WorldWideScience

Sample records for anticancer agents isolated

  1. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Jin-Jian Lu

    2012-01-01

    Full Text Available Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made.

  2. Bioactivity-Guided Isolation of Anticancer Agents from Bauhinia ...

    African Journals Online (AJOL)

    Background: Flowers of Bauhinia kockiana were investigated for their anticancer properties. Methods: Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was ...

  3. Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi

    Directory of Open Access Journals (Sweden)

    Jian-ye Zhang

    2010-04-01

    Full Text Available In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403 and Guignardia sp. (No. 4382. Some of them inhibited potently the growth of KB and KBv200 cells, among which compound 6 displayed strong cytotoxicity with IC50 values of 3.17 and 3.21 μM to KB and KBv200 cells, respectively. Furthermore, we demonstrate that the mechanism involved in the apoptosis induced by compound 6 is probably related to mitochondrial dysfunction. Additionally, the structure-activity relationships of these compounds are discussed.

  4. Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi

    OpenAIRE

    Zhang; Tao; Liang; Chen; Mi; Zheng; Wang; She; Lin; To; Fu

    2010-01-01

    In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia sp. (No. 4382). Some of them inhibited potently the growth of KB and KBv200 cells, among which compound 6 displayed strong cytotoxicity with IC50 values of 3.17 and 3.21 μM to KB and KBv200 cells, respectively. Furthermore, we demonstrate that the mechanism involved in the apoptosis induced by co...

  5. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    Science.gov (United States)

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Sheikh, M Saeed; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic.

  6. Anticancer agents from marine sponges.

    Science.gov (United States)

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics.

  7. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  8. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  9. Early clinical development of targeted anticancer agents

    NARCIS (Netherlands)

    van Brummelen, E.M.J.

    2017-01-01

    Van Brummelen studied the safety and preliminary signs of efficacy of several novel targeted anticancer agents in phase I trials. In her thesis, she reports the results of trials with the immunotherapies pembrolizumab and cergutuzumab-amunaleukin, and with combinations of inhibitors of the MEK and

  10. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  11. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    In the first part of the thesis the work towards a new generation of liposomal drug delivery systems for anticancer agents is described. The drug delivery system takes advantage of the elevated level of secretory phospholipase A2 (sPLA2) IIA in many tumors and the enhanced permeability......-trans retinoic acid, α-tocopheryl succinate and calcitriol were examined for their ability to be incorporated into the investigated drug delivery system and syntheses of the phospholipid prodrugs are described. The majority of the phospholipid prodrugs were able to form particles with diameters close to 100 nm...... that upon sPLA2 triggering the formulated phospholipid prodrugs displayed IC50 values in range from 3–36 μM and complete cell death was observed when higher drug concentrations were applied. Promising for the drug delivery system the majority of the phospholipid prodrugs remain non-toxic in the absence...

  12. Some medicinal plants as natural anticancer agents

    OpenAIRE

    Govind Pandey; S Madhuri

    2009-01-01

    India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. These plants may promote host resistance agai...

  13. Isolation and identification of flavonoids from anticancer and ...

    African Journals Online (AJOL)

    Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonella foenum graecum. Shabina Ishtiaq Ahmed, Muhammad Qasim Hayat, Saadia Zahid, Muhammad Tahir, Qaisar Mansoor, Muhammad Ismail, Kristen Keck, Robert Bates ...

  14. Underestimated potential of organometallic rhenium complexes as anticancer agents.

    Science.gov (United States)

    Leonidova, Anna; Gasser, Gilles

    2014-10-17

    In the recent years, organometallic compounds have become recognized as promising anti-cancer drug candidates. While radioactive (186/188)Re compounds are already used in clinics for cancer treatment, cold Re organometallic compounds have mostly been explored as luminescent probes for cell imaging and photosensitizers in photocatalysis. However, a growing number of studies have recently revealed the potential of Re organometallic complexes as anti-cancer agents. Several compounds have displayed cytotoxicity equaling or exceeding that of the well-established anti-cancer drug cisplatin. In this review, we present the currently known Re organometallic complexes that have shown anti-proliferative activity on cancer cell lines. A particular emphasis is placed on their cellular uptake and localization as well as their potential mechanism of action.

  15. BlueBerry Isolate, Pterostilbene, Functions as a Potential Anticancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem Cells

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available For many malignancies, radiation therapy remains the second option only to surgery in terms of its curative potential. However, radiation-induced tumor cell death is limited by a number of factors, including the adverse response of the tumor microenvironment to the treatment and either intrinsic or acquired mechanisms of evasive resistance, and the existence of cancer stem cells (CSCs. In this study, we demonstrated that using different doses of irradiation led to the enrichment of CD133+ Mahlavu cells using flow cytometric method. Subsequently, CD133+ Mahlavu cells enriched by irradiation were characterized for their stemness gene expression, self-renewal, migration/invasion abilities, and radiation resistance. Having established irradiation-enriched CD133+ Mahlavu cells with CSC properties, we evaluated a phytochemical, pterostilbene (PT, found abundantly in blueberries, against irradiation-enriched CSCs. It was shown that PT treatment dose-dependently reduced the enrichment of CD133+ Mahlavu cells upon irradiation; PT treatment also prevented tumor sphere formation, reduced stemness gene expression, and suppressed invasion and migration abilities as well as increasing apoptosis of CD133+ Mahlavu CSCs. Based on our experimental data, pterostilbene could be used to prevent the enrichment of CD133+ hepatoma CSCs and should be considered for future clinical testing as a combined agent for HCC patients.

  16. Synthetic Methods of Quinoline Derivatives as Potent Anticancer Agents.

    Science.gov (United States)

    Sharma, Vaibhav; Mehta, Dinesh Kumar; Das, Rina

    2017-01-01

    On account of significant biological activities, quinoline derivatives have drawn more attention to the synthesis and biological activities in the search for new therapeutic agents. Several new synthetic approaches have been implemented to derive new molecules from quinoline and all the synthesized molecules showed effective anticancer activity. Some molecules are synthesized using quinolones as precursor reactant, which is another effective product of quinoline, also showing significant activity against malignant tumors. The presence of nitrogen in it and its ability to bind with enzymes like gyrase, topoisomerase II and kinase have also proven it with antitumor activity. This review encapsulates the recent advances in the synthesis and anticancer activity of Quinoline derivatives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Resveratrol as an anti-cancer agent: A review.

    Science.gov (United States)

    Rauf, Abdur; Imran, Muhammad; Butt, Masood Sadiq; Nadeem, Muhammad; Peters, Dennis G; Mubarak, Mohammad S

    2016-12-21

    Owing to their antimicrobial, antioxidant, and anti-inflammatory activity, grapes (Vitis vinifera L.) are the archetypal paradigms of fruits used not only for nutritional purposes, but also for exclusive therapeutics. Grapes are a prominent and promising source of phytochemicals, especially resveratrol, a phytoalexin antioxidant found in red grapes which has both chemopreventive and therapeutic effects against various ailments. Resveratrol's role in reducing different human cancers, including breast, cervical, uterine, blood, kidney, liver, eye, bladder, thyroid, esophageal, prostate, brain, lung, skin, gastric, colon, head and neck, bone, ovarian, and cervical, has been reviewed. This review covers the literature that deals with the anti-cancer mechanism of resveratrol with special reference to antioxidant potential. Furthermore, this article summarizes the literature pertaining to resveratrol as an anti-cancer agent.

  18. Pro-oxidant natural products as anticancer agents.

    Science.gov (United States)

    Martin-Cordero, Carmen; Leon-Gonzalez, Antonio Jose; Calderon-Montano, Jose Manuel; Burgos-Moron, Estefania; Lopez-Lazaro, Miguel

    2012-07-01

    Cancer cells produce high levels of reactive oxygen species (ROS) that lead to a state of increased basal oxidative stress. Since this state of oxidative stress makes cancer cells vulnerable to agents that further augment ROS levels, the use of pro-oxidant agents is emerging as an exciting strategy to selectively target tumor cells. Natural products have provided a significant contribution to the development of several drugs currently used in cancer chemotherapy. Although many natural products are known to affect the redox state of the cell, most studies on these compounds have focused on their antioxidant activity instead of on their pro-oxidant properties. This article provides an overview of natural products with pro-oxidant and anticancer activities, with special focus on plant secondary metabolites, and discusses their possible use as cancer chemotherapeutic agents.

  19. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  20. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    Science.gov (United States)

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy

    International Nuclear Information System (INIS)

    Krause, Mechthild; Zips, Daniel; Thames, Howard D.; Kummermehr, Johann; Baumann, Michael

    2006-01-01

    The combination of molecular-targeted agents with irradiation is a highly promising avenue for cancer research and patient care. Molecular-targeted agents are in themselves not curative in solid tumours, whereas radiotherapy is highly efficient in eradicating tumour stem cells. Recurrences after high-dose radiotherapy are caused by only one or few surviving tumour stem cells. Thus, even if a novel agent has the potential to kill only few tumour stem cells, or if it interferes in mechanisms of radioresistance of tumours, combination with radiotherapy may lead to an important improvement in local tumour control and survival. To evaluate the effects of novel agents combined with radiotherapy, it is therefore necessary to use experimental endpoints which reflect the killing of tumour stem cells, in particular tumour control assays. Such endpoints often do not correlate with volume-based parameters of tumour response such as tumour regression and growth delay. This calls for radiotherapy specific research strategies in the preclinical testing of novel anti-cancer drugs, which in many aspects are different from research approaches for medical oncology

  2. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed

    2015-06-01

    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  3. [Molecular mechanism regulating effect of anti-cancer agents].

    Science.gov (United States)

    Saya, Hideyuki

    2009-01-01

    Faithful genome duplication is achieved by accurate coordination between DNA replication and chromosome segregation. Abnormalities occurring in this process are checked by biochemical signal transduction pathways, called checkpoints, which ensure the orderly progression of events in the cell cycle. Checkpoints prevent transition into subsequent phases until all processes in the previous phase are completed. Defects in cell cycle checkpoints result in gene mutations, chromosome damage, and aneuploidy, all of which contribute to tumorigenesis. However, it has recently been uncovered that the impairment of checkpoint function is the major reason why DNA damaging anti-cancer agents can selectively kill cancer cells. Given that G1 and G2 checkpoint functions are generally impaired in cancer cells, cells with DNA damage are unable to maintain G2 arrest and eventually die as they enter mitosis. This process is known as mitotic catastrophe.

  4. T-oligo as an anticancer agent in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wojdyla, Luke; Stone, Amanda L. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Sethakorn, Nan [Department of Medicine, University of Chicago, Chicago, IL (United States); Uppada, Srijayaprakash B.; Devito, Joseph T. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Bissonnette, Marc [Department of Medicine, University of Chicago, Chicago, IL (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States)

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  5. T-oligo as an anticancer agent in colorectal cancer

    International Nuclear Information System (INIS)

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc; Puri, Neelu

    2014-01-01

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC

  6. Towards safety of oral anti-cancer agents, the need to educate our pharmacists

    Directory of Open Access Journals (Sweden)

    Sanaa Saeed Mekdad

    2017-01-01

    Full Text Available Introduction: The global prevalence of cancer is rising. Use of oral anticancer medications has expanded exponentially. Knowledge about these medications as well as safe handling guidelines has not kept abreast with the rapidity these medications are applied in clinical practice. They pose serious hazards on all personal involved in handling these medications as well as on patients and their caregivers. We addressed the gaps in knowledge and safe handling of oral anticancer agents among pharmacists in institutional based cancer care. Materials and Methods: We used a 41 item questionnaire to explore three domains, pharmacists’ knowledge, safe handling practice and confidence and self-improving strategies towards these agents among pharmacists in multicentre specialized cancer care. Results: Participants included 120 pharmacists dedicated to handle and dispense oral anticancer agents. About 20% of Pharmacists have adequate knowledge about oral anticancer agents. Less than 50% apply safe handling principles adequately. Only a quarter are confident in educating cancer patients and their caregivers about Oral Anti-Cancer Agents. Conclusions: Pharmacists’ knowledge about Oral Anticancer agents needs to be improved. Safe handling and dispensing practice of these medications should be optimized. Pharmacists’ confidence towards educating patients and their caregiver needs to be addressed. Enhancing safety of oral anticancer agents should be a priority. Involving all key players, research and quality improving projects are needed to improve all aspects of the safety of oral anticancer agents.

  7. Adherence and patients' experiences with the use of oral anticancer agents

    NARCIS (Netherlands)

    Timmers, L.; Boons, C.C.; Kropff, F.; Ven, P.M. van de; Swart, E.L.; Smit, E.F.; Zweegman, S.; Kroep, J.R.; Timmer-Bonte, J.N.; Boven, E.; Hugtenburg, J.G.

    2014-01-01

    A rapidly growing number of oral anticancer agents has become available in oncology and hematology. Though these introductions have several benefits, medication adherence is an issue of concern. Little is known about the factors influencing adherence to treatment with oral anticancer agents in daily

  8. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran.

    Science.gov (United States)

    Sanjeewa, K K Asanka; Lee, Jung-Suck; Kim, Won-Suck; Jeon, You-Jin

    2017-12-01

    In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Kwak TW

    2015-04-01

    Full Text Available Tae Won Kwak,1,* Hee Jae Shin,2,* Young-Il Jeong,1 Myoung-Eun Han,3 Sae-Ock Oh,3 Hyun-Jung Kim,4 Do Hyung Kim,5 Dae Hwan Kang1 1Biomedical Research Institute, Pusan National University Hospital, Busan, 2Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Ansan, 3Department of Anatomy, School of Medicine, Pusan National University, Gyeongnam, 4Genewel Co Ltd. Gyeonggi-do, 5School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea *These authors contributed equally to this work Background: The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods: The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results: Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight

  10. Selective anti-cancer agents as anti-aging drugs.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  11. Identification of N-arylsulfonylpyrimidones as anticancer agents.

    Science.gov (United States)

    Subramanian, Santhosh; Boggu, Pulla Reddy; Yun, Jieun; Jung, Sang-Hun

    2018-03-01

    For confirming the role of five membered ring of imidazolidinone moiety of N-arylsulfonylimidazolidinones (7) previously reported with highly potent anticancer agent, a series of N-arylsulfonylpyrimidones (10a-g) and N-arylsulfonyltetrahydropyrimidones (11a-e) were prepared and their anti-proliferating activity was measured against human cancer cell lines (renal ACHN, colon HCT-15, breast MDA-MB-231, lung NCI-H23, stomach NUGC-3, and prostate PC-3) using XTT assay. Among them, 1-(1-acetylindolin-5-ylsulfonyl)-4-phenyltetrahydropyrimidin-2(1H)-one (11d, mean GI 50  = 3.50 µM) and ethyl 5-(2-oxo-4-phenyltetrahydropyrimidin-1(2H)-ylsulfonyl)-indoline-1-carboxylate (11e, mean GI 50  = 0.26 µM) showed best growth inhibitory activity against human cancer cell lines. Considering the activity results, N-arylsulfonyltetrahydropyrimidones (11) exhibited more potent activity compared to N-arylsulfonylpyrimidones (10) and comparable activity to N-arylsulfonylimidazolidinones (7). Especially, tetrahydropyrimidin-2(1H)-one analogs containing acylindolin-5-ylsulfonyl moiety at position 1 demonstrated their strong growth inhibitory activity against human cancer cell lines.

  12. Quinones derived from plant secondary metabolites as anti-cancer agents.

    Science.gov (United States)

    Lu, Jin-Jian; Bao, Jiao-Lin; Wu, Guo-Sheng; Xu, Wen-Shan; Huang, Ming-Qing; Chen, Xiu-Ping; Wang, Yi-Tao

    2013-03-01

    Quinones are plant-derived secondary metabolites that present some anti-proliferation and anti-metastasis effects in various cancer types both in vitro and in vivo. This review focuses on the anti-cancer prospects of plant-derived quinones, namely, aloe-emodin, juglone, β-lapachol, plumbagin, shikonin, and thymoquinone. We intend to summarize their anti-cancer effects and investigate the mechanism of actions to promote the research and development of anti-cancer agents from quinones.

  13. Cultivation and utility of Piptoporus betulinus fruiting bodies as a source of anticancer agents.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Siwulski, Marek; Lemieszek, Marta K; Kunaszewska, Justyna; Kaczor, Józef; Rzeski, Wojciech; Janusz, Grzegorz; Szczodrak, Janusz

    2016-09-01

    Piptoporus betulinus is a wood-rotting basidiomycete used in medicine and biotechnology. However, to date, no indoor method for cultivation of this mushroom fruiting bodies has been developed. Here we present the first report of successful production of P. betulinus mature fruiting bodies in artificial conditions. Four P. betulinus strains were isolated from natural habitats and their mycelia were inoculated into birch sawdust substrate supplemented with organic additives. All the strains effectively colonized the medium but only one of them produced fruiting bodies. Moisture and organic supplementation of the substrate significantly determined the fruiting process. The biological efficiency of the P. betulinus PB01 strain cultivated on optimal substrate (moisture and organic substance content of 55 and 65 and 25 or 35 %, respectively) ranged from 12 to 16 %. The mature fruiting bodies reached weight in the range from 50 to 120 g. Anticancer properties of water and ethanol extracts isolated from both cultured and nature-derived fruiting bodies of P. betulinus were examined in human colon adenocarcinoma, human lung carcinoma and human breast cancer cell lines. The studies revealed antiproliferative and antimigrative properties of all the investigated extracts. Nevertheless the most pronounced effects demonstrated the ethanol extracts, obtained from fruiting bodies of cultured P. betulinus. Summarizing, our studies proved that P. betulinus can be induced to fruit in indoor artificial culture and the cultured fruiting bodies can be used as a source of potential anticancer agents. In this respect, they are at least as valuable as those sourced from nature.

  14. Patient satisfaction with information on oral anticancer agent use.

    Science.gov (United States)

    Boons, Christel C L M; Timmers, Lonneke; van Schoor, Natasja M; Swart, Eleonora L; Hendrikse, N Harry; Janssen, Jeroen J W M; Hugtenburg, Jacqueline G

    2018-01-01

    Adequate information on oral anticancer agent (OACA) use is an essential element of optimal cancer care. The present study aimed to get insight into the experiences of patients with information on OACA treatment and their characteristics regarding information dissatisfaction. Patients of four Dutch university hospitals using OACA participated in this observational study and completed the Satisfaction with Information about Medicines Scale (SIMS), EORTC Quality of Life Questionnaire-C30, Brief Illness Perception Questionnaire, and Beliefs about Medicines Questionnaire-Specific. Logistic regression analyses were used to determine factors associated with dissatisfaction with information. Patients (n = 208) using capecitabine (35%), lenalidomide (15%), imatinib (14%), temozolomide (12%), sunitinib (11%), thalidomide (5%), dasatinib (4%), erlotinib (2%), and nilotinib (2%) participated. Information on the following SIMS-items was inadequate: how OACA elicit their effect, how long it takes before treatment works, how to conclude that treatment is effective, the risk of side effects and its management, interference with sex life, drowsiness, interference with other medication and alcohol and what to do in case of a missed dose. Younger age, hematological malignancy, dyspnoea, positive perception of consequences of the cancer, low perception of treatment control, and indifferent attitude towards OACA were associated with dissatisfaction with information. In conclusion, a considerable number of patients would have appreciated receiving more information on specific issues relating to the consequences of OACA treatment such as the effects and side effects of OACA and the interference of treatment with various aspects of their daily life. Oncologists, hematologists, lung-oncologists and pharmacists may reconsider the provision of information on OACA treatment. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Inventory of oral anticancer agents : Pharmaceutical formulation aspects with focus on the solid dispersion technique

    NARCIS (Netherlands)

    Sawicki, E.; Schellens, J. H M; Beijnen, J. H.; Nuijen, B.

    2016-01-01

    Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and

  16. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents

    Directory of Open Access Journals (Sweden)

    Sapavat Madhavi

    2017-02-01

    Full Text Available A series of ten novel chalcone incorporated quinazoline derivatives (11a–11j were designed and synthesized. All the synthesized compounds were evaluated for their anticancer activities against four human cancer cell lines (A549, HT-29, MCF-7 and A375. Among them, four compounds, 11f, 11g, 11i and 11j showed more potent anticancer activity than the control drug, Combretastatin – A4.

  17. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences.

    NARCIS (Netherlands)

    Broxterman, H.J.; Lankelma, J.; Hoekman, K.

    2003-01-01

    Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant

  18. Diterpenes and Their Derivatives as Potential Anticancer Agents.

    Science.gov (United States)

    Islam, Muhammad Torequl

    2017-05-01

    As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    Science.gov (United States)

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Myxobacterial epothilones and tubulysins as promising anticancer agents

    NARCIS (Netherlands)

    Dömling, Alexander; Richter, Wolfgang

    2005-01-01

    Tubulin-binding agents play a pivotal role in current cancer therapy and there are many efforts in pre-clinical and clinical development of known and novel cytotoxic agents ongoing. In this article a known class, epothilones, as well as a novel class, tubulysins, are presented. © Springer 2005.

  1. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Pasupuleti Visweswara Rao

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities.

  2. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    Science.gov (United States)

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  3. Design, synthesis, and biological evaluation of callophycin A and analogues as potential chemopreventive and anticancer agents.

    Science.gov (United States)

    Shen, Li; Park, Eun-Jung; Kondratyuk, Tamara P; Guendisch, Daniela; Marler, Laura; Pezzuto, John M; Wright, Anthony D; Sun, Dianqing

    2011-11-01

    Callophycin A was originally isolated from the red algae Callophycus oppositifolius and shown to mediate anticancer and cytotoxic effects. In our collaborative effort to identify potential chemopreventive and anticancer agents with enhanced potency and selectivity, we employed a tetrahydro-β-carboline-based template inspired by callophycin A for production of a chemical library. Utilizing a parallel synthetic approach, 50 various functionalized tetrahydro-β-carboline derivatives were prepared and assessed for activities related to cancer chemoprevention and cancer treatment: induction of quinone reductase 1 (QR1) and inhibition of aromatase, nitric oxide (NO) production, tumor necrosis factor (TNF)-α-induced NFκB activity, and MCF7 breast cancer cell proliferation. Biological results showed that the n-pentyl urea S-isomer 6a was the strongest inducer of QR1 with an induction ratio (IR) value of 4.9 at 50 μM [the concentration to double the activity (CD)=3.8 μM] and its corresponding R-isomer 6f had an IR value of 4.3 (CD=0.2 μM). The isobutyl carbamate derivative 3d with R stereochemistry demonstrated the most potent inhibitory activity of NFκB, with the half maximal inhibitory concentration (IC(50)) value of 4.8 μM, and also showed over 60% inhibition at 50 μM of NO production (IC(50)=2.8 μM). The R-isomer urea derivative 6j, having an appended adamantyl group, exhibited the most potent MCF7 cell proliferation inhibitory activity (IC(50)=14.7 μM). The S-isomer 12a of callophycin A showed the most potent activity in aromatase inhibition (IC(50)=10.5 μM). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Chrysin-piperazine conjugates as antioxidant and anticancer agents.

    Science.gov (United States)

    Patel, Rahul V; Mistry, Bhupendra; Syed, Riyaz; Rathi, Anuj K; Lee, Yoo-Jung; Sung, Jung-Suk; Shinf, Han-Seung; Keum, Young-Soo

    2016-06-10

    Synthesis of 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one intermediate treating chrysin with 1,4-dibromobutane facilitated combination of chrysin with a wide range of piperazine moieties which were equipped via reacting the corresponding amines with bis(2-chloroethyl)amine hydrochloride in diethylene glycol monomethyl ether solvent. Free radical scavenging potential of prepared products was analyzed in vitro adopting DPPH and ABTS bioassay in addition to the evaluation of in vitro anticancer efficacies against cervical cancer cell lines (HeLa and CaSki) and an ovarian cancer cell line SK-OV-3 using SRB assay. Bearable toxicity of 7a-w was examined employing Madin-Darby canine kidney (MDCK) cell line. In addition, cytotoxic nature of the presented compounds was inspected utilizing Human bone marrow derived mesenchymal stem cells (hBM-MSCs). Overall, 7a-w indicated remarkable antioxidant power in scavenging DPPH(·) and ABTS(·+), particularly analogs 7f, 7j, 7k, 7l, 7n, 7q, 7v, 7w have shown promising free radical scavenging activity. Analogs 7j and 7o are identified to be highly active candidates against HeLa and CaSki cell lines, whereas 7h and 7l along with 7j proved to be very sensitive towards ovarian cancer cell line SKOV-3. None of the newly prepared scaffolds showed cytotoxic nature toward hBM-MSCs cells. From the structure-activity point of view, nature and position of the electron withdrawing and electron donating functional groups on the piperazine core may contribute to the anticipated antioxidant and anticancer action. Different spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, Mass) and elemental analysis (CHN) were utilized to confirm the desired structure of final compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Anticancer activity test of ethyl acetate extract of endophytic fungi isolated from soursop leaf (Annona muricata L.).

    Science.gov (United States)

    Minarni; Artika, I Made; Julistiono, Heddy; Bermawie, Nurliani; Riyanti, Eny Ida; Hasim; Hasan, Akhmad Endang Zainal

    2017-06-01

    To analyze anticancer activity of an ethyl acetate extract of endophytic fungi isolated from soursop leaf (Annona muricata L.). Anticancer activity of fungal extracts was determined by observing its toxicity against MCF-7 (Michigan Cancer Foundation-7) cells in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method. At an extract concentration of 100 μg/mL, 4 isolates out of 12 showed high activity against the cancer cell growth. The four isolates were then selected for further IC 50 determination, by measuring the inhibition of cancer cell proliferation at extract concentration of 25 μg/mL, 50 μg/mL, 100 μg/mL, 200 μg/mL and 400 μg/mL. Results showed that isolate Sir-G5 had the highest anticancer activity with an IC 50 of 19.20 μg/mL. The best isolates were screened again using a normal cell (Chang cells) to determine its toxicity against normal cells. Results indicated that the extracts do not affect the proliferation of normal cells. Molecular identification showed that the fungal isolate Sir-G5 has a close relationship with Phomopsis sp. The endophytic fungi isolated from soursop leaf has the potential to be used as a source of anticancer agents. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  6. In vitro method determing sensitivity of anticancer agents by incorporation of radioactive precursors

    International Nuclear Information System (INIS)

    Sakakibara, Satoshi

    1983-01-01

    A new sensitivity test of anticancer agents was developed to measure the lethal effects of cancer cells by the incorporation of radioactive precursors. The thousand cancer cells were cultured in a microplate in the presence of anticancer agents. These cells were exposed to radioactive precursors. Two or three days later, the cancer cells were harvested on a glass fiver filter by a multiple automatic cell-harvester and the incorporation of precursors was counted by a liquid scintillation counter. In this study, the in vivo results of drug testing in animal model systems were compared with drug sensitivities. Mice inoculated Ehrlich ascites cells were treated with various kinds of anticancer drugs. The development of the cells was compatible with the result of the sensitivity test. The growths of Lauson and ME-180 cells derived from human cancers implanted subcutaneously to nude mice were also well correlated with this sensitivity test. (author)

  7. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae.

    Science.gov (United States)

    Zorofchian Moghadamtousi, Soheil; Karimian, Hamed; Khanabdali, Ramin; Razavi, Mahboubeh; Firoozinia, Mohammad; Zandi, Keivan; Abdul Kadir, Habsah

    2014-01-01

    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.

  8. Anticancer and Antitumor Potential of Fucoidan and Fucoxanthin, Two Main Metabolites Isolated from Brown Algae

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2014-01-01

    Full Text Available Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.

  9. Pharmaceutical development of the novel metal-based anticancer agents NAMI-A and AP 5280

    NARCIS (Netherlands)

    Bouma, M. (Marjan)

    2002-01-01

    The pharmaceutical development of the two novel metal-based anticancer agents NAMI-A and AP 5280 is described in this thesis, starting with the development of analytical methods for the quality control of drug substance and final product, via the formulation process leading to a stable, intravenous

  10. Design and development of polynuclear ruthenium and platinum polypyridyl complexes in search of new anticancer agents

    NARCIS (Netherlands)

    Schilden, Karlijn van der

    2006-01-01

    The research described in this Ph.D. Thesis has been devoted to the design and development of polynuclear polypyridyl ruthenium and ruthenium-platinum complexes in search of new anticancer agents. A variety of polynuclear ruthenium and ruthenium-platinum complexes has been synthesized with a long

  11. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami

    2006-01-01

    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  12. National Cancer Institute Formulary: A Public-Private Partnership Providing Investigators Access to Investigational Anticancer Agents.

    Science.gov (United States)

    Cristofaro, J V; Ansher, S S; Zwiebel, J A; Ivy, P; Conley, B; Abrams, J S; Doroshow, J H

    2017-05-01

    As part of the White House Cancer Moonshot Initiative, the National Cancer Institute (NCI) has developed a drug formulary to provide investigational anticancer agents to the extramural research community. This article describes how the NCI Formulary functions, how researchers may apply for access to drugs in the formulary, and the NCI's initial goals for formulary participation. Approved investigators may apply for access to formulary agents at: https://nciformulary.cancer.gov. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  13. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  14. Design, synthesis and pharmacological evaluation of novel pyrrolizine derivatives as potential anticancer agents.

    Science.gov (United States)

    Gouda, Ahmed M; Abdelazeem, Ahmed H; Arafa, El-Shaimaa A; Abdellatif, Khaled R A

    2014-04-01

    A new series of novel pyrrolizine derivatives has been synthesized and biologically evaluated as potential anticancer agents. The starting compounds, 6-amino-7-cyano-N-(3,5-disubstitutedphenyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamides 11a-b, were reacted with different acid chlorides, aldehydes and isocyanates to give the target compounds 12-14. Structural characterizations of the new compounds were performed using spectral and elemental analysis. All compounds were tested for their anticancer activity against human breast cancer and prostate cancer cell lines, MCF-7 and PC-3 respectively. With exception of compounds 11a and 13a, results revealed that all the tested compounds showed half maximal inhibitory concentration (IC50) values less than 40μM. Compound 12b and the three urea derivatives 14b-d showed the most potent anticancer activity with IC50 values less than 2.73μM. The anticancer activity of these compounds was mediated, at least in part, via the induction of apoptosis as indicated by its ability to activate caspase-3/7. In light of the high potency of our novel compounds in targeting both breast and prostate cancers, these compounds warrant continued preclinical development as potential anticancer agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The chemistry and biology of the anticancer agent, taxol: A review ...

    African Journals Online (AJOL)

    Taxol, is conceivably the single most essential anticancer drug, today. It was first isolated in exceptionally low yield from the bark of the Western Yew, Taxus brevifolia. The clinical effectiveness of Taxol has impelled an incredible endeavor to obtain this intricate molecule synthetically. Owing to the chemical complication of ...

  16. The anticancer agent prodigiosin is not a multidrug resistance protein substrate.

    Science.gov (United States)

    Elahian, Fatemeh; Moghimi, Bahareh; Dinmohammadi, Farideh; Ghamghami, Mahsa; Hamidi, Mehrdad; Mirzaei, Seyed Abbas

    2013-03-01

    The brilliant red pigments prodiginines are natural secondary metabolites that are produced by select species of Gram-negative and Gram-positive bacteria. These molecules have received significant attention due to their reported antibacterial, antifungal, immunosuppressive, and anticancer activities. In this study, a Serratia marcescens SER1 strain was isolated and verified using 16s rDNA. The prodigiosin was purified using silica chromatography and was analyzed by (1)H-NMR spectroscopy. The cell cytotoxic effects of the purified prodigiosin on multiple drug resistant cell lines that overexpress MDR1, BCRP, or MRP2 pumps were analyzed. Prodigiosin had nearly identical cytotoxic effects on the resistant cells in comparison to their parental lines. In agreement with the same prodigiosin cytotoxicity, FACS analysis of prodigiosin accumulation and efflux in MDR overexpressing cell lines also indicated that this pro-apoptotic agent operates independently of the presence of the MDR1, BCRP, or MRP transporter and may be a potential treatment for malignant cancer cells that overexpress multidrug resistance transporters.

  17. Cranberry as promising natural source of potential anticancer agents: current evidence and future perspectives.

    Science.gov (United States)

    Katsargyris, Athanasios; Tampaki, Ekaterini-Christina; Giaginis, Constantinos; Theocharis, Stamatios

    2012-07-01

    Accumulating evidence suggest that dietary modification can lower the risk for several cancer types' development. Cranberry in particular, has been shown to have anti-oxidative, -inflammatory and -proliferative properties in vitro. To present the latest knowledge regarding the role of cranberry extracts against human cancer several types. A review of the literature documenting both in vitro and in vivo anti-cancer effects of whole cranberry and/or its extracts is conducted. Current data provide evidence for several anti-cancer properties of either whole cranberry and/or its extracts. The discovery of the specific cranberry components and the appropriate concentrations that exert such beneficial effects along with verification of the preliminary in vitro results in in vivo settings could potentially lead to the invention of novel safer and efficient anti-cancer therapeutic agents.

  18. Mefloquine-oxazolidine derivatives: a new class of anticancer agents.

    Science.gov (United States)

    Rodrigues, Felipe A R; Bomfim, Igor da S; Cavalcanti, Bruno C; Pessoa, Claudia; Goncalves, Raoni S B; Wardell, James L; Wardell, Solange M S V; de Souza, Marcus V N

    2014-01-01

    A series of 23 racemic mefloquine-oxazolidine derivatives, 4-[3-(aryl)hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinolines, derived from (R*, S*)-(±)-mefloquine and arenealdehydes, have been evaluated for their activity against four cancer cell lines (HCT-8, OVCAR-8, HL-60, and SF-295). Good cytotoxicities have been determined with IC50 values ranging from 0.59 to 4.79 μg/mL. In general compounds with aryl groups having strong electron-releasing substituents, such as HO and MeO, or electron-rich heteroaryl groups, for example imidazol-2-y-l, are active. However, other factors such as steric effects may play a role. As both the active and non-active conformations of the mefloquine-oxazolidine derivatives are similar, it is concluded that molecular conformations do not play a significant role either. This study is the first to evaluate mefloquine derivatives as antitumor agents. The mefloquine-oxazolidine derivatives are considered to be useful leads for the rational design of new antitumor agents. © 2013 John Wiley & Sons A/S.

  19. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of Toona sinensis (TS). Methods: Acetone leaf extract of TS was screened for total phenolic and flavanoid contents, and the flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant ...

  20. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of. Toona sinensis (TS). ... flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant properties were .... streptomycin, 50 units/mL penicillin, 5 % FBS and 100 μg/mL gentamicin.

  1. Some Anticancer Agents Act on Human Serum Paraoxonase-1 to Reduce Its Activity.

    Science.gov (United States)

    Alim, Zuhal; Beydemir, Şükrü

    2016-08-01

    Human serum paraoxonase (hPON1) is an important antioxidant enzyme. It protects low-density lipoproteins against oxidative stress and prevents atherosclerosis development. Anticancer agents have cardiotoxic effects, and this situation can lead to significant complications. Our aim was to evaluate the in vitro effects of some of the anticancer agents such as cetuximab, paclitaxel, etoposide, docetaxel, and ifosfamide on the activity of hPON1 in this study. For this reason, PON1 was purified from human serum with a specific activity of 3654.2 EU/mg and 16.84% yield using simple chromatographic methods. The five chemotherapeutic agents dose dependently decreased in vitro hPON1 activity. IC50 values for cetuximab, paclitaxel, etoposide, docetaxel, and ifosfamide were 0.0111, 0.042, 0.226, 0.665, and 23.3 mm, respectively. Ki constants were 0.0194, 0.0165, 0.131, 0.291, and 8.973 mm, respectively. The inhibition mechanisms of cetuximab, etoposide, docetaxel, and ifosfamide were non-competitive, and for paclitaxel was competitive. Consequently, inhibition of hPON1 by these anticancer agents may explain some of the cardiotoxic actions of these drugs. © 2016 John Wiley & Sons A/S.

  2. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants.

    Science.gov (United States)

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.

  3. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  4. Caffeine-hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells

    Czech Academy of Sciences Publication Activity Database

    Kaplánek, R.; Jakubek, M.; Rak, J.; Kejik, Z.; Havlík, M.; Dolenský, B.; Frydrych, I.; Hajduch, M.; Kolář, M.; Bogdanová, K.; Králová, Jarmila; Dzubak, P.; Král, V.

    2015-01-01

    Roč. 60, Jun (2015), s. 19-29 ISSN 0045-2068 Grant - others:GA MŠk(CZ) EE2.3.30.0060; GA MŠk CZ.1.07/2.3.00/30.0041; GA MŠk(CZ) LO1304 Program:EE; LD Institutional support: RVO:68378050 Keywords : Anticancer agents * Cancer treatment * Caffeine -hydrazones * Leukaemia * Selectivity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.252, year: 2015

  5. Electrochemical and calorimetric investigation of interaction of novel biscationic anticancer agents with DNA

    OpenAIRE

    Silva, Láuris Lucia da; Donnici, Claudio Luis; Lopes, Júlio César Dias; Goulart, Marília Oliveira Fonseca; Abreu, Fabiane Caxico de; Paula, Francine Santos de; Bravo, Carlos E. Salas; Santoro, Marcelo Matos; Denadai, Ângelo Márcio Leite; Santos, Alexandre Martins Costa; Montanari, Carlos Alberto

    2012-01-01

    ELECTROCHEMICAL AND CALORIMETRIC INVESTIGATION OF INTERACTION OF NOVEL BISCATIONIC ANTICANCER AGENTS WITH DNA. Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-alpha,omega-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the ...

  6. First report of anti-cancer agent, lapachol producing endophyte, Aspergillus niger of Tabebuia argentea and its in vitro cytotoxicity assays

    OpenAIRE

    Channabasava; Melappa Govindappa

    2014-01-01

    All parts of Tabebuia argentia were used for isolation and identified the lapachol producing endophytes were used for evaluation of in vitro cytotoxicity (antimitotic, antiproliferative, determination of cell viability, DNA fragmentation). Five endophytes (leaf endophytes, Alternaria alternata, Alternaria sp., Aspegerillus niger, Penicillium sp. and the bark endophyte, A. alternata) are able to produce potent anticancer agent lapachol. The 3rd and 4th fractions of endophytic extracts (A. nige...

  7. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    Science.gov (United States)

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.

  8. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    Directory of Open Access Journals (Sweden)

    Nelson G. M. Gomes

    2015-06-01

    Full Text Available Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i selectivity between normal and cancer cells (ii activity against multidrug-resistant (MDR cancer cells; and (iii a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  9. Safe handling and administration considerations of oral anticancer agents in the clinical and home setting.

    Science.gov (United States)

    Lester, Joanne

    2012-12-01

    The use of hormonal, chemotherapeutic, and targeted biologic oral agents has exponentially increased since the early 2000s. Oral therapies have the advantage of persistent exposure of the cytotoxic drug to tumor cells and the tumor environment. The use of oral anticancer agents provides therapeutic drug treatment for patients with cancer in the comfort of their home or alternative settings, such as retirement homes and assisted living or extended-care facilities. Practices to ensure safe storage, handling, administration, and disposal of oral agents are necessary to prevent additional exposure of hazardous substances to the environment, professionals, patients, family members, and caretakers. Providers should consider potential barriers to adherence and compliance, and develop strategies to ensure optimal therapeutic benefit prior to initiation of oral agents.

  10. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property

    Science.gov (United States)

    Azmi, Asfar S

    2013-01-01

    “ Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents. PMID:24358870

  11. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    Directory of Open Access Journals (Sweden)

    Rouhani H

    2011-04-01

    Full Text Available R Dinarvand1,2, N Sepehri1, S Manoochehri1, H Rouhani1, F Atyabi1,21Department of Pharmaceutics, Faculty of Pharmacy, 2Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, IranAbstract: The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA, a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.Keywords: nanotechnology, polymeric nanocarriers, targeting, anticancer agents, surface modification

  12. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal-Binding Agents.

    Science.gov (United States)

    Merlot, Angelica M; Kalinowski, Danuta S; Kovacevic, Zaklina; Jansson, Patric J; Sahni, Sumit; Huang, Michael L; Lane, Darius L; Lok, Hiu; Richardson, Des R

    2017-07-05

    Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals have become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anti-cancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role, and changes in homeostasis, of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as anti-tumor agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Isolation of a potential anticancer agent with protein phosphatase ...

    African Journals Online (AJOL)

    the HPLC machine and the sample analytes (50. µL) were injected into the machine. The HPLC machine consists of Waters 2695. Separation Module, Waters 2487 UV detector channel and Waters ... a cooling system to supply refrigerant to the shelves and condenser, and a vacuum system to reduce pressure in the.

  14. Isolation of a potential anticancer agent with protein phosphatase ...

    African Journals Online (AJOL)

    Results: It was found that a colorectal cancer cell line, HT-29, was susceptible to Fraction S1 and Citrinin 9318. A propidium iodide (PI)-incorporated DNA assay was used to show that there was G2/M arrest in HT-29 by Citrinin 9318. Conclusion: Citrinin 9318 inhibits the viability of HT-29 via mitotic block. The results suggest ...

  15. Isolation and detection of taxol, an anticancer drug produced from ...

    African Journals Online (AJOL)

    To determine the production of taxol from an endophytic fungus, Lasiodiplodia theobromae isolated from the medicinal plant Morinda citrifolia and also, to evaluate its cytotoxicity against human breast cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its characterization. The presence ...

  16. Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil.

    Science.gov (United States)

    Tan, Loh Teng-Hern; Ser, Hooi-Leng; Yin, Wai-Fong; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing

    2015-01-01

    A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3-, 2.0-, and 1.8-folds higher inhibitory effect against HCT116, HT29, and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic toward colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  17. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2015-11-01

    Full Text Available A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3, 2.0 and 1.8 folds higher inhibitory effect against HCT116, HT29 and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic towards colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  18. Synthesis and Characterization of Celecoxib Derivatives as Possible Anti-Inflammatory, Analgesic, Antioxidant, Anticancer and Anti-HCV Agents

    Directory of Open Access Journals (Sweden)

    Amartya Basu

    2013-03-01

    Full Text Available A series of novel N-(3-substituted aryl/alkyl-4-oxo-1,3-thiazolidin-2-ylidene-4-[5-(4-methylphenyl-3-(trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamides 2a–e were synthesized by the addition of ethyl a-bromoacetate and anhydrous sodium acetate in dry ethanol to N-(substituted aryl/alkylcarbamothioyl-4-[5-(4-methylphenyl-3-(trifluoro-methyl-1H-pyrazol-1-yl]benzene sulfonamides 1a–e, which were synthesized by the reaction of alkyl/aryl isothiocyanates with celecoxib. The structures of the isolated products were determined by spectral methods and their anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV NS5B RNA-dependent RNA polymerase (RdRp activities evaluated. The compounds were also tested for gastric toxicity and selected compound 1a was screened for its anticancer activity against 60 human tumor cell lines. These investigations revealed that compound 1a exhibited anti-inflammatory and analgesic activities and further did not cause tissue damage in liver, kidney, colon and brain compared to untreated controls or celecoxib. Compounds 1c and 1d displayed modest inhibition of HCV NS5B RdRp activity. In conclusion, N-(ethylcarbamothioyl-4-[5-(4-methylphenyl-3-(trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide (1a may have the potential to be developed into a therapeutic agent.

  19. Inner conflict in patients receiving oral anticancer agents: a qualitative study.

    Science.gov (United States)

    Yagasaki, Kaori; Komatsu, Hiroko; Takahashi, Tsunehiro

    2015-04-14

    To explore the experiences of patients receiving oral anticancer agents. A qualitative study using semistructured interviews with a grounded theory approach. A university hospital in Japan. 14 patients with gastric cancer who managed their cancer with oral anticancer agents. Patients with cancer experienced inner conflict between rational belief and emotional resistance to taking medication due to confrontation with cancer, doubt regarding efficacy and concerns over potential harm attached to use of the agent. Although they perceived themselves as being adherent to medication, they reported partial non-adherent behaviours. The patients reassessed their lives through the experience of inner conflict and, ultimately, they recognised their role in medication therapy. Patients with cancer experienced inner conflict, in which considerable emotional resistance to taking their medication affected their occasional non-adherent behaviours. In patient-centred care, it is imperative that healthcare providers understand patients' inner conflict and inconsistency between their subjective view and behaviour to support patient adherence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. The application of click chemistry in the synthesis of agents with anticancer activity

    Directory of Open Access Journals (Sweden)

    Ma N

    2015-03-01

    Full Text Available Nan Ma,1–3 Ying Wang,3 Bing-Xin Zhao,3 Wen-Cai Ye,1,3 Sheng Jiang2 1Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 2Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 3Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China Abstract: The copper(I-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. Keywords: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, antimicrotubule agents

  1. Assessment of adherence with oral anticancer agents in oncology clinical trials: A systematic review.

    Science.gov (United States)

    Bergsbaken, J J; Eickhoff, J C; Buss, B A; Mably, M S; Kolesar, J M

    2016-02-01

    Despite recommendations for adherence reporting in clinical trials involving an oral anticancer agent, the frequency and methods of adherence reporting are inconsistent. The purpose of this systematic review is to determine the frequency and type of adherence measures used in oncology and hematology clinical trials of oral anticancer agents and their association with study characteristics including quality, cancer type, stage and treatment type. PubMed was searched of all randomized controlled clinical trials assessing self-administered pharmacological interventions in patients with cancer and published over two years, between 1 January 2011 and 31 December 2012 were evaluated. We identified 70 publications in the PubMed database, comprising 45,118 total patients. Adherence reporting was present in 14 of 70 trials (20%); quantitative reporting was present in three of 70 trials (4%). Method of adherence assessment varied and included medication count, medication diaries and patient self-report. There was no association between adherence reporting and study quality or other study characteristics, although there was a trend towards increased reporting in breast cancer studies, with 46% of the studies reporting adherence (p = 0.0621). In a preliminary analysis, hematology studies (mean Jadad score 2.19 ± 1.47) were found to have significantly lower quality when compared to non-hematology trials (mean Jadad score 3.39 ± 1.37, p = 0.0034). This systematic review demonstrates adherence reporting in clinical trials of oral anticancer agents is infrequent. When reported, adherence was not associated with overall study quality or other study characteristics. Given the potential effects of non-adherence on study power and validity, adherence reporting should be encouraged in oncology and hematology clinical trials. © The Author(s) 2015.

  2. A review of the evidence for occupational exposure risks to novel anticancer agents - A focus on monoclonal antibodies.

    Science.gov (United States)

    King, Julie; Alexander, Marliese; Byrne, Jenny; MacMillan, Kent; Mollo, Adele; Kirsa, Sue; Green, Michael

    2016-02-01

    Evidence of occupational exposure risks to novel anticancer agents is limited and yet to be formally evaluated from the Australian healthcare perspective. From March to September 2013 medical databases, organizational policies, drug monographs, and the World Wide Web were searched for evidence relating to occupational exposure to monoclonal antibodies, fusion proteins, gene therapies, and other unclassified novel anticancer agents. Australian legislation, national and international guidelines, and drug company information excluded novel agents or provided inconsistent risk assessments and safe handling recommendations. Monoclonal antibody guidelines reported conflicting information and were often divergent with available evidence and pharmacologic rationale demonstrating minimal internalisation ability and occupational exposure risk. Despite similar physiochemical, pharmacologic, and internalisation properties to monoclonal antibodies, fusion proteins were included in only a minority of guidelines. Clinical directives for the safe handling of gene therapies and live vaccines were limited, where available focusing on prevention against exposure and cross-contamination. Although mechanistically different, novel small molecule agents (proteasome inhibitors), possess similar physiochemical and internalisation properties to traditional cytotoxic agents warranting cytotoxic classification and handling. Novel agents are rapidly emerging into clinical practice, and healthcare personnel have few resources to evaluate risk and provide safety recommendations. Novel agents possess differing physical, molecular and pharmacological profiles compared to traditional cytotoxic anticancer agents. Evaluation of occupational exposure risk should consider both toxicity and internalisation. Evidence-based guidance able to direct safe handling practices for novel anticancer agents across a variety of clinical settings is urgently required. © The Author(s) 2014.

  3. Discovery of a synthetic Aminopeptidase N inhibitor LB-4b as a potential anticancer agent.

    Science.gov (United States)

    Su, Li; Jia, Yuping; Wang, Xuejian; Zhang, Lei; Fang, Hao; Xu, Wenfang

    2013-05-01

    APN inhibitors have been considered as potential anticancer agents for years. LB-4b is the first synthetic APN inhibitor to be evaluated for both of its anti-invasion and anti-angiogenesis effects. As a potent synthetic APN inhibitor (IC50=850 nM, versus bestatin of 8.1 μM), LB-4b was determined to have more significant block effects to cancer cell invasion and angiogenesis than bestatin. Besides, it is able to be easily synthesized with a high total yield, while the reported synthetic methods of bestatin are much more complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    International Nuclear Information System (INIS)

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K.

    2010-01-01

    Poly(lactide-co-glycolide)(PLA 50 GA 50 ) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA 50 GA 50 is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide)(PLA 50 GA 50 ) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  5. Synthesis and Evaluation of Aminothiazole-Paeonol Derivatives as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Chia-Ying Tsai

    2016-01-01

    Full Text Available In this study, novel aminothiazole-paeonol derivatives were synthesized and characterized using 1H-NMR, 13C-NMR, IR, mass spectroscopy, and high performance liquid chromatography. All the new synthesized compounds were evaluated according to their anticancer effect on seven cancer cell lines. The experimental results indicated that these compounds possess high anticancer potential regarding human gastric adenocarcinoma (AGS cells and human colorectal adenocarcinoma (HT-29 cells. Among these compounds, N-[4-(2-hydroxy-4-methoxyphenylthiazol-2-yl]-4-methoxybenzenesulfonamide (13c had the most potent inhibitory activity, with IC50 values of 4.0 µM to AGS, 4.4 µM to HT-29 cells and 5.8 µM to HeLa cells. The 4-fluoro-N-[4-(2-hydroxy-4-methoxyphenylthiazol-2-yl]benzenesulfonamide (13d was the second potent compound, showing IC50 values of 7.2, 11.2 and 13.8 µM to AGS , HT-29 and HeLa cells, respectively. These compounds are superior to 5-fluorouracil (5-FU for relatively higher potency against AGS and HT-29 human cancer cell lines along with lower cytotoxicity to fibroblasts. Novel aminothiazole-paeonol derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating gastrointestinal adenocarcinoma.

  6. Largazole Analogues as Histone Deacetylase Inhibitors and Anticancer Agents: An Overview of Structure-Activity Relationships.

    Science.gov (United States)

    Poli, Giulio; Di Fabio, Romano; Ferrante, Luca; Summa, Vincenzo; Botta, Maurizio

    2017-12-07

    Since the time of its identification, the natural compound largazole rapidly caught the attention of the medicinal chemistry community for its impressive potency as an inhibitor of histone deacetylases (HDACs) and its strong antiproliferative activity against a broad panel of cancer cell lines. The design of largazole analogues is an expanding field of study, due to their remarkable potential as novel anticancer therapeutics. At present, a large ensemble of largazole analogues has been reported, allowing the identification of important structure-activity relationships (SAR) that can guide the design of novel compounds with improved HDAC inhibitory profiles, anticancer activity, and pharmacokinetic properties. The aim of this review is to concisely summarize the information obtained by biological evaluations of the various largazole analogues reported to date, with particular attention given to the latest analogues, as well as to analyze the various SAR obtained from this data, with the purpose of providing useful guidelines for the development of novel potent and selective HDAC inhibitors to be used as anticancer agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    Science.gov (United States)

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  8. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  9. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  10. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali

    2017-08-23

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4\\'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  11. THE ROLE OF RED PIGMENT PRODIGIOSIN FROM BACTERIA OF EARTHWORM GUT AS AN ANTICANCER AGENT

    Directory of Open Access Journals (Sweden)

    Sruthy P.B.

    2014-12-01

    Full Text Available Earthworms are the most ancient invertebrate animals on earth which can be used as a good source of pharmaceutical compounds. A study was carried out to find out the distribution of microorganisms in the gut of earthworm, Eudrilus eugeniae. Significant number of microbial populations in the gut of earthworm was observed and it was gradually increased from the initial day to final day of composting. Pigmented colonies of bacteria from earthworm gut were selectively isolated, the pigment was extracted from the culture broth and a presumptive test was carried out for the confirmation of prodigiosin. The pigment component was separated using thin layer chromatography and the structural elucidation of the compound was performed using U.V. spectroscopy. The inhibitory effect of prodigiosin on bacterial pathogens was studied and the results confirmed the antibacterial activity against gram positive bacteria. The anticancer activity of the prodigiosin pigment was evaluated under in vitro conditions against the breast cancer cell lines and it was observed that prodigiosin induced the apoptosis in MCF-7 cell lines in a dose dependent manner. Then the potential isolate was subjected to morphological and biochemical analysis and it was confirmed that the colonies were of Serratia marcescens. The results obtained from the present study indicated that earthworm gut is promising and could be a vital source of habitat possessing antimicrobial and anticancer activity.

  12. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  13. In vitro anticancer activity of microbial isolates from diverse habitats

    Directory of Open Access Journals (Sweden)

    Angel Treasa Thomas

    2011-06-01

    Full Text Available Extracts from natural products, especially microorganisms, have served as a valuable source of diverse molecules in many drug discovery efforts and led to the discovery of several important drugs. Identification of microbial strains having promising biological activities and purifying the bio-molecules responsible for the activities, have led to the discovery of many bioactive molecules. Extracellular, as well as intracellular, extracts of the metabolites of thirty-six bacterial and twenty-four fungal isolates, grown under unusual conditions such as high temperature, high salt and low sugar concentrations, were in vitro tested for their cytotoxic potential on various cancer cell lines. The extracts were screened on HeLa and MCF-7 cell lines to study the cytotoxic potential. Nuclear staining and flow cytometric studies were carried out to assess the potential of the extracts in arresting the cell cycle. The crude ethylacetate extract of isolate F-21 showed promising results by MTT assay with IC50 as low as 20.37±0.36 µg/mL on HeLa, and 44.75±0.81 µg/mL on MCF-7 cells, comparable with Cisplatin. The isolate F-21 was identified as Aspergillus sp. Promising results were also obtained with B-2C and B-4E strains. Morphological studies, biochemical tests and preliminary chemical investigation of the extracts were also carried out.Extratos de produtos naturais, especialmente de microrganismos, constituíram-se em fonte valiosa de diversas moléculas em muitas descobertas de fármacos e levaram à descoberta de fármacos importantes. A identificação de espécies microbianas que apresentam atividade biológica e a purificação de biomoléculas responsáveis pelas atividades levou à descoberta de muitas moléculas bioativas. Extratos extracelulares tanto quanto intracelulares de metabólitos de 36 isolados de bactérias e 24 isolados de fungos, que cresceram sob condições não usuais, como alta temperatura, alta concentração de sal e baixa

  14. Natural Product-Derived Spirooxindole Fragments Serve as Privileged Substructures for Discovery of New Anticancer Agents.

    Science.gov (United States)

    Yu, Bin; Zheng, Yi-Chao; Shi, Xiao-Jing; Qi, Ping-Ping; Liu, Hong-Min

    2016-01-01

    The utility of natural products for identifying anticancer agents has been highly pursued in the last decades and over 100 drug molecules in clinic are natural products or natural product-derived compounds. Natural products are believed to be able to cover unexplored chemical space that is normally not occupied by commercially available molecule libraries. However, the low abundance and synthetic intractability of natural products have limited their applications in drug discovery. Recently, the identification of biologically relevant fragments derived from biologically validated natural products has been recognized as a powerful strategy in searching new biological probes and drugs. The spirocyclic oxindoles, as privileged structural scaffolds, have shown their potential in designing new drugs. Several anticancer drug candidates such as SAR405838, RO8994, CFI-400945 and their bioisosteres are undergoing clinical trials or preclinical studies. To highlight the significant progress, we focus on illustrating the discovery of SAR405838, RO8994, CFI-400945 and their bioisosteres for cancer therapy using substructure-based strategies and discussing modes of action, binding models and preclinical data.

  15. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents.

    Science.gov (United States)

    Zheng, Yanyan; Zhu, Li; Fan, Lulu; Zhao, Wenna; Wang, Jianlong; Hao, Xianxiao; Zhu, Yunhui; Hu, Xiufang; Yuan, Yaofeng; Shao, Jingwei; Wang, Wenfeng

    2017-01-05

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been demonstrated to exhibit good anti-cancer effect. In this study, a series of novel quaternary ammonium salts of emodin, anthraquinone and anthrone were synthesized and their anticancer activities were tested in vitro. The effects of emodin quaternary ammonium salts on cell viability, apoptosis, intracellular ROS, and mitochondrial membrane potential were investigated in A375, BGC-823, HepG2 and HELF cells. The results demonstrated that compound 4a induced morphological changes and decreased cell viability. Apoptosis triggered by compound 4a was visualized using DAPI staining and Annexin V-FITC/PI staining. Compound 4a-induced apoptosis of A375 cells were showed to be associated with the dissipation of mitochondrial membrane potential (ΔΨm) as a result of the up-regulation of P53 and Caspase-3. When cancer cells were treated with emodin derivative, their ability to generate reactive oxygen species (ROS) rose significantly and the mitochondrial membrane potential decreased. Additionally, confocal microscopy assay confirmed that compound 4a was primarily located in the mitochondria of A375 cells. These results suggested that compound 4a has the potential for use in cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan, Iran.

    Science.gov (United States)

    Akhbari, Maryam; Kord, Reza; Jafari Nodooshan, Saeedeh; Hamedi, Sepideh

    2018-01-07

    In this study, biological properties of the essential oil isolated from seeds of Foeniculum vulgare (F. vulgare) were evaluated. GC-MS analysis revealed Trans-Anethole (80.63%), L-Fenchone (11.57%), Estragole (3.67%) and Limonene (2.68%) were the major compounds of the essential oil. Antibacterial activity of the essential oil against nine Gram-positive and Gram-negative strains was studied using disc diffusion and micro-well dilution assays. Essential oil exhibited the antibacterial activity against three Gram-negative strains of Pseudomonas aeruginosa, Escherichia coli, and Shigella dysenteriae. The preliminary study on toxicity of seed oil was performed using Brine Shrimp lethality test (BSLT). Results indicated the high toxicity effect of essential oil (LC50 = 10 μg/mL). In vitro anticancer activity of seed oil was investigated against human breast cancer (MDA-Mb) and cervical epithelioid carcinoma (Hela) cell lines by MTT assay. Results showed the seed oil behave as a very potent anticancer agent with IC50 of lower than 10 μg/mL in both cases.

  17. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Daisy Pitchai

    2014-01-01

    Full Text Available Lupeol is a triterpenoid, present in most of the medicinally effective plants and possess a wide range of biological activity against human diseases. The present study aims at evaluating the anticancer potentials of lupeol, isolated from the leaves of Elephantopus scaber L. and thereby explores its action on key cancer marker, Bcl-2. The effect of lupeol on the cell viability of MCF-7 was determined by MTT and lactate dehydrogenase assays at different concentrations. The efficacy of the compound to induce cell death was analyzed using AO/EtBr staining. Phase contrast microscopic analysis provided the changes in cell morphology of the compound treated normal breast cells (MCF-10A and MCF-7 cells. The expression of Bcl-2 and Bcl-xL proteins in the normal, cancer and lupeol treated cancer cell was analyzed by western blotting. Lupeol induced an effective change in the cell viability of MCF-7 cells with IC 50 concentration as 80 μM. Induction of cell death, change in cell morphology and population of the cancer cells was observed in the lupeol treated cells, but the normal cells were not affected. The compound effectively downregulated Bcl-2 and Bcl-xL protein expressions, which directly contribute for the induction of MCF-7 cell apoptosis. Conclusion: Thus, lupeol acts as an anticancer agent against MCF-7 cells and is a potent phytodrug to be explored further for its cytotoxic mechanism.

  18. Inductively coupled plasma mass spectrometry: a unique, ultrasensitive tool for exploring the pharmacology of metal-based anticancer agents

    NARCIS (Netherlands)

    Brouwers, E.E.M.

    2007-01-01

    After the discovery of the antiproliferative effects of cisplatin, the drug has developed into one of the most frequently used anticancer agents. Unfortunately, the use of cisplatin is hampered by severe side effects and by the resistance of several tumour types. These limitations have led to the

  19. Platinum Complexes with Edda (Ethylenediamine -N, N - Diacetate Ligands as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Jurisevic Milena

    2016-12-01

    Full Text Available The design of platinum based drugs is not a new field of interest. Platinum complexes are widely used as anticancer agents and currently, approximately 30 platinum(II and platinum(IV entered into some of the phases of clinical trials. A special place in today’s research belongs to platinum complexes with diammine ligands. A large number of edda (ethylenediamine- N, N’-diacetate-type ligands and their corresponding metal complexes has been successfully synthesized. This article summarizes recent progress in research on edda-type-platinum complexes. Some of these agents achieves better effect compared to the gold standard (cisplatin. It has been shown that there is a possible relationship between the length of the ligand ester group carbon chain and its cytotoxic effect. In most cases the longer the ester chain is the greater is the antitumor activity. Of particular interest are the noticeable effects of some new platinum compound with edda-type ligand on cell lines that are known to have a high level of cisplatin-resistance. Exanimate complexes appear to have a different mode of mechanism of action compared with cisplatin which includes apoptotic and necrotic cell death. There are indications that further investigations of these compounds may be very useful in overcoming the problems associated global cancer statistic.

  20. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    Science.gov (United States)

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Preformulation studies of a novel camptothecin anticancer agent, CKD-602: physicochemical characterization and hydrolytic equilibrium kinetics.

    Science.gov (United States)

    Kim, Jae-Hyun; Lee, Seok-Kyu; Lim, Jong-Lae; Shin, Hee-Jong; Hong, Chung Il

    2002-06-04

    (20S)-7-(2-isopropylamino)ethylcamptothecin.HCl (CKD-602), a new camptothecin (CPT) anticancer agent, is a pale yellowish crystalline compound. DSC thermogram exhibited a melt endotherm near 270 degrees C, and CKD-602 was found to be slightly hygroscopic. The solubility of CKD-602 in deionized water was 8.22 mg/ml, and two pK(a) values were measured to be 2.32 and 9.15, respectively. A pH-dependent partition coefficient behavior in octanol-buffer was observed. CKD-602 in solid state was stable over the range of temperature and humidity, but decomposed slightly by light. The hydrolysis of CKD-602 occurred reversibly and rapidly in aqueous buffer solutions. The conversion rate constants (k(f): from the lactone to the carboxylate and k(r): from the carboxylate to the lactone) and the final equilibrium ratio (K(eq)) between two species were dependent on the pH of aqueous solutions.

  2. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    Directory of Open Access Journals (Sweden)

    Takahiro Eitsuka

    2016-09-01

    Full Text Available Tocotrienol (T3, unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc. Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib or dietary components (e.g., polyphenols, sesamin, and ferulic acid exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.

  3. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Josephine S. Modica-Napolitano

    2015-07-01

    Full Text Available Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy.

  4. The potential for substance P antagonists as anti-cancer agents in brain tumours.

    Science.gov (United States)

    Harford-Wright, Elizabeth; Lewis, Kate M; Vink, Robert

    2013-04-01

    Despite recent advances in cancer treatment and diagnosis, the prognosis for patients with CNS tumours remains extremely poor. This is, in part, due to the difficulty in completely removing tumours surgically, and also because of the presence of the blood brain barrier, which can prevent the entry of chemotherapeutic agents typically used in cancer treatment. Despite the presence of the blood brain barrier, tumour cells are capable of entering and colonising the brain to form secondary brain tumours. Additionally, tumour related disruption of the blood brain barrier is associated with the clinical presentation of many patients, with accompanying increases in intracranial pressure due, in part, to the development of vasogenic oedema. Vasogenic oedema results because the newly formed angiogenic vessels within brain tumours do not retain the highly selective properties of the blood brain barrier, and thus allow for the extravasation of plasma proteins and water into the brain parenchyma. Tachykinins, and in particular substance P, have been implicated in blood brain barrier disruption and the genesis of cerebral oedema in other CNS insults via a process known as neurogenic inflammation. Recent evidence suggests that substance P may play a similar role in CNS tumours. It has been well established that an upregulation of substance P and its receptors occurs in a number of different cancer types, including CNS neoplasms. In addition to disrupting blood brain barrier permeability, substance P and the NK1 receptors facilitate promotion of tumour growth and the development of cerebral oedema. Accordingly, recent patents describe the potential of NK1 receptor antagonists as anti-cancer agents suggesting that substance P may provide a novel cancer treatment target. This review will examine the role of substance P in the development of CNS tumours.

  5. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity.

    Science.gov (United States)

    Palanisamy, Subramanian; Vinosha, Manoharan; Marudhupandi, Thangapandi; Rajasekar, Periyannan; Prabhu, Narayanan Marimuthu

    2017-09-01

    In this study antioxidant and anticancer effect of fucoidan isolated from brown seaweed Sargassum polycystum was investigated. The total yield of fucoidan was 4.51±0.24%, of these, 46.8% of fucose and 22.35±0.23% of sulphate respectively. The structural characteristic of fucoidan was analyzed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The antioxidant properties were determined by DPPH scavenging, reducing power and total antioxidant assays. The maximum DPPH scavenging activity (61.2±0.33%), reducing ability (67.56±0.26%) and total antioxidant activity (65.3±0.66%) were obtained at 1000μg/ml of fucoidan. The cytotoxicity effect of fucoidan showed a higher percentage (90.4±0.25%) of inhibition against the MCF-7 cell line at 150μg/ml with an estimated IC 50 at 50μg/ml. Further, cytomorphological and apoptosis changes of fucoidan treated cells were observed under inverted light microscope and confocal laser scanning microscope (CLSM). The results demonstrated that the isolated fucoidan from S. polycystum possessed potent antioxidant and anticancer properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging

    KAUST Repository

    Hajjar, Dina

    2017-06-13

    Natural products have been used for medical applications since ancient times. Commonly, natural products are structurally complex chemical compounds that efficiently interact with their biological targets, making them useful drug candidates in cancer therapy. Here, we used cell-based phenotypic profiling and image-based high-content screening to study the mode of action and potential cellular targets of plants historically used in Saudi Arabia\\'s traditional medicine. We compared the cytological profiles of fractions taken from Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam), and Citrullus colocynthis (Hanzal) with a set of reference compounds with established modes of action. Cluster analyses of the cytological profiles of the tested compounds suggested that these plants contain possible topoisomerase inhibitors that could be effective in cancer treatment. Using histone H2AX phosphorylation as a marker for DNA damage, we discovered that some of the compounds induced double-strand DNA breaks. Furthermore, chemical analysis of the active fraction isolated from Juniperus phoenicea revealed possible anti-cancer compounds. Our results demonstrate the usefulness of cell-based phenotypic screening of natural products to reveal their biological activities.

  7. A computational approach to tuning the photochemistry of platinum(IV) anticancer agents.

    Science.gov (United States)

    Tai, Hui-Chung; Zhao, Yao; Farrer, Nicola J; Anastasi, Anna E; Clarkson, Guy; Sadler, Peter J; Deeth, Robert J

    2012-08-20

    Diazido Pt(IV) complexes are inert stable prodrugs that can be photoactivated to produce Pt(II) species with promising anticancer activity. Our studies of the photochemistry of Pt(IV) complexes, [Pt(X)(2) (Y)(2) (Z)(2) ](0/-1) (X=N-ligands (NH(3) , pyridine, etc.)/S(CH(3) )(2) /H(-) , Y=(pseudo)halogen (N(3) (-) , I(-) ), Z=OR(-) , R=H, Ac) by time-dependent density functional theory (TDDFT) show close agreement with spectroscopic data. Broad exploration of cis/trans geometries, trans influences, the nature of the OR(-) and (pseudo)halogen ligands, electron-withdrawing/donating/delocalising substituents on the N-ligands, and intramolecular H bonds shows that: 1) the design of platinum(IV) complexes with intense bands shifted towards longer wavelengths (from 289 to ∼330 nm) can be achieved by introducing intramolecular H bonds involving the OH ligands and 2-hydroxyquinoline or by iodido ligands; 2) mesomeric electron-withdrawing substituents on pyridine result in low-energy absorption with significant intensity in the visible region; and 3) the distinct makeup of the molecular orbitals involved in the electronic transitions for cis/trans-{Pt(N(3) )(2) } isomers results in different photoproducts. In general, the comparison of the optimised geometries shows that Pt(IV) complexes with longer PtL bonds are more likely to undergo photoreduction with longer-wavelength light. The novel complex trans,trans,trans-[Pt(N(3) )(2) (OH)(2) (NH(3) )(4-nitropyridine)] with predicted absorption in the visible region has been synthesised. The experimental UV/Vis spectrum in aqueous solution correlates well with the intense band in the computed spectrum, whereas the overlay in the low-energy region can be improved by a solvent model. This combined computational and experimental study shows that TDDFT can be used to tune the coordination environment for optimising photoactive Pt(IV) compounds as anticancer agents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGa

  8. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    Science.gov (United States)

    Song, Gina

    integrated approaches, we were able to identify the immunological mechanisms at the molecular, tissue, and clinical levels that may contribute to inter-individual variability in PK and PD of PLD. This dissertation research has a potential to make an impact on development of future NP-based anticancer therapeutics as well as on clinical use of PLD (DoxilRTM) and other PEGylated liposomal anticancer agents.

  9. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Al-Balas QA

    2016-08-01

    Full Text Available Qosay A Al-Balas,1 Mohammad A Hassan,1 Nizar A Al-Shar’i,1 Nizar M Mhaidat,2 Ammar M Almaaytah,3 Fatima M Al-Mahasneh,1 Israa H Isawi1 1Department of Medicinal Chemistry and Pharmacognosy, 2Department of Clinical Pharmacy, 3Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan Background: The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs.Methods: Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I.Results: Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM.Conclusion: We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may

  10. Pharmacological evaluation for anticancer and immune activities of a novel polysaccharide isolated from Boletus speciosus Frost.

    Science.gov (United States)

    Hou, Yiling; Ding, Xiang; Hou, Wanru; Song, Bo; Wang, Ting; Wang, Fang; Li, Jian; Zeng, Yichun; Zhong, Jie; Xu, Ting; Zhu, Hongqing

    2014-04-01

    The fungal polysaccharides have been revealed to exhibit a variety of biological activities, including antitumor, immune-stimulation and antioxidation activities. In the present study, the immune and anticancer activities of a novel polysaccharide, BSF-A, isolated from Boletus speciosus Frost was investigated. The inhibitory rate of S180 tumors in mice treated with 40 mg/kg BSF-A reached 62.449%, which was the highest rate from the three doses administered; this may be comparable to mannatide. The antitumor activity of BSF-A is commonly considered to be a consequence of the stimulation of the cell-mediated immune response, as it may significantly promote the macrophage cells in the dose range of 100-400 µg/ml in vitro. The levels of the cytokines, IL-6, IL-1β and TNF-α, and nitric oxide, induced by BSF-A treatment at varying concentrations in the macrophage cells were similar to the levels in the cells treated with lipopolysaccharide. There was weak expression of the TNF-α, IL-6, IL-1β and inducible nitric oxide synthase mRNA in the untreated macrophages, but this increased significantly in a dose-dependent manner in the BSF-A-treated cells. BSF-A also had a time- and dose-dependent effect on the growth inhibition of the Hep-2 cells, with the concentration of 400 µg/ml having the highest inhibitory rate. A quantitative PCR array analysis of the gene expression profiles indicated that BSF-A had anticancer activities that affected cell apoptosis in the Hep-2 cells. The results obtained in the present study indicated that the purified polysaccharide of Boletus speciosus Frost is a potential source of natural anticancer substances.

  11. C60-fullerenes as Drug Delivery Carriers for Anticancer Agents: Promises and Hurdles.

    Science.gov (United States)

    Kumar, Manish; Raza, Kaisar

    2017-01-01

    C60-fullerenes (CFs) constitute a carbon-allotropic family with cage-like fused-ring structure, comprising of 20 hexagons and 12 pentagons. Since discovery in 1985, CFs attracted the scientists from various strata for unique properties like tensile strength, nanometeric size, symmetric nature, thermal and photo conductivity, chemical tailoring opportunities and drug loading capabilities. Surprisingly, CFs are also established to possess antiviral, neuroprotective, antiinflammatory, MRI contrast and antioxidant properties. Though extensively explored for chemical modifications and therapeutic benefits, CFs and derivatives also offer immense promises in drug delivery, especially to the cancerous cells. The present review is an attempt to highlight the promises of CFs in drug delivery, esp. of anticancer agents. The review also analyzes the safety concerns of CF-based drug delivery and attempts to discuss the promises and challenges in the light of preclinical and clinical data. The raw material (research/review articles) for the manuscript was collected from Pubmed, Google scholar and Scopus and the keywords used were fullerenes, nanotechnology, nanomedicine, functionalization, safety, drug delivery and biomedical applications. The drug release rate controlling behavior, higher drug loading, immuno-neutrality, substantial biocompatibility, capability to bypass mononuclear phagocytic system, long circulating nature and tissue extraction by virtue of enhanced permeability and retention effect are the major promises of these nanocarriers. On the other hand, the concerns like elimination from the biological system, anticipated tissue toxicity, stability of the final product, sterility issues and commercial viability pose challenges in proper utilization of CFs as ideal drug delivery carriers. However, a few commercial products based on CFs with human safety evidences provide a ray of hope. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Ghorab Mostafa M.

    2016-06-01

    Full Text Available As a part of ongoing studies in developing new anticancer agents, novel 1,2-dihydropyridine 4, thienopyridine 5, isoquinolines 6–20, acrylamide 21, thiazolidine 22, thiazoles 23–29 and thiophenes 33–35 bearing a biologically active quinoline nucleus were synthesized. The structure of newly synthesized compounds was confirmed on the basis of elemental analyses and spectral data. All the newly synthesized compounds were evaluated for their cytotoxic activity against the breast cancer cell line MCF7. 2,3-Dihydrothiazole-5-carboxamides 27, 25, 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (34, 1,2-dihydroisoquinoline-7-carbonitrile (7, 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (35, 1,2-dihydroisoquinoline-7-carbonitrile (6, 2-cyano-3-(dimethylamino-N-(quinolin-3-ylacrylamide (21, 1,2-dihydroisoquinoline-7-carbonitriles (11 and (8 exhibited higher activity (IC50 values of 27–45 μmol L–1 compared to doxorubicin (IC50 47.9 μmol L–1. LQ quinolin-3-yl-1,2-dihydroisoquinoline-7-carbonitrile (12, 2-thioxo-2,3-dihydrothiazole-5-carboxamide (28 and quinolin-3-yl-1,2-dihydroisoquinoline-7-carbonitrile (15 show activity comparable to doxorubicin, while (quinolin-3-yl-1,2-dihydroisoquinoline-7-carbonitrile (9, 2,3-dihydrothiazole-5-carboxamide (24, thieno [3,4-c] pyridine-4(5H-one (5, cyclopenta[b]thiophene-3-carboxamide (33 and (quinolin-3-yl-6-stryl-1,2-dihydroisoquinoline-7-carbonitrile (10 exhibited moderate activity, lower than doxorubicin.

  13. Dihydrochalcone Compounds Isolated from Crabapple Leaves Showed Anticancer Effects on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Qin

    2015-11-01

    Full Text Available Seven dihydrochalcone compounds were isolated from the leaves of Malus crabapples, cv. “Radiant”, and their chemical structures were elucidated by UV, IR, ESI-MS, 1H-NMR and 13C-NMR analyses. These compounds, which include trilobatin (A1, phloretin (A2, 3-hydroxyphloretin (A3, phloretin rutinoside (A4, phlorizin (A5, 6′′-O-coumaroyl-4′-O-glucopyranosylphloretin (A6, and 3′′′-methoxy-6′′-O-feruloy-4′-O-glucopyranosyl-phloretin (A7, all belong to the phloretin class and its derivatives. Compounds A6 and A7 are two new rare dihydrochalcone compounds. The results of a MTT cancer cell growth inhibition assay demonstrated that phloretin and these derivatives showed significant positive anticancer activities against several human cancer cell lines, including the A549 human lung cancer cell line, Bel 7402 liver cancer cell line, HepG2 human ileocecal cancer cell line, and HT-29 human colon cancer cell line. A7 had significant effects on all cancer cell lines, suggesting potential applications for phloretin and its derivatives. Adding a methoxyl group to phloretin dramatically increases phloretin’s anticancer activity.

  14. Development of a mouse model for testing therapeutic agents: the anticancer effect of dienogest on endometrial neoplasms.

    Science.gov (United States)

    Saito, Fumitaka; Tashiro, Hironori; Yamaguchi, Munekage; Honda, Ritsuo; Ohba, Takashi; Suzuki, Akira; Katabuchi, Hidetaka

    2016-01-01

    As the number of younger women with endometrial carcinoma has increased, fertility-sparing treatments have received more attention. Although there have been several reports on conservative treatments with progestins for endometrial carcinoma, only medroxyprogesterone acetate (MPA) is available in Japan. Dienogest has been developed as a fourth-generation progestin for treating endometriosis. Because of its high progesterone activity, its antitumor activity has attracted attention. In this study, we investigated the anticancer effect of dienogest on endometrial neoplasms using mouse model of endometrial carcinoma. Pten(loxP/loxP) mice were injected with MPA or dienogest subcutaneously to evaluate the anticancer effect against endometrial neoplasms that developed in the mice. One week after injections, histopathological analyzes were performed. Endometrial neoplasms were found in one of the eight (12.5%) mice from each group treated with either dienogest or MPA. In contrast, they were found in seven of eight (87.5%) mice not treated with progestins. Each progestin treatment showed anticancer activity against endometrial neoplasms that developed in the mice compared to those without treatment. Dienogest and MPA showed potent anticancer activity against endometrial neoplasms in our mouse model. The present study demonstrated that dienogest might be a useful therapeutic agent for human endometrial neoplasms.

  15. Pharmaceutical development of investigational anticancer agents: focus on EO-9, AP5346, and GMP implications

    NARCIS (Netherlands)

    Schoot, Sabina Cornelia van der

    2006-01-01

    The development of new anticancer drugs can be divided into six phases: characterization of the API (structural and analytical), solubility- and stability studies, design of the formulation, manufacturing, quality control analysis, and (bio)compatibility studies. Structural and analytical

  16. Cyclooxygenase-2 inhibitor is a robust enhancer of anticancer agents against hepatocellular carcinoma multicellular spheroids

    Directory of Open Access Journals (Sweden)

    Cui J

    2014-02-01

    Full Text Available Jie Cui,1,2 Ya-Huan Guo,3 Hong-Yi Zhang,4 Li-Li Jiang,1 Jie-Qun Ma,1 Wen-Juan Wang,1 Min-Cong Wang,1 Cheng-Cheng Yang,1 Ke-Jun Nan,1 Li-Ping Song5 1Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, 2Department of Oncology, Yan'an University Affiliated Hospital, Yan'an, 3Department of Oncology, Shaanxi Province Cancer Hospital, Xi'an, 4Department of Urology, Yan'an University Affiliated Hospital, Yan'an, 5Department of Radiotherapy, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China Purpose: Celecoxib, an inhibitor of cyclooxygenase-2 (COX2, was investigated for enhancement of chemotherapeutic efficacy in cancer clinical trials. This study aimed to determine whether celecoxib combined with 5-fluorouracil or sorafenib or gefitinib is beneficial in HepG2 multicellular spheroids (MCSs, as well as elucidate the underlying mechanisms. Methods: The human hepatocellular carcinoma cell line HepG2 MCSs were used as in vitro models to investigate the effects of celecoxib combined with 5-fluorouracil or sorafenib or gefitinib treatment on cell growth, apoptosis, and signaling pathway. Results: MCSs showed resistance to drugs compared with monolayer cells. Celecoxib combined with 5-fluorouracil or sorafenib exhibited a synergistic action. Exposure to celecoxib (21.8 µmol/L plus 5-fluorouracil (8.1 × 10-3 g/L or sorafenib (4.4 µmol/L increased apoptosis but exerted no effect on COX2, phosphorylated epidermal growth-factor receptor (p-EGFR and phosphorylated (p-AKT expression. Gefitinib (5 µmol/L, which exhibits no growth-inhibition activity as a single agent, increased the inhibitory effect of celecoxib. Gefitinib (5 µmol/L plus celecoxib (21.8 µmol/L increased apoptosis. COX2, p-EGFR, and p-AKT were inhibited. Conclusion: Celecoxib combined with 5-fluorouracil or sorafenib or gefitinib may be superior to single-agent therapy in HepG2

  17. Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents in HepG-2 Cell Line

    Directory of Open Access Journals (Sweden)

    Weijie Xu

    2017-03-01

    Full Text Available Cancer is a major public health concern worldwide. Adverse effects of cancer treatments still compromise patients’ quality of life. To identify new potential anticancer agents, a series of novel pyrazoline derivatives were synthesized and evaluated for cytotoxic effects on HepG-2 (human liver hepatocellular carcinoma cell line and primary hepatocytes. Compound structures were confirmed by 1H-NMR, mass spectrometry, and infrared imaging. An in vitro assay demonstrated that several compounds exerted cytotoxicity in the micromolar range. Benzo[b]thiophen-2-yl-[5-(4-hydroxy-3,5-dimethoxy-phenyl-3-(2-hydroxy-phenyl-4,5-dihydo-pyrazol-1-yl]-methanone (b17 was the most effective anticancer agent against HepG-2 cells owing to its notable inhibitory effect on HepG-2 with an IC50 value of 3.57 µM when compared with cisplatin (IC50 = 8.45 µM and low cytotoxicity against primary hepatocytes. Cell cycle analysis and apoptosis/necrosis evaluation using this compound revealed that b17 notably arrested HepG-2 cells in the G2/M phase and induced HepG-2 cells apoptosis. Our findings indicate that compound b17 may be a promising anticancer drug candidate.

  18. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    Science.gov (United States)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  19. Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Frick A

    2015-02-01

    Full Text Available Amber Frick,1 Yuri Fedoriw,2 Kristy Richards,3,4 Blossom Damania,3,5 Bethany Parks,6 Oscar Suzuki,1 Cristina S Benton,1 Emmanuel Chan,1 Russell S Thomas,7 Tim Wiltshire1,3 1Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, 2Department of Pathology and Laboratory Medicine, School of Medicine, 3Lineberger Comprehensive Cancer Center, School of Medicine, 4Department of Genetics, School of Medicine, 5Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; 6The Hamner Institutes for Health Sciences, 7Environmental Protection Agency, Research Triangle Park, NC, USA Background: Interpatient variability in immune and chemotherapeutic cytotoxic responses is likely due to complex genetic differences and is difficult to ascertain in humans. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at examining interstrain differences in viability on normal, noncancerous immune cells following chemotherapeutic cytotoxic insult. Drug effects were investigated by comparing selective chemotherapeutic agents, such as BEZ-235 and selumetinib, against conventional cytotoxic agents targeting multiple pathways, including doxorubicin and idarubicin. Methods: Splenocytes were isolated from 36 isogenic strains of mice using standard procedures. Of note, the splenocytes were not stimulated to avoid attributing responses to pathways involved with cellular stimulation rather than toxicity. Cells were incubated with compounds on a nine-point logarithmic dosing scale ranging from 15 nM to 100 µM (37°C, 5% CO2. At 4 hours posttreatment, cells were labeled with antibodies and physiological indicator dyes and fixed with 4% paraformaldehyde. Cellular phenotypes (eg, viability were collected and analyzed using flow cytometry. Dose-response curves with response normalized to the zero dose as a function of log concentration

  20. Growth inhibitory effect of the Src inhibitor dasatinib in combination with anticancer agents on uterine cervical adenocarcinoma cells.

    Science.gov (United States)

    Takiguchi, Eri; Nishimura, Masato; Mineda, Ayuka; Kawakita, Takako; Abe, Akiko; Irahara, Minoru

    2017-11-01

    Uterine cervical adenocarcinoma has a poor clinical prognosis when compared with squamous cell carcinoma. Therefore, the development of new treatment strategies for uterine cervical adenocarcinoma is necessary. Src is a proto-oncogene that is important in cancer progression. Dasatinib is a Src inhibitor that has been reported to be effective when used in combination with anticancer drugs. The present study aimed to confirm Src expression in human cervical adenocarcinoma cell lines and to determine the mechanism underlying the inhibitory effect of dasatinib on Src signaling in vitro . Western blot analysis was performed to investigate Src expression in cervical adenocarcinoma cell lines (HeLa and TCO-2 cells). The cells were cultured for 48 h with the addition of different concentrations of anticancer drugs (paclitaxel or oxaliplatin). Viable cell count was measured using a colorimetric (WST-1) assay. The concentrations of anticancer agents were fixed according to the results obtained, and the same experiments were performed using the drugs in combination with dasatinib at various concentrations to determine the concentrations that significantly affected the number of viable cells. The presence or absence of apoptosis was investigated using a caspase-3/7 assay. Signal transduction in each cell line was examined using western blotting. Src was activated in the two cell lines, and cell proliferation was significantly suppressed by each anticancer drug in combination with 10 µM dasatinib. Caspase-3/7 activity was also increased and Src signaling was suppressed by each anticancer drug in combination with dasatinib. In conclusion, Src is overexpressed in cervical adenocarcinoma cell lines, and dasatinib inhibits intracellular Src signaling and causes apoptosis. The results of the present study suggest that Src may be targeted in novel therapeutic strategies for cervical adenocarcinoma.

  1. First report of anti-cancer agent, lapachol producing endophyte, Aspergillus niger of Tabebuia argentea and its in vitro cytotoxicity assays

    Directory of Open Access Journals (Sweden)

    Channabasava

    2014-03-01

    Full Text Available All parts of Tabebuia argentia were used for isolation and identified the lapachol producing endophytes were used for evaluation of in vitro cytotoxicity (antimitotic, antiproliferative, determination of cell viability, DNA fragmentation. Five endophytes (leaf endophytes, Alternaria alternata, Alternaria sp., Aspegerillus niger, Penicillium sp. and the bark endophyte, A. alternata are able to produce potent anticancer agent lapachol. The 3rd and 4th fractions of endophytic extracts (A. niger and Penicillium sp. exhibited the pure lapachol. The 3rd fraction of A. niger lapachol strongly inhibited the Allium cepa root actively growing cells at various stages of cell cycle in antimitotic assay and the index was 22.5 mg/mL, the yeast cells were died due to toxicity and possessed the cell necrosis and they exhibited the DNA fragmentation. Present promised endophytes can be used for production of lapachol using endophyte A. niger for large scale production of lapachol within short period of time.

  2. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application

    Directory of Open Access Journals (Sweden)

    Ana M. L. Seca

    2018-01-01

    Full Text Available Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells and is one of the leading causes of mortality. The cases reported and the predictions for the near future are unthinkable. Food and Drug Administration data showed that 40% of the approved molecules are natural compounds or inspired by them, from which, 74% are used in anticancer therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid, diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed. Focusing on the ones that are in clinical trial development or already used in anticancer therapy, therefore successful cases such as paclitaxel and homoharringtonine (in clinical use, curcumin and ingenol mebutate (in clinical trials will be addressed. Each compound’s natural source, the most important steps in their discovery, their therapeutic targets, as well as the main structural modifications that can improve anticancer properties will be discussed in order to show the role of plants as a source of effective and safe anticancer drugs.

  3. Analgesic, anti-inflammatory and anticancer activities of Combretin A and Combretin B isolated from Combretum fragrans F. HOFFM (Combretaceae) leaves.

    Science.gov (United States)

    Mbiantcha, Marius; Almas, Jabeen; Dawe, Amadou; Faheem, Aisha; Sidra, Zafar

    2017-11-20

    Previous pharmacological and phytochemical studies showed that, Combretum fragrans F. HOFFM (Combretaceae) is a Cameroonian medicinal plant possessing numerous therapeutic virtues and rich in various active secondary metabolites. In this study, we investigate in vivo anti-nociceptive and anti-inflammatory activity and, in vitro anticancer, anti-TNFα, ROS and NO-inhibitory activities of Combretum A and Combretin B, two triterpenes cycloartane-type isolated from the leaves of Combretum fragrans. The effect on ROS, TNF-α and NO production, anticancer activity and cytotoxicity assay were done using chemiluminescence technique, ELISA kit, colorimetric method, MCF-7 cells and MTT assay, respectively. Antinociceptive and anti-inflammatory activities were estimated using a model of acetic acid, formalin and carrageenan. Combretin A and Combretin B significantly (p < 0.001) inhibited extracellular ROS production. These compounds also significantly (p < 0.001) reduced TNF-α and NO production. Moreover, these compounds decreased cell viability of MCF-7 cell lines. For acetic acid- or formalin-induced pain, as well as carrageenan-induced acute inflammation, Combretin A and Combretin B exhibited significant (p < 0.001) anti-nociceptive and anti-inflammatory activities. Anti-nociceptive, anti-inflammatory and anticancer potential associated with inhibitory effects on ROS, TNFα and NO production in this study show that, Combretin A and Combretin B could be considered as the promising chemotherapeutic agents in breast cancer treatment and inflammatory disease.

  4. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium.

    Science.gov (United States)

    Kumar, Pradeep; Narasimhan, Balasubramanian

    2013-06-01

    Hydrazide/hydrazone derivatives are of quite interest for medicinal chemists because of their vast spectrum of biological activity. Literature reports reveal that the hydrazide derivatives have been extensively studied for their biological profile during the past decade. The aim of the present work is to collect literature reports focusing the antimicrobial and anticancer study of different hydrazide/hydrazone derivatives carried out during the past decade which will serve as a valuable source of information for the researchers working in the field of antimicrobial and anticancer research.

  5. Clinical bacterial isolates from hospital environment as agents of ...

    African Journals Online (AJOL)

    The relationship between bacteria isolated from the hospital environment and those from wounds of operated patients was investigated to determine the causal agents of surgical site nosocomial infections. The study was carried out on bacterial species isolated from the theatre, surgical ward and patients' surgical wounds ...

  6. Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent.

    Science.gov (United States)

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Kaur, Baljinder; Kant, Ravi; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep

    2016-04-21

    We have developed a dual function carrier using bishexadecyltrimethyl ammonium palladium tetrachloride, which has anticancer as well as antibacterial activity, using a ligand insertion method with a simple and easy work procedure. The complex is prepared by a simple and cost effective method using hexadecyltrimethyl ammonium chloride and palladium chloride under controlled stoichiometry. Herein, we report the aggregation (self assembly) of the metallosurfactant having palladium as a counter ion, in aqueous medium along with its binding affinity with bovine serum albumin. The palladium surfactant has exhibited excellent antimicrobial efficacy against fungus and bacteria (both Gram-positive and Gram-negative bacteria). Cytotoxicity of palladium surfactant against cancerous (Human leukemia HL-60, pancreatic MIA-Pa-Ca-2 and prostate cancer PC-3) and healthy cells (fR2 human breast epithelial cells) was also evaluated using MTT assay. The present dual functional moiety shows a low IC50 value and has potential to be used as an anticancer agent. Our dual function carrier which itself possesses antimicrobial and anticancer activity represents a simple and effective system and can also be utilized as a drug carrier in the future.

  7. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark.

    Directory of Open Access Journals (Sweden)

    Tripti Mishra

    Full Text Available Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB, in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA, oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A. Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.

  8. Phytosterols as a natural anticancer agent: Current status and future perspective.

    Science.gov (United States)

    Shahzad, Naiyer; Khan, Wajahatullah; Md, Shadab; Ali, Asgar; Saluja, Sundeep Singh; Sharma, Sadhana; Al-Allaf, Faisal A; Abduljaleel, Zainularifeen; Ibrahim, Ibrahim Abdel Aziz; Abdel-Wahab, Ali Fathi; Afify, Mohamed Abdelaziz; Al-Ghamdi, Saeed Saeed

    2017-04-01

    Phytosterols are naturally occurring compounds in plants, structurally similar to cholesterol. The human diet is quite abundant in sitosterol and campesterol. Phytosterols are known to have various bioactive properties including reducing intestinal cholesterol absorption which alleviates blood LDL-cholesterol and cardiovascular problems. It is indicated that phytosterol rich diets may reduce cancer risk by 20%. Phytosterols may also affect host systems, enabling antitumor responses by improving immune response recognition of cancer, affecting the hormone dependent endocrine tumor growth, and by sterol biosynthesis modulation. Moreover, phytosterols have also exhibited properties that directly inhibit tumor growth, including reduced cell cycle progression, apoptosis induction, and tumor metastasis inhibition. The objective of this review is to summarize the current knowledge on occurrences, chemistry, pharmacokinetics and potential anticancer properties of phytosterols in vitro and in vivo. In conclusion, anticancer effects of phytosterols have strongly been suggested and support their dietary inclusion to prevent and treat cancers. Copyright © 2017. Published by Elsevier Masson SAS.

  9. In Silico Molecular Docking Analysis of Natural Pyridoacridines as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2016-01-01

    Full Text Available Docking studies are proved to be an essential tool that facilitates the structural diversity of natural products to be harnessed in an organized manner. In this study, pyridoacridines containing natural anticancer pigments were subjected to docking studies using Glide (Schrodinger. Investigations were carried out to find out the potential molecular targets for these selected pigments. The docking was carried out on different cancer macromolecules involved in different cell cycle pathways, that is, CDK-2, CDK-6, Bcl-2, VEGFR-2, IGF-1R kinase, and G-Quadruplexes. CDK-6 was found to be the most suitable anticancer target for the pyridoacridines. In addition, effectiveness of the study was further evaluated by performing docking of known inhibitors against their respective selected macromolecules. However, the results are preliminary and experimental evaluation will be carried out in near future.

  10. Synthesis and biological evaluation of andrographolide analogues as anti-cancer agents.

    Science.gov (United States)

    Preet, Ranjan; Chakraborty, Biswajit; Siddharth, Sumit; Mohapatra, Purusottam; Das, Dipon; Satapathy, Shakti Ranjan; Das, Supriya; Maiti, Nakul C; Maulik, Prakas R; Kundu, Chanakya Nath; Chowdhury, Chinmay

    2014-10-06

    A new family of andrographolide analogues were synthesized and screened in vitro against kidney (HEK-293) and breast (MCF-7) cancer cells. The anti-cancer effects of the active analogues (2b, 2c and 4c) were determined by multiple cell based assays such as MTT, immunostaining, FACS, western blotting and transcriptional inhibition of NF-κB activity. Importantly, these compounds were found to possess higher anti-cancer potency than andrographolide and low toxicity to normal (VERO and MCF-10A) cells. Increased level of Bax/Bcl-xL ratio, caspase 3, and sub G1 population, higher expression level of tumor suppressor protein p53 and lower expression level of NF-κB suggested potent apoptotic property of the active analogues. Data revealed that the andrographolide derivative-mediated cell death in cancer cells was p53 dependent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Synthesis and biological evaluation of a novel series of chalcones incorporated pyrazole moiety as anticancer and antimicrobial agents.

    Science.gov (United States)

    Mohamed, Magda F; Mohamed, Mervat S; Shouman, Samia A; Fathi, Mohamed M; Abdelhamid, Ismail Abdelshafy

    2012-11-01

    A newly synthesized series of chalcone derivatives containing pyrazole rings were synthesized and evaluated for their cytotoxic activities in vitro against several human cancer cell lines. Most of the prepared compounds showed potential cytotoxicity against human breast cancer cell lines MCF-7, HEPG-2, and HCT-116. Also the compounds were evaluated as antimicrobial agents. The three compounds 3, 4, and 5 were proved to be better anticancer agents than the positive standard doxorubicin with IC50 values (4.7, 4.4, and 3.9 μg/ml) against the same human cancer cell lines, whereas compounds 5 and 6 showed the most active antimicrobial compounds in comparison to the other chalcones.

  12. Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation.

    Science.gov (United States)

    Romero-Canelón, Isolda; Mos, Magdalena; Sadler, Peter J

    2015-10-08

    Combination with redox modulators can potentiate the anticancer activity and maximize the selectivity of organometallic complexes with redox-based mechanisms of action. We show that nontoxic doses of l-buthionine sulfoximine increase the selectivity of organo-Os complex FY26 for human ovarian cancer cells versus normal lung fibroblasts to 63-fold. This increase is not due to changes in the mechanism of action of FY26 but to the decreased response of cancer cells to oxidative stress.

  13. Safety of selective internal radiation therapy (SIRT) with yttrium-90 microspheres combined with systemic anticancer agents: expert consensus.

    Science.gov (United States)

    Kennedy, Andrew; Brown, Daniel B; Feilchenfeldt, Jonas; Marshall, John; Wasan, Harpreet; Fakih, Marwan; Gibbs, Peter; Knuth, Alexander; Sangro, Bruno; Soulen, Michael C; Pittari, Gianfranco; Sharma, Ricky A

    2017-12-01

    Selective internal radiation therapy (SIRT) with microspheres labelled with the β-emitter yttrium-90 (Y-90) enables targeted delivery of radiation to hepatic tumors. SIRT is primarily used to treat inoperable primary or metastatic liver tumors. Eligible patients have usually been exposed to a variety of systemic anticancer therapies, including cytotoxic agents, targeted biologics, immunotherapy and peptide receptor radionuclide therapy (PRRT). All these treatments have potential interactions with SIRT; however, robust evidence on the safety of these potential combinations is lacking. This paper provides current clinical experiences and expert consensus guidelines for the use of SIRT in combination with the anticancer treatment agents likely to be encountered in clinical practice. It was agreed by the expert panel that precautions need to be taken with certain drugs, but that, in general, systemic therapies do not necessarily have to be stopped to perform SIRT. The authors recommend stopping vascular endothelial growth factor inhibitors 4-6 weeks before SIRT, and restart after the patient has recovered from the procedure. It may also be prudent to stop potent radiosensitizers such as gemcitabine therapy 4 weeks before SIRT, and restart treatment at least 2‒4 weeks later. Data from phase III studies combining SIRT with fluorouracil (5FU) or folinic acid/5FU/oxaliplatin (FOLFOX) suggest that hematological toxicity is more common from the combination than it is from chemotherapy without SIRT. There is no evidence to suggest that chemotherapy increases SIRT-specific gastro-intestinal or liver toxicities.

  14. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent.

    Science.gov (United States)

    Park, Sanga; Kwon, Byeongsu; Yang, Wonseok; Han, Eunji; Yoo, Wooyoung; Kwon, Byoung-Mog; Lee, Dongwon

    2014-12-28

    Cancer cells are under oxidative stress due to a large production of reactive oxygen species (ROS), which involve in cell proliferation and cancer promotion and progression. On the other hand, ROS promotes cell death, depending on the rate of ROS production and the activity of antioxidant systems. Recently, "oxidation therapy" has arisen as a promising anticancer strategy, which can be achieved by inducing the generation of cytotoxic level of ROS or inhibiting the antioxidant systems in tumor cells. Here, we report oxidative stress amplifying nanoplatforms as novel anticancer therapeutics, which are able not only to suppress antioxidant but also to generate ROS simultaneously in acidic tumor microenvironments. The oxidative stress amplifying nanoplatforms are composed of dual pH-sensitive PBCAE copolymer, polymeric prodrug of BCA (benzoyloxycinnamaldehyde) and heme oxygenase-1 (HO-1) inhibiting zinc protoporphyrin (ZnPP). PBCAE was designed to incorporate ROS-generating BCA in its backbone via acid-cleavable acetal linkages and self-assemble to form micelles that encapsulate ZnPP. In vitro proof-of-concept studies revealed that ZnPP encapsulated in PBCAE micelles suppressed HO-1 to make cancer cells more vulnerable to BCA-induced ROS, leading to enhanced apoptotic cell death. In addition, ZnPP-loaded PBCAE micelles significantly suppressed the tumor growth in human cancer xenograft mouse models. We believe that oxidative stress amplifying micellar nanoparticles have a great potential as novel redox anticancer therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Isolation, identification and anticancer activity of an endophytic fungi from Juglans mandshurica].

    Science.gov (United States)

    Li, Meiya; Wu, Yunwei; Jiang, Fusheng; Yu, Xiangli; Tang, Kexuan; Miao, Zhiqi

    2009-07-01

    The endophytic fungus named FSN006 was isolated from the inner bark of Juglans mandshurica. It grew quickly and formed circular colony on PDA plate. The upper side of the colony was white, while the lower side of the colony and the conditioned medium were light yellow as a result of significant yellow pigment substances were produced and secreted by the fungi. Green elliptic conidia appeared when cultured on CMX plate. Based on the morphology identification and ITS sequence, it was clear that this fungus belonged to the Deuteromycotina, HyPhomycetes, Moniliales, Trichoderma longibrachiatum. The conditioned medium of FSN006 showed a high anti-tumor ability against liver cancer cell-HepG2, and reached its IC50 concentration after being diluted 20 times, while the IC50 concentration of curcumine was(11.49 +/- 0.12) mg x L(-1). In addition, there was preeminent selective inhibiting effect against the normal liver cell strain HL-7702 and its caner counter strain HepG2. The inhibiting effect against strain HL-7702 was only one quarter of that against HepG2 at the concentration of IC50. Therefore, the fermentation of FSN006 may provide a possible way to produce anticancer drug with higher efficiency and lower toxicity.

  16. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    Science.gov (United States)

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL -1 and 16 to 256μgmL -1 respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC 50 value of 29.35μgmL -1 and a maximum of 95.56% inhibition at 100μgmL -1 against A549 lung cancer cell line, resulting in potent anticancer effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents.

    Science.gov (United States)

    Park, Sujin; Kim, Eun Hye; Kim, Jinwoo; Kim, Seong Hwan; Kim, Ikyon

    2018-01-20

    A new chemical space was explored based on an indolizine-chalcone hybrid, which was readily accessible by base-mediated aldol condensation of indolizine bearing a 7-acetyl group with various (hetero)aromatic aldehydes. Their anticancer effect was evaluated, revealing that indolizine-chalcone hybrids with 3,5-dimethoxyphenyl group (4h) or the halogen at the meta position (4j and 4l) could have the potential to induce the caspase-dependent apoptosis of human lymphoma cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    Science.gov (United States)

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  19. Validation data supporting the characterization of novel copper complexes as anticancer agents

    Directory of Open Access Journals (Sweden)

    Ceyda Acilan

    2016-12-01

    Full Text Available Three copper(II complexes, Cu(Sal-Gly(phen, Cu(Sal-Glypheamine, Cu(Sal-Glyphepoxy were synthesized and characterized for their anticancer properties and mechanism of action (Acilan et al., in press [1]. Here, we provide supporting data on colon cancer cell lines complementing our previous findings in cervix cells. This paper also contains a data table for the fold changes and p-values of all genes analyzed in this study via a custom RT-qPCR array. All compounds induced DNA damage (based on 8-oxo-guanidine, ɣH2AX staining in cells and apoptosis (based on elevated DNA condensation/fragmentation, Annexin V staining, caspase 3/7 activity and mitochondrial membrane depolarization in HCT-116 colon cancer cells. The increase in oxidative stress was also further confirmed in these cells. Further interpretation of the data presented here can be found in the article entitled “Synthesis, biological characterization and evaluation of molecular mechanisms of novel copper complexes as anticancer agents” (Acilan et al., in press [1].

  20. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.

    Science.gov (United States)

    Popilski, Hen; Stepensky, David

    2015-05-01

    Solid tumors are characterized by complex morphology. Numerous factors relating to the composition of the cells and tumor stroma, vascularization and drainage of fluids affect the local microenvironment within a specific location inside the tumor. As a result, the intratumoral drug/drug delivery system (DDS) disposition following systemic or local administration is non-homogeneous and its complexity reflects the differences in the local microenvironment. Mathematical models can be used to analyze the intratumoral drug/DDS disposition and pharmacological effects and to assist in choice of optimal anticancer treatment strategies. The mathematical models that have been applied by different research groups to describe the intratumoral disposition of anticancer drugs/DDSs are summarized in this article. The properties of these models and of their suitability for prediction of the drug/DDS intratumoral disposition and pharmacological effects are reviewed. Currently available mathematical models appear to neglect some of the major factors that govern the drug/DDS intratumoral disposition, and apparently possess limited prediction capabilities. More sophisticated and detailed mathematical models and their extensive validation are needed for reliable prediction of different treatment scenarios and for optimization of drug treatment in the individual cancer patients.

  1. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  2. Preclinical Pharmacology of BA-TPQ, a Novel Synthetic Iminoquinone Anticancer Agent

    Science.gov (United States)

    Ezell, Scharri J.; Li, Haibo; Xu, Hongxia; Zhang, Xiangrong; Gurpinar, Evrim; Zhang, Xu; Rayburn, Elizabeth R.; Sommers, Charnell I.; Yang, Xinyi; Velu, Sadanandan E.; Wang, Wei; Zhang, Ruiwen

    2010-01-01

    Marine natural products and their synthetic derivatives represent a major source of novel candidate anti-cancer compounds. We have recently tested the anti-cancer activity of more than forty novel compounds based on an iminoquinone makaluvamine scaffold, and have found that many of the compounds exert potent cytotoxic activity against human cancer cell lines. One of the most potent compounds, BA-TPQ [(11,12),7-(benzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one], was active against a variety of human cancer cell lines, and inhibited the growth of breast and prostate xenograft tumors in mice. However, there was some toxicity noted in the mice following administration of the compound. In order to further the development of BA-TPQ, and in a search for potential sites of accumulation that might underlie the observed toxicity of the compound, we accomplished preclinical pharmacological studies of the compound. We herein report the in vitro and in vivo pharmacological properties of BA-TPQ, including its stability in plasma, plasma protein binding, metabolism by S9 enzymes, and plasma and tissue distribution. We believe these studies will be useful for further investigations, and may be useful for other investigators examining the use of similar compounds for cancer therapy. PMID:20714427

  3. Preclinical Pharmacology of BA-TPQ, a Novel Synthetic Iminoquinone Anticancer Agent

    Directory of Open Access Journals (Sweden)

    Ruiwen Zhang

    2010-07-01

    Full Text Available Marine natural products and their synthetic derivatives represent a major source of novel candidate anti-cancer compounds. We have recently tested the anti-cancer activity of more than forty novel compounds based on an iminoquinone makaluvamine scaffold, and have found that many of the compounds exert potent cytotoxic activity against human cancer cell lines. One of the most potent compounds, BA-TPQ [(11,12,7-(benzylamino-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H-one], was active against a variety of human cancer cell lines, and inhibited the growth of breast and prostate xenograft tumors in mice. However, there was some toxicity noted in the mice following administration of the compound. In order to further the development of BA-TPQ, and in a search for potential sites of accumulation that might underlie the observed toxicity of the compound, we accomplished preclinical pharmacological studies of the compound. We herein report the in vitro and in vivo pharmacological properties of BA-TPQ, including its stability in plasma, plasma protein binding, metabolism by S9 enzymes, and plasma and tissue distribution. We believe these studies will be useful for further investigations, and may be useful for other investigators examining the use of similar compounds for cancer therapy.

  4. Current approaches to improve the anticancer chemotherapy with alkylating agents: state of the problem in world and Ukraine.

    Directory of Open Access Journals (Sweden)

    Iatsyshyna A. P.

    2012-01-01

    Full Text Available Alkylating agents are frequently used in many established anticancer chemotherapies. They alkylate the genomic DNA at various sites. Alkylation of the guanine at the O6-position is cytotoxic, it has the strongest mutagenic potential, as well as can cause the tumor development. Alkyl groups at the O6-position of guanine are removed by the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT. The effectiveness of alkylating chemotherapy is limited by MGMT in cancer cells and adverse toxic side effects in normal cells. Different approaches consisting in the modulation of the MGMT expression and activity are under development now to improve the cancer chemotherapy. They include two main directions, in particular, the increase in chemosensitivity of cancer cells to alkylating drugs and the protection of normal cells from the toxic side effects of chemotherapy. This review is focused on current attempts to improve the alkylating chemotherapy of malignant tumours worldwide and state of the issue in Ukraine

  5. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.

    Science.gov (United States)

    Lazarević, Tatjana; Rilak, Ana; Bugarčić, Živadin D

    2017-12-15

    Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    Science.gov (United States)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  7. Library construction and biological evaluation of enmein-type diterpenoid analogues as potential anticancer agents.

    Science.gov (United States)

    Li, Dahong; Xu, Shengtao; Cai, Hao; Pei, Lingling; Wang, Lei; Wu, Xiaoming; Yao, Hequan; Jiang, Jieyun; Sun, Yijun; Xu, Jinyi

    2013-05-01

    A library of promising enmein-type 14-O-diterpenoid derivatives was constructed from a commercially available kaurene-type oridonin by practical and efficient synthetic methods. These synthetic derivatives were evaluated for their antiproliferative activities against a set of four human cancer cell lines. The IC50 values are similar to or improved over those of the parent molecule and paclitaxel, the latter of which was used as a positive control. Compound 29 was further investigated for its apoptotic properties against human hepatocarcinoma Bel-7402 cells to better understand its mode of action. Moreover, compound 29 was shown to have potent antitumor activity in vivo in studies with a murine model of gastric cancer (MGC-803 mice). These results warrant further preclinical investigations of these diterpenoid-based analogues as potential novel anticancer chemotherapeutics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and Biological Evaluation of Novel Benzothiazole-2-thiol Derivatives as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Luo-Ting Yu

    2012-03-01

    Full Text Available A series of novel benzothiazole-2-thiol derivatives were synthesized and their structures determined by 1H-NMR, 13C-NMR and HRMS (ESI. The effects of all compounds on a panel of different types of human cancer cell lines were investigated. Among them, pyridinyl-2-amine linked benzothiazole-2-thiol compounds 7d, 7e, 7f and 7i exhibited potent and broad-spectrum inhibitory activities. Compound 7e displayed the most potent anticancer activity on SKRB-3 (IC50 = 1.2 nM, SW620 (IC50 = 4.3 nM, A549 (IC50 = 44 nM and HepG2 (IC50 = 48 nM and was found to induce apoptosis in HepG2 cancer cells.

  9. Hypersensitivity reactions to anticancer agents: Data mining of the public version of the FDA adverse event reporting system, AERS

    Directory of Open Access Journals (Sweden)

    Sakaeda Toshiyuki

    2011-10-01

    Full Text Available Abstract Background Previously, adverse event reports (AERs submitted to the US Food and Drug Administration (FDA database were reviewed to confirm platinum agent-associated hypersensitivity reactions. The present study was performed to confirm whether the database could suggest the hypersensitivity reactions caused by anticancer agents, paclitaxel, docetaxel, procarbazine, asparaginase, teniposide, and etoposide. Methods After a revision of arbitrary drug names and the deletion of duplicated submissions, AERs involving candidate agents were analyzed. The National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0 was applied to evaluate the susceptibility to hypersensitivity reactions, and standardized official pharmacovigilance tools were used for quantitative detection of signals, i.e., drug-associated adverse events, including the proportional reporting ratio, the reporting odds ratio, the information component given by a Bayesian confidence propagation neural network, and the empirical Bayes geometric mean. Results Based on 1,644,220 AERs from 2004 to 2009, the signals were detected for paclitaxel-associated mild, severe, and lethal hypersensitivity reactions, and docetaxel-associated lethal reactions. However, the total number of adverse events occurring with procarbazine, asparaginase, teniposide, or etoposide was not large enough to detect signals. Conclusions The FDA's adverse event reporting system, AERS, and the data mining methods used herein are useful for confirming drug-associated adverse events, but the number of co-occurrences is an important factor in signal detection.

  10. Electrochemical and calorimetric investigation of interaction of novel biscationic anticancer agents with DNA; Investigacao eletroquimica e calorimetrica da interacao de novos agentes antitumorais biscationicos com DNA

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Lauris Lucia da; Donnici, Claudio Luis; Lopes, Julio Cesar Dias, E-mail: cdonnici@terra.com.br [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Goulart, Marilia Oliveira Fonseca; Abreu, Fabiane Caxico de; Paula, Francine Santos de [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Campus A.C. Simoes. Inst. de Quimica e Biotecnologia; Bravo, Carlos E. Salas; Santoro, Marcelo Matos [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia; Denadai, Angelo Marcio Leite [Centro Federal de Educacao Tecnologica, Timoteo, MG (Brazil). Campus VII; Santos, Alexandre Martins Costa [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas; Montanari, Carlos Alberto [Universidade de Sao Paulo, Sao Carlos, SP (Brazil). Inst. de Quimica

    2012-07-01

    Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-{alpha}-{omega}-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered. (author)

  11. Clinical pharmacology of the novel marine-derived anticancer agent Ecteinascidin 743 administered as a 1- and 3-h infusion in a phase I study

    NARCIS (Netherlands)

    van Kesteren, Charlotte; Twelves, Chris; Bowman, Angela; Hoekman, Klaas; López-Lázaro, Luis; Jimeno, José; Guzman, Cecilia; Mathôt, Ron A. A.; Simpson, Andrew; Vermorken, Jan B.; Smyth, John; Schellens, Jan H. M.; Hillebrand, Michel J. X.; Rosing, Hilde; Beijnen, Jos H.

    2002-01-01

    Ecteinascidin 743 (ET-743) is an anticancer agent derived from the Caribbean tunicate Ecteinascidia turbinata. In the present article, the pharmacokinetics and pharmacodynamics of ET-743 are described within a phase I study. Forty patients with solid tumors initially received ET-743 as a 1-h i.v.

  12. Synthesis, cytotoxicity, and pro-apoptosis activity of etodolac hydrazide derivatives as anticancer agents.

    Science.gov (United States)

    Çıkla, Pelin; Özsavcı, Derya; Bingöl-Özakpınar, Özlem; Şener, Azize; Çevik, Özge; Özbaş-Turan, Suna; Akbuğa, Jülide; Şahin, Fikrettin; Küçükgüzel, Ş Güniz

    2013-05-01

    Etodolac hydrazide and a novel series of etodolac hydrazide-hydrazones 3-15 and etodolac 4-thiazolidinones 16-26 were synthesized in this study. The structures of the new compounds were determined by spectral (FT-IR, (1)H NMR, (13)C NMR, HREI-MS) methods. Some selected compounds were determined at one dose toward the full panel of 60 human cancer cell lines by the National Cancer Institute (NCI, Bethesda, USA). 2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)acetic acid[(4-chlorophenyl)methylene]hydrazide 9 demonstrated the most marked effect on the prostate cancer cell line PC-3, with 58.24% growth inhibition at 10(-5) M (10 µM). Using the MTT colorimetric method, compound 9 was evaluated in vitro against the prostate cell line PC-3 and the rat fibroblast cell line L-929, for cell viability and growth inhibition at different doses. Compound 9 exhibited anticancer activity with an IC(50) value of 54 µM (22.842 µg/mL) against the PC-3 cells and did not display any cytotoxicity toward the L-929 rat fibroblasts, compared to etodolac. In addition, this compound was evaluated for caspase-3 and Bcl-2 activation in the apoptosis pathway, which plays a key role in the treatment of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and evaluation of bile acid amides of [Formula: see text]-cyanostilbenes as anticancer agents.

    Science.gov (United States)

    Agarwal, Devesh S; Singh, Rajnish Prakash; Lohitesh, K; Jha, Prabhat N; Chowdhury, Rajdeep; Sakhuja, Rajeev

    2017-12-13

    A series of amino-substituted [Formula: see text]-cyanostilbene derivatives and their bile acid (cholic and deoxycholic acid) amides were designed and synthesized. A comparative study on the anticancer and antibacterial activity evaluation on the synthesized analogs was carried against the human osteosarcoma (HOS) cancer cell line, and two gram -ve (E. coli and S. typhi) and two gram [Formula: see text]ve (B. subtilis and S. aureus) bacterial strains. All the cholic acid [Formula: see text]-cyanostilbene amides showed an [Formula: see text] in the range 2-13 [Formula: see text] against human osteosarcoma cells (HOS) with the most active analog (6g) possessing an [Formula: see text] of [Formula: see text]. One of the amino-substituted [Formula: see text]-cyanostilbene, 4e, was found to possess an [Formula: see text] of [Formula: see text]. An increase in the number of cells at the sub-[Formula: see text] phase of the cell was observed in the in vitro cell cycle analysis of two most active compounds in the series (4e, 6g) suggesting a clear indication toward induction of apoptotic cascade. With respect to antibacterial screening, amino-substituted [Formula: see text]-cyanostilbenes were found to be more active than their corresponding bile acid amides. The synthesized compounds were also subjected to in silico study to predict their physiochemical properties and drug-likeness score.

  14. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents.

    Science.gov (United States)

    Rodrigues, Tiago; Sieglitz, Florian; Bernardes, Gonçalo J L

    2016-11-07

    Treatment of cancer is a significant challenge in clinical medicine, and its research is a top priority in chemical biology and drug discovery. Consequently, there is an urgent need for identifying innovative chemotypes capable of modulating unexploited drug targets. The transient receptor potential (TRPs) channels persist scarcely explored as targets, despite intervening in a plethora of pathophysiological events in numerous diseases, including cancer. Both agonists and antagonists have proven capable of evoking phenotype changes leading to either cell death or reduced cell migration. Among these, natural products entail biologically pre-validated and privileged architectures for TRP recognition. Furthermore, several natural products have significantly contributed to our current knowledge on TRP biology. In this Tutorial Review we focus on selected natural products, e.g. capsaicinoids, cannabinoids and terpenes, by highlighting challenges and opportunities in their use as starting points for designing natural product-inspired TRP channel modulators. Importantly, the de-orphanization of natural products as TRP channel ligands may leverage their exploration as viable strategy for developing anticancer therapies. Finally, we foresee that TRP channels may be explored for the selective pharmacodelivery of cytotoxic payloads to diseased tissues, providing an innovative platform in chemical biology and molecular medicine.

  15. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent

    Directory of Open Access Journals (Sweden)

    Ewa Marcinkowska

    2016-05-01

    Full Text Available The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D3 (1,25D has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues.

  16. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A

    2012-10-23

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  17. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel' nychenko, Nina V.; Sukach, Volodymyr A.

    2012-08-14

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  18. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents.

    Science.gov (United States)

    Banerjee, Swagata; Veale, Emma B; Phelan, Caroline M; Murphy, Samantha A; Tocci, Gillian M; Gillespie, Lisa J; Frimannsson, Daniel O; Kelly, John M; Gunnlaugsson, Thorfinnur

    2013-02-21

    The development of functional 1,8-naphthalimide derivatives as DNA targeting, anticancer and cellular imaging agents is a fast growing area and has resulted in several such derivatives entering into clinical trials. This review gives an overview of the many discoveries and the progression of the use of 1,8-naphthalimides as such agents and their applications to date; focusing mainly on mono-, bis-naphthalimide based structures, and their various derivatives (e.g. amines, polyamine conjugates, heterocyclic, oligonucleotide and peptide based, and those based on metal complexes). Their cytotoxicity, mode of action and cell-selectivity are discussed and compared. The rich photophysical properties of the naphthalimides (which are highly dependent on the nature and the substitution pattern of the aryl ring) make them prime candidates as probes as the changes in spectroscopic properties such as absorption, dichroism, and fluorescence can all be used to monitor their binding to biomolecules. This also makes them useful species for monitoring their uptake and location within cells without the use of co-staining. The photochemical properties of the compounds have also been exploited, for example, for photocleavage of nucleic acids and for the destruction of tumour cells.

  19. In Vitro Antibacterial, Antifungal, Antibiofilm, Antioxidant, and Anticancer Properties of Isosteviol Isolated from Endangered Medicinal Plant Pittosporum tetraspermum

    Directory of Open Access Journals (Sweden)

    Naif Abdullah Al-Dhabi

    2015-01-01

    Full Text Available This study aimed to investigate the in vitro antibacterial, antifungal, antibiofilm, antioxidant, and anticancer properties of isosteviol isolated from endangered medicinal plant Pittosporum tetraspermum. Pure compound was obtained and characterized by column chromatography followed by 1H NMR, 13C NMR, IR, and mass spectral analysis. The antimicrobial activities of the compound were assessed by the broth microdilution method and the antioxidant properties were determined using reducing ability assay, DPPH scavenging assay, hydroxyl radical scavenging activity, and superoxide radical scavenging assay. Anticancer study was evaluated by following MTT assay. Column purification and spectrocopical analysis lead to identifying isosteviol from the crude ethyl acetate extract. The compound exhibited significant activity against bacteria such as Staphylococcus epidermidis (125 µg/mL, Staphylococcus aureus (125 µg/mL, and Klebsiella pneumoniae (62.5 µg/mL. The MIC of the compound against Candida albicans, Aspergillus niger, and Trichophyton mentagrophytes was 62.5, 125, and 500 µg/mL, respectively. The compound showed comparatively better antibiofilm activity against E. coli, S. typhi, and P. aeruginosa. Furthermore, it exhibited good antioxidant properties. Anticancer properties of the compound against Vero and MCF7 cell lines were its advantage. Novel isosteviol would be useful to reduce the infectious diseases caused by pathogenic microorganisms or slow the progress of various oxidative stress-related diseases.

  20. New pyrazolopyrimidine inhibitors of protein kinase d as potent anticancer agents for prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Manuj Tandon

    Full Text Available The emergence of protein kinase D (PKD as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1. 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1(M659G for dissecting PKD-specific functions and signaling pathways in various biological systems.

  1. Development of multimodal imaging strategies for the pharmacology of anticancer agents

    International Nuclear Information System (INIS)

    Brulle, Laura

    2012-01-01

    Preclinical imaging in oncology is booming. It allows, using representative animal models of human cancers, to understand the mechanisms of development of pathologies and to assess the therapeutic efficiency of a new treatment. The main objective of this work was to develop two ortho-topic models of cancer (pancreas and colon) and to assess on them the reference treatments as well as a new therapeutic strategy by non-thermal plasma so called Plasma Gun. The two cancer models developed showed good representation in relation to human cancers, with the appearance of distant metastases and hypoxia. 5-fluorouracil for the HCT116-luc ortho-topic model of colorectal carcinoma and gemcitabine for the MIA PaCa2-luc pancreatic adenocarcinoma model, have induced discrete effects at low dose which can be detected thanks imaging modalities. After validation of our experimental steps, a new therapeutic strategy, Plasma Gun was evaluated and showed significant effects on tumor growth inhibition. The second objective was to carry out tools for the induction and the characterization of bone metastases and for high resolution imaging of the vasculature. On the one hand, bone metastases obtained by injection of PC3M-luc cells intracardially, was evaluated and quantified with different imaging modalities (bioluminescence, scintigraphy and Computed Tomography). And the other hand, the achievement of a high resolution imaging of vascularization, was possible by the casting method that restores the 3D structure of the vascular architecture following injection of a resin in the circulation. Developments makes during this thesis are new tools for preclinical evaluation of novel anticancer therapies. (author) [fr

  2. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    Science.gov (United States)

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  3. A General Synthetic Procedure for 2-chloromethyl-4(3H-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds

    Directory of Open Access Journals (Sweden)

    Ying-Lan Zhao

    2010-12-01

    Full Text Available In our ongoing research on novel anticancer agents with 4-anilinoquinazoline scaffolds, a series of novel 2-chloromethyl-4(3H-quinazolinones were needed as key intermediates. An improved one-step synthesis of 2-chloromethyl-4(3H-quinazolinones utilizing o-anthranilic acids as starting materials was described. Based on it, 2-hydroxy-methyl-4(3H-quinazolinones were conveniently prepared in one pot. Moreover, two novel 4-anilinoquinazoline derivatives substituted with chloromethyl groups at the 2-position were synthesized and showed promising anticancer activity in vitro.

  4. Mitochondrial complex II, a novel target for anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Klučková, Katarína; Bezawork-Geleta, A.; Rohlena, Jakub; Dong, L.; Neužil, Jiří

    2013-01-01

    Roč. 1827, č. 5 (2013), s. 552-564 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA ČR GAP301/12/1851 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrion * Complex II * Anti- cancer agent Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.829, year: 2013

  5. The Optimum Irradiation Dose in Preservation of Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl.) As Anticancer Agent

    International Nuclear Information System (INIS)

    Hendig Winarno; Ermin Katrin W; Wisnurahadi; Swasono R Tamat

    2010-01-01

    The purpose of this experiment was to obtain the optimum irradiation dose, in order to preserve and protect the damage of anticancer compounds in mahkota dewa bark. The specimens of mahkota dewa bark were irradiated using 60 Co at the variation doses of 0; 5; 7,5 ; 10; 15; and 20 kGy, respectively at the dose rate of 10 kGy/h. The irradiated and control samples were macerated in n-hexane and ethyl acetate, respectively, then the ethyl acetate extract was then fractionated using chromatography column to obtain 8 fractions. The examination of irradiated and control samples of mahkota dewa bark against microbe contaminants showed that irradiation at doses ≥5 kGy could inhibit the growth of bacteria, mold and yeast and destroyed them. The cytotoxicity test of irradiated ethyl acetate extract of mahkota dewa bark against leukemia L1210 cell showed that irradiation at the dose up to 20 kGy can decreased cytotoxic activities performance, however these IC 50 values lower than 50 μg/ml, which is the cytotoxic activity threshold for extract. The cytotoxic activity test of fraction 6, the most active fraction in mahkota dewa bark, showed that irradiation at the dose up to 20 kGy can also decreased the cytotoxic activities performance, however these IC 50 values was lower than 20 μg/ml, which is the cytotoxic activity threshold for fraction. Analysis of 2,4’-dihydroxy-4 methoxy benzophenone-2-O-β-D-glucopyranoside by high performance liquid chromatography (HPLC) in fraction 6 of irradiated samples showed that the concentration of this compound in irradiated samples significantly decreased, compared to the control sample. Decreasing the concentration of 2,4’-dihydroxy-4 methoxy benzophenone-2-O-β-D-glucopyranoside was not comparable to the cytotoxic activity of ethyl acetate extract or fraction 6, therefore this compound can not be used as marker of irradiation effect on decreasing the cytotoxic activity of the mahkota dewa bark. Irradiation at doses of 5 up to 20 k

  6. In vitro assessment of a computer-designed potential anticancer agent in cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Michelle Helen Visagie

    cost effective and time consuming. This study evaluated the anticancer potential of ESE-15-ol, an in silico-designed compound in vitro. Research demonstrated that ESE-15-ol exerts antiproliferative activity accompanied with apoptosis induction at a nanomolar concentration compared to the micromolar range required by 2ME2. This study is the first study to demonstrate the influence of ESE-15-ol on morphology, cell cycle progression and apoptosis induction in HeLa cells. In silico-design by means of receptor- and ligand molecular modeling is thus effective in improving compound bioavailability while preserving apoptotic activity in vitro.

  7. The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents.

    Science.gov (United States)

    Sun, Yu; Rigas, Basil

    2008-10-15

    Anticancer agents act, at least in part, by inducing reactive oxygen and nitrogen species (RONS). We examined the redox effect on SW480 and HT-29 colon cancer cells of four anticancer compounds, arsenic trioxide, phosphoaspirin, phosphosulindac, and nitric oxide-donating aspirin (NO-ASA). All compounds inhibited the growth of both cell lines (IC(50), 10-90 micromol/L) and induced RONS detected by a general RONS molecular probe. NO-ASA, which induced at least four individual RONS (NO, H(2)O(2), superoxide anion, and peroxynitirte), induced apoptotic and necrotic cell death that was RONS-mediated (cell death paralleled RONS levels and was abrogated by N-acetyl cysteine but not by diphenylene iodonium, which displayed prooxidant activity and enhanced cell death). Nuclear factor-kappaB and mitogen-activated protein kinases were modulated by RONS. Thioredoxin-1 (Trx-1), an oxidoreductase involved in redox regulation, was heavily oxidized in response to RONS and mediated the growth inhibitory effect of the anticancer agents; knocking-down trx-1 expression by small interfering RNA abrogated cell death induced by them. These compounds also inhibited the activity of Trx reductase that reduces oxidized Trx-1, whereas the Trx reductase inhibitor aurothiomalate synergized with NO-ASA in the induction of cell death. Our findings indicate that the Trx system mediates to a large extent redox-induced cell death in response to anticancer agents. This mechanism of action may be shared by more anticancer agents and deserves further assessment as a candidate mechanism for the pharmacologic control of cancer.

  8. Molecular predictors of therapeutic response to specific anti-cancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  9. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent.

    Science.gov (United States)

    Hanson, Britt Erika; Vesole, David H

    2009-09-01

    Heat shock proteins are vital to cell survival under conditions of stress. They bind client proteins to assist in protein stabilization, translocation of polypeptides across cell membranes and recovery of proteins from aggregates. Heat shock protein inhibitors are a diverse group of novel agents that have been demonstrated to have pro-apoptotic effects on malignant cells through inhibition of ATP binding on the ATP/ADP-binding pocket of the heat shock protein. Initial development of heat shock protein 90 inhibitors, geldanamycin and 17-AAG, were limited by hepatotoxicity and the need for solvent carrying agents. In contrast, retaspimycin, or IPI-504, a derivative of geldanamycin and 17-AAG, is highly soluble in water and generally well tolerated. In Phase I/II trials, retaspimycin has shown activity in NSCLC and gastrointestinal stromal tumor. The most promising activity was observed in gastrointestinal stromal tumors. Phase I/II trials are currently underway to evaluate the dosing schedules and activity of IPI-504 in breast cancer. Given the in vitro activity in diffuse large B-cell lymphoma, mantle cell lymphoma, melanoma, leukemia and pancreatic cancer, current and future trials are of clinical interest. This article reviews IPI-504 and its utility in a wide variety of cancer phenotypes.

  10. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Petrillo Richard L

    2010-02-01

    Full Text Available Abstract Histone deacetylases (HDACs can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents.

  11. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    Science.gov (United States)

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. One-pot synthesis and biological evaluation of N-(aminosulfonyl)-4-podophyllotoxin carbamates as potential anticancer agents.

    Science.gov (United States)

    Xu, Xiao-Hui; Guan, Xiao-Wen; Feng, Shi-Liang; Ma, You-Zhen; Chen, Shi-Wu; Hui, Ling

    2017-07-01

    A series of N-(aminosulfonyl)-4-podophyllotoxin carbamates were synthesized via the Burgess-type intermediate, and their antiproliferative activities were evaluated. Most of them possessed more potent cytotoxic effects against four human tumor cell lines (HeLa, A-549, HCT-8 and HepG2) and less toxic to normal human fetal lung fibroblast WI-38 cells than etoposide. In particular, N-(morpholinosulfonyl)-4-podophyllotoxin carbamate (9) exhibited the most potent activity towards these four tumor cells with IC 50 values in the range of 0.5-16.5μM. Furthermore, immunofluorescence analysis revealed that 9 induced cell apoptosis by up-regulating the expression of p53 and ROS. Meanwhile, 9 effectively inhibited tubulin polymerization and microtubule assembly at cellular levels in HeLa cells. In addition, 9 could induce cell cycle arrest in the G2/M phase in HeLa cells by up-regulating levels of cyclinB1 and cdc2 and decreasing the expression of p-cdc2. These results indicated that 9 had potential for further development as anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex.

    Science.gov (United States)

    Das, Rabindra Nath; Chevret, Edith; Desplat, Vanessa; Rubio, Sandra; Mergny, Jean-Louis; Guillon, Jean

    2017-12-30

    G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 μM concentration for the most potent ligand 1c . The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.

  14. Rollover Cyclometalated Bipyridine Platinum Complexes as Potent Anticancer Agents: Impact of the Ancillary Ligands on the Mode of Action.

    Science.gov (United States)

    Babak, Maria V; Pfaffeneder-Kmen, Martin; Meier-Menches, Samuel M; Legina, Maria S; Theiner, Sarah; Licona, Cynthia; Orvain, Christophe; Hejl, Michaela; Hanif, Muhammad; Jakupec, Michael A; Keppler, Bernhard K; Gaiddon, Christian; Hartinger, Christian G

    2018-03-05

    Platinum-based anticancer coordination compounds are widely used in the treatment of many tumor types, where they are very effective but also cause severe side effects. Organoplatinum compounds are significantly less investigated than the analogous coordination compounds. We report here rollover cyclometalated Pt compounds based on 2,2'-bipyridine which are demonstrated to be potent antitumor agents both in vitro and in vivo. Variation of the co-ligands on the Pt(2,2'-bipyridine) backbone resulted in the establishment of structure-activity relationships. They showed that the biological activity was in general inversely correlated with the reaction kinetics to biomolecules as shown for amino acids, proteins, and DNA. The less stable compounds caused higher reactivity with biomolecules and were shown to induce p53-dependent DNA damage. In contrast, the presence of bulky PTA and PPh 3 ligands was demonstrated to cause lower reactivity and increased antineoplastic activity. Such compounds were devoid of DNA-damaging activity and induced ATF4, a component of the endoplasmic reticulum (ER) stress pathway. The lead complex inhibited tumor growth similar to oxaliplatin while showing no signs of toxicity in test mice. Therefore, we demonstrated that it is possible to fine-tune rollover-cyclometalated Pt(II) compounds to target different cancer pathways and be a means to overcome the side effects associated with cisplatin and analogous compounds in cancer chemotherapy.

  15. Psoralea glandulosa as a Potential Source of Anticancer Agents for Melanoma Treatment

    Directory of Open Access Journals (Sweden)

    Alejandro Madrid

    2015-04-01

    Full Text Available With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1, 3-hydroxy-bakuchiol (2 and 12-hydroxy-iso-bakuchiol (3 against melanoma cells (A2058. In addition, the effect in cancer cells of bakuchiol acetate (4, a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells.

  16. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Sartaj; Chandra Sharma, Girish; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh-202002 (India); Azam, Ameer, E-mail: tsartaj62@yahoo.com [Center of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Aligarh Muslim University, Aligarh 202002, UP (India)

    2010-05-14

    A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. {sup 119}Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant K{sub b} = 8.42 x 10{sup 4} M{sup -1}. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.

  17. Psoralea glandulosa as a Potential Source of Anticancer Agents for Melanoma Treatment

    Science.gov (United States)

    Madrid, Alejandro; Cardile, Venera; González, César; Montenegro, Ivan; Villena, Joan; Caggia, Silvia; Graziano, Adriana; Russo, Alessandra

    2015-01-01

    With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells. PMID:25860949

  18. Platinum anticancer agents and antidepressants: desipramine enhances platinum-based cytotoxicity in human colon cancer cells.

    Science.gov (United States)

    Kabolizadeh, Peyman; Engelmann, Brigitte J; Pullen, Nicholas; Stewart, Jennifer K; Ryan, John J; Farrell, Nicholas P

    2012-01-01

    A unique synergistic effect on platinum drug cytotoxicity is noted in the presence of the tricyclic antidepressant desipramine. Desipramine is used for treating neuropathic pain, particularly in prostate cancer patients. The clinically used drugs cisplatin (cis-[PtCl(2)(NH(3))(2)]), oxaliplatin [1,2-diaminocyclohexaneoxalatoplatinum(II)], and the cationic trinuclear agent BBR3464 [{trans-PtCl(NH(3))(2)}(2)-μ-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2))](4+), which has undergone evaluation in phase II clinical trials for activity in lung and ovarian cancers, were evaluated. Surprisingly, desipramine greatly augments the cytotoxicity of all the platinum-based chemotherapeutics in HCT116 colorectal carcinoma cell lines. Desipramine enhanced cellular accumulation of cisplatin, but had no effect on the accumulation of oxaliplatin or BBR3464, suggesting that enhanced accumulation could not be a consistent means by which desipramine altered the platinum-drug-mediated cytotoxicity. The desipramine/cisplatin combination resulted in increased levels of p53 as well as mitochondrial damage, caspase activation, and poly(ADP ribose) polymerase cleavage, suggesting that desipramine may synergize with cisplatin more than with other platinum chemotherapeutics partly by activating distinct apoptotic pathways. The study argues that desipramine may be a means of enhancing chemoresponsiveness of platinum drugs and the results warrant further investigation. The results emphasize the importance of understanding the differential pharmacological action of adjuvants employed in combinations with cancer chemotherapeutics. © SBIC 2011

  19. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents

    KAUST Repository

    Xü, Ying

    2012-05-23

    The anti-neoplastic agent didemnin B from the Caribbean tunicate Trididemnum solidum was the first marine drug to be clinically tested in humans. Because of its limited supply and its complex cyclic depsipeptide structure, considerable challenges were encountered during didemnin B\\'s development that continue to limit aplidine (dehydrodidemnin B), which is currently being evaluated in numerous clinical trials. Herein we show that the didemnins are bacterial products produced by the marine α-proteobacteria Tistrella mobilis and Tistrella bauzanensis via a unique post-assembly line maturation process. Complete genome sequence analysis of the 6,513,401 bp T. mobilis strain KA081020-065 with its five circular replicons revealed the putative didemnin biosynthetic gene cluster (did) on the 1,126,962 bp megaplasmid pTM3. The did locus encodes a 13-module hybrid non-ribosomal peptide synthetase-polyketide synthase enzyme complex organized in a collinear arrangement for the synthesis of the fatty acylglutamine ester derivatives didemnins X and Y rather than didemnin B as first anticipated. Imaging mass spectrometry of T. mobilis bacterial colonies captured the time-dependent extracellular conversion of the didemnin X and Y precursors to didemnin B, in support of an unusual post-synthetase activation mechanism. Significantly, the discovery of the didemnin biosynthetic gene cluster may provide a long-term solution to the supply problem that presently hinders this group of marine natural products and pave the way for the genetic engineering of new didemnin congeners. © 2012 American Chemical Society.

  20. Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.

    Science.gov (United States)

    Ghosh, Subhalakshmi; Das Sarma, Madhushree; Patra, Amarendra; Hazra, Banasri

    2010-09-01

    The aim was to search for anti-inflammatory and anticancer compounds from three medicinal plants, viz. Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn. The NO* scavenging potential of selected plant extracts was determined on LPS/IFN-gamma activated murine peritoneal macrophage cultures, and iNOS and COX-2 expression was evaluated by Western blot analysis. Bio-assay guided fractionation yielded four compounds: physcion and emodin from V. madraspatana, 1-hydroxytectoquinone from R. cordifolia, and oleanonic acid from L. camara. The anti-inflammatory activity of these compounds was tested through the carrageenan-induced rat-paw oedema model. They were then tested against a murine tumour (Ehrlich ascites carcinoma), and three human cancer cell lines, namely A375 (malignant skin melanoma), Hep2 (epidermoid laryngeal carcinoma) and U937 (lymphoma). All four compounds dose dependently inhibited NO* through suppression of iNOS protein without affecting macrophage viability. Physcion and emodin caused 65-68% reduction of oedema volume at 40 mg/kg, which validated their in-vivo anti-inflammatory effect. 1-Hydroxytectoquinone and oleanonic acid exhibited promising cytotoxicity against A375 cells. Ethnomedical reports on these traditional medicinal plants have been rationalised through an insight into the anti-inflammatory as well as anticancer potential of four constituents, characterised to be prospective candidates for designing novel therapeutic agents.

  1. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations.

    Science.gov (United States)

    Tsai, Yi-Hsuan; Borini Etichetti, Carla M; Di Benedetto, Carolina; Girardini, Javier E; Martins, Felipe Terra; Spanevello, Rolando A; Suárez, Alejandra G; Sarotti, Ariel M

    2018-03-08

    The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.

  2. Evaluation of SD-208, a TGF-β-RI Kinase Inhibitor, as an Anticancer Agent in Retinoblastoma

    Directory of Open Access Journals (Sweden)

    Puran Fadakar

    2016-06-01

    Full Text Available Retinoblastoma is the most common intraocular tumor in children resulting from genetic alterations and transformation of mature retinal cells. The objective of this study was to investigate the effects of SD-208, TGF-β-RI kinase inhibitor, on the expression of some miRNAs including a miR-17/92 cluster in retinoblastoma cells. Prior to initiate this work, the cell proliferation was studied by Methyl Thiazolyl Tetrazolium (MTT and bromo-2′-deoxyuridine (BrdU assays. Then, the expression patterns of four miRNAs (18a, 20a, 22, and 34a were investigated in the treated SD-208 (0.0, 1, 2 and 3 µM and untreated Y-79 cells. A remarkable inhibition of the cell proliferation was found in Y-79 cells treated with SD-208 versus untreated cells. Also, the expression changes were observed in miRNAs 18a, 20a, 22 and 34a in response to SD-208 treatment (P<0.05. The findings of the present study suggest that the anti-cancer effect of SD-208 may be exerted due to the regulation of specific miRNAs, at least in this particular retinoblastoma cell line. To the best of the researchers’ knowledge, this is the first report demonstrating that the SD-208 could alter the expression of tumor suppressive miRNAs as well as oncomiRs in vitro. In conclusion, the present data suggest that SD-208 could be an alternative agent in retinoblastoma treatment.

  3. Comparison of the crystal structures of the potent anticancer and anti-angiogenic agent regorafenib and its monohydrate.

    Science.gov (United States)

    Sun, Meng Ying; Wu, Su Xiang; Zhou, Xin Bo; Gu, Jian Ming; Hu, Xiu Rong

    2016-04-01

    Regorafenib {systematic name: 4-[4-({[4-chloro-3-(trifluoromethy)phenyl]carbamoyl}amino)-3-fluorophenoxy]-1-methylpyridine-2-carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti-angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt-3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine-2-carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine-2-carboxamide units, due to different rotations around the ether group, as measured by the C-O-C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen-bond networks. Polymorphic form I contains two intermolecular N-H...O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N-H...O and O-H...O hydrogen-bond interactions. Thus, R4(2)(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms.

  4. Synergistic antiproliferative effect of cis-diammine-dichloroplatinum (II) and a new anticancer agent, plasmanyl-(N-acyl)-ethanolamine, an inhibitor of protein kinase C.

    Science.gov (United States)

    Mikhaevich, I S; Vlasenkova, N K; Gerasimova, G K

    1991-01-01

    The action of a new anticancer agent, the semisynthetic alkyl-phospholipid plasmanyl-(N-acyl)-ethanolamine (sPNAE), namely 1-O-octadecyl-2-oleoyl-sn-glycero-3-phospho-(N-palmitoyl)-ethanolamine, on protein kinase C (PKC) was investigated, and it was found to inhibit in a dose-dependent manner PKC isolated from mouse brain. The inhibition was competitive with respect to phosphatidylserine (K(i) = 20 microM). Lyso-PNAE, a possible cell metabolite of sPNAE, also inhibited PKC. A two-site model was used to calculate the binding affinity and the number of binding sites for phorbol ester in a culture of human melanoma BRO cells. The values of Kd, the dissociation constant, were K'd = 0.5 nM and K"d = 72 nM, whereas the values of Bmax, the number of binding sites, were B'max = 4.6 x 10(4) sites cell-1, and B"max = 2.9 x 10(5) sites cell-1. sPNAE was able to reduce the affinity of BRO cells for phorbol ester with almost no changes in the number of binding sites: K'd = 1.6 nM, K"d = 557 nM, and B'max = 4 x 10(4), B"max = 1.9 x 10(5). These data suggest that sPNAE may inhibit PKC in intact cells. Since various inhibitors of PKC may enhance the antiproliferative activity of cis-diamminedichloroplatinum(II) (cis-DDP), we investigated the effect of the combination of sPNAE and cis-DDP on the proliferation of BRO cells. sPNAE synergistically enhanced the antiproliferative activity of cis-DDP.

  5. Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2016-09-01

    Full Text Available Malaria is treated by combination of two drugs in order to overcome drug resistance. Antimalarials have been found to be more effective by combining them with low doses of anticancer drugs. Polymer-drug conjugates containing aminoquinoline...

  6. AGENTES INFECCIOSOS ISOLADOS DE Chinchilla laniger INFECTIOUS AGENTS ISOLATED FROM Chinchilla laniger

    Directory of Open Access Journals (Sweden)

    Andrea Maria Lazzari

    2001-04-01

    Full Text Available Este relato descreve a infecção por Pseudomonas aeruginosa e surtos ocasionados por Bordetella bronchiseptica em chinchilas pertencentes a criatórios da região de Santa Maria, RS, Brasil. Os animais afetados apresentavam apatia, anorexia e dificuldade respiratória, acompanhada de secreção nasal mucopurulenta. O isolamento de Pseudomonas aeruginosa foi realizado pela cultura de amostra de tecido pulmonar, enquanto a Bordetella bronchiseptica foi isolada de pulmão, fígado e swab de secreção traqueal. São relatados e discutidos os dados clínicos e achados patológicos, assim como o isolamento e identificação desses agentes.This report describes a case of infection for Pseudomonas aeruginosa and outbreaks caused by Bordetella bronchiseptica in chinchila farms from the region of Santa Maria, Southern Brazil. The affected animals presented apathy, anorexia, respiratory impairment and nasal secretion. The isolation of Pseudomonas aeruginosa was carried out through the culture of samples of lung whereas Bordetella bronchiseptica was obtainedfrom lung, liver and swab of traqueal secretion. In this report, the clinical data and the pathological findings as well as the isolation and identification of these agents are described.

  7. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    Science.gov (United States)

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Anticancer and anti-inflammatory activities of girinimbine isolated from Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Iman V

    2016-12-01

    Full Text Available Venoos Iman,1 Syam Mohan,2 Siddig Ibrahim Abdelwahab,2 Hamed Karimian,1 Noraziah Nordin,1 Mehran Fadaeinasab,3 Mohamad Ibrahim Noordin,1 Suzita Mohd Noor4 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, Jazan University, Jazan, Saudi Arabia; 3Department of Chemistry, 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia Abstract: Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29 by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also

  9. SUSCEPTIBILY OF Aeromonar hydrophylla BACTERIA ISOLATED FROM UNHEALTHY BAUNG FISH (Mystus nemurus TOWARDS ANTIMICROBIAL AGENTS

    Directory of Open Access Journals (Sweden)

    Pipik Taufik

    2010-06-01

    Full Text Available The susceptibility of Aeromonas hydrophila isolated from ikan baung (Mystus nemurus to antimicrobial agents was carried out. The objective of study is to know the kind of antimicrobial agents for the control aeromonasis  of Mystus nemurus. Tryptic soy agar (TSA plate consisted 106 cells/plate of A. hydrophila on its surface was kept paper disk consisted antimicrobial agent, than incubated on 30 0C for 24 hours. The results showed that from 10 isolates to be tested, 5 isolates were resistant, 2 isolates were intermediate and 3 isolates were sensitive to tetracycline and chloramphenicol respectively; one isolate was resistant, 6 isolates were intermediate and 2 isolates were sensitive to nalidixic acid. Minimal in hibitory concentration (MIC of tetracycline and chlorampenicol to the sensitive isolates were 0.5 ppm respectively.   Keywords: The susceptibility, Aeromonas hydrophila, antimicrobial agents

  10. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex

    DEFF Research Database (Denmark)

    Hofland, K; Petersen, B O; Falck, J

    2000-01-01

    and drug sensitivity in detail, we established human osteosarcoma U-20S-TA cells expressing full-length E2F-1/ DP-1 under the control of a tetracycline-responsive promoter, designated UE1DP-1 cells. Topoisomerase I levels and activity as well as the number of camptothecin-induced DNA single- and double...... of an E2F-1/ DP-1-induced post-DNA damage pathway rather than an increase in the number of replication forks caused by the S-phase initiation. In contrast, topoisomerase IIalpha levels (but not topoisomerase IIbeta levels), together with topoisomerase IIalpha promoter activity, increased 2--3-fold in UE1......-targeted anticancer drugs. However, the mechanism by which this occurs appears to be qualitatively different. The UE1DP-1 cell model may be used to elucidate post-DNA damage mechanisms of cell death induced by topoisomerase I-directed anticancer agents....

  11. Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents.

    Science.gov (United States)

    Alam, Mohammad Sayed; Nam, Young-Joo; Lee, Dong-Ung

    2013-11-01

    In the present study, a series of (Z)-2,3-diphenylacrylonitrile analogs were synthesized and then evaluated in terms of their cytotoxic activities against four human cancer cell lines, e.g. lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), and colon cancer (HCT15), as well as anti-microbial activities against three microbes, e.g. Staphylococcus aureus, Salmonella typhi, and Aspergillus niger. The title compounds were synthesized by Knoevenagel condensation reaction of benzyl cyanide or p-nitrobenzyl cyanide with substituted benzaldehydes in good yields. Most of the compounds exhibited significant suppressive activities against the growth of all cancer cell lines. Compound 3c was most active in inhibiting the growth of A549, SK-OV-3, SK-MEL-2, and HCT15 cells lines with IC50 values of 0.57, 0.14, 0.65, and 0.34 mg/mL, respectively, followed by compounds 3f, 3i, and 3h. Compound 3c exhibited 2.4 times greater cytotoxic activity against HCT15 cells, whereas it showed similar potency against SK-OV-3 cells to that of the standard anti-cancer agent doxorubicin. Structure-activity relationship study revealed that electron-donating groups at the para-position of phenyl ring B were more favorable for improved cytotoxic activity, whereas the presence of electron-withdrawing groups was unfavorable compare to unsubstituted acrylonitrile. An optimal electron density on phenyl ring A of (Z)-2,3-diphenylacrylonitrile analogs was crucial for their cytotoxic activities against human cancer cell lines used in the present study. Qualitative structure-cytotoxic activity relationships were studied using physicochemical parameters; a good correlation between calculated polar surface area (PSA), a lipophobic parameter, and cytotoxic activity was found. Moreover, all compounds showed significant anti-bacterial activities against S. typhi, whereas compound 3k showed potent inhibition against both S. aureus and S. typhi bacterial strains. Copyright © 2013 Elsevier

  12. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents

    Science.gov (United States)

    Asati, Vivek; Bharti, Sanjay Kumar

    2018-02-01

    A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.

  13. Post-marketing research and its outcome for novel anticancer agents approved by both the FDA and EMA between 2005 and 2010: A cross-sectional study.

    Science.gov (United States)

    Zeitoun, Jean-David; Baron, Gabriel; Vivot, Alexandre; Atal, Ignacio; Downing, Nicholas S; Ross, Joseph S; Ravaud, Philippe

    2018-01-15

    Post-marketing research in oncology has rarely been described. We aimed to characterize post-marketing trials for a consistent set of anticancer agents over a long period. We performed a cross-sectional analysis of post-marketing trials registered at ClinicalTrials.gov through September 2014 for novel anticancer agents approved by both the US Food and Drug Administration and the European Medicines Agency between 2005 and 2010. All relevant post-marketing trials were classified according to indication, primary outcome, starting date, sponsors, and planned enrollment. Supplemental indications were retrieved from regulatory documents and publication rate was assessed by two different methods. Ten novel anticancer agents were eligible: five were indicated for hematologic malignancies and the remaining five for solid cancers (three for kidney cancer). We identified 2,345 post-marketing trials; 1,362 (58.1%) targeted an indication other than the originally approved one. We observed extreme variations among drugs in both number of post-marketing trials (range 8-530) and overall population to be enrolled per trial (1-8,381). Post-marketing trials assessed almost all types of cancers, the three most frequently studied cancers being leukemia, kidney cancer and myeloma. In all, 6.6% of post-marketing trials had a clinical endpoint as a primary outcome, and 35.9% and 54.1% had a safety or surrogate endpoint, respectively, as a primary outcome. Nine drugs obtained approval for supplemental indications. The publication rate at 10 years was 12.3 to 26.1% depending on the analysis method. In conclusion, we found that post-marketing research in oncology is highly heterogeneous and the publication rate of launched trials is low. © 2017 UICC.

  14. Anti-cancer agents based on 4-(hetero)Ary1-1,2,5-oxadiazol-3-yl Amino derivatives and a method of making

    Energy Technology Data Exchange (ETDEWEB)

    Gakh, Andrei A.; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A.; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V.

    2013-01-29

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. ##STR00001## In particular, the invention relates N-substituted derivatives of 4-(hetero)aryl-1,2,5-oxadiazol-3-yl amines having the structural Formula (I) and (II), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. Meaning of R1 and R2 in the Formula (I) and (II) are defined in claim 1. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  15. N-Phenyl-2-p-tolylthiazole-4-carboxamide derivatives: Syn-thesis and cytotoxicity evaluation as anticancer agents

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi-Farani

    2014-07-01

    Conclusion: A new series of phenylthiazole derivatives were synthesized and their anticancer activity was assessed against cancerous cell lines. More structural modifications and derivatization is necessary to achieve to the more potent compounds.       

  16. Vitamin E analogs, a novel group of "mitocans," as anticancer agents: The importance of being redox-silent

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Tomasetti, M.; Zhao, Y.; Dong, L.F.; Birringer, M.; Wang, X. F.; Low, P.; Wu, K.; Salvatore, B.A.; Ralph, S.J.

    2007-01-01

    Roč. 71, č. 5 (2007), s. 1185-1199 ISSN 0026-895X Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : vitamin E analogs * redox-silence * anticancer drugs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.622, year: 2007

  17. Liquid Chromatography - Triple Quadrupole Mass Spectrometry : The gold standard for quantitative bioanalysis of anti-cancer agents

    NARCIS (Netherlands)

    Vainchtein, L.D.

    2008-01-01

    To understand the pharmacologic mechanisms of action, efficacy and toxicity of any anti-cancer drug it is important to know how the compound is transformed in the body: either into active metabolites or inactive and toxic (degradation) products. This information may lead to the success or failure of

  18. Inhibitory effects of sizofiran on anticancer agent- or X-ray-induced sister chromatid exchanges and mitotic block in murine bone marrow cells

    International Nuclear Information System (INIS)

    Yang, Zhi-Bo; Tsuchiya, Yoshinori; Arika, Tadashi; Hosokawa, Masuo.

    1993-01-01

    The inhibitory effects of a biological response modifier (RRM), sizofiran, on sister chromatid exchanges (SCEs) in the bone marrow cells of mice treated with various anticancer agents or irradiation were investigated. Sizofiran (10 mg/kg i.m.) inhibited SCEs induced by mitomycin C (2 mg/kg i.v.), adriamycin (20 mg/kg i.v.) and cyclophosphamide (20 mg/kg i.v.) by about 20%, respectively. Analysis of the SCEs in vivo after irradiation plus sizofiran indicated that SCE levels were significantly lower than those observed in mice exposed to irradiation without sizofiran. Moreover, the effects of sizofiran were dependent on the timing of administration. Our results indicated that sizofiran should be administered simultaneously or soon after irradiation in order to minimize damage. Sizofiran also markedly restored the bone marrow cell mitosis which had been suppressed by anticancer agents, and this action was closely correlated with the prevention of increase in SCEs. These results indicate that in addition to immunopotentiating activity, sizofiran may play a role in preventing chromosomal damage induced by cancer chemotherapy and radiotherapy. (author)

  19. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    Science.gov (United States)

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  20. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an anticancer agent, exerts an anti-inflammatory effect in activated human mast cells.

    Science.gov (United States)

    Nam, Sun-Young; Han, Na-Ra; Yoon, Kyoung Wan; Kim, Hyung-Min; Jeong, Hyun-Ja

    2017-10-01

    Inflammation has been closely associated with the development and progression of cancer. Previously, we reported that mast cells play a critical role in tumor growth. The purpose of this study is to investigate the anti-inflammatory effect of an anticancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), on an activated human mast cell line, in this case HMC-1 cells. We evaluated the effect and specific molecular mechanism of Dp44mT on phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI) using HMC-1 cells. Here, we demonstrated that Dp44mT significantly decreased the protein levels of hypoxia-inducible factor-1α and vascular endothelial growth factor without exposing activated HMC-1 cells to any cytotoxicity. In activated mast cells, Dp44mT mitigated the strong production and mRNA expression of inflammatory cytokines, in this case, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and thymic stromal lymphopoietin, through a blockade of caspase-1 and nuclear factor-κB activities. Furthermore, phosphorylations of the mitogen-activated protein kinase family included in inflammatory signaling cascades were significantly inhibited by a Dp44mT treatment. Overall, our results indicate that the anticancer agent Dp44mT has an anti-inflammatory effect and may be of therapeutic importance for the treatment of mast cell-mediated inflammatory diseases.

  1. Anticancer Effect and Structure-Activity Analysis of Marine Products Isolated from Metabolites of Mangrove Fungi in the South China Sea

    OpenAIRE

    Tao, Li-yang; Zhang, Jian-ye; Liang, Yong-ju; Chen, Li-ming; Zhen, Li-sheng; Wang, Fang; Mi, Yan-jun; She, Zhi-gang; To, Kenneth Kin Wah; Lin, Yong-cheng; Fu, Li-wu

    2010-01-01

    Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising can...

  2. Antroquinonol D, isolated from Antrodia camphorata, with DNA demethylation and anticancer potential.

    Science.gov (United States)

    Wang, Sheng-Chao; Lee, Tzong-Huei; Hsu, Chun-Hua; Chang, Yu-Jia; Chang, Man-Shan; Wang, Yi-Ching; Ho, Yuan-Soon; Wen, Wu-Che; Lin, Ruo-Kai

    2014-06-18

    DNA methyltransferase 1 (DNMT1) catalyzes DNA methylation and is overexpressed in various human diseases, including cancer. A rational approach to preventing tumorigenesis involves the use of pharmacologic inhibitors of DNA methylation; these inhibitors should reactivate tumor suppressor genes (TSGs) in tumor cells and restore tumor suppressor pathways. Antroquinonol D (3-demethoxyl antroquinonol), a new DNMT1 inhibitor, was isolated from Antrodia camphorata and identified using nuclear magnetic resonance. Antroquinonol D inhibited the growth of MCF7, T47D, and MDA-MB-231 breast cancer cells without harming normal MCF10A and IMR-90 cells. The SRB assay showed that the 50% growth inhibition (GI50) in MCF7, T47D, and MDA-MB-231 breast cancer cells following treatment with antroquinonol D was 8.01, 3.57, and 25.08 μM, respectively. d-Antroquinonol also inhibited the migratory ability of MDA-MB-231 breast cancer cells in wound healing and Transwell assays. In addition, antroquinonol D inhibited DNMT1 activity, as assessed by the DNMT1 methyltransferase activity assay. As the cofactor SAM level increased, the inhibitory effects of d-antroquinonol on DNMT1 gradually decreased. An enzyme activity assay and molecular modeling revealed that antroquinonol D is bound to the catalytic domain of DNMT1 and competes for the same binding pocket in the DNMT1 enzyme as the cofactor SAM, but does not compete for the binding pocket in the DNMT3B enzyme. An Illumina Methylation 450 K array-based assay and real-time PCR assay revealed that antroquinonol D decreased the methylation status and reactivated the expression of multiple TSGs in MDA-MB-231 breast cancer cells. In conclusion, we showed that antroquinonol D induces DNA demethylation and the recovery of multiple tumor suppressor genes, while inhibiting breast cancer growth and migration potential.

  3. Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer AgentsS⃞

    Science.gov (United States)

    Sun, Yu; Huang, Liqun; Mackenzie, Gerardo G.

    2011-01-01

    We assessed the relationship between oxidative stress, cytokinetic parameters, and tumor growth in response to novel phospho-nonsteroidal anti-inflammatory drugs (NSAIDs), agents with significant anticancer effects in preclinical models. Compared with controls, in SW480 colon and MCF-7 breast cancer cells, phospho-sulindac, phospho-aspirin, phospho-flurbiprofen, and phospho-ibuprofen (P-I) increased the levels of reactive oxygen and nitrogen species (RONS) and decreased GSH levels and thioredoxin reductase activity, whereas the conventional chemotherapeutic drugs (CCDs), 5-fluorouracil (5-FU), irinotecan, oxaliplatin, chlorambucil, paclitaxel, and vincristine, did not. In both cell lines, phospho-NSAIDs induced apoptosis and inhibited cell proliferation much more potently than CCDs. We then treated nude mice bearing SW480 xenografts with P-I or 5-FU that had an opposite effect on RONS in vitro. Compared with controls, P-I markedly suppressed xenograft growth, induced apoptosis in the xenografts (8.9 ± 2.7 versus 19.5 ± 3.0), inhibited cell proliferation (52.6 ± 5.58 versus 25.8 ± 7.71), and increased urinary F2-isoprostane levels (10.7 ± 3.3 versus 17.9 ± 2.2 ng/mg creatinine, a marker of oxidative stress); all differences were statistically significant. 5-FU's effects on tumor growth, apoptosis, proliferation, and F2-isoprostane were not statistically significant. F2-isoprostane levels correlated with the induction of apoptosis and the inhibition of cell growth. P-I induced oxidative stress only in the tumors, and its apoptotic effect was restricted to xenografts. Our data show that phospho-NSAIDs act against cancer through a mechanism distinct from that of various CCDs, underscore the critical role of oxidative stress in their effect, and indicate that pathways leading to oxidative stress may be useful targets for anticancer strategies. PMID:21646387

  4. Enhancement of the photo-electric effect with pharmacological agents in synchrotron radiation based anti-cancer radiotherapy: a methodological study

    International Nuclear Information System (INIS)

    Corde, Stephanie

    2002-01-01

    Anti-cancer therapy rests on three main principles: 1) anatomic confinement of irradiation; 2) temporal fractioning of treatment; 3) treatment of tissues that are more sensitive to radiation than surrounding healthy tissue. Under those principles hides the goal of radiotherapy: to deposit more of the X-ray energy in the tumor while preserving the surrounding healthy tissues. This goal is hard to reach since one of the causes of the failures in radiotherapy is the continuing evolution of the tumor. Could synchrotron radiation be more effective as an X-ray source for radiotherapy? The variation of the radiation-matter interaction cross-sections as a function of X-ray energy and atomic number of the medium show that certain energies and certain elements are more suitable to obtain the largest number of interactions and the largest amount of deposited energy. Synchrotron radiation allows to select precisely those energies because of its high spectral intensity. Its spectral characteristics (energy of the photons between 10 and 100 keV) allow to trigger the photoelectric effect with a maximum of probability on heavy elements introduced close to cancerous cells. It has been shown that: 1) synchrotron radiation based tomodensitometry is a quantitative imaging technique, potentially powerful for radiotherapy since it insures in-vivo the measurement of intra-tumoral concentration of contrast agent (I or Gd); 2) in the presence of iodinated contrast agent the lethal effect of X-rays on cell survival is increased and the gain in radio sensitivity depends on X-ray energy; 3) at the cellular scale the lethality of irradiation can be optimised again by transporting heavy atoms (I, Pt) inside the DNA, which is the biological target of the irradiation. This reinforcement of the killing efficiency of low energy X-rays using a physical mechanism aimed at a pharmacological agent is an original concept in anti-cancer radiotherapy. (author) [fr

  5. Half-Sandwich Iridium(III) and Ruthenium(II) Complexes Containing P^P-Chelating Ligands: A New Class of Potent Anticancer Agents with Unusual Redox Features.

    Science.gov (United States)

    Li, JuanJuan; Tian, Meng; Tian, Zhenzhen; Zhang, Shumiao; Yan, Chao; Shao, Changfang; Liu, Zhe

    2018-02-19

    A series of half-sandwich Ir III pentamethylcyclopentadienyl and Ru II arene complexes containing P^P-chelating ligands of the type [(Cp x /arene)M(P^P)Cl]PF 6 , where M = Ir, Cp x is pentamethylcyclopentadienyl (Cp*), or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp xbiPh ); M = Ru, arene is 3-phenylpropan-1-ol (bz-PA), 4-phenylbutan-1-ol (bz-BA), or p-cymene (p-cym), and P^P is 2,20-bis(diphenylphosphino)-1,10-binaphthyl (BINAP), have been synthesized and fully characterized, three of them by X-ray crystallography, and their potential as anticancer agents explored. All five complexes showed potent anticancer activity toward HeLa and A549 cancer cells. The introduction of a biphenyl substituent on the Cp* ring for the iridium complexes has no effect on the antiproliferative potency. Ruthenium complex [(η 6 -p-cym)Ru(P^P)Cl]PF 6 (5) displayed the highest potency, about 15 and 7.5 times more active than the clinically used cisplatin against A549 and HeLa cells, respectively. No binding to 9-MeA and 9-EtG nucleobases was observed. Although these types of complexes interact with ctDNA, DNA appears not to be the major target. Compared to iridium complex [(η 5 -Cp*)Ir(P^P)Cl]PF 6 (1), ruthenium complex (5) showed stronger ability to interfere with coenzyme NAD + /NADH couple through transfer hydrogenation reactions and to induce ROS in cells, which is consistent with their anticancer activities. The redox properties of the complexes 1, 5, and ligand BINAP were evaluated by cyclic voltammetry. Complexes 1 and 5 arrest cell cycles at the S phase, Sub-G 1 phase and G 1 phase, respectively, and cause cell apoptosis toward A549 cells.

  6. KCN1, a Novel Synthetic Sulfonamide Anticancer Agent: In Vitro and In Vivo Anti-Pancreatic Cancer Activities and Preclinical Pharmacology

    Science.gov (United States)

    Rayburn, Elizabeth R.; Xu, Hongxia; Zhang, Xiangrong; Zhang, Xu; Nag, Subhasree Ashok; Wu, Xuming; Wang, Ming-Hai; Wang, Hui; Van Meir, Erwin G.; Zhang, Ruiwen

    2012-01-01

    The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development. PMID:23028659

  7. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-ylmethyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development.

  8. Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent

    Science.gov (United States)

    Jeevitha, G.; Abhinayaa, R.; Mangalaraj, D.; Ponpandian, N.

    2018-05-01

    Functioning of ultrasonically prepared tungsten oxide-graphene oxide (WO3-GO) nanocomposite as a photocatalyst, antibacterial and anticancer system was investigated and the obtained results were compared with that of pure WO3 nanoparticles. Structural, morphological, compositional and optical properties of the prepared WO3 nanoparticles and WO3-GO nanocomposite were studied. Photocatalytic efficiency of the system on organic dyes such as methylene blue (MB, cationic) and indigo carmine (IC, anionic) was investigated. The enhanced efficiency of the WO3-GO nanocomposite system was evaluated under sunlight and compared with that of pure WO3. The degradation efficiency values for MB and IC were found to be 97.03% and 95.43% at 180 and 120 min respectively. Antibacterial activity of the WO3-GO nanocomposite under visible light was tested and improved inhibition results were observed for Escherichia coli and Bacillus subtilis after 6 h of light exposure. The photocatalytic degradation efficiency and antibacterial activity of the WO3-GO nanocomposite are attributed to the improved electron-hole pair separation rate. Investigation on anticancer activity of WO3-GO nanocomposite was tested on human lung cancer (A-549) cell line and the IC50 value was found to be 139.6 ± 4.53 μg/mL. The results obtained in this study may be used as a platform for the development of photocatalysis applications based on WO3-GO nanocomposite.

  9. Synthesis and anticancer activity of some novel indolo[3,2-b]andrographolide derivatives as apoptosis-inducing agents.

    Science.gov (United States)

    Song, Yaping; Xin, Zhengyuan; Wan, Yumeng; Li, Jiabin; Ye, Boping; Xue, Xiaowen

    2015-01-27

    A series of novel indolo[3,2-b]andrographolide derivatives were designed, synthesized and screened in vitro against three human cancer cell lines MCF7 (human breast cancer), HCT116 (human colon cancer), and DU145 (human prostate cancer). Fourteen compounds 6b, 6e, 6i, 6j, 6l, 6m, 6n, 12a, 12b, 13a, 13b, 15a, 17a, and 17b exhibited better anti-cancer activities than andrographolide for all three human cancer lines, with compound 6l displaying best activity with IC50 values of 1.85, 1.22 and 1.24 μM against MCF7, HCT116 and DU145 respectively. Preliminary anti-cancer mechanistic investigation was performed in terms of the cell cycle arrest and cell apoptosis assays of compound 6l against HCT116 using flow cytometry, and the results suggested that compound 6l inhibited tumor proliferation through inducing early and late cellular apoptosis in a concentration-dependent manner and causing cell cycle arrest in the S-phase. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  11. Role of cytochrome P450 2J2 on cell proliferation and resistance to an anticancer agent in hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Hwang, Geun Hye; Park, So Mi; Han, Ho Jae; Baek, Kyoung Min; Kim, Joong Sun; Chang, Woochul; Lee, Ho Jin; Yun, Seung Pil; Ryu, Jung Min; Lee, Min Young

    2017-11-01

    The present study examined the role of human cytochrome P450 2J2 (CYP2J2) on cell proliferation and resistance to an anticancer agent using stable hepatocellular carcinoma HepG2 cells overexpressing CYP2J2. Overexpression of CYP2J2 significantly increased HepG2 cell proliferation and the expression levels of cell cycle regulatory proteins, including cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)2 and Cdk4. CYP2J2-overexpressing HepG2 cells exhibited high levels of Akt phosphorylation compared with those observed in wild-type HepG2 cells. Although Akt phosphorylation in both cell lines was significantly attenuated by LY294002, a specific phosphoinositide 3-kinase/Akt signaling inhibitor, the levels of Akt phosphorylation following treatment with LY294002 were higher in CYP2J2-overexpressing HepG2 cells than in wild-type HepG2 cells. Cell counting revealed that proliferation was reduced by LY294002 in both cell lines; however, CYP2J2-overexpressing HepG2 cell numbers were higher than those of wild-type HepG2 cells following treatment with LY294002. These results indicated that increased cell proliferation by CYP2J2 overexpression is mediated by increased Akt activity. It was also demonstrated that doxorubicin, an anticancer agent, reduced cell viability, induced a significant increase in the B-cell lymphoma (Bcl)-2 associated X protein (Bax)/Bcl-2 ratio and decreased pro-caspase-3 levels in wild-type HepG2 cells. However, the doxorubicin-induced reduction in cell viability was significantly attenuated by enhanced upregulation of CYP2J2 expression. The increase in the Bax/Bcl-2 ratio and the decrease in pro-caspase-3 levels were also recovered by CYP2J2 overexpression. In conclusion, CYP2J2 serves important roles in cancer cell proliferation and resistance to the anticancer agent doxorubicin in HepG2 cells.

  12. Antioxidant and anticancer activity of 3,5-dihydroxy-4-isopropylstilbene produced by Bacillus sp. N strain isolated from entomopathogenic nematode.

    Science.gov (United States)

    Kumar, Sasidharan Nishanth; Nambisan, Bala; Kumar, B S Dileep; Vasudevan, Nisha Girija; Mohandas, Chellapan; Cheriyan, Vino T; Anto, Ruby John

    2013-07-17

    3,5-Dihydroxy-4-isopropylstilbene is a natural phytoalexin and was first identified as bacterial secondary metabolites. The aim of this study is to investigate in vitro antioxidant and anticancer activity of 3,5-dihydroxy-4-isopropystilbene purified from the cell free culture filtrate of Bacillus sp. N strain associated with rhabditid entomopathogenic nematode. Antioxidant activity was evaluated by five separate methods: free radical scavenging, reducing power assay, chelating effects on ferrous ions, NBT superoxide radical scavenging assay and hydroxyl radical scavenging activity. The stilbene recorded powerful antioxidant activity at various antioxidant systems in vitro. The superoxide radical scavenging (92.1 %) and hydroxyl radical scavenging (83.4 %) activities of the stilbenes at 100 μg/ml were higher than the butylated hydroxyanisole, the known antioxidant agent. Anticancer activity of stilbene was tested against breast cancer (MDAM B-231), cervical cancer (HeLa), lung cancer (A 549), colon cancer (HTL 116) cell lines using MTT method. The induction of apoptosis was studied by morphological analysis, apoptotic cell staining, caspase 3 activation assay and cell cycle analysis using flow cytometry. Stilbene induced significant morphological changes and DNA fragmentation associated with apoptosis in HeLa cells. Acridine orange/ethidium bromide stained cells indicated apoptosis induction by stilbene. Up-regulation of caspase 3 activity was also found in cells treated with stilbene. Flow cytometry analysis showed an increase in the percentage of apoptotic cells in sub G0 phase (2.4 % in control plates to 11.4 % in 25 μg/ml of stilbene) confirming the stilbene induced apoptosis. The results of the present study showed that stilbene demonstrated a strong antioxidant and anticancer effects. These suggest that stilbene may be used as possible natural antioxidant and anticancer agents to control various human diseases.

  13. Eupalmerin acetate, a novel anticancer agent from Caribbean gorgonian octocorals, induces apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway.

    Science.gov (United States)

    Iwamaru, Arifumi; Iwado, Eiji; Kondo, Seiji; Newman, Robert A; Vera, Burnilda; Rodríguez, Abimael D; Kondo, Yasuko

    2007-01-01

    The marine ecosystem is a vast but largely untapped resource for potential naturally based medicines. We tested 15 compounds derived from organisms found in the Caribbean Sea (14 gorgonian octocoral-derived compounds and one sponge-derived compound) for their anticancer effects on human malignant glioma U87-MG and U373-MG cells. Eupalmerin acetate (EPA) was chosen as the lead compound based on its longer-term stability and greater cytotoxicity than those of the other compounds we tested in these cell types. EPA induced G(2)-M cell cycle arrest and apoptosis via the mitochondrial pathway; it translocated Bax from the cytoplasm to the mitochondria and dissipated the mitochondrial transmembrane potential in both cell types. EPA was found to increase phosphorylated c-Jun NH(2)-terminal kinase (JNK) by >50% in both U87-MG and U373-MG cells. A specific JNK inhibitor, SP600125, inhibited EPA-induced apoptosis, confirming the involvement of the JNK pathway in EPA-induced apoptotic cell death. Furthermore, 7 days of daily intratumoral injections of EPA significantly suppressed the growth of s.c. malignant glioma xenografts (P < 0.01, on day 19). These results indicate that EPA is therapeutically effective against malignant glioma cells in vitro and in vivo and that it, or a similar marine-based compound, may hold promise as a clinical anticancer agent.

  14. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Liu, Zhiguo; Wang, Yi; Sun, Yusheng; Ren, Luqing; Huang, Yi; Cai, Yuepiao; Weng, Qiaoyou; Shen, Xueqian; Li, Xiaokun; Liang, Guang

    2013-01-01

    Recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. Pharmacological interventions that effectively enhance tumor cell death through activating ER stress have attracted a great deal of attention for anti-cancer therapy. A bio-evaluation on 113 curcumin analogs against four cancer cell lines was performed through MTT assay. Furthermore, real time cell assay and flow cytometer were used to evaluate the apoptotic induction of (1E,4E)-1,5-bis(5-bromo-2-ethoxyphenyl)penta-1,4-dien-3-one (B82). Western blot, RT-qPCR, and siRNA were then utilized to confirm whether B82-induced apoptosis is mediated through activating ER stress pathway. Finally, the in vivo anti-tumor effect of B82 was evaluated. B82 exhibited strong anti-tumor activity in non-small cell lung cancer (NSCLC) H460 cells. Treatment with B82 significantly induced apoptosis in H460 cells in vitro and inhibited H460 tumor growth in vivo. Further studies demonstrated that the B82-induced apoptosis is mediated by activating ER stress both in vitro and in vivo. A new monocarbonyl analog of curcumin, B82, exhibited anti-tumor effects on H460 cells via an ER stress-mediated mechanism. B82 could be further explored as a potential anticancer agent for the treatment of NSCLC

  15. Effects of intra-arterial chemotherapy with a new lipophilic anticancer agent, estradiol-chlorambucil (KM2210), dissolved in lipiodol on experimental liver tumor in rats

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, H.; Maki, A.; Mori, K.; Yamamoto, Y.; Mitsuhashi, S.; Bannai, K.; Asano, K.; Ozawa, K. (Kyoto Univ. (Japan))

    1990-06-01

    Anticancer effects and biodistribution of a new lipophilic anticancer agent, estradiol-chlorambucil (KM2210), dissolved in lipiodol (LPD) were investigated as an intra-arterial chemotherapy (IAC) on Walker 256 carcinosarcoma grown in the liver of 136 Wistar rats. All rats treated with KM2210 (10 mg)-LPD survived for 90 days after administration, whereas none of the rats with LPD alone were alive for more than 19 days. Histological examination revealed that there was no viable tumor cell in the encapsulated necrotic tumor at 21 days after administration. There was no significant liver dysfunction or leukopenia due to KM2210. The biodistribution study using (14C, 3H)KM2210-LPD solution showed that KM2210 accumulated selectively in tumor and that the tumor-to-normal-liver and tumor-to-blood ratios were 10 and 1,000, respectively, at 21 days after administration. These results suggest that KM2210 has potential clinical application in the treatment of human liver cancer.

  16. Theoretical investigation of inclusion complex formation of Gold (III – Dimethyldithiocarbamate anticancer agents with cucurbit[n = 5,6]urils

    Directory of Open Access Journals (Sweden)

    Zabiollah Mahdavifar

    2014-09-01

    Full Text Available Gold (III-N,N-dimethyldithiocarbamate [DMDT(AuX2] complexes have recently gained increasing attention as potential anticancer agents because of their strong tumor cell growth–inhibitory effects, generally achieved by exploiting non-cisplatin-like mechanisms of action. The goal of our research work is to encapsulate the gold(III dimethyldithiocarbamate complexes as anticancer with cucurbit[n]urils (CB[n = 5, 6] by accurate calculations, to predict the inclusion complex formation of gold(III species with cucurbiturils (CB[n = 5, 6]. The calculations were carried out just for the 1:1 stoichiometric complexes. Upon encapsulation, binding energy, thermodynamic parameters, structural parameters and electronic structures of complexes are investigated. The results of the thermodynamic calculations and the binding energy show that the inclusion process is exothermic and the CB[6]/[DMDT(AuBr2] complex is more stable than other complexes. The final geometry of CB[n]/drugs indicates that the drugs were expelled from the cavity of CB[n]. NBO calculations reveal that the hydrogen bonding between CB[n] and drugs and electrostatic interactions are the major factors contributing to the overall stabilities of the complexes.

  17. Anticancer Effect and Structure-Activity Analysis of Marine Products Isolated from Metabolites of Mangrove Fungi in the South China Sea

    Directory of Open Access Journals (Sweden)

    Li-yang Tao

    2010-04-01

    Full Text Available Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86 exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.

  18. Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the South China Sea.

    Science.gov (United States)

    Tao, Li-yang; Zhang, Jian-ye; Liang, Yong-ju; Chen, Li-ming; Zhen, Li-sheng; Wang, Fang; Mi, Yan-jun; She, Zhi-gang; To, Kenneth Kin Wah; Lin, Yong-cheng; Fu, Li-wu

    2010-04-01

    Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.

  19. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    Energy Technology Data Exchange (ETDEWEB)

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  20. Indole-based hydrazide-hydrazones and 4-thiazolidinones: synthesis and evaluation as antitubercular and anticancer agents.

    Science.gov (United States)

    Cihan-Üstündağ, Gökçe; Şatana, Dilek; Özhan, Gül; Çapan, Gültaze

    2016-01-01

    A new series of indolylhydrazones (6) and indole-based 4-thiazolidinones (7, 8) have been designed, synthesized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. 4-Thiazolidinone derivatives 7g-7j, 8g, 8h and 8j displayed notable antituberculosis (anti-TB) activity showing 99% inhibition at MIC values ranging from 6.25 to 25.0 µg/ml. Compounds 7g, 7h, 7i, 8h and 8j demonstrated anti-TB activity at concentrations 10-fold lower than those cytotoxic for the mammalian cell lines. The indolylhydrazone derivative 6b has also been evaluated for antiproliferative activity against human cancer cell lines at the National Cancer Institute (USA). Compound 6b showed an interesting anticancer profile against different human tumor-derived cell lines at sub-micromolar concentrations with obvious selectivity toward colon cancer cell line COLO 205.

  1. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ramadan, M. M.

    2015-06-01

    Full Text Available Inhibitors of tumor growth using extracts from aromatic plants are rapidly emerging as important new drug candidates for cancer therapy. The cytotoxicity and in vitro anticancer evaluation of the essential oils from thyme, juniper and clove has been assessed against five different human cancer cell lines (liver HepG2, breast MCF-7, prostate PC3, colon HCT116 and lung A549. A GC/MS analysis revealed that α-pinene, thymol and eugenol are the major components of Egyptian juniper, thyme and clove oils with concentrations of 31.19%, 79.15% and 82.71%, respectively. Strong antioxidant profiles of all the oils are revealed in vitro by DPPH and β-carotene bleaching assays. The results showed that clove oil was similarly potent to the reference drug, doxorubicin in prostate, colon and lung cell lines. Thyme oil was more effective than the doxorubicin in breast and lung cell lines while juniper oil was more effective than the doxorubicin in all the tested cancer cell lines except prostate cancer. In conclusion, the essential oils from Egyptian aromatic plants can be used as good candidates for novel therapeutic strategies for cancer as they possess significant anticancer activity.Los inhibidores de crecimiento de tumores usando extractos de plantas aromáticas están emergiendo con rapidez como nuevos e importantes medicamentos para el tratamiento del cáncer. La citotoxicidad y la acción anticancerígena in vitro de aceites esenciales de tomillo, enebro y clavo han sido evaluadas en cinco líneas celulares de cáncer humano (hígado HepG2, mama MCF-7, próstata PC3, colon HCT116 y pulmón A549. Los análisis de GC/MS mostraron que α-pineno, timol y eugenol son los principales componentes de los aceites egipcios de enebro, tomillo y clavo, con concentraciones de 31,19%, 79,15% y 82,71%, respectivamente. Se demuestra, mediante ensayos in vitro de blanqueo de DPPH y β-caroteno, el enérgico perfil antioxidante de todos los aceites. Los resultados

  2. PK of immunoconjugate anticancer agent CMD-193 in rats: ligand-binding assay approach to determine in vivo immunoconjugate stability.

    Science.gov (United States)

    Hussain, Azher; Gorovits, Boris; Leal, Mauricio; Fluhler, Eric

    2014-01-01

    Antibody-drug conjugates (ADCs) are a new generation of anticancer therapeutics. The objective of this manuscript is to propose a methodology that can be used to assess the stability of the ADCs by using the PK data obtained by ligand-binding assays that measure various components of ADCs. The ligand-binding assays format of different components of ADCs provided unique valuable PK information. The mathematical manipulation of the bioanalytical data provided an insight into the in vivo integrity, indicating that the loading of the calicheamicin on the G193 antibody declines in an apparent slow first-order process. This report demonstrates the value of analyzing various components of the ADC and their PK profiles to better understand the disposition and in vivo stability of ADCs.

  3. Hair Growth Promoting and Anticancer Effects of p21-activated kinase 1 (PAK1 Inhibitors Isolated from Different Parts of Alpinia zerumbet

    Directory of Open Access Journals (Sweden)

    Nozomi Taira

    2017-01-01

    Full Text Available PAK1 (p21-activated kinase 1 is an emerging target for the treatment of hair loss (alopecia and cancer; therefore, the search for PAK1 blockers to treat these PAK1-dependent disorders has received much attention. In this study, we evaluated the anti-alopecia and anticancer effects of PAK1 inhibitors isolated from Alpinia zerumbet (alpinia in cell culture. The bioactive compounds isolated from alpinia were found to markedly promote hair cell growth. Kaempferol-3-O-β-d-glucuronide (KOG and labdadiene, two of the isolated compounds, increased the proliferation of human follicle dermal papilla cells by approximately 117%–180% and 132%–226%, respectively, at 10–100 μM. MTD (2,5-bis(1E,3E,5E-6-methoxyhexa-1,3,5-trien-1-yl-2,5-dihydrofuran and TMOQ ((E-2,2,3,3-tetramethyl-8-methylene-7-(oct-6-en-1-yloctahydro-1H-quinolizine showed growth-promoting activity around 164% and 139% at 10 μM, respectively. The hair cell proliferation induced by these compounds was significantly higher than that of minoxidil, a commercially available treatment for hair loss. Furthermore, the isolated compounds from alpinia exhibited anticancer activity against A549 lung cancer cells with IC50 in the range of 67–99 μM. Regarding the mechanism underlying their action, we hypothesized that the anti-alopecia and anticancer activities of these compounds could be attributed to the inhibition of the oncogenic/aging kinase PAK1.

  4. Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Rajkuberan

    2017-12-01

    Full Text Available This study reveals the rapid biosynthesis of silver nanoparticles (EAAgNPs using aqueous latex extract of Euphorbia antiquorum L as a potential bioreductant. Synthesized EAAgNPs generate the surface plasmonic resonance peak at 438 nm in UV–Vis spectrophotometer. Size and shape of EAAgNPs were further characterized through transmission electron microscope (TEM which shows well-dispersed spherical nanoparticles with size ranging from 10 to 50 nm. Energy dispersive X-ray spectroscopic analysis (EDAX confirms the presence of silver (Ag as the major constituent element. X-ray diffraction (XRD pattern of EAAgNPs corresponding to (111, (200, (220 and (311 planes, reveals that the generated nanoparticles were face centered cubic crystalline in nature. Interestingly, fourier-transform infrared spectroscopy (FTIR analysis shows the major role of active phenolic constituents in reduction and stabilization of EAAgNPs. Phyto-fabricated EAAgNPs exhibits significant antimicrobial and larvicidal activity against bacterial human pathogens as well as disease transmitting blood sucking parasites such as Culex quinquefasciatus and Aedes aegypti (IIIrd instar larvae. On the other hand, in vitro cytotoxicity assessment of bioformulated EAAgNPs has shown potential anticancer activity against human cervical carcinoma cells (HeLa. The preliminary biochemical (MTT assay and microscopic studies depict that the synthesized EAAgNPs at minimal dosage (IC50 = 28 μg triggers cellular toxicity response. Hence, the EAAgNPs can be considered as an environmentally benign and non-toxic nanobiomaterial for biomedical applications. Keywords: Crystal structure, Euphorbia antiquorum L., Silver nanoparticles, Anticancer, Human pathogens

  5. Proof of Concept of a Mobile Health Short Message Service Text Message Intervention That Promotes Adherence to Oral Anticancer Agent Medications: A Randomized Controlled Trial.

    Science.gov (United States)

    Spoelstra, Sandra L; Given, Charles W; Sikorskii, Alla; Coursaris, Constantinos K; Majumder, Atreyee; DeKoekkoek, Tracy; Schueller, Monica; Given, Barbara A

    2016-06-01

    This multisite, randomized controlled trial assigned 75 adult cancer patients prescribed an oral anticancer agent to either an experimental group that received daily text messages for adherence for 21 days plus usual care or a control group that received usual care. Measures were administered at baseline, weekly (Weeks 1-8), and at exit (Week 9). A satisfaction survey was conducted following the intervention. Acceptability, feasibility, and satisfaction were examined. Primary outcomes were adherence and symptoms. Secondary outcomes were depressive symptoms, self-efficacy, cognition, physical function, and social support. Mixed or general linear models were used for the analyses comparing trial groups. Effect sizes (ES) were estimated to gauge clinical significance. Regarding acceptability, 57.2% (83 of 145) of eligible patients consented, 88% (n = 37 of 42) receiving text messages read them most or all of the time, and 90% (n = 38) were satisfied. The differences between experimental and control groups' ES were 0.29 for adherence, 0.21 for symptom severity, and 0.21 for symptom interference, and differences were not statistically significant. Furthermore, perceived social support was higher (p = 0.04; ES = 0.54) in the experimental group. Proof of concept and preliminary efficacy of a mobile health intervention using text messages to promote adherence for patients prescribed oral anticancer agents were demonstrated. Patients accepted and had high satisfaction with the intervention, and adherence improved after the intervention. Text messages show promise. Additional research is needed prior to use in practice.

  6. Isolation of Dermatophilus congolensis and certain mycotic agents from animal tissues: a laboratory summary.

    Science.gov (United States)

    Jarnagin, J L; Thoen, C O

    1977-11-01

    One hundred fifty-nine specimens from animal sources were examined for mycotic agents. Isolations were made from 57.9%. Dermatophytes were isolated from 13.2%, Dermatophilus congolensis from 10.7%, yeasts from 14.5%, and other fungi from 19.5% of the submissions.

  7. Characterizing potential heart agents with an isolated perfused heart system

    International Nuclear Information System (INIS)

    Pendleton, D.B.; Sands, H.; Gallagher, B.M.; Camin, L.L.

    1984-01-01

    The authors have used an isolated perfused heart system for characterizing potential myocardial perfusion radiopharamaceuticals. Rabbit or guinea pig (GP) hearts are removed and perfused through the aorta with a blood-free buffer. Heart rate and ventricular pressure are monitored as indices of viability. Tc-99m-MAA is 96-100% retained in these hearts, and Tc-99m human serum albumin shows less than 5% extraction. Tl-201 is 30-40% extracted. It is known that in-vivo, Tc-99m(dmpe)/sub 2/Cl/sub 2//sup +/ is taken up by rabbit heart but not by GP or human heart. Analogous results are obtained with the isolated perfused heart model, where the complex is extracted well by the isolated rabbit heart (24%) but not by the GP heart (<5%). Values are unchanged if human, rabbit or GP blood is mixed and co-injected with the complex. Tc-99m)dmpe)/sub 3//sup +/ is also taken up by rabbit but not by GP hearts in-vivo. However, isolated perfused hearts of both species extract this complex well (45-52%). Heart uptake is diminished to <7% if the complex is pre-equilibrated with human blood. GP blood produces a moderate inhibition (in GP hearts only) and rabbit blood has no effect. This suggests that a human or GP blood factor may have a significant effect on heart uptake of this complex. Tc-99m(CN-t-butyl)/sub 6//sup +/ is taken up well by both rabbit and GP hearts in-vivo, and is extracted 100% by both isolated perfused hearts. Heart retention remains high (73-75%) in the presence of human blood

  8. Drug repurposing of novel quinoline acetohydrazide derivatives as potent COX-2 inhibitors and anti-cancer agents

    Science.gov (United States)

    Manohar, Chelli Sai; Manikandan, A.; Sridhar, P.; Sivakumar, A.; Siva Kumar, B.; Reddy, Sabbasani Rajasekhara

    2018-02-01

    Novel QuinolineAcetohydrazide (QAh) derivatives (9a-n) were firstly evaluated in silico to determine their anti-inflammatory and anti-cancer efficacy via the mechanisms of COX1 and COX2 inhibition, and NF-ĸB, HDAC and Human Topoisomerase I pathways respectively. In the studied set, the trifluoro substituted QAh derivatives: (E)-N'-(4-(trifluoro methyl) benzylidene)-2-(7-fluoro-2-methoxy quinolin-8-yl) acetohydrazid and (E)-N'-(3-(trifluoro methyl) benzylidene)-2-(7-fluoro-2-methoxy quinolin-8-yl) acetohydrazide are determined to be potential leads, indicated from their best docked scores, relative ligand efficiency, and significant structural attributes evaluated by ab initio simulations. The only setback being their partition co-efficient that retrieved a red flag in the evaluation of their Lipinski parameters. The experimental in vitro studies confirmed the significant enhancement as COX-2 inhibitors and appreciable enhancement in MTT assay of breast and skin cancer cell lines. Significantly, trifluoro substituent in the quinoline scaffold can be reasoned to note the excellent binding affinity to all the evaluated drug targets.

  9. Benzene-poly-carboxylic acid complex, a novel anti-cancer agent induces apoptosis in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Fuad Fares

    Full Text Available Some cases of breast cancer are composed of clones of hormonal-independent growing cells, which do not respond to therapy. In the present study, the effect of Benzene-Poly-Carboxylic Acid Complex (BP-C1 on growth of human breast-cancer cells was tested. BP-C1 is a novel anti-cancer complex of benzene-poly-carboxylic acids with a very low concentration of cis-diammineplatinum (II dichloride. Human breast cancer cells, MCF-7 and T47D, were used. Cell viability was detected by XTT assay and apoptosis was detected by Flow Cytometry and by annexin V/FITC/PI assay. Caspases were detected by western blot analysis and gene expression was measured by using the Applied Biosystems® TaqMan® Array Plates. The results showed that exposure of the cells to BP-C1 for 48 h, significantly (P<0.001 reduced cell viability, induced apoptosis and activated caspase 8 and caspace 9. Moreover, gene expression experiments indicated that BP-C1 increased the expression of pro-apoptotic genes (CASP8AP1, TNFRSF21, NFkB2, FADD, BCL10 and CASP8 and lowered the level of mRNA transcripts of inhibitory apoptotic genes (BCL2L11, BCL2L2 and XIAP. These findings may lead to the development of new therapeutic strategies for treatment of human cancer using BP-C1 analog.

  10. Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents.

    Science.gov (United States)

    Gou, Yi; Li, Jinlong; Fan, Boyi; Xu, Bohui; Zhou, Min; Yang, Feng

    2017-07-07

    We synthesized two mixed-ligand Cu(II) complexes containing different aroylhydrazone ligands and a pyridine co-ligand, namely, [Cu(L1)(Py)] (C1) and [Cu(L2)(Py)(Br)] (C2) (L1 = (E)-2-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide, Py = pyridine, L2 = (E)-2-hydroxy-N'-(phenyl(pyridin-2-yl)methylene)benzohydrazide), and assessed their chemical and biological properties to understand their marked activity. C2 showed better anticancer activity than C1 in various human cancer cell lines, including the cisplatin-resistant lung cancer cell line A549cisR. Both Cu(II) complexes, especially C2, displayed promising anti-metastatic activity against HepG2 cells. Spectroscopic titration and agarose gel electrophoresis experiments indicated that C2 exhibited binding affinity toward calf-thymus DNA and efficient pBR322 DNA-cleaving ability. Further mechanistic studies showed that C2 effectively induced DNA damage and thus led to cell cycle arrest at the G2/M phase, and also stimulated mitochondrial dysfunction mediated by reactive oxygen species and caspase-dependent apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Synthesis and Cytotoxicity Evaluation of 13-n-Alkyl Berberine and Palmatine Analogues as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2012-09-01

    Full Text Available By introducing long carbon-chain alkyl groups at the C-13 position of berberine and palmatine, 13-n-hexyl/13-n-octyl berberine and palmatine chloride analogues 4ad were synthesized and examined by MTT assays for cytotoxic activity in seven human cancer cell lines (7701QGY, SMMC7721, HepG2, CEM, CEM/VCR, KIII, Lewis, yielding IC50 values of 0.02 ± 0.01–13.58 ± 2.84 μM. 13-n-Octyl palmatine (compound 4d gave the most potent inhibitor activity, with an IC50 of 0.02 ± 0.01 μM for SMMC7721. In all cases, the 13-n-alkyl berberine and palmatine analogues 4ad were more cytotoxic than berberine and palmatine. In addition, compounds 4ad also exhibited more potent cytotoxicity than berberine and palmatine in mice with S180 sarcoma xenografted in vivo. The primary screening results indicated that the 13-n-hexyl/13-n-octyl berberine and palmatine analogues might be valuable source for new potent anticancer drug candidates.

  12. Stimuli-responsive protamine-based biodegradable nanocapsules for enhanced bioavailability and intracellular delivery of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini [Indian Institute of Science, Department of Materials Engineering (India); Gnanadhas, Divya P.; Chakravortty, Dipshikha [Indian Institute of Science, Department of Microbiology and Cell Biology (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Indian Institute of Science, Department of Materials Engineering (India)

    2015-08-15

    Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

  13. Discovery and development of anticancer agents from marine sponges: perspectives based on a chemistry-experimental therapeutics collaborative program.

    Science.gov (United States)

    Valeriote, Frederick A; Tenney, Karen; Media, Joseph; Pietraszkiewicz, Halina; Edelstein, Matthew; Johnson, Tyler A; Amagata, Taro; Crews, Phillip

    2012-01-01

    A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.

  14. Biological evaluation of octahydropyrazin[2,1-a:5,4-a']diisoquinoline derivatives as potent anticancer agents.

    Science.gov (United States)

    Gornowicz, Agnieszka; Pawłowska, Natalia; Czajkowska, Anna; Czarnomysy, Robert; Bielawska, Anna; Bielawski, Krzysztof; Michalak, Olga; Staszewska-Krajewska, Olga; Kałuża, Zbigniew

    2017-06-01

    In this study, we evaluated the cytotoxic activity and antiproliferative potency of novel octahydropyrazin[2,1-a:5,4-a']diisoquinoline derivatives (1-7) in MCF-7 and MDA-MB-231 breast cancer cell lines. Annexin V binding assay and disruption of the mitochondrial potential were performed to determine apoptosis. The activity of caspases 3, 8, 9, and 10 was measured after 24 h of incubation with tested compounds to explain detailed molecular mechanism of induction of apoptosis. The results from experiments were compared with effects obtained after incubation in the presence of camptothecin and etoposide. Our study demonstrated that the most active compounds in both analyzed breast cancer cell lines were compounds 3 and 4. We also observed that all compounds induced apoptosis. We demonstrated the higher activity of caspases 3, 8, 9, and 10, which confirmed that induction of apoptosis is associated with external and internal cell death pathway. Our study revealed that the novel compounds in group of diisoquinoline derivatives are promising candidates in anticancer treatment by activation of both extrinsic and intrinsic apoptotic pathways.

  15. Isolation and Characterisation of a Proanthocyanidin With Antioxidative, Antibacterial and Anti-Cancer Properties from Fern Blechnum orientale

    Science.gov (United States)

    Lai, How-Yee; Lim, Yau-Yan; Kim, Kah-Hwi

    2017-01-01

    Background: Blechnum orientale Linn. (Blechnaceae), a fern, is traditionally used in the treatment of various ailments, such as skin diseases, stomach pain, urinary bladder complaints, and also as a female contraceptive. Previously, we reported a strong radical scavenging activity, antibacterial activity and cytotoxicity against HT29 colon cancer cells by aqueous extract of B. orientale. Objective: In this study, we attempted to isolate and identify the active compound from the aqueous extract of B. orientale. Materials and Methods: Aqueous extract of B. orientale was subjected to repeated MCI gel chromatography, Sephadex-LH-20, Chromatorex C18 and semi-preparative high performance liquid chromatography and was characterized using nuclear magnetic resonance and electrospray ionization mass-spectrometry spectroscopic methods. Antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay. Antibacterial assays were conducted using disc diffusion whereas the minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined using the broth microdilution assay. Cytotoxicity was assessed using thiazolylblue tetrazoliumbromide. Results: A polymeric proanthocyanidin consisting of 2-12 epicatechin extension units and epigallocathecin terminal units linked at C4-C8 was elucidated. Bioactivity studies showed strong radical scavenging activity (IC50 = 5.6 ± 0.1 µg/mL), antibacterial activity (MIC = 31.3-62.5 µg/mL) against five gram-positive bacteria and selective cytotoxicity against HT29 colon cancer cells (IC50 = 7.0 ± 0.3 µg/mL). Conclusion: According to our results, the proanthocyanidin of B. orientale demonstrated its potential as a natural source of antioxidant with antibacterial and anti-cancer properties. SUMMARY A bioactive proanthocyanidin was isolated from the aqueous extract of medicinal fern Blechnum orientale Linn and the structure was elucidated using NMR and ESI-MS spectral studies

  16. Agents bacteriens isoles lors de coprocultures realises de 2001 à ...

    African Journals Online (AJOL)

    Au sein des coprocultures positives, les prévalences des germes entéropathogènes étaient respectivement Vibrio cholerae (63%), Salmonella spp (26%), Escherichia coli (16%) et Shigella (15%).Les 34 souches de Vibrio cholerae isolées étaient du sérogroupe O1 dont 18 V.cholerae El Tor et 1 souche du sérotype Ogawa ...

  17. Investigation of the interaction of radiation and cardiotoxic anticancer agents using a fetal mouse heart organ culture system

    International Nuclear Information System (INIS)

    Kimler, B.F.; Rethorst, R.D.; Cox, G.G.

    1985-01-01

    The fetal mouse heart organ culture was utilized in an attempt to predict the cardiotoxic effects of combinations of radiation, Adriamycin (ADR), and Dihydroxyanthraquinone (DHAQ), antineoplastic agents which have been shown to produce clinical cardiomyopathy. Seventeen-day fetal hearts were removed and placed in a culture system of micro-titer plates. A single heart was placed in each well on a piece of aluminum mesh to keep the heart above the culture medium but bathed by capillary action. The plates were then placed in a 100% oxygen environment at 37 0 C. Treatments were performed on day 1 after culture: radiation doses (Cs-137) of 10, 20, or 40 Gy; drug treatment with 10, 30, or 100 μg/ml of ADR; 5, 20, or 50 μg/ml of DHAQ; and combinations and sequences of drug and radiation. Hearts were checked every day for functional activity as evidenced by a continuous heart beat. Untreated hearts beat rhythmically for up to 9 days; treated hearts stopped beating earlier. Using an endpoint of functional retention time, dose response curves were obtained for all individual agents and for combinations of agents. This system may help to predict the cardiotoxic effects that result from the use of these drugs and radiation. It may also aid in the development of new anthracycline chemotherapeutic agents that lack cardiotoxicity

  18. Tumor microenvironment in focus: LA-ICP-MS bioimaging of a preclinical tumor model upon treatment with platinum(IV)-based anticancer agents.

    Science.gov (United States)

    Theiner, Sarah; Kornauth, Christoph; Varbanov, Hristo P; Galanski, Markus; Van Schoonhoven, Sushilla; Heffeter, Petra; Berger, Walter; Egger, Alexander E; Keppler, Bernhard K

    2015-08-01

    The selection of drug candidates for entering clinical development relies on in vivo testing in (solid) tumor animal models. However, the heterogeneity of tumor tissue (e.g. in terms of drug uptake or tissue composition) is rarely considered when testing novel drug candidates. Therefore, we used the murine colon cancer CT-26 tumor model to study the spatially-resolved drug distribution in tumor tissue upon repetitive treatment of animals over two weeks with three investigational platinum(IV)-based anticancer agents, oxaliplatin or satraplatin. A quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method revealed a heterogeneous platinum distribution, which correlated well with the histologic features of the tumor and surrounding tissue at the microscopic level. In most of the cases, higher amounts of intratumoral platinum were found in the surrounding tissue than in the malignant parts of the sample. This indicates that determination of average platinum amounts (e.g. by microwave-assisted digestion of the sample followed by analysis with ICP-MS) might overestimate the drug uptake in tumor tissue causing misleading conclusions. In addition, we studied the platinum distribution in the kidneys of treated animals to probe if accumulation in the cortex and medulla predict potential nephrotoxicity. A 10-fold increase of platinum in the cortex of the kidney over the medulla was observed for oxaliplatin and satraplatin. Although these findings are similar to those in the platinum distribution of the nephrotoxic anticancer drug cisplatin, treatment with the compounds of our study did not show signs of nephrotoxicity in clinical use or clinical trials (oxaliplatin, satraplatin) and did not result in the alteration of renal structures. Thus, predicting the side effects based on bioimaging data by LA-ICP-MS should be considered with caution. To the best of our knowledge, this is the first LA-ICP-MS study on spatially-resolved platinum

  19. Study of Bioreductive Anticancer Agent RH-1-Induced Signals Leading the Wild-Type p53-Bearing Lung Cancer A549 Cells to Apoptosis.

    Science.gov (United States)

    Stulpinas, Aurimas; Imbrasaitė, Aušra; Krestnikova, Natalija; Šarlauskas, Jonas; Čėnas, Narimantas; Kalvelytė, Audronė Valerija

    2016-01-19

    Aziridinylquinone RH-1 (2,5-diaziridinyl-3-hydroxymethyl-6-methyl-cyclohexa-2,5-diene-1,4-dione) is a potential anticancer agent. RH-1 action is associated with quinone oxidoreductase (NQO1) which reduces this diaziridinylbenzoquinone into DNA-alkylating hydroquinone and is overexpressed in many tumors. Another suggested mechanism of RH-1 toxicity is the formation of reactive oxygen species (ROS) arising from its redox cycling. In order to improve anticancer action of this and similar antitumor quinones, we investigated the involvement of different signaling molecules in cytotoxicity induced by RH-1 by using wild-type tumor suppressor p53 bearing nonsmall cell lung carcinoma A549 cells as a model. Gradual and prolonged increase of mitogen-activated protein kinases (MAPK) ERK, P38, and JNK phosphorylation was observed during 24-h RH-1 treatment. In parallel, activation of DNA damage-sensing ATM kinase, upregulation, and phosphorylation of TP53 (human p53) took place. Inhibition studies revealed that RH-1-induced A549 apoptosis involved the NQO1-ATM-p53 signaling pathway and ROS generation. TP53 participated in ROS- and DNA damage-induced cell death differently. Moreover, MAP kinase JNK was another TP53 activator and death inducer in A549 cells. At the same time, rapid and prolonged activation of AKT kinase during RH-1 treatment was found, and it proved to be antiapoptotic kinase in our model system. Therefore, we identified that different and opposite cell death regulating signaling pathways, which may counteract one another, are induced in cancer cells during chemotherapeutic RH-1 treatment.

  20. Advancing drug therapy for brain tumours: a current review of the pro-inflammatory peptide Substance P and its antagonists as anti-cancer agents.

    Science.gov (United States)

    Mander, Kimberley; Harford-Wright, Elizabeth; Lewis, Kate M; Vink, Robert

    2014-01-01

    Evidence for the involvement of the Substance P (SP)/NK1 receptor system in the development and progression of cancer strongly supports its potential as a therapeutic target in malignancies. Novel strategies for approaching cancer treatment are urgently required particularly with regard to tumours of the central nervous system (CNS), which are notoriously difficult to effectively treat and associated with extremely poor prognosis for many patients. This is due, in part, to the presence of the highly specialised blood-brain barrier, which is known to restrict common treatments such as chemotherapy and hinder early tumour diagnosis. Additionally, tumours of the CNS are difficult to surgically resect completely, often contributing to the resurgence of the disease many years later. Interestingly, despite the presence of the blood-brain barrier, circulating tumour cells are able to gain entry to the brain and form secondary brain tumours; however, the underlying mechanisms of this process remain unclear. Tachykinins, in particular Substance P, have been implicated in early blood-brain barrier disruption via neurogenic inflammation in a number of other CNS pathologies. Recent evidence also suggests that Substance P may play a central role in the development of CNS tumours. It has been well established that a number of tumour cells express Substance P, NK1 receptors and mRNA for the tachykinin NK1 receptor. This increase in the Substance P/NK1 receptor system is known to induce proliferation and migration of tumour cells as well as stimulate angiogenesis, thus contributing to tumour progression. Accordingly, the NK1 receptor antagonist presents a novel target for anti-cancer therapy for which a number of patents have been filed. This review will examine the role of Substance P in the development of CNS tumours and its potential application as an anti-cancer agent.

  1. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II-Based Complexes as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-03-01

    Full Text Available In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II such as the rapta-based complexes formulated as [Ru(η6-p-cymeneL2(pta] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.

  2. Analysis of the antiproliferative effects of 3-deazaneoplanocin A in combination with standard anticancer agents in rhabdoid tumor cell lines.

    Science.gov (United States)

    Unland, Rebekka; Borchardt, Christiane; Clemens, Dagmar; Kool, Marcel; Dirksen, Uta; Frühwald, Michael C

    2015-03-01

    Rhabdoid tumors (RTs) are highly aggressive pediatric malignancies with a rather poor prognosis. New therapeutic approaches and optimization of already established treatment protocols are urgently needed. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is highly overexpressed in RTs and associated strongly with epigenetic silencing in cancer. EZH2 is involved in aggressive cell growth and stem cell maintenance. Thus, EZH2 is an attractive therapeutic target in RTs. The aim of the study presented here was to analyze the effects of a pharmacological inhibition of EZH2 alone and in combination with other anticancer drugs on RTs cells in vitro. The antitumor activity of the S-adenosyl-homocysteine-hydrolase inhibitor 3-deazaneplanocin A (DZNep) alone and in combination with conventional cytostatic drugs (doxorubicin, etoposide) or epigenetic active compounds [5-Aza-CdR, suberoylanilide hydroxamic acid (SAHA)] was assessed by MTT cell proliferation assays on three RT cell lines (A204, BT16, G401). Combinatorial treatment with DZNep synergistically and significantly enhanced the antiproliferative activity of etoposide, 5-Aza-CdR, and SAHA. In functional analyses, pretreatment with DZNep significantly increased the effects of 5-Aza-CdR and SAHA on apoptosis, cell cycle progression, and clonogenicity. Microarray analyses following sequential treatment with DZNep and 5-Aza-CdR or SAHA showed changes in global gene expression affecting apoptosis, neuronal development, and metabolic processes. In-vitro analyses presented here show that pharmacological inhibition of EZH2 synergistically affects the antitumor activity of the epigenetic active compounds 5-Aza-CdR and SAHA. Sequential treatment with these drugs combined with DZNep may represent a new therapeutic approach in RTs.

  3. Improved clearance of radioiodinated hypericin as a targeted anticancer agent by using a duodenal drainage catheter in rats.

    Science.gov (United States)

    Cona, Marlein Miranda; Feng, Yuanbo; Verbruggen, Alfons; Oyen, Raymond; Ni, Yicheng

    2013-12-01

    We sought to reduce the radioactive intestinal waste after intravenous injection of necrosis avid iodine-131-labeled hypericin in dual-targeting anticancer radiotherapy and to study its pharmacokinetics in rats using a newly designed catheter. Iodine-123-labeled hypericin was prepared with iodogen as oxidant and characterized by high-performance liquid chromatography and mass spectrometry. After iodine-123-labeled hypericin administration, duodenal juice was collected via a catheter from groups of rats (n = 5) at intervals of 0-4, 4-8 or 20-24 h. The content was assessed by gamma-counting. The biodistribution and pharmacokinetics of iodine-123-labeled hypericin were investigated in rats without (n = 5) and with continuous catheterization (n = 5) for 9 h. After labeling, a high radiochemical yield was obtained with iodine-123-labeled hypericin (>95%), as confirmed by high-performance liquid chromatography and mass spectrometry. In the duodenal aspirate from animals with intermittent catheterization during 24 h, radioactivity accounted for 46% of the total with two peaks at 3 h and 8 h, suggesting enterohepatic circulation. Rats with 9 h of catheterization exhibited one peak representing 20% of the radioactivity. Major metabolites appeared to be conjugated iodine-123-labeled hypericin forms. In rats without and with catheter, iodine-123-labeled hypericin showed exponential elimination from plasma with no significant dehalogenation. Delayed iodine-123-labeled hypericin excretion, a higher maximum concentration (Cmax), larger area under concentration-time curve [AUC(0-∞)] and a longer mean residence time were observed in non-catheterized animals (P elimination of iodine-131-labeled hypericin can be prevented using this approach.

  4. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells

    International Nuclear Information System (INIS)

    Tanaka, Mamoru; Kamiya, Takeshi; Joh, Takashi; Kataoka, Hiromi; Yano, Shigenobu; Ohi, Hiromi; Kawamoto, Keisuke; Shibahara, Takashi; Mizoshita, Tsutomu; Mori, Yoshinori; Tanida, Satoshi

    2013-01-01

    Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl 2 (L)] and [PdCl 2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl 2 (L)] and [PdCl 2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl 2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl 2 (L)] induced DNA double-strand breaks. These results indicate that [PdCl 2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications

  5. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents

    DEFF Research Database (Denmark)

    Cloonan, Suzanne M.; Keating, John J.; Butler, Stephen G.

    2009-01-01

    The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine transport......The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine...... transporters. In this study, a novel library of structurally diverse 4-MTA analogues were synthesised with or without N-alkyl and/or C-alpha methyl or ethyl groups so that their potential SERT-dependent antiproliferative activity could be assessed. Many of the compounds displayed SERT-binding activity as well...... as cytotoxic activity. While there was no direct correlation between these two effects, a number of derivatives displayed anti-tumour effects in lymphoma, leukaemia and breast cancer cell lines, showing further potential to be developed as possible chemotherapeutic agents. (C) 2009 Elsevier Masson SAS. All...

  6. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent.

    Science.gov (United States)

    Naine, S Jemimah; Devi, C Subathra; Mohanasrinivasan, V; Doss, C George Priya; Kumar, D Thirumal

    2016-03-01

    The main aim of the current study is to explore the bioactive potential of Streptomyces sp. VITJS8 isolated from the marine saltern. The cultural, biochemical, and morphological studies were performed to acquire the characteristic features of the potent isolate VITJS8. The 16Sr DNA sequencing was performed to investigate the phylogenetic relationship between the Streptomyces genera. The structure of the compound was elucidated by gas chromatography-mass spectrometry (GC-MS), infra-red (IR), and ultra-violet (UV) spectroscopic data analysis. The GC-MS showed the retention time at 22.39 with a single peak indicating the purity of the active compound, and the molecular formula was established as C14H9ONCl2 based on the peak at m/z 277 [M](+). Furthermore, separated by high-performance liquid chromatography (HPLC), their retention time (t r) 2.761 was observed with the absorption maxima at 310 nm. The active compound showed effective inhibitory potential against four clinical pathogens at 500 μg/mL. The antioxidant activity was found effective at the IC50 value of 500 μg/mL with 90 % inhibition. The 3-(4,5-dimethylthiazol-2-yl)-2,5-ditetrazolium bromide (MTT) assay revealed the cytotoxicity against HepG2 cells at IC50 of 250 μg/mL. The progression of apoptosis was evidenced by morphological changes by nuclear staining. The DNA fragmentation pattern was observed at 250 μg/mL concentration. Based on flow cytometric analysis, it was evident that the compound was effective in inhibiting the sub-G0/G1 phase of cell cycle. The in vitro findings were also supported by the binding mode molecular docking studies. The active compound revealed minimum binding energy of -7.84 and showed good affinity towards the active region of topoisomerase-2α that could be considered as a suitable inhibitor. Lastly, we performed 30 ns molecular dynamic simulation analysis using GROMACS to aid in better designing of anticancer drugs. Simulation result of root mean square deviation (RMSD

  7. Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Wang

    2016-01-01

    Full Text Available Most studies of tea trees have focused on their ornamental properties, there are fewer published studies on their medical values. The purpose of this study was to compare the chemical constituents and the biological potential of the water extract of leaves in eight species of Camellia including Camellia sinensis. Among eight Camellia species, Camellia sasanqua showed potent anticancer activities in prostate cancer PC3 cells. In addition to catechins, the major component, eugenyl β-primeveroside was detected in C. sasanqua. Eugenyl β-primeveroside blocked the progression of cell cycle at G1 phase by inducing p53 expression and further upregulating p21 expression. Moreover, eugenyl β-primeveroside induced apoptosis in PC3 prostate cancer cells. Our results suggest that C. sasanqua may have anticancer potential.

  8. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Non-conventional dosing of oral anticancer agents in oncology and malignant haematology: a systematic review protocol.

    Science.gov (United States)

    Djebbari, Faouzi; Stoner, Nicola; Lavender, Verna

    2017-12-06

    Recent advances in cancer therapeutics have resulted in significantly improved overall survival and progression-free survival for patients. Targeted oral systemic anticancer therapies (SACT) offer a range of treatment approaches that differ from traditional cytotoxic chemotherapy: non-cytotoxic oral SACT target malignant disease continuously, have less broad and more favourable safety profiles, which can improve patients' quality of life (QoL). Toxicities associated with daily oral SACT administration can, however, result in non-adherence and a reduced QoL. Non-conventional dosing of oral SACT, where unlicensed doses/schedules of drugs are prescribed, is one approach increasingly adopted by clinicians to reduce toxicities and subsequent non-adherence and to improve QoL. Guidance governing this practice is, however, limited. This systematic review aims to identify evidence about prescribing practices of, and outcomes from, non-conventional dosing of oral SACT in oncology and malignant haematology. A search using the following electronic databases will be conducted: Ovid MEDLINE, Ovid EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Cochrane Registry of Controlled Trials. Studies will be selected based on predefined inclusion/exclusion criteria. Critical appraisal will be conducted to identify potential biases, strengths and limitations of included studies. Extracted data will be tabulated to sort and summarise key findings. An initial literature search indicated that studies reporting non-standard dosing of oral SACT intervention studies are diverse and heterogeneous in study design. Extracted data will, therefore, be tabulated, and together with a narrative synthesis of integrated key findings, will be presented and discussed in reference to the strengths and weaknesses of the evidence base. If sufficient stratified data is available (e.g. age group, tumour type, disease stage) or intervention (drug, dosing schedule), sub-group analysis

  10. Surfactant protein-D predicts prognosis of interstitial lung disease induced by anticancer agents in advanced lung cancer: a case control study.

    Science.gov (United States)

    Nakamura, Kota; Kato, Motoyasu; Shukuya, Takehito; Mori, Keita; Sekimoto, Yasuhito; Ihara, Hiroaki; Kanemaru, Ryota; Ko, Ryo; Shibayama, Rina; Tajima, Ken; Koyama, Ryo; Shimada, Naoko; Nagashima, Osamu; Takahashi, Fumiyuki; Sasaki, Shinichi; Takahashi, Kazuhisa

    2017-05-02

    Interstitial lung diseases induced by anticancer agents (ILD-AA) are rare adverse effects of anticancer therapy. However, prognostic biomarkers for ILD-AA have not been identified in patients with advanced lung cancer. Our aim was to analyze the association between serum biomarkers sialylated carbohydrate antigen Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), and clinical characteristics in patients diagnosed with ILD-AA. Between April 2011 and March 2016, 1224 advanced lung cancer patients received cytotoxic agents and epidermal growth factor receptor tyrosine kinase inhibitors at Juntendo University Hospital and Juntendo University Urayasu Hospital. Of these patients, those diagnosed with ILD-AA were enrolled in this case control study. ΔKL-6 and ΔSP-D were defined as the difference between the levels at the onset of ILD-AA and their respective levels prior to development of ILD-AA. We evaluated KL-6 and SP-D at the onset of ILD-AA, ΔKL-6 and ΔSP-D, the risk factors for death related to ILD-AA, the chest high resolution computed tomography (HRCT) findings, and survival time in patients diagnosed with ILD-AA. Thirty-six patients diagnosed with ILD-AA were enrolled in this study. Among them, 14 patients died of ILD-AA. ΔSP-D in the patients who died was significantly higher than that in the patients who survived. However, ΔKL-6 did not differ significantly between the two groups. Moreover, ΔSP-D in patients who exhibited diffuse alveolar damage was significantly higher than that in the other patterns on HRCT. Receiver operating characteristic curve analysis was used to set the optimal cut off value for ΔSP-D at 398 ng/mL. Survival time for patients with high ΔSP-D (≥ 398 ng/mL) was significantly shorter than that for patients with low ΔSP-D. Multivariate analysis revealed that ΔSP-D was a significant prognostic factor of ILD-AA. This is the first research to evaluate high ΔSP-D (≥ 398 ng/mL) in patients with ILD-AA and to

  11. In Silico and In Vitro Anticancer Activity of Isolated Novel Marker Compound from Chemically Modified Bioactive Fraction from Curcuma longa (NCCL).

    Science.gov (United States)

    Naqvi, Arshi; Malasoni, Richa; Gupta, Swati; Srivastava, Akansha; Pandey, Rishi R; Dwivedi, Anil Kumar

    2017-10-01

    Turmeric ( Curcuma longa ) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell

  12. Can the chemotherapeutic agents perform anticancer activity through miRNA expression regulation? Proposing a new hypothesis [corrected].

    Science.gov (United States)

    Chakraborty, Chiranjib; Doss, C George Priya; Sarin, Renu; Hsu, Minna J; Agoramoorthy, Govindasamy

    2015-11-01

    In the recent advancement of cancer therapy, mortality of the immortal cancer cells begins to decline, and it shows great promise for the chemotherapy regimen supported by targeted therapy. In this post-genomic era boosted by the discovery of microRNA (miRNA), it has been understood that miRNA regulates gene expression at the post-transcriptional level. On the other hand, some studies have also indicated that miRNA expression level has changed during the treatment of chemotherapy. Data based on various previous studies, we propose that the chemotherapeutic agents modulate miRNA expression that might perform anticancerous activities through cellular changes such as DNA repair, cell cycle arrest, or apoptosis.

  13. Study of anti-cancer effects of chemotherapeutic agents and radiotherapy in breast cancer patients using fluorescence spectroscopy

    Science.gov (United States)

    Chithra, K.; Vijayaraghavan, S.; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    The analysis of the variations in the spectroscopic patterns of the key bio molecules using Native fluorescence spectroscopy, without exogenous labels, has emerged as a new trend in the characterization of the Physiological State and the Discrimination of Pathological from normal conditions of cells and tissues as the relative concentration of these bio-molecules serve as markers in evaluating the presence of cancer in the body. The aim of this unique study is to use these features of Optical spectroscopy in monitoring the behavior of cells to treatment and thus to evaluate the response to Chemotherapeutic agents and Radiation in Breast Cancer Patients. The results of the study conducted using NFS of Human blood plasma of biopsy proved Breast Cancer patients undergoing treatment are promising, enhancing the scope of Native fluorescence Spectroscopy emerging as a promising technology in the evaluation of Therapeutic Response in Breast Cancer Patients.

  14. Development of a new anti-cancer agent for targeted radionuclide therapy: β- radiolabeled RAFT-RGD

    International Nuclear Information System (INIS)

    Petitprin, A.

    2013-01-01

    β-emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neo-endothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β-emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3 -expressing tumors. An injection of 37 MBq of 90 Y-RAFT-RGD or 177 Lu-RAFT-RGD in mice with αvβ3 -positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90 Y-RAFT-RAD or 177 Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90 Y-RAFT-RGD had no efficacy for the treatment of αvβ3 -negative tumors. 90 Y-RAFT-RGD and 177 Lu-RAFT-RGD are potent αvβ3 -expressing tumor targeting agents for internal targeted radiotherapy. (author)

  15. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation

    Science.gov (United States)

    Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra

    2017-12-01

    Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.

  16. Pt(IV/Re(I Chitosan Conjugates as a Flexible Platform for the Transport of Therapeutic and/or Diagnostic Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Elisabetta Gabano

    2017-12-01

    Full Text Available New chitosan derivatives modified with (3-carboxypropyltrimethylammonium chloride (1 and coupled with (OC-6-44-diammine(4-carboxypropanoatodichloridoethanolatoplatinum(IV (2, were synthesized and their preliminary biological evaluation carried out in human tumor cells. Some of these derivatives were also loaded with a chelating ligand (3 that was derived from bis(quinolin-2-ylmethylamine to obtain chitosan-based nanoparticles for an EPR-mediated delivery of Pt(IV prodrugs and Re(I tricarbonyl complexes (4, to explore a multimodal theranostic approach to cancer. The cytotoxicity of the different chitosan conjugates (C12, C123, and C1234, carrying different combinations of the Pt(IV complex, the chelator and the Re(I complex, was evaluated in the A2780 human ovarian cancer cell line using the MTT assay. The Pt(IV-containing nanosystems showed low to moderate cytotoxic activity (IC50 values in the range 13.5–33.7 µM and was comparable to that found for the free Pt(IV complex (IC50 = 13.7 µM. Therefore, the Pt(IV-chitosan conjugation did not enhance the cytotoxic activity of the Pt(IV prodrug, which certainly reflects the inefficient cellular uptake of the nanoconjugates. Nevertheless, a clearer view of their potential for the delivery of anticancer agents requires further in vivo tests because the EPR effect increases extravasation and retention within the tumor tissue, not necessarily within the tumor cells.

  17. Supramolecular chiro-biomedical assays and enantioselective HPLC analyses for evaluation of profens as non-steroidal anti-inflammatory drugs, potential anticancer agents and common xenobiotics.

    Science.gov (United States)

    Ali, Imran; Hussain, Iqbal; Saleem, Kishwar; Aboul-Enein, Hassan Y; Bazylak, Grzegorz

    2008-06-01

    The permanent world-wide increase in therapeutic administration of racemic profens as easy available non-prescribed analgesic drugs and a common first-choice anti-inflammatory agents was recently linked with renewed interest in their beneficial use, also as enantiopure formulations, to treat and/or prevent a variety of human malignancies including its four major types as colorectal, breast, lung, and prostate cancer. This underlies the continuous need of selecting perfectly suited chiral separation methods of profens capable to determine nanolevels of a distomer in presence of the eutomer in a variety of complex biological and environmental media. Thus, current improvements for direct enantiomeric separations of profens by well defined supramolecular-based chiral HPLC and recently developed monolithic, combinatorial, bimodal and polymeric chiral stationary phases employing a modern supramolecular chirality concepts has been outlined in this review. The use of diverse supramolecular approaches for chiral HPLC as an easy accessible tool enabling fast development of nanoscale enantioselective, high-throughput and gradient screening procedures for in situ monitoring of stereoselective ADME properties of profens in range of anticancer drug discovery technologies has been also addressed.

  18. Synthesis and Biological Evaluation of Novel 6-Hydroxy-benzo[d][1,3]oxathiol-2-one Schiff Bases as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Eliza de Lucas Chazin

    2015-01-01

    Full Text Available With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1 leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a–r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116 by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 μM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer.

  19. 2,3-Diaryl-3H-imidazo[4,5-b]pyridine derivatives as potential anticancer and anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    Erin Marie Kirwen

    2017-01-01

    Full Text Available In this study we examined the suitability of the 3H-imidazo[4,5-b]pyridine ring system in developing novel anticancer and anti-inflammatory agents incorporating a diaryl pharmacophore. Eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives retrieved from our in-house database were evaluated for their cytotoxic activity against nine cancer cell lines. The results indicated that the compounds showed moderate cytotoxic activity against MCF-7, MDA-MB-468, K562 and SaOS2 cells, with K562 being the most sensitive among the four cancer cell lines. The eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives were also evaluated for their COX-1 and COX-2 inhibitory activity in vitro. The results showed that compound 3f exhibited 2-fold selectivity with IC50 values of 9.2 and 21.8 µmol/L against COX-2 and COX-1, respectively. Molecular docking studies on the most active compound 3f revealed a binding mode similar to that of celecoxib in the active site of the COX-2 enzyme.

  20. Development and Validation of a HPLC Method for Quantitation of BA-TPQ, a Novel Iminoquinone Anticancer Agent, and an Initial Pharmacokinetic Study in Mice

    Science.gov (United States)

    Wang, Wei; Xu, Hongxia; Rayburn, Elizabeth R.; Zhang, Xu; Gurpinar, Evrim; Yang, Xinyi; Sommers, Charnell I.; Velu, Sadanandan E.; Zhang, Ruiwen

    2013-01-01

    We herein describe the development and validation of a high performance liquid chromatography (HPLC) method for the quantitation of 7-(benzylamino)-1, 3, 4, 8-tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one (BA-TPQ), a newly synthesized iminoquinone anticancer agent. BA-TPQ was extracted from plasma and tissue samples by first precipitating proteins with acetonitrile followed by a liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out using a gradient flow rate on a Zorbax SB C-18 column, and the effluent was monitored by UV detection at 346 nm. The method was found to be precise, accurate, and specific, with a linear range from 3.91 to 1955.0 ng/mL in plasma, 19.55 to 1955.0 ng/mL in spleen, brain, and liver homogenates, and 19.55 to 3910.0 ng/mL in heart, lung and kidney homogenates. The method was stable under all relevant conditions. Using this method, we also carried out an initial study determining plasma pharmacokinetics and tissue distribution of BA-TPQ in mice following intravenous administration. In summary, this simple and sensitive HPLC method can be used in future preclinical and clinical studies of BA-TPQ. PMID:20845374

  1. Analysis of chemical constituents, antimicrobial and anticancer activities of dichloromethane extracts of Sordariomycetes sp. endophytic fungi isolated from Strobilanthes crispus.

    Science.gov (United States)

    Jinfeng, Elaine Chin; Mohamad Rafi, Mohamed Ikhtifar; Chai Hoon, Khoo; Kok Lian, Ho; Yoke Kqueen, Cheah

    2017-01-01

    Plants are primary source of natural product drugs. However, with every new bioactive molecule reported from a plant source, there follows reports of endangered status or even extinction of a medicinally important plant due to over-harvesting. Hence, the attention turned towards fungi namely the endophytes, which reside within medicinally important plants and thus may have acquired their medicinal properties. Strobilanthes crispus is a traditional medicinal plant which has been used traditionally to treat kidney stones, diabetes, hypertension and cancer as well as having antimicrobial activities. In our efforts to bioprospect for anticancer and antimicrobial metabolites, two fungal endophytes most closely related to the Sordariomycetes sp. showed promising results. Sample (PDA)BL3 showed highest significant antimicrobial activity against 6 bacteria at 200 µg/disc whereas sample (PDA)BL5 has highest significant anticancer activity against all 5 cancer cell lines at concentrations ranging from 30 to 300 μg/ml. As for the gas chromatography coupled with mass spectrometry (GC-MS) results, a total of 20 volatile metabolites identified from sample (PDA)BL3 and 21 volatile metabolites identified from sample (PDA)BL5 having more than 1% abundance. Both GC-MS analysis showed that compound Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) has the highest abundance at 15.10% abundance for sample (PDA)BL3 and 19.00% abundance for sample (PDA)BL5 respectively. In conclusion, these results have shown bio-prospecting potential of endophytic fungi having antimicrobial and anticancer activities as well as its potential secondary metabolites of interest. Therefore, this work has further indicated the medicinal and industrial potential of endophytic fungi.

  2. Evaluation of SD-208, a TGF-β-RI Kinase Inhibitor, as an Anticancer Agent in Retinoblastoma.

    Science.gov (United States)

    Fadakar, Puran; Akbari, Abolfazl; Ghassemi, Fariba; Mobini, Gholam Reza; Mohebi, Masoumeh; Bolhassani, Manzar; Abed Khojasteh, Hoda; Heidari, Mansour

    2016-06-01

    Retinoblastoma is the most common intraocular tumor in children resulting from genetic alterations and transformation of mature retinal cells. The objective of this study was to investigate the effects of SD-208, TGF-β-RI kinase inhibitor, on the expression of some miRNAs including a miR-17/92 cluster in retinoblastoma cells. Prior to initiate this work, the cell proliferation was studied by Methyl Thiazolyl Tetrazolium (MTT) and bromo-2'-deoxyuridine (BrdU) assays. Then, the expression patterns of four miRNAs (18a, 20a, 22, and 34a) were investigated in the treated SD-208 (0.0, 1, 2 and 3 µM) and untreated Y-79 cells. A remarkable inhibition of the cell proliferation was found in Y-79 cells treated with SD-208 versus untreated cells. Also, the expression changes were observed in miRNAs 18a, 20a, 22 and 34a in response to SD-208 treatment (Pretinoblastoma cell line. To the best of the researchers' knowledge, this is the first report demonstrating that the SD-208 could alter the expression of tumor suppressive miRNAs as well as oncomiRs in vitro. In conclusion, the present data suggest that SD-208 could be an alternative agent in retinoblastoma treatment.

  3. QSAR Modeling on Benzo[c]phenanthridine Analogues as Topoisomerase I Inhibitors and Anti-cancer Agents

    Directory of Open Access Journals (Sweden)

    Thi-Ngoc-Phuong Huynh

    2012-05-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, hologram-QSAR, 2D-QSAR and 3D-QSAR models were developed for BCPs on topoisomerase I inbibitory activity and cytotoxicity against seven tumor cell lines including RPMI8402, CPT-K5, P388, CPT45, KB3-1, KBV-1and KBH5.0. The hologram, 2D, and 3D-QSAR models were obtained with the square of correlation coefficient R2 = 0.58 − 0.77, the square of the crossvalidation coefficient q2 = 0.41 − 0.60 as well as the external set’s square of predictive correlation coefficient r2 = 0.51 − 0.80. Moreover, the assessment method based on reliability test with confidence level of 95% was used to validate the predictive power of QSAR models and to prevent over-fitting phenomenon of classical QSAR models. Our QSAR model could be applied to design new analogues of BCPs with higher antitumor and topoisomerase I inhibitory activity.

  4. The Study of Isolated Bacteria Application for Bioremediation Agent of Uranium Radionuclide in the Environment

    International Nuclear Information System (INIS)

    Yazid, Mochd

    2007-01-01

    Application of the isolated bacteria on the Low Level Uranium Waste as uranium bioremediation agent in the environment has been studied. The objective of this research is to study the possibility of isolated bacteria to be used on uranium remediation process. The isolation of uranium resistance bacteria was carried out on the selective medium SBS containing 10 mg/l uranium, incubated at 37°C until the growth was visible. Selection of binding uranium bacteria was carried out based on their ability to grow on liquid medium containing various concentration of uranium that shacked on 120 rpm speed. The isolated bacteria with the highest specific growth rate constant (μ) were selected for biochemical characterization and identification by matching profile method. The result of this research showed that three selected isolate bacteria were able to grow well on liquid SBS medium until 100 mg/l uranium concentration. The identification results showed that two of them were suspected belong to the genus Pseudomonas and one isolates belong to the genus of Bacillus. The uranium reduction studied was performed by growing up the isolated bacteria on the SBS liquid medium that containing 40 mg/l uranium. Bacterial growth were measured by weighted of bacterial biomass and uranium concentration were measured by spectrophotometer. The research result showed that the selected isolates bacteria may applicable for bioremediation agent because of their ability to grow well on liquid SBS medium and their ability on uranium concentration reduction. The efficiency of reduction by Pseudomonas in the isolated bacteria one were 78.51 % and in the isolated bacteria three were 91.47 % , and Bacillus in the isolate bacteria six were 52.73%. (author)

  5. Biological evaluation of tubulysin A: A potential anticancer and antiangiogenic natural product

    NARCIS (Netherlands)

    Kaur, Gurmeet; Hollingshead, Melinda; Holbeck, Susan; Schauer-Vukašinović, Vesna; Camalier, Richard F.; Dömling, Alexander; Agarwal, Seema

    2006-01-01

    Tubulysin A (tubA) is a natural product isolated from a strain of myxobacteria that has been shown to depolymerize microtubules and induce mitotic arrest. The potential of tubA as an anticancer and antiangiogenic agent is explored in the present study. tubA shows potent antiproliferative activity in

  6. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Margarida Costa

    2013-12-01

    Full Text Available The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT and lactic dehydrogenase release (LDH assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.

  7. Development of a chimeric recombinant disintegrin as a cost-effective anticancer agent with promising translational potential

    Science.gov (United States)

    Minea, Radu; Helchowski, Corey; Rubino, Barbara; Brodmann, Kyle; Swenson, Stephen; Markland, Francis

    2011-01-01

    Vicrostatin (VCN) is a chimeric recombinant disintegrin generated in Origami B (DE3) E. coli as a genetic fusion between the C-terminal tail of a viperid disintegrin echistatin and crotalid disintegrin contortrostatin (CN). The therapeutic modulation of multiple integrin pathways via soluble disintegrins was previously shown by us and others to elicit potent anti-angiogenic and anti-metastatic effects in several animal cancer models. Despite these favorable attributes, these polypeptides are notoriously difficult to produce recombinantly in significant quantity due to their structure which requires the correct pairing of multiple disulfide bonds for biological activity. In this report, we show that VCN can be reliably produced in large amounts (yields in excess of 200mg of active purified disintegrin per liter of bacterial culture) in Origami B (DE3), an E. coli expression strain engineered to support the folding of disulfide-rich heterologous proteins directly in its oxidative cytoplasmic compartment. VCN retains the integrin binding specificity of both parental molecules it was derived from, but with a different binding affinity profile. While competing for the same integrin receptors that are preferentially upregulated in the tumor microenvironment, VCN exerts a potent inhibitory effect on endothelial cell (EC) migration and tube formation in a dose-dependent manner, by forcing these cells to undergo significant actin cytoskeleton reorganization when exposed to this agent in vitro. Moreover, VCN has a direct effect on breast cancer cells inhibiting their in vitro motility. In an effort to address our main goal of developing a clinically relevant delivery method for recombinant disintegrins, VCN was efficiently packaged in liposomes (LVCN) and evaluated in vivo in an animal breast cancer model. Our data demonstrate that LVCN is well tolerated, its intravenous administration inducing a significant delay in tumor growth and an increase in animal survival, results

  8. Isolation of Bioactive Phenazine-1-Carboxamide from the Soil Bacterium Pantoea agglomerans and Study of Its Anticancer Potency on Different Cancer Cell Lines.

    Science.gov (United States)

    Ali, Hayssam M; El-Shikh, Mohamed S; Salem, Mohamed Z M; M, Muzaheed

    2016-09-01

    The study was designed to investigate the anticancer effect of phenazine-1-carboxamide (PCN) isolated from the bacterium Pantoea agglomerans naturally present in soil. PCN showed cytotoxicity in a dose-dependent manner, and inhibitory concentrations on the cancer cell lines A549, HeLa, and SW480 were between 32 and 40 μM. Significantly increased concentrations of lactate dehydrogenase were found with increasing concentrations of PCN, which resulted in increased destruction of the cancer cell membrane. A significantly increased p53 level was accompanied by the increased production of cytochrome c protein in all cancer cell lines studied. This condition in cells leads to the overexpression of caspase 3 and Bcl-2 family proteins. Upregulation and downregulation of proapoptotic and antiproapoptotic proteins were analyzed for their messenger RNA and protein expression. The activation of caspases and their cleavage compounds paves the way for the complete apoptosis process in cancer cells. We conclude that P. agglomerans-derived PCN acts as an effective anticancer drug or compound.

  9. Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment.

    Science.gov (United States)

    Dąbrowska, Krystyna; Kaźmierczak, Zuzanna; Majewska, Joanna; Miernikiewicz, Paulina; Piotrowicz, Agnieszka; Wietrzyk, Joanna; Lecion, Dorota; Hodyra, Katarzyna; Nasulewicz-Goldeman, Anna; Owczarek, Barbara; Górski, Andrzej

    2014-01-01

    Novel anticancer strategies have employed bacteriophages as drug carriers and display platforms for anticancer agents; however, bacteriophage-based platforms maintain their natural antibacterial activity. This study provides the assessment of combined anticancer (engineered) and antibacterial (natural) phage activity in therapies. An in vivo BALB/c mouse model of 4T1 tumor growth accompanied by surgical wound infection was applied. The wounds were located in the areas of tumors. Bacteriophages (T4) were modified with anticancer Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides by phage display and injected intraperitoneally. Tumor growth was decreased in mice treated with YIGSR-displaying phages. The acuteness of wounds, bacterial load and inflammatory markers in phages-treated mice were markedly decreased. Thus, engineered bacteriophages combine antibacterial and anticancer activity.

  10. Isolation, Characterization, and Identification of Biological Control Agent for Potato Soft Rot in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2012-01-01

    Full Text Available A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5% antagonistic effect of E-65 was observed in the Granola and the lowest (32.7% of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.

  11. Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh.

    Science.gov (United States)

    Rahman, M M; Ali, M E; Khan, A A; Akanda, A M; Uddin, Md Kamal; Hashim, U; Abd Hamid, S B

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5-62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.

  12. The role indigenous bacterial isolates for bioremediation agent in the uranium contaminated aquatic environment

    International Nuclear Information System (INIS)

    Mochd Yazid

    2014-01-01

    A Research on the role of indigenous bacterial isolates for bio-remediation agent of the uranium contaminated in the aquatic environment has been conducted. The objective of the research is to study the role of Pseudomonas sp and Bacillus sp. have been isolated from low level uranium waste for bioremediation agent in their environment, such as the determination of efficiency of the uranium binding compared by the non indigenous bacterial, location of these binding and the influences of added acethyl acid stimulant. The uranium reduction studied was measured by weighting bacterial biomass and uranium concentration was measured by spectrophotometer. The acethyl acid stimulant addition has been done with the variation of concentration and volume. The efficiency of the uranium reduction by indigenous bacterial isolate such as Pseudomonas sp were 84.99 % and Bacillus sp were 52.70 %, so the reduction efficiency by non indigenous bacterial such as Pseudomonas aerogenes were 78.47 % and Bacillus subtilis were 45.22 % for 54 hours incubation time. The result of this research can be concluded that Pseudomonas sp and Bacillus sp. Indigenous bacterial have been isolates from the liquid uranium waste can contributed in bioremediation agent for uranium radionuclide in the environment for 60 ppm concentration with reduction efficiency 52.70 %-84.99 %, that is higher non indigenous bacterial for 54 hours incubation time, the stimulant addition of acethyl acid, the efficiency can be increased up to 99.8 %. (author)

  13. Synthesis and antimicrobial activity of guanylhydrazones. Synthesis of 2-(2-methylthio-2-aminovinyl)-1-methylpyridinium iodides and 2-(2-methylthio-2-aminovinyl)-1-methylquinolinium iodides as potential radioprotective and anticancer agents

    International Nuclear Information System (INIS)

    Almassian, B.

    1985-01-01

    The finding of appreciable antileukemic activity in a series of 2-(2-methylthio-2-amino)vinyl-1-methylquinolinium iodides (Foye et al., 1980, 1983) suggested that greater basicity, as compared with the corresponding dithioacetic acids, was contributing to the increase in activity. The addition of a greater degree of basicity in the design of anticancer possibilities in this series was considered worth investigation, particularly in view of the activity of a series of bis(quanylhydrazones) synthesized at Lederle Laboratories. Accordingly, a series of guanylhydrazones of 4-pyridine-,2-pyridine- and 4-quinolinecarboxyaldehydes was synthesized for anticancer as well as antibacterial screening. Also, substitution of additional basic functions in the 2-(2-methylthio-2-amino) vinyl-1-methylquinolinium and pyridinium iodide series has been made. Appreciable antimicrobial activities have been found with both 2-pyridine and 4-quinolinealdehyde guanylhydrazones, as well as with 2-(2-methylthio-2-amino)vinyl-1-methyl-pyridinium iodides. The overall approach to the synthesis of potential anticancer agents in this project is thus to observe the effect of increasing basicity of these compounds on DNA binding and anticancer activity

  14. Freezing Damage to Isolated Tomato Fruit Mitochondria as Modified by Cryoprotective Agents and Storage Temperature 1

    Science.gov (United States)

    Dickinson, David B.; Misch, M. Joan; Drury, Robert E.

    1970-01-01

    Isolated tomato (Lycopersicon esculentum var. Kc 146) fruit mitochondria could be stored successfully in the frozen state without a cryoprotective agent if the mitochondria were frozen quickly by immersion in liquid nitrogen and later thawed quickly at 30 C. Criteria of freezing damage were rate of respiration, adenosine diphosphate to oxygen ratio, and respiratory control ratio. Marked reduction in respiration and loss of respiratory control occurred when mitochondria were transferred from liquid nitrogen to −5, −10, or −18 C for 15 minutes prior to thawing at 30 C. Dimethylsulfoxide (5%) prevented freezing damage when mitochondria were incubated at −5 C but did not prevent freezing damage at −10 or −18 C. Isolated tomato mitochondria show promise as a model system for studying the nature of freezing damage and the mode of action of cryo-protective agents. PMID:16657434

  15. Freezing damage to isolated tomato fruit mitochondria as modified by cryoprotective agents and storage temperature.

    Science.gov (United States)

    Dickinson, D B; Misch, M J; Drury, R E

    1970-08-01

    Isolated tomato (Lycopersicon esculentum var. Kc 146) fruit mitochondria could be stored successfully in the frozen state without a cryoprotective agent if the mitochondria were frozen quickly by immersion in liquid nitrogen and later thawed quickly at 30 C. Criteria of freezing damage were rate of respiration, adenosine diphosphate to oxygen ratio, and respiratory control ratio. Marked reduction in respiration and loss of respiratory control occurred when mitochondria were transferred from liquid nitrogen to -5, -10, or -18 C for 15 minutes prior to thawing at 30 C. Dimethylsulfoxide (5%) prevented freezing damage when mitochondria were incubated at -5 C but did not prevent freezing damage at -10 or -18 C. Isolated tomato mitochondria show promise as a model system for studying the nature of freezing damage and the mode of action of cryo-protective agents.

  16. Câncer e agentes antineoplásicos ciclo-celular específicos e ciclo-celular não específicos que interagem com o DNA: uma introdução Cancer and cell cicle-specific and cell cicle nonspecific anticancer DNA-interactive agents: an introduction

    Directory of Open Access Journals (Sweden)

    Vera Lúcia de Almeida

    2005-02-01

    Full Text Available The chemotherapy agents against cancer may be classified as "cell cycle-specific" or "cell cycle-nonspecific". Nevertheless, several of them have their biological activity related to any kind of action on DNA such as: antimetabolic agents (DNA synthesis inhibition, inherently reactive agents (DNA alkylating electrophilic traps for macromolecular nucleophiles from DNA through inter-strand cross-linking - ISC - alkylation and intercalating agents (drug-DNA interactions inherent to the binding made due to the agent penetration in to the minor groove of the double helix. The earliest and perhaps most extensively studied and most heavily employed clinical anticancer agents in use today are the DNA inter-strand cross-linking agents.

  17. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents.

    Science.gov (United States)

    Gámez-Valero, Ana; Monguió-Tortajada, Marta; Carreras-Planella, Laura; Franquesa, Marcel la; Beyer, Katrin; Borràs, Francesc E

    2016-09-19

    Extracellular vesicles (EVs) have become an attractive field among the scientific community. Yet, a major challenge is to define a consensus method for EVs isolation. Ultracentrifugation has been the most widely used methodology but rapid methods, including Size Exclusion Chromatography (SEC) and/or precipitating agents such as Polyethylene glycol (PEG) or PRotein Organic Solvent PRecipitation (PROSPR) have emerged. To evaluate the impact of these different methods on the resulting EV preparations, plasma EVs were isolated using SEC, PEG and PROSPR, and their total protein content, NTA and Cryo-electron microscopy profiles, and EV-markers were compared. Also, their effect on recipient cells was tested. Low protein content and Cryo-EM analysis showed that SEC removed most of the overabundant soluble plasma proteins, which were not removed using PEG and partially by PROSPR. Moreover, only SEC allowed the detection of the EV-markers CD9, CD63 and CD81, LGALS3BP and CD5L, suggesting a putative interference of the precipitating agents in the structure/composition of the EVs. Furthermore, PEG and PROSPR-based EV isolation resulted in reduced cell viability in vitro. These results stress that appropriate EV-isolation method should be considered depending on the forthcoming application of the purified EVs.

  18. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  19. In Vitro Activity of Antimicrobial Agents against Isolates from Patients with Acute Tonsillopharyngitis in Dakar, Senegal

    Directory of Open Access Journals (Sweden)

    A. Gueye Ndiaye

    2009-01-01

    Full Text Available Streptococcus pyogenes ( S. pyogenes is the most important causative agent of tonsillopharyngitis. Beta-lactam antibiotics, particularly penicillin, are the drug of first choice and macrolides are recommended for patients who are allergic to penicillin. However, other antibiotics are also used for the treatment of streptococcal tonsillopharyngitis. In recent years, the increase in the incidence of respiratory tract pathogens that are resistant to current antibacterial agents highlights the need to monitor the evolution of the resistance of these pathogens to antibiotics. In this study, we assess the susceptibility of 98 isolates of S. pyogenes to 16 antibiotics. The pathogens were recovered from patients with acute tonsillopharyngitis in Dakar, the Senegalese capital city, who were recruited from May 2005 to August 2006. All strains were susceptible to penicillin with low Minimum Inhibitory Concentration (MIC = 0,016 mg/L. Amoxicillin had high activity (100% showing its importance in treatment of streptococcal infections. Cephalosporins had MIC 90 values ranging from 0.016 to 0.094 mg/L. Macrolides have shown high activity. All strains were resistant to tetracyclin. Other molecules such as teicoplanin, levofloxacin and chloramphenicol were also active and would represent alternatives to treatment of tonsillopharyngitis due to this pathogen. These results indicate that no significant resistance to antibiotics was found among patients with tonsillopharyngitis studied in Dakar. Limitations of this study were that the number of isolates tested was small and all isolates were collected from one hospital in Dakar. Hence, results may not be representative of the isolates found, in the wider community or other regions of Senegal. Further studies are needed in other parts of Dakar and other geographic regions of Senegal, in order to better clarify the antibiotic susceptibility profile of S. pyogenes isolates recovered from patients with

  20. A Three years retrospective analysis of agents isolated from cerebrospinal fluid in a University Hospital

    Directory of Open Access Journals (Sweden)

    Barış Otlu

    2012-03-01

    Full Text Available Objectives: In this study, we aimed to investigate the agents which were isolated from cerebrospinal fluid (CSF samples in our hospital for three years, retrospectively.Materials and methods: The CSF samples, which were sent our laboratory, of the patients those had presumptive diagnosis of meningitis between September 2008 and September 2011 were included into the study. Isolated bacteria were identified with conventional methods, biochemical tests and/or Phonix (BD, US kits. Antimicrobial susceptibility of the strains were investigated according to Clinical Laboratory Standards Institute (CLSI recommendations.Results: 11 Streptococcus pneumoniae, 8 Klebsiella pneumoniae, 7 Pseudomonas aeruginosa, 7 Acinetobacter baumannii, 5 Escherichia coli, 4 Enterococcus spp., 2 Enterobacter spp., 25 Coagulase-negative staphylococcus, 1 Morganella morganii, 2 Neisseria meningitidis, 1 Brucella spp., and 1 Candida albicans were isolated (overall n:74; 5.2% from total 1408 CSF samples. In susceptibility test, 2 S.pneumonia was found as penicillin-resistant, and one E.coli and two K.pneumoniae were found as extended spectrum of beta-lactamase producers. Additionally, carbapenem resistance was detected in three A.baumannii and one P.aeruginosa strains.Conclusion: Determination of agent profile and antimicrobial resistance pattern from different localizations and patients’ groups will help to improve protective and therapeutic health policies.

  1. Eco-sustainable synthesis and biological evaluation of 2-phenyl 1,3-benzodioxole derivatives as anticancer, DNA binding and antibacterial agents

    Directory of Open Access Journals (Sweden)

    Sayan Dutta Gupta

    2016-11-01

    Full Text Available The current research and development scenario in medicinal chemistry demands small molecules synthesized in a simple, fast and effective way with enhanced activity and fewer side effects than the existing ones. Therefore, one-pot, microwave assisted green and efficient synthesis of a series of derivatives belonging to 2-phenyl 1,3-benzodioxole (1a–14a and 2-phenyl 1,3-benzodioxole-4-ol (1b–14b class were carried out and subsequently investigated for their anticancer, antibacterial and DNA binding potential. Compound 3c proved to be the most active one among the screened derivatives possessing anticancer and antibacterial potency greater than the standard reference compound (cisplatin and cinoxacin for anticancer and antibacterial activity, respectively. The most active compound in terms of DNA binding capacity was found to be 5b. A rewarding feature of the work is a facile, convenient, eco friendly one step synthesis of compounds demonstrating attenuated activity against cancer and bacterial cell with an inherent potential of binding to DNA. Subsequently, a hit molecule for further anticancer, antibacterial (compound 3c and DNA binding studies (compound 5b was also identified.

  2. Isolation and Evaluation of Mucilage of Adansonia digitata Linn as a Suspending Agent

    Directory of Open Access Journals (Sweden)

    S. S. Deshmukh

    2013-01-01

    Full Text Available Natural excipients can serve as alternative to synthetic products because of local accessibility, biodegradability, eco-friendly nature and cost effectiveness as compared to synthetic products. Therefore, it is a current need to explore natural excipients that can be used as an effective alternative excipient for the formulation of pharmaceutical dosage forms. Adansonia digitata (Malvaceae has been traditionally used as febrifuge, antiasthmatic and also in the treatment of dysentery, smallpox, and measles. Reports have indicated that mucilage of the leaves of the plant is edible and nontoxic; hence, the present study is an attempt of isolation and evaluation of mucilage obtained from leaves of Adansonia digitata as suspending agent. Various physicochemical as well as suspending agent properties of mucilage were studied. Mucilage obtained from leaves has shown comparable results with sodium carboxy methyl cellulose.

  3. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  4. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    Science.gov (United States)

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi.

  5. HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect.

    Science.gov (United States)

    Fang, Jun; Greish, Khaled; Qin, Haibo; Liao, Long; Nakamura, Hideaki; Takeya, Motohiro; Maeda, Hiroshi

    2012-08-01

    We reported previously the antitumor effect of heme oxygenase-1 (HO-1) inhibition by zinc protoporphyrin IX (ZnPP). ZnPP per se is poorly water soluble and thus cannot be used as anticancer chemotherapeutic. Subsequently, we developed water-soluble micelles of ZnPP using styrene-maleic acid copolymer (SMA), which encapsulated ZnPP (SMA-ZnPP). In this report, the in vitro and in vivo therapeutic effects of SMA-ZnPP are described. In vitro experiments using 11 cultured tumor cell lines and six normal cell lines revealed a remarkable cytotoxicity of SMA-ZnPP against various tumor cells; average IC(50) is about 11.1 μM, whereas the IC(50) to various normal cells is significantly higher, that is, more than 50 μM. In the pharmacokinetic study, we found that SMA-ZnPP predominantly accumulated in the liver tissue after i.v. injection, suggesting its applicability for liver cancer. As expected, a remarkable antitumor effect was achieved in the VX-2 tumor model in the liver of rabbit that is known as one the most difficult tumor models to cure. Antitumor effect was also observed in murine tumor xenograft, that is, B16 melanoma and Meth A fibrosarcoma. Meanwhile, no apparent side effects were found even at the dose of ∼7 times higher concentration of therapeutics dose. These findings suggest a potential of SMA-ZnPP as a tool for anticancer therapy toward clinical development, whereas further investigations are warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The essential oil of Allium sativum as an alternative agent against Candida isolated from dental prostheses.

    Science.gov (United States)

    Mendoza-Juache, Alejandro; Aranda-Romo, Saray; Bermeo-Escalona, Josué R; Gómez-Hernández, Araceli; Pozos-Guillén, Amaury; Sánchez-Vargas, Luis Octavio

    The colonization of the surfaces of dental prostheses by Candida albicans is associated with the development of denture stomatitis. In this context, the use of fluconazole has been proposed, but its disadvantage is microbial resistance. Meanwhile, the oil of Allium sativum has shown an effect in controlling biofilm formation by C. albicans. The objective of this study was to determine the antifungal activities of the essential oil of A. sativum and fluconazole against clinical isolates of Candida species obtained from rigid, acrylic-based partial or total dentures and to compare these agents' effects on both biofilm and planktonic cells. A total of 48 clinical isolates obtained from the acrylic surface of partial or complete dentures were examined, and the following species were identified: C. albicans, Candida glabrata, Candida tropicalis, and Candida krusei. For each isolate, the antifungal activities of the essential oil of A. sativum and fluconazole against both biofilm and planktonic cells were evaluated using the Clinical & Laboratory Standards Institute (CLSI) M27-A3 method. The isolates were also evaluated by semiquantitative XTT reduction. All planktonic Candida isolates were susceptible to the essential oil of A. sativum, whereas 4.2% were resistant to fluconazole. Regarding susceptibilities in biofilms, 43.8% of biofilms were resistant to A. sativum oil, and 91.7% were resistant to fluconazole. All planktonic cells of the different Candida species tested are susceptible to oil, and the majority are susceptible to fluconazole. Susceptibility decreases in biofilm cells, with increased resistance to fluconazole compared with A. sativum oil. The essential oil of A. sativum is thus active against clinical isolates of Candida species obtained from dentures, with effects on both biofilm and planktonic cells in vitro. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses

    Directory of Open Access Journals (Sweden)

    Arodola OA

    2015-11-01

    Full Text Available Olayide A Arodola, Mahmoud ES SolimanMolecular Modelling and Drug Design Lab, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South AfricaAbstract: Based on experimental data, the anticancer activity of nelfinavir (NFV, a US Food and Drug Administration (FDA-approved HIV-1 protease inhibitor (PI, was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90, a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, “loop docking” – an enhanced in-house developed molecular docking approach – followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =−9.2 kcal/mol when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 µM. Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =−9.0, −8.6, and −8.5 kcal/mol, respectively. Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602 played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding

  8. Phytochemical, Anticancer and Antioxidant Evaluation of Potential ...

    African Journals Online (AJOL)

    BSN

    Key words: anticancer, antioxidant, C. surinamensis, phytochemical investigation, plant extract ... agents active against cancer and infectious diseases ..... (2004). Wine polyphenols and ethanol do not significantly scavenge superoxide nor affect endothelial nitric oxide production. Journal of. Nutritional. Biochemistry.

  9. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents.

    Science.gov (United States)

    Kandanur, Sai Giridhar Sarma; Nanduri, Srinivas; Golakoti, Nageswara Rao

    2017-07-01

    Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III a-f) are reported. The substitutions include various sulfonamide moieties -SO 2 -NH-R 1 . The new derivatives (III a-e) exhibited improved cytotoxicity (GI 50 , TGI and LC 50 ) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Frondoside A from sea cucumber and nymphaeols from Okinawa propolis: Natural anti-cancer agents that selectively inhibit PAK1 in vitro.

    Science.gov (United States)

    Nguyen, Binh Cao Quan; Yoshimura, Kazuki; Kumazawa, Shigenori; Tawata, Shinkichi; Maruta, Hiroshi

    2017-05-30

    A sulfated saponin called "Frondoside A" (FRA) from sea cucumber and ingredients from Okinawa propolis (OP) have been previously shown to suppress the PAK1-dependent growth of A549 lung cancer as well as pancreatic cancer cells. However, the precise molecular mechanism underlying their anti-cancer action still remains to be clarified. In this study, for the first time, we found that both FRA and OP directly inhibit PAK1 in vitro in a selective manner (far more effectively than two other oncogenic kinases, LIMK and AKT). Furthermore, at least two major anti-cancer ingredients of OP, nymphaeols A and C, also directly inhibit PAK1 in vitro in a selective manner. To the best of our knowledge, FRA is the first marine compound that selectively inhibits PAK1. Likewise, these nymphaeols are the first propolis ingredients that selectively inhibit PAK1.

  11. Lipoxygenase independent hexanal formation in isolated soy proteins induced by reducing agents.

    Science.gov (United States)

    Lei, Q; Boatright, W L

    2008-08-01

    Compared to corresponding controls, 6.5 mM dithiothreitol (DTT) elevated headspace hexanal level over aqueous slurries of both commercial isolated soy proteins (ISP) and laboratory ISP prepared with 80 degrees C treatment. Further analysis revealed that lipoxygenase (LOX) activity was not detected from these ISP, indicating that LOX is not involved in the observed hexanal increase. Levels of the induced headspace hexanal over the ISP aqueous slurries were proportional to the amount of DTT added in the range of 0 to 65 mM. Subsequent systematic investigations with model systems revealed that iron was required for the reducing agent-induced hexanal formation from linoleic acid. Erythorbate, another reducing agent, can also induce hexanal formation in both ISP and model systems. As a comparison, the LOX activity and hexanal synthesis in defatted soy flour were examined. The corresponding results showed that defatted soy flour maintained high LOX activities and that hexanal synthesis in such sample was significantly inhibited by high concentration DTT (above 130 mM). Data from the current investigation demonstrate the existence of LOX independent hexanal formation induced by reducing agents in ISP and the potential requirement of iron as a catalyst.

  12. Anticancer chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    This document examines chemotherapeutic agents for use in veterinary oncology. It lists some of the most common categories of chemotherapeutic drugs, such as alkylating agents and corticosteroids. For each category, the paper lists some example drugs, gives their mode of action, tumors usually susceptible to the drug, and common side effects. A brief discussion of mechanisms of drug resistance is also provided. (MHB)

  13. Multidrug resistant Salmonella enterica isolated from conventional pig farms using antimicrobial agents in preventative medicine programmes.

    Science.gov (United States)

    Cameron-Veas, Karla; Fraile, Lorenzo; Napp, Sebastian; Garrido, Victoria; Grilló, María Jesús; Migura-Garcia, Lourdes

    2018-04-01

    A longitudinal study was conducted to investigate the presence of multidrug antimicrobial resistance (multi-AR) in Salmonella enterica in pigs reared under conventional preventative medicine programmes in Spain and the possible association of multi-AR with ceftiofur or tulathromycin treatment during the pre-weaning period. Groups of 7-day-old piglets were treated by intramuscular injection with ceftiofur on four farms (n=40 piglets per farm) and with tulathromycin on another four farms (n=40 piglets per farm). A control group of untreated piglets (n=30 per farm) was present on each farm. Faecal swabs were collected for S. enterica culture prior to treatment, at 2, 7 and 180days post-treatment, and at slaughter. Minimal inhibitory concentrations of 14 antimicrobial agents, pulsed-field gel electrophoresis and detection of resistance genes representing five families of antimicrobial agents were performed. Plasmids carrying cephalosporin resistant (CR) genes were characterised. Sixty-six S. enterica isolates were recovered from five of eight farms. Forty-seven isolates were multi-AR and four contained bla CTX-M genes harboured in conjugative plasmids of the IncI1 family; three of these isolates were recovered before treatment with ceftiofur. The most frequent AR genes detected were tet(A) (51/66, 77%), sul1 (17/66, 26%); tet(B) (15/66, 23%) and qnrB (10/66, 15%). A direct relation between the use of ceftiofur in these conditions and the occurrence of CR S. enterica was not established. However, multi-AR was common, especially for ampicillin, streptomycin, sulphonamides and tetracycline. These antibiotics are used frequently in veterinary medicine in Spain and, therefore, should be used sparingly to minimise the spread of multi-AR. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Anticancer Synergy Between Polyphenols

    Directory of Open Access Journals (Sweden)

    Urszula Lewandowska

    2014-01-01

    Full Text Available Chemoprevention has recently gained a new dimension due to the possibility of studying the mechanisms of action of chemopreventive agents at the molecular level. Many compounds have been proved to inhibit early stages of carcinogenesis in experimental models. These compounds include both recognized drugs (such as tamoxifen and nonsteroidal anti-inflammatory drugs and natural constituents of edible and therapeutic plants, particularly polyphenols. Phenolics are characterized by high structural diversity and, consequently, a very broad spectrum of biological activities. They are increasingly looked upon as a valuable alternative or a support for synthetic drugs, as evidenced by a growing number of clinical trials regarding the use of phenolic compounds and polyphenol-rich extracts in chemoprevention and therapy. In the present work, we discuss the effectiveness of natural polyphenols as cancer preventive and therapeutic agents resulting from their synergy with synthetic or semisynthetic anticancer drugs as well as with other phenolic compounds of plant origin.

  15. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  16. Synthesis and serotonin transporter activity of 1,3-bis(aryl)-2-nitro-1-propenes as a new class of anticancer agents

    DEFF Research Database (Denmark)

    McNamara, Yvonne M.; Cloonan, Suzanne M.; Knox, Andrew J.S.

    2011-01-01

    Structural derivatives of 4-MTA, an illegal amphetamine analogue have been previously shown to have anticancer effects in vitro. In this study we report the synthesis of a series of novel 1,3-bis(aryl)-2-nitro-1-propene derivatives related in structure to 4-MTA. A number of these compounds...... of the serotonin transporter, a high affinity target for amphetamines and independent of protein tyrosine phosphatases and tubulin dynamics both of which have been previously associated with nitrostyrene-induced cell death. We demonstrate that a number of these compounds induce caspase activation, PARP cleavage...

  17. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    Science.gov (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  18. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property [v1; ref status: indexed, http://f1000r.es/15s

    Directory of Open Access Journals (Sweden)

    Asfar S Azmi

    2013-06-01

    Full Text Available “Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  19. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2017-11-01

    Full Text Available A series of bromophenol hybrids with N-containing heterocyclic moieties were designed, and their anticancer activities against a panel of five human cancer cell lines (A549, Bel7402, HepG2, HCT116 and Caco2 using MTT assay in vitro were explored. Among them, thirteen compounds (17a, 17b, 18a, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b exhibited significant inhibitory activity against the tested cancer cell lines. The structure-activity relationships (SARs of bromophenol derivatives were discussed. The promising candidate compound 17a could induce cell cycle arrest at G0/G1 phase and induce apoptosis in A549 cells, as well as caused DNA fragmentations, morphological changes and ROS generation by the mechanism studies. Furthermore, compound 17a suppression of Bcl-2 levels (decrease in the expression of the anti-apoptotic proteins Bcl-2 and down-regulation in the expression levels of Bcl-2 in A549 cells were observed, along with activation caspase-3 and PARP, which indicated that compound 17a induced A549 cells apoptosis in vitro through the ROS-mediated apoptotic pathway. These results might be useful for bromophenol derivatives to be explored and developed as novel anticancer drugs.

  20. Enterobacter and Klebsiella species isolated from fresh vegetables marketed in Valencia (Spain) and their clinically relevant resistances to chemotherapeutic agents.

    Science.gov (United States)

    Falomir, María Pilar; Rico, Hortensia; Gozalbo, Daniel

    2013-12-01

    Occurrence of antibiotic-resistant pathogenic or commensal enterobacteria in marketed agricultural foodstuffs may contribute to their incorporation into the food chain and constitutes an additional food safety concern. In this work, we have determined the clinically relevant resistances to 11 common chemotherapeutic agents in Enterobacter and Klebsiella isolates from fresh vegetables from various sources (supermarkets and greengrocers' shops in Valencia, Spain). A total of 96 isolates were obtained from 160 vegetables analyzed (50% positive samples): 68 Enterobacter isolates (59 E. cloacae, two E. aerogenes, two E. cancerogenus, one E. gergoviae, and four E. sakazakii, currently Cronobacter spp.), and 28 Klebsiella isolates (19 K. oxytoca and 9 K. pneumoniae). Only seven isolates were susceptible to all agents tested, and no resistances to ceftazidime, ciprofloxacin, gentamicin, and chloramphenicol were detected. Most isolates were resistant to amoxicillin/clavulanic acid (74 [58 Enterobacter and 16 Klebsiella]) or to ampicillin (80 [55/25]). Other resistances were less frequent: nitrofurantoin (13 isolates [12/1]), tetracycline (6 [5/1]), co-trimoxazole (3 [3/0]), cefotaxime (1 [1/0]), and streptomycin (2 [1/1]). Multiresistant isolates to two (56 [41/15]), three (10 E. cloacae isolates), four (one E. cloacae and one K. pneumoniae isolate), and five (two E. cloacae isolates) chemotherapeutic agents were also detected. The presence of potential pathogens points to marketed fresh produce, which often is eaten raw, as a risk factor for consumer health. In addition, these results support the usefulness of these bacterial species as indicators of the spreading of antibiotic resistances into the environment, particularly in the food chain, and suggest their role as carriers of resistance determinants from farms to consumers, which may constitute an additional "silent" food safety concern. Therefore, there is a need to improve the hygienic quality of marketed fresh

  1. Local isolate of Saccharomyces cerevisiae as biocompetitive agent of Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2006-12-01

    Full Text Available Aspergillus flavus is a toxigenic fungus that contaminates feed and influences the animal health. Saccharomyces cerevisiae can be used as a biocompetitive agent to control the contamination. The ability of local isolate of S. cerevisiae as a biocompetitive agent for A. flavus was evaluated. A. flavus (30ml was swept on Sabouraud dextrose agar (SDA, while S. cerevisiae was swept on its left and right. Plates were incubated at 28oC for nine days. Lytic activity of S. cerevisiae was detected by pouring its suspension on the centre of the cross streaks of A. flavus. Plates were incubated at 28oC for five days. Growth inhibition of A. flavus by S. cerevisiae was determined by mixing the two fungi on Potato dextrose broth and incubated at 28oC for 24 hours. Total colony of A. flavus were then observed at incubation time of 2, 4, 6 and 24 hours by pour plates method on the SDA plates and incubated on 28oC for two days. Growth of hyphae of A. flavus sweep were inhibited with the swept of S. cerevisiae. The width of A. flavus colony treated with S. cerevisiae is narrower (3,02 cm than that of control ( 4,60 cm. The growth of A. flavus was also inhibited on the centre of cross streak where the S. cerevisiae poured. S. cerevisiae gradually reduced the colony number of A. flavus in the mixed culture of broth fungi ie. 14 x 103 CFU/ml while colony number of control is 80 x 103 CFU/ml. Results showed that S. cerevisiae could be used as biocompetitive agent of A. flavus.

  2. Enzymatic Activity and Susceptibility to Antifungal Agents of Brazilian Environmental Isolates of Hortaea werneckii.

    Science.gov (United States)

    Formoso, Andrea; Heidrich, Daiane; Felix, Ciro Ramón; Tenório, Anne Carolyne; Leite, Belize R; Pagani, Danielle M; Ortiz-Monsalve, Santiago; Ramírez-Castrillón, Mauricio; Landell, Melissa Fontes; Scroferneker, Maria L; Valente, Patricia

    2015-12-01

    Four strains of Hortaea werneckii were isolated from different substrates in Brazil (a salt marsh macrophyte, a bromeliad and a marine zoanthid) and had their identification confirmed by sequencing of the 26S rDNA D1/D2 domain or ITS region. Most of the strains were able to express amylase, lipase, esterase, pectinase and/or cellulase, enzymes that recognize components of plant cells as substrates, but did not express albuminase, keratinase, phospholipase and DNAse, whose substrates are animal-related. Urease production was positive for all isolates, while caseinase, gelatinase and laccase production were variable among the strains. All the strains grew in media containing up to 30% NaCl. We propose that the primary substrate associated with H. werneckii is plant-related, in special in saline environments, where the fungus may live as a saprophyte and decomposer. Infection of animal-associated substrates would be secondary, with the fungus acting as an opportunistic animal pathogen. All strains were resistant to fluconazole and presented high MIC for amphotericin B, while they were susceptible to all the other antifungal agents tested.

  3. Identification of potential anticancer compounds from Oplopanax horridus.

    Science.gov (United States)

    Wang, Chong-Zhi; Zhang, Zhiyu; Huang, Wei-Hua; Du, Guang-Jian; Wen, Xiao-Dong; Calway, Tyler; Yu, Chunhao; Nass, Rachael; Zhao, Jing; Du, Wei; Li, Shao-Ping; Yuan, Chun-Su

    2013-08-15

    Oplopanax horridus is a plant native to North America. Previous reports have demonstrated that this herb has antiproliferative effects on cancer cells but study mostly focused on its extract or fractions. Because there has been limited phytochemical study on this herb, its bioactive compounds are largely unknown. We recently isolated and identified 13 compounds, including six polyynes, three sesquiterpenes, two steroids, and two phenolic acids, of which five are novel compounds. In this study, we systemically evaluated the anticancer effects of compounds isolated from O. horridus. Their antiproliferative effects on a panel of human colorectal and breast cancer cells were determined using the MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry. The in vivo antitumor effect was examined using a xenograft tumor model. Among the 13 compounds, strong antiproliferative effects were observed from falcarindiol and a novel compound oplopantriol A. Falcarindiol showed the most potent antiproliferative effects, significantly inducing pro-apoptosis and cell cycle arrest in the S and G2/M phases. The anticancer potential of falcarindiol was further verified in vivo, significantly inhibiting HCT-116 tumor growth in an athymic nude mouse model at 15 mg/kg. We also analyzed the relationship between polyyne structures and their pharmacological activities. We observed that both the terminal hydroxyl group and double bond obviously affected their anticancer potential. Results from this study supplied valuable information for future semi-synthesis of polyyne derivatives to develop novel cancer chemopreventive agents. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Anticancer therapy

    Science.gov (United States)

    Norenberg, Jeffrey P.

    2017-04-04

    A subject afflicted with a cancer or precancerous condition is treated by administering an agent that increases expression of somatostatin receptors, and a cytotoxic recognition ligand. In an alternative embodiment, somatostatin analogs, which are radiolabeled are used to treat cancer or precancerous conditions.

  5. Protein phosphatase 2A inhibition and circumvention of cisplatin cross-resistance by novel TCM-platinum anticancer agents containing demethylcantharidin.

    Science.gov (United States)

    To, Kenneth K W; Wang, Xinning; Yu, Chun Wing; Ho, Yee-Ping; Au-Yeung, Steve C F

    2004-09-01

    Novel TCM-platinum compounds [Pt(C(8)H(8)O(5))(NH(2)R)(2)] 1-5, derived from integrating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety, possess anticancer and protein phosphatase 2A inhibition properties. The compounds are able to circumvent cisplatin resistance by apparently targeting the DNA repair mechanism. Novel isosteric analogues [Pt(C(9)H(10)O(4))(NH(2)R)(2)] A and B, devoid of PP2A-inhibitory activity, were found to suffer from an enhanced DNA repair and were cross-resistant to cisplatin. The results advocate a well-defined structure-activity requirement associating the PP2A-inhibiting demethylcantharidin with the circumvention of cisplatin cross-resistance demonstrated by TCM-Pt compounds 1-5.

  6. Design and docking of novel series of hybrid xanthones as anti-cancer agent to target human DNA topoisomerase 2-alpha

    Directory of Open Access Journals (Sweden)

    Lalit Mohan Nainwal

    2014-06-01

    Full Text Available Topoisomerase (topo IIα is a homodimeric protein catalyzes topological vicissitudes by adding or by soothing super coiling transpiration, occurs in human DNA during DNA replication as an outcome chromosome segregation and condensation occurs during meiosis I and recombination. To prevent the cleavage and religation activity we administered novel hybrid substituted Xanthone series of drugs. The toxicity prediction showed outstanding results which impetus to study its anticancer activities by targeting topoisomerase (topo IIα. We developed the homology model of the topoisomerase (topo IIα due to the unavailability of 3D structure in the Protein Data Bank. Structural assessment of the modeled protein and confirmed the quality of the model. The ligands were docked using Autodock4.2 software and binding energy was reported. The compound XM9, XN2, XM7, XLNU and XNS scored lowest binding energy and highest binding affinity. The interaction sites and the hydrogen bond were observed.

  7. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  8. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand

    2015-01-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag + to Ag 0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC 50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of

  9. Distribution of withaferin A, an anticancer potential agent, in different parts of two varieties of Withania somnifera (L.) Dunal. grown in Sri Lanka.

    Science.gov (United States)

    Siriwardane, A S; Dharmadasa, R M; Samarasinghe, Kosala

    2013-02-01

    Withania somnifera (L.) Dunal. (Family: Solanaceae) is a therapeutically important medicinal plant in traditional and Ayurveda systems of medicine in Sri Lanka. Witheferin A, is a potential anticancer compound found in W. somnifera. In the present study, attempts have been made to compare witheferin A content, in different parts of (root, stem, bark, leaf) two varieties of (LC1 and FR1) W. somnifera grown in same soil and climatic conditions. Ground sample (1g) of leaves, bark, stem and roots of two W. somnifera varieties were extracted with CHCl3 three times. Thin Layer Chromatographic analysis (TLC) of withaferin A in both plant extracts were performed on pre-coated Silica gel 60 GF254 plates in hexane: ethyl acetate: methanol (2: 14: 1) mobile phase. Densitometer scanning was performed at lambda(max) = 215 nm. HPLC of W. somnifera extracts was performed using Kromasil C18 reverse phase column. Both varieties of W. somnifera differed in withaferin A. After visualizing TLC plates with vanillin-sulphuric acid leaf and bark extracts of both varieties showed high intensity purple colour spots (R(f) 0.14) than in stem and roots. The highest amount of withaferin A (3812 ppm) was observed in leaves of variety LC1 while the lowest amount was observed in roots of variety FR1 (5 ppm). According to the results it could be concluded that content of Witheferin A was vary leaf > bark > stem > roots in both varieties. Therefore, there is a high potential of incorporation of leaves and bark of W. somnifera for the preparation of Ayurveda drug leading to anticancer activity instead of roots.

  10. Efficacy of a non-hypercalcemic vitamin-D2 derived anti-cancer agent (MT19c and inhibition of fatty acid synthesis in an ovarian cancer xenograft model.

    Directory of Open Access Journals (Sweden)

    Richard G Moore

    Full Text Available BACKGROUND: Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDING: Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3 xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c-VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K activity independently of PPAR-gamma protein. SIGNIFICANCE: Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis.

  11. Susceptibility of bacteria isolated from acute gastrointestinal infections to rifaximin and other antimicrobial agents in Mexico.

    Science.gov (United States)

    Novoa-Farías, O; Frati-Munari, A C; Peredo, M A; Flores-Juárez, S; Novoa-García, O; Galicia-Tapia, J; Romero-Carpio, C E

    2016-01-01

    Bacterial resistance may hamper the antimicrobial management of acute gastroenteritis. Bacterial susceptibility to rifaximin, an antibiotic that achieves high fecal concentrations (up to 8,000μg/g), has not been evaluated in Mexico. To determine the susceptibility to rifaximin and other antimicrobial agents of enteropathogenic bacteria isolated from patients with acute gastroenteritis in Mexico. Bacterial strains were analyzed in stool samples from 1,000 patients with diagnosis of acute gastroenteritis. The susceptibility to rifaximin (RIF) was tested by microdilution (<100, <200, <400 and <800μg/ml) and susceptibility to chloramphenicol (CHL), trimethoprim-sulfamethoxazole (T-S), neomycin (NEO), furazolidone (FUR), fosfomycin (FOS), ampicillin (AMP) and ciprofloxacin (CIP) was tested by agar diffusion at the concentrations recommended by the Clinical & Laboratory Standards Institute and the American Society for Microbiology. Isolated bacteria were: enteropathogenic Escherichia coli (E. coli) (EPEC) 531, Shigella 120, non-Typhi Salmonella 117, Aeromonas spp. 80, enterotoxigenic E. coli (ETEC) 54, Yersinia enterocolitica 20, Campylobacter jejuni 20, Vibrio spp. 20, Plesiomonas shigelloides 20, and enterohemorrhagic E. coli (EHEC 0:157) 18. The overall cumulative susceptibility to RIF at <100, <200, <400, and <800μg/ml was 70.6, 90.8, 99.3, and 100%, respectively. The overall susceptibility to each antibiotic was: AMP 32.2%, T-S 53.6%, NEO 54.1%, FUR 64.7%, CIP 67.3%, CLO 73%, and FOS 81.3%. The susceptibility to RIF <400 and RIF <800μg/ml was significantly greater than with the other antibiotics (p<0.001). Resistance of enteropathogenic bacteria to various antibiotics used in gastrointestinal infections is high. Rifaximin was active against 99-100% of these enteropathogens at reachable concentrations in the intestine with the recommended dose. Copyright © 2015 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  12. Bacterial Agents Andantibiogram of Most Common Isolated Organisms from Hands of Surgical Team Members after Scrubbing

    Directory of Open Access Journals (Sweden)

    PS Mohseni- Meybodi

    2008-04-01

    Full Text Available Introduction: Many post-surgical wound infections in hospitals cause morbidity and morality of patients and these are usually transmitted via hands of surgical personnel. The aim of the present study was to detect and antibiogram the bacterial agents following scrubbing of hands of surgical personnel before operation. Methods: Hands of 134 personnels of operation room were swabbed following scrubbing with antiseptic Betadine solution. Swab samples were inoculated on selective and differential media such as blood ager, McConky and manitol salt agar(MSA. Following incubation of media at 37c° for 24hr, bacterial species were identified using differential related tests. The isolated species were than antibiogramed and the results together with other data was analysed by SPSS software program. Results: Of the total of 134 cases, 81(60.4% were male and 53(39.6% female. The mean scrub time for each person was (206.1+/-103.2 seconds; 6 to 60 seconds base change. Increasing time of scrub was significantly correlated with decreasing rate of bacteria (P=0.003, (R=-0.254. Contamination was present in 129(96.3% cases following scrubbing. Maximum contamination was observed in nails (92.5%. Average number of bacteria for each individual was between 0 and 159. 62.6% of isolated bacteria were non- staphylococci and 7.7% were S. aureus. Vancomycin and ceftizoxim were the most sensitive, while penicillin was the least sensitive antibiotic. Conclusion: Results revealed that hand contamination was more than the expected standard level. Therefore, regarding the critical task of surgical personnel, training of all operation room staff is highly recommended to minimize the rate of contamination.

  13. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland.

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten; Lefort, François

    2016-10-06

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture. Copyright © 2016 Crovadore et al.

  14. Ultrastructural changes of erythrocytes in whole blood after exposure to prospective in silico-designed anticancer agents: a qualitative case study

    Directory of Open Access Journals (Sweden)

    Lisa Repsold

    2014-01-01

    Full Text Available BACKGROUND: Novel, in silico-designed anticancer compounds were synthesized in our laboratory namely, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10,15-tetraen-17-ol (ESE-15-ol and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(1016-tetraene (ESE-16. These compounds were designed to have improved bioavailability when compared to their source compound, 2-methoxyestradiol. This theoretically would be due to their increased binding affinity to carbonic anhydrase II, present in erythrocytes. Since the novel compounds under investigation are proposed to be transported within erythrocytes bound to carbonic anhydrase II, the morphological effect which they may exert on whole blood and erythrocytes is of great significance. A secondary outcome included revision of previously reported procedures for the handling of the whole blood sample. The purpose of this study was twofold. Firstly, the ultrastructural morphology of a healthy female's erythrocytes was examined via scanning electron microscopy (SEM after exposure to the newly in silico-designed compounds. Morphology of erythrocytes following exposure to ESE-15-ol and ESE-16 for 3 minutes and 24 hours at 22°C were described with the use of SEM. The haemolytic activity of the compounds after 24 hours exposure were also determined with the ex vivo haemolysis assay. Secondly, storage conditions of the whole blood sample were investigated by determining morphological changes after a 24 hour storage period at 22°C and 37°C. RESULTS: No significant morphological changes were observed in the erythrocyte morphology after exposure to the novel anticancer compounds. Storage of the whole blood samples at 37°C for 24 hours resulted in visible morphological stress in the erythrocytes. Erythrocytes incubated at 22°C for 24 hours showed no structural deformity or distress. CONCLUSIONS: From this research the optimal temperature for ex vivo exposure of whole blood samples to ESE-15-ol and ESE-16 for 24 hours was determined to be 22

  15. Iminium ion chemistry of mitosene DNA alkylating agents. Enriched 13C NMR and isolation studies.

    Science.gov (United States)

    Ouyang, A; Skibo, E B

    2000-05-16

    Described herein is a study of the reductive alkylation chemistry of mitosene antitumor agents. We employed a 13C-enriched electrophilic center to probe the fate of the iminium ion resulting from reductive activation. The 13C-labeled center permitted the identification of complex products resulting from alkylation reactions. In the case of DNA reductive alkylation, the type and number of alkylation sites were readily assessed by 13C NMR. Although there has been much excellent work done in the area of mitosene chemistry and biochemistry, the present study provides a number of new findings: (1) The major fate of the iminium ion is head-to-tail polymerization, even in dilute solutions. (2) Dithionite reductive activation results in the formation of mitosene sulfite esters as well as the previously observed sulfonate adducts. (3) The mitosene iminium ion alkylates the adenosine 6-amino group as well as the guanosine 2-amino group. The identification of the latter adduct was greatly facilitated by the 13C-label at the electrophilic center. (4) The mitosene iminium ion alkylates DNA at both nitrogen and oxygen centers without any apparent base selectivity. The complexity of mitosene reductive alkylation of DNA will require continued adduct isolation studies.

  16. Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Deraz, Sahar F.; Soliman, Hoda M.; El-Deeb, Nehal M.; El-Ewasy, Sara M.

    2016-01-01

    L-asparaginase is an important enzyme as therapeutic agents used in combination with other drugs in the treatment of acute lymphoblastic leukemia. A newly isolated actinomycetes strain, Streptomyces sp. NEAE-82, was potentially producing extracellular L-asparaginase, it was identified as Streptomyces fradiae NEAE-82, sequencing product was deposited in the GenBank database under accession number KJ467538. L-asparaginase was purified from the crude enzyme using ammonium sulfate precipitation, dialysis and ion exchange chromatography using DEAE Sepharose CL-6B. Further the kinetic studies of purified enzyme were carried out. The optimum pH, temperature and incubation time for maximum L-asparaginase activity were found to be 8.5, 40 °C and 30 min, respectively. The optimum substrate concentration was found to be 0.06 M. The Km and Vmax of the enzyme were 0.01007 M and 95.08 Uml−1min−1, respectively. The half-life time (T1/2) was 184.91 min at 50 °С, while being 179.53 min at 60 °С. The molecular weight of the subunits of L-asparaginase was found to be approximately 53 kDa by SDS–PAGE analysis. The purified L-asparaginase showed a final specific activity of 30.636 U/mg protein and was purified 3.338-fold. The present work for the first time reported more information in the production, purification and characterization of L-asparaginase produced by newly isolated actinomycetes Streptomyces fradiae NEAE-82. PMID:27605431

  17. Study on the thermodynamics of the binding of iminium and alkanolamine forms of the anticancer agent sanguinarine to human serum albumin

    International Nuclear Information System (INIS)

    Hossain, Maidul; Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2012-01-01

    Highlights: ► Energetics of sanguinarine–human serum albumin has been elucidated. ► The alkanolamine binds stronger than iminium. ► Enthalpy driven binding for iminium was revealed. ► Alkanolamine form binding was favored by negative enthalpy and entropy changes. ► Spectroscopic results support calorimetry data. - Abstract: Sanguinarine is an anticancer plant alkaloid that can exist in the charged iminium and neutral alkanolamine forms. The thermodynamics of the interaction of the two forms with human serum albumin was investigated using calorimetric techniques, and the data supplemented with circular dichroism and spectrofluorimetric studies. The thermodynamic results show that there is only one class of binding for sanguinarine on HSA. The equilibrium constant was four times higher for the alkanolamine (K a = 2.18 · 10 5 M −1 ) than for iminium (K a = 5.97 · 10 4 M −1 ). The binding was enthalpy driven for iminium and favoured by both a negative enthalpy and a stronger favourable entropy contribution for the alkanolamine. Temperature dependent calorimetric data yielded values of ΔC p ∘ that are consistent with the involvement of different molecular forces in the complexation of the two forms of sanguinarine to HSA. The fluorescence quenching data suggest a static quenching mechanism. Synchronous fluorescence and circular dichroic data are consistent with a conformational change in the protein on binding that was also higher for the alkanolamine form.

  18. Synthesis, characterization of some novel 1,3,4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents

    Directory of Open Access Journals (Sweden)

    Vinayak Mahadev Adimule

    2014-12-01

    Full Text Available In the present work a series of novel derivatives of 8-hydroxy quinolone substituted 1,3,4-oxadiazole compounds were synthesized by convergent synthetic method and studied for their antibacterial and anticancer properties. The cell lines used for cytotoxic evaluation were HeLa, Caco-2 and MCF7. The synthetic chemistry involved conversion of various substituted aromatic acids into ethyl ester 2a-e. The ethyl ester was converted into corresponding carbohydrazide 3a-e. Carbohydrazides are reacted with chloroacetic acid, phosphorous oxytrichloride and irradiated with microwave in order to obtain the various key intermediates 2-(chloromethyl-5-(substituted phenyl-1,3,4-oxadiazole 4a-e. The 2-(chloromethyl-5-(substituted phenyl-1,3,4-oxadiazole was reacted with 8-hydroxy quinolone in presence of sodium hydride and obtained a series of 8-hydroxy quinoline substituted 1,3,4-oxadiazoles 5a-e. Among the synthesised compounds, the cytotoxicity of the compound 5b i.e. 8-{[5-(2,4-dichlorophenyl-1,3,4-oxadiazol-2-yl]methoxy}quinoline against MCF7 with IC50 of 5.3µM and the compound 5e i.e. 8-{[5-(4-bromophenyl-1,3,4-oxadiazol-2-yl]methoxy}quinoline showed MIC of < 6.25µg/mL against Staphylococcus aureus which is comparable with the known standards. The standards used for cytotoxic evaluation was 5-fluorouracil and for antibacterial was nitrofurazone

  19. Synthesis and DFT study on Hantzsch reaction to produce asymmetrical compounds of 1,4-dihydropyridine derivatives for P-glycoprotein inhibition as anticancer agent.

    Science.gov (United States)

    Mollazadeh, Shirin; Moosavi, Fatemeh; Hadizadeh, Farzin; Seifi, Mahmoud; Behravan, Javad; Iman, Maryam

    2018-02-19

    P-glycoprotein (P-gp) causes the efflux of cancer chemotherapy drugs from tumor cells, so it's inhibition can be one target for design and synthesis of new anticancer drugs. In this study new compounds of 1,4-dihydropyridine (DHP) were recommended as inhibitors of P-gp. We synthesized new symmetrical DHP with 36% - 43% yield by the reaction of new reactants. In biological studies, these compounds have high lipophilicity, and thus low water solubility. Four reactants I with different reactivity was computed and compared using DFT study. The LUMO-map was differently distributed on each reactant. Amine intermediate underwent tautomerism as atransition state and it seems to play important role in reaction progress. Calculations were performed to select suitable reactants. Two different reactants I, including one polar group and a non-polar group, were used to produce asymmetric compounds with 49%-60% yield. These asymmetric DHPs were more soluble than symmetric DHPs. In the final step another selected symmetric product (by elimination of chlorine atom) was synthesized with high yield (74%) with using DFT study. In this study, selected reactants by DFT calculation have increased yield of reaction from 36% to 74% without any catalyst. Diversity of products is noticeable topic. Racemic asymmetric compounds with R and S enantiomers have potential for enantiomeric separation. Each of these enantiomers could have different physiological effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. A novel nontoxic alkyl-phospholipid with selective antitumor activity, plasmanyl-(N-acyl)-ethanolamine (PNAE), isolated from degenerating chick embryonal tissues and from an anticancer biopreparation cACPL.

    Science.gov (United States)

    Kára, J; Borovicka, M; Liebl, V; Smolíková, J; Ubik, K

    1986-01-01

    A novel alkyl-phospholipid with selective antitumor activity was isolated from an anticancer biopreparation cACPL (crude anticancer phospholipids) and from tissues of degenerating chick embryos. The alkyl-phospholipid was isolated and purified by chromatographic methods using silicic acid column chromatography and thin layer chromatography. The chemical structure of the alkyl-phospholipid was characterized by thin-layer chromatographic analysis of the degradation products after enzymatic digestion with phospholipase C from Bacillus cereus and with phospholipase D, by two-dimensional thin-layer chromatography, infrared spectrum, and mass spectrometric analysis. The alkyl-phospholipid was identified as 1-O-alkyl-2-acyl-sn-glycero-3-phospho-(N-acyl)-ethanolamine, i.e. plasmanyl-(N-acyl)-ethanolamine (PNAE), the main molecular species being 1-O-octadecyl-2-oleoyl-sn-glycero-3-phospho-(N-palmitoyl)-ethanol-amine. PNAE exhibits a selective cytolytic effect on human tumor cells HEp-2, HeLa and T24 in tissue cultures at the concentration of 25 micrograms PNAE per ml and 66-98% inhibition of DNA synthesis in the human tumor cells at concentration as low as 2.5 micrograms/ml, but it does not inhibit at a 50-fold higher concentration the DNA synthesis and normal growth of human fibroblasts (cell line LEP). PNAE represents the main biologically active antitumor component of the cACPL biopreparation and exhibits a significant antitumor effect in vivo in B10/An mice bearing Mc11 fibrosarcoma. Possible molecular mechanism of the selective antitumor activity of PNAE is discussed, involving the selective disturbance of phospholipid metabolism in tumor cells, leading to progressive destruction of tumor cell membranes. The fact that PNAE is nontoxic and selectively active against tumor cells at nanomolar concentrations in vitro as well as in vivo, indicates the possibility of its clinical use. PNAE and cACPL biopreparation might provide a very useful new tool for human anticancer

  1. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Science.gov (United States)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  2. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents.

    Science.gov (United States)

    Ramírez-Prada, Jonathan; Robledo, Sara M; Vélez, Iván D; Crespo, María Del Pilar; Quiroga, Jairo; Abonia, Rodrigo; Montoya, Alba; Svetaz, Laura; Zacchino, Susana; Insuasty, Braulio

    2017-05-05

    A new series of N-substituted 2-pyrazolines 9a-f, 10a-f, 11a-f, 12a-f and 13a-f were obtained from the cyclocondensation reaction of [(7-chloroquinolin-4-yl)amino]chalcones 8a-f with hydrazine hydrate and its derivatives. Fourteen of the synthesized compounds including the starting chalcones were selected by US National Cancer Institute (NCI) for testing their anticancer activity against 60 different human cancer cell lines, with the most important GI 50 values ranging from 0.28 to 11.7 μM (0.13-6.05 μg/mL) and LC 50 values ranging from 2.6 to > 100 μM (1.2 to > 51.7 μg/mL), for chalcones 8a,d and pyrazolines 10c,d. All compounds were assessed for antibacterial activity against wild type and multidrug resistant gram negative and gram positive bacteria, with MIC values ranging from 31.25 to 500 μg/mL. Additionally, the novel compounds were tested for antifungal and antiparasitic properties. Although these compounds showed mild activity against Candida albicans, chalcones 8a and 8e showed high activity against Cryptococcus neoformans with MIC 50  = 7.8 μg/mL. For anti-Plasmodium falciparum activity the 2-pyrazoline 11b was the most active with EC 50  = 5.54 μg/mL. Regarding the activity against Trypanosoma cruzi, compound 10a was highly active with EC 50  = 0.70 μg/mL. Chalcone 8a had good activity against Leishmania panamensis amastigotes with EC 50  = 0.79 μg/mL. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. A chemical preformulation study of a host-guest complex of cucurbit[7]uril and a multinuclear platinum agent for enhanced anticancer drug delivery.

    Science.gov (United States)

    Kennedy, Alan R; Florence, Alastair J; McInnes, Fiona J; Wheate, Nial J

    2009-10-07

    Single crystal and powder X-ray diffraction have been used to examine the host-guest complex of cucurbit[7]uril (CB[7]) and the model dinuclear platinum anticancer complex trans-[{PtCl(NH(3))(2)}(2)mu-dpzm](2+) (di-Pt, dpzm= 4,4'-dipyrazolylmethane). The single crystal structure shows that the host-guest complex forms with the di-Pt dpzm ligand within the CB[7] cavity and with the platinum groups just beyond the macrocycle portals. Binding is stabilised through hydrophobic interactions and six hydrogen bonds between the platinum ammine ligands and the dpzm pyrazole amine to the CB[7] carbonyls. Each host-guest complex crystallises with two chloride counterions and 5.5 water molecules. The unit cell comprises four asymmetric units, each of which contains three crystallographically independent CB[7]-di-Pt moieties. X-Ray powder diffraction demonstrated structural consistency of the bulk crystals with a single polycrystalline phase that is identical with the single crystal structure. Finally, the effect of CB[7] encapsulation of the thermal stability of di-Pt was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). From the TGA experiments it was found that free CB[7] and the CB[7]-di-Pt complex lose 11 and 3.5% of their mass respectively, through the loss of water molecules, upon heating to 160 degrees C. The DSC results showed that the free dpzm ligand melts between 186 and 199 degrees C, with a standard enthalpy of fusion of 27.92 kJ mol(-1). As a 2+ inorganic salt the metal complex does not melt but undergoes several decomposition events between 140 and 290 degrees C. Encapsulation by CB[7] completely stabilises di-Pt with no decomposition of either the macrocycle or metal complex at temperatures up to 290 degrees C.

  4. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola.

    Science.gov (United States)

    Zhou, Ting; Schneider, Karin E; Li, Xiu-Zhen

    2008-08-15

    An unconventional strategy of screening food microbes for biocontrol activity was used to develop biocontrol agents for controlling post-harvest peach brown rot caused by Monilinia fructicola. Forty-four microbial isolates were first screened for their biocontrol activity on apple fruit. Compared with the pathogen-only check, seven of the 44 isolates reduced brown rot incidence by >50%, including four bacteria: Bacillus sp. C06, Lactobacillus sp. C03-b and Bacillus sp. T03-c, Lactobacillus sp. P02 and three yeasts: Saccharomyces delbrueckii A50, S. cerevisiae YE-5 and S. cerevisiae A41. Eight microbial isolates were selected for testing on peaches by wound co-inoculation with mixtures of individual microbial cultures and conidial suspension of M. fructicola. Only two of them showed significant biocontrol activity after five days of incubation at 22 degrees C. Bacillus sp. C06 suppressed brown rot incidence by 92% and reduced lesion diameter by 88% compared to the pathogen-only check. Bacillus sp.T03-c reduced incidence and lesion diameter by 40% and 62%, respectively. The two isolates were compared with Pseudomonas syringae MA-4, a biocontrol agent for post-harvest peach diseases, by immersing peaches in an aliquot containing individual microbial isolates and the pathogen conidia. Treatments with isolates MA-4, C06 and T03-c significantly controlled brown rot by 91, 100, and 100% respectively. However, only isolates MA-4 and C06 significantly reduced brown rot by 80% and 15%, respectively when bacterial cells alone were applied. On naturally infected peaches, both the bacterial culture and its cell-free filtrate of the isolate C06 significantly controlled peach decay resulting in 77 and 90% reduction, respectively, whereas the treatment using only the bacterial cells generally had no effect. Isolate C06 is a single colony isolate obtained from a mesophilic cheese starter, and has been identified belonging to Bacillus amyloliquefaciens. The results have clearly

  5. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    Science.gov (United States)

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  7. Etiologic agents of surface mycoses isolated at Laboratorio de Micologia Clinica from Universidad del Cauca

    Directory of Open Access Journals (Sweden)

    Emilse Folleco

    2014-04-01

    Full Text Available Introduction: Superficial fungal infections affect 20 % to 25 % of the world’s population with an increase on its incidence. They are caused by endogenous and exogenous fungi in presence of an alteration of the protective mechanisms of the skin. Objectives: To determine the most common etiologic agents, characterize the patients, describe the type of injury and determine the risk factors associated with superficial mycoses. Methods: Prospective cross-sectional study conducted between January 2008 and December 2010; samples were taken from 136 patients who met the inclusion criteria defined samples of skin lesions and nail for KOH and fungal culture were collected and a structured survey for clinical and associated risk factors was applied. Results: Cultures and KOH were positive in 41.9% of samples; the most frequently isolated fungi were Trichophyton interdigitale 12.5%, Trichophyton rubrum (8.8% and Candida albicans (7.4%. Regarding patients, 61% of patients were female and 39 % male, the largest percentage were aged between 21 to 30 years (20.6%, with varied occupations as students (35.3%, housewives (16.9%, traders (14.7%, being affected the feet (35.2 % and hallux toenail (22.7 %. Risk factors were statistically significant prior use of antifungal, corticosteroid use and share objects like slippers. Conclusion: This study found that superficial mycoses are mainly due to fungi of the normal flora of the skin. Sharing personal care items facilitates dispersion of the infective forms of this group fungus as interpersonal. A high percentage of patients used empirical treatments without mycological diagnosis, which may facilitate fungal resistance to commonly used antifungal. Knowledge of risk factors is important for the prevention of fungal infections and mycological studies are essential for effective treatment.

  8. First culture isolation of Borrelia lonestari, putative agent of southern tick-associated rash illness.

    Science.gov (United States)

    Varela, Andrea S; Luttrell, M Page; Howerth, Elizabeth W; Moore, Victor A; Davidson, William R; Stallknecht, David E; Little, Susan E

    2004-03-01

    Southern tick-associated rash illness (STARI) is a Lyme disease-like infection described in patients in the southeastern and south-central United States, where classic Lyme disease is relatively rare. STARI develops following the bite of a lone star tick (Amblyomma americanum) and is thought to be caused by infection with an "uncultivable" spirochete tentatively named Borrelia lonestari. In this study, wild lone star ticks collected from an area where B. lonestari is endemic were cocultured in an established embryonic tick cell line (ISE6). The cultures were examined by dark-field microscopy for evidence of infection, and spirochete identity and morphology were evaluated by flagellin B and 16S rRNA gene sequence, by reaction to Borrelia-wide and B. burgdorferi-specific monoclonal antibodies, and by electron microscopy. Live spirochetes were first visualized in primary culture of A. americanum ticks by dark-field microscopy 14 days after the cell culture was inoculated. The sequences of the flagellin B and 16S rRNA genes of cultured spirochetes were consistent with previously reported sequences of B. lonestari. The cultured spirochetes reacted with a Borrelia-wide flagellin antibody, but did not react with an OspA antibody specific to B. burgdorferi, by indirect fluorescent antibody testing. Electron microscopy demonstrated organisms that were free and associated with ISE6 cells, with characteristic Borrelia sp. morphology. This study describes the first successful isolation of B. lonestari in culture, providing a much needed source of organisms for the development of diagnostic assays and forming a basis for future studies investigating the role of the organism as a human disease agent.

  9. Pharmacokinetics and absorption of the anticancer agents dasatinib and GDC-0941 under various gastric conditions in dogs--reversing the effect of elevated gastric pH with betaine HCl.

    Science.gov (United States)

    Pang, Jodie; Dalziel, Gena; Dean, Brian; Ware, Joseph A; Salphati, Laurent

    2013-11-04

    Changes in gastric pH can impact the dissolution and absorption of compounds presenting pH-dependent solubility. We assessed, in dogs, the effects of gastric pH-modifying agents on the oral absorption of two weakly basic anticancer drugs, dasatinib and GDC-0941. We also tested whether drug-induced hypochlorhydria could be temporarily mitigated using betaine HCl. Pretreatments with pentagastrin, famotidine, betaine HCl, or combinations of famotidine and betaine HCl were administered orally to dogs prior to drug dosing. The gastric pH was measured under each condition for up to 7 h, and the exposure of the compounds tested was calculated. The average gastric pH in fasted dogs ranged from 1.45 to 3.03. Pentagastrin or betaine HCl treatments lowered the pH and reduced its variability between dogs compared to control animals. In contrast, famotidine treatment maintained gastric pH at values close to 7 for up to 5 h, while betaine HCl transiently reduced the pH to approximately 2 in the famotidine-treated dogs. Famotidine pretreatment lowered GDC-0941 exposure by 5-fold, and decreased dasatinib measurable concentrations 30-fold, compared to the pentagastrin-treated dogs. Betaine HCl restored GDC-0941 AUC in famotidine-treated dogs to levels achieved in control animals, and increased dasatinib AUC to 1.5-fold that measured in control dogs. The results confirmed the negative impact of acid-reducing agents on the absorption of weakly basic drugs. They also suggested that betaine HCl coadministration may be a viable strategy in humans treated with acid-reducing agents in order to temporarily reduce gastric pH and restore drug exposure.

  10. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    Science.gov (United States)

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  11. Potential of N-aryl(benzyl,heteryl-2-(tetrazolo[1,5-c]quinazolin-5-ylthioacetamides as anticancer and antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Oleksii M. Antypenko

    2016-11-01

    Full Text Available The death rate from cancer and infectious diseases is still very high, therefore research in this area is extremely important and promising as in medical, so in economic point of view. Thus, potassium salt of tetrazolo[1,5-c]quinazolin-5-thion was modified per alkylation by N-aryl(benzyl,heterylacetamides with proper confirmation of newly synthesized compounds’ structures by FT-IR, LC–MS, 1H NMR and elemental analysis data. The substances were tested for bioluminescence inhibition against Photobacterium leiognathi Sh1 (5–50 μg/mL to check their cytotoxicity. Then they were screened for antibacterial and antifungal activities (100 μg against Escherichia coli, Staphylococcus aureus, Enterobacter aerogenes and Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans. It was found that compounds 1.1, 1.5, 1.10, 1.31, 1.33 possessed light activity against K. pneumonia. The US National Cancer Institute (NCI has chosen 19 compounds and screened them for ability to inhibit in 10 μM concentration 60 different human tumor cell lines. The LOX IMVI cell line of melanoma appeared to be the most sensitive one, and N-(6-methylbenzo[d]thiazol-2-yl-2-(tetrazolo[1,5-c]quinazolin-5-ylthioacetamide (1.31 and N-(3-fluorobenzyl-2-(tetrazolo[1,5-c]quinazolin-5-ylthioacetamide (1.19 exhibited high growth inhibition rate, and N-(6-methoxybenzo[d]thiazol-2-yl-2-(tetrazolo[1,5-c]quinazolin-5-ylthioacetamide (1.32 showed lethal antitumor activity against it. The latter compound 1.32 showed the best anticancer results, also inhibiting growth of leukemia SR cell line, NCI-H460 of non-small cell lung cancer, KM12 of colon cancer and SF-295 of CNS cancer. The in silico molecular docking studies have predicted the affinity of the synthesized substances to the epidermal growth factor receptor (EGFR.

  12. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Arulselvan, Palanisamy [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  13. Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis

    Directory of Open Access Journals (Sweden)

    Abdjad Asih Nawangsih

    2011-04-01

    Full Text Available Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis. X. oryzae pv. oryzae (Xoo causes bacterial leaf blight (BLB of rice (Oryza sativa L., a major disease that constrains production of the staple crop in many countries of the world. Identification of X. oryzae pv. oryzae (Xoo was conducted based on the disease symptoms, pathogenicity, morphological, physiological, and genetic characteristics of bacterial cultures isolated from the infected plants. Fifty bacterial isolates predicted as Xoo have been successfully isolated. They are aerobic, rod shaped, and Gram negative bacteria. The isolates were evaluated for their hypersensitivity in tobacco and pathogenicity in rice plant. Fifty isolates induced hypersensitive reaction in tobacco and showed pathogenicity symptom in rice in different length. Based on physiological test, hypersensitivity and pathogenicity reactions, three bacterial isolates strongly predicted as Xoo, i.e. STG21, STG42, and STG46, were non indole formation, non pigment fluorescent, hydrolyzed casein, catalase activity positive, but negative oxidase. Partial sequencing of 16S rRNA genes of STG21 and STG42 showed 80% and 82% homology with X. oryzae, respectively, while STG46 showed 84% homology with X. campestris. Mini-Tn5 transposon mutagenesis of STG21 generated one of the mutants (M5 lossed it’s ability to induce hypersensitive reaction in tobacco plant and deficient in pathogenicity on rice. The lesion length of rice leaf caused by the mutant M5 decreased up to 80%.

  14. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    Science.gov (United States)

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights

  16. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  17. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    Science.gov (United States)

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  18. In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells.

    Science.gov (United States)

    Byun, Joon Seok; Sohn, Joo Mi; Leem, Dong Gyu; Park, Byeongyeon; Nam, Ji Hye; Shin, Dong Hyun; Shin, Ji Sun; Kim, Hyoung Ja; Lee, Kyung-Tae; Lee, Jae Yeol

    2016-02-01

    As a result of our continuous research, new 3,4-dihydroquinazoline derivative containing ureido group, KCP10043F was synthesized and evaluated for T-type Ca(2+) channel (Cav3.1) blockade, cytotoxicity, and cell cycle arrest against human non-small cell lung (A549) cells. KCP10043F showed both weaker T-type Ca(2+) channel blocking activity and less cytotoxicity against A549 cells than parent compound KYS05090S [4-(benzylcarbamoylmethyl)-3-(4-biphenylyl)-2-(N,N',N'-trimethyl-1,5-pentanediamino)-3,4-dihydroquinazoline 2 hydrochloride], but it exhibited more potent G1-phase arrest than KYS05090S in A549 cells. This was found to be accompanied by the downregulations of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D2, cyclin D3, and cyclin E at the protein levels. However, p27(KIP1) as a CDK inhibitor was gradually upregulated at the protein levels and increased recruitment to CDK2, CDK4 and CDK6 after KCP10043F treatment. Based on the strong G1-phase cell cycle arrest of KCP10043F in A549 cells, the combination of KCP10043F with etoposide (or cisplatin) resulted in a synergistic cell death (combination index=0.2-0.8) via the induction of apoptosis compared with either agent alone. Taken together with these overall results and the favorable in vitro ADME (absorption, distribution, metabolism, and excretion) profiles of KCP10043F, therefore, it could be used as a potential agent for the combination therapy on human lung cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2018-02-01

    Full Text Available Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of 100 ± 5 nm and tail length of 150 ± 5 nm. ACP17 has eclipse and latent periods of 25 ± 5 min and 50 ± 5 min, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.

  20. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.

    Science.gov (United States)

    Nakamura, Hideaki; Fang, Jun; Gahininath, Bharate; Tsukigawa, Kenji; Maeda, Hiroshi

    2011-11-07

    SMA-ZnPP and PEG-ZnPP are micellar drugs, encapsulating zinc protoporphyrin IX (ZnPP) with styrene maleic acid copolymer (SMA) and covalent conjugate of ZnPP with polyethylene glycol (PEG) respectively. Their intracellular uptake rate and subcellular localization were investigated. We found SMA-ZnPP showed higher and more efficient (about 2.5 times) intracellular uptake rate than PEG-ZnPP, although both SMA-ZnPP and PEG-ZnPP micelles were localized at endoplasmic reticulum (ER) and inhibited the target enzyme heme oxygenase 1 (HO-1) similarly. Both micellar ZnPP were taken up into the tumor cells by endocytosis. Furthermore SMA-ZnPP and PEG-ZnPP were examined for their drug releasing mechanisms. Liberation of ZnPP from the SMA micelle appears to depend on cellular amphiphilic components such as lecithin, while that for PEG-ZnPP depends on hydrolytic cleavage. These results indicate that these micelle formulations make water insoluble ZnPP to water soluble practical anticancer agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Exploring the Effect of Polypyridyl Ligands on the Anticancer Activity of Phosphorescent Iridium(III) Complexes: From Proteosynthesis Inhibitors to Photodynamic Therapy Agents.

    Science.gov (United States)

    Pracharova, Jitka; Vigueras, Gloria; Novohradsky, Vojtech; Cutillas, Natalia; Janiak, Christoph; Kostrhunova, Hana; Kasparkova, Jana; Ruiz, José; Brabec, Viktor

    2018-03-26

    A series of five kinetically inert bis-cyclometalated Ir III complexes of general formula [Ir(C^N) 2 (N^N)][PF 6 ] [C^N=2-phenyl-1-[4-(trifluoromethyl)benzyl]-1H-benzo[d]imidazol-κN,C; N^N=1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3), benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn, 4), and dipyrido[3,2-a:2',3'-c]phenazine-10,11-imidazolone (dppz-izdo, 5)] were designed and synthesized to explore the effect of the degree of π conjugation of the polypyridyl ligand on their toxicity in cancer cells. We show that less-lipophilic complexes 1 and 2 exhibit the highest toxicity [sub-micromolar inhibitory concentration (IC 50 ) values] in A2780, HeLa, and MCF-7 cancer cells, and they are markedly more efficient than clinically used platinum drugs. It is noteworthy that the investigated Ir agents display the capability to overcome acquired and inherent resistance to conventional cisplatin (in A2780cisR and MCF-7 cells, respectively). We demonstrate that the Ir complexes, unlike clinically used platinum antitumor drugs, do not kill cells through DNA-damage response. Rather, they kill cells by inhibiting protein translation by targeting preferentially the endoplasmic reticulum. Our findings also reveal that the toxic effect of the Ir complexes can be significantly potentiated by irradiation with visible light (by more than two orders of magnitude). The photopotentiation of the investigated Ir complexes can be attributed to a marked increase (≈10-30-fold) in intracellular reactive oxygen species. Collectively, these data highlight the functional diversity of antitumor metal-based drugs and the usefulness of a mechanism-based rationale for selecting candidate agents that are effective against chemoresistant tumors for further preclinical testing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy

    Science.gov (United States)

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L.; Taratula, Oleh

    2015-02-01

    Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.Multifunctional theranostic platforms capable of

  3. Marine Fungi: A Source of Potential Anticancer Compounds.

    Science.gov (United States)

    Deshmukh, Sunil K; Prakash, Ved; Ranjan, Nihar

    2017-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.

  4. Marine Fungi: A Source of Potential Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Sunil K. Deshmukh

    2018-01-01

    Full Text Available Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

  5. Improving the spectrophotometric determination of the alkylating activity of anticancer agents: a new insight into the mechanism of the NBP method.

    Science.gov (United States)

    Dierickx, Karen M E; Journé, Fabrice; Gerbaux, Pascal; Morandini, Renato; Kauffmann, Jean-Michel; Ghanem, Ghanem E

    2009-02-15

    In this paper, the mechanism of the nitrobenzylpyridine (NBP) method to measure the alkylating activity of drugs originally described by Epstein et al. [J. Epstein, R.W. Rosenthal, R.J. Ess, Anal. Chem. 27 (1955) 1435-1439] and modified later by others was revisited using melphalan, m-sarcolysin, chlorambucil, cyclophosphamide and ifosfamide. Its direct application to determine the activity of these drugs in human serum and aqueous media is described and discussed. This method, based on the formation of a chromophore due to the reaction between the alkylating agent and NBP, was significantly improved by extracting as quickly as possible the reaction product(s) into chloroform before adding alkali to develop the color. This significantly limited the degradation by hydrolysis of the products and enhanced the yield of the end chromophore in the organic phase. The reaction time was optimized by monitoring each compound color development. The best reaction time for each compound was selected and a higher stability of the extracted color over at least 1h was obtained (compared to a couple of minutes in previous studies). Most interestingly, water evaporation due to heating had little or no effect on the linearity of standard curves evaluated in the micromolar concentration range. Both the sensitivity and reproducibility of the method were therefore significantly improved. There appears to be a direct correlation between compound hydrolysis and alkylation activity; the relative reactivity is different among the compounds owing to the rate of (i) production, (ii) the relative proportions and (iii) the hydrolysis of the intermediates. A general mechanism for the nucleophilic competitive substitution is proposed.

  6. In Vitro Activity of Antimicrobial Agents Against Streptococcus Pyogenes Isolates from patients with Acute Tonsillopharyngitis in Dakar, Senegal

    Directory of Open Access Journals (Sweden)

    A. Gueye Ndiaye

    2009-06-01

    Full Text Available Streptococcus pyogenes (S. pyogenes is the most important causative agent of tonsillopharyngitis. Beta-lactam antibiotics, particularly penicillin, are the drug of first choice and macrolides are recommended for patients who are allergic to penicillin. However, other antibiotics are also used for the treatment of streptococcal tonsillopharyngitis. In recent years, the increase in the incidence of respiratory tract pathogens that are resistant to current antibacterial agents highlights the need to monitor the evolution of the resistance of these pathogens to antibiotics. In this study, we assess the susceptibility of 98 isolates of S. pyogenes to 16 antibiotics. The pathogens were recovered from patients with acute tonsillopharyngitis in Dakar, the Senegalese capital city, who were recruited from May 2005 to August 2006. All strains were susceptible to penicillin with low Minimum Inhibitory Concentration (MIC = 0,016 mg/L. Amoxicillin had high activity (100% showing its importance in treatment of streptococcal infections. Cephalosporins had MIC90 values ranging from 0.016 to 0.094 mg/L. Macrolides have shown high activity. All strains were resistant to tetracyclin. Other molecules such as teicoplanin, levofloxacin and chloramphenicol were also active and would represent alternatives to treatment of tonsillopharyngitis due to this pathogen. These results indicate that no significant resistance to antibiotics was found among patients with tonsillopharyngitis studied in Dakar. Limitations of this study were that the number of isolates tested was small and all isolates were collected from one hospital in Dakar. Hence, results may not be representative of the isolates found, in the wider community or other regions of Senegal. Further studies are needed in other parts of Dakar and other geographic regions of Senegal, in order to better clarify the antibiotic susceptibility profile of S. pyogenes isolates recovered from patients with tonsillopharyngitis.

  7. Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates

    Energy Technology Data Exchange (ETDEWEB)

    Casjens, S.R.; Dunn, J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Fraser-Liggett, C. M.; Schutzer, S. E.

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  8. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates.

    Science.gov (United States)

    Casjens, Sherwood R; Mongodin, Emmanuel F; Qiu, Wei-Gang; Dunn, John J; Luft, Benjamin J; Fraser-Liggett, Claire M; Schutzer, Steve E

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  9. Anticancer and antibacterial secondary metabolites from the ...

    African Journals Online (AJOL)

    Background: The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. Objectives: This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., ...

  10. Comparative anticancer activity of dolaborane diterpenes from the ...

    African Journals Online (AJOL)

    This study aimed at investigating the anticancer activity of tagalsins A, B, C, D, E, F and G isolated from the roots of Ceriops tagal. Their structures were established based on the IR, MS and NMR spectral data. Anticancer activity was evaluated using caspase-3 colourimetric assays and the minimum activation concentrations ...

  11. Closed Genome Sequence of Phytopathogen Biocontrol Agent Bacillus velezensis Strain AGVL-005, Isolated from Soybean.

    Science.gov (United States)

    Pylro, Victor Satler; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini; Morais, Daniel Kumazawa; Varani, Alessandro de Mello; Andreote, Cristiane Cipolla Fasanella; Bernardo, Eduardo Roberto de Almeida; Zucchi, Tiago

    2018-02-15

    We report here the closed and near-complete genome sequence and annotation of Bacillus velezensis strain AGVL-005, a bacterium isolated from soybean seeds in Brazil and used for phytopathogen biocontrol. Copyright © 2018 Pylro et al.

  12. Susceptibility of Campylobacter Fetus Subsp. Jejuni, Isolated from Patients in Jakarta, Indonesia to Ten Antimicrobial Agents

    Science.gov (United States)

    1981-06-16

    antimicrobials was tested against 28 Campylohacter letus subsp. jejuni isolates cultured from the stools of human gastroenteritis and suspected typhoid fever...isolated from the faeces of gastroenteritis and suspected typhoid fever patients in Jakarta, Indonesia and to compare the MIC values with those...jejuni strains used in this study were cultured from the faeces of 19 gastroenteritis and five suspected typhoid fever patients examined at the

  13. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. ANTAGONISTIC EFFECT OF FOUR FUNGAL ISOLATES TO GANODERMA BONINENSE, THE CAUSAL AGENT OF BASAL STEM ROT OF OIL PALM

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    1990-01-01

    Full Text Available Four fungal isolates from soils obtained from three sites of the oil palm plantations in North Sumatra were found antagonistic to Ganoderma boninense, the causal agent of basal stem rot of oil palm. Penicillium citrinum inhibited the growth of the pathogen and formed a zone of inhibition on the agar media. Trichoderma harzianum BIO - 1 as well as BIO - 2 and T. viride not only repressed the growth of the pathogen but also caused lysis of the hyphae, and the colony was totally overgrown by the antagonists.

  15. Genotyping of the MTL loci and susceptibility to two antifungal agents of Candida glabrata clinical isolates

    Directory of Open Access Journals (Sweden)

    María Teresa Lavaniegos-Sobrino

    2009-08-01

    Full Text Available The opportunistic fungal pathogen Candida glabrata is the second most common isolate from bloodstream infections worldwide and is naturally less susceptible to the antifungal drug fluconazole than other Candida species. C. glabrata is a haploid yeast that contains three mating-type like loci (MTL, although no sexual cycle has been described. Strains containing both types of mating information at the MTL1 locus are found in clinical isolates, but it is thought that strains containing type a information are more common. Here we investigated if a particular combination of mating type information at each MTLlocus is more prevalent in clinical isolates from hospitalized patients in Mexico and if there is a correlation between mating information and resistance to fluconazole and 5-fluorocytosine. We found that while both types of information at MTL1 are equally represented in a collection of 64 clinical isolates, the vast majority of isolates contain a-type information at MTL2 and α-type at MTL3. We also found no correlation of the particular combination of mating type information at the three MTL loci and resistance to fluconazole.

  16. Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases.

    Science.gov (United States)

    Ruiz-Moyano, S; Martín, A; Villalobos, M C; Calle, A; Serradilla, M J; Córdoba, M G; Hernández, A

    2016-08-01

    Fresh fruit is highly perishable during postharvest life, mainly due to fungal growth. Thus, fungal control is an important goal for the fruit industry. In this work, a selection of antagonistic yeasts isolated from fig and breba crops were screened in vitro. The isolated yeasts were challenged with three moulds isolated from decayed figs and breba crops, identified as Penicillium expansum M639 and Cladosporium cladosporioides M310 and M624, and pathogenic moulds Botrytis cinerea CECT20518 and Monilia laxa CA1 from culture collections. Two yeast isolates, Hanseniaspora opuntiae L479 and Metschnikowia pulcherrima L672, were selected for their ability to inhibit the growth of aforementioned moulds. These yeasts reduced the radial growth of moulds on PDA by between 45.23% and 66.09%. Antagonistic activity was associated with the interaction of live yeast cells with moulds. M. pulcherrima L672 apparently parasitised C. cladosporioides isolates. In addition, challenges were assayed using wounded apples and nectarines, with significant reductions in percent infection and lesion size for all moulds tested. To our knowledge, this is the first report identifying H. opuntiae as an antagonist against different pathogenic moulds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Isolation and identification of actinomycetes from a compost-amended soils biocontrol agents

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de la Fuente, R.; Cuesta, G.; Fornes, F.; Abad, M.

    2009-07-01

    Compost capability to suppress soil-borne plant pathogens has become an interesting subject as a strategy for reducing the adverse effects of massive fungicides application in the environmental. In this context, actinomycetes have received considerable attention as biocontrol agents, particularly Streptomyces species. (Author)

  18. Quantitative susceptibility of Streptococcus suis strains isolated from diseased pigs in seven European countries to antimicrobial agents licenced in veterinary medicine

    NARCIS (Netherlands)

    Wisselink, H.J.; Veldman, K.T.; Salmon, S.A.; Mevius, D.J.

    2006-01-01

    The susceptibility of Streptococcus suis strains (n = 384) isolated from diseased pigs in seven European countries to 10 antimicrobial agents was determined. For that purpose a microbroth dilution method was used according to CLSI recommendations. The following antimicrobial agents were tested:

  19. Susceptibility to antimicrobial agents among bovine mastitis pathogens isolated from North American dairy cattle, 2002-2010.

    Science.gov (United States)

    Lindeman, Cynthia J; Portis, Ellen; Johansen, Lacie; Mullins, Lisa M; Stoltman, Gillian A

    2013-09-01

    Approximately 8,000 isolates of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli, isolated by 25 veterinary laboratories across North America between 2002 and 2010, were tested for in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs. The minimal inhibitory concentrations (MICs) of the beta-lactam drugs remained low against most of the Gram-positive strains tested, and no substantial changes in the MIC distributions were seen over time. Of the beta-lactam antimicrobial agents tested, only ceftiofur showed good in vitro activity against E. coli. The MICs of the macrolides and lincosamides also remained low against Gram-positive mastitis pathogens. While the MIC values given by 50% of isolates (MIC50) for erythromycin and pirlimycin and the streptococci were all low (≤0.5 µg/ml), the MIC values given by 90% of isolates (MIC90) were higher and more variable, but with no apparent increase over time. Staphylococcus aureus showed little change in erythromycin susceptibility over time, but there may be a small, numerical increase in pirlimycin MIC50 and MIC90 values. Overall, the results suggest that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs tested over the 9 years of the study.

  20. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides

    Directory of Open Access Journals (Sweden)

    Fangping Li

    2018-03-01

    Full Text Available Sepia ink polysaccharide (SIP isolated from squid and cuttlefish ink is a kind of acid mucopolysaccharide that has been identified in three types of primary structures from squid (Illex argentinus and Ommastrephes bartrami, cuttlefish Sepiella maindroni, and cuttlefish Sepia esculenta ink. Although SIP has been proved to be multifaceted, most of the reported evidence has illuminated its chemopreventive and antineoplastic activities. As a natural product playing a role in cancer treatment, SIP may be used as chemotherapeutic ancillary agent or functional food. Based on the current findings on SIP, we have summarized four topics in this review, including: chemopreventive, antineoplastic, chemosensitive, and procoagulant and anticoagulant activities, which are correlative closely with the actions of anticancer agents on cancer patients, such as anticancer, toxicity and thrombogenesis, with the latter two actions being common causes of death in cancer cases exposed to chemotherapeutic agents.

  1. In vitro activities of tulathromycin and ceftiofur combined with other antimicrobial agents using bovine Pasteurella multocida and Mannheimia haemolytica isolates.

    Science.gov (United States)

    Sweeney, Michael T; Brumbaugh, Gordon W; Watts, Jeffrey L

    2008-01-01

    The purpose of this study was to determine the activities of two antibacterial agents used in the treatment of bovine respiratory infections-tulathromycin, a macrolide, and ceftiofur, a third-generation cephalosporin-alone, in combination with each other, and in combination with each of seven additional antibiotics (tilmicosin, florfenicol, enrofloxacin, danofloxacin, ampicillin, tetracycline, and penicillin G) against bovine Pasteurella multocida (n = 60) and Mannheimia haemolytica (n = 10) isolates for determination of synergy, antagonism, or indifference. Of 458 organism-drug combinations, 160 combinations of tulathromycin and 209 combinations of ceftiofur with eight antimicrobial drugs were indifferent. One combination was antagonistic (ceftiofur + florfenicol against one isolate of P. multocida). Time-kill studies showed loss of cidality for ceftiofur when combined with florfenicol at 1x the minimal inhibitory concentration. Overall, the in vitro data demonstrated that tulathromycin and ceftiofur, in combination with each other or seven other antimicrobial agents, primarily produce an indifferent response with no occurrences of synergism and rare occurrences of antagonism.

  2. Dissemination and genetic diversity of chlamydial agents in Polish wildfowl: Isolation and molecular characterisation of avian Chlamydia abortus strains.

    Directory of Open Access Journals (Sweden)

    Monika Szymańska-Czerwińska

    Full Text Available Wild birds are considered as a reservoir for avian chlamydiosis posing a potential infectious threat to domestic poultry and humans. Analysis of 894 cloacal or fecal swabs from free-living birds in Poland revealed an overall Chlamydiaceae prevalence of 14.8% (n = 132 with the highest prevalence noted in Anatidae (19.7% and Corvidae (13.4%. Further testing conducted with species-specific real-time PCR showed that 65 samples (49.2% were positive for C. psittaci whereas only one was positive for C. avium. To classify the non-identified chlamydial agents and to genotype the C. psittaci and C. avium-positive samples, specimens were subjected to ompA-PCR and sequencing (n = 83. The ompA-based NJ dendrogram revealed that only 23 out of 83 sequences were assigned to C. psittaci, in particular to four clades representing the previously described C. psittaci genotypes B, C, Mat116 and 1V. Whereas the 59 remaining sequences were assigned to two new clades named G1 and G2, each one including sequences recently obtained from chlamydiae detected in Swedish wetland birds. G1 (18 samples from Anatidae and Rallidae grouped closely together with genotype 1V and in relative proximity to several C. abortus isolates, and G2 (41 samples from Anatidae and Corvidae grouped closely to C. psittaci strains of the classical ABE cluster, Matt116 and M56. Finally, deep molecular analysis of four representative isolates of genotypes 1V, G1 and G2 based on 16S rRNA, IGS and partial 23S rRNA sequences as well as MLST clearly classify these isolates within the C. abortus species. Consequently, we propose an expansion of the C. abortus species to include not only the classical isolates of mammalian origin, but also avian isolates so far referred to as atypical C. psittaci or C. psittaci/C. abortus intermediates.

  3. Dissemination and genetic diversity of chlamydial agents in Polish wildfowl: Isolation and molecular characterisation of avian Chlamydia abortus strains.

    Science.gov (United States)

    Szymańska-Czerwińska, Monika; Mitura, Agata; Niemczuk, Krzysztof; Zaręba, Kinga; Jodełko, Agnieszka; Pluta, Aneta; Scharf, Sabine; Vitek, Bailey; Aaziz, Rachid; Vorimore, Fabien; Laroucau, Karine; Schnee, Christiane

    2017-01-01

    Wild birds are considered as a reservoir for avian chlamydiosis posing a potential infectious threat to domestic poultry and humans. Analysis of 894 cloacal or fecal swabs from free-living birds in Poland revealed an overall Chlamydiaceae prevalence of 14.8% (n = 132) with the highest prevalence noted in Anatidae (19.7%) and Corvidae (13.4%). Further testing conducted with species-specific real-time PCR showed that 65 samples (49.2%) were positive for C. psittaci whereas only one was positive for C. avium. To classify the non-identified chlamydial agents and to genotype the C. psittaci and C. avium-positive samples, specimens were subjected to ompA-PCR and sequencing (n = 83). The ompA-based NJ dendrogram revealed that only 23 out of 83 sequences were assigned to C. psittaci, in particular to four clades representing the previously described C. psittaci genotypes B, C, Mat116 and 1V. Whereas the 59 remaining sequences were assigned to two new clades named G1 and G2, each one including sequences recently obtained from chlamydiae detected in Swedish wetland birds. G1 (18 samples from Anatidae and Rallidae) grouped closely together with genotype 1V and in relative proximity to several C. abortus isolates, and G2 (41 samples from Anatidae and Corvidae) grouped closely to C. psittaci strains of the classical ABE cluster, Matt116 and M56. Finally, deep molecular analysis of four representative isolates of genotypes 1V, G1 and G2 based on 16S rRNA, IGS and partial 23S rRNA sequences as well as MLST clearly classify these isolates within the C. abortus species. Consequently, we propose an expansion of the C. abortus species to include not only the classical isolates of mammalian origin, but also avian isolates so far referred to as atypical C. psittaci or C. psittaci/C. abortus intermediates.

  4. Antifungal agent susceptibilities and interpretation of Malassezia pachydermatis and Candida parapsilosis isolated from dogs with and without seborrheic dermatitis skin.

    Science.gov (United States)

    Yurayart, Chompoonek; Nuchnoul, Noppawan; Moolkum, Pornsawan; Jirasuksiri, Supitcha; Niyomtham, Waree; Chindamporn, Ariya; Kajiwara, Susumu; Prapasarakul, Nuvee

    2013-10-01

    Malassezia pachydermatis and Candida parapsilosis are recognized as commensal yeasts on the skin of healthy dogs but also causative agents of eborrheic dermatitis, especially in atopic dogs. We determined and compared the susceptibility levels of yeasts isolated from dogs with and without seborrheic dermatitis (SD) using the disk diffusion method (DD) for itraconazole (ITZ), ketoconazole (KTZ), nystatin (NYS), terbinafine (TERB) and 5-fluorocytosine (5-FC) and the broth microdilution method (BMD) for ITZ and KTZ. The reliability between the methods was assessed using an agreement analysis and linear regression. Forty-five M. pachydermatis and 28 C. parapsilosis isolates were identified based on physiological characteristics and an approved molecular analysis. By DD, all tested M. pachydermatis isolates were susceptible to ITZ, KTZ, NYS and TERB but resistant to 5-FC. Only 46 - 60% of the tested C. parapsilosis isolates were susceptible to KTZ, TERB and 5-FC, but ITZ and NYS were effective against all. By BMD, over 95% of M. pachydermatis isolates were susceptible to KTZ and ITZ with an MIC90 < 0.03 and 0.12 μg/ml, respectively. The frequency of KTZ- and ITZ-resistant C. parapsilosis was 29% and 7%, and the MIC90 values were 1 μg/ml and 0.5-1 μg/ml, respectively. Regarding the agreement analysis, 2.2% of minor errors were observed in M. pachydermatis and 0.2-1% of very major errors occurred among C. parapsilosis. There were no significant differences in the yeast resistance rates between dogs with and without SD. KTZ and ITZ were still efficacious for M. pachydermatis but a high rate of KTZ resistant was reported in C. parapsilosis.

  5. Mitochondrially targeted anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Biasutto, L.; Dong, L.A.; Zoratti, M.; Neužil, Jiří

    2010-01-01

    Roč. 10, č. 6 (2010), s. 670-681 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrial targeting * pro-oxidant effect * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.238, year: 2010

  6. Comparative Activity of Several Antimicrobial Agents against Nosocomial Gram-Negative Rods Isolated across Canada

    Directory of Open Access Journals (Sweden)

    Shelley R Scriver

    1995-01-01

    Full Text Available In 1992, a surveillance study was performed in Canada to determine the susceptibility of nosocomial Gram-negative rods to several wide spectrum antimicrobials. Consecutive isolates from 10 institutions, as well as additional strains of selected species of Enterobacteriaceae that are known to possess the Bush group 1 beta-lactamase, were tested for susceptibility to 12 antimicrobials. Third-generation cephalosporin resistance was found to be as high as 29% in Enterobacter cloacae that possesses the Bush group 1 beta-lactamase and less than 4% in those isolates not possessing this enzyme. Cefepime equalled or exceeded the activity of the third-generation cephalosporins against the species of Enterobacteriaceae that demonstrated resistance to the third-generation cephalosporins.

  7. Two Entomophagous Isolated From Sumatera Utara; Potential as Biocontrol Agent Againts Nematode

    OpenAIRE

    Hastuti, Liana Dwi Sri; Nicklin, Jane; Siregar, Ameilia Zuliyanti

    2016-01-01

    Two species of nematophagous fungi has been isolated from Sumatera Utara soil, with an aim of harnessing their potential in the biological control of plant parasitic nematodes or animal parasitic nematodes in Indonesia, especially in Sumatera Utara. Soil samples were collected from tobacco plantations, vegetable fields and ornamental plantings in the Berastagi area, and also from livestock in local farms and a dairy farm in Berastagi Area, Karo Regency. Soil also collected from un-cultivated ...

  8. Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates

    OpenAIRE

    Casjens, Sherwood R.; Mongodin, Emmanuel F.; Qiu, Wei-Gang; Dunn, John J.; Luft, Benjamin J.; Fraser-Liggett, Claire M.; Schutzer, Steve E.

    2011-01-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, ...

  9. Indonesian honey protein isolation Apis dorsata dorsata and Tetragonula sp. as antibacterial and antioxidant agent

    Science.gov (United States)

    Sahlan, Muhamad; Damayanti, Vina; Azizah, Nurul; Hakamada, Kazuaki; Yohda, Masafumi; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin

    2018-02-01

    Honey is a natural product that has many properties and been widely used for many theurapeutic purposes. Research on honey has been very rapid but not yet for Indonesia. Like local Indonesian honey Apis dorsata dorsata and Tetragonula sp. which has been widely consumed by the public but not yet known for certain efficacy of each content. The function of honey as antibacterial and antioxidant has not been specifically explained by the components contained in honey. Protein is one of the content of honey that turned out to have activity as an antibacterial and antioxidant in certain types of honey because of it antimicrobial peptide. Testing of honey activity as antibacterial and antioxidant through several stages including isolation, SDS-PAGE analysis, Bradford test, antibacterial activity test with well diffusion method and antioxidant activity test by DPPH method. Bacteria used were gram-positive bacteria Staphylococcus aureus and gram negative Escherichia coli. After some experiment finally got protein isolation method that is in the form of further concentration using Millipore membrane for honey Tetragonula sp. and membrane filtration dot blot for honey Apis dorsata dorsata. The Bradford assay showed that Apis dorsata dorsata honey contains protein antioxidant and antibacterial activity (Staphylococcus aureus and Escherichia coli), whereas honey protein isolates Tetragonula sp. has antibacterial activity against Escherichia coli.

  10. Surface-Active Agents for Isolation of the Core Component of Avian Myeloblastosis Virus 1

    Science.gov (United States)

    Stromberg, Kurt

    1972-01-01

    Sixty-one surface-active agents were evaluated in a procedure designed to assess their ability to remove the envelope from the core component of avian myeloblastosis virus (AMV). The procedure consisted of centrifugation of intact AMV through a series of sucrose gradients each containing an upper layer of agent at one of eight concentrations between 0.01 and 10%. The effectiveness of an agent in producing AMV cores was indicated by (i) the appearance of light-scattering bands in the region of core buoyant density in gradient tubes; (ii) the range of surfactant concentration over which these bands appeared; and (iii) an electron microscopy assessment by the negative-staining technique of the relative proportion of core to non-core material in each of these bands. Six nonionic surfactants were selected by this screening method for comparison in regard to recovery of core protein and endogenous ribonucleic acid (RNA)-dependent deoxyribonucleic acid (DNA) polymerase activity, as well as further morphologic evaluation by electron microscopy. The nonionic surfactants of the polyoxyethylene alcohol class (particularly, Sterox SL) were most effective. Nonionic surfactants of the polyoxyethylene alkylphenol class (particularly, Nonidet P-40) were also effective. Sterox SL and Nonidet P-40 each gave a more than fivefold increase in specific activity of endogenous RNA-dependent DNA polymerase, and each gave a low recovery of core protein. Sterox SL did not interfere to the extent that Nonidet P-40 did in procedures which involved spectrophotometric assay at 260 nm. The use of Sterox SL resulted in the least envelope contamination of core preparations by electron microscopy examination, the most recovery of protein and endogenous RNA-dependent DNA polymerase activity, and a core buoyant density in sucrose of 1.27 g/ml. Images PMID:4112071

  11. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L. Gaertner

    Directory of Open Access Journals (Sweden)

    Siew Ling Ong

    2016-01-01

    Full Text Available Eleusine indica (Linnaeus Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica, hexane fraction showed the highest inhibitory activity of 27.01±5.68% at 100 μg/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica, namely, β-sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98±1.04%, with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were β-sitosterol (2.99±0.80% and stigmasterol (2.68±0.38%. The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  12. Ceftazidime-avibactam and comparator agents tested against urinary tract isolates from a global surveillance program (2011).

    Science.gov (United States)

    Flamm, Robert K; Sader, Helio S; Farrell, David J; Jones, Ronald N

    2014-11-01

    Ceftazidime-avibactam, a combination of ceftazidime and the non-β-lactam β-lactamase inhibitor avibactam, is in advanced clinical development. In this study, we report results of in vitro testing of ceftazidime-avibactam and comparator agents against a collection of urinary tract infection (UTI) isolates from the United States (USA), Europe and Mediterranean region (EMR), Latin America (LATAM), and the Asia-Pacific/South Africa regions (APAC). Clinical isolates (1 per patient episode) were collected from patients with a UTI during 2011. A total of 1797 isolates were collected from 159 medical centers. Isolates were processed at the medical centers and forwarded to a central monitoring laboratory for confirmatory identification and reference susceptibility testing. Ceftazidime-avibactam was highly active against Enterobacteriaceae and Pseudomonas aeruginosa. The MIC90 values for ceftazidime-avibactam against Enterobacteriaceae in the USA, EMR, and LATAM regions ranged from 0.25 to 0.5μg/mL. The MIC90 in the APAC was slightly elevated at 1μg/mL. A total of 6.1% (8/131) of Escherichia coli in the USA, 23.5% (43/183) in the EMR, 61.2% (30/49) in LATAM, and 75.0% (9/12) in APAC exhibited an extended-spectrum β-lactamase (ESBL) screen-positive phenotype. A total of 1.6% (2/129) of Klebsiella pneumoniae isolates in the USA were meropenem-non-susceptible (MIC ≥2μg/mL), but a rate of 10.3% (10/97) was observed in the EMR. All ESBL screen-positive phenotype and meropenem-non-susceptible E. coli and K. pneumoniae isolates exhibited a ceftazidime-avibactam MIC ≤4μg/mL. All isolates of P. aeruginosa in the USA and 80.9% (38/47) in the EMR were inhibited at a ceftazidime-avibactam MIC of ≤8μg/mL compared to 88.2% (15/17) and 61.7% (29/47) for ceftazidime alone. Ceftazidime-avibactam demonstrated wide in vitro activity against Gram-negative bacteria from patients with UTI including high potencies against multidrug-resistant organisms. Copyright © 2014 Elsevier Inc

  13. CancerHSP: anticancer herbs database of systems pharmacology

    Science.gov (United States)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  14. Potential of Lactic Acid Bacteria Isolated from Dangke and Indonesian Beef as Hypocholesterolaemic Agent

    Directory of Open Access Journals (Sweden)

    H. Burhan

    2017-08-01

    Full Text Available Lactobacillus fermentum strains were successfully isolated from dangke which was a fresh cheese-like product originating from Enrekang, South Sulawesi Province, Indonesia. In addition, Lactobacillus plantarum and Lactobacillus acidophillus were isolated from beef. This study aimed to investigate the ability of those 8 LAB strains from dangke and beef in lowering cholesterol level by using in vitro study. Strain of Lactic acid bacteria used were L. fermentum strains (A323L, B111K, B323K, C113L, C212L, L. plantarum strains (IIA-1A5 and IIA-2C12, and L. acidophillus IIA-2B4. Variables observed were identification of Bile Salt Hydrolase (BSH gene by Polymerase Chain Reaction (PCR, BSH activity and cholesterol assimilation. Phylogenetic tree indicated homology of L. plantarum IIA-IA5 was 98% to BSH gene of L. plantarum Lp529 with access code of FJ439771 and FJ439775 obtained from GenBank. The results demonstrated that eight strains of LAB isolated from dangke and beef that potentially showed cholesterol-lowering effects were L. fermentum B111K and L. plantarum IIA-1A5. L. fermentum B111K was able to assimilate cholesterol by 4.10% with assimilated cholesterol of 0.13 mg in 1010 cells. In addition, L. plantarum IIA-1A5 had BSH gene and BSH activity, as well as the ability to assimilate cholesterol by 8.10% with assimilated cholesterol of 0.06 mg in 1010 cells. It is concluded that L. fermentum B111K and L. plantarum IIA-1A5 were strains that showed cholesterol-lowering effects.

  15. Propolis as an antibacterial agent against clinical isolates of mdr-acinetobacter baumannii

    International Nuclear Information System (INIS)

    Hannan, A.; Batool, A.; Qamar, U.; Khalid, F.

    2015-01-01

    Multidrug resistant (MDR) Acinetobacter baumannii has emerged as an important health care problem. The organism is now identified as an important nosocomial pathogen particularly in the intensive care settings. The therapeutic options to treat this pathogen are limited; thus it needs testing for alternatives, like those of plant origin or natural products. Propolis is one of such products which have been tested against this organism. Methods: A. baumannii (n=32) were collected from Fatima Memorial Hospital, Lahore. The isolates were identified on the basis of their morphology, cultural characteristics and biochemical profile. The susceptibility of the isolates to various antimicrobials was evaluated as per Kirby-Bauer disc diffusion method according to (CLSI 2010). An ethanolic extract of propolis was prepared by the ultrasonic extraction method and its antibacterial activity was evaluated by the agar well diffusion technique. Minimum inhibitory concentration (MIC) was also determined by the agar dilution technique. Results: The isolates were found to be resistant to most of the commonly used anti-acinetobacter antimicrobials; doxycycline however was the exception. Propolis from Sargodha (EPS) and Lahore (EPL) showed zones of inhibition of 21.8 ± .29 mm and 15.66 ± 2.18 mm respectively. MIC ranges of EPS and EPL similarly was from 1.5-2.0 mg/ml and 4.0-4.5 mg/ml respectively. Conclusion: It is clear that EPS has potential edge of activity as compared to EPL. Nevertheless the potential efficacy of propolis must be subjected to pharmaceutical kinetics and dynamics to precisely determine its potential antimicrobial usefulness. (author)

  16. Radiobromine production, isolation and radiosynthesis for the development of a novel prostate cancer radiotherapeutic agent

    Science.gov (United States)

    Ellison, Paul A.; Graves, Stephen A.; Murali, Dhanabalan; De Jesus, Onofre T.; Barnhart, Todd E.; Thomadsen, Bruce R.; Speer, Tod; Nickles, Robert J.

    2017-05-01

    The radioactive isotopes of bromine accessible with low energy medical cyclotrons have unique potential for diagnostic and radiotherapeutic nuclear medicine applications. These include bromine-76 (t1/2 = 16 h) for positron emission tomography and bromine-77 (t1/2 = 57 h) for Auger radionuclide therapy. Methods are presented to synthesize NiSe discs from elemental starting materials for proton irradiation in a 4π water cooling target configuration. Radiobromide was isolated from the irradiated NiSe material by dry distillation and used to radiolabel 7α-BrDHT for investigation as an Androgen-receptor-targeted theranostic radiopharmaceutical.

  17. Developing Exposure/Response Models for Anticancer Drug Treatment: Special Considerations

    OpenAIRE

    Mould, DR; Walz, A-C; Lave, T; Gibbs, JP; Frame, B

    2015-01-01

    Anticancer agents often have a narrow therapeutic index (TI), requiring precise dosing to ensure sufficient exposure for clinical activity while minimizing toxicity. These agents frequently have complex pharmacology, and combination therapy may cause schedule-specific effects and interactions. We review anticancer drug development, showing how integration of modeling and simulation throughout development can inform anticancer dose selection, potentially improving the late-phase success rate. ...

  18. Developing Exposure/Response Models for Anticancer Drug Treatment: Special Considerations

    Science.gov (United States)

    Mould, DR; Walz, A-C; Lave, T; Gibbs, JP; Frame, B

    2015-01-01

    Anticancer agents often have a narrow therapeutic index (TI), requiring precise dosing to ensure sufficient exposure for clinical activity while minimizing toxicity. These agents frequently have complex pharmacology, and combination therapy may cause schedule-specific effects and interactions. We review anticancer drug development, showing how integration of modeling and simulation throughout development can inform anticancer dose selection, potentially improving the late-phase success rate. This article has a companion article in Clinical Pharmacology & Therapeutics with practical examples. PMID:26225225

  19. In vitro susceptibility of contagious ovine digital dermatitis associated Treponema spp. isolates to antimicrobial agents in the UK.

    Science.gov (United States)

    Angell, Joseph W; Clegg, Simon R; Sullivan, Leigh E; Duncan, Jennifer S; Grove-White, Dai H; Carter, Stuart D; Evans, Nicholas J

    2015-12-01

    Contagious ovine digital dermatitis (CODD) is an important cause of infectious lameness in sheep in the UK and Ireland and has a severe impact on the welfare of affected individuals. The three treponemal phylogroups Treponema medium/Treponema vincentii-like, Treponema phagedenis-like and Treponema pedis spirochaetes have been associated with clinical CODD lesions and are considered to be a necessary cause of disease. There are scant data on the antimicrobial susceptibility of the treponemes cultured from CODD lesions. The aim of this study was to determine in vitro the miniumum inhibitory concentration/ minimum bactericidal concentration (MIC/MBC) of antimicrobials used in the sheep industry for isolates of the three CODD associated treponeme phylogroups T. medium/T. vincentii-like, T. phagedenis-like and T. pedis. Twenty treponeme isolates; from 19 sheep with clinical CODD lesions. A microdilution method was used to determine in vitro the MIC/MBC of 10 antimicrobial agents for 20 treponeme isolates (five T. medium/T. vincentii-like, 10 T. phagedenis-like and five T. pedis). The antimicrobials tested were penicillin G, amoxicillin, oxytetracycline, tilmicosin, lincomycin, spectinomycin, tylosin, tildipirosin, tulathromycin and gamithromycin. The treponeme isolates tested showed low MICs and MBCs to all 10 antimicrobials tested. They were most susceptible to gamithromycin and tildipirosin (MIC90: 0.0469 mg/L), and were least susceptible to lincomycin, spectinomycin and oxytetracycline (MIC90: 48 mg/L, 24 mg/L and 3 mg/L, respectively). These data are comparable to in vitro antimicrobial susceptibility data for treponemes cultured from bovine digital dermatitis lesions. Dependent on local licensing, penicillin and tilmicosin appear to be the best candidates for future in vivo studies. © 2015 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  20. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  1. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-01

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  2. Pharmacokinetic-Pharmacodynamic Modelling & Simulation for Anticancer Drugs with Complex Absorption Characteristics

    NARCIS (Netherlands)

    Yu, Huixin

    2016-01-01

    Cancer is still one of the leading causes of death in the world. In recent years, targeted anticancer agents have shown to be a major breakthrough in the battle against cancer. These targeted anticancer agents, mostly administered orally, specifically target molecular defects of tumour cells

  3. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients

    Science.gov (United States)

    Suganya, K. S. Uma; Govindaraju, K.; Kumar, V. Ganesh; Dhas, T. Stalin; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M.

    2015-06-01

    Silver nanoparticles (AgNPs) are synthesized using biological sources due to its high specificity in biomedical applications. Herein, we report the size and shape controlled synthesis of AgNPs using the aqueous extract of blue green alga, Spirulina platensis. Size, shape and elemental composition of AgNPs were characterized using UV-vis spectroscopy, Fluorescence spectroscopy, FT-IR (Fourier Transform-Infrared Spectroscopy), FT-RS (Fourier Transform-Raman Spectroscopy), SEM-EDAX (Scanning Electron Microscopy-Energy Dispersive X-ray analysis) and HR-TEM (High Resolution Transmission Electron Microscopy). AgNPs were stable, well defined and monodispersed (spherical) with an average size of 6 nm. The synthesized AgNPs were tested for its antibacterial potency against isolates obtained from HIV patients.

  4. Masoprocol (nordihydroguaiaretic acid): a new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata).

    Science.gov (United States)

    Luo, J; Chuang, T; Cheung, J; Quan, J; Tsai, J; Sullivan, C; Hector, R F; Reed, M J; Meszaros, K; King, S R; Carlson, T J; Reaven, G M

    1998-04-03

    An ethnomedically-driven approach was used to evaluate the ability of a pure compound isolated from the creosote bush (Larrea tridentata) to lower plasma glucose concentration in two mouse models of type 2 diabetes. The results indicated that plasma glucose concentration fell approximately 8 mmol/l in male C57BL/ks-db/db or C57BL/6J-ob/ob mice following the oral administration of masoprocol (nordihydroguaiaretic acid), a well known lipoxygenase inhibitor. The decline in plasma glucose concentration following masoprocol treatment in the mice was achieved without any change in plasma insulin concentration. In addition, oral glucose tolerance improved and the ability of insulin to lower plasma glucose concentrations was accentuated in masoprocol-treated db/db mice. These data raise the possibility that masoprocol, or other lipoxygenase inhibitors, represents a new approach to the pharmacological treatment of Type 2 diabetes.

  5. Isolation of Egg Yolk Granules as Low-Cholesterol Emulsifying Agent in Mayonnaise.

    Science.gov (United States)

    Motta-Romero, Hollman; Zhang, Zhong; Tien Nguyen, An; Schlegel, Vicki; Zhang, Yue

    2017-07-01

    Egg yolk is an essential ingredient for many food products due to its excellent functional properties such as emulsification. However, the consumers' concern of its cholesterol level has led food industry to seek solutions for its replacement. Utilization of low-fat egg yolk granules as emulsifier can be an alternative strategy. In this study, granules with low cholesterol content were separated from egg yolk by a simple method under easily scalable centrifugal conditions. The egg yolk granules isolated within 0.17 M NaCl solution achieved a 22.5% yield that was similar to that using higher centrifugation speeds and longer time. The yield of egg yolk granules increased from 25% to 32% when the yolk:water ratio was changed from 1:1 to 1:2. Mayonnaise was prepared to evaluate the emulsifying capacity of the egg yolk granules. It was found that egg yolk granules exhibited similar emulsifying activity as that of whole egg yolk, but a better emulsion stabilizing property that is evidenced by the higher viscosity of mayonnaise prepared with the granules. In addition, the viscosities of mayonnaise prepared by spray dried yolk and granules were slightly higher than the liquid counterpart, showing a further improvement by spray drying on the emulsion stabilizing properties. The mechanical spectra of mayonnaise samples by frequency sweep also suggested that granules favored the formation of stronger 3-dimensional arrangements of oil droplets and therefore a more stable emulsion. Results suggest that granules isolated within 0.17 M NaCl solution present best emulsifying properties and can be applied as whole yolk replacer in food emulsions. © 2017 Institute of Food Technologists®.

  6. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia.

    Science.gov (United States)

    S Alanazi, Abdurrahman; Qureshi, Kamal Ahmad; Elhassan, Gamal Osman; I El-Agamy, Elsayed

    Escherichia coli is one of the most common pathogenic bacteria, which cause urinary tract infections in infants as well as in adult human beings. Due to the emergence of antibiotic resistance in E. coli, there is a great demand of new antimicrobial agent for the treatment of infections caused by such E. coli. This study aims to isolate, identify and characterize the native soil-bacterial strains predominate in the soil of Unaizah city, which produce antimicrobial agent antagonistic to E. coli ATCC 10536, followed by isolation, purification and characterization of antimicrobial agent. Pour plate, spread plate and 16S rRNA sequence analysis methods were followed for the isolation and identification of soil bacteria. Ammonium sulphate and dialysis (MWCO-8 KD) methods were followed for the isolation and partial purification of antimicrobial agent from the cell free broths. The characterization of antimicrobial agent was carried out by determining the minimum inhibitory concentration and effects of temperature and pH on the antimicrobial stability. Out of the twenty five soil samples, only one soil-bacterial strain was found to produce antimicrobial agent antagonistic to E. coli ATCC 10536. The isolated soil bacterium was identified as Bacillus pumilus SAFR-032. The soil isolate was characterized and results suggest that 30°C temperature and pH 7.0 were the optimum growth parameters and soybean casein digest broth was the best fermentation medium, whereas the highest production of antimicrobial agent was at 35°C temperature, pH 7.0, shaking at 150-220 rpm and at 60th h of incubation. The maximum yield of antimicrobial agent was obtained at 60% of (NH 4) 2SO 4. The results of characterization of antimicrobial agent suggest that the maximum and minimum antimicrobial activities were at pH 3.0 and 8.0, respectively, whereas antimicrobial activity was unaffected by temperature. The antimicrobial agent was highly stable at varying range of temperature 50-120°C. Minimum

  7. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  8. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents.

    Science.gov (United States)

    Teye, Kwesi; Numata, Sanae; Ishii, Norito; Krol, Rafal P; Tsuchisaka, Atsunari; Hamada, Takahiro; Koga, Hiroshi; Karashima, Tadashi; Ohata, Chika; Tsuruta, Daisuke; Saya, Hideyuki; Haftek, Marek; Hashimoto, Takashi

    2016-01-01

    CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways.

  9. Antimicrobial Agent of Susceptibilities and Antiseptic Resistance Gene Distribution among Methicillin-Resistant Staphylococcus aureus Isolates from Patients with Impetigo and Staphylococcal Scalded Skin Syndrome

    Science.gov (United States)

    Noguchi, Norihisa; Nakaminami, Hidemasa; Nishijima, Setsuko; Kurokawa, Ichiro; So, Hiromu; Sasatsu, Masanori

    2006-01-01

    The susceptibilities to antimicrobial agents of and distributions of antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated between 1999 and 2004 in Japan were examined. The data of MRSA strains that are causative agents of impetigo and staphylococcal scalded skin syndrome (SSSS) were compared with those of MRSA strains isolated from patients with other diseases. The susceptibilities to antiseptic agents in MRSA isolates from patients with impetigo and SSSS were higher than those in MRSA isolates from patients with other diseases. The distribution of the qacA/B genes in MRSA strains isolated from patients with impetigo and SSSS (1.3%, 1/76) was remarkably lower than that in MRSA strains isolated from patients with other diseases (45.9%, 95/207). Epidemiologic typings of staphylococcal cassette chromosome mec (SCCmec) and pulsed-field gel electrophoresis (PFGE) showed that MRSA strains isolated from patients with impetigo and SSSS had type IV SCCmec (75/76), except for one strain, and 64.5% (49/76) of the strains had different PFGE types. In addition, the patterns of restriction digestion of all tested qacA/B plasmid in MRSA isolates having different PFGE types were identical. The results showed that a specific MRSA clone carrying qacA/B was not prevalent, but qacA/B was spread among health care-associated MRSA strains. Therefore, it was concluded that the lower distribution rate of qacA/B resulted in higher susceptibilities to cationic antiseptic agents in MRSA isolated from patients with impetigo and SSSS. PMID:16757607

  10. First report of an Acanthamoeba genotype T13 isolate as etiological agent of a keratitis in humans.

    Science.gov (United States)

    Grün, Anna-Lena; Stemplewitz, Birthe; Scheid, Patrick

    2014-06-01

    Several strains of free-living amoebae (FLA) belonging to the genus Acanthamoeba are able to cause a painful sight-threatening disease of the cornea designated as Acanthamoeba keratitis (AK). In this case report, a 22-year-old woman, wearer of soft contact lenses, was treated after the initial examination, and follow-up laboratory results led to the diagnosis of Acanthamoeba keratitis. The patient recovered under the targeted therapy, demonstrating that the acanthamoebae were the etiological agents of the keratitis in this case. The acanthamoebae belonged morphologically to group II. Genotyping of the causative Acanthamoeba strain based on sequences of the PCR amplimer ASA.S1 amplified from 18S ribosomal DNA by using the genus-specific primers JDP1 and JDP2 followed. The phylogenetic comparison of ASA.S1 confirmed that the isolated Acanthamoeba strain is closely related to genotype T13 supported by pairwise sequence identities of 97.1-98.0% and bootstrap support of 980 replicates with reference sequences of genotype T13. These results regarding the Acanthamoeba keratitis-causing isolate KaBo expands the number of known pathogenic genotypes to 12. To our knowledge, this is the first report of a T13 Acanthamoeba genotype being associated with keratitis in humans.

  11. Reduced Susceptibility to Rifampicin and Resistance to Multiple Antimicrobial Agents among Brucella abortus Isolates from Cattle in Brazil.

    Science.gov (United States)

    Barbosa Pauletti, Rebeca; Reinato Stynen, Ana Paula; Pinto da Silva Mol, Juliana; Seles Dorneles, Elaine Maria; Alves, Telma Maria; de Sousa Moura Souto, Monalisa; Minharro, Silvia; Heinemann, Marcos Bryan; Lage, Andrey Pereira

    2015-01-01

    This study aimed to determine the susceptibility profile of Brazilian Brucella abortus isolates from cattle to eight antimicrobial agents that are recommended for the treatment of human brucellosis and to correlate the susceptibility patterns with origin, biotype and MLVA16-genotype of the strains. Screening of 147 B. abortus strains showed 100% sensitivity to doxycycline and ofloxacin, one (0.68%) strain resistant to ciprofloxacin, two strains (1.36%) resistant to streptomycin, two strains (1.36%) resistant to trimethoprim-sulfamethoxazole and five strains (3.40%) resistant to gentamicin. For rifampicin, three strains (2.04%) were resistant and 54 strains (36.73%) showed reduced sensitivity. Two strains were considered multidrug resistant. In conclusion, the majority of B. abortus strains isolated from cattle in Brazil were sensitive to the antimicrobials commonly used for the treatment of human brucellosis; however, a considerable proportion of strains showed reduced susceptibility to rifampicin and two strains were considered multidrug resistant. Moreover, there was no correlation among the drug susceptibility pattern, origin, biotype and MLVA16-genotypes of these strains.

  12. Isolation and characterization of Vibrio carchariae, a causative agent of gastroenteritis in the groupers, Epinephelus coioides.

    Science.gov (United States)

    Yii, K C; Yang, T I; Lee, K K

    1997-08-01

    An outbreak of serious mortality among the cultured groupers Epinephelus coioides, characterized by a swollen intestine containing yellow fluid, occurred in the summer of 1993 in Taiwan. A motile strain EmI82KL was isolated from the intestinal yellow fluid of the moribund groupers with tryptic soy agar supplemented with 2% NaCl and/or thiosulfate citrate bile salt sucrose agar. This strain was characterized and identified as Vibrio carchariae and was susceptible to chloramphenicol, doxycycline-HCl, nalidixic acid, oxolinic acid, oxytetracycline, and sulfonamide while resistant to ampicillin and penicillin G. In addition, the strain was neither auto-agglutinating nor hemagglutinating, but it was hemolytic against erythrocytes from sheep, rabbit, tilapia, and grouper. The bacteria could be reisolated from kidney, liver, and the transparent yellow fluid of swollen intestine of moribund groupers after bacterial challenge and re-identified as the same species. The LD50 value was 2.53 x 10(7) colony forming units/g grouper body weight.

  13. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Multicenter Study in Taiwan of the In Vitro Activities of Nemonoxacin, Tigecycline, Doripenem, and Other Antimicrobial Agents against Clinical Isolates of Various Nocardia Species▿

    Science.gov (United States)

    Lai, Chih-Cheng; Liu, Wei-Lun; Ko, Wen-Chien; Chen, Yen-Hsu; Tan, Hon-Ren; Huang, Yu-Tsung; Hsueh, Po-Ren

    2011-01-01

    The aim of this study was to assess the in vitro activities of nemonoxacin (a novel nonfluorinated quinolone), doripenem, tigecycline, and 16 other antimicrobial agents against Nocardia species. The MICs of the 19 agents against 151 clinical isolates of Nocardia species were determined by the broth microdilution method. The isolates were identified to the species level using 16S rRNA gene sequencing analysis. The results showed that N. brasiliensis (n = 60; 40%) was the most common species, followed by N. cyriacigeorgica (n = 24; 16%), N. farcinica (n = 12; 8%), N. beijingensis (n = 9), N. otitidiscaviarum (n = 8), N. nova (n = 8), N. asiatica (n = 7), N. puris (n = 6), N. flavorosea (n = 5), N. abscessus (n = 3), N. carnea (2), and one each of N. alba, N. asteroides complex, N. rhamnosiphila, N. elegans, N. jinanensis, N. takedensis, and N. transvalensis. The MIC90s of the tested quinolones against the N. brasiliensis isolates were in the order nemonoxacin = gemifloxacin Nocardia isolates. Among the four tested carbapenems, imipenem had the lowest MIC90s. All of the clinical isolates of N. beijingensis, N. otitidiscaviarum, N. nova, and N. puris and more than half of the N. brasiliensis and N. cyriacigeorgica isolates were resistant to at least one antimicrobial agent. The results of this in vitro study suggest that nemonoxacin, linezolid, and tigecycline are promising treatment options for nocardiosis. Further investigation of their clinical role is warranted. PMID:21343461

  15. Multicenter study in Taiwan of the in vitro activities of nemonoxacin, tigecycline, doripenem, and other antimicrobial agents against clinical isolates of various Nocardia species.

    Science.gov (United States)

    Lai, Chih-Cheng; Liu, Wei-Lun; Ko, Wen-Chien; Chen, Yen-Hsu; Tan, Hon-Ren; Huang, Yu-Tsung; Hsueh, Po-Ren

    2011-05-01

    The aim of this study was to assess the in vitro activities of nemonoxacin (a novel nonfluorinated quinolone), doripenem, tigecycline, and 16 other antimicrobial agents against Nocardia species. The MICs of the 19 agents against 151 clinical isolates of Nocardia species were determined by the broth microdilution method. The isolates were identified to the species level using 16S rRNA gene sequencing analysis. The results showed that N. brasiliensis (n=60; 40%) was the most common species, followed by N. cyriacigeorgica (n=24; 16%), N. farcinica (n=12; 8%), N. beijingensis (n=9), N. otitidiscaviarum (n=8), N. nova (n=8), N. asiatica (n=7), N. puris (n=6), N. flavorosea (n=5), N. abscessus (n=3), N. carnea (2), and one each of N. alba, N. asteroides complex, N. rhamnosiphila, N. elegans, N. jinanensis, N. takedensis, and N. transvalensis. The MIC90s of the tested quinolones against the N. brasiliensis isolates were in the order nemonoxacin=gemifloxacinNocardia isolates. Among the four tested carbapenems, imipenem had the lowest MIC90s. All of the clinical isolates of N. beijingensis, N. otitidiscaviarum, N. nova, and N. puris and more than half of the N. brasiliensis and N. cyriacigeorgica isolates were resistant to at least one antimicrobial agent. The results of this in vitro study suggest that nemonoxacin, linezolid, and tigecycline are promising treatment options for nocardiosis. Further investigation of their clinical role is warranted.

  16. Potency of Bacillus thuringiensis isolates from bareng Tenes-Malang City as a biological control agent for suppressing third instar of Aedes aegypti larvae

    Science.gov (United States)

    Lutfiana, Nihayatul; Gama, Zulfaidah Penata

    2017-11-01

    Dengue is a mosquito-borne viral disease that is transmitted by the female Aedes species. The number of dengue fever cases has increased in many geographic regions including Indonesia and one of them occurred in Bareng Tenes, Malang City, East Java Province. The objective of this research was to identify the potency of B. thuringeinsis isolates from Bareng Tenes, Malang, as the biological agent to control third instar Ae. aegypti larvae and to identify the potential B. thuringiensis isolates based on 16S rDNA sequence. B. thuringiensis was isolated from water and soil from 12 sites in the Bareng Tenes area. Bacterial isolation was performed using B. thuringiensis selective media. Several isolates had similar phenotypic characters with B. thuringiensis used to toxicity test against third instar Ae. aegypti larvae. The LC50-96h value was determined using probit regression. The most effective isolate was identified based on the 16S rDNA sequence, then aligned to the reference isolate using the BLAST program. A phylogeny tree was constructed using the Maximum Likelihood method. This study showed that among 22 isolates of B. thuringiensis, only BA02b, BS04a, and BA03a isolates have similar phenotypic characters with B. thuringiensis. Based on the toxicity test of B. thuringiensis against the third instar of Ae. aegypti larvae, it was indicated that BA02b and BA03a isolates were the potential agents to control Ae. aegypti larvae. BA02b isolate was the most effective B. thuringiensis (LC50-96h = 2,75 x 107 cell/mL). Based on 16S rDNA sequence, BA02b was identified as Bacillus thuringiensis var. Israelensis BGSC4Q2 (99 % similarities).

  17. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Luis Amarillas

    2017-07-01

    Full Text Available Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative

  18. Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana

    NARCIS (Netherlands)

    Conde, L.; Waalwijk, C.; Canto-Canché, B.B.; Kema, G.H.J.; Crous, P.W.; James, A.C.; Abeln, E.C.A.

    2007-01-01

    Idiomorphs mat1-1 and mat1-2 from Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana, were isolated. Degenerate oligos were used to amplify the HMG box of the mat1-2 idiomorph from M. fijiensis, showing homology with the HMG box of Mycosphaerella graminicola. Using a

  19. Distribution of phylogroups and co-resistance to antimicrobial agents in ampicillin resistant Escherichia coli isolated from healthy humans and from patients with bacteraemia

    DEFF Research Database (Denmark)

    Haugaard, A.; Hammerum, A. M.; Porsbo, Lone Jannok

    inhibitory concentration to antimicrobial agents and examined by PCR to determine their phylogroups. The phylotyping grouped the faecal samples into A (13%), B1 (10%), B2 (42%), D (19%), NT (16%) while the blood isolates grouped into A (16%), B1 (0%), B2 (48%), D (32%) and NT (3%). The frequency...

  20. Bacillus methylotrophicus Strain NKG-1, Isolated from Changbai Mountain, China, Has Potential Applications as a Biofertilizer or Biocontrol Agent.

    Science.gov (United States)

    Ge, Beibei; Liu, Binghua; Nwet, Thinn Thinn; Zhao, Wenjun; Shi, Liming; Zhang, Kecheng

    2016-01-01

    Chemical pesticides are widely used in agriculture, which endangers both environmental health and food safety. Biocontrol is an environmentally-friendly and cost-effective green technique in environmental protection and agricultural production; it generally uses selected bioresources, including beneficial microorganisms. We isolated a novel bacterial strain (NKG-1) from the rare dormant volcanic soils of Changbai Mountain in China's Jilin Province. The strain was identified as Bacillus methylotrophicus using morphological, biochemical, physiological, and phylogenetic 16S rDNA sequencing data. This strain was able to suppress mycelial growth and conidial germination of numerous plant pathogenic fungi on solid media. A greenhouse experiment showed that application of NKG-1 fermentation broth prior to inoculation of Botrytis cinerea, the cause of gray tomato mold, inhibited growth of the mold by 60%. Furthermore, application of a 100× dilution of NKG-1 fermentation broth to tomato seedlings yielded a significant increase in seedling fresh weight (27.4%), seedling length (12.5%), and root length (57.7%) compared to the control. When the same dosage was applied in the field, we observed increases in tomato plant height (14.7%), stem diameter (12.7%), crown width (16.3%), and maximum fruit diameter (11.5%). These results suggest that NKG-1 has potential commercial application as a biofertilizer or biocontrol agent.

  1. Bacillus methylotrophicus Strain NKG-1, Isolated from Changbai Mountain, China, Has Potential Applications as a Biofertilizer or Biocontrol Agent.

    Directory of Open Access Journals (Sweden)

    Beibei Ge

    Full Text Available Chemical pesticides are widely used in agriculture, which endangers both environmental health and food safety. Biocontrol is an environmentally-friendly and cost-effective green technique in environmental protection and agricultural production; it generally uses selected bioresources, including beneficial microorganisms. We isolated a novel bacterial strain (NKG-1 from the rare dormant volcanic soils of Changbai Mountain in China's Jilin Province. The strain was identified as Bacillus methylotrophicus using morphological, biochemical, physiological, and phylogenetic 16S rDNA sequencing data. This strain was able to suppress mycelial growth and conidial germination of numerous plant pathogenic fungi on solid media. A greenhouse experiment showed that application of NKG-1 fermentation broth prior to inoculation of Botrytis cinerea, the cause of gray tomato mold, inhibited growth of the mold by 60%. Furthermore, application of a 100× dilution of NKG-1 fermentation broth to tomato seedlings yielded a significant increase in seedling fresh weight (27.4%, seedling length (12.5%, and root length (57.7% compared to the control. When the same dosage was applied in the field, we observed increases in tomato plant height (14.7%, stem diameter (12.7%, crown width (16.3%, and maximum fruit diameter (11.5%. These results suggest that NKG-1 has potential commercial application as a biofertilizer or biocontrol agent.

  2. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-11-01

    Full Text Available The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids.

  3. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  4. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    Directory of Open Access Journals (Sweden)

    Chi H.J. Kao

    2013-02-01

    Full Text Available ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides being widely known as the major active ingredients, the different biological pathways by which they exert their anti-cancer effect remain poorly defined. Therefore, understanding the mechanisms of action may lead to more widespread use of Ganoderma as an anti-cancer agent.The aim of this paper is to summarise the various bioactive mechanisms that have been proposed for the anti-cancer properties of triterpenes and polysaccharides extracted from G. lucidum. A literature search of published papers on NCBI with keywords “Ganoderma” and “cancer” was performed. Among those, studies which specifically examined the anti-cancer activities of Ganoderma triterpenes and polysaccharides were selected to be included in this paper.We have found five potential mechanisms which are associated with the anti-cancer activities of Ganoderma triterpenes and three potential mechanisms for Ganoderma polysaccharides. In addition, G. lucidum has been used in combination with known anti-cancer agents to improve the anti-cancer efficacies. This suggests Ganoderma’s bioactive pathways may compliment that of anti-cancer agents. In this paper we present several potential anti-cancer mechanisms of Ganoderma triterpenes and polysaccharides which can be used for the development of Ganoderma as an anti-cancer agent.

  5. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    International Nuclear Information System (INIS)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-01-01

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo IIα activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC 50 of 0.9 μM, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC 50 of 9.6 μM, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 μM. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC 50 about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design

  6. Mitochondria Are the Target Organelle of Differentiation-Inducing Factor-3, an Anti-Tumor Agent Isolated from Dictyostelium Discoideum

    Science.gov (United States)

    Kubohara, Yuzuru; Kikuchi, Haruhisa; Matsuo, Yusuke; Oshima, Yoshiteru; Homma, Yoshimi

    2013-01-01

    Differentiation-inducing factor-3 (DIF-3), found in the cellular slime mold Dictyostelium discoideum, and its derivatives such as butoxy-DIF-3 (Bu-DIF-3) are potent anti-tumor agents. However, the precise mechanisms underlying the actions of DIF-3 remain to be elucidated. In this study, we synthesized a green fluorescent derivative of DIF-3, BODIPY-DIF-3, and a control fluorescent compound, Bu-BODIPY (butyl-BODIPY), and investigated how DIF-like molecules behave in human cervical cancer HeLa cells by using both fluorescence and electron microscopy. BODIPY-DIF-3 at 5–20 µ M suppressed cell growth in a dose-dependent manner, whereas Bu-BODIPY had minimal effect on cell growth. When cells were incubated with BODIPY-DIF-3 at 20 µM, it penetrated cell membranes within 0.5 h and localized mainly in mitochondria, while Bu-BODIPY did not stain the cells. Exposure of cells for 1–3 days to DIF-3, Bu-DIF-3, BODIPY-DIF-3, or CCCP (a mitochondrial uncoupler) induced substantial mitochondrial swelling, suppressing cell growth. When added to isolated mitochondria, DIF-3, Bu-DIF-3, and BOIDPY-DIF-3, like CCCP, dose-dependently promoted the rate of oxygen consumption, but Bu-BODIPY did not. Our results suggest that these bioactive DIF-like molecules suppress cell growth, at least in part, by disturbing mitochondrial activity. This is the first report showing the cellular localization and behavior of DIF-like molecules in mammalian tumor cells. PMID:23977224

  7. Initial identification and sensitivity to antimicrobial agents of Salmonella sp.isolated from poultry products in the state of Ceara, Brazil

    Directory of Open Access Journals (Sweden)

    WF Oliveira

    2006-09-01

    Full Text Available The objective of this research was to isolate and to verify the sensitivity to antimicrobial agents of strains of Salmonella sp. isolated from poultry products in the state of Ceara, Brazil. A total number of 114 samples was collected from 63 broiler carcasses derived from two processing plants and two supermarkets, and 51 excreta samples were collected in broiler farms located in the state of Ceara, which used three live production stages. Each excreta sample consisted of a fresh excreta pool from 100 birds. Samples were submitted to microbiological analyses, and the isolated Salmonella strains were tested for antimicrobial sensitivity. No Salmonella was isolated from excreta samples, while broiler carcass samples showed a high contamination rate of11.8%. Three serotypes were identified: Salmonella enterica serovar Enteritidis, 50%; Salmonella enterica serovar Panama 33%, and Salmonella enterica serovar Newport, 17%. As to the susceptibility tests to antimicrobial agents, 100% of the isolated Salmonella strains showed resistance to Ampicillin and Tetracycline, and sensitivity to Gentamycin, Netilmycin, Carbenicillin, Chloramphenicol.

  8. The preventive effect of granisetron on digestive tract symptoms induced by arterial infusion of anticancer and hypertensive agents in combination with radiotherapy. A study of forty patients with bladder cancer

    International Nuclear Information System (INIS)

    Hayashida, Shigeaki; Hirasawa, Teruyuki; Uchiyama, Kouichi; Mitsui, Hiroshi; Nasu, Takahito; Shinohara, Youichi

    1995-01-01

    Forty patients with bladder cancer who underwent radiotherapy with angiotensin II, a hypertensor, and two cycles of arterial infusion of anticancer chemotherapies, including cisplatin 100 mg/body, were randomly assigned to a granisetron group and a non-granisetron group for comparative study of its prophylactic effect on nausea, vomiting and anorexia. Granisetron proved significantly effective in preventing nausea, as 75% of granisetron-administered patients experienced either only slight nausea or none at all, against only 22.5% in the non-granisetron group. The number of vomiting episodes was zero during the three-day observation period in 28 out of 40 (70%) granisetron-administered patients compared with 6 patients (15%) in the non-granisetron group. A significant difference in prophylactic effect on anorexia was demonstrated between the granisetron and non-granisetron group, indicating that control of alimentary symptoms such as nausea and vomiting influences the severity of anorexia. As to the safety, nausea was lengthened and deteriorated in one patient. Though the physician in charge judged it to be an adverse event too minor to question the safety of granisetron. Thus, granisetron proved to be highly effective and safe in preventing nausea, vomiting and anorexia in patients under concomitant administration of radiotherapy with hypertensor and arterial infusion of anticancer chemotherapies. (author)

  9. Synergistic Effect of Eicosapentaenoic Acid on Antiproliferative Action of Anticancer Drugs in a Cancer Cell Line Model.

    Science.gov (United States)

    Ogo, Ayako; Miyake, Sachi; Kubota, Hisako; Higashida, Masaharu; Matsumoto, Hideo; Teramoto, Fusako; Hirai, Toshihiro

    2017-01-01

    It has been found experimentally and clinically that eicosapentaenoic acid (EPA) exerts an anticancer effect and that it has a minimal adverse event profile relative to other anticancer drugs. Any synergy between EPA and other anticancer drugs could be of therapeutic relevance, especially in elderly or high-risk patients. Therefore, we investigated the synergism between anticancer drugs and EPA experimentally. EPA was coadministered in vitro with various anticancer drugs (paclitaxel, docetaxel, 5-fluorouracil and cis-diamminedichloridoplatinum[II]) to TE-1 cells, which were derived from human esophageal cancer tumors. Cell proliferation was measured by the water soluble tetrazolium-1 method. Sub-threshold concentrations of EPA, which alone produced no anticancer effect, caused a synergistic suppressive effect on TE-1 cell proliferation when combined with other anticancer agents. Coadministration of EPA with other anticancer drugs may represent a new therapeutic paradigm offering a reduced side effect profile. © 2017 S. Karger AG, Basel.

  10. NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Wei-Jan Huang

    2012-01-01

    Full Text Available HDAC inhibitors (HDACis have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP, and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231 and rat glioma cells (C6, with an IC50 ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1, gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21(Waf1/Cip1 gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo.

  11. Isolating the Roles of Different Forcing Agents in Global Stratospheric Temperature Changes Using Model Integrations with Incrementally Added Single Forcings

    Science.gov (United States)

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-01-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely

  12. Anticancer Activity of Papaver Somniferum

    Directory of Open Access Journals (Sweden)

    Döne Aslı Güler

    2016-08-01

    Full Text Available This work describes the pharmacological activity of extracts of Papaver somniferum, a poppy species. P. somniferum products are still considered as a unique source of drug for many diseases. The present study was designed to determine antiproliferative and cytotoxic effects of P. somniferum extracts on HeLa (Human Cervix Carcinoma, HT29 (Human Colorectal Adenocarcinoma, C6 (Rat Brain Tumor Cells, and Vero (African Green Monkey Kidney cell lines. Alkaloids-rich extracts of P. somniferum exhibited antiproliferative effects on various cancer cell lines, especially at high concentrations. We assessed the ability of extracts of P. somniferum to harm the membrane of the cells. Results indicated that P. somniferum extracts destroy cellular membrane in tumor cell lines at high concentrations. Remarkably, the LDH test results disclosed that cytotoxicity of P. somniferum on cells was low at mid concentrations. This may indicate its cytostatic potential. The results of this study support the efficacy of P. somniferum extracts as an anticancer agent.

  13. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    Science.gov (United States)

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. Copyright © 2014. Published by Elsevier Masson SAS.

  14. Melatonin Anticancer Effects: Review

    Directory of Open Access Journals (Sweden)

    Luigi Di Bella

    2013-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine, MLT, the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate. The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation. All these particular characteristics suggest the use of MLT in oncological diseases.

  15. Isolation and Discovery of New Antimicrobial-agent Producer Strains Using Antibacterial Screening of Halophilic Gram-positive Endospore-forming Bacteria Isolated from Saline Lakes of Iran

    OpenAIRE

    Asefeh Dahmardeh Ghalehno; Maryam Ghavidel-Aliabadi; Zeinab Shahmohamadi; Maliheh Mehrshad; Mohammad Ali Amoozegar; Abolghasem Danesh

    2018-01-01

    Abstract Background: Today, discovery and production of new antimicrobial drugs has been emphasized due to the growing of antimicrobial resistance. The purpose of this study was to screen out antimicrobial producing bacteria among halophilic or halotolerant Gram-positive endospore-forming bacteria isolated from different areas of Iran. Materials and Methods: 62 strains were isolated from salin lakes of Iran, endospore-forming ability was evaluated and further identification of strains ...

  16. Intraperitoneal inoculation of Haemophilus influenzae local isolates in BALB/c mice model in the presence and absence of virulence enhancement agents

    Directory of Open Access Journals (Sweden)

    N Mojgani

    2013-01-01

    Full Text Available Purpose:Haemophilus influenzae (Hi, predominantly type b accounts for approximately 4% of cases of community-acquired and nosocomial meningitis, in adults. The objective of this study was to evaluate the pathogenicity of local Hi isolates (type b, f and non-typable in BALB/c mice in the presence of virulence enhancement agents. Materials and Methods: Three different concentrations of the Hi isolates were inoculated intraperitoneally in BALB/c mice in the presence of 2% hemoglobin and 4% mucin as virulence enhancing agents (VEA. The ability of the isolates to produce bacteremia, the percent survival and lethal dose (LD 50 were recorded in different challenge groups. Results: The 3 Haemophilus influenzae type b (Hib isolates used in study were able to show virulence in BALB/c mice model only in the presence of VEA and their LD 50 decreased significantly when 2% hemoglobin and 4% mucin were used. All survived animals showed bacteremia within 4 h of inoculation which was cleared within 18 h. Significant differences ( P < 0.01 in the virulence and survival percentage of Hib challenge groups were observed based on their dose of inoculation and VEA. None of the isolates were able to induce infection in the absence of VEA. Non-type b isolates failed to produce disease in the mice models even at the highest inoculated dose (10 8 cfu and in the presence of VEA. Conclusions: BALB/c mice appeared suitable for evaluating the virulence of Hib strains, and 2% hemoglobin with 4% mucin an appropriate concentration for inducing infection in this animal model.

  17. Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle.

    Science.gov (United States)

    Dini, C; De Urraza, P J

    2010-09-01

    To isolate, characterize and select phages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing Escherichia coli (EHEC and STEC) in cattle. Sixteen STEC and EHEC coliphages were isolated from bovine minced meat and stool samples and characterized with respect to their host range against STEC, EHEC and other Gram-negative pathogens; their morphology by electron microscopy; the presence of the stx1, stx2 and cI genes by means of PCR; RAPD and rep-PCR profiles; plaque formation; and acid resistance. Six isolates belonged to the Myoviridae and 10 to the Podoviridae families. The phages negative for stx and cI that formed large, well-defined plaques were all isolated using EHEC O157:H7 as host. Among them, only CA911 was a myophage and, together with CA933P, had the broadest host range for STEC and EHEC; the latter phage also infected Shigella and Pseudomonas. Isolates CA911, MFA933P and MFA45D differed in particle morphology and amplification patterns by RAPD and rep-PCR and showed the highest acidity tolerance. Myophage CA911 and podophages CA933P, MFA933P and MFA45D were chosen as the best candidates for biocontrol of STEC and EHEC in cattle. This work employs steps for a rational selection and characterization of bacteriophages as therapeutic agents. This report constitutes the first documentation of STEC and EHEC phages isolated in Argentina and proposes for the first time the use of rep-PCR as a complement of RAPD on DNA fingerprinting of phages. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  18. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin.

    Science.gov (United States)

    Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B

    2015-12-01

    Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.

  19. Marine Fungi: A Source of Potential Anticancer Compounds

    OpenAIRE

    Sunil K. Deshmukh; Ved Prakash; Nihar Ranjan

    2018-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screenin...

  20. In vitro evaluation of verapamil and other modulating agents in Brazilian chloroquine-resistant Plasmodium falciparum isolates Avaliação in vitro do verapamil e de outros agentes moduladores em isolados de Plasmodium falciparum resistentes à cloroquina

    Directory of Open Access Journals (Sweden)

    Carla M.S. Menezes

    2003-01-01

    Full Text Available Verapamil, was assayed to record its modulating effect upon Brazilian Plasmodium falciparum isolates resistant to chloroquine. Other cardiovascular drugs known to be modulating agents in resistant malaria and/or multidrug-resistant neoplasias, including nifedipine, nitrendipine, diltiazem and propranolol, were also evaluated. Concentrations similar to those for cardiovascular therapy were used in the in vitro microtechnique for antimalarial drug susceptibility. Intrinsic antiplasmodial activity was observed from the lowest concentrations without a significant modulating action. Other reported modulating agents, such as the antipsychotic drug trifluoperazine and the antidepressants desipramine and imipramine, demonstrated similar responses under the same experimental conditions. Results suggest a much higher susceptibility of Brazilian strains, as well as an indifferent behaviour in relation to modulating agents.Verapamil foi ensaiado quanto ao efeito modulador em isolados brasileiros de Plasmodium falciparum resistentes à cloroquina. Outros agentes cardiovasculares, considerados como moduladores da resistência em malária e/ou em neoplasias multiresistentes a fármacos, como nifedipino, nitrendipino, diltiazem e propranolol foram ensaiados quanto ao mesmo efeito. Concentrações semelhantes às da terapia cardiovascular foram empregadas no ensaio de microtécnica de sensibilidade para fármacos antimaláricos. Atividade antiplasmódica intrínsica foi observada desde as menores concentrações, sem, entretanto, ocorrência de modulação significativa da resistência. Sob as mesmas condições experimentais, respostas semelhantes foram observadas para outros agentes moduladores conhecidos como o antipsicótico trifluoperazina e os antidepressivos desipramina e imipramina. Em conjunto, estes resultados sugerem alta sensibilidade e comportamento indiferente de cepas brasileiras ao efeito de agentes moduladores da resistência.

  1. Anticancer effects of Ganoderma lucidum: a review of scientific evidence.

    Science.gov (United States)

    Yuen, John W M; Gohel, Mayur Danny I

    2005-01-01

    "Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available.

  2. Dose calculation of anticancer drugs

    NARCIS (Netherlands)

    Gao, Bo; Klumpen, Heinz-Josef; Gurney, Howard

    2008-01-01

    BACKGROUND: Anticancer drugs are characterized by a narrow therapeutic window and significant inter-patient variability in therapeutic and toxic effects. Current body surface area (BSA)-based dosing fails to standardize systemic anticancer drug exposure and other alternative dosing strategies also

  3. [Antibiofilm activity of agents for disinfection of skin, mucosa, and wound on microorganisms isolated from patients with catheter-related infections].

    Science.gov (United States)

    Slobodníková, L; Hupková, H; Koreň, J; Záborská, M

    2014-09-01

    To evaluate the activity of four disinfectious agents used for skin, mucosa and wound disinfection (chlorhexidine digluconate, povidone-iodine, octenidine hydrochloride, super oxygenated water) on the biofilm of Staphylococcus aureus, Escherichia coli and Candida sp. strains, isolated from patients with catheter-related infections. The tested agents were applied on 24-hours biofilm in the microtiter plate wells. After 20-minutes exposition, the wells were washed, and the microbial vitality was tested by regrowth method after 24-hours cultivation in fresh culture medium. Biofilm formation was confirmed in a parallel microtiter plate; the quantity of produced biofilm was measured after crystal violet staining spectrophotometrically at 570 nm. All four tested disinfectious agents inactivated the biofilm of all S. aureus, E. coli, C. albicans, C. krusei and C. glabrata strains, without respect to the intensity of biofilm production. Three strains of C. tropicalis with intensive biofilm production partially preserved their vitality after exposition to chlorhexidine and povidone-iodine, and 2 strains to octenidine. Super oxygenated water had no effect on yeasts associated with massive biofilm of one C. tropicalis strain, and only partially decreased the vitality of additional two strains. The tested disinfectious agents proved in-vitro antibiofilm activity on all microbial strains from catheter-related infections, with exception of three C. tropicalis strains with intensive biofilm production. Octenidine was found to be the most active agent. The results enable to assume, that the tested disinfectious agents, when applied to patients, will inactivate not only the individual microorganisms not protected by biofilm, but also the biofilm on the catheter surfaces approachable by local application. However, C. tropicalis strains producing massive biofilm, protecting them partially from effects of disinfectious agents tested in the present study, still remain a challenge.

  4. Frequency of resistance to methicillin and other antimicrobial agents among Staphylococcus aureus strains isolated from pigs and their human handlers in Trinidad

    Directory of Open Access Journals (Sweden)

    Annika Gordon

    2014-04-01

    Full Text Available Background: Methicillin-resistant Staphylococcus aureus (MRSA has emerged recently worldwide in production animals, particularly pigs and veal calves, which act as reservoirs for MRSA strains for human infection. The study determined the prevalence of MRSA and other resistant strains of S. aureus isolated from the anterior nares of pigs and human handlers on pig farms in Trinidad. Methods: Isolation of S. aureus was done by concurrently inoculating Baird-Parker agar (BPA and Chromagar MRSA (CHROM with swab samples and isolates were identified using standard methods. Suspect MRSA isolates from Chromagar and BPA were subjected to confirmatory test using Oxoid PBP2 latex agglutination test. The disc diffusion method was used to determine resistance to antimicrobial agents. Results: The frequency of isolation of MRSA was 2.1% (15 of 723 for pigs but 0.0% (0 of 72 for humans. Generally, for isolates of S. aureus from humans there was a high frequency of resistance compared with those from pigs, which had moderate resistance to the following antimicrobials: penicillin G (54.5%, 51.5%, ampicillin (59.1%, 49.5%, and streptomycin (59.1%, 37.1%, respectively. There was moderate resistance to tetracycline (36.4%, 41.2% and gentamycin (27.2%, 23.7% for human and pig S. aureus isolates, respectively, and low resistance to sulfamethoxazole-trimethoprim (4.5%, 6.2% and norfloxacin (9.1%, 12.4%, respectively. The frequency of resistance to oxacillin by the disc method was 36.4 and 34.0% from S. aureus isolates from humans and pigs, respectively. Out of a total of 78 isolates of S. aureus from both human and pig sources that were resistant to oxacillin by the disc diffusion method, only 15 (19.2% were confirmed as MRSA by the PBP'2 latex test kit. Conclusions: The detection of MRSA strains in pigs, albeit at a low frequency, coupled with a high frequency of resistance to commonly used antimicrobial agents in pig and humans could have zoonotic and therapeutic

  5. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States.

    Science.gov (United States)

    Johnson, Jacklyn; Zhai, Yinjie; Salimi, Hamid; Espy, Nicole; Eichelberger, Noah; DeLeon, Orlando; O'Malley, Yunxia; Courter, Joel; Smith, Amos B; Madani, Navid; Sodroski, Joseph; Haim, Hillel

    2017-08-01

    The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission. IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine

  6. Phytochemicals as Adjunctive with Conventional Anticancer Therapies.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Bahramsoltani, Roodabeh; Rahimi, Roja

    2016-01-01

    Cancer is defined as the abnormal proliferations of cells which could occur in any tissue and can cause life-threatening malignancies with high financial costs for both patients and health care system. Plant-derived secondary metabolites are shown to have positive role in various diseases and conditions. The aim of the present study is to summarize clinical evidences on the benefits of phytochemicals as adjuvant therapy along with conventional anticancer therapies. Electronic databases including Pubmed, Scopus and Cochrane library were searched with the keywords "chemotherapeutic", "anticancer", "antineoplastic" or "radiotherapy" with "plant", "extract", "herb", or "phytochemical", until July 2015. Only clinical studies were included in this review. The findings showed that positive effects of phytochemicals are due to their direct anticarcinogenic activity, induction of relief in cancer complications, as well as their protective role against side effects of conventional chemotherapeutic agents. Results obtained from current review demonstrated that numerous phytochemical agents from different chemical categories including alkaloid, benzopyran, coumarin, carotenoid, diarylheptanoid, flavonoid, indole, polysaccharide, protein, stilbene, terpene, and xanthonoid possess therapeutic effect in patients with different types of cancer. Polyphenols are the most studied components. Curcumin, ginsenosides, lycopene, homoharringtonine, aviscumine, and resveratrol are amongst the major components with remarkable volumes of clinical evidence indicating their direct anticancer activities in different types of cancer including hepatocarcinoma, prostate cancer, leukemia and lymphoma, breast and ovarian cancer, and gastrointestinal cancers. Cannabinoids, cumarin, curcumin, ginsenosides, epigallocatechin gallate, vitexin, and salidroside are phytochemicals with significant alleviative effect on synthetic chemotherapy- induced toxicities. There is lack of evidence from clinical

  7. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  8. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    International Nuclear Information System (INIS)

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-01-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ( 1 H NMR and 13 C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL −1 . This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity

  9. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies.

    Science.gov (United States)

    Rostom, Sherif A F; Badr, Mona H; Abd El Razik, Heba A; Ashour, Hayam M A

    2017-10-20

    Synthesis of twenty nine new 1,2,4-triazoles and some derived thiazolothiadiazoles (structurally-relevant to some reported triazoles with anticancer and/or Cdc25A/B inhibitory activities) is described in this study. The obtained NCI's in vitro antitumor data revealed that five analogs (12, 15, 18, 19 and 22) displayed considerable tumor percentage growth inhibitory activity (GI%), among which the analog 18 possessed a special antitumor potential and spectrum. Additionally, the same five analogs showed a marginal GI effect on the normal breast epithelial cell line MCF-10A indicating higher selectivity towards cancer cells. The same active analogs 12, 15, 18, 19 and 22 were further assessed for their in vitro Cdc25A/B phosphatase inhibitory activity (a possible antitumor target), where 18 and 22 displayed a distinctive inhibitory affinity towards the Cdc25B isozyme (6.7 and 8.4 μM, respectively). Docking of 12, 15, 18, 19 and 22 with the active site of human Cdc25B phosphatase enzyme demonstrated superior binding profile by the top-scoring analog 18 relative to a reported Cdc25 phosphatase ligand. In silico calculations of molecular properties revealed that all of the active compounds comply with Lipinski's RO5 and Veber's criteria for good bioavailability suggesting good drug-likeness upon oral administration with a predicted high safety profile. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Natural flora and anticancer regime: milestones and roadmap.

    Science.gov (United States)

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  11. In Vitro Synergistic Activity of Antimicrobial Agents in Combination against Clinical Isolates of Colistin-Resistant Acinetobacter baumannii

    OpenAIRE

    Bae, Seongman; Kim, Min-Chul; Park, Su-Jin; Kim, Hee Sueng; Sung, Heungsup; Kim, Mi-Na; Kim, Sung-Han; Lee, Sang-Oh; Choi, Sang-Ho; Woo, Jun Hee; Kim, Yang Soo; Chong, Yong Pil

    2016-01-01

    Emerging resistance to colistin in clinical Acinetobacter baumannii isolates is of growing concern. Since current treatment options for these strains are extremely limited, we investigated the in vitro activities of various antimicrobial combinations against colistin-resistant A. baumannii. Nine clinical isolates (8 from bacteremia cases and 1 from a pneumonia case) of colistin-resistant A. baumannii were collected in Asan Medical Center, Seoul, South Korea, between January 2010 and December ...

  12. In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Zuo, Guo-Ying; Zhang, Xin-Juan; Han, Jun; Li, Yu-Qing; Wang, Gen-Chun

    2015-12-01

    AMK and GEN by ML and HL were also observed, respectively. All the combinations also showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25. ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of MRSA and warrant further pharmacological investigation.

  13. Potential Chemopreventive Agents Based on the Structure of the Lead Compound 2-Bromo-1-hydroxyphenazine, Isolated from Streptomyces sp., Strain CNS284

    Science.gov (United States)

    Conda-Sheridan, Martin; Marler, Laura; Park, Eun-Jung; Kondratyuk, Tamara P.; Jermihov, Katherine; Mesecar, Andrew D.; Pezzuto, John M.; Asolkar, Ratnakar N.; Fenical, William; Cushman, Mark

    2010-01-01

    The isolation of 2-bromo-1-hydroxyphenazine from a marine Streptomyces sp., strain CNS284, and its activity against NFκB, suggested that a short and flexible route for the synthesis of this metabolite and a variety of phenazine analogues be developed. Numerous phenazines were subsequently prepared and evaluated as inducers of quinone reductase 1 (QR1) and inhibitors of quinone reductase 2 (QR2), NF-κB, and inducible nitric oxide synthase (iNOS). Several of the active phenazine derivatives displayed IC50 values vs. QR1 induction and QR2 inhibition in the nanomolar range, suggesting they may find utility as cancer chemopreventive agents. PMID:21105712

  14. Potential chemopreventive agents based on the structure of the lead compound 2-bromo-1-hydroxyphenazine, isolated from Streptomyces species, strain CNS284.

    Science.gov (United States)

    Conda-Sheridan, Martin; Marler, Laura; Park, Eun-Jung; Kondratyuk, Tamara P; Jermihov, Katherine; Mesecar, Andrew D; Pezzuto, John M; Asolkar, Ratnakar N; Fenical, William; Cushman, Mark

    2010-12-23

    The isolation of 2-bromo-1-hydroxyphenazine from a marine Streptomyces species, strain CNS284, and its activity against NF-κB, suggested that a short and flexible route for the synthesis of this metabolite and a variety of phenazine analogues should be developed. Numerous phenazines were subsequently prepared and evaluated as inducers of quinone reductase 1 (QR1) and inhibitors of quinone reductase 2 (QR2), NF-κB, and inducible nitric oxide synthase (iNOS). Several of the active phenazine derivatives displayed IC₅₀ values vs QR1 induction and QR2 inhibition in the nanomolar range, suggesting that they may find utility as cancer chemopreventive agents.

  15. Resistance to antimicrobial agents of Vibrio cholerae El Tor strains isolated during the fourth cholera epidemic in the United Republic of Tanzania

    Science.gov (United States)

    Towner, K. J.; Pearson, N. J.; Mhalu, F. S.; O'Grady, F.

    1980-01-01

    Isolates of Vibrio cholerae obtained immediately after the outbreak of the fourth recorded epidemic of cholera in the United Republic of Tanzania were sensitive to tetracycline, but after five months of its extensive therapeutic and prophylactic use, 76% of the isolates were observed to be resistant to this and other antimicrobial agents. The appearance of resistance was found to be due to the rapid spread of antibiotic resistance plasmids belonging to the C incompatibility complex. Although most plasmid incompatibility groups have been shown to be unstable in V. cholerae, the strains found in the present epidemic seem to carry a plasmid belonging to one of the few relatively stable groups. These findings emphasize the importance of monitoring any emergence of bacterial resistance that may occur when mass prophylaxis programmes are in operation and also the importance of determining the genetic basis of the resistance mechanism. PMID:6975183

  16. Preparation of thermo and pH-responsive polymer@Au/Fe{sub 3}O{sub 4} core/shell nanoparticles as a carrier for delivery of anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Marjan [University of Tabriz, Laboratory of Polymer, Faculty of Chemistry (Iran, Islamic Republic of); Hamishehkar, Hamed, E-mail: hamishehkarh@tbzmed.ac.ir [Tabriz University of Medical Sciences, Drug Applied Research Center (Iran, Islamic Republic of); Arsalani, Naser; Entezami, Ali Akbar, E-mail: aentezami@tabrizu.ac.ir [University of Tabriz, Laboratory of Polymer, Faculty of Chemistry (Iran, Islamic Republic of)

    2015-07-15

    In this work, a thermo and pH-responsive poly-N-isopropylacrylamide-co-itaconic acid containing thiol side groups were successfully synthesized to prepare Doxorubicin-loaded polymer@Au/Fe{sub 3}O{sub 4} core/shell nanoparticles (DOX-NPs). Copolymer and NPs were fully characterized by FT-IR, HNMR, photo-correlation spectroscopy, SEM, X-ray diffraction, vibrating-sample magnetometer, thermal gravimetric analysis, and UV–Vis spectroscopy. The stimuli-responsive characteristics of NPs were evaluated by in vitro release study in simulated cancerous environment. The biocompatibility and cytotoxic properties of NPs and DOX-NPs are explored by MTT method. The prepared NPs with the size of 50 nm showed paramagnetic characteristics with suitable and stable dispersion at physiological medium and high loading capacity (up to 55 %) of DOX. DOX-NPs yielded a pH- and temperature-triggered release of entrapped drugs at tumor tissue environment (59 % of DOX release) compared to physiological condition (20 % of DOX release) during 48 h. In vitro cytotoxicity studies indicated that the NPs showed no cytotoxicity on A549 cells at different amounts after incubation for 72 h confirming its suitability as a drug carrier. DOX-NPs, on the other hand, caused an efficient anticancer performance as verified by MTT assay test. It was concluded that developed NPs by us in this study may open the possibilities for targeted delivery of DOX to the cancerous tissues.

  17. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    Science.gov (United States)

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici.

    Science.gov (United States)

    Kanini, Grammatiki S; Katsifas, Efstathios A; Savvides, Alexandros L; Karagouni, Amalia D

    2013-01-01

    Many studies have shown that several Greek ecosystems inhabit very interesting bacteria with biotechnological properties. Therefore Streptomyces isolates from diverse Greek habitats were selected for their antifungal activity against the common phytopathogenic fungus Fusarium oxysporum. The isolate encoded ACTA1551, member of Streptomyces genus, could strongly suppress the fungal growth when examined in antagonistic bioassays in vitro. The isolate was found phylogenetically relative to Streptomyces rochei after analyzing its 16S rDNA sequence. The influence of different environmental conditions, such as medium composition, temperature, and pH on the expression of the antifungal activity was thoroughly examined. Streptomyces rochei ACTA1551 was able to protect tomato seeds from F. oxysporum infection in vivo while it was shown to promote the growth of tomato plants when the pathogen was absent. In an initial effort towards the elucidation of the biochemical and physiological nature of ACTA1551 antifungal activity, extracts from solid streptomycete cultures under antagonistic or/and not antagonistic conditions were concentrated and fractionated. The metabolites involved in the antagonistic action of the isolate showed to be more than one and produced independently of the presence of the pathogen. The above observations could support the application of Streptomyces rochei ACTA1551 as biocontrol agent against F. oxysporum.

  19. Streptomyces rochei ACTA1551, an Indigenous Greek Isolate Studied as a Potential Biocontrol Agent against Fusarium oxysporum f.sp. lycopersici

    Directory of Open Access Journals (Sweden)

    Grammatiki S. Kanini

    2013-01-01

    Full Text Available Many studies have shown that several Greek ecosystems inhabit very interesting bacteria with biotechnological properties. Therefore Streptomyces isolates from diverse Greek habitats were selected for their antifungal activity against the common phytopathogenic fungus Fusarium oxysporum. The isolate encoded ACTA1551, member of Streptomyces genus, could strongly suppress the fungal growth when examined in antagonistic bioassays in vitro. The isolate was found phylogenetically relative to Streptomyces rochei after analyzing its 16S rDNA sequence. The influence of different environmental conditions, such as medium composition, temperature, and pH on the expression of the antifungal activity was thoroughly examined. Streptomyces rochei ACTA1551 was able to protect tomato seeds from F. oxysporum infection in vivo while it was shown to promote the growth of tomato plants when the pathogen was absent. In an initial effort towards the elucidation of the biochemical and physiological nature of ACTA1551 antifungal activity, extracts from solid streptomycete cultures under antagonistic or/and not antagonistic conditions were concentrated and fractionated. The metabolites involved in the antagonistic action of the isolate showed to be more than one and produced independently of the presence of the pathogen. The above observations could support the application of Streptomyces rochei ACTA1551 as biocontrol agent against F. oxysporum.

  20. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents.

    Science.gov (United States)

    Bhunchoth, A; Phironrit, N; Leksomboon, C; Chatchawankanphanich, O; Kotera, S; Narulita, E; Kawasaki, T; Fujie, M; Yamada, T

    2015-04-01

    To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages. © 2015 The Society for Applied Microbiology.

  1. TAILORING IMMUNOTOXIN AS ANTICANCER DRUG

    Directory of Open Access Journals (Sweden)

    Santoso Cornain

    2012-09-01

    Full Text Available The conventional treatments for cancer have been considered unsatisfatory, with limited efficiency in terms of discriminative cancer cell adverse reaction against the normal compartments, a number of immunological approaches had been implemented. Since cancer cells could exhibit tumor specific antigen (s, a highly specific antibody could be used to direct any anticancer drug, biological agent or radioisotope selectively against the cancer cells and does not harm the normal cells. The specific antibody could be raised by immunization with purified tumor specific antigen (s. The biological agent could be obtained as toxin, either derived from bacteria e.g. diphtheria toxin or derived from plants e.g. castor ricin, which could destroy and kill cancer cells after contacts. A hybrid molecule constructed between antibody and toxin has been known as "immunotoxin". The selectivity of the antibody against a given tumor specific antigen could be increased by using a monoclonal antibody, made by hybridoma technique and immunological engineering. Accordingly, the efficiency of the destructive or killing effect of the toxin could be eventually increased by purification technique, biochemical and genetic engineering. In a preliminary study ricin from castor (Ricinus communis have been purified and separated into two protein fractions (RCAI = 12.000 dalton and RCA II = 60.000 - 65.000 dalton. The latter showed toxin property, and was tested in vitro both against normal cells and against cancer cells. In the microcy totoxicity assay the ricin showed both the short term and the long term killing effect as measured after 1, 4, 16 and 24 hours. The killing effect against cancer cells was stronger as compared to that against normal cells. The acute or short term effect was observed at lower concentration of ricin (10-6 and 10-12 g/ml after 1 and 4 hours contacts. The long term effect resulted in 90% and nearly 100% cytotoxicity in higher concentration of ricin

  2. Acupuncture as anticancer treatment?

    Directory of Open Access Journals (Sweden)

    Paulina Frączek

    2017-01-01

    Full Text Available The mystery of Traditional Chinese Medicine has been attracting people for years. Acupuncture, ranked among the most common services of Complementary and Alternative Medicine, has recently gained a lot of interest in the scientific world. Contemporary researchers have been continuously trying to shed light on its possible mechanism of action in human organism. Numerous studies pertaining to acupuncture’s application in cancer symptoms or treatment-related side effects management have already been published. Moreover, since the modern idea of acupuncture’s immunomodulating effect seems to be promising, scientists have propounded a concept of its potential application as part of direct anti-tumor therapy. In our previous study we summarized possible use of acupuncture in management of cancer symptoms and treatment-related ailments, such as chemotherapy-induced nausea and vomiting, pain, xerostomia, vasomotor symptoms, neutropenia, fatigue, anxiety, insomnia, lymphoedema after mastectomy and peripheral neuropathy. This article reviews the studies concerning acupuncture as a possible tool in modern anticancer treatment.

  3. Isolation and characterization of bacteriophages infecting Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight disease.

    Science.gov (United States)

    Romero-Suarez, Sandra; Jordan, Brian; Heinemann, Jack A

    2012-05-01

    Walnut orchards suffer from a blight caused by the bacteria Xanthomonas arboricola pv. juglandis. These bacteria can be infected by viral bacteriophages and this study was carried out to isolate and characterize bacteriophages from walnut orchards located throughout the South Island of New Zealand. Twenty six X. arboricola phages were isolated from three hundred and twenty six samples of plant material representing phyllosphere and rhizosphere ecosystems. The phage isolates were characterized by host-range, plaque and particle morphology, restriction digest and phylogenetic analysis and stability under various storage conditions. From capsid and tail dimensions the bacteriophages were considered to belong to the double-stranded DNA families Podoviridae and Siphoviridae. Of the twenty six bacteriophages, sixteen belonged to Podoviridae and were found both in the phyllosphere and rhizosphere. In contrast, Siphoviridae were present only in the rhizosphere isolates. Phage genome sizes ranged from 38.0 to 52.0 kb from a Hind III restriction digestion and had in common a 400 kb fragment that was identical at the DNA level. Despite the similar restriction patterns, maximum parsimony bootstrap analysis showed that the phage were members of different groups. Finally, we hypothesise that these phage might have use in a biocontrol strategy and therefore storage stability and efficacy was tested. Titres declined more than 50% over a 12-months storage period. Deep-freezing temperatures (-34°C) increased while chloroform decreased the stability.

  4. Competition studies of QoI resistant and sensitive Cercospora sojina isolates the causal agent of frogeye leaf spot

    Science.gov (United States)

    Frogeye leaf spot (FLS), caused by Cercospora sojina, is a yearly foliar disease in Tennessee and causes substantial economic losses if not properly managed. Quinone outside inhibitor (QoI) fungicides are often used to manage FLS, but C. sojina isolates have developed resistance to this class of fun...

  5. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Xu De Wang

    2018-04-01

    Full Text Available Background: AD-2 (20(R-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R-3b-O-(L-alanyl-dammarane-12b, 20, 25-triol, a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on Wnt/β-catenin signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting Wnt/β-catenin signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy. Keywords: 1C, AD-2, apoptosis, reactive oxygen species, Wnt/β-catenin pathway

  6. From body art to anticancer activities: perspectives on medicinal properties of henna.

    Science.gov (United States)

    Pradhan, Rohan; Dandawate, Prasad; Vyas, Alok; Padhye, Subhash; Biersack, Bernhard; Schobert, Rainer; Ahmad, Aamir; Sarkar, Fazlul H

    2012-12-01

    Nature has been a rich source of therapeutic agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources based on the uses of these plants in traditional medicine. Henna is one such plant commonly known as Persian Henna or Lawsonia inermis, a bushy, flowering tree, commonly found in Australia, Asia and along the Mediterranean coasts of Africa. Paste made from the leaves of Henna plant has been used since the Bronze Age to dye skin, hairs and fingernails especially at the times of festivals. In recent times henna paste has been used for body art paintings and designs in western countries. Despite such widespread use in dyeing and body art painting, Henna extracts and constituents possess numerous biological activities including antioxidant, anti-inflammatory, antibacterial and anticancer activities. The active coloring and biologically active principle of Henna is found to be Lawsone (2- hydroxy-1, 4-naphthoquinone) which can serve as a starting building block for synthesizing large number of therapeutically useful compounds including Atovaquone, Lapachol and Dichloroallyl lawsone which have been shown to possess potent anticancer activities. Some other analogs of Lawsone have been found to exhibit other beneficial biological properties such as antioxidant, anti-inflammatory, antitubercular and antimalarial. The ability of Lawsone to undergo the redox cycling and chelation of trace metal ions has been thought to be partially responsible for some of its biological activities. Despite such diverse biological properties and potent anticancer activities the compound has remained largely unexplored and hence in the present review we have summarized the chemistry and biological activities of Lawsone along with its analogs and metal complexes.

  7. Silica-supported isolated molybdenum di-oxo species: formation and activation with organosilicon agent for olefin metathesis.

    Science.gov (United States)

    Yamamoto, Keishi; Chan, Ka Wing; Mougel, Victor; Nagae, Haruki; Tsurugi, Hayato; Safonova, Olga V; Mashima, Kazushi; Copéret, Christophe

    2018-04-17

    A well-defined silica-supported molybdenum dioxo species, ([triple bond, length as m-dash]SiO)2Mo(O)2, is prepared by grafting Mo(O)2[OSi(OtBu)3]2 on partially dehydroxylated silica SiO2-700, followed by thermal treatment under high-vaccum and calcination. Activated by an organosilicon agent the resulting material is active for olefin metathesis at 30 °C.

  8. 3D QSAR studies for the beta-tubulin binding site of microtubule-stabilizing anticancer agents (MSAAs): a pseudoreceptor model for taxanes based on the experimental structure of tubulin.

    Science.gov (United States)

    Maccari, Laura; Manetti, Fabrizio; Corelli, Federico; Botta, Maurizio

    2003-09-01

    The antimitotic agent paclitaxel continues to play an important role in the cancer chemotherapy. However, its inefficacy on certain resistant cells and toxic side effects have led to the search of new taxanes with improved biological activity. By means of a pseudoreceptor modeling approach, we have developed a binding site model for a series of taxanes. It is the first 3D QSAR model derived from the experimentally determined tubulin structure obtained by electron crystallography studies. The model is able to correlate quantitatively the structural properties of the studied compounds with their biological data.

  9. Distribution of contagious and environmental mastitis agents isolated from milk samples collected from clinically health buffalo cows between brazilian dry and rainy seasons of the year

    Directory of Open Access Journals (Sweden)

    R.P. Maia

    2010-02-01

    Full Text Available The present study was performed to evaluate the microbiological characteristics of clinically health quarters submitted to milking and also to observe the distribution of contagious and environmental agents between brazilian dry and rainy seasons of the year. During nine months 734 quarters from 37 buffalo cows were submitted monthly to udder inspection, palpation and strip cup test before milking. 734 asseptic milk samples were inoculated in 10% ovine blood agar and in MacConkey agar media, then incubated for 72 hours at 37oC. Among the 580 isolated microrganisms, 182 (31,38% were recovered from samples collected during the rainy season and 398 (68,62% from the dry season. In the rainy period the most prevalent agents were: bacteria from the genus Corynebacterium sp (53,30%, Staphylococcus sp (19,78% and Rhodococcus equi (13,74%. In the dry period, the commonest ones were: Corynebacterium sp (44,97%, Staphylococcus sp (18,84% and Micrococcus sp (9,55%. The results demonstrated that the methods used to select health quarters in brazilian dairy buffalo farms allow the transmission of contagious bacteria during both seasons of the year, maintaining Ital.J.Anim.Sci. vol. 6, (Suppl. 2, 896-899, 2007 897 VIII World Buffalo Congress agents known to cause mainly subclinical inflammatory reactions that compromise cronically the physiology and production of the mammary gland.

  10. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    Science.gov (United States)

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  11. Isolation of the highly pathogenic and zoonotic agent Burkholderia pseudomallei from a pet green Iguana in Prague, Czech Republic.

    Science.gov (United States)

    Elschner, Mandy C; Hnizdo, Jan; Stamm, Ivonne; El-Adawy, Hosny; Mertens, Katja; Melzer, Falk

    2014-11-28

    Melioidosis caused by Burkholderia (B.) pseudomallei is an endemic zoonotic disease mainly reported from northern Australia and Southeast Asia. In Europe, cases of human melioidosis have been reported only from patients travelling to endemic regions. Besides humans, B. pseudomallei has a very broad host range in domestic and wild animals. There are some reports about importation of B. pseudomallei-infected animals from endemic areas into Europe. The present report describes the first case of B. pseudomallei infection of a pet iguana in Europe. In a 5-year-old pet Iguana iguana living in a private household in Prague, Czech Republic, B. pseudomallei was isolated from pus of an abscess. The isolate VB976100 was identified by Vitek®2, MALDI-TOF mass spectrometry and polymerase chain reaction as B. pseudomallei. The molecular typing resulted in multi-locus sequence type 436 hitherto, which has been found only once worldwide in a B. pseudomallei strain isolated in the USA and originating from Guatemala. The identification as internal transcribed spacer type G indicates a close relatedness to strains mainly isolated in the Western Hemisphere. These findings support the hypothesis that the iguana became infected in this region or in a breeding facility through contact to other infected animals. The present case highlights the risk of importation of the highly pathogenic and zoonotic B. pseudomallei into non-endemic regions through animal trade. Therefore, veterinarians treating animals from these areas and physicians examining patients owning such animals should include melioidosis in differential diagnosis whenever specific symptoms appear. Furthermore, veterinary authorities responsible for supervision of traders and pet shops should be aware of this risk of zoonotic transmission.

  12. Identification of an isolate of Saprolegnia ferax as the causal agent of saprolegniosis of yellow catfish (Pelteobagrus fulvidraco) eggs.

    Science.gov (United States)

    Cao, Haipeng; Zheng, Weidong; Xu, Jialu; Ou, Renjian; He, Shan; Yang, Xianle

    2012-12-01

    Saprolegnia species have been implicated for significant fungal infections of both living and dead fish as well as their eggs. In the present study, an oomycete water mould (strain HP) isolated from yellow catfish (Peleobagrus fulvidraco) eggs suffering from saprolegniosis was characterized both morphologically and from ITS sequence data. It was initially identified as a Saprolegnia sp. isolate based on its morphological features. The constructed phylogenetic tree using neighbour joining method indicated that the HP strain was closely related to Saprolegnia ferax strain Arg4S (GenBank accession no. GQ119935), that had previously been isolated from farming water samples in Argentina. In addition, the zoospore numbers of strain HP were markedly influenced by a variety of environmental variables including temperature, pH, formalin and dithiocyano-methane. Its zoospore formation was optimal at 20 °C and pH 7, could be well inhibited by formalin and dithiocyano-methane above 5 mg/L and 0.25 mg/L, respectively. To our knowledge, this is the first report on the S. ferax infection in the hatching yellow catfish eggs.

  13. Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent anticancer agents.

    Science.gov (United States)

    Karki, Subhas S; Panjamurthy, Kuppusamy; Kumar, Sujeet; Nambiar, Mridula; Ramareddy, Sureshbabu A; Chiruvella, Kishore K; Raghavan, Sathees C

    2011-06-01

    Levamisole, the imidazo[2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 μM) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Agentes etiológicos de micosis superficiales aislados en un Hospital de Santa Fe: Argentina Etiological agents of dermatomycoses isolated in a hospital of Santa Fe City: Argentina

    Directory of Open Access Journals (Sweden)

    M. E. Nardin

    2006-03-01

    Full Text Available Las micosis superficiales están limitadas a piel, pelos, uñas y membranas mucosas. Los principales agentes etiológicos son los dermatofitos y las levaduras del género Candida. El objetivo de este trabajo fue conocer los agentes etiológicos de las dermatomicosis y la localización de las lesiones que producían. Se analizaron 2073 muestras de piel, pelos, uñas y membranas de mucosa oral, provenientes de 1817 pacientes que asistieron a la Sección Microbiología del Laboratorio Central del Hospital Dr. J. M. Cullen desde setiembre de 1999 a setiembre de 2003 inclusive. La toma de muestra y posterior procesamiento e identificación se realizó de acuerdo a la localización y al tipo de lesiones que presentaban los pacientes. El 55,67% de los materiales resultó positivo, correspondiendo el 63% a mujeres y el 37% a varones. La piel lisa fue la localización más frecuente. En las dermatofitosis predominó Trichophyton rubrum y en aquellas donde desarrollaron levaduras la especie Candida albicans fue prevalente. Se destaca el aislamiento de 14 hongos filamentosos no dermatofitos (Fusarium spp. y Aspergillus spp., considerados agentes patógenos emergentes en micosis superficiales.Superficial mycoses are limited to skin, hair, nails and mucous membranes. The most common etiological agents are dermatophytes and yeasts of Candida genus. The aim of this work was to know the etiological agents of dermatomycoses and their clinical presentation. Were analized 2073 samples of skin, hair, nails, and oral mucous membranes obtained from 1817 patients who attended the Microbiology Branch of the Central Laboratory at Dr. J. M. Cullen Hospital, since September 1999 to September 2003. The samples were examined and identified according to the localization and type of lesion. Out of the total samples 55.67% were positive; 63% were recovered from females, and 37% from males. The most common localization was the skin. Trichophyton rubrum was the most frequent

  15. Isolation and selection of Bacillus spp as potential biological agents for enhancement of water quality in culture of ornamental fish

    CSIR Research Space (South Africa)

    Lalloo, R

    2007-02-01

    Full Text Available of the genus Bacillus have advantages over vegetative cells, because they are stable for long periods, can be formulated into useful commercial products, are widely used as biological agents, possess ant- agonistic effects on pathogens and are naturally... of the mud sediment sam- ples, skin mucus samples or gut content samples (1 g sus- pended into 3 g of 0Æ9% m ⁄ v NaCl solution) was added into a presterilized McCartney bottle containing nutrient broth (9 ml) and incubated for 24 h at 30�C followed...

  16. Potential Use of Essential Oil Isolated from Cleistocalyx operculatus Leaves as a Topical Dermatological Agent for Treatment of Burn Wound.

    Science.gov (United States)

    Tran, Gia-Buu; Le, Nghia-Thu Tram; Dam, Sao-Mai

    2018-01-01

    Several herbal remedies have been used as topical agents to cure burn wound, one of the most common injuries in worldwide. In this study, we investigated the potential use of Cleistocalyx operculatus essential oil to treat the burn wound. We identified a total of 13 bioactive compounds of essential oil, several of which exhibited the anti-inflammatory and antimicrobial activities. Furthermore, the essential oil showed the antibacterial effect against S. aureus but not with P. aeruginosa. The supportive effect of essential oil on burn wound healing process also has been proven. Among three groups of mice, wound contraction rate of essential oil treated group (100%) was significantly higher than tamanu oil treated (79%) and control mice (71%) after 20 days (0.22 ± 0.03 versus 0.31 ± 0.02 cm 2 , resp., p essential oil formed a complete epidermal structure, thick and neatly arranged fibers, and scattered immune cells in burn wound. On the contrary, saline treated burn wound formed uneven epidermal layer with necrotic ulcer, infiltration of immune cells, and existence of granulation tissue. This finding demonstrated Cleistocalyx operculatus essential oil as promising topical dermatological agent to treat burn wound.

  17. Antimicrobial susceptibility of 6 antimicrobial agents in Helicobacter pylori clinical isolates by using EUCAST breakpoints compared with previously used breakpoints.

    Science.gov (United States)

    Alarcón, Teresa; Urruzuno, Pedro; Martínez, Maria Josefa; Domingo, Diego; Llorca, Laura; Correa, Ana; López-Brea, Manuel

    2017-05-01

    The aim of this study was to determine the differences in percentage resistance in H. pylori clinical isolates using EUCAST breakpoints compared with previously used breakpoints. MIC value distribution in H. pylori clinical isolates was also studied. Susceptibility to amoxicillin, tetracycline, metronidazole, clarithromycin, rifampicin and levofloxacin was performed by E-test in 824 H. pylori clinical isolates. EUCAST and previous breakpoints defined resistance as follows: MIC >0.12mg/L and ≥2mg/L for amoxicillin, >8mg/L and ≥8mg/L for metronidazole, >0.5mg/L and ≥1mg/L for clarithromycin, >1mg/L and ≥32mg/L for rifampicin, and >1mg/L and ≥4mg/L for tetracycline and >1mg/L levofloxacin. Overall resistance rate by EUCAST and by previous breakpoints was 8.5% and 3.2% for amoxicillin, 0.6% and 0.1% for tetracycline, 39.2% and 39.7% for metronidazole, 51.2% and 51.2% for clarithromycin, 32% and 3.1% for rifampicin, and 6.7% and 6.7% for levofloxacin. When using the different breakpoints for antimicrobial susceptibility testing, similar results were found with most antibiotics tested (tetracycline, metronidazole, clarithromycin, and levofloxacin), except for amoxicillin and rifampicin. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  18. Synthesis of some new heterocyclic compounds bearing a sulfonamide moiety and studying their combined anticancer effect with γ-radiation

    International Nuclear Information System (INIS)

    El-Hossary, E.M.M.

    2010-01-01

    In search for new cytotoxic agents with improved anticancer profile, some new halogen-containing quinoline and pyrimido[4,5-b]quinoline derivatives bearing a free sulfonamide moiety were synthesized. All the newly synthesized target compounds were subjected to in vitro anticancer screening against human breast cancer cell line (MCF7). The most potent compounds, as concluded from the in vitro anticancer screening, were selected to be evaluated again for their in vitro anticancer activity in combination with radiation. Also, the newly synthesized compounds were docked in the active site of the carbonic anhydrase enzyme

  19. Susceptibilidad a antimicrobianos en aislamientos de Streptococcus pneumoniae invasor en Colombia Susceptibility to antimicrobial agents in isolates of invasive Streptococcus pneumoniae in Colombia

    Directory of Open Access Journals (Sweden)

    Aura Lucía Leal

    1999-03-01

    Full Text Available Se realizó un estudio para determinar los patrones de susceptibilidad a los antimicrobianos de los aislamientos de Streptococcus pneumoniae causante de enfermedad invasora diagnosticada en Colombia en niños menores de 5 años entre 1994 y 1996 y para establecer la distribución de los tipos capsulares de los aislamientos resistentes. Se analizaron 324 aislamientos recuperados durante la ejecución del Protocolo Nacional de Serotipificación de S. pneumoniae realizado en Santa Fe de Bogotá, Medellín y Cali, Colombia, entre julio de 1994 y marzo de 1996. Se observó que 119 de todos los aislamientos (36,7% presentaban susceptibilidad disminuida por lo menos a un antimicrobiano, que 39 (12% presentaban susceptibilidad disminuida a la penicilina y que de estos últimos aislamientos, 29 presentaban resistencia intermedia y 10 resistencia alta. Nueve aislamientos (2,8% presentaban resistencia a la ceftriaxona, 80 (24,7% a la combinación de trimetoprima y sulfametoxazol (TMS, 49 (15,1% al cloranfenicol y 31 (9,6% a la eritromicina. Se observó resistencia a dos antimicrobianos en 31 aislamientos (9,6% y multirresistencia en 22 (6,7%. Estos 22 aislamientos mostraron resistencia al TMS. Las asociaciones más frecuentes fueron penicilina, TMS y eritromicina en 5 casos; penicilina, cloranfenicol, TMS y eritromicina en 4; penicilina, ceftriaxona, cloranfenicol y TMS en 3; y penicilina, ceftriaxona, cloranfenicol, TMS y eritromicina en 3 casos. Los serotipos más frecuentes en los aislamientos resistentes a la penicilina fueron: 23F (53,8%, 14 (25,6%, 6B (7,7%, 9V (5,1%, 19F (5,1% y 34 (2,6%. Los serotipos más frecuentes en los aislamientos resistentes a antimicrobianos distintos de la penicilina fueron: 5 (37,5%, 23F (7,5%, 14 (18,8% y 6B (13,8%. Esta diferencia en la distribución de los serotipos fue estadísticamente significativa (P A study was done to determine the patterns of susceptibility to antimicrobial agents in isolates of Streptococcus

  20. Determination of in vitro synergy between linezolid and other antimicrobial agents against Mycobacterium tuberculosis isolates.

    Science.gov (United States)

    Zou, Lin; Liu, Min; Wang, Yufeng; Lu, Jie; Pang, Yu

    2015-12-01

    In this study, our objective was to explore the potential in vitro synergy between linezolid (LZD) and six other anti-TB drugs in Mycobacterium tuberculosis strains, especially multidrug-resistant tuberculosis (MDR-TB) strains. Among the different combinations, the LZD-clarithromycin (CLA) combination showed the best synergism, which was observed in 85% (34/40) of 40 isolates. In addition, one (2.5%) and twenty-one (52.5%) of 40 isolates showed synergism for the LZD-levofloxcin (LEV) and LZD-moxifloxacin (MOX) combinations, respectively, and the difference in the proportion of synergy between these two combinations was significantly different (P synergy against non-MDR group seemed higher than that against MDR group in each combination, while the significant difference was only observed in the LZD-EMB combination (P = 0.046). In conclusion, our findings demonstrate that LZD shows the synergistic activity against both non-MDR and MDR M. tuberculosis strains when in combination with CLA, EMB, MOX, amikacin and clofazimine, indicating that LZD may be considered as a promising component involving the regimen for the treatment of MDR-TB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Susceptibility to antifungal agents and enzymatic activity of Candida haemulonii and Cutaneotrichosporon dermatis isolated from soft corals on the Brazilian reefs.

    Science.gov (United States)

    Pagani, Danielle M; Heidrich, Daiane; Paulino, Gustavo V B; de Oliveira Alves, Karine; Dalbem, Paula T; de Oliveira, Caroline F; Andrade, Zélia M M; Silva, Carolini; Correia, Monica D; Scroferneker, Maria Lúcia; Valente, Patricia; Landell, Melissa Fontes

    2016-12-01

    Candida is a common fungus with the capacity to cause infections in humans. However, most studies have concentrated on clinical isolates and little is known about the identity, ecology and drug resistance of free living species/strains. Here, we isolate eight strains of Candida haemulonii and four strains of Cutaneotrichosporon dermatis from three marine cnidarian zoanthids species (Palythoa caribaeorum, Palythoa variabilis and Zoanthus sociatus) collected from Brazilian coral reefs. Strains were identified by sequencing of the D1/D2 domain LSU rDNA and ITS region. We tested these environmental isolates for their capacity to grow in media with increasing concentration of NaCl, capacity to grow in different temperatures, enzymatic activity and antifungal susceptibility. For C. haemulonii, all strains strongly produced gelatinase, esterase and albuminase and were either able to express lipase, phospholipase and keratinase, but not express urease and DNase. The strains were able to grow at 37 °C, but not at 39 °C, and except for LMS 40, all of them could grow in a 10 % NaCl medium. All isolates were resistant to all antifungals tested, with exception for ketoconazole and tioconazole (MIC = 2 µg/mL). For C. dermatis, all strains could grow at 39 °C and could not express phospholipase, keratinase or gelatinase. However, all were capable of expressing urease, lipase and esterase. Three out of four strains could grow in a 10 % NaCl medium, but none grew in a 30 % NaCl medium. The strains showed high values of minimal inhibitory concentration. LMPV 90 was resistant to tioconazole, terbinafine, fluconazole and posaconazole, and LMS 38 was resistant to all antifungal agents tested. We discuss the characterization of C. haemulonii and C. dermatis as a possible emerging pathogen due to its animal-related enzymatic arsenal and antifungal resistance.

  2. Anticancer Phenolics from Dryopteris fragrans (L. Schott

    Directory of Open Access Journals (Sweden)

    Zhen-Dong Liu

    2018-03-01

    Full Text Available Cancer is one of the most major diseases that threatens human health and life. The aim of this work was to obtain novel anticancer molecules from D. fragrans, a kind of medicinal plant. The structure of the new compound was identified using spectroscopic data (1H-NMR, 13C-NMR and two dimensions NMR. Its anticancer properties were evaluated using the 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay against four human cells including lung cancer cells (A549, breast cancer cells (MCF-7, gastric cancer cells (SGC7901 and noncancerous human umbilical vein endothelial cells (HUVEC. A new phenylpropanoid—(E-caffeic acid-9-O-β-d-xylpyranosyl-(1→2-β-d-glucopyranosyl ester (1, with seven known compounds (2–8—was isolated. The IC50 value of compound 1 against MCF-7 cells was 2.65 ± 0.14 µM, and the IC50 values of compound 8 against three cancer cells were below 20 µM.

  3. Curcumin Nanotechnologies and Its Anticancer Activity.

    Science.gov (United States)

    Subramani, Parasuraman Aiya; Panati, Kalpana; Narala, Venkata Ramireddy

    2017-04-01

    Cancer is one of the leading causes of death worldwide. Curcumin is a well-established anticancer agent in vitro but its efficacy is yet to be proven in clinical trials. Poor bioavailability of curcumin is the principal reason behind the lack of efficiency of curcumin in clinical trials. Many studies prove that the bioavailability of curcumin can be improved by administering it through nanoparticle drug carriers. This review focuses on the efforts made in the field of nanotechnology to improve the bioavailability of curcumin. Nanotechnologies of curcumin come in various shapes and sizes. The simplest curcumin nanoparticle that increased the bioavailability of curcumin is the curcumin-metal complex. On the other hand, we have intricate thermoresponsive nanoparticles that can release curcumin upon stimulation (analogous to a remote control). Future research required for developing potent curcumin nanoparticles is also discussed.

  4. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    Science.gov (United States)

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug.

    Science.gov (United States)

    Kumar, B Sathish; Raghuvanshi, Dushyant Singh; Hasanain, Mohammad; Alam, Sarfaraz; Sarkar, Jayanta; Mitra, Kalyan; Khan, Feroz; Negi, Arvind S

    2016-06-01

    2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Surveillance of in vitro susceptibilities to levofloxacin and various antibacterial agents for 11,762 clinical isolates obtained from 69 centers in 2013].

    Science.gov (United States)

    Yamaguchi, Keizo; Tateda, Kazuhiro; Ohno, Akira; Ishii, Yoshikazu; Murakami, Hinako

    2016-02-01

    Antimicrobial susceptibility testing has been conducted continuously as postmarketing surveillance of levofloxacin (LVFX) since 1994. The present survey was undertaken to investigate in vitro susceptibilities of bacteria to 33 selected antibacterial agents, focusing on fluoroquinolones (FQs), using 11,762 clinical isolates for 19 species collected from 69 centers during 2013 in Japan. The common respiratory pathogens Streptococcus pyogenes, Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae continue to show a high susceptibility to FQs, while the percentage of macrolide-resistant S. pneumoniae was markedly increased to around 80%. With H. influenzae, the percentage of β-lactamase-negative ampicillin-resistant isolates had been increasing continuously from 2002, but no increase was observed from 2010 to 2013 (25.8% in 2002, 40.0% in 2004, 50.1% in 2007, 57.9% in 2010, and 57.1% in 2013). Most strains of Enterobacteriaceae showed a high susceptibility to FQs, but the isolation frequency of levofloxacin-resistant Escherichia coli including intermediate resistance was 34.4%, showing a continuous increase. Another Enterobacteriaceae member, Klebsiella pneumoniae, showed low resistance to FQs in contrast with E. coli. Regarding methicillin-resistant Staphylococcus aureus (MRSA), the percentage of FQ-susceptible isolates was low at 15.8-18.0%, with the exception of 55.3% susceptibility to sitafloxacin. On the other hand, methicillin-susceptible S. aureus (MSSA) isolates showed high susceptibility to FQs, at 87.0-99.3%. With Enterococcusfaecium, the percentage of FQ-susceptible isolates was 6.8-24.7%. The percentage of FQ-susceptible Pseudomonas aeruginosa was 83.4-89.3% among isolates derived from urinary tract infections (UTIs), while that from respiratory tract infections (RTIs) was 88.1-93.7%. This was summarized as susceptibility to FQs over 80% in both infections. A continuous decrease in FQ-resistant P. aeruginosa was noted, especially

  7. Effects of a new beta-adrenoceptor blocking agent, S-596 (arotinolol), on isolated dog coronary arteries.

    Science.gov (United States)

    Sakanashi, M; Miyamoto, Y; Takeo, S; Noguchi, K

    1983-06-01

    Effects of S-596 on dog coronary arteries were investigated in vitro. S-596 produced concentration-dependent relaxations of coronary arterial strips under potassium-, prostaglandin (PG) F2 alpha- or PGE2-contracture. S-596-induced relaxations of the strips were not influenced by tetraethylammonium or tranylcypromine, but restored by additional Ca++ or prevented by prior administration of Ca++. In distal portions of coronary arteries, S-596 significantly inhibited concentration-dependent relaxations of the strips induced by norepinephrine and reversed to weak contractions. In proximal portions, S-596 significantly inhibited concentration-dependent contractions induced by norepinephrine. Results indicate that S-596 has a nonspecific relaxant effect on isolated dog coronary arteries maybe through impairment of Ca++ availability and simultaneously has an alpha-adrenoceptor blocking effect, particularly on large coronary arteries.

  8. Synthesis and anticancer evaluation of spermatinamine analogues

    KAUST Repository

    Moosa, Basem

    2016-02-04

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcystiene carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5 - 10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines.

  9. Antibacterial and Synergy of Berberines with Antibacterial Agents against Clinical Multi-Drug Resistant Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Zhong-Qi Bian

    2012-08-01

    Full Text Available Antibacterial activity of berberine (Ber and 8-acetonyl-dihydroberberine (A-Ber alone and combined uses with antibacterial agents ampicillin (AMP, azithromycin (AZM, cefazolin (CFZ and levofloxacin (LEV was studied on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA. Susceptibility to each agent alone was tested using a broth microdilution method and the chequerboard and time-kill tests for the combined evaluations, respectively. The alone MICs/MBCs (mg/mL ranges were 32–128/64–256 (Ber and 32-128/128-512 (A-Ber. Significant synergies were observed for the Ber (A-Ber/AZM and Ber (A-Ber/LEV combinations against 90% of the tested MRSA strains, with fractional inhibitory concentration indices (FICIs values ranged  from 0.188 to 0.500. An additivity result was also observed for the Ber/AZM combination by time-kill curves. These results demonstrated for the first time that Ber and A-Ber enhanced the in vitro inhibitory efficacy of AZM and LEV to a same extent, which had potential for further investigation in combinatory therapeutic applications of patients infected with MRSA.

  10. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov.

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2015-08-01

    Full Text Available A novel Streptomyces, strain MUSC 149T was isolated from mangrove soil. A polyphasic approach was used to study the taxonomy of MUSC 149T, which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8 and MK9(H6. Phylogenetic analysis indicated that closely related strains include Streptomyces rhizophilus NBRC 108885T (99.2 % sequence similarity, Streptomyces gramineus NBRC 107863T (98.7 % and Streptomyces graminisoli NBRC 108883T (98.5 %. The DNA–DNA relatedness values between MUSC 149T and closely related type strains ranged from 12.4 ± 3.3 % to 27.3 ± 1.9 %. The DNA G + C content was determined to be 72.7 mol%. The extract of MUSC 149T exhibited strong antioxidant activity and chemical analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-. These data showed that metabolites of MUSC 149T shall be useful as preventive agent against free-radical associated diseases. Based on the polyphasic study of MUSC 149T, the strain merits assignment to a novel species, for which the name Streptomyces mangrovisoli sp. nov. is proposed. The type strain is MUSC 149T (= MCCC 1K00699T = DSM 100438T.

  11. Diversity, Phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L.

    Science.gov (United States)

    Katoch, Meenu; Phull, Shipra; Vaid, Shagun; Singh, Shashank

    2017-03-07

    Present study focuses on diversity and distribution analysis of endophytic fungi associated with different tissues of the Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae). Anticancer and antimicrobial potential of isolated endophytes have also been investigated. A total of twenty eight fungal endophytes belonging to 11 different genera were isolated from this plant. All the endophytic fungi belonged to the Ascomycota phylum. The leaves were immensely rich in fungal species, while roots showed the highest tissue specific fungal dominance. Out of 28 fungal species, 72% endophytic extracts were found cytotoxic against one or more human cancer cell lines. The most prominent anticancer activity (IC 50 value endophytic community with anticancer and antimicrobial activities. The isolated endophyte MC-24 L (C. tenuissimum) has the potential to be a source of novel cytotoxic/antimicrobial compounds. This is the first report of diversity of fungal endophytes isolated from M. citriodora.

  12. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization.

    Science.gov (United States)

    Tambong, James T; Xu, Renlin; Bromfield, Eden S P

    2017-04-01

    The bacterial strain 2-92T, isolated from a field plot under long-term (>40 years) mineral fertilization, exhibited in vitro antagonistic properties against fungal pathogens. A polyphasic approach was undertaken to verify its taxonomic status. Strain 2-92T was Gram-reaction-negative, aerobic, non-spore-forming, motile by one or more flagella, and oxidase-, catalase- and urease-positive. The optimal growth temperature of strain 2-92T was 30 °C. 16S rRNA gene sequence analysis demonstrated that the strain is related to species of the genus Pseudomonas. Phylogenetic analysis of six housekeeping genes (dnaA, gyrB, recA, recF, rpoB and rpoD) revealed that strain 2-92T clustered as a distinct and well separated lineage with Pseudomonassimiae as the most closely related species. Polar lipid and fatty acid compositions corroborated the taxonomic position of strain 2-92T in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests could be used to differentiate strain 2-92T from closely related species of the genus Pseudomonas. DNA-DNA hybridization values (wet laboratory and genome-based) and average nucleotide identity data confirmed that this strain represents a novel species. On the basis of phenotypic and genotypic characteristics, it is concluded that this strain represents a separate novel species for which the name Pseudomonas canadensis sp. nov. is proposed, with type strain 2-92T (=LMG 28499T=DOAB 798T). The DNA G+C content is 60.30 mol%.

  13. Formation and rejoining of deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agents.

    Science.gov (United States)

    Pommier, Y; Schwartz, R E; Kohn, K W; Zwelling, L A

    1984-07-03

    The biochemical characteristics of the formation and disappearance of intercalator-induced DNA double-strand breaks (DSB) were studied in nuclei from mouse leukemia L1210 cells by using filter elution methodology [Bradley, M. O., & Kohn, K.W. (1979) Nucleic Acids Res. 7, 793-804]. The three intercalators used were 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), 5-iminodaunorubicin (5-ID), and ellipticine. These compounds differ in that they produced predominantly DNA single-strand breaks (SSB) (m-AMSA) or predominantly DNA double-strand breaks (ellipticine) or a mixture of both SSB and DSB (5-ID) in whole cells. In isolated nuclei, each intercalator produced DSB at a frequency comparable to that which is produced in whole cells. Moreover, these DNA breaks reversed within 30 min after drug removal. It thus appeared that neither ATP nor other nucleotides were necessary for intercalator-dependent DNA nicking-closing reactions. The formation of the intercalator-induced DSB was reduced at ice temperature. Break formation was also reduced in the absence of magnesium, at a pH above 6.4 and at NaCl concentrations above 200 mM. In the presence of ATP and ATP analogues, the intercalator-induced cleavage was enhanced. These results suggest that the intercalator-induced DSB are enzymatically mediated and that the enzymes involved in these reactions can catalyze DNA double-strand cleavage and rejoining in the absence of ATP, although the occupancy of an ATP binding site might convert the enzyme to a form more reactive to intercalators. Three inhibitors of DNA topoisomerase II--novobiocin, nalidixic acid, and norfloxacin--reduced the formation of DNA strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    Science.gov (United States)

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  15. Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.

    Science.gov (United States)

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali

    2015-01-01

    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.

  16. Anticancer activity of Amauroderma rude.

    Directory of Open Access Journals (Sweden)

    Chunwei Jiao

    Full Text Available More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.

  17. Anticancer Activity of Amauroderma rude

    Science.gov (United States)

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  18. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice.

    Science.gov (United States)

    Havelek, Radim; Muthna, Darina; Tomsik, Pavel; Kralovec, Karel; Seifrtova, Martina; Cahlikova, Lucie; Hostalkova, Anna; Safratova, Marcela; Perwein, Maria; Cermakova, Eva; Rezacova, Martina

    2017-09-25

    In this study, twenty-two Amaryllidaceae alkaloids were screened for their anticancer potential. All isolates were evaluated for antiproliferative activities on a panel of 17 human cell types of different tissue origin using WST-1 assay. In addition, we determined the antiproliferative effect with a real-time cell analysis xCELLigence system. Thereafter, to evaluate the barely known in vivo anticancer potential of the most potent molecule haemanthamine, a preliminary study was performed using an Ehrlich tumor-bearing mice model. The results showed that haemanthamine, lycorine and haemanthidine exerted the highest antiproliferative activity. The mean growth percent (GP) value after a single-dose 10 μM treatment was for haemanthamine 21%, for lycorine 21% and for haemanthidine 27% that of untreated control cells (100%). Furthermore, haemanthamine, lycorine and haemanthidine exhibited significant cytotoxicities against all the tested cell lines with individual IC 50 values in the micromolar range. Dynamic real-time measures of impedance by xCELLigence indicated that these three compounds suppress cell proliferation after 10 h of treatment at a concentration of 10 μM or higher. Regrettably, in a follow-up in vivo antitumor activity study, haemanthamine showed no statistically significant reduction in the tumor size with no prolongation of survival time of Ehrlich tumor-bearing mice. Taken together, these results provide a new clue and guidance for exploiting Amaryllidaceae alkaloids as anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  20. Impact of dosage timing on the bioavailability of oral anticancer medications: Is pre-prandial dosing equivalent to post-prandial dosing.

    Science.gov (United States)

    Yu, Guo; Wu, Dan-Na; Yu, Yichao; Li, Guo-Fu; Zhou, Hong-Hao

    2018-01-01

    Many oral anticancer agents are recommended to be given either at least 1 h before or 2 h after a meal, according to the prescribing information. However, the effect of dosage timing of an oral anticancer agent with reference to food intake on anticancer treatment remains unclear. As shown by the literature survey and labeling analysis for oral anticancer drugs approved by the US Food and Drug Administration from 2010 to 2016, labeling information regarding dosage timing for several anticancer drugs appeared not be optimum, leading to suboptimal bioavailability and plasma drug concentrations. This supports a call to regularly recalibrate the labeling information for dosage timing of oral anticancer medications to minimize the risks of compromised efficacy or unintended toxicities.

  1. Sanguinarine: A Novel Agent Against Prostate Cancer

    National Research Council Canada - National Science Library

    Ahmad, Nihal

    2005-01-01

    .... Therefore, the search for novel agents and approaches for the treatment of CaP continues. Natural plant-based products have shown promise as anticancer agents. Sanguinarine (13-methyl[ 1,3]benzodioxolo[5,6-c]- 1,3-dioxolo[4,5-i]phenanthridinium...

  2. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents. © 2014 Wiley Periodicals, Inc.

  3. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber.

    Science.gov (United States)

    Du, Nanshan; Shi, Lu; Yuan, Yinghui; Sun, Jin; Shu, Sheng; Guo, Shirong

    2017-09-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC) is one of the major destructive soil-borne diseases infecting cucumber. In this study, we screened 60 target strains isolated from vinegar waste compost, from which 10 antagonistic strains were identified to have the disease suppression capacity of bio-control agents. The 16S rDNA gene demonstrated that the biocontrol agents were Paenibacillus polymyxa (P. polymyxa), Bacillus amyloliquefaciens (B. amyloliquefaciens) and Bacillus licheniformis (B. licheniformis). Based on the results of antagonistic activity experiments and pot experiment, an interesting strain of P. polymyxa (named NSY50) was selected for further research. Morphological, physiological and biochemical characteristics indicated that this strain was positive for protease and cellulase and produced indole acetic acid (22.21±1.27μg mL -1 ) and 1-aminocyclopropane-1-carboxylate deaminase (ACCD). NSY50 can significantly up-regulate the expression level of defense related genes PR1 and PR5 in cucumber roots at the early stages upon challenge with FOC. However, the gene expression levels of a set of defense-related genes, such as the plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family (e.g., Csa001236, Csa09775, Csa018159), 26kDa phloem protein (Csa001568, Csa003306), glutathione-S-transferase (Csa017734) and phenylalanine ammonia-lyase (Csa002864) were suppressed by pretreatment with NSY50 compared with the single challenge with FOC after nine days of inoculation. Of particular interest was the reduced expression of these genes at disease progression stages, which may be required for F. oxysporum dependent necrotrophic disease development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    Science.gov (United States)

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  5. Recent discoveries of anticancer flavonoids.

    Science.gov (United States)

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or othe