among diverse eukaryotic cells, suggesting that they play a role in fundamental cell processes. Vaults localise to nuclear pore complexes and may be the central plug of the nuclear pore complexes. Vaults structure and localisation support a transport function for this particle which could involve a variety of substrates. Vaults may therefore play a role in drug resistance by regulating the nucleocytoplasmic transport of drugs. PMID:8862006

  16. Molecular mechanisms of cytotoxic side effects of platinum anti-cancer drugs – a molecular orbital study

    OpenAIRE

    Fong, Clifford,

    2015-01-01

    The side effects of Pt drugs have been examined by evaluating the literature on Pt chemistry, pharmacology, cellular transport, and clinical efficacy and correlating these studies with molecular orbital computations. It is concluded that Pt chemotherapeutical regimes are dominated by side reactions, particularly hydrolysis in blood serum and delivery efficiency. For example, it is shown that transplatin is therapeutically inactive because it hydrolyses faster in blood serum than ciplatin, so ...

  17. Liver Label Retaining Cancer Cells Are Relatively Resistant to the Reported Anti-Cancer Stem Cell Drug Metformin

    OpenAIRE

    Xin, Hong-Wu; Ambe, Chenwi M.; Miller, Tyler C.; Chen, Jin-Qiu; Wiegand, Gordon W.; Anderson, Andrew J.; Ray, Satyajit; Mullinax, John E.; Hari, Danielle M; Koizumi, Tomotake; Godbout, Jessica D.; Goldsmith, Paul K.; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S.

    2016-01-01

    Background & Aims: Recently, we reported that liver Label Retaining Cancer Cells (LRCC) can initiate tumors with only 10 cells and are relatively resistant to the targeted drug Sorafenib, a standard of practice in advanced hepatocellular carcinoma (HCC). LRCC are the only cancer stem cells (CSC) isolated alive according to a stem cell fundamental function, asymmetric cell division. Metformin has been reported to preferentially target many other types of CSC of different organs, including live...

  18. Fresh Water Cyanobacteria Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as an Anticancer Drug Resource

    OpenAIRE

    Akanksha Srivastava; Ratnakar Tiwari; Vikas Srivastava; Tej Bali Singh; Ravi Kumar Asthana

    2015-01-01

    An increasing number of cancer patients worldwide, especially in third world countries, have raised concern to explore natural drug resources, such as the less explored fresh water filamentous cyanobacteria. Six strains of cyanobacteria (Phormidium sp. CCC727, Geitlerinema sp. CCC728, Arthrospira sp. CCC729, Phormidium sp. CCC731, Phormidium sp. CCC730, and Leptolyngbya sp. CCC732) were isolated (paddy fields and ponds in the Banaras Hindu University, campus) and five strains screened for ant...

  19. Benchmarking of gastric cancer sensitivity to anti-cancer drugs ex vivo as a basis for drug selection in systemic and intraperitoneal therapy

    OpenAIRE

    Hultman, Bo; Mahteme, Haile; Sundbom, Magnus; Ljungman, Martin; Larsson, Rolf; Nygren, Peter

    2014-01-01

    Background   The choice of drugs for treatment of advanced gastric cancer (GC) is empirical. The purpose of the current study was to benchmark ex vivo the sensitivity of GC tumor cells from patients to standard cytotoxic and some newly introduced targeted drugs (TDs), as a basis for drug selection in the treatment of GC. Methods   Tumor cell samples from patients with GC were analyzed for sensitivity to 5-fluorouracil, cisplatin, oxaliplatin, irinotecan, mito­mycin C, doxorubicin and doceta...

  20. Nanogels fabricated from bovine serum albumin and chitosan via self-assembly for delivery of anticancer drug.

    Science.gov (United States)

    Wang, Yuntao; Xu, Shasha; Xiong, Wenfei; Pei, Yaqiong; Li, Bin; Chen, Yijie

    2016-10-01

    In this study, bovine serum albumin (BSA) and chitosan (CS) were used to prepare BSA-CS nanogels by a simple green self-assembly technique. Then the nanogels were successfully used to entrap doxorubicin hydrochloride (DOX) with an entrapment ratio of 46.3%, aiming to realize the slow-release effect and lower the cytotoxicity of DOX. The IC50 values of DOX-loaded BSA-CS (DOX-BSA-CS) and free DOX obtained by MTT assay in SGC7901 cells were 0.22 and 0.05μg/mL, respectively. The cytotoxicity of DOX significantly decreased within 24h after encapsulation by the nanogels, indicating that the loaded drug could slowly release within 24h and the BSA-CS was a good slow release system. The cellular uptake experiments indicated DOX-BSA-CS diffused faster into the cancer cell than the bare drug. The flow cytometry and TUNEL assay proved DOX-BSA-CS could induce a larger apoptosis proportion of gastric cancer cells 7901 than the bare drug and it is promising to be used for curing gastric cancer. PMID:27262260

  1. The influence of hospital drug formulary policies on the prescribing patterns of proton pump inhibitors in primary care

    DEFF Research Database (Denmark)

    Larsen, Michael Due; Schou, Mette; Kristiansen, Anja Sparre;

    2014-01-01

    patterns after discharge. METHODS: This register study was conducted at Odense University Hospital, Denmark, and by use of pharmacy dispensing data and a hospital-based pharmacoepidemiological database, the medication regimens of patients were followed across hospitalisation. The influence of hospital drug......AIM: This study had two aims: Firstly, to describe how prescriptions for proton pump inhibitor (PPI) in primary care were influenced by a change of the hospital drug policy, and secondly, to describe if a large discount on an expensive PPI (esomeprazole) to a hospital would influence prescribing...... policy on prescribings in primary care was measured by the likelihood of having a high-cost PPI prescribed before and after change of drug policy. RESULTS: In total, 9,341 hospital stays in 2009 and 2010 were included. The probability of a patient to be prescribed an expensive PPI after discharge...

  2. Verapamil, and Its Metabolite Norverapamil, Inhibit Macrophage-induced, Bacterial Efflux Pump-mediated Tolerance to Multiple Anti-tubercular Drugs

    OpenAIRE

    Adams, Kristin N.; Szumowski, John D.; Ramakrishnan, Lalita

    2014-01-01

    Drug tolerance likely represents an important barrier to tuberculosis treatment shortening. We previously implicated the Mycobacterium tuberculosis efflux pump Rv1258c as mediating macrophage-induced tolerance to rifampicin and intracellular growth. In this study, we infected the human macrophage-like cell line THP-1 with drug-sensitive and drug-resistant M. tuberculosis strains and found that tolerance developed to most antituberculosis drugs, including the newer agents moxifloxacin, PA-824,...

  3. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Xi-Nan Shi

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Surgical resection and conventional chemotherapy and radiotherapy ultimately fail due to tumor recurrence and HCC's resistance. The development of novel therapies against HCC is thus urgently required. The cyclin-dependent kinase (CDK pathways are important and well-established targets for cancer treatment. In particular, CDK2 is a key factor regulating the cell cycle G1 to S transition and a hallmark for cancers. In this study, we utilized our free and open-source protein-ligand docking software, idock, prospectively to identify potential CDK2 inhibitors from 4,311 FDA-approved small molecule drugs using a repurposing strategy and an ensemble docking methodology. Sorted by average idock score, nine compounds were purchased and tested in vitro. Among them, the anti-psychotic drug fluspirilene exhibited the highest anti-proliferative effect in human hepatocellular carcinoma HepG2 and Huh7 cells. We demonstrated for the first time that fluspirilene treatment significantly increased the percentage of cells in G1 phase, and decreased the expressions of CDK2, cyclin E and Rb, as well as the phosphorylations of CDK2 on Thr160 and Rb on Ser795. We also examined the anti-cancer effect of fluspirilene in vivo in BALB/C nude mice subcutaneously xenografted with human hepatocellular carcinoma Huh7 cells. Our results showed that oral fluspirilene treatment significantly inhibited tumor growth. Fluspirilene (15 mg/kg exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil (10 mg/kg. Moreover, the cocktail treatment with fluspirilene and 5-fluorouracil exhibited the highest therapeutic effect. These results suggested for the first time that fluspirilene is a potential CDK2 inhibitor and a candidate anti-cancer drug for the treatment of human hepatocellular carcinoma. In view of the fact that fluspirilene has a long history

  4. A comparative study of the vibrational spectra of the anticancer drug melphalan and its fundamental molecules 3-phenylpropionic acid and L-phenylalanine

    Science.gov (United States)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-04-01

    The structural stability and the vibrational spectra of the anticancer drug melphalan and its parent compounds 3-phenylpropionic acid and L-phenylalanine were investigated by the DFT B3LYP/6-311G** calculations. Melphalan and its fundamental compounds were predicted to exist predominantly in non-planar structures. The vibrational frequencies of the low energy structures of melphalan, 3-phenylpropionic acid, and phenylalanine were computed at the DFT B3LYP level of theory. Complete vibrational assignments of the normal modes of melphalan, 3-phenylpropionic acid, and phenylalanine were provided by combined theoretical and experimental data of the molecules. The experimental infrared spectra of phenylalanine and melphalan show a significantly different pattern of the Cdbnd O stretching mode as compared to those of normal carboxylic acids. A comparison of the 3700-2000 cm-1 infrared spectral region of the three molecules suggests the presence of similar intermolecular H-bonding in their condensed phases. The observed infrared and Raman spectra are consistent with the presence of one predominant melphalan conformation at room temperature.

  5. Simulation Model Based on Non-Newtonian Fluid Mechanics Applied to the Evaluation of the Embolic Effect of Emulsions of Iodized Oil and Anticancer Drug

    International Nuclear Information System (INIS)

    Purpose: To verify the difference in embolic effect between oil-in-water (O-W) and water-in-oil (W-O) emulsions composed of iodized oil and an anticancer drug, epirubicin, using a simulation model based on non-Newtonian fluid mechanics.Methods: Flow curves of pure iodized oil and two types of O-W and W-O emulsions immediately and 1 hr after preparation were examined with a viscometer. Using the yield stress data obtained, we simulated the stagnation of each fluid with steady flow in a rigid tube.Results: The W-O emulsions were observed to stagnate in the thin tube at a low pressure gradient. However, the embolic effect of the W-O emulsions decreased 1 hr after preparation. The O-W emulsions were stable and did not stagnate under the conditions in which the W-O emulsions stagnated.Conclusion: The simulation model showed that the embolic effect of the W-O emulsions was superior to that of the O-W emulsions

  6. Attenuation of nucleoside and anti-cancer nucleoside analog drug uptake in prostate cancer cells by Cimicifuga racemosa extract BNO-1055.

    Science.gov (United States)

    Dueregger, Andrea; Guggenberger, Fabian; Barthelmes, Jan; Stecher, Günther; Schuh, Markus; Intelmann, Daniel; Abel, Gudrun; Haunschild, Jutta; Klocker, Helmut; Ramoner, Reinhold; Sampson, Natalie

    2013-11-15

    This study aimed to investigate the mechanisms underlying the anti-proliferative effects of the ethanolic Cimicifuga racemosa extract BNO-1055 on prostate cells and evaluate its therapeutic potential. BNO-1055 dose-dependently attenuated cellular uptake and incorporation of thymidine and BrdU and significantly inhibited cell growth after long-time exposure. Similar results were obtained using saponin-enriched sub-fractions of BNO-1055. These inhibitory effects of BNO-1055 could be mimicked using pharmacological inhibitors and isoform-specific siRNAs targeting the equilibrative nucleoside transporters ENT1 and ENT2. Moreover, BNO-1055 attenuated the uptake of clinically relevant nucleoside analogs, e.g. the anti-cancer drugs gemcitabine and fludarabine. Consistent with inhibition of the salvage nucleoside uptake pathway BNO-1055 potentiated the cytotoxicity of the de novo nucleotide synthesis inhibitor 5-FU without significantly altering its uptake. Collectively, these data show for the first time that the anti-proliferative effects of BNO-1055 result from hindered nucleoside uptake due to impaired ENT activity and demonstrate the potential therapeutic use of BNO-1055 for modulation of nucleoside transport. PMID:23972793

  7. Curcumin binds in silico to anti-cancer drug target enzyme MMP-3 (human stromelysin-1) with affinity comparable to two known inhibitors of the enzyme.

    Science.gov (United States)

    Jerah, Ahmed; Hobani, Yahya; Kumar, B Vinod; Bidwai, Anil

    2015-01-01

    In silico interaction of curcumin with the enzyme MMP-3 (human stromelysin-1) was studied by molecular docking using AutoDock 4.2 as the docking software application. AutoDock 4.2 software serves as a valid and acceptable docking application to study the interactions of small compounds with proteins. Interactions of curcumin with MMP-3 were compared to those of two known inhibitors of the enzyme, PBSA and MPPT. The calculated free energy of binding (ΔG binding) shows that curcumin binds with affinity comparable to or better than the two known inhibitors. Binding interactions of curcumin with active site residues of the enzyme are also predicted. Curcumin appears to bind in an extendended conformation making extensive VDW contacts in the active site of the enzyme. Hydrogen bonding and pi-pi interactions with key active site residues is also observed. Thus, curcumin can be considered as a good lead compound in the development of new inhibitors of MMP-3 which is a potential target of anticancer drugs. The results of these studies can serve as a starting point for further computational and experimental studies. PMID:26420919

  8. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD. PMID:27172999

  9. Confocal spectral imaging by microspectrofluorometry using two-photon excitation: application to the study of anticancer drugs within single living cancer cells

    Science.gov (United States)

    Chourpa, Igor; Pereira, Manuela; Millot, Jean-Marc; Morjani, Hamid; Manfait, Michel

    1999-06-01

    The use of the two-photon excitation (TPE) is believed to be prominent for fluorometric studies with cells. We evaluated the advantages and limitations of the two-photon technique compared to the single photon one when it used to detect potent anticancer drugs, camptothecins (CPTs), within single living cancer cells. The technique we used was confocal microspectrofluorometry amplified with possibility of the spectral imaging analysis. We have previously reported the use of the florescence emission of CPTs to study them qualitatively and quantitatively, namely, to follow the status of their hydrolyzable lactone moiety. However, the intracellular investigation of CPTs using microspectrofluorometry with single photon UV excitation (SPE) is hindered by significant interference of their fluorescence emission with cellular autofluorescence. We attempted to overcome these problems using the two-photon excitation. The intracellular single-photon- and two-photon-excited emission spectra from treated and control cells (HCT-116 line) were recorded using a spectral imaging approach. The obtained data demonstrate that, apart from intrinsically increased three- dimensional resolution, the two-photon approach was advantageous over the single-photon method with respect to selective fluorometric detection of intracellular CPTs. Nevertheless, much attention should be paid to avoid any excessive irradiation of the cells with UV and even NIR light.

  10. Synthesis and properties of star HPMA copolymer nanocarriers synthesised by RAFT polymerisation designed for selective anticancer drug delivery and imaging

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-01-01

    Roč. 15, č. 6 (2015), s. 839-850. ISSN 1616-5187 R&D Projects: GA ČR GPP207/11/P551; GA ČR(CZ) GCP207/12/J030; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : drug delivery systems * HPMA copolymer s * pH-controlled release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.851, year: 2014

  11. Effect of anticancer drugs on breast cancer cells sensitive and resistant to doxorubicin: expression of mRNAs of TGF-β and its receptors

    Directory of Open Access Journals (Sweden)

    Chorna I. V.

    2014-01-01

    Full Text Available Aim. Comparative study of the effect of chemotherapeutic drugs (doxorubicin, methotrexate and cisplatin and TGF-β on the human breast carcinoma MCF-7 cells, sensitive (wt and resistant (DOX/R to the doxorubicin action. Methods. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR was used for the estimation of expression of mRNAs coding for the TGF-β isoforms (TGF-β1 and TGF-β2 and the TGF-β type I and II receptors (TRI and TRII. Trypan blue exclusion method was used for measuring cell number and cell viability. Results. The MCF-7(DOX/R cells were more refractory to the TGF1-dependent growth inhibition than the MCF-7(wt cells. The level of mRNAs coding for TGF and its receptors was higher in the untreated MCF-7 (DOX/R cells comparing to the MCF-7(wt cells. The expression of mRNA coding for TRII was decreased in both cell lines treated with doxorubicin, methotrexate and cisplatin, while the down-regulation of mRNA coding for TRI was revealed only in the MCF-7(DOX/R cells upon the treatment with doxorubicin and methotrexate. Conclusions. The differential effects of studied anticancer drugs and TGF-β on the doxorubicin-sensitive and -resistant cells have been demonstrated. The elucidation of the molecular mechanisms of escape of the MCF-7 (DOX/R cells from the growth inhibition by TGF-β requires further investigation.

  12. The Anti-cancer Drug Chlorambucil as a Substrate for the Human Polymorphic Enzyme Glutathione Transferase P1-1: Kinetic Properties and Crystallographic Characterisation of Allelic Variants

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Lorien J.; Ciccone, Sarah; Italiano, Louis C.; Primavera, Alessandra; Oakley, Aaron J.; Morton, Craig J.; Hancock, Nancy C.; Bello, Mario Lo; Parker, Michael W. (SVIMR-A); (Melbourne); (Rome)

    2008-08-04

    The commonly used anti-cancer drug chlorambucil is the primary treatment for patients with chronic lymphocytic leukaemia. Chlorambucil has been shown to be detoxified by human glutathione transferase Pi (GST P1-1), an enzyme that is often found over-expressed in cancer tissues. The allelic variants of GST P1-1 are associated with differing susceptibilities to leukaemia and differ markedly in their efficiency in catalysing glutathione (GSH) conjugation reactions. Here, we perform detailed kinetic studies of the allelic variants with the aid of three representative co-substrates. We show that the differing catalytic properties of the variants are highly substrate-dependent. We show also that all variants exhibit the same temperature stability in the range 10 C to 45 C. We have determined the crystal structures of GST P1-1 in complex with chlorambucil and its GSH conjugate for two of these allelic variants that have different residues at positions 104 and 113. Chlorambucil is found to bind in a non-productive mode to the substrate-binding site (H-site) in the absence of GSH. This result suggests that under certain stress conditions where GSH levels are low, GST P1-1 can inactivate the drug by sequestering it from the surrounding medium. However, in the presence of GSH, chlorambucil binds in the H-site in a productive mode and undergoes a conjugation reaction with GSH present in the crystal. The crystal structure of the GSH-chlorambucil complex bound to the *C variant is identical with the *A variant ruling out the hypothesis that primary structure differences between the variants cause structural changes at the active site. Finally, we show that chlorambucil is a very poor inhibitor of the enzyme in contrast to ethacrynic acid, which binds to the enzyme in a similar fashion but can act as both substrate and inhibitor.

  13. Ca(II, Zn(II and Au(III sulfamethoxazole sulfa-drug complexes: Synthesis, spectroscopic and anticancer evaluation studies

    Directory of Open Access Journals (Sweden)

    Fatima A.I. Al-Khodir

    2015-09-01

    Full Text Available Herein in this article, three new Ca(II, Zn(II and Au(III complexes of sulfamethoxazole (SZ (sulfa-drug have been synthesized for the first time. The sulfa-drugs have a great attentions because of their therapeutic applications against bacterial infections. The SZ complexes were discussed with the help of elemental analyses, molar conductance and spectroscopic instruments e.g. IR, 1H-NMR, and electronic spectra. Investigations of the infrared spectra of the SZ and their metal complexes indicated the vibrations due to the sulfonamido (SO2 and –NH and isoxazole (C=N groups are shifted with respect to the free molecule in line with their coordination to the metal. In case of calcium(II an zinc(II complexes, the coordination site of SZ are the sulfonyl oxygen and SO2-NH sulfonamide nitrogen, but in gold(III complex, the gold metal ions coordinates through the sulfonyl oxygen and isoxazole nitrogen. These complexes are formulated as: [Ca(SZ(Cl2].8H2O (1, [Zn(SZ(Cl2].2H2O (2 and [Au(SZ(Cl2].Cl (3. The molar conductance data reveals that both Ca(II and Zn(II complexes are non-electrolyte but gold(III complex is electrolyte. The morphological nano structures of SZ complexes were checked using X-ray powder diffraction (XRD, scanning electron microscope (SEM and transmission electron microscopy (TEM. The gold(III complex was recorded good anticancer behavior against Human colon carcinoma (HCT-116 cells and human hepatocellular carcinoma (HepG-2 cells.

  14. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    Science.gov (United States)

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. PMID:27474544

  15. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: Spectroscopic studies

    Science.gov (United States)

    Pentak, Danuta

    2014-03-01

    The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.

  16. An Implantable Depot That Can Generate Oxygen in Situ for Overcoming Hypoxia-Induced Resistance to Anticancer Drugs in Chemotherapy.

    Science.gov (United States)

    Huang, Chieh-Cheng; Chia, Wei-Tso; Chung, Ming-Fan; Lin, Kun-Ju; Hsiao, Chun-Wen; Jin, Chuan; Lim, Woon-Hui; Chen, Chun-Chieh; Sung, Hsing-Wen

    2016-04-27

    In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors resist treatment using antitumor drugs (such as doxorubicin, DOX), owing to their attenuated intracellular production of reactive oxygen species (ROS). Hyperbaric oxygen (HBO) therapy favorably improves oxygen transport to the hypoxic tumor tissues, thereby increasing the sensitivity of tumor cells to DOX. However, the use of HBO with DOX potentiates the ROS-mediated cytotoxicity of the drug toward normal tissues. In this work, we hypothesize that regional oxygen treatment by an implanted oxygen-generating depot may enhance the cytotoxicity of DOX against malignant tissues in a highly site-specific manner, without raising systemic oxygen levels. Upon implantation close to the tumor, the oxygen-generating depot reacts with the interstitial medium to produce oxygen in situ, effectively shrinking the hypoxic regions in the tumor tissues. Increasing the local availability of oxygen causes the cytotoxicity of DOX that is accumulated in the tumors to be significantly enhanced by the elevated production of ROS, ultimately allaying the hypoxia-induced DOX resistance in solid malignancies. Importantly, this enhancement of cytotoxicity is limited to the site of the tumors, and this feature of the system that is proposed herein is unique. PMID:27075956

  17. The Structure-Dependent Electric Release and Enhanced Oxidation of Drug in Graphene Oxide-Based Nanocarrier Loaded with Anticancer Herbal Drug Berberine.

    Science.gov (United States)

    Yu, Danni; Ruan, Pan; Meng, Ziyuan; Zhou, Jianping

    2015-08-01

    The aim of the current investigation is to explore graphene oxide (GO) special electric and electrochemical properties in modulating and tuning drug delivery in tumor special environment of electrophysiology. The electric-sensitive drug release and redox behavior of GO-bearing berberine (Ber) was studied. Drug release in cell potential was applied in a designed electrode system: tumor environment was simulated at pH 6.2 with 0.1 V pulse voltage, whereas the normal was at pH 7.4 with 0.2 V. Quite different from the pH-depended profile, the electricity-triggered behavior indicated a high correlation with the carriers' structure: GO-based nanocomposite showed a burst release on its special "skin effect," whereas the PEGylated ones released slowly owing to the electroviscous effect of polymer. Cyclic voltammetry was used to investigate the redox behaviors of colloid PEGylated GO toward absorbed Ber in pH 5.8 and 7.2 solutions. After drug loading, the oxidation of Ber was enhanced in a neutral environment, whereas the enhancement of PEG-GO was in an acidic one, which means a possible increased susceptibility of their biotransformation in vivo. The studies designed in this work may help to establish a kind of carrier system for the sensitive delivery and metabolic regulation of drugs according to the different electrophysiological environment in tumor therapy. PMID:26052932

  18. MRI Monitoring of Tumor-Selective Anticancer Drug Delivery with Stable Thermosensitive Liposomes Triggered by High-Intensity Focused Ultrasound.

    Science.gov (United States)

    Kim, Hyun Ryoung; You, Dong Gil; Park, Sang-Jun; Choi, Kyu-Sil; Um, Wooram; Kim, Jae-Hun; Park, Jae Hyung; Kim, Young-Sun

    2016-05-01

    Monitoring of drug release from a heat-activated liposome carrier provides an opportunity for real-time control of drug delivery and allows prediction of the therapeutic effect. We have developed short-chain elastin-like polypeptide-incorporating thermosensitive liposomes (STLs). Here, we report the development of STL encapsulating gadobenate dimeglumine (Gd-BOPTA), a MRI contrast agent, and doxorubicin (Dox) (Gd-Dox-STL). The Dox release profile from Gd-Dox-STL was comparable to Gd-Dox-LTSL; however, the serum stability of Gd-Dox-STL was much higher than Gd-Dox-LTSL. MRI studies showed that the difference in T1 relaxation time between 37 and 42 °C for Gd-Dox-STL was larger than the difference for Gd-Dox-LTSL. Although relaxivity for both liposomes at 42 °C was similar, the relaxivity of Gd-Dox-STL at 37 °C was 2.5-fold lower than that of Gd-Dox-LTSL. This was likely due to Gd-BOPTA leakage from the LTSL because of low stability at 37 °C. Pharmacokinetic studies showed plasma half-lives of 4.85 and 1.95 h for Gd-Dox-STL and Gd-Dox-LTSL, respectively, consistent with in vitro stability data. In vivo MRI experiments demonstrated corelease of Dox and Gd-BOPTA from STL under mild hyperthermia induced by high-intensity focused ultrasound (HIFU), which suggests STL is a promising tumor selective formulation when coupled with MR-guided HIFU. PMID:26998616

  19. Classification of current anticancer immunotherapies

    Science.gov (United States)

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  20. The design and characterization of a novel beta-casein nano-vehicle loaded with platinum anticancer drug for drug delivery.

    Science.gov (United States)

    Divsalar, Adeleh; Razmi, Mahdieh; Saboury, Ali Akbar; Seyedarabi, Arefeh

    2014-01-01

    We developed a drug-delivery system comprising a novel platinum drug (Pt(II) complex) entrapped within β-Casein (β-CN) nanoparticles referred to as nano-vehicles. Fluorescence spectroscopy, UV-Vis spectrometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM) were used to characterize the β-CN-Pt(II) complex . What was apparent in this study was that the solubility of Pt (II) complex increased in the presence of β-CN. Furthermore, fluorescence spectroscopy results revealed the binding of the β -CN micelle to the platinum complex at pH 7.0. The tryptophan fluorescence intensity further revealed that the optimal loading molar ratio of β-CN: Pt (II) complex was 1:3 (with β-CN at 1 mg/mL). Under these conditions, the optimal nano-vehicle was formed based on the DLS results. Results from the DLS and SEM analyses are proof for the formation of the β-CN-Pt(II) complex nanoparticles with a very good colloidal stability and an average particle size of 250 nm. Finally, the cytotoxicity of free- and encapsulated-Pt (II) complex was evaluated using colorectal carcinoma HCT116 cells, as a cancer model cell line, because platinum drugs have been used mostly for treatment of Gastrointestinal cancers. Results indicated that the cytotoxicity and cellular uptake of the drug was enhanced when entrapped in β -CN nanoparticles. Polymeric micelles are internalized into the cells via fluid-state endocytosis. These findings suggest that β-CN is an excellent nano-vehicle for targeted delivery of platinum drugs, which are generally recognized as safe (GRAS) and potentially useful in pharmaceutical industries. PMID:24521150

  1. Synthesis of the vitamin E amino acid esters with an enhanced anticancer activity and in silico screening for new antineoplastic drugs.

    Science.gov (United States)

    Gagic, Zarko; Ivkovic, Branka; Srdic-Rajic, Tatjana; Vucicevic, Jelica; Nikolic, Katarina; Agbaba, Danica

    2016-06-10

    Tocopherols and tocotrienols belong to the family of vitamin E (VE) with the well-known antioxidant properties. For certain α-tocopherol and γ-tocotrienol derivatives used as the lead compounds in this study, antitumor activities against various cancer cell types have been reported. In the course of the last decade, structural analogs of VE (esters, ethers and amides) with an enhanced antiproliferative and proapoptotic activity against various cancer cells were synthesized. Within the framework of this study, seven amino acid esters of α-tocopherol (4a-d) and γ-tocotrienol (6a-c) were prepared using the EDC/DMAP reaction conditions and their ability to inhibit proliferation of the MCF-7 and MDA-MB-231 breast cancer cells and the A549 lung cancer cells was evaluated. Compound 6a showed an activity against all three cell lines (IC50: 20.6μM, 28.6μM and 19μM for the MCF-7, MDA-MB-231 and A549 cells, respectively), while compound 4a inhibited proliferation of the MCF-7 (IC50=8.6μM) and A549 cells (IC50=8.6μM). Ester 4d exerted strong antiproliferative activity against the estrogen-unresponsive, multi-drug resistant MDA-MB-231 breast cancer cell line, with IC50 value of 9.2μM. Compared with the strong activity of compounds 4a, 4d and 6a, commercial α-tocopheryl succinate and γ-tocotrienol showed only a limited activity against all three cell lines, with IC50 values >50μM. Investigation of the cell cycle phase distribution and the cell death induction confirmed an apoptosis of the MDA-MB-231 cells treated with 4d, as well as a synergistic effect of 4d with the known anticancer drug doxorubicin. This result suggests a possibility of a combined therapy of breast cancer in order to improve the therapeutic response and to lower the toxicity associated with a high dose of doxorubicin. The stability study of 4d in human plasma showed that ca. 83% initial concentration of this compound remains in plasma in the course of six hours incubation. The ligand based

  2. Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs.

    Science.gov (United States)

    Chen, Wei; Zou, Yan; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2014-03-10

    Reduction-sensitive shell-sheddable glyco-nanoparticles were designed and developed based on poly(ε-caprolactone)-graft-SS-lactobionic acid (PCL-g-SS-LBA) copolymer for efficient hepatoma-targeting delivery of doxorubicin (DOX). PCL-g-SS-LBA was prepared by ring-opening copolymerization of ε-caprolactone and pyridyl disulfide carbonate followed by postpolymerization modification with thiolated lactobionic acid (LBA-SH) via thiol-disulfide exchange reaction. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed that PCL-g-SS-LBA was self-assembled into monodisperse nanoparticles (SS-GNs) with a mean diameter of about 80 nm. SS-GNs while remaining stable under physiological conditions (37 °C, pH 7.4) were prone to rapid shell-shedding and aggregation in the presence of 10 mM dithiothreitol (DTT). DOX was loaded into SS-GNs with a decent loading content of 12.0 wt %. Notably, in vitro release studies revealed that about 80.3% DOX was released from DOX-loaded SS-GNs in 24 h under a reductive condition while low drug release (mechanism and DOX was released into the nuclei of cells following 4 h incubation. MTT assays showed that DOX-loaded SS-GNs exhibited a high antitumor activity toward HepG2 cells, which was comparable to free DOX and about 18-fold higher than their reduction-insensitive counterparts, while blank SS-GNs were nontoxic up to a tested concentration of 1.0 mg/mL. These shell-sheddable glyco-nanoparticles are promising for hepatoma-targeting chemotherapy. PMID:24460130

  3. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    Science.gov (United States)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  4. Intracellular delivery of NF-κB small interfering RNA for modulating therapeutic activities of classical anti-cancer drugs in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Anthony Stanislaus

    2013-12-01

    Full Text Available Cervical cancer is the second most common cancer and fourth leading cause of cancer-related deaths among women. Advanced stage of the disease is treated with radiation therapy and chemotherapy with poor therapeutic outcome and adverse side effects. NFκB, a well-known transcription factor in the control of immunity and inflammation, has recently emerged as a key regulator of cell survival through induction of antiapoptotic genes. Many human cancers, including cervical carcinoma, constitutively express NF-κB and a blockade in expression of its subunit proteins through targeted knockdown of the gene transcripts with small interfering RNAs (siRNA could be an attractive approach in order to sensitize the cancer cells towards the widely used anti-cancer drugs. However, the inefficiency of the naked siRNA to cross the plasma membrane and its sensitiveness to nuclease-mediated degradation are the major challenges limiting the siRNA technology in therapeutic intervention. pH-sensitive carbonate apatite has been established as an efficient nano-carrier for intracellular delivery of siRNA, due to its strong electrostatic interaction with the siRNA, the desirable size distribution of the resulting siRNA complex for effective endocytosis and the ability of the endocytosed siRNA to be released from the degradable particles and escape the endosomes, thus leading to the effective knockdown of the target gene of cyclin B1 or ABCB1. Here, we report that carbonate apatite-facilitated delivery of the siRNA targeting NF-κB1 and NF-κB2 gene transcripts in HeLa, a human cervical adenocar- cinoma cell line expressing NF-κB, led to a synergistic effect in enhancement of chemosensitivity to doxorubicin, but apparently not to cisplatin or paclitaxel.

  5. Screening of Drug Metabolizing Enzymes for the Ginsenoside Compound K In Vitro: An Efficient Anti-Cancer Substance Originating from Panax Ginseng.

    Directory of Open Access Journals (Sweden)

    Jian Xiao

    Full Text Available Ginsenoside compound K (CK, a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.

  6. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Science.gov (United States)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  7. Treatment Combining X-Irradiation and a Ribonucleoside Anticancer Drug, TAS106, Effectively Suppresses the Growth of Tumor Cells Transplanted in Mice

    International Nuclear Information System (INIS)

    Purpose: To examine the in vivo antitumor efficacy of X-irradiation combined with administration of a ribonucleoside anticancer drug, 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (TAS106, ECyd), to tumor cell-transplanted mice. Methods and Materials: Colon26 murine rectum adenocarcinoma cells and MKN45 human gastric adenocarcinoma cells were inoculated into the footpad in BALB/c mice and severe combined immunodeficient mice, respectively. They were treated with a relatively low dose of X-irradiation (2 Gy) and low amounts of TAS106 (0.1 mg/kg and 0.5 mg/kg). The tumor growth was monitored by measuring the tumor volume from Day 5 to Day 16 for Colon26 and from Day 7 to Day 20 for MKN45. Histologic analyses for proliferative and apoptotic cells in the tumors were performed using Ki-67 immunohistochemical and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. The expression of survivin, a key molecule related to tumor survival, was assessed by quantitative polymerase chain reaction and immunohistochemical analysis. Results: When X-irradiation and TAS106 treatment were combined, significant inhibition of tumor growth was observed in both types of tumors compared with mice treated with X-irradiation or TAS106 alone. Marked inhibition of tumor growth was observed in half of the mice that received the combined treatment three times at 2-day intervals. Parallel to these phenomena, the suppression of survivin expression and appearance of Ki-67-negative and apoptotic cells were observed. Conclusions: X-irradiation and TAS106 effectively suppress tumor growth in mice. The inhibition of survivin expression by TAS106 is thought to mainly contribute to the suppression of the tumor growth

  8. Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol + water mixtures at different temperatures

    International Nuclear Information System (INIS)

    Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10−2 at T = 298.15 K) and lowest in pure water (1.43 · 10−7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib

  9. Interaction of different prototropic species of an anticancer drug ellipticine with HSA and IgG proteins: multispectroscopic and molecular modeling studies.

    Science.gov (United States)

    Thakur, Raina; Das, Anupam; Sharma, Vandna; Adhikari, Chandan; Ghosh, Kalyan Sundar; Chakraborty, Anjan

    2015-07-14

    Studies on interactions between an anticancer alkaloid, ellipticine, and various carrier proteins in blood serum show tangible results to gain insight into the solubility and transport of the drug under physiological conditions. In this report, we extensively studied the interactions of different prototropic species of ellipticine with two prominent serum proteins namely human serum albumin (HSA) and immunoglobulin G (IgG) in their native and partially unfolded states using steady state and time resolved fluorescence spectroscopy, molecular docking and circular dichroism (CD). Both the fluorescence techniques and molecular modeling studies elucidate that only neutral species of ellipticine binds to HSA in the sudlow site II. Unlike HSA, IgG in the native state mostly binds to cationic species of ellipticine. However, in partially unfolded configuration, IgG binds to the neutral ellipticine molecules. Molecular docking studies indicate the prevalence of electrostatic interactions involving charged residues in the binding process of cationic species of ellipticine with native IgG in its Fab region. In native conformation, the hydrophobic residues of the Fab region are found to be buried completely by the ligand. This implies that the hydrophobic interaction will be favored by unfolding of IgG through which the hydrophobic pocket will be more accessible to neutral species of ellipticine. The circular dichroism measurements reveal that upon interaction with ellipticine, heat and acid treated HSA resumes its α-helical content. This conclusive comparative study on interactions of IgG and HSA with ellipticine yields the result that native HSA is responsible for transport of neutral species of ellipticine whereas IgG carries cationic ellipticine in its native form. PMID:26060925

  10. Suspicion of drug-drug interaction between high-dose methotrexate and proton pump inhibitors: a case report - should the practice be changed?

    Science.gov (United States)

    Ranchon, F; Vantard, N; Gouraud, A; Schwiertz, V; Franchon, E; Pham, B N; Vial, T; You, B; Bouafia, F; Salles, G; Rioufol, C

    2011-01-01

    We report a case of a potential drug-drug interaction in a woman treated by a first injection of high-dose methotrexate for a T-lymphoblastic lymphoma. Valaciclovir, fluoxetine and pantoprazole were given concomitantly. A methotrexate overdosage was shown at 36 h after infusion associated with a severe renal failure. Alkaline hyperhydration, folinic acid and carboxypeptidase G2 were given. Prescription analyses by pharmacists and literature research have permitted us to suggest that a drug-drug interaction between methotrexate and proton pump inhibitors (PPI) was responsible for this renal failure. Several mechanisms of interaction were suggested and might be related to the inhibition of renal methotrexate transporters by PPI, an increase in the methotrexate efflux to the blood by an upregulation of multidrug resistance protein 3 by PPI or genetic polymorphisms. This case shows that pharmacists can help physicians to optimize patient treatment: they consensually decided on the systematic discontinuation of PPI or a switch to ranitidine when patients were treated by high-dose methotrexate. PMID:21597286

  11. The changing world of drug development: an academic research organization's perspective on the "Seven Wonders" of the future world of anticancer drug development.

    Science.gov (United States)

    Liu, Yan; Lacombe, Denis; Stupp, Roger

    2014-06-01

    Cancer poses a considerable economic burden to healthcare systems worldwide, so healthcare payers will only pay for "performance" in the future. It is likely that new "wonders" have emerged and as a scientific community we need to learn how we can make future cancer research more efficient. Biobanking and imaging platforms will allow full use of this wealth of data for defining and testing hypotheses before the launch of fewer, but ambitious, pivotal clinical studies targeting large therapeutic benefit. Clinical trials must be based on optimized trial designs with sound methodologies and high qualities. These multidisciplinary therapeutic strategies need to be in the new generation of patient treatment planning. In order to accelerate patient access to new treatments and techniques, better harmonized regulatory procedures and new forms of multi-stakeholder collaboration are needed in future drug development. PMID:25841415

  12. Novel Marine Compounds: Anticancer or Genotoxic?

    Directory of Open Access Journals (Sweden)

    Arif Jamal M.

    2004-01-01

    Full Text Available In the past several decades, marine organisms have generously gifted to the pharmaceutical industries numerous naturally bioactive compounds with antiviral, antibacterial, antimalarial, anti-inflammatory, antioxidant, and anticancer potentials. But till date only few anticancer drugs (cytarabine, vidarabine have been commercially developed from marine compounds while several others are currently in different clinical trials. Majority of these compounds were tested in the tumor xenograft models, however, lack of anticancer potential data in the chemical- and/or oncogene-induced pre-initiation animal carcinogenesis models might have cost some of the marine anticancer compounds an early exit from the clinical trials. This review critically discusses importance of preclinical evaluation, failure of human clinical trials with certain potential anticancer agents, the screening tests used, and choice of biomarkers.

  13. A nucleoside anticancer drug, 1-(3-C-ethynyl-β-D-ribo-pentofuranosylcytosine (TAS106, sensitizes cells to radiation by suppressing BRCA2 expression

    Directory of Open Access Journals (Sweden)

    Fukushima Masakazu

    2011-07-01

    Full Text Available Abstract Background A novel anticancer drug 1-(3-C-ethynyl-β-D-ribo-pentofuranosylcytosine (ECyd, TAS106 has been shown to radiosensitize tumor cells and to improve the therapeutic efficiency of X-irradiation. However, the effect of TAS106 on cellular DNA repair capacity has not been elucidated. Our aim in this study was to examine whether TAS106 modified the repair capacity of DNA double-strand breaks (DSBs in tumor cells. Methods Various cultured cell lines treated with TAS106 were irradiated and then survival fraction was examined by the clonogenic survival assays. Repair of sublethal damage (SLD, which indicates DSBs repair capacity, was measured as an increase of surviving cells after split dose irradiation with an interval of incubation. To assess the effect of TAS106 on the DSBs repair activity, the time courses of γ-H2AX and 53BP1 foci formation were examined by using immunocytochemistry. The expression of DNA-repair-related proteins was also examined by Western blot analysis and semi-quantitative RT-PCR analysis. Results In clonogenic survival assays, pretreatment of TAS106 showed radiosensitizing effects in various cell lines. TAS106 inhibited SLD repair and delayed the disappearance of γ-H2AX and 53BP1 foci, suggesting that DSB repair occurred in A549 cells. Western blot analysis demonstrated that TAS106 down-regulated the expression of BRCA2 and Rad51, which are known as keys among DNA repair proteins in the homologous recombination (HR pathway. Although a significant radiosensitizing effect of TAS106 was observed in the parental V79 cells, pretreatment with TAS106 did not induce any radiosensitizing effects in BRCA2-deficient V-C8 cells. Conclusions Our results indicate that TAS106 induces the down-regulation of BRCA2 and the subsequent abrogation of the HR pathway, leading to a radiosensitizing effect. Therefore, this study suggests that inhibition of the HR pathway may be useful to improve the therapeutic efficiency of

  14. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Arulselvan, Palanisamy [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  15. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    International Nuclear Information System (INIS)

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  16. Adaptive drug resistance mediated by root-nodulation-cell division efflux pumps.

    Science.gov (United States)

    Daniels, C; Ramos, J L

    2009-01-01

    Bacterial resistance to antibiotics is a major therapeutic problem. Bacteria use the same mechanisms for developing resistance to antibiotics as they do for developing resistance to biocide compounds present in some cleaning and personal care products. Root-nodulation-cell division (RND) family efflux pumps are a common means of multidrug resistance, and induction of their expression can explain the observed cross-resistance found between antibiotics and biocides in laboratory strains. Hence, there is a relationship between the active chemicals used in household products, organic solvents and antibiotics. The widespread use of biocide-containing modern-day household products may promote the development of microbial resistance and, in particular, cross-resistance to antibiotics. PMID:19220351

  17. Toward Predicting Drug-Induced Liver Injury: Parallel Computational Approaches to Identify Multidrug Resistance Protein 4 and Bile Salt Export Pump Inhibitors

    OpenAIRE

    Welch, Matthew A.; Köck, Kathleen; Urban, Thomas J.; Brouwer, Kim L.R.; Swaan, Peter W.

    2015-01-01

    Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were ...

  18. Novel Anticancer Agents from Ascidiacea

    OpenAIRE

    Vervoort, Hélène C.

    1999-01-01

    This thesis presents an effort to contribute to the discovery and development of struc­turally and mechanistically novel anticancer drugs. In order to reach this goal it focusses on the biologically active secondary metabolites of marine invertebrates of the class As­cidiacea (phylum Chordata, subphylum Urochordata (Tunicata), class Ascidacea). Three distinct areas of research were combined. The first part concerns the discovery of two novel, naturally occurring didemnin depsipeptide...

  19. Novel Marine Compounds: Anticancer or Genotoxic?

    OpenAIRE

    Arif, Jamal M.; Al-Hazzani, Amal A.; Muhammed Kunhi; Fahad Al-Khodairy

    2004-01-01

    In the past several decades, marine organisms have generously gifted to the pharmaceutical industries numerous naturally bioactive compounds with antiviral, antibacterial, antimalarial, anti-inflammatory, antioxidant, and anticancer potentials. But till date only few anticancer drugs (cytarabine, vidarabine) have been commercially developed from marine compounds while several others are currently in different clinical trials. Majority of these compounds were tested in the tumor xenograft mode...

  20. Investigating Effect of Drug Use on Short-term Complications and Bleeding in Patients Undergoing Off-pump CABG (OPCAB

    Directory of Open Access Journals (Sweden)

    M Hadadzadeh

    2013-08-01

    Full Text Available Introduction: Opioid abuse is a major social and health problem in many parts of the world especially in Iran. There are not much information about effect of drugs (addiction on short-term complications and bleeding after CABG. This study aimed to assess the relationship between addiction with short-term complications and bleeding after CABG. Methods: This is a descriptive study in which 100 male patients who underwent off-pump CABG in Afshar hospital in yazd were followed during 3 months to investigate their short-term complications. preoperative and post-operative Hb, Plt, Pt, Ptt, bleeding and packed cells after operation were recorded. Then, collected data was analyzed by chi-square, fisher and exact test . Results: In this study, 30 patients were addicts and 70 male patients were non-addicts. All patients were males and similar in preoperative characteristics such as HTN, DM, HLP, CAD, LIMA usage and NYHA FC. Addicted patients were younger than non-addicts and most of them were cigarette smokers. Regarding medical and dietary recommendation after operation, addicted patients observed these recommendation significantly less than non-addicted patients. After operation, pulmonary, neurologic and infective complications were significantly more common in addicted patients. Conclusion: According the study results and other similar studies, drug use in patients with cardiovascular disease is noticeable. Moreover, regarding the postoperative outcomes in addicted patients, more studies needs to be conducted in this field.

  1. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    Science.gov (United States)

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-01

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  2. Idiopathic Pulmonary Fibrosis: Novel Concepts of Proton Pump Inhibitors as Antifibrotic Drugs.

    Science.gov (United States)

    Ghebre, Yohannes T; Raghu, Ganesh

    2016-06-15

    The prevalence of abnormal acid gastroesophageal reflux (GER) is higher in patients with idiopathic pulmonary fibrosis (IPF) than in matched control subjects. Several studies demonstrated that more than one-third of patients with IPF have abnormal esophageal acid exposures. In addition, many of these studies indicate that the majority of patients with IPF have silent reflux with no symptoms of GER. Findings of abnormal reflux persist in a large proportion of patients with IPF placed on antacid therapy such as proton pump inhibitors (PPIs). This seemingly paradoxical observation suggests that either patients with IPF are somehow resistant to PPI-based intervention or PPIs are inherently unable to suppress acid GER. By contrast, patients with IPF who undergo Nissen fundoplication surgery are effectively relieved from the complications of GER, and retrospective studies suggest improved lung function. Retrospective, anecdotal data suggest a beneficial role of PPIs in IPF including stabilization of lung function, reduction in episodes of acute exacerbation, and enhanced longevity. The recent evidence-based guidelines for treatment of IPF approved conditional recommendation of PPIs for all patients with IPF regardless of their GER status. Recently, we have reported that PPIs possess antiinflammatory and antifibrotic activities by directly suppressing proinflammatory cytokines, profibrotic proteins, and proliferation of lung fibroblasts. Our study provides an alternative explanation for the beneficial effect of PPIs in IPF. In this Perspective, we reviewed emerging progress on antifibrotic effect of PPIs using IPF as a disease model. In addition, we summarized surgical and pharmacological interventions for GER and their downstream effect on lung physiology. PMID:27110898

  3. CancerHSP: anticancer herbs database of systems pharmacology

    Science.gov (United States)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  4. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    Science.gov (United States)

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. PMID:26297173

  5. Recent progress on anticancer candidates in patents of herbal medicinal products

    OpenAIRE

    Wang, N.; Zhu, M.; Li, H.; Feng, Y.; Tsao, S

    2011-01-01

    Herbal medicines in treatment of cancer as complementary and alternative therapy are accepted increasingly with growing scientific evidences of biomedical research and clinical trials. Anticancer drugs discovered from herbal medicines have a long history and some of them have been used in clinical setting as the conventional anticancer drugs. Actually, herbal medicines are a source for anticancer drug discovery and drug development. Recently, research continuously focuses on clues from tradit...

  6. Rational use of nonsteroidal anti-inflammatory drugs and proton pump inhibitors in combination for rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Wolfgang W Bolten

    2010-09-01

    Full Text Available Wolfgang W BoltenDivision of Rheumatology, Klaus-Miehlke Klinik, Wiesbaden, GermanyAbstract: Nonsteroidal anti-inflammatory drugs (NSAIDs are successfully used to alleviate pain and inflammation in rheumatic diseases. In an appreciable percentage of cases, the use of systemic NSAIDs is associated with adverse lesions of the gastrointestinal (GI mucosa up to life-threatening perforations, ulcers, and bleeding. Reliable warning signals mostly do not arise. Therefore, it is important to take preventive measures to reduce the GI risk. One established method is to assign cyclooxygenase 2 (COX-2-specific inhibitors (coxibs instead of traditional NSAIDs (tNSAIDs. Coxibs spare in part the endogenous gastroprotective mechanisms. Another reliable choice to improve the GI safety is the comedication of proton pump inhibitors (PPIs to suppress gastric acid. A fixed NSAID/PPI combination ensures expected protective effects by improving patients’ PPI adherence and physicians’ PPI prescription persistence. A fixed combination of enteric-coated naproxen and immediate-release esomeprazole has just been approved by the US Food and Drug Administration. PPI combinations with aspirin, other tNSAIDs, and coxibs are desirable. Patients in all risk groups, even patients at low risk of GI adverse events, benefit from concomitant protective measures. Moreover, the literature suggests that NSAID/PPI combinations are cost effective, including for patients in low-GI-risk groups. Pricing of fixed NSAID/PPI combinations will play a pivotal role for their broad acceptance in the future.Keywords: PPI, NSAID, fixed combination, gastrointestinal, adverse events, prevention

  7. The Contribution of Natural Products as Source of New Anticancer Drugs: Studies Carried Out at the National Experimental Oncology Laboratory from the Federal University of Ceará [A Contribuição dos Produtos Naturais como Fonte de Novos Fármacos Anticâncer: Estudos no Laboratório Nacional de Oncologia Experimental da Universidade Federal do Ceará

    OpenAIRE

    Ana Paula N. N. Alves; Raquel C. Montenegro; Costa-Lotufo, Letícia V.; Manoel O. Moraes; Maria E.A. Moraes; Cláudia Pessoa; Socorro V. F. Madeira

    2010-01-01

    The history of anticancer chemotherapy is closely related to that of natural products, as over 60% of currently used drugs in cancer therapy are natural products or inspired by a natural compound. Despite the introduction of new drugs in the therapeutic arsenal of anticancer medicines, many tumors do not properly respond to treatment. Natural resources comprise the most promising possibilities of finding new and efficient molecules with impact in the therapy of resistant diseases. The Nationa...

  8. Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis.

    Science.gov (United States)

    Sandoval, Rodrigo; Oliver, Cristian; Valdivia, Sharin; Valenzuela, Karla; Haro, Ronie E; Sánchez, Patricio; Olavarría, Víctor H; Valenzuela, Paulina; Avendaño-Herrera, Rubén; Romero, Alex; Cárcamo, Juan G; Figueroa, Jaime E; Yáñez, Alejandro J

    2016-06-01

    Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains. PMID:27190287

  9. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice.

    Science.gov (United States)

    Lin, Yi-Tsung; Huang, Yi-Wei; Chen, Shiang-Jiuun; Chang, Chia-Wei; Yang, Tsuey-Ching

    2015-07-01

    The resistance-nodulation-division (RND)-type efflux pump is one of the causes of the multidrug resistance of Stenotrophomonas maltophilia. The roles of the RND-type efflux pump in physiological functions and virulence, in addition to antibiotic extrusion, have attracted much attention. In this study, the contributions of the constitutively expressed SmeYZ efflux pump to drug resistance, virulence-related characteristics, and virulence were evaluated. S. maltophilia KJ is a clinical isolate of multidrug resistance. The smeYZ isogenic deletion mutant, KJΔYZ, was constructed by a gene replacement strategy. The antimicrobial susceptibility, virulence-related physiological characteristics, susceptibility to human serum and neutrophils, and in vivo virulence between KJ and KJΔYZ were comparatively assessed. The SmeYZ efflux pump contributed resistance to aminoglycosides and trimethoprim-sulfamethoxazole. Inactivation of smeYZ resulted in attenuation of oxidative stress susceptibility, swimming, flagella formation, biofilm formation, and secreted protease activity. Furthermore, loss of SmeYZ increased susceptibility to human serum and neutrophils and decreased in vivo virulence in a murine model. These findings suggest the possibility of attenuation of the resistance and virulence of S. maltophilia with inhibitors of the SmeYZ efflux pump. PMID:25918140

  10. 21 CFR 880.5725 - Infusion pump.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  11. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Xue Xue; Xing-Jie Liang

    2012-01-01

    Multidrug resistance (MDR),which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence,has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades.Several mechanisms of overcoming drug resistance have been postulated.Well known Pglycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure.Innovative theranostic (therapeutic and diagnostic)strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits.In this review,we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  12. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  13. Molecular pharmacokinetic determinants of anticancer kinase inhibitors in humans

    Directory of Open Access Journals (Sweden)

    Julie Scholler

    2011-06-01

    Full Text Available This review presents the published data regarding the molecular determinants (drug metabolizing enzymes, drug transporters and orphan nuclear receptors of approved anticancer kinase inhibitors pharmacokinetics in humans. The clinical impact of these determinants (drug disposition and drug–drug interactions is also discussed.

  14. Polymeric micelles in anticancer therapy : targeting, imaging and triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J Frank W; Hennink, Wim E

    2010-01-01

    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  15. Some medicinal plants as natural anticancer agents

    Directory of Open Access Journals (Sweden)

    Govind Pandey

    2009-01-01

    Full Text Available India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. These plants may promote host resistance against infection by re-stabilizing body equilibrium and conditioning the body tissues. Several reports describe that the anticancer activity of medicinal plants is due to the presence of antioxidants in them. In fact, the medicinal plants are easily available, cheaper and possess no toxicity as compared to the modern (allopathic drugs. Hence, this review article contains 66 medicinal plants, which are the natural sources of anticancer agents.

  16. Snake venom: a potent anticancer agent.

    Science.gov (United States)

    Jain, Deepika; Kumar, Sudhir

    2012-01-01

    Since cancer is one of the leading causes of death worldwide, and there is an urgent need to find better treatment. In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. Treatment modalities comprise radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Currently, the use of chemotherapeutics remains the predominant option for clinical control. However, one of the major problems with successful cancer therapy using chemotherapeutics is that patients often do not respond or eventually develop resistance after initial treatment. This has led to the increased use of anticancer drugs developed from natural resources. The biodiversity of venoms and toxins makes them a unique source from which novel therapeutics may be developed. In this review, the anticancer potential of snake venom is discussed. Some of the included molecules are under clinical trial and may find application for anticancer drug development in the near future. PMID:23244070

  17. Anticancer potential of animal venoms and toxins.

    Science.gov (United States)

    Gomes, Antony; Bhattacharjee, Pushpak; Mishra, Roshnara; Biswas, Ajoy K; Dasgupta, Subir Chandra; Giri, Biplab

    2010-02-01

    Anticancer drug development from natural resources are ventured throughout the world. Animal venoms and toxins a potential bio resource and a therapeutic tool were known to man for centuries through folk and traditional knowledge. The biodiversity of venoms and toxins made it a unique source of leads and structural templates from which new therapeutic agents may be developed. Venoms of several animal species (snake, scorpion, toad, frog etc) and their active components (protein and non protein toxins, peptides, enzymes, etc) have shown therapeutic potential against cancer. In the present review, the anticancer potential of venoms and toxins from snakes, scorpions, toads and frogs has been discussed. Some of these molecules are in the clinical trials and may find their way towards anticancer drug development in the near future. The implications of combination therapy of natural products in cancer have been discussed. PMID:20455317

  18. Breakthrough cancer medicine and its impact on novel drug development in China:report of the US Chinese Anti-Cancer Association (USCACA) and Chinese Society of Clinical Oncology (CSCO) Joint Session at the 17th CSCO Annual Meeting

    Institute of Scientific and Technical Information of China (English)

    Feng Roger Luo; Ge Zhang; Li Xu; Pascal Qian; Li Yan; Jian Ding; Helen X. Chen; Hao Liu; Man-Cheong Fung; Maria Koehler; Jean Pierre Armand; Lei Jiang; Xiao Xu

    2014-01-01

    The US Chinese Anti-Cancer Association (USCACA) teamed up with Chinese Society of Clinical Oncology (CSCO) to host a joint session at the17th CSCO Annual Meeting on September 20th, 2014 in Xiamen, China. With a focus on breakthrough cancer medicines, the session featured innovative approaches to evaluate breakthrough agents and established a platform to interactively share successful experiences from case studies of 6 novel agents from both the United States and China. The goal of the session is to inspire scientific and practical considerations for clinical trial design and strategy to expedite cancer drug development in China. A panel discussion further provided in-depth advice on advancing both early and ful development of novel cancer medicines in China.

  19. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role\\'as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic\\'drugs

  20. Micro-porous surfaces in controlled drug delivery systems: design and evaluation of diltiazem hydrochloride controlled porosity osmotic pump using non-ionic surfactants as pore-former.

    Science.gov (United States)

    Adibkia, Khosro; Ghanbarzadeh, Saeed; Shokri, Mohammad Hosein; Arami, Zahra; Arash, Zeinab; Shokri, Javad

    2014-06-01

    The major problem associated with conventional drug delivery systems is unpredictable plasma concentrations. The aim of this study was to design a controlled porosity osmotic pump (CPOP) of diltiazem hydrochloride to deliver the drug in a controlled manner. CPOP tablets were prepared by incorporation of drug in the core and subsequent coating with cellulose acetate as semi-permeable membrane. Non-ionic surfactants were applied as pore-formers as well. The effect of pore-formers concentration on the in vitro release of diltiazem was also studied. The formulations were compared based on four comparative parameters, namely, total drug released after 24 h (D24 h), lag-time (tL), squared correlation coefficient of zero order equation (RSQzero) and mean percent deviation from zero order kinetic (MPDzero). Results of scanning electron microscopy studies exhibited formation of pores in the membrane from where the drug release occurred. It was revealed that drug release rate was directly proportional to the concentration of the pore-formers. The value of D24 h in the formulations containing Tween 80 (10%) and Brij 35 (5%) were found to be more than 94.9%, and drug release followed zero order kinetic (RSQzero > 0.99 and MPDzero < 8%) with acceptable tL (lower than 1 h). PMID:23763379

  1. Bacteria under SOS evolve anticancer phenotypes

    OpenAIRE

    Weitao Tao; Dallo Shatha F

    2010-01-01

    Abstract Background The anticancer drugs, such as DNA replication inhibitors, stimulate bacterial adhesion and induce the bacterial SOS response. As a variety of bacterial mutants can be generated during SOS, novel phenotypes are likely to be selected under the drug pressure. Presentation of the hypothesis Bacteria growing with cancer cells in the presence of the replication inhibitors undergo the SOS response and evolve advantageous phenotypes for the bacteria to invade the cancer cells in o...

  2. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    OpenAIRE

    Shao-Xing Dai; Wen-Xing Li; Fei-Fei Han; Yi-Cheng Guo; Jun-Juan Zheng; Jia-Qian Liu; Qian Wang; Yue-Dong Gao; Gong-Hua Li; Jing-Fei Huang

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed t...

  3. Spectrophotometric investigation of the chemical compatibility of the anticancer drugs irinotecan-HCl and epirubicin-HCl in the same infusion solution.

    Science.gov (United States)

    Ozdemir, Filiz Arioz; Anilanmert, Beril; Pekin, Mursit

    2005-11-01

    The use of infusional chemotherapy, especially in an ambulatory setting, absolutely requires that the individual agents remain stable in solution at room temperature and that the drugs be compatible. Because of this, investigation of the chemical compatibilities of chemotherapeutic drug combinations given in the same infusion solution is quite important especially if the drugs are to remain in solution for long periods. Thus, the visual and chemical compatibility of irinotecan and epirubicin in the same infusion solution were investigated using both reference standards and pharmaceutical dosage forms. No sign of incompatibility was observed upon visual examination by means of effervescence, pH change, precipitation and colour change. But a chemical incompatibility was observed using a spectrophotometric method in the spectra of irinotecan-HCl and epirubicin-HCl. The molar ratio of epirubicin-HCl/irinotecan-HCl at which the interaction reached a maximum was found to be 2:1. The chemical interaction occurred immediately after admixing and no visual or spectral change was noticed for 24 h after the interaction had occurred. It is concluded that these drugs are chemically incompatible. While the applicability of these two drugs in combination is investigated in further pharmacological studies, their chemical interaction should also be a consideration. The positive or negative contribution of this interaction to the pharmacological effect of the combination might be of importance, and therefore should be investigated in further clinical trials. PMID:15947932

  4. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort

    OpenAIRE

    Ru Chen; Jing Wang; Shaowen Tang; Yuan Zhang; Xiaozhen Lv; Shanshan Wu; Zhirong Yang; Yinyin Xia; Dafang Chen; Siyan Zhan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan singl...

  5. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin

    Directory of Open Access Journals (Sweden)

    Masarudin MJ

    2015-12-01

    readily accumulate the nanoparticles 30 minutes posttreatment and that nanoparticles persisted within cells for up to 24 hours posttreatment. As a proof of principle for use in anticancer therapeutic applications, a [14C]-radiolabeled form of the anticancer agent doxorubicin was efficiently encapsulated within the CNP, confirming the feasibility of using this system as a drug delivery vector. Keywords: nanobiotechnology, drug delivery, chitosan, chitosan nanoparticles, doxorubicin, FITC

  6. A trial of anticancer drug injection into cervical metastatic lymph nodes. Focus on therapeutic response when combined with 60Co external radiation

    International Nuclear Information System (INIS)

    Control of metastatic lymph nodes, especially enlarged nodes with adhesion, is extremely difficult. We treated metastatic lymph nodes with adhesion by intranodal injection (INI) of anticancer agents and obtained prolonged control of metastasis. Sixteen patients with a total of 23 metastatic lymph nodes with adhesion that were not indicated for surgical removal were studied. INI of peplomycin (14.0±10.4 mg), CDDP (10.0±0 mg), CBDCA (60.0±37.3 mg), methotrexate (28.5±27.1 mg), and 5-FU (311.1±194.9 mg) was given to all, 1, 10, 7, and 8 patients, respectively. External radiation with cobalt 60 (2 Gy/time, 42.8±9.7 Gy) was given to all but 3 patients. The results obtained were as follows: Except for one patient in whom the therapeutic responses could not be evaluated, all subjects had remission of swollen lymph nodes. The remission rates ranged from 99.6% to 14.3% (average, 51.3±27.8%). In three patients, metastatic lymph nodes became small enough to be surgically removed without recurrence. Of the remaining 13 patients, 11 had no re-enlargement for at least 3 months after the end of INI. Three patients are still alive (observation periods, 57, 6, and 6 months). Eleven patients died of uncontrolled primary lesions, distant metastases, or metastatic lymph nodes despite treatment with INI and radiation. The remaining two patients died of cardiovascular disease and pneumonia. Of the 13 patients who died, 6 (37.5% of all patients) survived for 10 months or more from the start of INI, and the remaining 7 survived for about 5 months. The mean duration of survival was 11.8±13.9 months. Finally, INI controlled metastatic lymph nodes although the therapeutic response was unclear in one patient and could not be evaluated in another. In conclusion, INI is an useful treatment for large metastatic lymph nodes that adhere to surrounding tissue and cannot undergo lymphectomy. (author)

  7. The views of patients and the general public about expensive anti-cancer drugs in the NHS: a questionnaire-based study

    OpenAIRE

    Jenkins, Valerie; Solis-Trapala, Ivonne; Parlour, Louise; Langridge, Carolyn; Fallowfield, Lesley

    2011-01-01

    Objectives To determine the views of patients and members of the public about who should pay for expensive new cancer drugs not recommended by the National Institute for Health and Clinical Excellence (NICE). Design A study-specific questionnaire was used to elicit the views of patients and the general public between April and June 2010. It examined whether participants thought patients should be told about all possible cancer treatments, if the NHS should always fund non-NICE recommended dru...

  8. Well-defined star HPMA copolymer nanocarriers intended for anticancer drug delivery and imaging: significance of the controlled polymerization for their structure

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    Valencia: Centro de Investigación Príncipe Felipe, 2014. s. 48. [International Symposium on Polymer Therapeutics: From Laboratory to Clinical Practice /10./. 19.05.2014-21.05.2014, Valencia] R&D Projects: GA MŠk EE2.3.30.0029; GA ČR GPP207/11/P551 Institutional support: RVO:61389013 Keywords : drug delivery systems * pH-controlled release * HPMA copolymers Subject RIV: CD - Macromolecular Chemistry

  9. UV-vis spectra of the anticancer camptothecin family drugs in aqueous solution: specific spectroscopic signatures unraveled by a combined computational and experimental study.

    Science.gov (United States)

    Sanna, Nico; Chillemi, Giovanni; Gontrani, Lorenzo; Grandi, Andrea; Mancini, Giordano; Castelli, Silvia; Zagotto, Giuseppe; Zazza, Costantino; Barone, Vincenzo; Desideri, Alessandro

    2009-04-23

    The ultraviolet-visible absorption spectrum of camptothecin (CPT) has been been recorded in aqueous solution at pH 5.3, where the equilibrium among the different CPT forms is shifted toward the lactonic one. Time-dependent density functional theory (TD-DFT) computations lead to a remarkable reproduction of the experimental spectrum only upon addition of explicit water molecules in interaction with specific moieties of the camptothecin molecule. Molecular dynamics (MD) simulations enforcing boundary periodic conditions for CPT embedded with 865 water molecules, with a force field derived from DFT computations, show that the experimental spectrum is due to the contributions of CPT molecules with different solvation patterns. A similar solvent effect is observed for several CPT derivatives, including the clinically relevant SN-38 and topotecan drugs. The quantitative agreement between TD-DFT/MD computations and experimental data allow us to identify specific spectroscopic signatures diagnostic of the drug environment and to develop procedures that can be used to monitor the drug-DNA/protein interaction. PMID:19334673

  10. Genomics in personalized cancer medicine and its impact on early drug development in China:report from the 6th Annual Meeting of the US Chinese Anti-Cancer Association (USCACA) at the 50th ASCO Annual Meeting

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Shi-Yuan Cheng; Li-Fang Hou; Li Yan; Yun-Guang Tong

    2014-01-01

    The 6th Annual Meeting of the United States Chinese Anti-Cancer Association (USCACA) was held in conjunction with the 50th Annual Meeting of American Society of Clinical Oncology (ASCO) on May 30, 2014 in Chicago, Illinois, the United States of America. With a focus on personalized medicine, the conference featured novel approaches to investigate genomic aberrations in cancer cells and innovative clinical trial designs to expedite cancer drug development in biomarker-defined patient populations. A panel discussion further provided in-depth advice on advancing development of personalized cancer medicines in China. The conference also summarized USCACA key initiatives and accomplishments, including two awards designated to recognize young investigators from China for their achievements and to support their training in the United States. As an effort to promote international col aboration, USCACA wil team up with Chinese Society of Clinical Oncology (CSCO) to host a joint session on“Breakthrough Cancer Medicines”at the upcoming CSCO Annual Meeting on September 20th, 2014 in Xiamen, China.

  11. Effect of anticancer drugs on breast cancer cells sensitive and resistant to doxorubicin: expression of mRNAs of TGF-β and its receptors

    OpenAIRE

    Chorna I. V.; Fedorenko O. V.; Stoika R. S.

    2014-01-01

    Aim. Comparative study of the effect of chemotherapeutic drugs (doxorubicin, methotrexate and cisplatin) and TGF-β on the human breast carcinoma MCF-7 cells, sensitive (wt) and resistant (DOX/R) to the doxorubicin action. Methods. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the estimation of expression of mRNAs coding for the TGF-β isoforms (TGF-β1 and TGF-β2) and the TGF-β type I and II receptors (TRI and TRII). Trypan blue exclusion method was use...

  12. Gold-based drug encapsulation within a ferritin nanocage: X-ray structure and biological evaluation as a potential anticancer agent of the Auoxo3-loaded protein.

    Science.gov (United States)

    Ferraro, Giarita; Monti, Daria Maria; Amoresano, Angela; Pontillo, Nicola; Petruk, Ganna; Pane, Francesca; Cinellu, Maria Agostina; Merlino, Antonello

    2016-07-21

    Auoxo3, a cytotoxic gold(iii) compound, was encapsulated within a ferritin nanocage. Inductively coupled plasma mass spectrometry, circular dichroism, UV-Vis absorption spectroscopy and X-ray crystallography confirm the potential-drug encapsulation. The structure shows that naked Au(i) ions bind to the side chains of Cys48, His49, His114, His114 and Cys126, Cys126, His132, His147. The gold-encapsulated nanocarrier has a cytotoxic effect on different aggressive human cancer cells, whereas it is significantly less cytotoxic for non-tumorigenic cells. PMID:27326513

  13. Anti-Cancer Potential of a Novel SERM Ormeloxifene

    Science.gov (United States)

    Gara, Rishi Kumar; Sundram, Vasudha; Chauhan, Subhash C.; Jaggi, Meena

    2014-01-01

    Ormeloxifene is a non-steroidal Selective Estrogen Receptor Modulator (SERM) that is used as an oral contraceptive. Recent studies have shown its potent anti-cancer activities in breast, head and neck, and chronic myeloid leukemia cells. Several in vivo and clinical studies have reported that ormeloxifene possesses an excellent therapeutic index and has been well-tolerated, without any haematological, biochemical or histopathological toxicity, even with chronic administration. A reasonably long period of time and an enormous financial commitment are required to develop a lead compound into a clinically approved anti-cancer drug. For these reasons and to circumvent these obstacles, ormeloxifene is a promising candidate on a fast track for the development or repurposing established drugs as anti-cancer agents for cancer treatment. The current review summarizes recent findings on ormeloxifene as an anti-cancer agent and future prospects of this clinically safe pharmacophore. PMID:23895678

  14. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Hadjira Rabti

    2014-06-01

    Full Text Available Elementary osmotic pump (EOP is a unique extended release (ER drug delivery system based on the principle of osmosis. It has the ability to minimize the amount of the drug, accumulation and fluctuation in drug level during chronic uses. Carbamazepine (CBZ, a poorly water-soluble antiepileptic drug, has serious side effects on overdoses and chronic uses. The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance. Firstly, a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug. Then, designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance (ANOVA, respectively. The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone (PVP K30 and sodium lauryl sulfate (SLS. The plasticizer amount and molecular weight (MW together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane (SPM thickness inversely influence the release rate. In addition, the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core. Further, orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm. In this study we report the successful formulation of CBZ-EOP tablets, which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80% of CBZ at a rate of approximately zero order for up to 12 h.

  15. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  16. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang CY

    2014-10-01

    Full Text Available Can Yang Zhang, Di Xiong, Yao Sun, Bin Zhao, Wen Jing Lin, Li Juan Zhang School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China Abstract: A novel amphiphilic triblock pH-sensitive poly(ß-amino ester-g-poly(ethylene glycol methyl ether-cholesterol (PAE-g-MPEG-Chol was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. Keywords: micelle, pH-sensitive, cholesterol, poly(ß-amino ester, drug delivery

  17. Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A2 in Tumor Tissue

    DEFF Research Database (Denmark)

    Andresen, Thomas L.; Jensen, Simon Skøde; Madsen, Robert;

    2005-01-01

    The clinical use of anticancer lipids is severely limited by their ability to cause lysis of red blood cells prohibiting intravenous injection. Novel delivery systems are therefore required in order to develop anticancer ether lipids (AELs) into clinically useful anticancer drugs. In a recent art...

  18. Arene ruthenium complexes as anticancer agents

    OpenAIRE

    Süss-Fink, Georg

    2012-01-01

    Neutral or cationic arene ruthenium complexes providing both hydrophilic as well as hydrophobic properties due to the robustness of the ruthenium–arene unit hold a high potential for the development of metal-based anticancer drugs. Mononuclear arene ruthenium complexes containing P- or N-donor ligands or N,N-, N,O- or O,O-chelating ligands, dinuclear arene ruthenium systems with adjustable organic linkers, trinuclear arene ruthenium clusters containing an oxo cap, tetranuclear arene ruthenium...

  19. Optimization of personalized therapies for anticancer treatment

    OpenAIRE

    Vazquez, Alexei

    2013-01-01

    Background As today, there are hundreds of targeted therapies for the treatment of cancer, many of which have companion biomarkers that are in use to inform treatment decisions. If we would consider this whole arsenal of targeted therapies as a treatment option for every patient, very soon we will reach a scenario where each patient is positive for several markers suggesting their treatment with several targeted therapies. Given the documented side effects of anticancer drugs, it is clear tha...

  20. From antimicrobial to anticancer peptides. A review.

    OpenAIRE

    Diana eGaspar; A. Salomé eVeiga; Miguel A.R.B. eCastanho

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective...

  1. Some medicinal plants as natural anticancer agents

    OpenAIRE

    Govind Pandey; S Madhuri

    2009-01-01

    India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. These plants may promote host resistance agai...

  2. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    OpenAIRE

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2011-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt,...

  3. Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using β-cyclodextrin assemblied Fe3O4 nanoparticles

    Science.gov (United States)

    Wang, Congli; Huang, Lizhen; Song, Shengmei; Saif, Bassam; Zhou, Yehong; Dong, Chuan; Shuang, Shaomin

    2015-12-01

    The β-cyclodextrin assemblied magnetic Fe3O4 nanoparticles (β-CD-MNPs) were successfully fabricated via a layer-by-layer method. Possessing an average size 14 nm, good stability and super-paramagnetic response (Ms 64 emu/g), the resultant nanocomposites could be served as a versatile biocompatible platform for selective loading, targeted delivery and pH-responsive release of stereoisomeric doxorubicin (DOX) and epirubicin (EPI). 1H-nuclear magnetic resonance (1H NMR) and the computer simulation further give the evidence that partial anthracene ring of drug molecule is included by β-CD. In addition, non-toxic β-CD-MNPs have excellent biocompatibility on MCF-7 cells, and cellular uptake indicate that different amounts of DOX or EPI can be transported to targeting site and released from the internalized carriers. The results demonstrate that as-prepared β-CD-MNPs could be a very promising vehicle for DOX and EPI.

  4. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery.

    Science.gov (United States)

    Zhang, Can Yang; Xiong, Di; Sun, Yao; Zhao, Bin; Lin, Wen Jing; Zhang, Li Juan

    2014-01-01

    A novel amphiphilic triblock pH-sensitive poly(β-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-g-MPEG-Chol) was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation-deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX) was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. PMID:25364250

  5. New multi-component solid forms of anti-cancer drug Erlotinib: role of auxiliary interactions in determining a preferred conformation.

    Science.gov (United States)

    Sanphui, Palash; Rajput, Lalit; Gopi, Shanmukha Prasad; Desiraju, Gautam R

    2016-06-01

    Erlotinib is a BCS (biopharmaceutical classification system) class II drug used for the treatment of non-small cell lung cancer. There is an urgent need to obtain new solid forms of higher solubility to improve the bioavailability of the API (active pharmaceutical ingredient). In this context, cocrystals with urea, succinic acid, and glutaric acid and salts with maleic acid, adipic acid, and saccharin were prepared via wet granulation and solution crystallizations. Crystal structures of the free base (Z' = 2), cocrystals of erlotinib-urea (1:1), erlotinib-succinic acid monohydrate (1:1:1), erlotinib-glutaric acid monohydrate (1:1:1) and salts of erlotinib-adipic acid adipate (1:0.5:0.5) are determined and their hydrogen-bonding patterns are analyzed. Self recognition via the (amine) N-H...N (pyridine) hydrogen bond between the API molecules is replaced by several heterosynthons such as acid-pyridine, amide-pyridine and carboxylate-pyridinium in the new binary systems. Auxiliary interactions play an important role in determining the conformation of the API in the crystal. FT-IR spectroscopy is used to distinguish between the salts and cocrystals in the new multi-component systems. The new solid forms are characterized by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) to confirm their unique phase identity. PMID:27240760

  6. Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diammine-dichloroplatinum(II)

    International Nuclear Information System (INIS)

    DNA modified by the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) was used to identify a factor in mammalian cells that binds to cis-DDP-damaged DNA and hence may play a role in repair. This factor selectivity recognizes double-stranded DNA fragments modified by cis-DDP or [Pt(en)Cl2] (en, ethylenediamine). Little or no binding occurs to unmodified double-stranded DNA or to DNA modified with the clinically ineffective compounds trans-DDP and [Pt(dien)Cl]Cl (dien, diethylenetriamine). Low levels of binding to single-stranded DNA modified by cis-DDP are observed. The apparent molecular mass of the factor in a variety of mammalian cells is ∼ 100 kDa, as determined by modified Western blotting. Two recombinant phage have been isolated from a human B-cell λgt11 library by using a cis-DDP-modified DNA restriction fragments as a probe. The two clones have insert sizes of 1.88 and 1.44 kilobases and are aligned at their 5' ends. The polypeptides encoded by the recombinant phage exhibit DNA binding properties similar to those of the cellular factor identified in crude extracts prepared from mammalian cells. Northern analysis with one of the clones revealed an mRNA of 2.8 kilobases that is conserved in humans and rodents. The methods used here should be applicable in studies of other damage-specific DNA binding proteins

  7. Determining Favorable Binding Configurations of the Anti-Cancer Drug Ellipticine to the KV11.1 Potassium Channel V-VI Transmembrane Domain Through Autodock Simulations

    Science.gov (United States)

    Lipscomb, Dawn; Gentile, Saverio; Brancaleon, Lorenzo

    2011-10-01

    Ellipticines such as 9-methoxy-N-2-methylellipticinium acetate (MMEA) and 9-hydroxy-N-2-methylellipticinium acetate (NMEA, Celiptium ) are antineoplastic drugs that exert their selective cytotoxicity against leukemia and endometrial carcinoma. Ellipticine's action is also related to severe physical side effects, but the link between undesired effects and pharmacological application is not well understood. We investigated the binding of Ellipticine derivatives with the Kv11.1 potassium ion channel using Autodock and revealed that hydroxyellipticinium derivatives provide binding configurations with Kv11.1, but the energy, location and estimated dissociation constant varied. The binding energy is as follows: Chloroceliptium (-6.60 kcal/mol) > Celiptium (- 6.37 kcal/mol) > Methoxyceliptium (- 6.20 kcal/mol) > Datelliptium (-6.08 kcal/mol). Autodock simulations demonstrate that binding affinity is high at opposing ends of the channel and low within the channel interior. These favorable binding configurations suggest that Ellipticine derivatives may bridge among end subunits of the channel and potentially inhibit the flow of ions.

  8. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα- and Extracellular Signal-Regulated Kinase 1/2-Dependent Mechanism.

    Science.gov (United States)

    Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V

    2015-08-01

    Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane. PMID:26065701

  9. Synthesis of α,β-Unsaturated Carbonyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells.

    Science.gov (United States)

    Qin, Hua-Li; Leng, Jing; Zhang, Cheng-Pan; Jantan, Ibrahim; Amjad, Muhammad Wahab; Sher, Muhammad; Naeem-Ul-Hassan, Muhammad; Hussain, Muhammad Ajaz; Bukhari, Syed Nasir Abbas

    2016-04-14

    Sixty-nine novel α,β-unsaturated carbonyl based compounds, including cyclohexanone, tetralone, oxime, and oxime ether analogs, were synthesized. The antiproliferative activity determined by using seven different human cancer cell lines provided a structure-activity relationship. Compound 8ag exhibited high antiproliferative activity against Panc-1, PaCa-2, A-549, and PC-3 cell lines, with IC50 value of 0.02 μM, comparable to the positive control Erlotinib. The ten most active antiproliferative compounds were assessed for mechanistic effects on BRAF(V600E), EGFR TK kinases, and tubulin polymerization, and were investigated in vitro to reverse efflux-mediated resistance developed by cancer cells. Compound 8af exhibited the most potent BRAF(V600E) inhibitory activity with an IC50 value of 0.9 μM. Oxime analog 7o displayed the most potent EGFR TK inhibitory activity with an IC50 of 0.07 μM, which was analogous to the positive control. Some analogs including 7f, 8af, and 8ag showed a dual role as anticancer and MDR reversal agents. PMID:27010345

  10. Impact of proton pump inhibitor treatment on gastrointestinal bleeding associated with non-steroidal anti-inflammatory drug use among post-myocardial infarction patients taking antithrombotics

    DEFF Research Database (Denmark)

    Olsen, Anne-Marie Schjerning; Lindhardsen, Jesper; Gislason, Gunnar H.;

    2015-01-01

    STUDY QUESTION: What is the effect of proton pump inhibitors (PPIs) on the risk of gastrointestinal bleeding in post-myocardial infarction patients taking antithrombotics and treated with non-steroidal anti-inflammatory drugs (NSAIDs)? METHODS: This was a nationwide cohort study based on linked...... plus antithrombotic therapy was estimated using adjusted time dependent Cox regression models. STUDY ANSWER AND LIMITATIONS: The use of PPIs was independently associated with decreased risk of gastrointestinal bleeding in post-myocardial infarction patients taking antithrombotics and treated...... gastrointestinal bleeds occurred. The crude incidence rates of bleeding (events/100 person years) on NSAID plus antithrombotic therapy were 1.8 for patients taking PPIs and 2.1 for those not taking PPIs. The adjusted risk of bleeding was lower with PPI use (hazard ratio 0.72, 95% confidence interval 0.54 to 0...

  11. An eco-friendly stability-indicating spectrofluorimetric method for the determination of two anticancer stereoisomer drugs in their pharmaceutical preparations following micellar enhancement: Application to kinetic degradation studies

    Science.gov (United States)

    El-Kimary, Eman I.; El-Yazbi, Amira F.

    2016-06-01

    A new rapid and highly sensitive stability-indicating spectrofluorimetric method was developed for the determination of two stereoisomers anticancer drugs, doxorubicin (DOX) and epirubicin (EPI) in pure form and in pharmaceutical preparations. The fluorescence spectral behavior of DOX and EPI in a sodium dodecyl sulfate (SDS) micellar system was investigated. It was found that the fluorescence intensity of DOX and EPI in an aqueous solution of phosphate buffer pH 4.0 and in the presence of SDS was greatly (about two fold) enhanced and the mechanism of fluorescence enhancement effect of SDS on DOX was also investigated. The fluorescence intensity of DOX or EPI was measured at 553 nm after excitation at 497 nm. The plots of fluorescence intensity versus concentration were rectilinear over a range of 0.03-2 μg/mL for both DOX and EPI with good correlation coefficient (r > 0.999). High sensitivity to DOX and EPI was attained using the proposed method with limits of detection of 10 and 9 ng/mL and limits of quantitation of 29 and 28 ng/mL, for DOX and EPI, respectively. The method was successfully applied for the determination of DOX and EPI in biological fluids and in their commercial pharmaceutical preparations and the results were concordant with those obtained using a previously reported method. The application of the proposed method was extended to stability studies of DOX following different forced degradation conditions (acidic, alkaline, oxidative and photolytic) according to ICH guidelines. Moreover, the kinetics of the alkaline and oxidative degradation of DOX was investigated and the apparent first-order rate constants and half-life times were calculated.

  12. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate

    Science.gov (United States)

    Ababou, Abdessamad; Koronakis, Vassilis

    2016-01-01

    Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding. PMID:27403665

  13. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors.

    Science.gov (United States)

    Welch, Matthew A; Köck, Kathleen; Urban, Thomas J; Brouwer, Kim L R; Swaan, Peter W

    2015-05-01

    Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability. PMID:25735837

  14. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  15. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  16. Anticancer properties of lamellarins.

    Science.gov (United States)

    Bailly, Christian

    2015-03-01

    In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids. PMID:25706633

  17. Anticancer Properties of Lamellarins

    Directory of Open Access Journals (Sweden)

    Christian Bailly

    2015-02-01

    Full Text Available In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.

  18. Anticancer Properties of Lamellarins

    OpenAIRE

    Christian Bailly

    2015-01-01

    In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed ...

  19. Sesterterpenoids with Anticancer Activity.

    Science.gov (United States)

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2015-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  20. Potential interactions between HIV drugs, ritonavir and efavirenz and anticancer drug, nilotinib--a study in primary cultures of human hepatocytes that is applicable to HIV patients with cancer.

    Science.gov (United States)

    Pillai, Venkateswaran C; Parise, Robert A; Christner, Susan M; Rudek, Michelle A; Beumer, Jan H; Venkataramanan, Raman

    2014-11-01

    Nilotinib is used to treat chronic myeloid leukemia (CML), and is metabolized by CYP3A. With a black-box warning for QT prolongation, which is exposure dependent, controlling for drug interactions is clinically relevant. Treatments of HIV patients with CML are with HAART drugs, ritonavir and efavirenz, may cause complex drug interactions through CYP3A inhibition or induction. We evaluated the interactions of ritonavir or efavirenz on nilotinib using human hepatocytes and compared these interactions with those of ketoconazole or rifampin, classical CYP3A inhibitor and inducer, respectively. Hepatocytes were treated with vehicle, ritonavir (10 μM), ketoconazole (10 μM), efavirenz (10 μM), or rifampin (10 μM) for 5 days. On day 5, nilotinib (3 μM) was coincubated for an additional 24-48 hours. The concentrations of nilotinib were quantitated in collected samples (combined lysate and medium) by LC-MS. Apparent intrinsic clearance (CL(int,app)) of nilotinib was lowered 5.8- and 3.1-fold, respectively, by ritonavir and ketoconazole. Efavirenz and rifampin increased the CL(int,app) of nilotinib by 2.1- and 4.1-fold, respectively. The clinically recommended dose (300 mg twice daily) of nilotinib may have to be reduced substantially (150 mg once daily) or increased (400 mg thrice daily), respectively, to achieve desired drug exposure, when ritonavir or efavirenz is co-administered. PMID:24846165