WorldWideScience

Sample records for antibody-mediated immune response

  1. Parasite glycans and antibody-mediated immune responses in Schistosoma infection.

    Science.gov (United States)

    van Diepen, Angela; Van der Velden, Niels S J; Smit, Cornelis H; Meevissen, Moniek H J; Hokke, Cornelis H

    2012-08-01

    Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.

  2. Antibody-Mediated Immunity against Tuberculosis: Implications for Vaccine Development

    OpenAIRE

    Achkar, Jacqueline M; Casadevall, Arturo

    2013-01-01

    There is an urgent need for new and better vaccines against tuberculosis (TB). Current vaccine design strategies are generally focused on the enhancement of cell-mediated immunity. Antibody-based approaches are not being considered, mostly due to the paradigm that humoral immunity plays little role in the protection against intracellular pathogens. Here, we reappraise and update the increasing evidence for antibody-mediated immunity against Mycobacterium tuberculosis, discuss the complexity o...

  3. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on antibody-mediated immune response and gene expression of pattern recognition receptors and cytokines in broiler chickens immunized with T-cell dependent antigens.

    Science.gov (United States)

    Alizadeh, M; Rodriguez-Lecompte, J C; Echeverry, H; Crow, G H; Slominski, B A

    2016-04-01

    This study evaluated the effect of yeast-derived products on innate and antibody mediated immune response in broiler chickens following immunization with sheep red blood cells (SRBC) and bovine serum albumin (BSA). One-day-old male broiler chickens (Ross-308) were randomly assigned to 6 dietary treatments of 9 replicate cages of 5 birds each per treatment. Dietary treatments consisted of a Control diet without antibiotic, and diets containing 11 mg/kg of virginiamycin, 0.25% of yeast cell wall (YCW), 0.2% of a commercial product Maxi-Gen Plus containing processed yeast and nucleotides, 0.05% of nucleotides, or a diet containing 10% of DDGS. On days 21 and 28 post-hatching, 5 birds per treatment were immunized intramuscularly with both SRBC and BSA. One week after each immunization, blood samples were collected. Serum samples were analyzed by hemagglutination test for antibody response to SRBC, and by ELISA for serum IgM and IgG response to BSA. On d 35, 5 birds per treatment were euthanized and the tissue samples from the cecal tonsils were collected to assess the gene expression of toll-like receptors TLR2b, TLR4, and TLR21, monocyte mannose receptor (MMR), and cytokines IL-10, IL-13, IL-4, IL-12p35, and IFN-γ. The results for gene expression analysis demonstrated that the diet supplemented with YCW increased the expression of TLR2b and T-helper type 2 cytokines IL-10, IL-4, and IL-13 relative to the Control; and the expression of TLR4 and IL-13 was upregulated in the nucleotide-containing diet. However, the diets containing antibiotics or Maxi-Gen Plus downregulated the expression of IFN-γ compared to the control. The primary antibody response to SRBC was not affected by diets. However, the diet containing YCW increased the secondary antibody response to SRBC compared to the antibiotic treatment. Neither primary nor secondary IgG and IgM response against BSA were affected by diets. In conclusion, supplementation of the diet with YCW stimulated Th2 cell

  4. Novel mutations in Marburg virus glycoprotein associated with viral evasion from antibody mediated immune pressure.

    Science.gov (United States)

    Kajihara, Masahiro; Nakayama, Eri; Marzi, Andrea; Igarashi, Manabu; Feldmann, Heinz; Takada, Ayato

    2013-04-01

    Marburg virus (MARV) and Ebola virus, members of the family Filoviridae, cause lethal haemorrhagic fever in humans and non-human primates. Although the outbreaks are concentrated mainly in Central Africa, these viruses are potential agents of imported infectious diseases and bioterrorism in non-African countries. Recent studies demonstrated that non-human primates passively immunized with virus-specific antibodies were successfully protected against fatal filovirus infection, highlighting the important role of antibodies in protective immunity for this disease. However, the mechanisms underlying potential evasion from antibody mediated immune pressure are not well understood. To analyse possible mutations involved in immune evasion in the MARV envelope glycoprotein (GP) which is the major target of protective antibodies, we selected escape mutants of recombinant vesicular stomatitis virus (rVSV) expressing MARV GP (rVSVΔG/MARVGP) by using two GP-specific mAbs, AGP127-8 and MGP72-17, which have been previously shown to inhibit MARV budding. Interestingly, several rVSVΔG/MARVGP variants escaping from the mAb pressure-acquired amino acid substitutions in the furin-cleavage site rather than in the mAb-specific epitopes, suggesting that these epitopes are recessed, not exposed on the uncleaved GP molecule, and therefore inaccessible to the mAbs. More surprisingly, some variants escaping mAb MGP72-17 lacked a large proportion of the mucin-like region of GP, indicating that these mutants efficiently escaped the selective pressure by deleting the mucin-like region including the mAb-specific epitope. Our data demonstrate that MARV GP possesses the potential to evade antibody mediated immune pressure due to extraordinary structural flexibility and variability.

  5. Early eradication of persistent Salmonella infection primes antibody-mediated protective immunity to recurrent infection.

    Science.gov (United States)

    Johanns, Tanner M; Law, Calvin Y; Kalekar, Lokeshchandra A; O'Donnell, Hope; Ertelt, James M; Rowe, Jared H; Way, Sing Sing

    2011-04-01

    Typhoid fever is a systemic, persistent infection caused by host-specific strains of Salmonella. Although the use of antibiotics has reduced the complications associated with primary infection, recurrent infection remains an important cause of ongoing human morbidity and mortality. Herein, we investigated the impacts of antibiotic eradication of primary infection on protection against secondary recurrent infection. Using a murine model of persistent Salmonella infection, we demonstrate protection against recurrent infection is sustained despite early eradication of primary infection. In this model, protection is not mediated by CD4(+) or CD8(+) T cells because depletion of these cells either alone or in combination prior to rechallenge does not abrogate protection. Instead, infection followed by antibiotic-mediated clearance primes robust levels of Salmonella-specific antibody that can adoptively transfer protection to naïve mice. Thus, eradication of persistent Salmonella infection primes antibody-mediated protective immunity to recurrent infection.

  6. Antidotes, antibody-mediated immunity and the future of pharmaceutical product development.

    Science.gov (United States)

    Caoili, Salvador Eugenio C

    2013-02-01

    If new scientific knowledge is to be more efficiently generated and applied toward the advancement of health, human safety must be more effectively addressed in the conduct of research. Given the present difficulties of accurately predicting biological outcomes of novel interventions in vivo, the imperative of human safety suggests the development of novel pharmaceutical products in tandem with their prospective antidotes in anticipation of possible adverse events, to render the risks of initial clinical trials more acceptable from a regulatory standpoint. Antibody-mediated immunity provides a generally applicable mechanistic basis for developing antidotes to both biologicals and small-molecule drugs (such that antibodies may serve as antidotes to pharmaceutical agents as a class including other antibodies) and also for the control and prevention of both infectious and noninfectious diseases via passive or active immunization. Accordingly, the development of prophylactic or therapeutic passive-immunization strategies using antipeptide antibodies is a plausible prelude to the development of corresponding active-immunization strategies using peptide-based vaccines. In line with this scheme, global proliferation of antibody- and vaccine-production technologies, especially those that obviate dependence on the cold chain for storage and transport of finished products, could provide geographically distributed breakout capability against emerging and future health challenges.

  7. Polyclonal and Specific Antibodies Mediate Protective Immunity against Enteric Helminth Infection

    NARCIS (Netherlands)

    McCoy, Kathy D.; Stoel, Maaike; Stettler, Rebecca; Merky, Patrick; Fink, Katja; Senn, Beatrice M.; Schaer, Corinne; Massacand, Joanna; Oderrnatt, Bernhard; Oettgen, Hans C.; Zinkernagel, Rolf M.; Bos, Nicolaas A.; Hengartner, Hans; Macpherson, Andrew J.; Harris, Nicola L.

    2008-01-01

    Anti-helminth immunity involves CD4(+) T cells, yet the precise effector mechanisms responsible for parasite killing or expulsion remain elusive. We now report an essential role for antibodies in mediating immunity against the enteric helminth Heligmosomoides polygyrus (Hp), a natural murine parasit

  8. Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza.

    Directory of Open Access Journals (Sweden)

    Jiong Wang

    Full Text Available The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA's, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA's. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the m

  9. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Guillain-Barré syndrome (GBS is a monophasic immune neuropathic disorder in which a significant proportion of patients have incomplete recovery. The patients with incomplete recovery almost always have some degree of failure of axon regeneration and target reinnervation. Anti-ganglioside antibodies (Abs are the most commonly recognized autoimmune markers in all forms of GBS and specific Abs are associated with the slow/poor recovery. We recently demonstrated that specific anti-ganglioside Abs inhibit axonal regeneration and nerve repair in preclinical models by activation of small GTPase RhoA and its downstream effectors. The objective of this study was to determine whether erythropoietin (EPO, a pleiotropic cytokine with neuroprotective and neurotrophic properties, enhances nerve regeneration in preclinical cell culture and animal models of autoimmune neuropathy/nerve repair generated with monoclonal and patient derived Abs. Primary neuronal cultures and a standardized sciatic crush nerve model were used to assess the efficacy of EPO in reversing inhibitory effects of anti-ganglioside Abs on nerve repair. We found that EPO completely reversed the inhibitory effects of anti-ganglioside Abs on axon regeneration in cell culture models and significantly improved nerve regeneration/repair in an animal model. Moreover, EPO-induced proregenerative effects in nerve cells are through EPO receptors and Janus kinase 2/Signal transducer and activator of transcription 5 pathway and not via early direct modulation of small GTPase RhoA. These preclinical studies indicate that EPO is a viable candidate drug to develop further for neuroprotection and enhancing nerve repair in patients with GBS.

  10. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy.

    Science.gov (United States)

    Zhang, Gang; Lehmann, Helmar C; Bogdanova, Nataliia; Gao, Tong; Zhang, Jiangyang; Sheikh, Kazim A

    2011-01-01

    Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder in which a significant proportion of patients have incomplete recovery. The patients with incomplete recovery almost always have some degree of failure of axon regeneration and target reinnervation. Anti-ganglioside antibodies (Abs) are the most commonly recognized autoimmune markers in all forms of GBS and specific Abs are associated with the slow/poor recovery. We recently demonstrated that specific anti-ganglioside Abs inhibit axonal regeneration and nerve repair in preclinical models by activation of small GTPase RhoA and its downstream effectors. The objective of this study was to determine whether erythropoietin (EPO), a pleiotropic cytokine with neuroprotective and neurotrophic properties, enhances nerve regeneration in preclinical cell culture and animal models of autoimmune neuropathy/nerve repair generated with monoclonal and patient derived Abs. Primary neuronal cultures and a standardized sciatic crush nerve model were used to assess the efficacy of EPO in reversing inhibitory effects of anti-ganglioside Abs on nerve repair. We found that EPO completely reversed the inhibitory effects of anti-ganglioside Abs on axon regeneration in cell culture models and significantly improved nerve regeneration/repair in an animal model. Moreover, EPO-induced proregenerative effects in nerve cells are through EPO receptors and Janus kinase 2/Signal transducer and activator of transcription 5 pathway and not via early direct modulation of small GTPase RhoA. These preclinical studies indicate that EPO is a viable candidate drug to develop further for neuroprotection and enhancing nerve repair in patients with GBS.

  11. The effect of daily co-trimoxazole prophylaxis on natural development of antibody-mediated immunity against P. falciparum malaria infection in HIV-exposed uninfected Malawian children.

    Directory of Open Access Journals (Sweden)

    Herbert Longwe

    Full Text Available Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection.Using an enzyme-linked immunosorbent assay, we measured antibodies to 8 Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU children, collected at 6, 12 and 18 months of age.Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001, MSP-119 at 12 months (p = 0.041 and PfSE at 6 months (p = 0.038, 12 months (p = 0.0012 and 18 months (p = 0.0097. No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period.Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.

  12. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    Directory of Open Access Journals (Sweden)

    Salvador Eugenio C. Caoili

    2012-01-01

    Full Text Available B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins.

  13. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina.

    Science.gov (United States)

    Rapaka, Rekha R; Ricks, David M; Alcorn, John F; Chen, Kong; Khader, Shabaana A; Zheng, Mingquan; Plevy, Scott; Bengtén, Eva; Kolls, Jay K

    2010-12-20

    Host defense against opportunistic fungi requires coordination between innate and adaptive immunity for resolution of infection. Antibodies generated in mice vaccinated with the fungus Pneumocystis prevent growth of Pneumocystis organisms within the lungs, but the mechanisms whereby antibodies enhance antifungal host defense are poorly defined. Nearly all species of fungi contain the conserved carbohydrates β-glucan and chitin within their cell walls, which may be targets of innate and adaptive immunity. In this study, we show that natural IgM antibodies targeting these fungal cell wall carbohydrates are conserved across many species, including fish and mammals. Natural antibodies bind fungal organisms and enhance host defense against Pneumocystis in early stages of infection. IgM antibodies influence recognition of fungal antigen by dendritic cells, increasing their migration to draining pulmonary lymph nodes. IgM antibodies are required for adaptive T helper type 2 (Th2) and Th17 cell differentiation and guide B cell isotype class-switch recombination during host defense against Pneumocystis. These experiments suggest a novel role for the IgM isotype in shaping the earliest steps in recognition and clearance of this fungus. We outline a mechanism whereby serum IgM, containing ancient specificities against conserved fungal antigens, bridges innate and adaptive immunity against fungal organisms.

  14. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant.

    Science.gov (United States)

    Barnett, Susan W; Burke, Brian; Sun, Yide; Kan, Elaine; Legg, Harold; Lian, Ying; Bost, Kristen; Zhou, Fengmin; Goodsell, Amanda; Zur Megede, Jan; Polo, John; Donnelly, John; Ulmer, Jeffrey; Otten, Gillis R; Miller, Christopher J; Vajdy, Michael; Srivastava, Indresh K

    2010-06-01

    We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against

  15. AAVrh.10-Mediated Expression of an Anti-Cocaine Antibody Mediates Persistent Passive Immunization That Suppresses Cocaine-Induced Behavior

    Science.gov (United States)

    Rosenberg, Jonathan B.; Hicks, Martin J.; De, Bishnu P.; Pagovich, Odelya; Frenk, Esther; Janda, Kim D.; Wee, Sunmee; Koob, George F.; Hackett, Neil R.; Kaminsky, Stephen M.; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G.

    2012-01-01

    Abstract Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity. PMID:22486244

  16. Immune response

    Science.gov (United States)

    ... and tetanus antitoxin are examples of passive immunization. BLOOD COMPONENTS The immune system includes certain types of white ... lymphocytes develop, they normally learn to tell the difference between your own body tissues and substances that ...

  17. Tumor-Selective Response to Antibody-Mediated Targeting of αvβ3 Integrin in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Charles N. Landen

    2008-11-01

    Full Text Available The αvβ3 integrin is expressed on proliferating endothelial cells and some cancer cells, but its expression on ovarian cancer cells and its potential as a therapeutic target are unknown. In this study, expression of the αvβ3 integrin on ovarian cancer cell lines and murine endothelial cells was tested, and the effect of a fully humanized monoclonal antibody against αvβ3, Abegrin (etaracizumab, on cell invasion, viability, tumor growth, and the Akt pathway were examined in vitro and in vivo. We found that etaracizumab recognizes αvβ3 on the ovarian cancer cell lines SKOV3ip1, HeyA8, and A2780ip2 (at low levels but not on murine endothelial cells. Etaracizumab treatment decreased ovarian cancer proliferation and invasion. In vivo, tumor-bearing mice treated with etaracizumab alone gave variable results. There was no effect on A2780ip2 growth, but a 36% to 49% tumor weight reduction in the SKOV3ip1 and HeyA8 models was found (P < .05. However, combined etaracizumab and paclitaxel was superior to paclitaxel in the SKOV3ip1 and A2780ip2 models (by 51–73%, P < .001 but not in the HeyA8 model. Treatment with etaracizumab was then noted to decrease p-Akt and p-mTOR in SKOV3ip1, but not in HeyA8, which is Akt-independent. Tumors resected after therapy showed that etaracizumab treatment reduced the proliferating cell nuclear antigen index but not microvessel density. This study identifies tumor cell αvβ3 integrin as an attractive target and defines the Akt pathway as a predictor of response to function-blocking antibody.

  18. [Immunosuppressive treatment after kidney transplant: the frontier of chronic antibody-mediated rejection].

    Science.gov (United States)

    Biancone, Luigi; Lavacca, Antonio; Beltramo, Silvia; Ariaudo, Claudia; Gallo, Ester; Segoloni, Giuseppe Paolo

    2012-01-01

    The recognition of antibody-mediated rejection as an important factor in the reduction of long-term renal graft survival represents a new challenge to the immunosuppressive strategies of recent years, which have been quite successful in reducing the acute rejection rates as well as the side effects of pharmacological immunosuppression. The search for an effective treatment of chronic anti-donor antibody disease has been pursued mostly through limited single-center experiences and therefore in a dispersed fashion, without leading to the definition of a consolidated approach. The most frequently used pharmacological approaches stem from the experience of antibody-mediated acute rejection. In this review we will critically analyze the results reported so far of various intervention strategies and we will discuss future pharmacological novelties targeting the humoral immune response.

  19. Tracing the antibody mediated acquired immunity by Foot and Mouth disease and Rift Valley Fever combined vaccine in pregnant ewes and their lambs

    Directory of Open Access Journals (Sweden)

    Wael Mossad Gamal

    2014-11-01

    Full Text Available Aim: The aim of this study was to provide adequate protection to ewes and their lambs against Foot and Mouth disease (FMD and Rift Valley Fever (RVF. Materials and Methods: A combined inactivated oil vaccine was prepared successfully. Such vaccine was found to be free from foreign contaminants, safe and potent as determined by quality control tests such as challenge protection percentage for FMD and mice ED50 for RVF. Vaccination of pregnant ewes with the prepared combined vaccine and determination of the antibody level via serum neutralization test (SNT and Enzyme Linked immune sorbent assay (ELISA in the vaccinated pregnant ewes and their lambs. Results: Vaccination of pregnant ewes revealed that these ewes exhibited high levels of specific antibodies against the included vaccine antigens (Foot and Mouth disease virus type A Iran O5, O PanAsia and SAT2/EGY/2012 and RVFV-ZH501. FMD antibodies recorded their peaks by the 10th week while those of RVF recorded their peaks by the 12th week post vaccination then all antibodies began to decrease gradually to reach their lowest protective titers for FMD by the 32nd week post vaccination and those for RVF by the 34th week post vaccination. Potency test of the prepared combined vaccine expressed as protection percentage of vaccinated sheep against target virulent FMD virus serotypes reflected a protection percentage of 80% against type O and SAT2 and 100% against A while for RVF, the mice ED50 was found to be 0.009 indicating the potency of the prepared vaccine. The antibody titer in serum and colostrum of vaccinated pregnant ewes at day of parturition (10-12 week post vaccination recorded a high titer against FMD serotype (O, serotype (A, serotype (SAT2 and against RVF. It was noticed that the colostrum antibody titers were slightly higher than those in the sera of vaccinated ewes at time of parturition. The newly born lambs from vaccinated ewes, exhibited good levels of maternal immunity against the

  20. Human T Cell and Antibody-Mediated Responses to the Mycobacterium tuberculosis Recombinant 85A, 85B, and ESAT-6 Antigens

    Directory of Open Access Journals (Sweden)

    Gilson C. Macedo

    2011-01-01

    Full Text Available Tuberculosis remains a major health problem throughout the world causing large number of deaths. Effective disease control and eradication programs require the identification of major antigens recognized by the protective responses against M. tuberculosis. In this study, we have investigated humoral and cellular immune responses to M. tuberculosis-specific Ag85A, Ag85B, and ESAT-6 antigens in Brazilian patients with pulmonary (P, n=13 or extrapulmonary (EP, n=12 tuberculosis, patients undergoing chemotherapy (PT, n=23, and noninfected healthy individuals (NI, n=7. Compared to NI, we observed increased levels of IgG1 responses to Ag85B and ESAT-6 in P and PT groups. Regarding cellular immunity, Ag85A and ESAT-6 were able to discriminate P, PT, and EP patients from healthy individuals by IFN-γ production and P and PT groups from EP individuals by production of TNF-α. In summary, these findings demonstrate the ability of Ag85A, Ag85B, and ESAT-6 to differentiate TB patients from controls by IgG1, IFN-γ and TNF-α production.

  1. Exercise boosts immune response.

    Science.gov (United States)

    Sander, Ruth

    2012-06-29

    Ageing is associated with a decline in normal functioning of the immune system described as 'immunosenescence'. This contributes to poorer vaccine response and increased incidence of infection and malignancy seen in older people. Regular exercise can enhance vaccination response, increase T-cells and boost the function of the natural killer cells in the immune system. Exercise also lowers levels of the inflammatory cytokines that cause the 'inflamm-ageing' that is thought to play a role in conditions including cardiovascular disease; type 2 diabetes; Alzheimer's disease; osteoporosis and some cancers.

  2. Antibody-mediated resistance against plant pathogens.

    Science.gov (United States)

    Safarnejad, Mohammad Reza; Jouzani, Gholamreza Salehi; Tabatabaei, Meisam; Tabatabaie, Meisam; Twyman, Richard M; Schillberg, Stefan

    2011-01-01

    Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant-pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants.

  3. Antibody-Mediated Rejection: A Review

    Science.gov (United States)

    Garces, Jorge Carlos; Giusti, Sixto; Staffeld-Coit, Catherine; Bohorquez, Humberto; Cohen, Ari J.; Loss, George E.

    2017-01-01

    Background: Chronic antibody injury is a serious threat to allograft outcomes and is therefore the center of active research. In the continuum of allograft rejection, the development of antibodies plays a critical role. In recent years, an increased recognition of molecular and histologic changes has provided a better understanding of antibody-mediated rejection (AMR), as well as potential therapeutic interventions. However, several pathways are still unknown, which accounts for the lack of efficacy of some of the currently available agents that are used to treat rejection. Methods: We review the current diagnostic criteria for AMR; AMR paradigms; and desensitization, treatment, and prevention strategies. Results: Chronic antibody-mediated endothelial injury results in transplant glomerulopathy, manifested as glomerular basement membrane duplication, double contouring, or splitting. Clinical manifestations of AMR include proteinuria and a rise in serum creatinine. Current strategies for the treatment of AMR include antibody depletion with plasmapheresis (PLEX), immunoadsorption (IA), immunomodulation with intravenous immunoglobulin (IVIG), and T cell– or B cell–depleting agents. Some treatment benefits have been found in using PLEX and IA, and some small nonrandomized trials have identified some benefits in using rituximab and the proteasome inhibitor-based therapy bortezomib. More recent histologic follow-ups of patients treated with bortezomib have not shown significant benefits in terms of allograft outcomes. Furthermore, no specific treatment approaches have been approved by the US Food and Drug Administration. Other agents used for more difficult rejections include bortezomib and eculizumab (an anti-C5 monoclonal antibody). Conclusion: AMR is a fascinating field with ample opportunities for research and progress in the future. Despite the use of advanced techniques for the detection of human leukocyte antigen (HLA) or non-HLA donor-specific antibodies

  4. Late Failing Heart Allografts: Pathology of Cardiac Allograft Vasculopathy and Association With Antibody-Mediated Rejection.

    Science.gov (United States)

    Loupy, A; Toquet, C; Rouvier, P; Beuscart, T; Bories, M C; Varnous, S; Guillemain, R; Pattier, S; Suberbielle, C; Leprince, P; Lefaucheur, C; Jouven, X; Bruneval, P; Duong Van Huyen, J P

    2016-01-01

    In heart transplantation, there is a lack of robust evidence of the specific causes of late allograft failure. We hypothesized that a substantial fraction of failing heart allografts may be associated with antibody-mediated injury and immune-mediated coronary arteriosclerosis. We included all patients undergoing a retransplantation for late terminal heart allograft failure in three referral centers. We performed an integrative strategy of heart allograft phenotyping by assessing the heart vascular tree including histopathology and immunohistochemistry together with circulating donor-specific antibodies. The main analysis included 40 explanted heart allografts patients and 402 endomyocardial biopsies performed before allograft loss. Overall, antibody-mediated rejection was observed in 19 (47.5%) failing heart allografts including 16 patients (40%) in whom unrecognized previous episodes of subclinical antibody-mediated rejection occurred 4.5 ± 3.5 years before allograft loss. Explanted allografts with evidence of antibody-mediated rejection demonstrated higher endothelitis and microvascular inflammation scores (0.89 ± 0.26 and 2.25 ± 0.28, respectively) compared with explanted allografts without antibody-mediated rejection (0.42 ± 0.11 and 0.36 ± 0.09, p = 0.046 and p < 0.0001, respectively). Antibody-mediated injury was observed in 62.1% of failing allografts with pure coronary arteriosclerosis and mixed (arteriosclerosis and atherosclerosis) pattern, while it was not observed in patients with pure coronary atherosclerosis (p = 0.0076). We demonstrate that antibody-mediated rejection is operating in a substantial fraction of failing heart allografts and is associated with severe coronary arteriosclerosis. Unrecognized subclinical antibody-mediated rejection episodes may be observed years before allograft failure.

  5. Antibody-Mediated Rejection: An Evolving Entity in Heart Transplantation

    Directory of Open Access Journals (Sweden)

    Sharon Chih

    2012-01-01

    Full Text Available Antibody-mediated rejection (AMR is gaining increasing recognition as a major complication after heart transplantation, posing a significant risk for allograft failure, cardiac allograft vasculopathy, and poor survival. AMR results from activation of the humoral immune arm and the production of donor-specific antibodies (DSA that bind to the cardiac allograft causing myocardial injury predominantly through complement activation. The diagnosis of AMR has evolved from a clinical diagnosis involving allograft dysfunction and the presence of DSA to a primarily pathologic diagnosis based on histopathology and immunopathology. Treatment for AMR is multifaceted, targeting inhibition of the humoral immune system at different levels with emerging agents including proteasome and complement inhibitors showing particular promise. While there have been significant advances in our current understanding of the pathogenesis, diagnosis, and treatment of AMR, further research is required to determine optimal diagnostic tools, therapeutic agents, and timing of treatment.

  6. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons

    NARCIS (Netherlands)

    Tillou, Xavier; Poirier, Nicolas; Le Bas-Bernardet, Stephanie; Hervouet, Jeremy; Minault, David; Renaudin, Karine; Vistoli, Fabio; Karam, Georges; Daha, Mohamed; Soulillou, Jean Paul; Blancho, Gilles

    2010-01-01

    Acute antibody-mediated rejection is an unsolved issue in transplantation, especially in the context of pretransplant immunization. The deleterious effect of preformed cytotoxic anti-HLA antibodies through complement activation is well proven, but very little is known concerning complement blockade

  7. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  8. Leptin Regulation of Immune Responses.

    Science.gov (United States)

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  9. MiR-142-5p and miR-486-5p as biomarkers for early detection of chronic antibody-mediated rejection in kidney transplantation.

    Science.gov (United States)

    Iwasaki, Kenta; Yamamoto, Takayuki; Inanaga, Yukiko; Hiramitsu, Takahisa; Miwa, Yuko; Murotani, Kenta; Narumi, Shuji; Watarai, Yoshihiko; Katayama, Akio; Uchida, Kazuharu; Kobayashi, Takaaki

    2017-02-01

    De novo donor-specific HLA antibody (DSA) would not necessarily contribute to chronic antibody-mediated rejection (CAMR) in kidney transplantation. Here, we investigated whether PBMC miRNAs could be predictable biomarkers for CAMR. Microarray profiling of 435 mature miRNAs in pooled samples was conducted. Individual analysis revealed that miR-142-5p was significantly (p biomarkers to evaluate immune response and kidney allograft status.

  10. Immune responses to improving welfare.

    Science.gov (United States)

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  11. Slamf receptors : Modulators of Phagocyte Immune Responses

    NARCIS (Netherlands)

    Van Driel, Boaz Job

    2015-01-01

    Signaling Lymphocyte Activation Molecule family (Slamf) receptors can operate in three distinct modes. Slamf receptors can dictate the extent of immune responses, thereby maneuvering immunity to the optimal zone between immunopathology or autoimmunity and weak, ineffective immune responses. A second

  12. Immune response to H pylori

    Institute of Scientific and Technical Information of China (English)

    Giovanni Suarez; Victor E Reyes; Ellen J Beswick

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer,attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium.

  13. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    YongliangZhang; ChenDong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses. Cellular & Molecular Immunology. 2005;2(1):20-27.

  14. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Yongliang Zhang; Chen Dong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  15. Immune Response After Measles Vaccination

    Directory of Open Access Journals (Sweden)

    Bhardwaj A.K

    1991-01-01

    Full Text Available Measles immunization of 192 under 5 years of age children was undertaken and the overall seroconversion was 76.0%. Seroconversion rate in the age group of 9-12 months was 70.9% and it was 100% after one year. Immune response in malnourished children was more as compared to normal children. There were negligible side reactions after measles vaccination, and this vaccine passed normal potency tests under field conditions.

  16. Current perspectives on antibody-mediated rejection after lung transplantation

    Directory of Open Access Journals (Sweden)

    Witt CA

    2014-10-01

    Full Text Available Chad A Witt, Ramsey R Hachem Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO, USA Abstract: The role of donor-specific antibodies (DSA to human leukocyte antigens and the burden of antibody-mediated rejection (AMR in lung transplantation remain enigmatic. Over the past several years, evidence has been emerging that humoral immunity plays an important role in the development of both acute and chronic lung allograft dysfunction (CLAD. Multiple case reports and case series have identified lung allograft recipients with clinical findings consistent with acute AMR. However, there is currently no widely accepted definition for AMR in lung transplantation, and this has been a significant barrier to furthering our understanding of this form of rejection. Nonetheless, the development of DSA after transplantation has consistently been identified as an independent risk factor for persistent and high-grade acute cellular rejection and CLAD. This has raised the possibility that chronic AMR may be a distinct phenotype of CLAD although evidence supporting this paradigm is still lacking. Additionally, antibodies to lung-restricted self-antigens (collagen V and K-α 1 tubulin have been associated with primary graft dysfunction early and the development of CLAD late after transplantation, and emerging evidence underscores significant interactions between autoimmunity and alloimmunity after transplantation. There is currently an active International Society for Heart and Lung Transplantation working group that is developing an operational definition for AMR in lung transplantation. This will be critical to improve our understanding of this form of rejection and conduct clinical trials to identify optimal treatment strategies. This review will summarize the literature on DSA and AMR in lung transplantation and discuss the impact of antibodies to self-antigens on lung

  17. Chronic Renal Allograft Dysfunction Antibody-Mediated: An Update

    Directory of Open Access Journals (Sweden)

    Maurizio Salvadori,

    2014-07-01

    Full Text Available This paper reviews the most important studies on chronic antibody-mediated rejection (cABMR, which is an important cause of late graft dysfunction after renal transplantation. Several antibodies seem to be responsible for chronic rejection; new techniques have allowed us to identify these antibodies in circulation. The pathogenetic role of the antibodies generally includes the complement pathway, but may also be complement-independent. This paper also examines the pathogenesis of chronic endothelial lesions, as well as the histopathological aspects. Antibodies responsible for chronic rejection may preexist before transplantation or may develop after transplantation. The possible therapeutic approaches are poor and principally based on early identification and desensitisation techniques. New B cell targeting drugs are aimed at an improved control of the relevant condition.

  18. JC polyomavirus mutants escape antibody-mediated neutralization.

    Science.gov (United States)

    Ray, Upasana; Cinque, Paola; Gerevini, Simonetta; Longo, Valeria; Lazzarin, Adriano; Schippling, Sven; Martin, Roland; Buck, Christopher B; Pastrana, Diana V

    2015-09-23

    JC polyomavirus (JCV) persistently infects the urinary tract of most adults. Under conditions of immune impairment, JCV causes an opportunistic brain disease, progressive multifocal leukoencephalopathy (PML). JCV strains found in the cerebrospinal fluid of PML patients contain distinctive mutations in surface loops of the major capsid protein, VP1. We hypothesized that VP1 mutations might allow the virus to evade antibody-mediated neutralization. Consistent with this hypothesis, neutralization serology revealed that plasma samples from PML patients neutralized wild-type JCV strains but failed to neutralize patient-cognate PML-mutant JCV strains. This contrasted with serological results for healthy individuals, most of whom robustly cross-neutralized all tested JCV variants. Mice administered a JCV virus-like particle (VLP) vaccine initially showed neutralizing "blind spots" (akin to those observed in PML patients) that closed after booster immunization. A PML patient administered an experimental JCV VLP vaccine likewise showed markedly increased neutralizing titer against her cognate PML-mutant JCV. The results indicate that deficient humoral immunity is a common aspect of PML pathogenesis and that vaccination may overcome this humoral deficiency. Thus, vaccination with JCV VLPs might prevent the development of PML.

  19. Dynamic Metabolism in Immune Response

    Science.gov (United States)

    Al-Hommrani, Mazen; Chakraborty, Paramita; Chatterjee, Shilpak; Mehrotra, Shikhar

    2016-01-01

    Cell, the basic unit of life depends for its survival on nutrients and thereby energy to perform its physiological function. Cells of lymphoid and myeloid origin are key in evoking an immune response against “self” or “non-self” antigens. The thymus derived lymphoid cells called T cells are a heterogenous group with distinct phenotypic and molecular signatures that have been shown to respond against an infection (bacterial, viral, protozoan) or cancer. Recent studies have unearthed the key differences in energy metabolism between the various T cell subsets, natural killer cells, dendritic cells, macrophages and myeloid derived suppressor cells. While a number of groups are dwelling into the nuances of the metabolism and its role in immune response at various strata, this review focuses on dynamic state of metabolism that is operational within various cellular compartments that interact to mount an effective immune response to alleviate disease state.

  20. Immune response to fungal infections.

    Science.gov (United States)

    Blanco, Jose L; Garcia, Marta E

    2008-09-15

    The immune mechanisms of defence against fungal infections are numerous, and range from protective mechanisms that were present early in evolution (innate immunity) to sophisticated adaptive mechanisms that are induced specifically during infection and disease (adaptive immunity). The first-line innate mechanism is the presence of physical barriers in the form of skin and mucous membranes, which is complemented by cell membranes, cellular receptors and humoral factors. There has been a debate about the relative contribution of humoral and cellular immunity to host defence against fungal infections. For a long time it was considered that cell-mediated immunity (CMI) was important, but humoral immunity had little or no role. However, it is accepted now that CMI is the main mechanism of defence, but that certain types of antibody response are protective. In general, Th1-type CMI is required for clearance of a fungal infection, while Th2 immunity usually results in susceptibility to infection. Aspergillosis, which is a disease caused by the fungus Aspergillus, has been the subject of many studies, including details of the immune response. Attempts to relate aspergillosis to some form of immunosuppression in animals, as is the case with humans, have not been successful to date. The defence against Aspergillus is based on recognition of the pathogen, a rapidly deployed and highly effective innate effector phase, and a delayed but robust adaptive effector phase. Candida albicans, part of the normal microbial flora associated with mucous surfaces, can be present as congenital candidiasis or as acquired defects of cell-mediated immunity. Resistance to this yeast is associated with Th1 CMI, whereas Th2 immunity is associated with susceptibility to systemic infection. Dermatophytes produce skin alterations in humans and other animals, and the essential role of the CMI response is to destroy the fungi and produce an immunoprotective status against re-infection. The resolution

  1. Adaptation of the immune system as a response to pregnancy

    Directory of Open Access Journals (Sweden)

    Milašinović Ljubomir

    2002-01-01

    Full Text Available Introduction Pregnancy is an intriguing immunologic phenomenon. In spite of genetic differences, maternal and fetal cells are in close contact over the whole course of pregnancy with no evidence of either humoral and/or cellular immunologic response of mother to fetus as an allotransplant. The general opinion is that the fundamental protective mechanism must be located locally at the contact-plate, between the maternal and fetal tissues. Immunologic investigations proved the presence of specific systems which block the function of antipaternal maternal antibodies, as well as formation of cytotoxic maternal T-cells to paternal antigens. The system preventing rejection of graft during pregnancy is functioning at the level of maternal and fetal tissues. The protective mechanisms are coded by genes of MCH region, locus HLA-G. Protective mechanisms in the placenta The placenta protects itself against antibody-mediated damage. A high level of complement-regulatory proteins (CD46, CD55 and CD59, being the response to the synthesis of complement-fixing maternal antibodies to paternal antigens and regulation of the placental HLA expression as a preventive reaction of the feto-placental unit to the influence of maternal CTL, are the most important protective mechanisms of placenta. Protective mechanisms shared by the placenta and uterus Protective mechanisms common both for placenta and uterus are as follows: expressions of Fas ligand prevention of infiltration of activated immune cells, regulation of immunosuppression which prevents proliferation of immune cells and high natural immunity (Na cells and macrophages of the decidua.

  2. Cell-mediated immune response

    DEFF Research Database (Denmark)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-01-01

    OBJECTIVE: This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. DATA SOURCES AND STUDY SELECTION: A focused...... and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two...... triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). CONCLUSIONS...

  3. CD47-signal regulatory protein-alpha (SIRP alpha) interactions form a barrier for antibody-mediated tumor cell destruction

    NARCIS (Netherlands)

    Zhao, Xi Wen; van Beek, Ellen M.; Schornagel, Karin; Van der Maaden, Hans; Van Houdt, Michel; Otten, Marielle A.; Finetti, Pascal; Van Egmond, Marjolein; Matozaki, Takashi; Kraal, Georg; Birnbaum, Daniel; van Elsas, Andrea; Kuijpers, Taco W.; Bertucci, Francois; van den Berg, Timo K.

    2011-01-01

    Monoclonal antibodies are among the most promising therapeutic agents for treating cancer. Therapeutic cancer antibodies bind to tumor cells, turning them into targets for immune-mediated destruction. We show here that this antibody-mediated killing of tumor cells is limited by a mechanism involving

  4. [Immune response to influenza vaccination].

    Science.gov (United States)

    Alvarez, I; Corral, J; Arranz, A; Foruria, A; Landa, V; Lejarza, J R; Marijuán, L; Martínez, J M

    1989-01-01

    The present study investigated the level of immunity of the population against three strains of the influenza virus (A Chile/1/83 -A Philippines/2/82 and B URSS/100/83) before and three months after vaccination, and the immune response to whole virus vaccine as compared with fragmented virus vaccine. A high percentage of the population had titers greater than or equal to 1/10 before vaccination for the Chile (54%) and Philippines (65.7%) strains, while titers against the URSS strain were lower (25.4%). There was a definitive increase in antibody titer in the vaccinated population, although it was lower than expected. The overall response to both vaccines, with protecting titers greater than or equal to 1/40 after vaccination was 65.2% for the Chile strain, 74.6% for the Philippines strain, and 15% for the URSS strain. No differences in the overall immune response were found between the groups vaccinated with whole and fragmented virus.

  5. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Jean Dubuisson

    2011-10-01

    Full Text Available Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.

  6. Mathematical Modelling of Immune Response in Tissues

    Directory of Open Access Journals (Sweden)

    B. Su

    2009-01-01

    Full Text Available We have developed a spatial–temporal mathematical model (PDE to capture fundamental aspects of the immune response to antigen. We have considered terms that broadly describe intercellular communication, cell movement, and effector function (activation or inhibition. The PDE model is robust to variation in antigen load and it can account for (1 antigen recognition, (2 an innate immune response, (3 an adaptive immune response, (4 the elimination of antigen and subsequent resolution of the immune response or (5 equilibrium of the immune response to the presence of persistent antigen (chronic infection and the formation of a granuloma.

  7. Immune responses to bioengineered organs

    Science.gov (United States)

    Ochando, Jordi; Charron, Dominique; Baptista, Pedro M.; Uygun, Basak E.

    2017-01-01

    Purpose of review Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. Recent findings Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. Summary Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs. PMID:27926545

  8. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  9. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  10. HYPOTHALAMIC NEUROHORMONES AND IMMUNE RESPONSES

    Directory of Open Access Journals (Sweden)

    J. Luis eQuintanar

    2013-08-01

    Full Text Available The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone, Corticotropin-releasing hormone and Gonadotropin-releasing hormone. In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  11. Innate immune response to viral infection.

    Science.gov (United States)

    Koyama, Shohei; Ishii, Ken J; Coban, Cevayir; Akira, Shizuo

    2008-09-01

    In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation.

  12. Polarization of immune responses in fish

    NARCIS (Netherlands)

    Wiegertjes, Geert F.; Wentzel, Annelieke S.; Spaink, Herman P.; Elks, Philip M.; Fink, Inge R.

    2016-01-01

    In this review, we support taking polarized immune responses in teleost fish from a 'macrophage first' point of view, a hypothesis that reverts the dichotomous T helper (TH)1 and TH2 driving forces by building on the idea of conservation of innate immune responses in lower v

  13. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de ...

  14. Effects of Dietary Zinc Manipulation on Growth Performance, Zinc Status and Immune Response during Giardia lamblia Infection: A Study in CD-1 Mice

    Directory of Open Access Journals (Sweden)

    Humberto Astiazarán-García

    2013-09-01

    Full Text Available Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA, low-zinc (ZnL, high-zinc (ZnH and supplemented-zinc (ZnS diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days. Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection.

  15. Probiotics and lung immune responses.

    Science.gov (United States)

    Forsythe, Paul

    2014-01-01

    There is increasing interest in the potential for microbe-based therapeutic approaches to asthma and respiratory infection. However, to date, clinical trials of probiotics in the treatment of respiratory disease have met with limited success. It is becoming clear that to identify the true therapeutic potential of microbes we must move away from a purely empirical approach to clinical trials and adopt knowledge-based selection of candidate probiotics strains, dose, and means of administration. Animal models have played a key role in the identification of mechanisms underlying the immunomodulatory capacity of specific bacteria. Microbe-induced changes in dendritic cell phenotype and function appear key to orchestrating the multiple pathways, involving inter alia, T cells, natural killer cells, and alveolar macrophages, associated with the protective effect of probiotics. Moving forward, the development of knowledge-based strategies for microbe-based therapeutics in respiratory disease will be aided by greater understanding of how specific bacterial structural motifs activate unique combinations of pattern recognition receptors on dendritic cells and thus direct desired immune responses.

  16. Protective host immune responses to Salmonella infection.

    Science.gov (United States)

    Pham, Oanh H; McSorley, Stephen J

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.

  17. Effect of lipoarabinomannan from Mycobacterium avium subsp avium in Freund’s incomplete adjuvant on the immune response of cattle

    Directory of Open Access Journals (Sweden)

    S.B. Colavecchia

    2012-02-01

    Full Text Available The aim of the present study was to determine whether lipoarabinomannan (LAM, in combination with Freund’s incomplete adjuvant (FIA, was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05. Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.

  18. Maturation of the immune response

    NARCIS (Netherlands)

    Altena, van S.E.C.; Meijer, B.; Savelkoul, H.F.J.

    2014-01-01

    The innate immune system depends on features like extracellular and intracellular pattern recognition receptors (PRR) that recognize general molecular patterns. Different types of PRR have been described, identifying microbe-, pathogen-, and danger-associated molecular patterns (abbreviated as MAMP,

  19. Female postmating immune responses, immune system evolution and immunogenic males.

    Science.gov (United States)

    Morrow, Edward H; Innocenti, Paolo

    2012-08-01

    Females in many taxa experience postmating activation of their immune system, independently of any genital trauma or pathogenic attack arising from male-female genital contact. This response has always been interpreted as a product of natural selection as it either prepares the female immune system for antigens arising from an implanted embryo (in the case of placental mammals), or is a "pre-emptive strike" against infection or injury acquired during mating. While the first hypothesis has empirical support, the second is not entirely satisfactory. Recently, studies that have experimentally dissected the postmating responses of Drosophila melanogaster females point to a different explanation: male reproductive peptides/proteins that have evolved in response to postmating male-male competition are directly responsible for activating particular elements of the female immune system. Thus, in a broad sense, males may be said to be immunogenic to females. Here, we discuss a possible direct role of sexual selection/sexual conflict in immune system evolution, in contrast to indirect trade-offs with other life-history traits, presenting the available evidence from a range of taxa and proposing ways in which the competing hypotheses could be tested. The major implication of this review is that immune system evolution is not only a product of natural selection but also that sexual selection and potentially sexual conflict enforces a direct selective pressure. This is a significant shift, and will compel researchers studying immune system evolution and ecological immunity to look beyond the forces generated by parasites and pathogens to those generated by the male ejaculate.

  20. Exosomes in the Immune Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    修方明; 曹雪涛

    2004-01-01

    Exosomes, secreted by many live cells, are small non-cell vesicles with nanoparticle-grade size. In addition to the original function of discarding the uselessful membrane molecules, exosomes are involved in a range of immunoregulatory functions. Dendritic cell-derived exosomes and tumor-derived exosomes are the best characterized vesicles with potent antitumor effect by efficienfly inducing immune response. Down-regtdation of immune response or induction of immune tolerance is another interesting function of exosomes, Further functional studies of the exosomes will shed light on the application of exosomes。

  1. CHALLENGES IN TREATMENT OF RENAL GRAFT ACUTE ANTIBODY-MEDIATED REJECTION

    Directory of Open Access Journals (Sweden)

    A. I. Sushkov

    2016-01-01

    Full Text Available Diagnostic criteria and treatment protocols for acute antibody-mediated rejection (AMR of kidney allograft remain controversial. We report the case of early severe AMR after primary kidney transplantation. The graft removal was considered in the absence of treatment efficacy and in the presence of systemic infl ammatory response syndrome. However, at surgery the graft looked normal and it was not removed. The repeated treatment course (plasmapheresis, antithymocyte globulin, intravenous immunoglobulin and rituximab was effective. The patient has good and stable graft function in 1 year after transplantation. 

  2. Immune response to lipoproteins in atherosclerosis.

    Science.gov (United States)

    Samson, Sonia; Mundkur, Lakshmi; Kakkar, Vijay V

    2012-01-01

    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL) has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  3. Preformed Donor HLA-DP-Specific Antibodies Mediate Acute and Chronic Antibody-Mediated Rejection Following Renal Transplantation

    OpenAIRE

    Jolly, E. C.; Key, T; H. Rasheed; Morgan, H; Butler, A; Pritchard, N.; Taylor, C J; Clatworthy, M. R.

    2012-01-01

    Donor-specific HLA alloantibodies may cause acute and chronic antibody-mediated rejection (AMR) and significantly compromise allograft survival. The clinical relevance of antibodies directed against some HLA class II antigens, particularly HLA-DP, is less clear with conflicting reports on their pathogenicity. We report two patients with high levels of pretransplant donor-specific HLA-DP antibodies who subsequently developed recurrent acute AMR and graft failure. In both cases, there were no o...

  4. A role for plasma cell targeting agents in immune tolerance induction in autoimmune disease and antibody responses to therapeutic proteins.

    Science.gov (United States)

    Rosenberg, A S; Pariser, A R; Diamond, B; Yao, L; Turka, L A; Lacana, E; Kishnani, P S

    2016-04-01

    Antibody responses to life saving therapeutic protein products, such as enzyme replacement therapies (ERT) in the setting of lysosomal storage diseases, have nullified product efficacy and caused clinical deterioration and death despite treatment with immune-suppressive therapies. Moreover, in some autoimmune diseases, pathology is mediated by a robust antibody response to endogenous proteins such as is the case in pulmonary alveolar proteinosis, mediated by antibodies to Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF). In this work, we make the case that in such settings, when the antibody response is high titered, sustained, and refractory to immune suppressive treatments, the antibody response is mediated by long-lived plasma cells which are relatively unperturbed by immune suppressants including rituximab. However, long-lived plasma cells can be targeted by proteasome inhibitors such as bortezomib. Recent reports of successful reversal of antibody responses with bortezomib in the settings of ERT and Thrombotic Thrombocytopenic Purpura (TTP) argue that the safety and efficacy of such plasma cell targeting agents should be evaluated in larger scale clinical trials to delineate the risks and benefits of such therapies in the settings of antibody-mediated adverse effects to therapeutic proteins and autoantibody mediated pathology.

  5. Immune responses and Lassa virus infection.

    Science.gov (United States)

    Russier, Marion; Pannetier, Delphine; Baize, Sylvain

    2012-11-05

    Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis.

  6. Immune Response to Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Alain Alonso Remedios

    2016-06-01

    Full Text Available Ebola virus belongs to the family Filoviridae and causes a highly lethal hemorrhagic fever. Affected patients show an impaired immune response as a result of the evasion mechanisms employed by the virus. Cathepsin is an enzyme present in the granules of phagocytes which cleaves viral surface glycoproteins, allowing virus entry into the host cell. In addition, this virus is resistant to the antiviral effects of type I interferon, promotes the synthesis of proinflammatory cytokines and induces apoptosis of monocytes and lymphocytes. It also induces an incomplete activation of dendritic cells, thus avoiding the presentation of viral antigens. Although specific antibodies are produced after the first week, their neutralizing capacity is doubtful. The virus evades the immune response and replicates uncontrollably in the host. This paper aims to summarize the main characteristics of the immune response to Ebola virus infection.

  7. Antimicrobial peptides in innate immune responses.

    Science.gov (United States)

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  8. Radiation triggering immune response and inflammation.

    Science.gov (United States)

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  9. The immune responses of the coral

    Directory of Open Access Journals (Sweden)

    C Toledo-Hernández

    2014-11-01

    Full Text Available Corals are among the most ancient extant animals on earth. Currently, coral viability is threatened, due in part to the increased number of diseases affecting them in recent decades. Understanding how the innate immune systems of corals function is important if we want to predict the fate of corals and their response to the environmental and biological changes they face. In this review we discuss the latest findings regarding the innate immune systems of corals. The review is organized following the chronology of steps taken by corals from the initial encounter with a potential pathogen and recognition of threats to the orchestration of a response. We begin with the literature describing the repertory of immune-related receptors involved in the recognition of threats and the subsequent pathways leading to an immune response. We then review the effector responses that eliminate the threats described for corals. Finally, we acknowledge the literature of coral microbiology to access the potential role of microbes as an essential constituent of the coral immune system.

  10. Utility of Double Filtration Plasmapheresis in Acute Antibody Mediated Renal Allograft Rejection: Report of Three Cases

    Directory of Open Access Journals (Sweden)

    Yalçın SOLAK

    2011-09-01

    Full Text Available Plasmapheresis is an extracorporeal procedure, which is often employed to rapidly lower circulating titers of autoantibodies, immune complexes or toxins. There are two types of plasmapheresis namely, regular plasmapheresis (RPP by centrifugation and membrane filtration, and double filtration plasmapheresis (DFPP which is a special form of membrane filtration in which two membranes called as plasma separator and plasma fractionator are employed to filter macromolecules more selectively. DFPP have several advantages over RP. Despite widespread utilization of DFPP in the setting of ABO blood group incompatible kidney transplantation, there is no report regarding DFPP in patients with antibody mediated acute renal allograft rejection who are good candidates for beneficial effects of DFPP. Here we report three renal transplant recipients in whom DFPP was applied as a component of anti-rejection treatment regimen.

  11. A nonequilibrium phase transition in immune response

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Qi An-Shen

    2004-01-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  12. Adaptive immune responses to Candida albicans infection.

    Science.gov (United States)

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  13. Enhancing Immune Responses for Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    Shao-An Xue; Hans J Stauss

    2007-01-01

    Although the immune system possesses the means to respond to cancer, it often fails to control the spread of malignancy. Nonetheless, equipping endogenous immunity to release a strong antitumor response has significant advantages over conventional therapies. This review explores some of the options available to accomplish this,focusing first on vaccinations with tumor antigens to stimulate the immune system and empower stronger antitumor responses. We then compare and contrast the so-far limited clinical success of vaccination with the well-documented curative potential of adoptive therapy using T lymphocytes transfer. Finally, we highlight novel approaches using T cell receptor (TCR) gene transfer strategy to exploit allogeneic T cell repertoires in conjunction with receptors selected in vitro for defined MHC/peptide combinations, as a basis for antigen-specific gene therapy of cancers.

  14. Preformed donor HLA-DP-specific antibodies mediate acute and chronic antibody-mediated rejection following renal transplantation.

    Science.gov (United States)

    Jolly, E C; Key, T; Rasheed, H; Morgan, H; Butler, A; Pritchard, N; Taylor, C J; Clatworthy, M R

    2012-10-01

    Donor-specific HLA alloantibodies may cause acute and chronic antibody-mediated rejection (AMR) and significantly compromise allograft survival. The clinical relevance of antibodies directed against some HLA class II antigens, particularly HLA-DP, is less clear with conflicting reports on their pathogenicity. We report two patients with high levels of pretransplant donor-specific HLA-DP antibodies who subsequently developed recurrent acute AMR and graft failure. In both cases, there were no other donor-specific HLA alloantibodies, suggesting that the HLA-DP-specific antibodies may be directly pathogenic.

  15. Stochastic optimal therapy for enhanced immune response.

    Science.gov (United States)

    Stengel, Robert F; Ghigliazza, Raffaele

    2004-10-01

    Therapeutic enhancement of humoral immune response to microbial attack is addressed as the stochastic optimal control of a dynamic system. Without therapy, the modeled immune response depends upon the initial concentration of pathogens in a simulated attack. Immune response can be augmented by agents that kill the pathogen directly, that stimulate the production of plasma cells or antibodies, or that enhance organ health. Using a generic mathematical model of immune response to the infection (i.e., of the dynamic state of the system), previous papers demonstrated optimal (open-loop) and neighboring-optimal (closed-loop) control solutions that defeat the pathogen and preserve organ health, given initial conditions that otherwise would be lethal [Optimal Contr. Appl. Methods 23 (2002) 91, Bioinformatics 18 (2002) 1227]. Therapies based on separate and combined application of the agents were derived by minimizing a quadratic cost function that weighted both system response and drug usage, providing implicit control over harmful side effects. Here, we focus on the effects that corrupted or incomplete measurements of the dynamic state may have on neighboring-optimal feedback control. Imperfect measurements degrade the precision of feedback adjustments to therapy; however, optimal state estimation allows the feedback strategy to be implemented with incomplete measurements and minimizes the expected effects of measurement error. Complete observability of the perturbed state for this four state example is provided by measurement of four of the six possible pairs of two variables, either set of three variables, or all four variables. The inclusion of state estimation extends the applicability of optimal control theory for developing new therapeutic protocols to enhance immune response.

  16. Differential regional immune response in Chagas disease.

    Directory of Open Access Journals (Sweden)

    Juliana de Meis

    Full Text Available Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection.

  17. [Immune response genes products in human physiology].

    Science.gov (United States)

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  18. Protective immune responses in lawsonia intracellularis infections

    DEFF Research Database (Denmark)

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten;

    and no increase in acute phase response after challenge with a pathogenic isolate. Here we show results from measurements of serology as well as cell-mediated immune responses from this experiment. We found that Lawsonia-specific IgA peaked in serum around day 17-24 after a primary infection in experimentally......Lawsonia intracellularis is the cause of porcine proliferative enteropathy, one of the major causes of antibiotics usage in modern pig production. L. intracellularis is an obligate intracellular bacterium preferable infecting epithelial cells of pigs intestine. We have demonstrated earlier......, but exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms...

  19. Innate immune sensing and response to influenza.

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.

  20. Humoral Immune Response in Tuberculous Pleuritis

    Directory of Open Access Journals (Sweden)

    Prabha C.

    2005-01-01

    Full Text Available Tuberculous pleuritis is a good human model to understand the local and protective immune response against tuberculosis, due to the self-limitedness of the disease. Although the cellular immune response has been well characterised in tuberculous pleurisy, much less is known about the humoral immune response operating at the site of infection. To understand the humoral immune response, B cells were enumerated in peripheral blood mononuclear cells (PBMC and pleural fluid mononuclear cells (PFMC of tuberculous (TP and non-tuberculous pleuritis patients (NTP. The levels of IgG, IgA and IgM antibodies for PPD, culture filtrate (CF and sonicate antigens (Son Ag were assessed in plasma (BL and pleural fluid (PF and a western blot was carried out with the CF antigen. The percentage of CD19+B-cells was similar in PBMC and PFMC of TP patients but was significantly lower in PFMCs of NTP patients. The IgG levels for PPD and CF antigens were higher in PF of TP than NTP patients. The antigen recognition patterns did not differ in plasma and pleural fluid of the same patient in both groups pointing out the passive diffusion of the plasma to the pleura. The antigens 25, 31, 33, 70, 110, 124 and 132 kDa were recognized exclusively by the TP patients. Thus our study showed that the local humoral response in TP did not differ from the systemic response. However, the humoral response differed in TP patients when compared to NTP patients.

  1. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  2. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  3. Immune Responses and Lassa Virus Infection

    Directory of Open Access Journals (Sweden)

    Sylvain Baize

    2012-11-01

    Full Text Available Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis.

  4. Cytokines and Immune Responses in Murine Atherosclerosis.

    Science.gov (United States)

    Kusters, Pascal J H; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

  5. Chitin modulates innate immune responses of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Barbara Koller

    Full Text Available BACKGROUND: Chitin, after cellulose the second most abundant polysaccharide in nature, is an essential component of exoskeletons of crabs, shrimps and insects and protects these organisms from harsh conditions in their environment. Unexpectedly, chitin has been found to activate innate immune cells and to elicit murine airway inflammation. The skin represents the outer barrier of the human host defense and is in frequent contact with chitin-bearing organisms, such as house-dust mites or flies. The effects of chitin on keratinocytes, however, are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that chitin stimulates keratinocytes and thereby modulates the innate immune response of the skin. Here we show that chitin is bioactive on primary and immortalized keratinocytes by triggering production of pro-inflammatory cytokines and chemokines. Chitin stimulation further induced the expression of the Toll-like receptor (TLR TLR4 on keratinocytes at mRNA and protein level. Chitin-induced effects were mainly abrogated when TLR2 was blocked, suggesting that TLR2 senses chitin on keratinocytes. CONCLUSIONS/SIGNIFICANCE: We speculate that chitin-bearing organisms modulate the innate immune response towards pathogens by upregulating secretion of cytokines and chemokines and expression of MyD88-associated TLRs, two major components of innate immunity. The clinical relevance of this mechanism remains to be defined.

  6. Antibody-mediated Prevention of Fusarium Mycotoxins in the Field

    Directory of Open Access Journals (Sweden)

    Yu-Cai Liao

    2008-10-01

    Full Text Available Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed.

  7. Immune Response to Lipoproteins in Atherosclerosis

    OpenAIRE

    Sonia Samson; Lakshmi Mundkur; Kakkar, Vijay V

    2012-01-01

    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation re...

  8. Cellular immune responses towards regulatory cells.

    Science.gov (United States)

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  9. Protective immune responses in lawsonia intracellularis infections

    DEFF Research Database (Denmark)

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten;

    , that a primary L. intracellularis experimental infection in pigs protects against re-colonisation (re-infection) with a virulent L. intracellularis isolate. After re-infection the animals had reduced L. intracellularis colonisation of the intestinal mucosa compared to controls, no bacterial shedding......, but exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms...... behind the observed protection against re-infection with L. intracellularis....

  10. Immune response associated with nonmelanoma skin cancer.

    Science.gov (United States)

    Strickland, F M; Kripke, M L

    1997-10-01

    It is now clear that UV radiation causes nonmelanoma skin cancer in at least two ways: by causing permanent changes in the genetic code and by preventing immunologic recognition of mutant cells. These are interacting rather than separate mechanisms. Damage to DNA results in disregulation of cellular proliferation and initiates immune suppression by stimulating the production of suppressive cytokines. These cytokines contribute to the loss of immunosurveillance. Ultraviolet radiation has both local and systemic immunosuppressive effects. Locally, it depletes and alters antigen-presenting LC at the site of UV irradiation. Systemic suppression results when Ts cells are induced, by altered LC, by inflammatory macrophages that enter the skin following UV irradiation, or by the action of cytokines. Damage to DNA appears to be one of the triggering events in inducing systemic immunosuppression via the release of immunosuppressive cytokines and mediators. Immunologic approaches to treating skin cancers so far have concentrated on nonspecifically stimulating immune cells that infiltrate these tumors, but induction of specific immune responses against these tumors with antitumor vaccines has received little attention as yet. Preventive measures include sun avoidance and the use of sunscreens to prevent DNA damage by UV light. Future strategies may employ means to reverse UV-induced immunosuppression by using anti-inflammatory agents, biologicals that accelerate DNA repair or prevent the generation of immunosuppressive cytokines, and specific immunotherapy with tumor antigens. New approaches for studying the immunology of human skin cancers are needed to accelerate progress in this field.

  11. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2014-12-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide.RESUMENEl sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  12. Antibody-Mediated Rejection: Pathogenesis, Prevention, Treatment, and Outcomes

    Directory of Open Access Journals (Sweden)

    Olivia R. Blume

    2012-01-01

    Full Text Available Antibody-mediated rejection (AMR is a major cause of late kidney transplant failure. It is important to have an understanding of human-leukocyte antigen (HLA typing including well-designed studies to determine anti-MHC-class-I-related chain A (MICA and antibody rejection pathogenesis. This can allow for more specific diagnosis and treatment which may improve long-term graft function. HLA-specific antibody detection prior to transplantation allows one to help determine the risk for AMR while detection of DSA along with a biopsy confirms it. It is now appreciated that biopsy for AMR does not have to include diffuse C4d, but does require a closer look at peritubular capillary microvasculature. Although plasmapheresis (PP is effective in removing alloantibodies (DSAs from the circulation, rebound synthesis of alloantibodies can occur. Splenectomy is used in desensitization protocols for ABO incompatible transplants as well as being found to treat AMR refractory to conventional treatment. Also used are agents targeted for plasma cells, B cells, and the complement cascade which are bortezomib rituximab and eculizumab, respectively.

  13. The early antitumor immune response is necessary for tumor growth

    OpenAIRE

    Parmiani, Giorgio; Maccalli, Cristina

    2012-01-01

    Early events responsible of tumor growth in patients with a normal immune system are poorly understood. Here, we discuss, in the context of human melanoma, the Prehn hypothesis according to which a weak antitumor immune response may be required for tumor growth before weakly or non-immunogenic tumor cell subpopulations are selected by the immune system.

  14. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  15. Human Metapneumovirus Antagonism of Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Xiaoyong Bao

    2012-12-01

    Full Text Available  Human metapneumovirus (hMPV is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.

  16. Rotavirus Antagonism of the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Michelle M. Arnold

    2009-11-01

    Full Text Available Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1 that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.

  17. Mx bio adjuvant for enhancing immune responses against influenza virus

    Directory of Open Access Journals (Sweden)

    Sina Soleimani

    2015-06-01

    Conclusion: These data revealed that Mx1 as biological adjuvant was able to increase antibody titer and induction memory immune responses against influenza immunization without causing any side effects.

  18. Impact of nutrition on immune function and the inflammatory response

    Science.gov (United States)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  19. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    Science.gov (United States)

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  20. The immune response and its therapeutic modulation in bronchiectasis.

    Science.gov (United States)

    Daheshia, Massoud; Prahl, James D; Carmichael, Jacob J; Parrish, John S; Seda, Gilbert

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.

  1. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  2. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Science.gov (United States)

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines.

  3. Wolbachia symbiosis and insect immune response

    Institute of Scientific and Technical Information of China (English)

    Stefanos Siozios; Panagiotis Sapountzis; Panagiotis Ioannidis; Kostas Bourtzis

    2008-01-01

    Bacterial intracellular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a Gram-negative obligatory intracellular and maternally transmitted α-proteobacterium, that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera,Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70% of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system.

  4. Flavobacterium psychrophilum - Experimental challenge and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi

    use of antibiotics, further knowledge of the disease is needed. Previous studies focusing on various types of aquacultures demonstrated the presence of F. psychrophilum in all examined farms. The bacterium was demonstrated in gills, skin, internal organs and wounds both during RTFS outbreaks......) Establish an experimental infection model imitating natural infection, 2) examine the immune response in blood and selected organs, and 3) examine potential portals of entry for the bacterium. Previous experimental immersion-challenges involving F. psychrophilum have resulted in none or low mortality...... in rainbow trout fry, unless the fish are stressed or have their surface compromised through e.g. injuries to the skin. The effect of a range of hydrogen peroxide (H2O2) concentrations was tested on fry in order to assess mortality. An appropriate dose was subsequently combined with immersion in a diluted...

  5. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  6. Vaccines against Human Carcinomas: Strategies to Improve Antitumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Claudia Palena

    2010-01-01

    Full Text Available Multiple observations in preclinical and clinical studies support a role for the immune system in controlling tumor growth and progression. Various components of the innate and adaptive immune response are able to mediate tumor cell destruction; however, certain immune cell populations can also induce a protumor environment that favors tumor growth and the development of metastasis. Moreover, tumor cells themselves are equipped with various mechanisms that allow them to evade surveillance by the immune system. The goal of cancer vaccines is to induce a tumor-specific immune response that ultimately will reduce tumor burden by tipping the balance from a protumor to an antitumor immune environment. This review discusses common mechanisms that govern immune cell activation and tumor immune escape, and some of the current strategies employed in the field of cancer vaccines aimed at enhancing activation of tumor-specific T-cells with concurrent reduction of immunosuppression.

  7. Spaceflight and immune responses of rhesus monkeys

    Science.gov (United States)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  8. Spaceflight and Immune Responses of Rhesus Monkeys

    Science.gov (United States)

    Sonnenfeld, Gerald

    1997-01-01

    In the grant period, we perfected techniques for determination of interleukin production and leukocyte subset analysis of rhesus monkeys. These results are outlined in detail in publication number 2, appended to this report. Additionally, we participated in the ARRT restraint test to determine if restraint conditions for flight in the Space Shuttle could contribute to any effects of space flight on immune responses. All immunological parameters listed in the methods section were tested. Evaluation of the data suggests that the restraint conditions had minimal effects on the results observed, but handling of the monkeys could have had some effect. These results are outlined in detail in manuscript number 3, appended to this report. Additionally, to help us develop our rhesus monkey immunology studies, we carried out preliminary studies in mice to determine the effects of stressors on immunological parameters. We were able to show that there were gender-based differences in the response of immunological parameters to a stressor. These results are outlined in detail in manuscript number 4, appended to this report.

  9. Meningococcal C specific immune responses: immunity in an era of immunization with vaccine

    NARCIS (Netherlands)

    de Voer, R.M.

    2010-01-01

    Meningococcal serogroup C conjugate immunization was introduced in the Dutch national immunization schedule at the age of 14 months, together with a large catch-up campaign in 2002. After introduction of this MenC immunization, the incidence of MenC completely disappeared from the immunized populati

  10. Seasonal changes in human immune responses to malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G

    1993-01-01

    Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead...... to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible...

  11. MicroRNAs in inflammation and immune responses.

    Science.gov (United States)

    Contreras, J; Rao, D S

    2012-03-01

    MicroRNAs (miRNAs) are important regulators of gene expression in the immune system. In a few short years, their mechanism of action has been described in various cell lineages within the immune system, targets have been defined and their unique contributions to immune cell function have been examined. Certain miRNAs serve in important negative feedback loops in the immune system, whereas others serve to amplify the response of the immune system by repressing inhibitors of the response. Here, we review some of the better understood mechanisms as well as some emerging concepts of miRNA function. Future work will likely involve defining the function of specific miRNAs in specific immune cell lineages and to utilize them in the design of therapeutic strategies for diseases involving the immune system.

  12. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  13. A New Mechanism to Curb Over-reactive Immune Responses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The human immune system is a truly amazing constellation of responses to attacks from the outside. It could defend you against millions of bacteria, microbes, viruses, toxins and parasites that would invade your body. However, there are cases where the immune response to innocuous substances is inappropriate and over-reactive, leading to diseases such as allergies and arthritis.

  14. Importins and exportins regulating allergic immune responses.

    Science.gov (United States)

    Aggarwal, Ankita; Agrawal, Devendra K

    2014-01-01

    Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  15. Importins and Exportins Regulating Allergic Immune Responses

    Directory of Open Access Journals (Sweden)

    Ankita Aggarwal

    2014-01-01

    Full Text Available Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS present on cargo molecules to be imported while nuclear export signals (NES on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  16. Tetraspanins in the immune response against cancer

    NARCIS (Netherlands)

    Veenbergen, S.; Spriel, A.B. van

    2011-01-01

    The role of the immune system in the defense against cancer, a process termed tumor immunosurveillance, has been extensively studied. Evidence is accumulating that the molecular organization of proteins and lipids in the plasma membrane of immune cells is of critical importance. Tetraspanin proteins

  17. Evaluating immune responses after sipuleucel-T therapy.

    Science.gov (United States)

    Strauss, Julius; Madan, Ravi A; Figg, William D

    2015-01-01

    Following FDA approval of sipuleucel-T in 2010 for metastatic castration resistant prostate cancer (mCRPC), several studies have described the effect of sipuleucel-T on peripheral immune responses. Retrospective associations have also been made with immune responses and survival. A recently published study by Fong et al. was the first to characterize the immune response of sipuleucel-T in the tumor microenvironment. The findings of this study have been hypothesis generating, yet it remains unclear whether the peri-tumor immune response described is predictive of survival. Increasing evidence suggests that radiographic or PSA progression does not accurately reflect survival with sipuleucel-T and other immunotherapies. Finding an immune biomarker which can accurately reflect clinical benefit and validating it prospectively offers the potential for a predictive indicator of response in an area where none currently exists.

  18. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  19. Social Behavior, Prolactin and the Immune Response

    Science.gov (United States)

    1989-04-01

    on the immune processes. (Locke, Ader, Besedovsky, Hall, Solomon & Strom, 1985). The term psychoneuroimmunology has been coined by researchers to...34mind and immunity" covering a five year period (Locke and Hornig-Rohan, 1983) and a collection of seminal papers on psychoneuroimmunology (Locke, et...In: Psychoneuroimmunology (R. Ader, ed.), Academic Press, NY, 1981, 609-617. Friedman, S. B., Glasgow, L. A. and Ader, R. Psychological factors

  20. Innate immune response to viral infection of the lungs.

    Science.gov (United States)

    See, Hayley; Wark, Peter

    2008-12-01

    Viral respiratory tract infections are the most common infectious illnesses, though they are usually self-limiting and confined to the respiratory tract. The rapid identification of viruses and their effective elimination with minimal local and systemic inflammation is a testament to the efficiency of the innate immune response within the airways and lungs. A failure of this response appears to occur in those with asthma and chronic obstructive pulmonary disease, where viral infection is an important trigger for acute exacerbations. The innate immune response to viruses requires their early detection through pathogen recognition receptors and the recruitment of the efficient antiviral response that is centred around the release of type 1 interferons. The airway epithelium provides both a barrier and an early detector for viruses, and interacts closely with cells of the innate immune response, especially macrophages and dendritic cells, to eliminate infection and trigger a specific adaptive immune response.

  1. The X-files in immunity: sex-based differences predispose immune responses.

    Science.gov (United States)

    Fish, Eleanor N

    2008-09-01

    Despite accumulating evidence in support of sex-based differences in innate and adaptive immune responses, in the susceptibility to infectious diseases and in the prevalence of autoimmune diseases, health research and clinical practice do not address these distinctions, and most research studies of immune responses do not stratify by sex. X-linked genes, hormones and societal context are among the many factors that contribute to disparate immune responses in males and females. It is crucial to address sex-based differences in disease pathogenesis and in the pharmacokinetics and pharmacodynamics of therapeutic medications to provide optimal disease management for both sexes.

  2. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation.

  3. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  4. The immune response to Trypanoplasma borreli: kinetics of immune gene expression and polyclonal lymphocyte activation

    NARCIS (Netherlands)

    Saeij, J.P.J.; Vries, de B.J.; Wiegertjes, G.F.

    2003-01-01

    Although Trypanoplasma borreli induces the production of non-specific antibodies, survival of infection is associated with the production of T. borreli specific antibodies, able to lyse this parasite in the presence of complement. During the lag phase of this acquired immune response, innate immune

  5. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  6. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  7. Global analysis of the immune response

    Science.gov (United States)

    Ribeiro, Leonardo C.; Dickman, Ronald; Bernardes, Américo T.

    2008-10-01

    The immune system may be seen as a complex system, characterized using tools developed in the study of such systems, for example, surface roughness and its associated Hurst exponent. We analyze densitometric (Panama blot) profiles of immune reactivity, to classify individuals into groups with similar roughness statistics. We focus on a population of individuals living in a region in which malaria endemic, as well as a control group from a disease-free region. Our analysis groups individuals according to the presence, or absence, of malaria symptoms and number of malaria manifestations. Applied to the Panama blot data, our method proves more effective at discriminating between groups than principal-components analysis or super-paramagnetic clustering. Our findings provide evidence that some phenomena observed in the immune system can be only understood from a global point of view. We observe similar tendencies between experimental immune profiles and those of artificial profiles, obtained from an immune network model. The statistical entropy of the experimental profiles is found to exhibit variations similar to those observed in the Hurst exponent.

  8. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Science.gov (United States)

    Mooij, Merel

    2017-01-01

    The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection. PMID:28280748

  9. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2017-01-01

    Full Text Available The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.

  10. Antibody-Mediated Clearance of Alphavirus Infection from Neurons

    Science.gov (United States)

    Levine, Beth; Hardwick, J. Marie; Trapp, Bruce D.; Crawford, Thomas O.; Bollinger, Robert C.; Griffin, Diane E.

    1991-11-01

    Humoral immunity is important for protection against viral infection and neutralization of extracellular virus, but clearance of virus from infected tissues is thought to be mediated solely by cellular immunity. However, in a SCID mouse model of persistent alphavirus encephalomyelitis, adoptive transfer of hyperimmune serum resulted in clearance of infectious virus and viral RNA from the nervous system, whereas adoptive transfer of sensitized T lymphocytes had no effect on viral replication. Three monoclonal antibodies to two different epitopes on the E2 envelope glycoprotein mediated viral clearance. Treatment of alphavirus-infected primary cultured rat neurons with these monoclonal antibodies to E2 resulted in decreased viral protein synthesis, followed by gradual termination of mature infectious virion production. Thus, antibody can mediate clearance of alphavirus infection from neurons by restricting viral gene expression.

  11. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Institute of Scientific and Technical Information of China (English)

    Yimin Sun; Hanhan Li; Alan N. Langnas; Yong Zhao

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class Ⅱ+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004; 1(6) :440-446.

  12. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Institute of Scientific and Technical Information of China (English)

    YiminSun; HanhanLi; AlanN.Langnas

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class II+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004;1(6):440-446.

  13. Sublingual nucleotides and immune response to exercise

    Directory of Open Access Journals (Sweden)

    Ostojic Sergej M

    2012-07-01

    Full Text Available Abstract Evidence exists regarding the potential role of exogenous nucleotides as regulators of the immune function in physically active humans, yet the potential use of nucleotides has been hindered by their low bioavailability after oral administration. We conducted a double-blind, placebo-controlled, randomized trial to assess the effect of sublingual nucleotides (50 mg/day on salivary and serum immunity indicators as compared to placebo, both administered to healthy males aged 20 to 25 years for 14 days. Sublingual administration of nucleotides for 14 days increased serum immunoglobulin A, natural killer cells count and cytotoxic activity, and offset the post-exercise drop of salivary immunoglobulins and lactoferrin (P  0.05. It seems that sublingual administration of nucleotides for two weeks considerably affected immune function in healthy males.

  14. [Adaptive immune response of people living near chemically hazardous object].

    Science.gov (United States)

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  15. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    OpenAIRE

    Thomas Kieber-Emmons; Anastas Pashov; Behjatolah Monzavi-Karbassi; Fariba Jousheghany; Cecile Artaud; Leah Hennings

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- an...

  16. Subversion of the Immune Response by Rabies Virus

    Directory of Open Access Journals (Sweden)

    Terence P. Scott

    2016-08-01

    Full Text Available Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.

  17. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  18. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Directory of Open Access Journals (Sweden)

    Thomas Kieber-Emmons

    2011-11-01

    Full Text Available Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs. To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I, and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  19. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Science.gov (United States)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses. PMID:24213131

  20. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  1. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  2. Local Immune Response to Upper Urinary Tract Infections in Children▿

    OpenAIRE

    Kantele, Anu; Palkola, Nina; Arvilommi, Heikki; Honkinen, Olli; Jahnukainen, Timo; Mertsola, Jussi; Kantele, Jussi M.

    2008-01-01

    Vaccines are needed against urinary tract infections (UTIs) in children, as episodes of pyelonephritis (PN) may cause renal scarring. Local immune mechanisms are regarded to confer protection, yet they have been poorly characterized for children. This study explores the local immune response in children by looking for newly activated pathogen-specific antibody-secreting cells (ASC), expected to appear transiently in the circulation as a response to UTI. Urinary tract-originating ASC specific ...

  3. Gastric cancer progression associated with local humoral immune responses

    OpenAIRE

    Yolanda, López-Vidal; Sergio, Ponce-de-León; Hugo, Esquivel-Solís; Isabel, Amieva-Fernández Rosa; Rafael, Barreto-Zúñiga; Aldo, Torre-Delgadillo; Gonzalo, Castillo-Rojas

    2015-01-01

    Background Although the association between H. pylori and gastric cancer has been well described, the alterations studies are scarce in the humoral immune response in specific anatomical areas of stomach and during the stages of gastric cancer. The aim in this study was to determine the influence of humoral immune responses against H. pylori infection on gastric carcinoma. Methods We selected 16 gastric cancer cases and approximately one matched control per case at the National Institute of M...

  4. Innate immune responses to Helicobacter pylori infection: an overview.

    Science.gov (United States)

    Patel, Milan K; Trombly, Melanie I; Kurt-Jones, Evelyn A

    2012-01-01

    Innate immune receptors detect Helicobacter pylori infection and trigger downstream signaling events that result in the production of cytokines and interferon-β. This chapter gives an overview of the receptors and their roles in responding to H. pylori infection and details the downstream signaling events. The tools that have been developed to study the innate immune response to H. pylori are also discussed. Understanding the immune response to H. pylori is critical to develop better treatments for H. pylori-induced disease states including gastric malignancies and cancer.

  5. Innate immune interferon responses to human immunodeficiency virus-1 infection.

    Science.gov (United States)

    Hughes, Rose; Towers, Greg; Noursadeghi, Mahdad

    2012-07-01

    Type I interferon (IFN) responses represent the canonical host innate immune response to viruses, which serves to upregulate expression of antiviral restriction factors and augment adaptive immune defences. There is clear evidence for type I IFN activity in both acute and chronic HIV-1 infection in vivo, and plasmacytoid dendritic cells have been identified as one important source for these responses, through innate immune detection of viral RNA by Toll-like receptor 7. In addition, new insights into the molecular mechanisms that trigger induction of type I IFNs suggest innate immune receptors for viral DNA may also mediate these responses. It is widely recognised that HIV-1 restriction factors share the characteristic of IFN-inducible expression, and that the virus has evolved to counteract these antiviral mechanisms. However, in some target cells, such as macrophages, IFN can still effectively restrict virus. In this context, HIV-1 shows the ability to evade innate immune recognition and thereby avoid induction of type I IFN in order to successfully establish productive infection. The relative importance of evasion of innate immune detection and evasion of IFN-inducible restriction in the natural history of HIV-1 infection is not known, and the data suggest that type I IFN responses may play a role in both viral control and in the immunopathogenesis of progressive disease. Further study of the relationship between HIV-1 infection and type I IFN responses is required to unravel these issues and inform the development of novel therapeutics or vaccine strategies.

  6. Advances in Overcoming Immune Responses following Hemophilia Gene Therapy.

    Science.gov (United States)

    Miao, Carol H

    2011-12-23

    Both Clinical trials and pre-clinical experiments for hemophilia gene therapy showed that it is important to overcome potential immune responses against gene transfer vectors and/or transgene products to ensure the success of gene therapy. Recently various approaches have been investigated to prevent or modulate such responses. Gene transfer vectors have been specifically engineered and immunosuppressive regimens have been administered to avoid or manipulate the immune responses against the vectors. In order to prevent cytotoxic lymphocyte or antibody formation induced by transgene expression, novel approaches have been developed, including methods to manipulate antigen presentation, development of variant genes encoding less immunogenic proteins or gene transfer protocols to evade immune responses, as well as immunosuppressive strategies to target either T and/or B cell responses. Most of these successful protocols involve the induction of activated regulatory T cells to create a regulatory immune environment during tolerance induction. Recent development of these strategies to evade vector-specific immune responses and induce long-term immune tolerance specific to the transgene product will be discussed.

  7. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Science.gov (United States)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  8. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  9. A preliminary study to evaluate the immune responses induced by immunization of dogs with inactivated Ehrlichia canis organisms

    Directory of Open Access Journals (Sweden)

    Sunita Mahan

    2005-09-01

    Full Text Available Ehrlichia canis is an intracellular pathogen that causes canine monocytic ehrlichiosis. Although the role of antibody responses cannot be discounted, control of this intracellular pathogen is expected to be by cell mediated immune responses. The immune responses in dogs immunized with inactivated E. canis organisms in combination with Quil A were evaluated. Immunization provoked strong humoral and cellular immune responses, which were demonstrable by Western blotting and lymphocyte proliferation assays. By Western blotting antibodies to several immunodominant E. canis proteins were detected in serum from immunized dogs and antibody titres increased after each immunization. The complement of immunogenic proteins recognized by the antisera were similar to those recognized in serum from infected dogs. Upon challenge with live E. canis, rapid anamnestic humoral responses were detected in the serum of immunized dogs and primary antibody responses were detected in the serum from control dogs. Following immunization, a lymphocyte proliferative response (cellular immunity was detected in peripheral blood mononuclear cells (PBMNs of immunized dogs upon stimulation with E. canis antigens. These responses were absent from non-immunized control dogs until after infection with live E. canis, when antigen specific-lymphocyte proliferation responses were also detected in the PBMNs of the control dogs. It can be thus concluded that immunization against canine monocytic ehrlichiosis may be feasible. However, the immunization regimen needs to be optimized and a detailed investigation needs to be done to determine if this regimen can prevent development of acute and chronic disease.

  10. Posttransplantation antibody mediated rejection: new insights into mechanism, treatment and protective strategies

    Institute of Scientific and Technical Information of China (English)

    MAO You-ying; CHEN Jiang-hua

    2011-01-01

    @@ Acute antibody mediated rejection (AMR) is receiving more and more attention, which is mediated by different mechanisms from T cell mediated rejection, thereby requiring other approaches to prevention and treatment. Preexisting alloantibodies and pre-transplant sensitization are important risk factors for development of acute AMR early after renal transplantation.

  11. Late antibody-mediated rejection after ABO-incompatible kidney transplantation during Gram-negative sepsis

    NARCIS (Netherlands)

    A. de Weerd (Annelies); A.G. Vonk (Alieke); H. van der Hoek (Hans); M. van Groningen (Marian); W. Weimar (Willem); M.G.H. Betjes (Michiel); M. Agteren (Madelon)

    2014-01-01

    textabstractBackground: The major challenge in ABO-incompatible transplantation is to minimize antibody-mediated rejection. Effective reduction of the anti-ABO blood group antibodies at the time of transplantation has made ABO-incompatible kidney transplantation a growing practice in our hospital an

  12. Protective immune responses to fungal infections.

    Science.gov (United States)

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  13. Protective host immune responses to Salmonella infection

    OpenAIRE

    Pham, Oanh H.; McSorley, Stephen J.

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host–pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participat...

  14. Immune Responses and Lassa Virus Infection

    OpenAIRE

    Sylvain Baize; Marion Russier; Delphine Pannetier

    2012-01-01

    Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and i...

  15. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  16. The role of lysosomal cysteine proteases in crustacean immune response

    Directory of Open Access Journals (Sweden)

    FL Garcia-Carreño

    2014-04-01

    Full Text Available Over the long course of evolution and under the selective pressure exerted by pathogens and parasites, animals have selectively fixed a number of defense mechanisms against the constant attack of intruders. The immune response represents a key component to optimize the biological fitness of individuals. Two decades ago, prevention and control of diseases in crustacean aquaculture systems were considered priorities in most shrimp-producing countries, but knowledge was scarce and various pathogens have severely affected aquaculture development around the world. Scientific contributions have improved our understanding of the crustacean immune response. Several studies confirm the central role played by proteases in the immune response of animals, and the cooperative interaction of these enzymes in a wide variety of organisms is well known. This review summarizes the current information regarding the role of cysteine proteases in the immune system of Crustacea and points to aspects that are needed to provide a better integration of our knowledge.

  17. Autophagy-associated immune responses and cancer immunotherapy.

    Science.gov (United States)

    Pan, Hongming; Chen, Liuxi; Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-04-19

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed.

  18. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  19. A cognitive computational model inspired by the immune system response.

    Science.gov (United States)

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.

  20. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    Science.gov (United States)

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-03

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala.

  1. Human Immune Responses to Dengue Viruses.

    Science.gov (United States)

    1985-08-01

    FA titer of these antisera. We found using these hyper- immunized murine ascitis fluids that the homologous antiserum was most active in augmenting...statistically significant (pɘ.05). CHyperimmune mouse ascitis fluid was used as a source of anti-dengue 2 anti- body at a 1:20 dilution. dAx...by PBL without anti-dengue 2 antibody. *statistically significant (pɘ.05), l1not significant. bHyperimmune mouse ascitis fluid was used as a source

  2. Immune allergic response in Asperger syndrome.

    Science.gov (United States)

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  3. The serological response to heartwater immunization in cattle is an indicator of protective immunity

    DEFF Research Database (Denmark)

    Lawrence, J A; Tjørnehøj, Kirsten; Whiteland, A P

    1995-01-01

    A significant correlation was demonstrated in Friesian-cross steers between the serological response to previous vaccination with the Ball 3 strain of Cowdria ruminantium and the development of protective immunity against the Kalota isolate from Malawi. Of 10 animals which seroconverted after...... vaccination, all were completely or partially immune to challenge. Ten of the 14 animals which failed to seroconvert were immune but the proportion was not significantly different from that in the unvaccinated controls (4/10). Of 29 animals vaccinated and treated simultaneously with a slow-release doxycycline...

  4. TUMOR-SPECIFIC IMMUNE RESPONSE AFTER PHOTODYNAMIC THERAPY

    Directory of Open Access Journals (Sweden)

    Yu. N. Anokhin

    2016-01-01

    Full Text Available Increased incidence of malignancies requires a search for new therapeutic approaches. E.g., photodynamic therapy (PDT is an effective anti-cancer treatment that involves administration of a photosensitizing dye followed by visible light irradiation of the tumor. Pre-clinical studies have shown that local photodynamic therapy enhances systemic antitumor immunity. Moreover, it is well known that the long-term effects of PDT depend on functioning of intact adaptive immune response. In this context, the immune system plays a fundamental role. Interestingly, the PDT action is associated with stimulation of systemic immune response against a locally treated tumor. In fact, PDT has been shown to effectively stimulate both innate and adaptive immune systems of the host, by triggering the release of various pro-inflammatory and acutephase response mediators thus leading to massive infiltration of the treated site with neutrophils, dendritic cells and other inflammatory cells. PDT efficacy depends, in part, on induction of tumor-specific immune response which is dependent on cytotoxic T lymphocytes and natural killer (NK cells. The set of specific receptors enables NK cells to recognize surface molecules on the target cells. Expression of the latter molecules is indicative of viral infection, tumor formation, or cell stress (e.g., DNA damage. The NK cells are also involved into various biological processes in the organism, playing a critical role in immune surveillance, thus representing a potential tool for cancer therapy. It was shown that the tumor cells have increased sensitivity to NK cell-mediated lytic action following PDT. In this review, we further discuss potential relationships between PDT and antitumor immune response.

  5. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  6. Antibody-Mediated Rejection of the Heart in the Setting of Autoimmune Demyelinating Polyneuropathy: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Kathryn J. Lindley

    2012-01-01

    Full Text Available Background. Antibody-mediated rejection (AMR is caused by the production of donor-specific antibodies (DSA which lead to allograft injury in part via complement activation. The inflammatory demyelinating polyneuropathies (IDP are inflammatory disorders of the nervous system, involving both cellular and humoral immune mechanisms directed against myelin. Case Report. A 58-year-old man five years after heart transplant presented with progressive dyspnea, imbalance, dysphagia, and weakness. Nerve conduction studies and electromyogram were consistent with IDP. Plasmapheresis and high-dose steroids resulted in improvement in neurologic symptoms. Within two weeks, he was readmitted with anasarca and acute renal failure, requiring intravenous furosemide and inotropic support. Echocardiogram and right heart catheterization revealed reduced cardiac function and elevated filling pressures. DSA was positive against HLA DR53, and endomyocardial biopsy revealed grade 1R chronic inflammation, with strong capillary endothelial immunostaining for C4d. Plasmapheresis and intravenous immunoglobulin (IVIG were initiated. His anasarca and renal failure subsequently resolved, echocardiogram showed improved function off inotropes, and anti-DR53 MFI was reduced by 57%. Conclusions. This is an example of a single immune-mediated process causing concurrent IDP and AMR. The improvement in cardiac function and neurologic symptoms with plasmapheresis, IVIG, and high-dose steroids argues for a unifying antibody-mediated mechanism.

  7. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  8. Innate immune responses in hepatitis B virus (HBV) infection.

    Science.gov (United States)

    Busca, Aurelia; Kumar, Ashok

    2014-02-07

    Hepatitis B virus (HBV) infection has a low rate of chronicity compared to HCV infection, but chronic liver inflammation can evolve to life threatening complications. Experimental data from HBV infected chimpanzees and HBV transgenic mice have indicated that cytotoxic T cells are the main cell type responsible for inhibition of viral replication, but also for hepatocyte lysis during chronic HBV infection. Their lower activation and impaired function in later stages of infection was suggested as a possible mechanism that allowed for low levels of viral replication. The lack of an interferon response in these models also indicated the importance of adaptive immunity in clearing the infection. Increased knowledge of the signalling pathways and pathogen associated molecular patterns that govern activation of innate immunity in the early stages of viral infections in general has led to a re-evaluation of the innate immune system in HBV infection. Numerous studies have shown that HBV employs active strategies to evade innate immune responses and induce immunosuppression. Some of the immune components targeted by HBV include dendritic cells, natural killer cells, T regulatory cells and signalling pathways of the interferon response. This review will present the current understanding of innate immunity in HBV infection and of the challenges associated with clearing of the HBV infection.

  9. Signaling molecules involved in immune responses in mussels

    Directory of Open Access Journals (Sweden)

    S Koutsogiannaki

    2010-01-01

    Full Text Available Immune system of molluscs is constituted by hemocytes and humoral factors that cooperate for the protection of the organism, triggering a wide range of immune responses. In molluscs, immune responses include phagocytosis, encapsulation, respiratory burst leading to reactive oxygen species (ROS production and nitric oxide (NO synthesis, release of antimicrobial molecules and the activation of phenoloxidase system. These responses are mediated firstly by a variety of hemocyte receptors binding to ligands that results to a cascade of signaling events. The processes of hemocytes adhesion to and migration through extracellular matrix (ECM proteins play a crucial role in cell immunity. Results suggest that cadmium and oxidants induce adhesion to and migration through ECM proteins in Mytilus gallorovincialis hemocytes with the involvement of Na+/H+ exchanger (NHE, phosphatidylinositol-3 kinase (PI-3K, protein kinase C (PKC, NADPH oxidase, ROS and NO as well as with α2 integrin subunit. Furthermore, the data so far suggests the involvement of additional signaling molecules such as mitogen-activated protein kinases (MAPKs, signal transducers and activators of transcription (STATs, c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, cyclic adenosine monophosphate (cAMP, responsive element binding protein (CREB and nuclear factor kappa B (NF-kB in molluscs immunity. Further research in mollusc immune system may lead to a more sufficient protection and to a better control of these economically important organisms.

  10. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  11. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine.

    Science.gov (United States)

    Dan, Xue-Ming; Zhang, Tuan-Wei; Li, Yan-Wei; Li, An-Xing

    2013-03-01

    In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.

  12. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  13. Autophagy as a Stress Response Pathway in the Immune System.

    Science.gov (United States)

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  14. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann;

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cells...... in peripheral blood of healthy volunteers and cancer patients. These immune responses were directed against a HLA-A2-restricted peptide epitope derived from Foxp3. Foxp3-reactive T cells were characterized as cytotoxic CD8+ T cells. These cells recognized dendritic cells incubated with recombinant Foxp3 protein...... readily killed by the Foxp3-specific cytotoxic T lymphocytes. The spontaneous presence of Foxp3-specific cytotoxic T-cell responses suggest a general role of such T cells in the complex network of immune regulation as such responses may eliminate Tregs, that is, suppression of the suppressors...

  15. Modulation of Human Immune Response by Fungal Biocontrol Agents

    Science.gov (United States)

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  16. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  17. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    Science.gov (United States)

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  18. Latent viral immune inflammatory response model for chronic multisymptom illness.

    Science.gov (United States)

    Maloney, Sean R; Jensen, Susan; Gil-Rivas, Virginia; Goolkasian, Paula

    2013-03-01

    A latent viral immune inflammatory response (LVIIR) model is presented which integrates factors that contribute to chronic multisymptom illness (CMI) in both the veteran and civilian populations. The LVIIR model for CMI results from an integration of clinical experience with a review of the literature in four distinct areas: (1) studies of idiopathic multisymptom illness in the veteran population including two decades of research on Gulf War I veterans with CMI, (2) new evidence supporting the existence of chronic inflammatory responses to latent viral antigens and the effect these responses may have on the nervous system, (3) recent discoveries concerning the role of vitamin D in maintaining normal innate and adaptive immunity including suppression of latent viruses and regulation of the immune inflammatory response, and (4) the detrimental effects of extreme chronic repetitive stress (ECRS) on the immune and nervous systems. The LVIIR model describes the pathophysiology of a pathway to CMI and presents a new direction for the clinical assessment of CMI that includes the use of neurological signs from a physical exam, objective laboratory data, and a new proposed latent viral antigen-antibody imaging technique for the peripheral and central nervous system. The LVIIR model predicts that CMI can be treated by a focus on reversal of immune system impairment, suppression of latent viruses and their antigens, and healing of nervous system tissue damaged by chronic inflammation associated with latent viral antigens and by ECRS. In addition, the LVIIR model suggests that maintaining optimal serum 25 OH vitamin D levels will maximize immune system suppression of latent viruses and their antigens and will minimize immune system inflammation. This model also emphasizes the importance of decreasing ECRS to improve immune system function and to minimize nervous system injury from excess serum glucocorticoid levels. The proposed model supports growing evidence that increasing

  19. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  20. The architects of B and T cell immune responses.

    Science.gov (United States)

    Lane, Peter J L

    2008-08-15

    Published work links adult lymphoid tissue-inducer cells (LTi) with T cell-dependent antibody responses. In this issue of Immunity, Tsuji et al. (2008) associate LTi with T cell-independent IgA antibody responses in the gut.

  1. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  2. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  3. Genetic control of the innate immune response

    Directory of Open Access Journals (Sweden)

    Sweet Matthew

    2003-06-01

    Full Text Available Abstract Background Susceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS, a major determinant of responses to gram-negative microorganisms. Results The mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4. Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J and delayed (BALB/c and C3H/ARC transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1 or propensity to bias Th1 versus Th2 T cell activation responses. Conclusion Macrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP, such as LPS.

  4. The genetic regulation of infant immune responses to vaccination

    Directory of Open Access Journals (Sweden)

    Melanie eNewport

    2015-02-01

    Full Text Available A number of factors are recognised to influence immune responses to vaccinations including age, gender, the dose and quality of the antigen used, the number of doses given, the route of administration and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. . Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.

  5. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis.

  6. Innate immune responses in hepatitis C virus infection.

    Science.gov (United States)

    Li, Kui; Lemon, Stanley M

    2013-01-01

    Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma worldwide and thus poses a significant public health threat. A hallmark of HCV infection is the extraordinary ability of the virus to persist in a majority of infected people. Innate immune responses represent the front line of defense of the human body against HCV immediately after infection. They also play a crucial role in orchestrating subsequent HCV-specific adaptive immunity that is pivotal for viral clearance. Accumulating evidence suggests that the host has evolved multifaceted innate immune mechanisms to sense HCV infection and elicit defense responses, while HCV has developed elaborate strategies to circumvent many of these. Defining the interplay of HCV with host innate immunity reveals mechanistic insights into hepatitis C pathogenesis and informs approaches to therapy. In this review, we summarize recent advances in understanding innate immune responses to HCV infection, focusing on induction and effector mechanisms of the interferon antiviral response as well as the evasion strategies of HCV.

  7. Impact of Temozolomide on Immune Response during Malignant Glioma Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2012-01-01

    Full Text Available Malignant glioma, or glioblastoma, is the most common and lethal form of brain tumor with a median survival time of 15 months. The established therapeutic regimen includes a tripartite therapy of surgical resection followed by radiation and temozolomide (TMZ chemotherapy, concurrently with radiation and then as an adjuvant. TMZ, a DNA alkylating agent, is the most successful antiglioma drug and has added several months to the life expectancy of malignant glioma patients. However, TMZ is also responsible for inducing lymphopenia and myelosuppression in malignant glioma patients undergoing chemotherapy. Although TMZ-induced lymphopenia has been attributed to facilitate antitumor vaccination studies by inducing passive immune response, in general lymphopenic conditions have been associated with poor immune surveillance leading to opportunistic infections in glioma patients, as well as disrupting active antiglioma immune response by depleting both T and NK cells. Deletion of O6-methylguanine-DNA-methyltransferase (MGMT activity, a DNA repair enzyme, by temozolomide has been determined to be the cause of lymphopenia. Drug-resistant mutation of the MGMT protein has been shown to render chemoprotection against TMZ. The immune modulating role of TMZ during glioma chemotherapy and possible mechanisms to establish a strong TMZ-resistant immune response have been discussed.

  8. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    Science.gov (United States)

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  9. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Mani Harika eVemula

    2016-03-01

    Full Text Available Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis (M.tb, the tuberculosis (TB causing bacilli in human is cleared by cell-mediated immunity (CMI with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches towards vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M.tb Zinc metalloprotease-1 (Zmp1, a secretory protein essential for intracellular survival and pathogenesis of M.tb. We observed that Zmp1 was secreted by in vitro grown M.tb under granuloma-like stress conditions (acidic, oxidative, iron deficiency and nutrient deprivation and generated Th2 cytokine microenvironment upon exogenous treatment of Peripheral Blood Mononulear Cells (PBMCs with recombinant Zmp1 (rZmp1. This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n=121 as against healthy control (n=62, household contacts (n=89 and non-specific infection controls (n=23. A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL to paucibacillary smear-negative pulmonary tuberculosis (PTB cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen

  10. The Complement System and Antibody-Mediated Transplant Rejection.

    Science.gov (United States)

    Stites, Erik; Le Quintrec, Moglie; Thurman, Joshua M

    2015-12-15

    Complement activation is an important cause of tissue injury in patients with Ab-mediated rejection (AMR) of transplanted organs. Complement activation triggers a strong inflammatory response, and it also generates tissue-bound and soluble fragments that are clinically useful markers of inflammation. The detection of complement proteins deposited within transplanted tissues has become an indispensible biomarker of AMR, and several assays have recently been developed to measure complement activation by Abs reactive to specific donor HLA expressed within the transplant. Complement inhibitors have entered clinical use and have shown efficacy for the treatment of AMR. New methods of detecting complement activation within transplanted organs will improve our ability to diagnose and monitor AMR, and they will also help guide the use of complement inhibitory drugs.

  11. Microgravity and immune responsiveness: implications for space travel.

    Science.gov (United States)

    Borchers, Andrea T; Keen, Carl L; Gershwin, M Eric

    2002-10-01

    To date, several hundred cosmonauts and astronauts have flown in space, yet knowledge about the adaptation of their immune system to space flight is rather limited. It is evident that a variety of immune parameters are changed during and after space flight, but the magnitude and pattern of these changes can differ dramatically between missions and even between crew members on the same mission. A literature search was conducted involving a total of 335 papers published between 1972 and 2002 that dealt with the key words immune response, microgravity and astronauts/cosmonauts, isolation, gravity, and human health. The data from multiple studies suggested that major discrepancies in outcome are due to methodologic differences. However, the data also suggested major factors that affect and modulate the immune response during space travel. In part at least, these discrepancies can be attributed to methodologic differences. In addition, a variety of other features, in particular the types and extent of stressors encountered during space missions, are likely to contribute to the variability of immune responses during and after space flight. That stress plays an important role in the effects of space flight on immunologic parameters is suggested by the frequent findings that stress hormones are upregulated during and after space flight. Unfortunately, however, the existing data on hormonal parameters are almost as varied as those on immunologic changes, and correlations between the two datasets have only rarely been attempted. The functional implications of space flight-induced alterations in immune response largely remain to be elucidated, but the data suggest that long-term travel will be associated with the development of immune-compromised hosts.

  12. The Xs and Y of immune responses to viral vaccines.

    Science.gov (United States)

    Klein, Sabra L; Jedlicka, Anne; Pekosz, Andrew

    2010-05-01

    The biological differences associated with the sex of an individual are a major source of variation, affecting immune responses to vaccination. Compelling clinical data illustrate that men and women differ in their innate, humoral, and cell-mediated responses to viral vaccines. Sex affects the frequency and severity of adverse effects of vaccination, including fever, pain, and inflammation. Pregnancy can also substantially alter immune responses to vaccines. Data from clinical trials and animal models of vaccine efficacy lay the groundwork for future studies aimed at identifying the biological mechanisms that underlie sex-specific responses to vaccines, including genetic and hormonal factors. An understanding and appreciation of the effect of sex and pregnancy on immune responses might change the strategies used by public health officials to start efficient vaccination programmes (optimising the timing and dose of the vaccine so that the maximum number of people are immunised), ensure sufficient levels of immune responses, minimise adverse effects, and allow for more efficient protection of populations that are high priority (eg, pregnant women and individuals with comorbid conditions).

  13. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  14. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  15. Mitochondrial DNA in the regulation of innate immune responses

    Directory of Open Access Journals (Sweden)

    Chunju Fang

    2015-10-01

    Full Text Available Abstract Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.

  16. Plant immune responses triggered by beneficial microbes

    NARCIS (Netherlands)

    Wees, A.C.M. van; Ent, S. van der; Pieterse, C.M.J.

    2008-01-01

    Beneficial soil-borne microorganisms, such as plant growth promoting rhizobacteria and mycorrhizal fungi,can improve plant performance by inducing systemic defense responses that confer broad-spectrum resistance to plant pathogens and even insect herbivores. Different beneficial microbe-associated m

  17. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  18. Host Cell Autophagy in Immune Response to Zoonotic Infections

    Directory of Open Access Journals (Sweden)

    Panagiotis Skendros

    2012-01-01

    Full Text Available Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  19. Reviewing the pathogenesis of antibody-mediated rejection and renal graft pathology after kidney transplantation.

    Science.gov (United States)

    Morozumi, Kunio; Takeda, Asami; Otsuka, Yasuhiro; Horike, Keiji; Gotoh, Norihiko; Narumi, Shunji; Watarai, Yoshihiko; Kobayashi, Takaaki

    2016-07-01

    The clinicopathological context of rejection after kidney transplantation was well recognized. Banff conferences greatly contributed to elucidate the pathogenesis and to establish the pathologic criteria of rejection after kidney transplantation. The most important current problem of renal transplantation is de novo donor-specific antibody (DSA) production leading chronic rejection and graft loss. Microvascular inflammation is considered as a reliable pathological marker for antibody-mediated rejection (AMR) in the presence of DSA. Electron microscopic study allowed us to evaluate early changes in peritubular capillaries in T-lymphocyte mediated rejection and transition to antibody-mediated rejection. Severe endothelial injuries with edema and activated lymphocyte invaded into subendothelial space with early multi-layering of peritubular capillary basement membrane suggest T-lymphocyte mediated rejection induce an unbounded chain of antibody-mediated rejection. The risk factors of AMR after ABO-incompatible kidney transplantation are important issues. Anti-ABO blood type antibody titre of IgG excess 32-fold before transplant operation is the only predictable factor for acute AMR. Characteristics of chronic active antibody-mediated rejection (CAAMR) are one of the most important problems. Light microscopic findings and C4d stain of peritubular capillary and glomerular capillary are useful diagnostic criteria of CAAMR. Microvascular inflammation, double contour of glomerular capillary and thickening of peritubular capillary basement are good predictive factors of the presence of de novo DSA. C4d stain of linear glomerular capillary is a more sensitive marker for CAAMR than positive C4d of peritubular capillary. Early and sensitive diagnostic attempts of diagnosing CAAMR are pivotal to prevent chronic graft failure.

  20. Long-term experience of plasmapheresis in antibody-mediated rejection in renal transplantation.

    LENUS (Irish Health Repository)

    Brown, C M

    2009-11-01

    Antibody-mediated rejection (AMR) continues to pose a serious challenge in renal transplantation with potentially devastating consequences. Treatment options for this condition include plasmapheresis, high-dose intravenous immunoglobulin (IVIG), plasmapheresis with low-dose IVIG, and the use of rituximab (anti-CD20 chimeric antibody). We previously reported on the short-term outcome of plasmapheresis as a rescue therapy for AMR in our centre. We now report on the long-term follow up.

  1. Immune response induced in mice oral immunization with cowpea severe mosaic virus

    Directory of Open Access Journals (Sweden)

    M.I. Florindo

    2002-07-01

    Full Text Available There is increasing interest in the immune response induced by plant viruses since these could be used as antigen-expressing systems in vaccination procedures. Cowpea severe mosaic virus (CPSMV, as a purified preparation (300 g of leaves, 2 weeks post-inoculation, or crude extract from cowpea (Vigna unguiculata leaves infected with CPSMV both administered by gavage to Swiss mice induced a humoral immune response. Groups of 10 Swiss mice (2-month-old females were immunized orally with 10 daily doses of either 50 µg viral capsid protein (boosters of 50 µg at days 21 and 35 after immunization or 0.6 mg protein of the crude extract (boosters of 0.6 mg at days 21 and 35 after immunization. Anti-CPSMV antibodies were quantified by ELISA in pooled sera diluted at least 1:400 at days 7, 14, 21, 28, 35 and 42 after the 10th dose. IgG and IgA against CPSMV were produced systemically, but IgE was not detected. No synthesis of specific antibodies against the proteins of leaf extracts from V. unguiculata, infected or not with CPSMV, was detected. The use of CPSMV, a plant-infecting virus that apparently does not induce a pathogenic response in animals, induced a humoral and persistent (at least 6 months immune response through the administration of low antigen doses by gavage. These results raise the possibility of using CPSMV either as a vector for the production of vaccines against animal pathogens or in quick and easy methods to produce specific antisera for viral diagnosis.

  2. Antibody response to measles immunization in India*

    OpenAIRE

    Job, J. S.; John, T J; Joseph, A.

    1984-01-01

    Antibody response to measles vaccine was measured in 238 subjects aged 6-15 months. Seroconversion rates ranged from 74% at 6 months of age to 100% at 13-15 months; the differences in age-specific rates were not statistically significant. The postimmunization antibody titres increased with increasing age of the vaccinee. Seroconversion rates and antibody titres in 49 subjects with grades I and II malnutrition were not significantly different from those in the 189 normal subjects.

  3. Effect of produced water on cod (Gadus morhua) immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  4. Schistosoma mansoni infection modulates the immune response against allergic and auto-immune diseases

    Directory of Open Access Journals (Sweden)

    Maria Ilma Araújo

    2004-08-01

    Full Text Available Chronic Schistosoma mansoni infection leads to a type 2-immune response with increased production of interleukin (IL-10. Evidence indicates chronic exposure to S. mansoni down regulates the type 1 immune response and prevents the onset of Th1-mediated diseases such as multiple sclerosis, diabetes mellitus and Cronh's disease. Furthermore, our own studies have revealed that chronic exposure to S. mansoni also down regulates atopic disease, Th2-mediated diseases. Our studies show an inverse association between the skin prick test reactivity and infection with S. mansoni and show the severity of asthma is reduced in subjects living in an endemic area of S. mansoni. Moreover, we hypothesize the mechanisms involved in the modulation of inflammatory response in atopic individuals, is likely dependent on IL-10 production, an anti-inflammatory cytokine elevated during helminth infections. Patients with asthma and helminth infections produced less IL-5 than patients with asthma without helminth infections, and this down regulation could, in part, be mediated by IL-10. In conclusion, helminthic infections, through induction of regulatory mechanisms, such as IL-10 production, are able to modulate the inflammatory immune response involved in the pathology of auto-immune and allergic disease.

  5. Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae.

    Science.gov (United States)

    Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier

    2009-03-23

    Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (Pgallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol.

  6. Review: Adjuvant effects of saponins on animal immune responses

    Institute of Scientific and Technical Information of China (English)

    RAJPUT Zahid Iqbal; HU Song-hua; XIAO Chen-wen; ARIJO Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines,ISCOMs (immunostimulating complexes), Freund's complete adjuvant, Freund's incomplete adjuvant, alums, bacterial toxins etc.,are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed.

  7. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins.

    Science.gov (United States)

    Rupp, R; Hernandez, A; Mallard, B A

    2007-02-01

    Data collected from 328 Canadian Holsteins in a research herd at the University of Guelph were used to study associations among expression of bovine leukocyte antigen (BoLA) DRB3.2 alleles, immune response, mastitis resistance via somatic cell counts (SCC), and clinical mastitis, as well as to extend these results to production and type traits. Accordingly, groups of cows were evaluated in vivo for both the antibody-mediated immune response (AMIR) and the cell-mediated immune response (CMIR), which generally predominate in responses to extracellular and intracellular pathogens, respectively. Of note was that associations between BoLA DRB3.2 alleles and immune responses tended to be in the opposite sign for the 2 AMIR and CMIR traits examined. For example, alleles DRB3.2*3 and *24 were associated with higher AMIR but lower CMIR, whereas allele *22 was associated with lower AMIR but higher CMIR. This finding is in agreement with the hypothesis that both traits are genetically independent and represent opposing type 1 and type 2 immune responses. Additionally, BoLA DRB3.2*3 and *11 were associated with lower SCC, whereas alleles *22 and *23 were associated with higher SCC. Finally, allele DRB3.2*3 was also associated with less clinical mastitis, whereas allele *8 was associated with higher mastitis risk. Allele *3 was of particular relevance because it was associated with increased antibodies, as well as reduced mastitis and SCC. This could be due to an indirect relationship between the ability to produce a high antibody response and enhanced defense against intrammamary infections caused by extracellular pathogens. Consequently, the BoLA DRB3.2*3 allele should be investigated further as a candidate for resistance to some types of intramammary infections, the important caveat being its association with lower CMIR, particularly with one of the test antigens used to evaluate delayed-type hypersensitivity. The results of associations between BoLA DRB3.2 and production

  8. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  9. Viral infection: an evolving insight into the signal transduction pathways responsible for the innate immune response.

    Science.gov (United States)

    Kotwal, Girish J; Hatch, Steven; Marshall, William L

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death-a fundamental form of innate immunity-is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.

  10. Trypanosomiasis-induced Th17-like immune responses in carp

    NARCIS (Netherlands)

    Ribeiro, C.M.S.; Pontes, M.J.S.L.; Bird, S.; Chadzinska, M.K.; Scheer, M.H.; Verburg-van Kemenade, B.M.L.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2010-01-01

    Background - In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of th

  11. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  12. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies...

  13. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    2016-01-01

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regardi

  14. [Influence of natural gut flora on immune response].

    Science.gov (United States)

    Strzępa, Anna; Szczepanik, Marian

    2013-08-29

    Our intestines are habitat for trillions of microorganisms such as bacteria, viruses and eukaryotes, known as microbiota. They are indispensable for our well-being due to their metabolic activities. Microbiota digests complex plant polysaccharides, which are normally unprocessed by humans; as well it retrieves other essential nutrients. It is well established that microbiota is crucial for proper development of intestinal as well systemic immune compartments. Recent results indicate that composition of natural gut flora is responsible for shaping of immune response. Alerted bacterial profile, known as dysbiosis precedes development of allergy in children. Many autoimmune conditions are associated with shift in intestinal bacterial profile. Apart of direct association between gut flora and systemic immune compartment little is known about the mechanisms by which microbiota exerts its immunoregulatory function. At the moment several bacterial strains as well some bacterial products were recognized as immunomodulators. This review describes the composition of normal gut flora as well disease-associated microbiota. It deals with unique mechanisms, found in GALT, that favor induction of tolerance towards orally administrated antigens as well discriminate between commensal and pathogens to minimize induction of inflammatory response. Further, the review tries to establish the connection between microbiota and systemic immune response. Finally the factors that modulate the composition of our gut flora are described.

  15. Mucosal immune response in common carp (Cyprinus carpio L.)

    DEFF Research Database (Denmark)

    Przybylska, Dominika Alicja

    . In addition, the absence of marked differences on the respiratory burst activity in head-kidney cells supports the idea of a localized immune response to the site of injury. Due to direct and constant contact between skin and ß-glucan, bath treatment was an obvious choice to investigate. However, intravenous...

  16. Sharing the burden: antigen transport and firebreaks in immune responses.

    Science.gov (United States)

    Handel, Andreas; Yates, Andrew; Pilyugin, Sergei S; Antia, Rustom

    2009-05-06

    Communication between cells is crucial for immune responses. An important means of communication during viral infections is the presentation of viral antigen on the surface of an infected cell. Recently, it has been shown that antigen can be shared between infected and uninfected cells through gap junctions, connexin-based channels, that allow the transport of small molecules. The uninfected cell receiving antigen can present it on its surface. Cells presenting viral antigen are detected and killed by cytotoxic T lymphocytes. The killing of uninfected cells can lead to increased immunopathology. However, the immune response might also profit from killing those uninfected bystander cells. One benefit might be the removal of future 'virus factories'. Another benefit might be through the creation of 'firebreaks', areas void of target cells, which increase the diffusion time of free virions, making their clearance more likely. Here, we use theoretical models and simulations to explore how the mechanism of gap junction-mediated antigen transport (GMAT) affects the dynamics of the virus and immune response. We show that under the assumption of a well-mixed system, GMAT leads to increased immunopathology, which always outweighs the benefit of reduced virus production due to the removal of future virus factories. By contrast, a spatially explicit model leads to quite different results. Here we find that the firebreak mechanism reduces both viral load and immunopathology. Our study thus shows the potential benefits of GMAT and illustrates how spatial effects may be crucial for the quantitative understanding of infection dynamics and immune responses.

  17. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  18. Sulfated polysaccharides and immune response: promoter or inhibitor?

    Science.gov (United States)

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  19. Assessing the cost of mounting an immune response.

    Science.gov (United States)

    Bonneaud, Camille; Mazuc, Jérémy; Gonzalez, Guillermo; Haussy, Claudy; Chastel, Olivier; Faivre, Bruno; Sorci, Gabriele

    2003-03-01

    The evolution of parasite resistance has often been assumed to be governed by antagonistic selection pressures. Defense against pathogens, by mounting an immune response, confers evident benefits but may also incur costs, so that the optimal level of defense is expected to depend on the balance between benefits and costs. Although the benefits of immune surveillance are well known, estimates of costs are still equivocal. Here we studied the behavioral and physiological modifications associated with exposure to a nonreplicating antigen (lipopolysaccharide [LPS] of Escherichia coli) in a passerine species, the house sparrow (Passer domesticus). We further investigated whether the behavioral and physiological changes provoked by LPS induced measurable repercussions on life-history traits, such as the breeding effort and reproductive success. Finally, we tested whether the trade-off between immune activation and breeding effort was modulated by the workload required to feed the brood. Exposure to LPS reduced activity and increased body mass loss of captive individuals; similarly, LPS injection induced a dramatic drop in feeding rate and reproductive success of breeding females. However, this reduction depended on brood size, suggesting that the strength of the trade-off between immune activation and reproduction was affected by the workload required to feed the brood. Overall, this study stresses the magnitude of costs associated with mounting immune responses and the ecological and evolutionary consequences for natural populations.

  20. Innate and adaptive immune responses in HCV infections.

    Science.gov (United States)

    Heim, Markus H; Thimme, Robert

    2014-11-01

    Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that

  1. Effects of exercise on vaccine-induced immune responses

    OpenAIRE

    Edwards, Kate M.; Booy, Robert

    2013-01-01

    The role of exercise in health is well known; here we discuss the specific role of exercise in vaccination responses. Chronic exercise or high levels of physical activity have been shown to be related to improved vaccination responses in older adults, illustrating improved immune function, and conferring potentially significant public health benefit. Acute exercise has recently been examined as a potential adjuvant to vaccination; its promise for clinical use warrants further investigation, g...

  2. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  3. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  4. Control of immune response by amino acid metabolism.

    Science.gov (United States)

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  5. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  6. Bacillus cereus var. toyoi enhanced systemic immune response in piglets.

    Science.gov (United States)

    Schierack, Peter; Wieler, Lothar H; Taras, David; Herwig, Volker; Tachu, Babila; Hlinak, Andreas; Schmidt, Michael F G; Scharek, Lydia

    2007-07-15

    Probiotic bacteria have been suggested to stimulate the host immune system. In this study we evaluated the immunomodulatory effects of probiotic Bacillus cereus var. toyoi on the systemic immunity of piglets. A pool of 70 piglets was divided into a probiotic or control group. We determined the ratios of peripheral blood mononuclear cell (PBMC) subsets and measured proliferative responses and cytokine production of PBMCs and effects on vaccination responses. Blood samples of probiotic-treated piglets showed a significantly lower frequency of CD8(high)/CD3+ T cells and CD8(low)/CD3+ T cells and a significant higher CD4+/CD8+ ratio. IL-4 and IFN-gamma production of polyclonally stimulated PBMCs was on average higher in the probiotic group. Specific proliferative responses of PBMCs to Influenza vaccination antigens were significantly higher and antibody titers against H3N2 Influenza and Mycoplasma vaccination antigens were on average higher in the probiotic group. In conclusion, B. cereus var. toyoi therefore alters the immune status of piglets as indicated by changes in the ratios as well as functionalities of systemic immune cell populations.

  7. The effects of pollutants on the allergic immune response.

    Science.gov (United States)

    Kemeny, D M

    2000-11-01

    An increase in the prevalence of allergy and allergic diseases has taken place in the industrialised countries. Allergic diseases represent a major health problem, and appear linked to affluence and modern lifestyle. In the 20th century air pollution from industrial sources largely has been replaced by diesel exhaust and other traffic pollution. Further, the indoor environment in which we spend most of our time has changed dramatically. In order to understand the contribution of pollution and other environmental changes to the development of allergy, we need to understand the biologic processes that underlie allergic immune responses. In the present paper, immune regulatory pathways that control the allergic immune response are delineated. Castor bean dust causes widespread allergic sensitisation. The investigations that made clear the importance of CD8 T cells for the regulation of IgE production were triggered by studies of castor bean allergy. A special focus is in this review placed on the regulatory role of CD8 T cells in the development of the allergic immune response.

  8. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  9. Host immune status and response to hepatitis E virus infection.

    Science.gov (United States)

    Krain, Lisa J; Nelson, Kenrad E; Labrique, Alain B

    2014-01-01

    Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available.

  10. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius)

    Science.gov (United States)

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  11. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius).

    Science.gov (United States)

    Fallacara, Dawn M; Halbrook, Richard S; French, John B

    2011-06-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell-mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 µg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell- and B cell-dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 µg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell-dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 µg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell-dependent histological correlates. We conclude that T cell-mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  12. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs.

  13. Genomics of immune response to typhoid and cholera vaccines.

    Science.gov (United States)

    Majumder, Partha P

    2015-06-19

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.

  14. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  15. Immune response triggered by Brucella abortus following infection or vaccination.

    Science.gov (United States)

    Dorneles, Elaine M S; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-07-17

    Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts.

  16. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp

    Institute of Scientific and Technical Information of China (English)

    Jin Sun; Yong-Hui Shi; Guo-Wei Le; Xi-Yi Ma

    2005-01-01

    AIM: To analyze the distinct immune responses induced by Lactobacillus peptidoglycan (PG).METHODS: BALB/c mice were intraperitoneally injected with PG once a day for three consecutive days. Peritoneal macrophage and splenocyte mRNA was extracted and the gene expression profile was studied using high-density oligonucleotide microarrays. Inhibitory effects of Lactobacillus PG on colon tumor tissue were studied in vitro and in vivo.RESULTS: The gene expression profiles revealed that the TLR-NF-κB and Jak-STAT signaling pathways were highly activated. An inflammatory phenotype was induced when peritoneal macrophages were initially exposed to Lactobacillus PG and switched to a more complex phenotype when BALB/c mice were treated with three doses of Lactobacillus PG. A protective physiological inflammatory response was induced after three consecutive days of PG treatment. It was tending toward Th1 dominant immune response. Lactobacillus PG also appeared to induce a significantin vivo anti-colon tumor effect.CONCLUSION: Lactobacillus PG is responsible for certain immune responses induced by Lactobacilli. Anti-tumor effects of Lactobacilli are likely to attribute to the activation of macrophages by PG expressed on the bacterial cell surface.

  17. Immune response in Dobrava-Belgrade virus infections.

    Science.gov (United States)

    Tsergouli, Katerina; Papa, Anna

    2016-12-01

    Dobrava-Belgrade virus (DOBV) is a hantavirus that causes a disease in humans known as hemorrhagic fever with renal syndrome. Hallmarks of hantaviral infections are increased vascular permeability due to dysregulation of the endothelial cell barrier and acute thrombocytopenia. In order to gain insight into the immune response in DOBV infections, the serum levels of 27 cytokines in 24 hospitalized Greek HFRS patients were evaluated. Compared to the control group, significantly higher IL-1ra, IL-6, IL-8, IL-9, IL-10, GM-CSF, IP-10, MIP-1b, TNF-α and VEGF levels were found in severe cases, while in non-severe cases, IL-13 and TNF-α levels were significantly higher (p < 0.05). In all groups, IP-10 was increased and RANTES was decreased. Significant and time- (after onset of illness) dependent differences among fatal, severe and non-severe cases were seen. VEGF was positively associated with disease severity. A strong immune response was seen during the first week of illness, especially in severe cases, while the response in non-severe cases was weaker and delayed. The Th1 response was strong in non-severe cases and weak in the fatal case, while a mixed Th1/Th2 immune response was seen in the survivors of severe disease.

  18. Adaptive immune response during hepatitis C virus infection.

    Science.gov (United States)

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-04-07

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed.

  19. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  20. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers...... of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...... chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For TH1 type responses, antigen...

  1. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Science.gov (United States)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  2. Environmental toxicants-induced immune responses in the olfactory mucosa

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2016-11-01

    Full Text Available Olfactory sensory neurons (OSNs are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa of the nasal cavity, OSN axons directly project to the olfactory bulb that is a component of the central nervous system (CNS. Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the olfactory bulb via the olfactory mucosa, and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the olfactory mucosa, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the olfactory bulb after inflammation has subsided. It is now known that immune cells and cytokines in the olfactory mucosa play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the olfactory mucosa affects the pathophysiology of OSNs.

  3. How B cells shape the immune response against Mycobacterium tuberculosis.

    Science.gov (United States)

    Maglione, Paul J; Chan, John

    2009-03-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B-cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against non-viral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against non-viral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought.

  4. Acidic chitinase primes the protective immune response to gastrointestinal nematodes.

    Science.gov (United States)

    Vannella, Kevin M; Ramalingam, Thirumalai R; Hart, Kevin M; de Queiroz Prado, Rafael; Sciurba, Joshua; Barron, Luke; Borthwick, Lee A; Smith, Allen D; Mentink-Kane, Margaret; White, Sandra; Thompson, Robert W; Cheever, Allen W; Bock, Kevin; Moore, Ian; Fitz, Lori J; Urban, Joseph F; Wynn, Thomas A

    2016-05-01

    Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.

  5. Innate immune responses of salmonid fish to viral infections.

    Science.gov (United States)

    Collet, Bertrand

    2014-04-01

    Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.

  6. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites. PMID:9321391

  7. Immune secondary response and clonal selection inspired optimizers

    Institute of Scientific and Technical Information of China (English)

    Maoguo Gong; Licheng Jiao; Lining Zhang; Haifeng Du

    2009-01-01

    The immune system's ability to adapt its B cells to new types of antigen is powered by processes known as clonal selection and affinity maturation. When the body is exposed to the same antigen, immune system usually calls for a more rapid and larger response to the antigen, where B cells have the function of negative adjustment. Based on the clonal selection theory and the dynamic process of immune response, two novel artificial immune system algorithms, secondary response clonal programming algorithm (SRCPA) and secondary response clonal multi-objective algorithm (SRCMOA), are presented for solving single and multi-objective optimization problems, respectively. Clonal selection operator (CSO) and secondary response operator (SRO) are the main operators of SRCPA and SRCMOA. Inspired by the cional selection theory, CSO reproduces individuals and selects their improved maturated progenies after the affinity mat-uration process. SRO copies certain antibodies to a secondary pool, whose members do not participate in CSO, but these antibodies could be activated by some external stimulations. The update of the secondary pool pays more attention to maintain the population diversity. On the one hand, decimal-string representation makes SRCPA more suitable for solving high-dimensional function optimiza-tion problems. Special mutation and recombination methods are adopted in SRCPA to simulate the somatic mutation and receptor edit-ing process. Compared with some existing evolutionary algorithms, such as OGA/Q, IEA, IMCPA, BGA and AEA, SRCPA is shown to be able to solve complex optimization problems, such as high-dimensional function optimizations, with better performance. On the other hand, SRCMOA combines the Pareto-strength based fitness assignment strategy, CSO and SRO to solve multi-objective optimization problems. The performance comparison between SRCMOA, NSGA-Ⅱ, SPEA, and PAES based on eight well-known test problems shows that SRCMOA has better performance in

  8. Trypanosomiasis-induced Th17-like immune responses in carp.

    Directory of Open Access Journals (Sweden)

    Carla M S Ribeiro

    Full Text Available BACKGROUND: In mammalian vertebrates, the cytokine interleukin (IL-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of the pathogen associated molecular pattern (PAMP recognized by, for example TLR2, leading to a preferential production of IL-23. IL-23 production promotes a Th17-mediated immune response characterized by the production of IL-17A/F and several chemokines, important for neutrophil recruitment and activation. For the cold blooded vertebrate common carp, only the IL-12 subunits have been described so far. METHODOLOGY/PRINCIPAL FINDINGS: Common carp is the natural host of two protozoan parasites: Trypanoplasma borreli and Trypanosoma carassii. We found that these parasites negatively affect p35 and p40a gene expression in carp. Transfection studies of HEK293 and carp macrophages show that T. carassii-derived PAMPs are agonists of carp TLR2, promoting p19 and p40c gene expression. The two protozoan parasites induce different immune responses as assessed by gene expression and histological studies. During T. carassii infections, in particular, we observed a propensity to induce p19 and p40c gene expression, suggestive of the formation of IL-23. Infections with T. borreli and T. carassii lead to an increase of IFN-γ2 gene expression whereas IL-17A/F2 gene expression was only observed during T. carasssii infections. The moderate increase in the number of splenic macrophages during T. borreli infection contrasts the marked increase in the number of splenic neutrophilic granulocytes during T. carassii infection, along with an increased gene expression of metalloproteinase-9 and chemokines. CONCLUSION/SIGNIFICANCE: This is the first study that provides evidence for a Th17-like immune response in fish in response to infection with a protozoan parasite.

  9. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  10. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.

    Science.gov (United States)

    Griffin, Diane E

    2016-10-12

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10-14 days. The first appearance of the disease is a 2-3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4⁺ and CD8⁺ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.

  11. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    G. A. Borisov

    2015-01-01

    Full Text Available The aim of the investigation was to select using cluster analysis and comparatively characterize immune disorders types in acute and chronic viral infections. Patients with acute and chronic viral infections (n = 896 were examined: 77 patients with acute viral hepatitis B, 94 — chronic viral hepatitis B, 119 — chronic hepatitis C, 531 — recurrent herpes, 75 — human papillomavirus infection. Healthy persons (n = 466 were examined as control. The research of blood lymphocyte phenotype was performed by flow cytometry. Four-color immunophenotyping were used in the following panels: Т-lymphocytes (CD3+CD19–CD16/56–CD45+, Т-helpers (CD3+CD4+CD45+, cytotoxic Т-cells (CD3+CD8+CD45+, NKcells (CD3–CD16/56+CD45+, B-lymphocytes (CD3–CD19+CD16/56+CD45+. Absolute values were obtained on a dualplatform technology using the results of haematological analysis. The immunoglobulin concentrations were determined by ELISA. The clustering was performed by a single linkage method. The number of clusters was determined on the basis of calculating the values of the Euclidean distance between the mean group values. It was found that the parameters, characterizing the functional state of the various parts of the immune system in acute and chronic viral infections, considerable diversity values. Custer analysis allows to allocate 6 immunotypes defined different states of innate and adaptive immunity: characterized by activation of the innate (increasing the number of neutrophils and NK-cells and adaptive immunity humoral response (increasing the concentration of IgG, characterized by hyperreaction of adaptive immunity (a significant increase in the concentration of IgG, discoordinated (multidirectional changes in the values of immunological parameters, immunodeficiency and unresponsiveness (did not differ from the control parameters immunotypes. It is proved that in patients with viral infections most often determined by the

  12. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  13. Anti-tumor immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  14. Genetic Immunization Elicits Antigen-Specific Protective Immune Responses and Decreases Disease Severity in Trypanosoma cruzi Infection

    OpenAIRE

    2002-01-01

    Immunity to Trypanosoma cruzi requires elicitation of humoral and cell-mediated immune responses to extracellular trypomastigotes and intracellular amastigotes. In this study, the effectiveness of the T. cruzi trans-sialidase family (ts) genes ASP-1, ASP-2, and TSA-1 as genetic vaccines was assessed. Immunization of mice with plasmids encoding ASP-1, ASP-2, or TSA-1 elicited poor antigen-specific cytotoxic-T-lymphocyte (CTL) activity and T. cruzi-specific antibody responses. Codelivery of int...

  15. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... participate in intercellular bridging. Finally, current studies suggest that CR2 may also play a role in the determination of B-cell tolerance towards self-antigens and thereby hold the key to the previously observed correlation between deficiencies of the early complement components and autoimmune disease....

  16. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  17. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge.

    Science.gov (United States)

    Catalán, Tamara P; Wozniak, Aniela; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-03-01

    Although the study of thermoregulation in insects has shown that infected animals tend to prefer higher temperatures than healthy individuals, the immune response and energetic consequences of this preference remain unknown. We examined the effect of environmental temperature and the energetic costs associated to the activation of the immune response of Tenebrio molitor larvae following a lipopolysaccharide (LPS) challenge. We measured the effect of temperature on immune parameters including phenoloxidase (PO) activity and antibacterial responses. Further as proximal and distal costs of the immune response we determined the standard metabolic rate (SMR) and the loss of body mass (m(b)), respectively. Immune response was stronger at 30°C than was at 10 or 20°C. While SMR at 10 and 20°C did not differ between immune treatments, at 30°C SMR of LPS-treated larvae was almost 25-60% higher than SMR of PBS-treated and naïve larvae. In addition, the loss in m(b) was 1.9 and 4.2 times higher in LPS-treated larvae than in PBS-treated and naïve controls. The immune responses exhibited a positive correlation with temperature and both, SMR and m(b) change, were sensitive to environmental temperature. These data suggest a significant effect of environmental temperature on the immune response and on the energetic costs of immunity.

  18. Immune responses of poultry to Newcastle disease virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  19. Dysregulation of the humoral immune response in old mice.

    Science.gov (United States)

    Zhao, K S; Wang, Y F; Guéret, R; Weksler, M E

    1995-06-01

    The increase in autoantibodies with age of both experimental animals and humans has been thought to reflect a shift in the antibody repertoire from foreign to self antigens. In mice, before immunization, the age-associated increase in antibodies reactive with a prototypic autoantigen, bromelain-treated autologous erythrocytes (BrMRBC), reflected a 3-fold increase in serum IgM and the number of IgM-secreting spleen cells in old compared with young mice. However, the percentage of the IgM-secreting spleen cell repertoire reactive with BrMRBC in old mice was actually approximately 50% that in young mice. In contrast, after immunization with sheep erythrocytes (SRBC), old mice showed a 5-fold increase in the percentage of IgM-secreting cells reactive with BrMRBC while young mice showed no significant increase. The converse is true for the percentage of IgM-secreting spleen cells in old mice specific for SBRC, which is 10% the number generated by young mice. The increased autoantibody response of old mice is not, however, linked to their poor response to the nominal antigen. Thus, immunization with phosphorylcholine (PC) conjugated keyhole limpet hemocyanin, an antigen that induces a comparable anti-PC response in old and young mice, also induced more autoantibody forming cells in old than young mice. The increased autoantibody response of old mice after immunization can be accounted for by both an increased number of Ig-secreting spleen cells as well as an increased percentage of the expressed repertoire of IgM-secreting spleen cells that react with autoantigens.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    OpenAIRE

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The i...

  1. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    Science.gov (United States)

    2005-08-01

    Emmons, Ph.D. CONTRACTING ORGANIZATION: University of Arkansas for Medical Sciences Little Rock, Arkansas 72205 REPORT DATE: August 2005 TYPE OF REPORT...SUBTITLE 5a. CONTRACT NUMBER Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors 5b. GRANT NUMBER DAMD17-01-1-0366 5c. PROGRAM...binding affinities of peptide and carbohyd- Hollingsworth, M. A. 1997. Oligosaccharides expressed on MUCl rate with I-A’ will be illuminating. However

  2. Immune response to racotumomab in a child with relapsed neuroblastoma

    Directory of Open Access Journals (Sweden)

    CLAUDIA VANESA SAMPOR

    2012-12-01

    Full Text Available Immunotherapy targeting ganglioside antigens is a powerful tool for the treatment of high risk neuroblastoma. However, only treatment with anti-GD2 antibodies has been used in clinical practice and other options may be pursued. We report the use of racotumomab, an anti-idiotype vaccine against N-glycolyl neuraminic acid (NeuGc- containing gangliosides, eliciting an immune response in a child with relapsed neuroblastoma expressing the NeuGcGM3 ganglioside.

  3. Sharing the burden: antigen transport and firebreaks in immune responses

    OpenAIRE

    Handel, Andreas; Yates, Andrew; Pilyugin, Sergei S.; Antia, Rustom

    2008-01-01

    Communication between cells is crucial for immune responses. An important means of communication during viral infections is the presentation of viral antigen on the surface of an infected cell. Recently, it has been shown that antigen can be shared between infected and uninfected cells through gap junctions, connexin-based channels, that allow the transport of small molecules. The uninfected cell receiving antigen can present it on its surface. Cells presenting viral antigen are detected and ...

  4. Immune response to Streptococcus pyogenes and the susceptibility to psoriasis.

    Science.gov (United States)

    Muto, M; Fujikura, Y; Hamamoto, Y; Ichimiya, M; Ohmura, A; Sasazuki, T; Fukumoto, T; Asagami, C

    1996-05-01

    Monoclonal antibodies directed against type 12 Group A streptococcal cell wall antigens cross-react with nuclei and cytoplasm of cells from skin and synovium from controls, uninvolved skin of psoriatics and psoriatic plaques. Patients with psoriasis had high serum titres of antibody against the M12 (C-region) streptococcal antigen compared to controls. An abnormal immune response directed against a "self' antigen after initiation by Group A streptococcal infection may play an important role in the exacerbation or development of psoriasis.

  5. INDUCTION OF ANTIVIRAL IMMUNE-RESPONSES BY IMMUNIZATION WITH RECOMBINANT-DNA ENCODED AVIAN CORONAVIRUS NUCLEOCAPSID PROTEIN

    NARCIS (Netherlands)

    BOOTS, AMH; BENAISSATROUW, BJ; HESSELINK, W; RIJKE, E; SCHRIER, C; HENSEN, EJ; Boots, Annemieke

    1992-01-01

    Immune responses to the infectious bronchitis virus (IBV) nucleocapsid protein were studied using a recombinant-DNA expression product. In mice, a lymphocyte proliferative response and a delayed-type hypersensitivity reaction to IBV were induced upon immunization with this nucleocapsid protein. Next

  6. Dyshidrotic eczema: relevance to the immune response in situ

    Directory of Open Access Journals (Sweden)

    Frank J. Pinto

    2009-08-01

    Full Text Available Context: Pompholyx (called dyshidrosis by some is one of the most common conditions and its immune response is presently poorly understood. Case report: We describe a 58 year old African American female with a clinical history of rheumatoid arthritis and type II diabetes who presented a chronic five-year, itchy vesicular/blistering rash involving her hands and feet. A lesional skin biopsy was taken for hematoxylin and eosin (H & E analysis. In addition, a multicolor direct immunofluorescence (MDIF and immunohistochemistry (IHC studies were performed. The major findings to be reported were: the H & E examination revealed spongiotic dermatitis and pompholix. IHC and MDIF studies demonstrated focally deposits of positive CD45, CD3, CD8, anti myeloperoxidase (MPO, and anti-human IgE, C3C, C3D and anti-human-fibrinogen within the epidermal spongiotic process, as well as around the blood vessels surrounding the inflammatory process especially at the sweat glands and respective ductus. The patient began mycophenolate mofetil therapy, with successful clearing of the palms and soles. Conclusion: The significance of our findings indicates a complex immunological process including complement, MPO and T-cell immune response. In addition, possibly a secondary allergic process for the presence of IgE immune response and possibly aggravation by application of other medicines. Further immunological studies on pompholyx are needed

  7. Dyshidrotic eczema: Relevance to the immune response in situ

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2009-01-01

    Full Text Available Context: Pompholyx (called dyshidrosis by some is one of the most common conditions and its immune response is presently poorly understood. Case report: We describe a 58 year old African American female with a clinical history of rheumatoid arthritis and type II diabetes who presented a chronic five-year, itchy vesicular/blistering rash involving her hands and feet. A lesional skin biopsy was taken for hematoxylin and eosin (H & E analysis. In addition, a multicolor direct immunofluorescence (MDIF and immunohistochemistry (IHC studies were performed. The major findings to be reported were: the H & E examination revealed spongiotic dermatitis and pompholix. IHC and MDIF studies demonstrated focally deposits of positive CD45, CD3, CD8, anti myeloperoxidase (MPO, and anti-human IgE, C3C, C3D and anti-human-fibrinogen within the epidermal spongiotic process, as well as around the blood vessels surrounding the inflammatory process especially at the sweat glands and respective ductus. The patient began mycophenolate mofetil therapy, with successful clearing of the palms and soles. Conclusion : The significance of our findings indicates a complex immunological process including complement, MPO and T-cell immune response. In addition, possibly a secondary allergic process for the presence of IgE immune response and possibly aggravation by application of other medicines. Further immunological studies on pompholyx are needed. (Abreu Velez AM, Pinto FJ, Howard MS.

  8. A systematic review of humoral immune responses against tumor antigens.

    Science.gov (United States)

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-10-01

    This review summarizes studies on humoral immune responses against tumor-associated antigens (TAAs) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3,619 articles on humoral immune responses and TAAs. In 145 studies, meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1, and Her2/neu. Antibodies against these TAAs were detected in 0-69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels are scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs.

  9. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  10. Immune Response to Hepatitis B Vaccine among Dental Students

    Directory of Open Access Journals (Sweden)

    HR Abdolsamadi

    2009-06-01

    Full Text Available "nBackground: Hepatitis B infection is a major public health problem worldwide. Dental students who are frequently in contact with body fluids like blood and saliva are still at high risk for HBV exposure. The aim of this study was to evaluate the effectiveness of HBV vaccine and personal factors associated with serologic evidence of the immune response."nMethods: A descriptive-cross sectional study was carried out using data from Hamadan dental school students that received just three doses of HBV vaccine. The serum sample of 86 dental clinical students were examined in order to determine hepatitis B surface antigen and the level of anti-HBs using IEMA method. Logistic regression models were used to assess the relationship of vaccine response to the variables Sex, age weight, smoking status and the time lasting from the third dose of vaccine injection."nResults: Ninety-three percent had positive anti-HBs response and 7% were non-responders. No one showed HBsAg. Vaccine response was most strongly associated with age, smoking status, sex and weight. The time lasting from the third dose was unrelated to vaccine response."nConclusion: Clinical dental students had desirable immune response to the HBV vaccine nevertheless recommended num­ber of doses, standard protocol and early vaccination are critical to adequate protection against hepatitis infection among all health care workers, in particular dental students and dentists who are often exposed to blood and other body fluids.

  11. An immunoenzymatic system to study in vitro immune responses

    Science.gov (United States)

    Macario, A. J. L.; Conway De Macario, E.; Celada, F.

    1973-01-01

    A system for studying in vitro the antibody response against a single determinant and to all the determinants of a macromolecule (β-D-Galactosidase of Escherichia coli) is described. It consists of culturing fragments of rabbit lymph nodes (either preimmunized in vivo or not) and exposing them to antigen in vitro. Antibodies secreted into the culture during several days, and up to 3 months in the secondary response, were titrated for: (a) one-hit activation AMEF, the cross-reacting material produced by a point mutant Lac- E. coli; and (b) precipitation of wild type enzyme. Titrations of activating and binding antibodies are very sensitive owing to the amplification potential inherent in the enzymatic assays, which allows several antibody measurements on minute samples. In addition antigen decay in vitro was followed and correlated with the antibody response, showing faster disappearance when the latter took place. Time-course studies of the in vitro antibody response demonstrated that precipitating titres are higher and last longer than activating antibody titres. Repeated in vitro challenges showed decay of the memory potential of in vivo primed lymph nodes, as well as the possibility of inducing an immune response in vitro using non-primed lymph nodes. The results underline the amenability of the present system to the study of in vitro primary and secondary immune responses toward restricted portions of a macromolecule. PMID:4120932

  12. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    Science.gov (United States)

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  13. Alphacoronavirus protein 7 modulates host innate immune response.

    Science.gov (United States)

    Cruz, Jazmina L G; Becares, Martina; Sola, Isabel; Oliveros, Juan Carlos; Enjuanes, Luis; Zúñiga, Sonia

    2013-09-01

    Innate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to subvert host defense mechanisms and increase their survival. In the transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts the host antiviral response by associating with the catalytic subunit of protein phosphatase 1 (PP1c). In the present work, the effect of the absence of gene 7 on the host cell, during infection, was further analyzed by transcriptomic analysis. The pattern of gene expression of cells infected with a recombinant mutant TGEV, lacking gene 7 expression (rTGEV-Δ7), was compared to that of cells infected with the parental virus (rTGEV-wt). Genes involved in the immune response, the interferon response, and inflammation were upregulated during TGEV infection in the absence of gene 7. An exacerbated innate immune response during infection with rTGEV-Δ7 virus was observed both in vitro and in vivo. An increase in macrophage recruitment and activation in lung tissues infected with rTGEV-Δ7 virus was observed compared to cells infected with the parental virus. In summary, the absence of protein 7 both in vitro and in vivo led to increased proinflammatory responses and acute tissue damage after infection. In a porcine animal model, which is immunologically similar to humans, we present a novel example of how viral proteins counteract host antiviral pathways to determine the infection outcome and pathogenesis.

  14. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  15. Vascularized composite allograft-specific characteristics of immune responses.

    Science.gov (United States)

    Issa, Fadi

    2016-06-01

    Vascularized composite allograft (VCA) transplantation, or reconstructive transplantation, has revolutionized the treatment of complex tissue and functional defects. Despite arriving during an age in which the immunology of solid organ transplant rejection has been investigated in much detail, these transplants have offered new perspectives from which to explore the immunobiology of transplantation. VCAs have a number of unique molecular, cellular, and architectural features which alter the character and intensity of the rejection response. While much is yet to be clarified, an understanding of these distinct mechanisms affords new possibilities for the control of immune responses in an effort to improve outcomes after VCA transplantation.

  16. Proteomic Mapping of the Immune Response to Gluten in Children with Autism

    Science.gov (United States)

    2015-10-01

    role of the identified proteins or the immune response to them in the pathogenesis of the disorder. 2. KEY WORDS: Autism , immune response...AWARD NUMBER: W81XWH-14-1-0293 TITLE: Proteomic Mapping of the Immune Response to Gluten in Children with Autism PRINCIPAL INVESTIGATOR...Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Proteomic Mapping of the Immune Response to Gluten in Children with Autism 5a. CONTRACT NUMBER 5b. GRANT

  17. Coordination of tolerogenic immune responses by the commensal microbiota

    Science.gov (United States)

    Round, June L.; O'Connell, Ryan M.; Mazmanian, Sarkis K.

    2011-01-01

    All mammals are born ignorant to the existence of microorganisms. Soon after birth, however, every mammal begins a lifelong association with a multitude of microbes that lay residence on the skin, mouth, vaginal mucosa and gastrointestinal (GI) tract. Approximately 500-1000 different species of microbes have highly evolved to occupy these bodily niches, with the highest density and diversity occurring within the intestine 1. These organisms play a vital role in mammalian nutrient breakdown and provide resistance to colonization by pathogenic microorganisms. More recently, however, studies have demonstrated that the microbiota can have a profound and long-lasting effect on the development of our immune system both inside and outside the intestine 2. While our immune system has evolved to recognize and eradicate foreign entities, it tolerates the symbiotic microorganisms of the intestine. How and why this tolerance occurs has remained unclear. Here we present evidence that the commensal microbes of the intestine actively induce tolerant responses from the host that coordinate healthy immune responses. Potentially, disruption of this dialogue between the host and microbe can lead to the development of autoimmune diseases such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), or Type I diabetes (TID). As a wealth of publications have focused on the impact of the microbiota on intestinal immune responses and IBD, this chapter will focus on the extra-intestinal impacts of the microbiota from development to disease and integrate the known mechanisms by which the microbiota is able to actively communicate with its host to promote health. PMID:19963349

  18. PD-1 blockade induces responses by inhibiting adaptive immune resistance

    Science.gov (United States)

    Tumeh, Paul C.; Harview, Christina L.; Yearley, Jennifer H.; Shintaku, I. Peter; Taylor, Emma J. M.; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N.; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio; Grogan, Tristan R.; Mateus, Christine; Tomasic, Gorana; Glaspy, John A.; Emerson, Ryan O.; Robins, Harlan; Pierce, Robert H.; Elashoff, David A.; Robert, Caroline; Ribas, Antoni

    2014-01-01

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance. PMID:25428505

  19. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Directory of Open Access Journals (Sweden)

    Ervin E Kara

    2014-02-01

    Full Text Available Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H1/T(H2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  20. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Science.gov (United States)

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R

    2014-02-01

    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  1. Effects of chrysotherapy on cell mediated immune response.

    Science.gov (United States)

    Lorber, A; Jackson, W H; Simon, T M

    1982-01-01

    Auranofin (AF) differs significantly from gold sodium thiomalate (GSTM) in formulation, i.e., aurous gold is stabilized by dual sulfur and phosphorus ligands, hydrophobic rather than hydrophilic characteristics, and lack of ionic charge. These attributes facilitate: oral absorption of AF, plasma membrane penetration, increase in intracellular lymphocyte gold concentration; and perhaps thereby influence lymphocyte function. AF treated subjects recorded prompt and sharp declines in mitogen-induced lymphoproliferative response (LMR) greater than 80%; suppressed response to skin testing with dinitrochlorobenezene (DNCB) in 11 of 14 subjects; and blebbing of lymphocyte membranes by scanning electron microscopy. In contrast, lymphocytes from a matched group of GSTM treated subjects recorded later onset and less suppression of LMR; normal response to DNCB skin testing; and did not manifest membrane blebbing. Accordingly, the therapeutic action of AF on immune response was observed in the 16 subjects receiving 6 mg/d of an average of 45 weeks to effect primarily cell mediated rather than humoral immune response when compared with a matched group of GSTM treated patients.

  2. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  3. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    Directory of Open Access Journals (Sweden)

    Seth M Barribeau

    Full Text Available Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming, preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.

  4. Iron as the Key Modulator of Hepcidin Expression in Erythroid Antibody-Mediated Hypoplasia

    Directory of Open Access Journals (Sweden)

    J. C. Fernandes

    2014-01-01

    Full Text Available Erythroid hypoplasia (EH is a rare complication associated with recombinant human erythropoietin (rHuEPO therapies, due to development of anti-rHuEPO antibodies; however, the underlying mechanisms remain poorly clarified. Our aim was to manage a rat model of antibody-mediated EH induced by rHuEPO and study the impact on iron metabolism and erythropoiesis. Wistar rats treated during 9 weeks with a high rHuEPO dose (200 IU developed EH, as shown by anemia, reduced erythroblasts, reticulocytopenia, and plasmatic anti-rHuEPO antibodies. Serum iron was increased and associated with mRNA overexpression of hepatic hepcidin and other iron regulatory mediators and downregulation of matriptase-2; overexpression of divalent metal transporter 1 and ferroportin was observed in duodenum and liver. Decreased EPO expression was observed in kidney and liver, while EPO receptor was overexpressed in liver. Endogenous EPO levels were normal, suggesting that anti-rHuEPO antibodies blunted EPO function. Our results suggest that anti-rHuEPO antibodies inhibit erythropoiesis causing anemia. This leads to a serum iron increase, which seems to stimulate hepcidin expression despite no evidence of inflammation, thus suggesting iron as the key modulator of hepcidin synthesis. These findings might contribute to improving new therapeutic strategies against rHuEPO resistance and/or development of antibody-mediated EH in patients under rHuEPO therapy.

  5. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  6. Simulating the Immune Response on a Distributed Parallel Computer

    Science.gov (United States)

    Castiglione, F.; Bernaschi, M.; Succi, S.

    The application of ideas and methods of statistical mechanics to problems of biological relevance is one of the most promising frontiers of theoretical and computational mathematical physics.1,2 Among others, the computer simulation of the immune system dynamics stands out as one of the prominent candidates for this type of investigations. In the recent years immunological research has been drawing increasing benefits from the resort to advanced mathematical modeling on modern computers.3,4 Among others, Cellular Automata (CA), i.e., fully discrete dynamical systems evolving according to boolean laws, appear to be extremely well suited to computer simulation of biological systems.5 A prominent example of immunological CA is represented by the Celada-Seiden automaton, that has proven capable of providing several new insights into the dynamics of the immune system response. To date, the Celada-Seiden automaton was not in a position to exploit the impressive advances of computer technology, and notably parallel processing, simply because no parallel version of this automaton had been developed yet. In this paper we fill this gap and describe a parallel version of the Celada-Seiden cellular automaton aimed at simulating the dynamic response of the immune system. Details on the parallel implementation as well as performance data on the IBM SP2 parallel platform are presented and commented on.

  7. Paramyxovirus activation and inhibition of innate immune responses.

    Science.gov (United States)

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.

  8. Effects of Morphine, Fentanyl and Tramadol on Human Immune Response

    Institute of Scientific and Technical Information of China (English)

    LIU Zhihen; GAO Feng; TIAN Yuke

    2006-01-01

    Morphine has been reported to suppress human immune response. We aimed to observe the effects of morphine, fentanyl and tramadol on NF- κ B and IL-2 from both laboratory and clinical perspective. Jurkat cells were incubated with ten times clinically relevant concentrations of morphine,fentanyl and tramadol before being stimulated with PMA. NF- κ B binding activity and IL-2 levels were measured. In the clinical study, 150 consenting patients were randomized into 3 groups according to the analgesics used in them, namely, group morphine (M), group fentanyl (F) and group tramadol (T). IL-2 was measured preoperatively and 1, 3 and 24 h after operation. Consequently, NF-κ B activation was suppressed by morphine and fentanyl but not by tramadol. IL-2 was significantly decreased by morphine and fentanyl but not by tramadol in vitro. In the PCA patients, IL-2 was decreased in group M and increased in group F postoperatively. Whereas in group T, IL-2 was unchanged 1 h after operation but was significantly elevated 3 and 24 h after operation. Our results showed that the inhibition of morphine on IL-2 was most probably related to its suppression on NF-κ B. Fentanyl had different effects on human immune response in vitro and in vivo. Tramadol may have immune enhancing effect.

  9. Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity

    Science.gov (United States)

    Park, Mee Sook; Kim, Jin Il; Park, Sehee; Lee, Ilseob

    2016-01-01

    The human immune system has evolved to fight against foreign pathogens. It plays a central role in the body's defense mechanism. However, the immune memory geared to fight off a previously recognized pathogen, tends to remember an original form of the pathogen when a variant form subsequently invades. This has been termed 'original antigenic sin'. This adverse immunological effect can alter vaccine effectiveness and sometimes cause enhanced pathogenicity or additional inflammatory responses, according to the type of pathogen and the circumstances of infection. Here we aim to give a simplified conceptual understanding of virus infection and original antigenic sin by comparing and contrasting the two examples of recurring infections such as influenza and dengue viruses in humans. PMID:27799871

  10. Seroprevalence of Antibody-Mediated, Complement-Dependent Opsonophagocytic Activity against Neisseria meningitidis Serogroup B in England.

    Science.gov (United States)

    Humphries, Holly E; Brookes, Charlotte; Allen, Lauren; Kuisma, Eeva; Gorringe, Andrew; Taylor, Stephen

    2015-05-01

    The correlate of protection for the licensure of meningococcal vaccines is serum bactericidal activity. However, evidence indicates that a complex situation and other mechanisms, such as antibody-mediated, complement-dependent opsonophagocytosis (OP), may play a role in protection and should be investigated in order to understand immunity to this disease. In this study, a high-throughput flow cytometric opsonophagocytic assay (OPA) was optimized. The assay measures the presence of killed fluorescently labeled Neisseria meningitidis within human granulocytes (differentiated HL60 cells) by flow cytometry, using IgG-depleted pooled human plasma as an exogenous source of complement. This method was found to be reliable and correlated with the results of an opsonophagocytic killing assay. The OPA was used to measure OP activity in 1,878 serum samples from individuals ranging from 0 to 99 years of age against N. meningitidis strain NZ98/254 (B:4:P1.7-2,4). The levels of OP activity in individual serum samples varied greatly. OP activity showed an initial peak in the 6- to 12-month age group corresponding to a peak in disease incidence. The OP activity dropped in childhood until the late teenage years, although there was still a higher percentage of individuals with OP activity than with protective bactericidal antibody titers. OP activity reached a peak in the 30- to 39-year age group and then declined. This later peak in OP activity did not coincide with the young adults in whom peak serum bactericidal activity and disease incidence occurred. The demonstration of OP activity when disease incidence is low and when protective bactericidal antibody titers are not detected may indicate a role for OP in protection from meningococcal disease in these age groups.

  11. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    Science.gov (United States)

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  12. Immune Response to Sipuleucel-T in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    David I. Quinn

    2012-04-01

    Full Text Available Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients’ own antigen presenting cells (APCs to prostatic acid phosphatase (PAP fused with granulocyte-macrophage colony stimulating factor (GM-CSF and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The

  13. Immune response to sipuleucel-T in prostate cancer.

    Science.gov (United States)

    Thara, Eddie; Dorff, Tanya B; Averia-Suboc, Monica; Luther, Michael; Reed, Mary E; Pinski, Jacek K; Quinn, David I

    2012-04-18

    Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients' own antigen presenting cells (APCs) to prostatic acid phosphatase (PAP) fused with granulocyte-macrophage colony stimulating factor (GM-CSF) and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The optimal timing for

  14. The Immune Response Induced by Hepatitis B Virus Principal Antigens

    Institute of Scientific and Technical Information of China (English)

    Chien-Fu Huang; Shih-Shen Lin; Yung-Chyuan Ho; Fong-Ling Chen; Chi-Chiang Yang

    2006-01-01

    Hepatitis B virus (HBV) infection occurs primarily in hepatocytes in the liver with release of infectious virions and non-infectious empty surface antigen particles into the bloodstream. HBV replication is non-cytopathic. Transient infections run a course of several months, and chronic infections are often life-long. Chronic infections can lead to liver failure with cirrhosis and hepatocellular carcinoma. It is generally accepted that neutralizing anti-HBs antibodies plays a key role in recovery from HBV infection by containing the spread of infection in the infected host and facilitating the removal and destruction of viral particles. However, the immune response initiated by the T-cell response to viral antigens is also important for viral clearance and disease pathogenesis in HBV infection.The three structural forms of the viral proteins, the HBsAg, the particulate HBcAg, and the nonparticulate HBeAg,may preferentially elicit different Th cell subsets. The different IgG subclass profiles of anti-HBs, anti-HBc, and anti-HBe in different HBV infection status were revealed. Moreover, the different IgG subclass profiles in chronic carriers did not change with different ALT and AST levels and may reflect the difference between stimulating antigens, immune response, and the stages of viral disease and provide the basis for the use of vaccines and prophylactic treatments for individuals at high risk of human HBV infection. This review elucidates the detailed understanding of the immune responses induced during transient and persistent infection, and the development of immunotherapy and immunodiagnosis in patients with HBV infection, and possible means of reducing the liver damage.

  15. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection

    Science.gov (United States)

    Fu, Yan; Chryssafidis, Andreas L.; Browne, John A.; O'Sullivan, Jack; McGettigan, Paul A.; Mulcahy, Grace

    2016-01-01

    Background Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts’ immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines. Methodology/principal findings This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC) response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS), respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18) or activated (e.g. miR155-5p) in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including ‘Transforming Growth Factor Beta (TGFβ) signaling’, ‘Production of Nitric Oxide in Macrophages’, ‘Toll-like Receptor (TLRs) Signaling’, ‘Death Receptor Signaling’ and ‘IL17 Signaling’. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed. Significance In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq). This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines. PMID:27661612

  16. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi).

    Science.gov (United States)

    King, Paul T; Sharma, Roleen

    2015-01-01

    Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.

  17. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  18. Immune Responses and Histopathological Changes in Rabbits Immunized with Inactivated SARS Coronavirus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To evaluate the immunogenicity of inactivated SARS coronavirus (SARS-CoV), three groups of rabbits were immunized three times at 2-week intervals with inactivated vaccine + adjuvant, adjuvant,and normal saline respectively. Eight batchs of serum were sampled from the auricular vein at day 7 to day 51, and specific IgG antibody titers and neutralizing antibody titers were detected by indirect ELISA and micro-cytopathic effect neutralizing test. Antibody specificity was identified by proteinchip assay.Histopathological changes were detected by H&E staining. The results showed that, rabbits in the experimental group immunized with inactivated SARS-CoV all generated specific IgG antibodies with neutralizing activity, which suggested the inactivated SARS-CoV could preserve its antigenicity well and elicit an effective humoral immune responses. The peak titer value of specific IgG antibody and neutralizing antibody reached 1:40960 and 1:2560 respectively. In the experimental group, no obvious histopathological changes was detected in the H&E stained slides of heart, spleen, kidney and testis samples, but the livers had slight histopathological changes, and the lungs presented remarkable histopathological changes. These findings are of importance for SARS-CoV inactivated vaccine development.

  19. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors.

    Science.gov (United States)

    Carlton, Elizabeth D; Demas, Gregory E; French, Susannah S

    2012-08-01

    Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems. The metabolic hormone leptin appears to be mediating trade-offs between the immune system and other physiological systems through its actions on immune cells and the brain. Here we review the evidence in both mammalian and non-mammalian vertebrates that suggests leptin is involved in regulating immune responses, inflammation, and sickness behaviors. Leptin has also been implicated in the regulation of seasonal immune responses, including sickness; however, the precise physiological mechanisms remain unclear. Thus, we discuss recent data in support of leptin as a mediator of seasonal sickness responses and provide a theoretical model that outlines how seasonal cues, leptin, and proinflammatory cytokines may interact to coordinate seasonal immune and sickness responses.

  20. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  1. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    OpenAIRE

    Kotwal, Girish J.; Steven Hatch; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a funda...

  2. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  3. Analysis of immune responses against H pylori in rabbits

    Institute of Scientific and Technical Information of China (English)

    Khademul Islam; Ibrahim Khalil; Chowdhury Rafiqul Ahsan; Mahmuda Yasmin; Jamalun Nessa

    2007-01-01

    AIM: To investigate the immunogenicity of H pylori proteins, to evaluate the production rate of anti H pylori IgG antibodies in relation to time and to demonstrate the fidelity of newly optimized in-house enzymelinked immunosorbent assay (ELISA) technique as an alternative for H pylori infection assay.METHODS: In the present study, 100 μg of formalinfixed H pylori whole cell antigens was injected into an experimental animal (New Zealand white female rabbit) intramuscularly on d 0, 16, 27 and 36. The first two doses were injected with adjuvants. On d 0,a serum sample was collected from the rabbit before immunization and this pre-immunized serum was used as a negative control for the whole study. To evaluate the immunogenic responses of the injected antigen,serum samples were collected from the rabbit at regular intervals up to d 42. The sera were analyzed using inhouse ELISA and Western blot techniques.RESULTS: The production of anti H pylori IgG antibodies in the rabbit in response to the injected antigen increased almost exponentially up to d 14 and after that it was maintained at the same level until the last day (d 42). By analyzing the immune profiles of immunized sera, 11 proteins were identified to be immunogenic,among them 2 (approximately 100 kDa and 85 kDa)were most prominent.CONCLUSION: Analysis of the immune responses against pathogenic microorganisms like H pylori is necessary for the development of various diagnostic and preventive approaches. The results of this experiment reveal that the formalin-fixed H pylori whole cell antigens injected into the rabbit are highly immunogenic. These prominent proteins (approximately 100 kDa and 85 kDa)might have higher immunogenic effects among humans infected with H pylori and some of these immunogenic proteins can be included in diagnostic approaches based on serology and also for vaccine formulation. The inhouse ELISA is a promising alternative compared to invasive techniques.

  4. Protective Immunity to Hepatitis B and Streptococcus Pneumoniae in Active Duty Women Versus Men: Prevalence and Responses to Preventive Immunization

    Science.gov (United States)

    1996-04-01

    Protective Immunity to Hepatitis B and Streptococcus Pneumoniae in Active Duty Women Versus Men: Prevalence and Responses to Preventive Immunization...April 1996 I Final (1 Dec 94 - 31 Dec 95) 4. TITLE AND SUBTITLE Prot~ecti•ve Inmnunity¥ to Hepat~it~is B and 6. FUNDING NUMBERS Streptococcus Pneumoniae in...pneumococcal vaccine is not included in the standard vaccinations for active duty military. The prevalence of immunity to pathogenic Streptococcus pneumoniae in

  5. INFLUENCE OF Breg AND IL-10 UPON HUMORAL IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    M. V. Gavrilova

    2016-01-01

    Full Text Available B regulatory cells (Bregs are shown to downregulate autoimmune and inflammation processes. Their modifying effects depend on IL-10 secretion. A role of Bregs in development of humoral immune response was not investigated. Influence of Bregs and IL-10 upon in vitro response of murine B1 and B2 cells to T-dependent and T-independent antigens was studied in a model system. A water-soluble sheep erythrocyte antigen was used as a T-dependent antigen, whereas LPS was applied as a type 1 T-independent antigen, and polyvinylpirrolidone and alpha(1→3dextran were added as type 2 T-independent antigens. В1and B2 lymphocytes were isolated from, respectively, peritoneal cavity and spleen of CBA mice. The cells were cultured in RPMI1640 medium with 10% of FCS supplemented with appropriate antigens and IL-10. The numbers of antibody- and total Ig-forming cells were determined by ELISPOT method.The erythrocyte antigen induced an increase of antibody- and total Ig-forming cell numbers in cultured B1 and B2 cell populations. IL-10 addition caused reduction of antibody- and total Ig-forming cells by 27%. Similarly, IL-10 caused a drop in antibody- and total Ig-forming cells in LPS-stimulated B2 cell cultures by 75%, as well as 50 per cent decrease in numbers of antibody-forming cells in B-1 cell cultures when induced by the type 2 T-independent antigens.To assess functional activity of Bregs, the cells were isolated from peritoneal cavity and spleen of CBA mice. Total yields of Bregs were 20-fold increased upon activation of B cells with LPS, ionomycin and phorbol ester (from 4% to 96%. IgM was the main immunoglobulin isotype secreted by the Bregs. 96% of activated Bregs produced IL-10. About 12% of the cells were shown to produce immunoglobulins. This finding suggests that some of Bregs synthesize both IL-10 and immunoglobulins.To study distant effect of Bregs upon immune response, the splenocyte culture of xid CBA/N mice were tested in Transwells with

  6. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    Directory of Open Access Journals (Sweden)

    Manuel Mai

    Full Text Available Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  7. Yersinia type Ⅲ effectors perturb host innate immune responses

    Institute of Scientific and Technical Information of China (English)

    Khavong Pha; Lorena Navarro

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system(T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp.(Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gramnegative bacteria that share in common a 70 kb virulence plasmid which encodes the T3 SS. Translocation of the Yersinia effector proteins(YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector

  8. Mast cells and basophils in cutaneous immune responses.

    Science.gov (United States)

    Otsuka, A; Kabashima, K

    2015-02-01

    Mast cells and basophils share some functions in common and are generally associated with T helper 2 (Th2) immune responses, but taking basophils as surrogate cells for mast cell research or vice versa for several decades is problematic. Thus far, their in vitro functions have been well studied, but their in vivo functions remained poorly understood. New research tools for their functional analysis in vivo have revealed previously unrecognized roles for mast cells and basophils in several skin disorders. Newly developed mast cell-deficient mice provided evidence that mast cells initiate contact hypersensitivity via activating dendritic cells. In addition, studies using basophil-deficient mice have revealed that basophils were responsible for cutaneous Th2 skewing to haptens and peptide antigens but not to protein antigens. Moreover, human basophils infiltrate different skin lesions and have been implicated in the pathogenesis of skin diseases ranging from atopic dermatitis to autoimmune diseases. In this review, we will discuss the recent advances related to mast cells and basophils in human and murine cutaneous immune responses.

  9. Immunological aspects of the immune response induced by mosquito allergens.

    Science.gov (United States)

    Cantillo, José Fernando; Fernández-Caldas, Enrique; Puerta, Leonardo

    2014-01-01

    Allergies caused by mosquito bites may produce local or systemic reactions. The inhalation of mosquito allergens may also cause asthma and/or allergic rhinoconjunctivitis in sensitized individuals. The mechanisms implicated in the development of these immune responses involve IgE antibodies, different subtypes of IgG and proinflammatory cytokines as well as basophils, eosinophils and mast cells. Several allergenic components have been identified in the saliva and bodies of mosquitoes and some of these are present in different mosquito species. The most common species implicated in allergic reactions belong to the genera Aedes, Culex and Anopheles. Several Aedes aegypti allergens have been cloned and sequenced. The recombinant molecules show IgE reactivity similar to that of the native allergens, making them good candidates for the diagnosis of mosquito allergies. Allergen-specific immunotherapy with mosquito extracts induces a protective response characterized by a decreased production of IgE antibodies, increased IgG levels, a reduction in the severity of cutaneous and respiratory symptoms and the need for medication. The aims of this review are to summarize the progress made in the characterization of mosquito allergens and discuss the types of immune responses induced by mosquito bites and the inhalation of mosquito allergens in atopic individuals.

  10. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies

    Science.gov (United States)

    Vlasova, Anastasia N.; Amimo, Joshua O.; Saif, Linda J.

    2017-01-01

    Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans. PMID:28335454

  11. Immune response of shrimp (Penaeus monodon) against Vibrios furnissii pathogen

    Institute of Scientific and Technical Information of China (English)

    Kumaran Subramanian; Deivasigamani Balaraman; Rajasekar Thirunavukarasu; Suresh Gopal; Pugazhvendan Sampath Renuka; Alagappan Kumarappan

    2014-01-01

    Objective: To analyse experimental infection and immune system of shrimp (Penaeus monodon) against Vibrios furnissii (V. furnissii). Methods: Experimental animals were collected and acclimatized by maintaining specific temperature, pH and salinity to avoid mortality. Shrimps were experimentally infected with V. furnissii and their immune responses were monitored. After the infection all the shrimps were monitored for any symptoms, death rate in 0, 12, 24, 36, 48 h. Then haemolymph were collected and tetrahydrocannabinol, phenol oxidase, nitroblue tetrazolium and lysozyme were monitored in every 12 h at the interval of 48 h. Results: Shrimps infected by live V. furnissii had showed gradual increase in tetrahydrocannabinol, phenol oxidase activity, nitro-blue-tetrazolium and lysozyme activity comparing with the killed and control.Conclusions:The live V. furnissii shows infection in experimental shrimps comparing with killed V. furnissii. So the V. furnissii in nature cause the infection in shrimp Penaeus monodon immune system. This report could be applied to control of the infection in shrimp hatchery.

  12. Feliform carnivores have a distinguished constitutive innate immune response.

    Science.gov (United States)

    Heinrich, Sonja K; Wachter, Bettina; Aschenborn, Ortwin H K; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á

    2016-05-15

    Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  13. [Immune response induced by phosphofructokinase from E. histolytica in hamsters].

    Science.gov (United States)

    Jiménez Cardoso, J M; Jiménez, E; Kumate, J

    1991-01-01

    The enzymatic activity of inorganic pyrophosphate (PPi) dependent phosphofructokinase became manifest in the supernatant obtained by centrifugation in a homogenate of E. histolytica strain HMI-IMSS at 700,000 g. Partial purification of the enzyme was achieved by column chromatography with Ultrogel AcA-34. Ten protein elution spikes were obtained: five showed enzymatic activity. Elution spikes I and II attained the highest values of specific enzymatic activity 6.45 and 6.98 U/mg of protein, respectively. Next were spikes X and III with similar values 2.55 and 2.63 U/mg of protein, and spike IV presented the lowest value of 0.86 U/mg of protein. The five spikes were used to immunize hamsters which were challenged intrahepatically, four weeks later, with 3 x 10(5) trophozoites of E. histolytica. A control group of animals not immunized underwent intrahepatic challenge with the same number of amebae. The proteins with enzymatic activity contained in elution spikes I and II conferred immunologic protection in 100% of the animals, while elution spikes X and III were protective in 50 to 63%, and spike IV gave the lowest value of 37%. It can be assumed that there is an antienzyme antibody responsible for the absence of hepatic abscesses in the immunized hamsters.

  14. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  15. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  16. Importance of immune response genes in hemophilia A

    Directory of Open Access Journals (Sweden)

    Josiane Bazzo de Alencar

    2013-01-01

    Full Text Available Hemophilia A is a disease caused by a deficiency of coagulation factor VIII resulting from genetic inheritance linked to chromosome X. One treatment option is the administration of plasma or recombinant FVIII. However, some patients develop inhibitors or antibodies against this factor. Inhibitors are alloantibodies that bind to the epitope of factor VIII causing it to be recognized by the immune system as a foreign peptide. This is the most serious complication in hemophilia patients in respect to replacement therapy. Some studies have suggested that genetic factors influence the development of factor VIII inhibitors such as ethnicity, family history, mutations in the factor VIII gene and in genes of the immune system. The aim of this study was to conduct a literature review to assess the influence of genetic factors of immune response genes, especially genes of the major histocompatibility complex and cytokines, which may be related to the development of factor VIII inhibitors in hemophilia A patients. Understanding these risk factors will help to determine future differential treatment in the control and prevention of the development of inhibitors.

  17. Ribavirin stimulates the immune response of Atlantic salmon.

    Science.gov (United States)

    Rivas-Aravena, A; Guajardo, S; Valenzuela, B; Cartagena, J; Imarai, M I; Spencer, E; Sandino, A M

    2015-03-15

    Ribavirin is a synthetic nucleotide analog capable of inhibiting or even preventing some viral infections in mammals and also in fish. It has been seen by others that ribavirin by itself is able to stimulate the immune system of mammals, causing a differentiation of T-cells to T helper 1 cells (Th)-1. In this work, we evaluated the immune effect of ribavirin in vitro on kidney cells from Atlantic salmon and in vivo by oral administration of ribavirin to Atlantic salmon. For this purpose, the transcripts of immune molecules Tbet, GATA3, CD8, CD4, IFNα, IFNγ, IL-4/13, IL-10, IL-12, IL-15 and TGF-B were quantified. The results show that ribavirin administered orally in food to Atlantic salmon increased IFNγ and CD4 transcripts in the in vivo assays and, in addition, increased IL-12, IL-15 and CD8 in the in vitro analyses, indicating that the treatment stimulates a Th1 type response in salmon.

  18. Immune response in the eye following epileptic seizures

    OpenAIRE

    Ahl, Matilda; Avdic, Una; Skoug, Cecilia; Ali, Idrish; Chugh, Deepti; Johansson, Ulrica Englund; Christine T Ekdahl

    2016-01-01

    Background: Epileptic seizures are associated with an immune response in the brain. However, it is not known whether it can extend to remote areas of the brain, such as the eyes. Hence, we investigated whether epileptic seizures induce inflammation in the retina.Methods: Adult rats underwent electrically induced temporal status epilepticus, and the eyes were studied 6 h, 1, and 7 weeks later with biochemical and immunohistochemical analyses. An additional group of animals received CX3CR1 anti...

  19. Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis.

    Directory of Open Access Journals (Sweden)

    Anil A Panackal

    2015-05-01

    Full Text Available The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS disease to 1 identify mechanisms of susceptibility as well as 2 understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune

  20. Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis.

    Science.gov (United States)

    Panackal, Anil A; Wuest, Simone C; Lin, Yen-Chih; Wu, Tianxia; Zhang, Nannan; Kosa, Peter; Komori, Mika; Blake, Andrew; Browne, Sarah K; Rosen, Lindsey B; Hagen, Ferry; Meis, Jacques; Levitz, Stuart M; Quezado, Martha; Hammoud, Dima; Bennett, John E; Bielekova, Bibi; Williamson, Peter R

    2015-05-01

    The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS) disease to 1) identify mechanisms of susceptibility as well as 2) understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF) immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune-mediated host cell

  1. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization

    Science.gov (United States)

    Crichton, Michael Lawrence; Muller, David Alexander; Depelsenaire, Alexandra Christina Isobel; Pearson, Frances Elizabeth; Wei, Jonathan; Coffey, Jacob; Zhang, Jin; Fernando, Germain J. P.; Kendall, Mark Anthony Fernance

    2016-06-01

    Micro-device use for vaccination has grown in the past decade, with the promise of ease-of-use, painless application, stable solid formulations and greater immune response generation. However, the designs of the highly immunogenic devices (e.g. the gene gun, Nanopatch or laser adjuvantation) require significant energy to enter the skin (30–90 mJ). Within this study, we explore a way to more effectively use energy for skin penetration and vaccination. These modifications change the Nanopatch projections from cylindrical/conical shapes with a density of 20,000 per cm2 to flat-shaped protrusions at 8,000 per cm2, whilst maintaining the surface area and volume that is placed within the skin. We show that this design results in more efficient surface crack initiations, allowing the energy to be more efficiently be deployed through the projections into the skin, with a significant overall increase in penetration depth (50%). Furthermore, we measured a significant increase in localized skin cell death (>2 fold), and resultant infiltrate of cells (monocytes and neutrophils). Using a commercial seasonal trivalent human influenza vaccine (Fluvax 2014), our new patch design resulted in an immune response equivalent to intramuscular injection with approximately 1000 fold less dose, while also being a practical device conceptually suited to widespread vaccination.

  2. Compartmentalized Immune Response in Leishmaniasis: Changing Patterns throughout the Disease

    Science.gov (United States)

    Carrillo, Eugenia; Martorell, Susanna; Todolí, Felicitat; Martínez-Flórez, Alba; Urniza, Alicia; Moreno, Javier

    2016-01-01

    Visceral leishmaniasis (VL) is characterized by loss of T-cell responsiveness and absence of Leishmania-specific IFN-γ production by peripheral blood mononuclear cells. However, the expressions of IFN-γ and TNF-α are up-regulated in the tissues and plasma of VL patients. There is a paucity of information regarding the cytokine profile expressed by different target tissues in the same individual and the changes it undergoes throughout the course of infection. In this work we evaluated IFN-γ, TNF-α, IL-10, and TGF-β mRNA expression using real-time RT-PCR in 5 target tissues at 6 months and 16 months post-infection (PI) in a canine experimental model which mimics many aspects of human VL. The spleen and liver of Leishmania infantum experimentally-infected dogs elicited a pro- and anti- inflammatory response and high parasite density at 6 and 16 months PI. The popliteal lymph node, however, showed an up-regulation of IFN-γ cytokin at commencement of the study and was at the chronic phase when the IL-10 and TGF-β expression appeared. In spite of skin parasite invasion, local cytokine response was absent at 6 months PI. Parasite growth and onset of clinical disease both correlated with dermal up-regulation of all the studied cytokines. Our VL model suggests that central target organs, such as the spleen and liver, present a mixed cytokine immune response early on infection. In contrast, an anti-inflammatory/regulatory immune response in peripheral tissues is activated in the later chronic-patent stages of the disease. PMID:27171409

  3. Compartmentalized Immune Response in Leishmaniasis: Changing Patterns throughout the Disease.

    Directory of Open Access Journals (Sweden)

    Alhelí Rodríguez-Cortés

    Full Text Available Visceral leishmaniasis (VL is characterized by loss of T-cell responsiveness and absence of Leishmania-specific IFN-γ production by peripheral blood mononuclear cells. However, the expressions of IFN-γ and TNF-α are up-regulated in the tissues and plasma of VL patients. There is a paucity of information regarding the cytokine profile expressed by different target tissues in the same individual and the changes it undergoes throughout the course of infection. In this work we evaluated IFN-γ, TNF-α, IL-10, and TGF-β mRNA expression using real-time RT-PCR in 5 target tissues at 6 months and 16 months post-infection (PI in a canine experimental model which mimics many aspects of human VL. The spleen and liver of Leishmania infantum experimentally-infected dogs elicited a pro- and anti- inflammatory response and high parasite density at 6 and 16 months PI. The popliteal lymph node, however, showed an up-regulation of IFN-γ cytokin at commencement of the study and was at the chronic phase when the IL-10 and TGF-β expression appeared. In spite of skin parasite invasion, local cytokine response was absent at 6 months PI. Parasite growth and onset of clinical disease both correlated with dermal up-regulation of all the studied cytokines. Our VL model suggests that central target organs, such as the spleen and liver, present a mixed cytokine immune response early on infection. In contrast, an anti-inflammatory/regulatory immune response in peripheral tissues is activated in the later chronic-patent stages of the disease.

  4. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The ensueing immune response

  5. Immune Dysfunction in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Ishraga Elamin

    2013-01-01

    Full Text Available The association between immunity and neurodevelopmental disorders has been extensively investigated in autism, suggesting a potential involvement of both cellular and humoral immunity in the establishment of synaptic connectivity modulation during development. A similar link has been proposed also for Tourette syndrome (TS, a complex, multifactorial disorder, in which the interplay between genetic, environmental, hormonal and immunological factors might be relevant. Lymphocyte subpopulation analysis in TS suggests a possible systemic activation of several T- and B-cell subtypes, whereas the observed decreased numbers of T regulatory lymphocytes might predispose to autoimmunity. Genes related to both cell- and antibody-mediated immune responses may be over-expressed at specific ages in youngsters with TS. Data from cytokine measurements and transcriptomics profiles in TS patients are coherent with the systemic immune activation detected by studies on lymphocyte subpopulations. Moreover, TS patients have exhibited IgG3 and IgA dysgammaglobulinemia, which might predispose to recurrent infections and autoimmunity. To date, the association between TS and autoantibodies has not been demonstrated. Interestingly, however, there is a higher degree of maternal family history of autoimmune diseases among TS patients. Finally, TS patients could be prone to allergic illnesses (asthma, atopic dermatitis, rhinitis, conjunctivitis, but more work is needed in this area.

  6. Coordinate actions of innate immune responses oppose those of the adaptive immune system during Salmonella infection of mice.

    Science.gov (United States)

    Hotson, Andrew N; Gopinath, Smita; Nicolau, Monica; Khasanova, Anna; Finck, Rachel; Monack, Denise; Nolan, Garry P

    2016-01-12

    The immune system enacts a coordinated response when faced with complex environmental and pathogenic perturbations. We used the heterogeneous responses of mice to persistent Salmonella infection to model system-wide coordination of the immune response to bacterial burden. We hypothesized that the variability in outcomes of bacterial growth and immune response across genetically identical mice could be used to identify immune elements that serve as integrators enabling co-regulation and interconnectedness of the innate and adaptive immune systems. Correlation analysis of immune response variation to Salmonella infection linked bacterial load with at least four discrete, interacting functional immune response "cassettes." One of these, the innate cassette, in the chronically infected mice included features of the innate immune system, systemic neutrophilia, and high serum concentrations of the proinflammatory cytokine interleukin-6. Compared with mice with a moderate bacterial load, mice with the highest bacterial burden exhibited high activity of this innate cassette, which was associated with a dampened activity of the adaptive T cell cassette-with fewer plasma cells and CD4(+) T helper 1 cells and increased numbers of regulatory T cells-and with a dampened activity of the cytokine signaling cassette. System-wide manipulation of neutrophil numbers revealed that neutrophils regulated signal transducer and activator of transcription (STAT) signaling in B cells during infection. Thus, a network-level approach demonstrated unappreciated interconnections that balanced innate and adaptive immune responses during the dynamic course of disease and identified signals associated with pathogen transmission status, as well as a regulatory role for neutrophils in cytokine signaling.

  7. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice.

    Science.gov (United States)

    Billerbeck, Eva; Horwitz, Joshua A; Labitt, Rachael N; Donovan, Bridget M; Vega, Kevin; Budell, William C; Koo, Gloria C; Rice, Charles M; Ploss, Alexander

    2013-08-15

    Humanized mice have emerged as a promising model to study human immunity in vivo. Although they are susceptible to many pathogens exhibiting an almost exclusive human tropism, human immune responses to infection remain functionally impaired. It has recently been demonstrated that the expression of HLA molecules improves human immunity to lymphotropic virus infections in humanized mice. However, little is known about the extent of functional human immune responses in nonlymphoid tissues, such as in the liver, and the role of HLA expression in this context. Therefore, we analyzed human antiviral immunity in humanized mice during a hepatotropic adenovirus infection. We compared immune responses of conventional humanized NOD SCID IL-2Rγ-deficient (NSG) mice to those of a novel NOD SCID IL-2Rγ-deficient strain transgenic for both HLA-A*0201 and a chimeric HLA-DR*0101 molecule. Using a firefly luciferase-expressing adenovirus and in vivo bioluminescence imaging, we demonstrate a human T cell-dependent partial clearance of adenovirus-infected cells from the liver of HLA-transgenic humanized mice. This correlated with liver infiltration and activation of T cells, as well as the detection of Ag-specific humoral and cellular immune responses. When infected with a hepatitis C virus NS3-expressing adenovirus, HLA-transgenic humanized mice mounted an HLA-A*0201-restricted hepatitis C virus NS3-specific CD8(+) T cell response. In conclusion, our study provides evidence for the generation of partial functional antiviral immune responses against a hepatotropic pathogen in humanized HLA-transgenic mice. The adenovirus reporter system used in our study may serve as simple in vivo method to evaluate future strategies for improving human intrahepatic immune responses in humanized mice.

  8. Cross-suppression of specific immune responses after oral tolerance

    Directory of Open Access Journals (Sweden)

    Nelson M. Vaz

    1981-03-01

    Full Text Available Adult normal inbred mice rendered tolerant to OVA by previous oral exposure do not respond to intraperitonela immunization with DNP-OVA in adjuvant. These tolerant mice also form less DNP-specific antibodies to DNP-KLH when immunized with mixtures of DNP-KLH and DNP-OVA, or less HGG-specific antibodies when immunized with cross-linked conjugates of OVA and HGG. These same procedures increased DNP-specific or HGG-specific responses in non-tolerant control mice. The cross-supperssion was ineffective, however, to inhibit already ongoing antibody responses.Camundongos adultos normais tornados imunologicamente tolerantes a ovoalbumina (OVA por exposição oral não formam anticorpos antidinitrofenil (anti-DNP quando imunizados com DNP-OVA, mas respondem normalmente à DNP-hemocianina (DNO-KLH. Entretanto, a adição de DNP-OVA à injeção de DNP-KLH reduz a formação de anticorpos anti-DNP em animais tolerantes a OVA, mas não em animais normais. Similarmente animais tolerantes à OVA formam menos anticorpos antiglobulina humana (HGG quando imunizados com agregados (por glutaraldeído de OVA e HGG. A tolerância oral e, portanto, capaz de inibir a indução de respostas imunes por um esquema de supressão-cruzada. Esse esquema, no entanto, não foi capaz de inibir respostas imunes já iniciadas.

  9. The responses of immune cells to iron oxide nanoparticles.

    Science.gov (United States)

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications.

  10. Morphologic and immunohistochemical findings in antibody-mediated rejection of the cardiac allograft.

    Science.gov (United States)

    Fishbein, Gregory A; Fishbein, Michael C

    2012-12-01

    The recognition and acceptance of the entity of antibody-mediated rejection (AMR) of solid organs has been slow to develop. Greatest acceptance and most information relates to cardiac transplantation. AMR is thought to represent antibody/complement mediated injury to the microvasculature of the graft that can result in allograft dysfunction, allograft loss, accelerated graft vasculopathy, and increased mortality. The morphologic hallmark is microvascular injury with immunoglobulin and complement deposition in capillaries, accumulation of intravascular macrophages, and in more severe cases, microvascular hemorrhage and thrombosis, with inflammation and edema of the affected organ. Understanding of the pathogenesis of AMR, criteria and methods for diagnosis, and treatment strategies are still in evolution, and will be addressed in this review.

  11. INTRAVENOUS IMMUNOGLOBULIN ADMINISTRATION FOR DESENSITIZATION BEFORE RENAL TRANSPLANTATION AND MANAGING ANTIBODY-MEDIATED REJECTION

    Directory of Open Access Journals (Sweden)

    A. I. Sushkov

    2011-01-01

    Full Text Available Much attention has been placed recently in transplantation in highly HLA-sensitized patients. In attempts to remove these antibodies and enable successful renal transplantation, several approaches have been developed. Intravenous immunoglobulin (IVIG was found to be effective in the treatment of autoimmune and inflammatory disorders (e. g. Kawasaki disease, Guillain-Barre syndrome. Recently, a beneficial effect of IVIG on the reduc- tion of anti-HLA antibodies was described. The anti-inflammatory effect of IVIG provides hopeful opportunities in antibody-mediated rejection (AMR management. There are several protocols of IVIG administration for pre-transplant desensitization and AMR treatment: high-dose IVIG, low-dose IVIG + plasmapheresis, IVIG + plasmapheresis + rituximab. These advancements have enabled transplantation in patients previously considered untransplantable and in concert with new diagnostic techniques has resulted in new approaches to management of AMR. 

  12. The immune response in cattle infected with Tritrichomonas foetus.

    Science.gov (United States)

    Soto, P; Parma, A E

    1989-10-01

    Holando-Argentina calves (males and females) were experimentally infected with Tritrichomonas foetus var. Belfast (T. foetus) by introducing 10(7) protozoa into the preputial and vaginal cavities, in order to analyse the course of the immune response to infection. Samples of serum, vaginal mucus and preputial secretion were taken periodically and assayed by means of microagglutination of living protozoa. The serum antibody titre, which averaged 32 before infection and was equivalent to titres in a non-infected group, increased to 512 in the heifers 11 weeks later and to 128 in the bulls 4 months post-infection. Agglutinating antibodies were not detected in the preputial cavity, but heifers showed antibodies in the vaginal mucus and became trichomoniasis free after 4 months. Conversely, genital secretions from the bulls gave rise to positive cultures during the whole period of experimentation. The intradermal sensitivity was checked using a soluble antigen from T. foetus. The diameter of the papula increased up to three times in heifers, while in bulls the results were no different than those from the non-infected group. Serum antibodies were of the IgG2 subclass, while those isolated from vaginal mucus were characterized as IgG1, an opsonizing antibody. Heifers were refractory to challenge infection after 1 year. The poor immune response in bulls is consistent with their role as carriers of T. foetus.

  13. Immune Responses Following Mouse Peripheral Nerve Xenotransplantation in Rats

    Directory of Open Access Journals (Sweden)

    Lai-Jin Lu

    2009-01-01

    Full Text Available Xenotransplantation offers a potentially unlimited source for tissues and organs for transplantation, but the strong xenoimmune responses pose a major obstacle to its application in the clinic. In this study, we investigate the rejection of mouse peripheral nerve xenografts in rats. Severe intragraft mononuclear cell infiltration, graft distension, and necrosis were detected in the recipients as early as 2 weeks after mouse nerve xenotransplantation. The number of axons in xenografts reduced progressively and became almost undetectable at week 8. However, mouse nerve xenotransplantation only led to a transient and moderate increase in the production of Th1 cytokines, including IL-2, IFN-γ, and TNF-α. The data implicate that cellular immune responses play a critical role in nerve xenograft rejection but that further identification of the major effector cells mediating the rejection is required for developing effective means to prevent peripheral nerve xenograft rejection.

  14. Immunity to rhabdoviruses in rainbow trout: the antibody response

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    to their occasional detrimental effect on rainbow trout farming. Research efforts have been focused on understanding the mechanisms involved in protective immunity. Several specific and nonspecific cellular and humoral parameters are believed to be involved, but only the antibody response has been characterised...... in detail so far. Analysis of the specificity of anti-virus trout antibodies has been complicated by a generally insufficient ability of the antibodies to bind the viral proteins in assays such as immunoblotting. However, other assays, specifically designed for detection of fish anti IHNV/VHSV antibodies......, have demonstrated that rainbow trout can produce specific and highly functional antibodies that are able to neutralise virus pathogenicity in vitro as well as in vivo. The apparently more restricted antibody response to IHNV and VHSV antigens in fish compared to mammals could possibly be explained...

  15. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but also induces local IgA and TH17 responses.

    Science.gov (United States)

    Gallorini, Simona; Taccone, Marianna; Bonci, Alessandra; Nardelli, Filomena; Casini, Daniele; Bonificio, Amanda; Kommareddy, Sushma; Bertholet, Sylvie; O'Hagan, Derek T; Baudner, Barbara C

    2014-04-25

    Influenza is a vaccine-preventable disease that remains a major health problem world-wide. Needle and syringe are still the primary delivery devices, and injection of liquid vaccine into the muscle is still the primary route of immunization. Vaccines could be more convenient and effective if they were delivered by the mucosal route. Elicitation of systemic and mucosal innate and adaptive immune responses, such as pathogen neutralizing antibodies (including mucosal IgA at the site of pathogen entry) and CD4(+) T-helper cells (especially the Th17 subset), have a critical role in vaccine-mediated protection. In the current study, a sublingual subunit influenza vaccine formulated with or without mucosal adjuvant was evaluated for systemic and mucosal immunogenicity and compared to intranasal and intramuscular vaccination. Sublingual administration of adjuvanted influenza vaccine elicited comparable antibody titers to those elicited by intramuscular immunization with conventional influenza vaccine. Furthermore, influenza-specific Th17 cells or neutralizing mucosal IgA were detected exclusively after mucosal immunization.

  16. Polyphasic innate immune responses to acute and chronic LCMV infection: Innate immunity to acute & chronic viral infection

    OpenAIRE

    Norris, Brian A; Uebelhoer, Luke S.; Nakaya, Helder I.; Price, Aryn A; Grakoui, Arash; Pulendran, Bali

    2013-01-01

    Resolution of acute and chronic viral infections requires activation of innate cells to initiate and maintain adaptive immune responses. Here we report that infection with acute Armstrong (ARM) or chronic Clone 13 (C13) strains of lymphocytic choriomeningitis virus (LCMV) led to two distinct phases of innate immune response. During the first 72hr of infection, dendritic cells upregulated activation markers, and stimulated anti-viral CD8+ T cells, independent of viral strain. Seven days after ...

  17. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  18. Antibody mediated rejection during transplant kidney biopsy%移植肾穿刺病理组织中抗体介导的排斥反应

    Institute of Scientific and Technical Information of China (English)

    韩永; 郭晖; 黄海燕; 许晓光; 蔡明; 石炳毅

    2011-01-01

    背景:体液性排斥以激素耐受和难治性为其显著的特点,常常发生在免疫高敏的受者身上.目的:对肾功能不全移植肾进行常规穿刺病理活检,根据病理诊断观察抗体介导性排斥反应的治疗效果,分析移植肾穿刺病理活检的安全性.方法:选取肾移植后有移植肾穿刺活检指征的患者84 例,在B 超引导下应用BARD(美国)活检穿刺针行移植肾穿刺活检,活检组织行常规苏木精-伊红染色,组织化学染色,同时常规行C4d 免疫组织化学染色,依据Banff'05 标准进行病理分型,根据病理状态明确诊断进行相应的临床治疗,观察治疗效果.结果与结论:84 例患者除1 例由于组织少难以诊断,其余病理诊断移植肾超急性排斥反应1 例,急性抗体介导性排斥反应5 例,慢性抗体介导性排斥反应2 例,C4d 免疫组织化学染色阳性16 例.经过治疗8 例抗体介导性排斥反应患者中4 例移植肾功能得以恢复,3 例未恢复,1 例移植肾失功,移植肾切除.患者无不良反应发生.结果表明移植肾穿刺病理活检对移植肾无不良影响.%BACKGROUND: Acute humoral rejection, characterized as hormone resistance and refractory feature, often occurs in immune hypersensitivity recipients.OBJECTIVE: To observe the effect on antibody-mediated rejection during transplant kidney biopsy and to analyze the safety of transplant kidney biopsy.METHODS: Eighty-four patients underwent transplant kidney biopsy following renal transplantation. The biopsy was performed using B-ultrasound guided BARD puncture. Hematoxylin-eosin staining, histochemical staining and C4d immunohistochemical staining were performed. All biopsies were systematically diagnosed and evaluated according to the Banf 2005 schema.RESULTS AND CONCLUSION: Except for 1 case which was difficult to diagnose because of few tissues, there were 1 case of hyperacute rejection, 5 of acute antibody mediated rejection, 2 of chronic antibody

  19. Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world.

    Science.gov (United States)

    Adamo, Shelley Anne

    2017-01-01

    A whole organism, network approach can help explain the adaptive purpose of stress-induced changes in immune function. In insects, mediators of the stress response (e.g. stress hormones) divert molecular resources away from immune function and towards tissues necessary for fight-or-flight behaviours. For example, molecules such as lipid transport proteins are involved in both the stress and immune responses, leading to a reduction in disease resistance when these proteins are shifted towards being part of the stress response system. Stress responses also alter immune system strategies (i.e. reconfiguration) to compensate for resource losses that occur during fight-or flight events. In addition, stress responses optimize immune function for different physiological conditions. In insects, the stress response induces a pro-inflammatory state that probably enhances early immune responses.

  20. Immune response modulation by curcumin in a latex allergy model

    Directory of Open Access Journals (Sweden)

    Raju Raghavan

    2007-01-01

    Full Text Available Abstract Background There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. Methods We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. Results Animals exposed to latex showed enhanced serum IgE, latex specific IgG1, IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. Conclusion These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens.

  1. Characterization and role of the immune response during ligament healing

    Science.gov (United States)

    Chamberlain, Connie S.

    inflammation and stimulating remodeling. IL-4 dose- and time-dependently stimulated early ligament regeneration but was unable to maintain the response during later healing. In summary, this work demonstrated the association between the immune cells and ligament healing, indicating a potential for obtaining a more regenerative response by modulating the immune response in a time, dose, and spatial manner.

  2. Innate immune responses of young bulls to a novel environment.

    Science.gov (United States)

    Razzuoli, Elisabetta; Olzi, Emilio; Calà, Pietro; Cafazzo, Simona; Magnani, Diego; Vitali, Andrea; Lacetera, Nicola; Archetti, Laura; Lazzara, Fabrizio; Ferrari, Angelo; Nanni Costa, Leonardo; Amadori, Massimo

    2016-04-01

    Animal welfare during transportation has been investigated in several studies, as opposed to post-transportation phases. In this study, we evaluated the effect of a novel environment after transportation on 26 Friesian bulls, 242 ± 42 day-old, from ten different dairy farms. Animals were shipped to a breeding center in different seasons, and selected parameters of innate immunity (serum bactericidal activity, hemolytic complement, serum albumin, α, β, and γ-globulins, interleukin-6, TNF-α) were monitored before and after the arrival at days--4/0/4/15/30. Our results showed significant differences of IL-6 and TNF-α protein levels at destination in December (94 ± 1.3 pg/ml) and June (+788 pg/ml), respectively. Moreover, the serum levels of these cytokines increased between days 0 and 15 after the arrival, the modulation of IL-6 being in agreement with established models of physical and/or psychological stress. Concerning the modulation of albumin, alpha and beta-globulins, the highest levels were detected in April, whereas a significant decrease was observed between day 15 and 30 after arrival; on the contrary, γ-globulin levels significantly increased after day 15. The results of this study highlight the occurrence of innate immune responses of young bulls to the combined effects of climate (season) and novel farming conditions.

  3. The Evaluation of Immune Response to Parasitic Agents in Sheep

    Directory of Open Access Journals (Sweden)

    Daniela Moţ

    2010-10-01

    Full Text Available The study was been performed to emphasizing the dynamics of immunological parameters in healthy and parasitically infested youth sheep from different private herds from Timiş district. The researches were been made on20 youth sheep 10-11 months aged from Ţurcana breed divided in two groups: first group (M comprised 10 healthy sheep periodic treated with antiparasitic drugs and the second group (E contained 10 sheep who never received any antiparasitic drugs. All animals are clinical healthy, but those of E group are more skinny and have long and bristled fleece. From both groups were been taken blood samples in the view of evaluation the dynamics of unspecific immune response, represented by some parameters, like seric properdine, seric lysozime, phagocytic index and leucogramme. The obtained results confirm that immune system in infected animals always tried to counteract the noxious action of parasitic agents through increased values of studied parameters. A coproscopic examination of both studied groups identified first instar larvae of Dictyocaulus filaria and Trichostrongylus spp. in E group.

  4. Enhancement of anamnestic immunospecific antibody response in orally immunized chickens

    DEFF Research Database (Denmark)

    Mayo, Susan; Carlsson, Hans-Erik; Zagon, Andrea;

    2008-01-01

    Production of immunospecific egg yolk antibodies (IgY antibodies) in egg laying hens through oral immunization is an attractive alternative to conventional antibody production in mammals for economic reasons as well as for animal welfare reasons. Oral immunization results in a systemic humoral...... of the immunization in week 18, demonstrating the presence of memory cells following the two initial oral immunizations. Considering that oral immunization results in approximately ten times lower concentrations of immunospecific antibodies in the egg yolk, compared to traditional subcutaneous immunization schemes...

  5. TRAF-mediated regulation of immune and inflammatory responses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family consists of six mammalian members,and is shown to participate in signal transduction of a large number of receptor families including TNF receptor family (TNFR) and Toll-like receptors-interleukin-1 receptors (TLR-IL-1R) family.Upon receptor activation,TRAFs are directly or indirectly recruited to the intracellular domains of these receptors.They subsequently engage other signaling proteins to activate inhibitor of κB kinase (IKK) complex,TRAF family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) and inducible I κB kinase (IKK-i) (also known as IKKε),ultimately leading to activation of transcription factors such as NF-κB and interferon-regulatory factor (IRF) to induce immune and inflammatory responses.

  6. Platelet reactive alloantibodies responsible for immune thrombocytopenia in Malay population

    Directory of Open Access Journals (Sweden)

    Mohd I. Armawai

    2014-10-01

    Full Text Available Background: Alloantibodies against human platelet alloantigens (HPAs are responsible for the development of platelet transfusion refractoriness (PTR in patients receiving random platelets and bleeding disorder in babies with fetal neonatal alloimmune thrombocytopenia (FNAIT. Recently, our results based on the analysis of the allelic distribution of HPAs indicated that immunization may occur among Malay. In this study, we sought to analyze the frequencies of platelet reactive alloantibodies responsible for FNAIT and PTR in Malaysia.Methods: Sera from suspected FNAIT (n = 295 and PTR (n = 74 were collected in five years period (2008-2013 and tested for the presence of platelet reactive antibodies by the use of antigen capture assay.Results: In 5/74 (5.41% platelet specific antibodies against HPA-2b (n = 1, HPA-5a (n = 1, HPA-5b (n = 1, HPA-15b (n = 2 could be identified in our PTR cohort. In FNAIT cohort, platelet specific alloantibodies could be detected in 18 sera (6.10% consisting anti-HPA-1a (n = 1, anti-HPA-3a (n = 3, anti-HPA-5a (n = 6, anti-HPA-5b (n = 6, anti-HPA-15a (n = 1, and anti-HPA-15b (n = 1.Conclusion: Our study indicates that anti-HPA-3, -HPA-5 and -HPA-15 antibodies seems to be the most platelet specific antibodies involved in FNAIT and PTR cases in Malaysian population. Since similar HPA allelic distribution among Malaysian and Indonesian populations have been observed, immunization against these three HPA systems are expected to be the most potential risk of alloimmune mediated platelet disorders in Indonesia.

  7. Tamibarotene modulates the local immune response in experimental periodontitis.

    Science.gov (United States)

    Jin, Ying; Wang, Linyuan; Liu, Dixin; Lin, Xiaoping

    2014-12-01

    Tamibarotene (Am80), a synthetic retinoic acid receptor (RAR), is an agonist with high specificity for RARα and RARβ. Retinoid agonists have been shown to inhibit Th17 cell polarization and to enhance forkhead box P3 (Foxp3) expression during the course of inflammatory diseases. The aim of this study was to evaluate the previously unrecognized role of Am80 in regulating the immune responses of periodontitis within the oral microenvironment. The experimental model of periodontitis in mice was induced by oral infection with Porphyromonas gingivalis (P. gingivalis) W83. Our results indicated that Am80 effectively suppressed alveolar bone resorption induced by P. gingivalis W83 and decreased the number of osteoclasts. We clarified that these effects were closely associated with the reduced percentage of CD4(+) retinoid-related orphan receptor (ROR)γt(+) cells and increased the percentage of CD4(+) Foxp3(+) cells in the gingival tissues, cervical lymph nodes (CLNs), and spleen. Furthermore, in P. gingivalis-infected mice, Am80 down-regulated mRNA expression levels of interleukin-17A (IL-17A), receptor activator of nuclear factor-kappa beta ligand (RANKL), monocyte chemotactic protein-1 (MCP-1), IL-6, and IL-1β. Simultaneously, Am80 up-regulated expression levels of IL-10 and transforming growth factor-β1 (TGF-β1) in gingival tissues and the CLNs. Our results suggest that Am80 could protect against periodontal bone resorption, primarily through the modulation of immune responses in the oral microenvironment, and demonstrate the potential of Am80 as a novel clinical strategy for preventing periodontitis.

  8. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Science.gov (United States)

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  9. Cultured Mesenchymal Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-Like Receptor 2 Ligand.

    Science.gov (United States)

    Weinstock, Ada; Pevsner-Fischer, Meirav; Porat, Ziv; Selitrennik, Michael; Zipori, Dov

    2015-12-01

    Mesenchymal stem cells (MSCs) serve as supporting and regulatory cells, by providing tissues with multiple factors and are also known for their immunosuppressive capabilities. Our laboratory had previously shown that MSCs expressed toll-like receptor (TLR) 2 and are activated by its ligand Pam3Cys. TLR2 is an important component of the innate immune system, as it recognizes bacterial lipopeptides, thus priming a pro-inflammatory immune response. This study showed that Pam3Cys attached extensively to cells of both wild-type and TLR2 deficient cultured MSCs, thus, independently of TLR2. The TLR2 independent binding occurred through the adsorption of the palmitoyl moieties of Pam3Cys. It was further showed that Pam3Cys was transferred from cultured MSCs to immune cells. Moreover, Pam3Cys provided to the immune cells induced a pro-inflammatory response in vitro and in vivo. Overall, it is demonstrated herein that a TLR2 ligand bound to MSCs also through a TLR2 independent mechanism. Furthermore, the ligand incorporated by MSCs is subsequently released to stimulate an immune response both in vitro and in vivo. It is thus suggested that during bacterial infection, stromal cells may retain a reservoir of the TLR2 ligands, in a long-term manner, and release them slowly to maintain an immune response.

  10. Sub-meninges implantation reduces immune response to neural implants.

    Science.gov (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability.

  11. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  12. Cytokines and dysregulation of the immune response in human malaria

    Directory of Open Access Journals (Sweden)

    M. Fátima C. Alves

    1992-01-01

    Full Text Available The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1 in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900 and P. vivax malaria (13,000 ñ 3,300, as compared to that of healthy individuals (27,000 ñ 3,000. Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.

  13. Isotype specific immune responses in murine experimental toxocariasis

    Directory of Open Access Journals (Sweden)

    Cuéllar C

    2001-01-01

    Full Text Available In this work, a murine experimental model of toxocariasis has been developed in BALB/c, C57BL/10 and C3H murine strains orally inoculated with 4,000 Toxocara canis embryonated eggs, in order to investigate the isotype-specific immune responses against excretory-secretory antigens from larvae. T. canis specific IgG+M, IgM, IgG, IgA, IgG1, IgG2a and IgG3 were tested by ELISA. The dynamics of the specific immunoglobulins (IgG+IgM production showed a contrasting profile regarding the murine strain. Conversely to the results obtained with the IgM isotype, the IgG antibody class showed similar patterns to those obtained with IgG+IgM antibodies, only in the case of the BALB/c strain, being different and much higher than the obtained with IgG+IgM antibodies, when the C3H murine strain was used. The antibodies IgG+IgM tested in BALB/c and C57BL/10 were both of the IgM and IgG isotypes. Conversely, in the C3H strain only IgG specific antibody levels were detected. The IgG1 subclass responses showed a similar profile in the three murine strains studied, with high values in BALB/c, as in the case of the IgG responses.

  14. Relationships between maternal malaria and malarial immune responses in mothers and neonates

    DEFF Research Database (Denmark)

    Rasheed, F N; Bulmer, J N; De Francisco, A;

    1995-01-01

    Immune responses of 97 Gambian women and their neonates were studied. New methods distinguished between active and previous placental malaria, were used to examine relationships between maternal malaria and neonatal immune responses. Many placentas (61%) had active or previous malarial infection...... lymphoproliferation to PPD and malarial antigens, suggesting common immunoregulation. Higher cortisol or other circulating factors in first pregnancies may be implicated. The relevance of cell-mediated malarial immune responses detected at birth remains to be established....

  15. Strain-Related Differences in the Immune Response: Relevance to Human Stroke.

    Science.gov (United States)

    Becker, Kyra J

    2016-08-01

    There are significant differences in the immune response and in the susceptibility to autoimmune diseases among rodent strains. It would thus be expected that the contribution of the immune response to cerebral ischemic injury would also differ among rodent strains. More importantly, there are significant differences between the immune responses of rodents and humans. All of these factors are likely to impact the successful translation of immunomodulatory therapies from experimental rodent models to patients with stroke.

  16. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate

    Science.gov (United States)

    2016-01-01

    Purpose Salmonella enterica serovar Gallinarum (SG) ghost vaccine candidate was recently constructed. In this study, we evaluated various prime-boost vaccination strategies using the candidate strain to optimize immunity and protection efficacy against fowl typhoid. Materials and Methods The chickens were divided into five groups designated as group A (non-immunized control), group B (orally primed and boosted), group C (primed orally and boosted intramuscularly), group D (primed and boosted intramuscularly), and group E (primed intramuscularly and boosted orally). The chickens were primed with the SG ghost at 7 days of age and were subsequently boosted at the fifth week of age. Post-immunization, the plasma IgG and intestinal secretory IgA (sIgA) levels, and the SG antigen-specific lymphocyte stimulation were monitored at weekly interval and the birds were subsequently challenged with a virulent SG strain at the third week post-second immunization. Results Chickens in group D showed an optimized protection with significantly increased plasma IgG, sIgA, and lymphocyte stimulation response compared to all groups. The presence of CD4+ and CD8+ T cells and monocyte/macrophage (M/M) in the spleen, and splenic expression of cytokines such as interferon γ (IFN-γ) and interleukin 6 (IL-6) in the immunized chickens were investigated. The prime immunization induced significantly higher splenic M/M population and mRNA levels of IFN-γ whereas the booster showed increases of splenic CD4+ and CD8+ T-cell population and IL-6 cytokine in mRNA levels. Conclusion Our results indicate that the prime immunization with the SG ghost vaccine induced Th1 type immune response and the booster elicited both Th1- and Th2-related immune responses. PMID:27489805

  17. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease.

    Directory of Open Access Journals (Sweden)

    Fabiano Oliveira

    Full Text Available BACKGROUND: Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus papatasi salivary gland homogenate (SGH or pre-exposed to uninfected bites were protected against Leishmania major infection delivered by needle inoculation with SGH or by infected sand fly bites. Immunization with individual salivary proteins of two sand fly species protected mice from L. major infection. Here, we analyze the immune response to distinct salivary proteins from P. papatasi that produced contrasting outcomes of L. major infection. METHODOLOGY/PRINCIPAL FINDINGS: DNA immunization with distinct DTH-inducing salivary proteins from P. papatasi modulates L. major infection. PpSP15-immunized mice (PpSP15-mice show lasting protection while PpSP44-immunized mice (PpSP44-mice aggravate the infection, suggesting that immunization with these distinct molecules alters the course of anti-Leishmania immunity. Two weeks post-infection, 31.5% of CD4(+ T cells produced IFN-gamma in PpSP15-mice compared to 7.1% in PpSP44-mice. Moreover, IL-4-producing cells were 3-fold higher in PpSP44-mice. At an earlier time point of two hours after challenge with SGH and L. major, the expression profile of PpSP15-mice showed over 3-fold higher IFN-gamma and IL-12-Rbeta2 and 20-fold lower IL-4 expression relative to PpSP44-mice, suggesting that salivary proteins differentially prime anti-Leishmania immunity. This immune response is inducible by sand fly bites where PpSP15-mice showed a 3-fold higher IFN-gamma and a 5-fold lower IL-4 expression compared with PpSP44-mice. CONCLUSIONS/SIGNIFICANCE: Immunization with two salivary proteins from P. papatasi, PpSP15 and PpSP44, produced distinct immune profiles that

  18. Host immune response in returning travellers infected with malaria

    Directory of Open Access Journals (Sweden)

    MacMullin Gregory

    2012-05-01

    regions of Africa. Conclusion Significantly higher levels of IL-12 (p40 and lower levels of EGF in CB travellers may serve as useful prognostic markers of disease severity and help guide clinical management upon return. IL-6 and M-CSF in older adults and MCP-1, IL-12 (p40 and M-CSF for P. vivax infected patients may also prove useful in understanding age-associated and species-specific host immune responses, as could the species-specific differences in Ang-2. Regional differences in host immune response to malaria infection within the same species may speak to unique strains circulating in parts of West Africa.

  19. Bystander T cells in human immune responses to dengue antigens

    Directory of Open Access Journals (Sweden)

    Suwannasaen Duangchan

    2010-09-01

    Full Text Available Abstract Background Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen. Results Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ induction in response to inactivated dengue serotype 2 antigen (Den2. The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA, which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK (mean ± SE = 55.2 ± 3.3, CD4+T (24.5 ± 3.3 and CD8+T cells (17.9 ± 1.5, respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1% implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement. Conclusions This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.

  20. Invitro immune responses in children following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi V

    2006-01-01

    Full Text Available Introduction: There is still no consensus on the efficacy of BCG vaccine in the prevention of tuberculosis. This study therefore addressed the question of the magnitude of immunity afforded by BCG, by studying the effector mechanisms of protection in children. The main objectives were to assess the degree of immunity conferred by BCG vaccine in children and to identify the most immunogenic antigen(s of BCG by conducting in-vitro studies. Materials and methods: Children in the age-group of 1 to 10 years, were categorized: (A normal, and vaccinated with BCG during the first year, n=45, (B normal, without scar and with no evident history of vaccination, n=31: and (C children admitted in the hospital with a confirmed diagnosis of tuberculosis, n=31. Fractions of BCG were obtained by lysis, sonication, separation by gel chromatography, HPLC and confirmed by SDS-PAGE. In lymphoproliferative assays PBMC were cultured and stimulated with either Concanavalin-A or Tuberculin or the fractions of BCG. Stimulation indices (SI in lymphoproliferation, CD4/CD8 cells, levels of Interferon-γ (IFN- γ in the culture supernatants were measured by ELISA. Results: The vaccinated children displayed significantly high (P< 0.05 mean values of SI in LTT, CD4/CD8 cell ratio against the unfractionated, 67kDa fraction and BCG-CF Ags. While 100% of the vaccinated children had positive lymphoproliferation indices to BCG-CF, only 8.3% of the unvaccinated children were positive. Conclusion: Some of the components of BCG induced a strong Thl cell response in children. These immunogenic antigens were present in the whole cell lysate. The use of BCG vaccine for tuberculosis is worthwhile till a new vaccine is developed.

  1. Movement Limitation and Immune Responses of Rhesus Monkeys

    Science.gov (United States)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1993-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-alpha (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CDB+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  2. Immune response against Sporothrix schenckii in TLR-4-deficient mice.

    Science.gov (United States)

    Sassá, Micheli Fernanda; Ferreira, Lucas Souza; Ribeiro, Livia Carolina de Abreu; Carlos, Iracilda Zeppone

    2012-07-01

    For many fungal diseases, macrophages are the major cell population implicated in host protection, primarily by their ability to eliminate the invading fungal pathogen through phagocytosis. In sporotrichosis, this remains true, because of macrophages’ ability to recognize Sporothrix schenckii through specific receptors for some of the fungus’ cellular surface constituents. Further confirmation for macrophages’ pivotal role in fungal diseases came with the identification of toll-like receptors, and the subsequent numerous associations found between TLR-4 deficiency and host susceptibility to diverse fungal pathogens. Involvement of TLR-4 in immune response against sporotrichosis has been conducted to investigate how TLR-4 signaling could affect inflammatory response development through evaluation of H2O2 production and IL-1β, IL-6 and TGF-β release during the course of S. schenckii infection on TLR-4-deficient mice. The results showed that macrophages are largely dependent on TLR-4 for inflammatory activation and that in the absence of TLR-4 signaling, increased TGF-β release may be one of the contributing factors for the abrogated inflammatory activation of peritoneal exudate cells during mice sporotrichosis.

  3. The local immune response in ulcerative lesions of Buruli disease

    Science.gov (United States)

    Kiszewski, A E; Becerril, E; Aguilar, L D; Kader, I T A; Myers, W; Portaels, F; Hernàndez Pando, R

    2006-01-01

    Buruli disease (BU) is a progressive necrotic and ulcerative disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU is considered the third most common mycobacterial disease after tuberculosis and leprosy. Three clinical stages of the cutaneous lesions have been described in BU: pre-ulcerative, ulcerative and healed lesions. In this study we used immunohistochemistry and automated morphometry to determine the percentage of macrophages and of CD4/CD8 lymphocytes and their expression of interferon (IFN)-γ, interleukin (IL)-10, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β. Expression of these cytokines was correlated with the inflammatory response evaluated by histopathology. All the studied BU ulcerative cases showed extensive necrosis and chronic inflammation. The most important feature was the presence or absence of granulomas co-existing with a mixed pro-inflammatory/anti-inflammatory cytokine balance. When granulomas were present significantly higher expression of IFN-γ was seen, whereas in ulcerative lesions without granulomas there was increased expression of IL-10 and significantly higher bacillary counts. These features correlated with the chronicity of the lesions; longer-lasting lesions showed granulomas. Thus, granulomas were absent from relatively early ulcerative lesions, which contained more bacilli and little IFN-γ, suggesting that at this stage of the disease strong suppression of the protective cellular immune response facilitates proliferation of bacilli. PMID:16487243

  4. Initial Immunopathogenesis of Multiple Sclerosis: Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Multiple sclerosis (MS is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.

  5. Initial immunopathogenesis of multiple sclerosis: innate immune response.

    Science.gov (United States)

    Hernández-Pedro, Norma Y; Espinosa-Ramirez, Guillermo; de la Cruz, Verónica Pérez; Pineda, Benjamín; Sotelo, Julio

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.

  6. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down?

    Science.gov (United States)

    Qiu, Feifei; Liang, Chun-Ling; Liu, Huazhen; Zeng, Yu-Qun; Hou, Shaozhen; Huang, Song; Lai, Xiaoping; Dai, Zhenhua

    2017-01-01

    Cigarette smoking is associated with numerous diseases and poses a serious challenge to the current healthcare system worldwide. Smoking impacts both innate and adaptive immunity and plays dual roles in regulating immunity by either exacerbation of pathogenic immune responses or attenuation of defensive immunity. Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells. Complex roles of cigarette smoke have resulted in numerous diseases, including cardiovascular, respiratory and autoimmune diseases, allergies, cancers and transplant rejection etc. Although previous reviews have described the effects of smoking on various diseases and regional immunity associated with specific diseases, a comprehensive and updated review is rarely seen to demonstrate impacts of smoking on general immunity and, especially on major components of immune cells. Here, we aim to systematically and objectively review the influence of smoking on major components of both innate and adaptive immune cells, and summarize cellular and molecular mechanisms underlying effects of cigarette smoking on the immune system. The molecular pathways impacted by cigarette smoking involve NFκB, MAP kinases and histone modification. Further investigations are warranted to understand the exact mechanisms responsible for smoking-mediated immunopathology and to answer lingering questions over why cigarette smoking is always harmful rather than beneficial even though it exerts dual effects on immune responses. PMID:27902485

  7. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    Science.gov (United States)

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-05-19

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors.

  8. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV. We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC. Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein than against nsp (nsp2. In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed.

  9. Dietary Fatty Acids and Immune Response to Food-Borne Bacterial Infections

    OpenAIRE

    2013-01-01

    Functional innate and acquired immune responses are required to protect the host from pathogenic bacterial infections. Modulation of host immune functions may have beneficial or deleterious effects on disease outcome. Different types of dietary fatty acids have been shown to have variable effects on bacterial clearance and disease outcome through suppression or activation of immune responses. Therefore, we have chosen to review research across experimental models and food sources on the effec...

  10. Vpu-Deficient HIV Strains Stimulate Innate Immune Signaling Responses in Target Cells

    OpenAIRE

    Doehle, Brian P.; Chang, Kristina; Fleming, Lamar; McNevin, John; Hladik, Florian; McElrath, M. Juliana; Gale, Michael

    2012-01-01

    Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interfer...

  11. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    Science.gov (United States)

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  12. Effect of oral administration of Lactobacillus paracasei L9 on mouse systemic immunity and the immune response in the intestine

    Directory of Open Access Journals (Sweden)

    Zhu Yuanbo

    2016-01-01

    Full Text Available A probiotic strain Lactobacillus paracasei L9,which was isolated from human intestine, was investigated for its immunomodulatory activity in vivo. Results showed that L9 improved systemic immunity by enhancing the phagocytic activity of peritoneal macrophages, the proliferation ratio of splenocytes, the IgG level in the serum and the level of IgA in the mucosa. Further, L9induced theTh1-polarized immune response by elevating the IFN-γ/IL-4 ratio in the mucosa. This effect was confirmed by the enhanced IL-12-inducing activity of macrophages after in vitro stimulation of L9. Also detected was increased expression of TLR-2mRNA in the mucosa. We predict that L9 could enhance innate immunity by activating TLR-2 in the mucosa, and enhance acquired immunity by promoting Th1 polarization through induced production of IL-12 by macrophages.

  13. Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection.

    Science.gov (United States)

    Garg, Nisha; Tarleton, Rick L

    2002-10-01

    Immunity to Trypanosoma cruzi requires elicitation of humoral and cell-mediated immune responses to extracellular trypomastigotes and intracellular amastigotes. In this study, the effectiveness of the T. cruzi trans-sialidase family (ts) genes ASP-1, ASP-2, and TSA-1 as genetic vaccines was assessed. Immunization of mice with plasmids encoding ASP-1, ASP-2, or TSA-1 elicited poor antigen-specific cytotoxic-T-lymphocyte (CTL) activity and T. cruzi-specific antibody responses. Codelivery of interleukin-12 and granulocyte-macrophage colony-stimulating factor plasmids with antigen-encoding plasmids resulted in a substantial increase in CTL activity and antibody production and in increased resistance to T. cruzi infection. In pooled results from two to four experiments, 30 to 60% of mice immunized with antigen-encoding plasmids and 60 to 80% of mice immunized with antigen-encoding plasmids plus cytokine adjuvants survived a lethal challenge with T. cruzi. In comparison, 90% of control mice injected with empty plasmid DNA died during the acute phase of infection. However, the pool of three ts genes provided no greater protection than the most effective single gene (ASP-2) either with or without coadministration of cytokine plasmids. Importantly, the extent of tissue parasitism, inflammation, and associated tissue damage in skeletal muscles during the chronic phase of T. cruzi infection in mice immunized with antigen-encoding plasmids plus cytokine adjuvants was remarkably reduced compared to mice immunized with only cytokine adjuvants or empty plasmid DNA. These results identify new vaccine candidates and establish some of the methodologies that might be needed to develop effective vaccine-mediated control of T. cruzi infection. In addition, this work provides the first evidence that prophylactic genetic immunization can prevent the development of Chagas' disease.

  14. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg;

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  15. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M C M; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  16. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α,

  17. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosolic DNA reco...gnition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic DNA reco

  18. Immune and inflammatory responses in pigs infected with Trichuris suis and Oesophagostomum dentatum

    DEFF Research Database (Denmark)

    Andreasen, Annette; Petersen, Heidi Huus; Kringel, Helene;

    2015-01-01

    The aim of the present study was to investigate parasite induced immune responses in pigs co-infected with Trichuris suis and Oesophagostomum dentatum as compared to mono-species infected pigs. T. suis is known to elicit a strong immune response leading to rapid expulsion, and a strong antagonist...

  19. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    Science.gov (United States)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  20. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  1. GMCSF-armed vaccinia virus induces an antitumor immune response.

    Science.gov (United States)

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.

  2. Immune response gene expression increases in the aging murine hippocampus.

    Science.gov (United States)

    Terao, Akira; Apte-Deshpande, Anjali; Dousman, Linda; Morairty, Stephen; Eynon, Barrett P; Kilduff, Thomas S; Freund, Yvonne R

    2002-11-01

    Using GeneChips, basal and lipopolysaccharide (LPS)-induced gene expression was examined in the hippocampus of 3-, 12-, 18- and 24-month-old male C57BL/6 mice to identify genes whose altered expression could influence hippocampal function in advanced age. Gene elements that changed with age were selected with a t-statistic and specific expression patterns were confirmed with real-time quantitative PCR. Basal expression of 128 gene elements clearly changed with age in the hippocampus. Fourteen gene elements showed increased expression with age and these increases were validated after LPS stimulation. Major histocompatibility complex (MHC) TL region and thymic shared antigen (TSA-1) gene expression increased, suggesting T cell activation in the hippocampus with age. Cytokine (interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha) and chemokine (macrophage chemotactic protein-1) expression increased sharply in 24-month-old mice. These findings are in contrast to a decrease in the peripheral immune response, documented by decreased T cell proliferation and decreased ratios of naive to memory T cells. Age-related increases in inflammatory potential in the brain may contribute to neurodegenerative diseases of the aged.

  3. Quercetin and Its Anti-Allergic Immune Response

    Directory of Open Access Journals (Sweden)

    Jiri Mlcek

    2016-05-01

    Full Text Available Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes; some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate and suppresses IL-6 and cytosolic calcium level increase.

  4. Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    F. Puentes (Fabiola); B.J. van der Star (Baukje); M. Victor (Marion); M. Kipp (Markus); C. Beyer (Cordian); R.M.B. Peferoen-Baert (Regina); K. Ummenthum (Kimberley); K. Pryce (Karena); W. Gerritsen (Wouter); R. Huizinga (Ruth); A. Reijerkerk (Arie); P. van der Valk (Paul); D.A. Baker (David); S. Amor (Sandra)

    2013-01-01

    textabstractBackground: Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilame

  5. Hemagglutinating virus of Japan envelope (HVJ-E) can enhance the immune responses of swine immunized with killed PRRSV vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhihong [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Quan [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Wang, Zaishi [China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Zhongqiu [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Veterinary Bureau, Ministry of Agriculture of the People' s Republic of China, Beijing 100125 (China); Guo, Pengju [Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangdong 510640 (China); Zhao, Deming, E-mail: zhaodm@cau.edu.cn [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We investigated the immunoadjuvant effects of HVJ-E on killed PRRSV vaccine. Black-Right-Pointing-Pointer HVJ-E enhanced the humoral and cellular responses of the piglets to PRRSV. Black-Right-Pointing-Pointer It is suggested that HVJ-E could be developed as a new-type adjuvant for mammals. -- Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically detrimental pig pathogen that causes significant losses for the pig industry. The immunostimulatory effects of hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy and the adjuvant efficacy of HVJ-E have been previously evaluated. The objective of this study was to investigate the adjuvant effects of HVJ-E on immunization with killed PRRSV vaccine, and to evaluate the protective effects of this immunization strategy against virulent PRRSV infection in piglets. Next, the PRRSV-specific antibody response, lymphocyte proliferation, PRRSV-specific IL-2, IL-10 and IFN-{gamma} production, and the overall protection efficacy were evaluated to assess the immune responses of the piglets. The results showed that the piglets inoculated simultaneously with killed PRRSV vaccine and HVJ-E had a significantly stronger immune response than those inoculated with killed PRRSV vaccine alone. Our results suggest that HVJ-E could be employed as an effective adjuvant to enhance the humoral and cellular responses of piglets to PRRSV.

  6. Effects of postoperative immune-enhancing enteral nutrition on the immune system, inflammatory responses, and clinical outcome

    Institute of Scientific and Technical Information of China (English)

    蒋小华; 李宁; 朱维铭; 吴国豪; 全志伟; 黎介寿

    2004-01-01

    Objective This study was conducted to evaluate the effects of postoperative immune enhancing enteral nutrition on the immune system, inflammatory responses, and clinical outcome of patients undergoing major abdominal surgery. Methods This study was designed as a multicenter, prospective,randomized and controlled clinical trial. One hundred twenty-four patients undergoing major abdominal surgery were randomly assigned to receive either an immune enhancing enteral diet or an isocaloric and isonitrogenous control enteral diet for seven days. Enteral feeding was initiated 24 hours after surgery. Host immunity was evaluated by measuring levels of IgG, IgM, IgA, CD4, CD8, and CD4/CD8, and the inflammatory response was determined by assessing IL-1α, IL-2, IL-6, IL-10, and TNF-α levels. Infectious complications were also recorded. Results One hundred twenty patients completed the study and four patients were excluded. On postoperative day 9, among patients receiving an immune enhancing diet,IgG, IgA, CD4 and CD4/CD8 levels were significantly higher and TNF-α and IL-6 concentrations were significantly lower compared to the control group. Moreover, among patients receiving an immune enhancing diet, when comparing preoperation to day 9 postoperation levels, increases in IgA, CD4, and CD4/CD8 levels were significantly higher than in control patients and increases in TNF-α concentrations were significantly lower. No statistically significant differences were found between the two groups with regard to infectious complications.Conclusions Postoperative administration of immune enhancing enteral nutrition in patients undergoing major abdominal surgery can positively modulate postoperative immunosuppressive and inflammatory responses.

  7. Intestinal immune response to human Cryptosporidium sp. infection

    Science.gov (United States)

    2008-01-01

    intestinal tissues from AIDS patients with cryptosporidiosis, we did not detect CXCL-8 (90). Finally, CXCL-8 attracts mainly granu - locytes. However, in...cryptosporidiosis but not after reconstitution of immunity. Infect. Immun. 75:481–487. 91. Weinstock, J. V., A. Blum, J. Walder, and R. Walder. 1988. Eosinophils

  8. The Reticular Cell Network : A Robust Backbone for Immune Responses

    NARCIS (Netherlands)

    Textor, Johannes; Mandl, Judith N; de Boer, Rob J

    2016-01-01

    Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During inf

  9. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence.

    Science.gov (United States)

    Sellarés, J; de Freitas, D G; Mengel, M; Reeve, J; Einecke, G; Sis, B; Hidalgo, L G; Famulski, K; Matas, A; Halloran, P F

    2012-02-01

    We prospectively studied kidney transplants that progressed to failure after a biopsy for clinical indications, aiming to assign a cause to every failure. We followed 315 allograft recipients who underwent indication biopsies at 6 days to 32 years posttransplant. Sixty kidneys progressed to failure in the follow-up period (median 31.4 months). Failure was rare after T-cell-mediated rejection and acute kidney injury and common after antibody-mediated rejection or glomerulonephritis. We developed rules for using biopsy diagnoses, HLA antibody and clinical data to explain each failure. Excluding four with missing information, 56 failures were attributed to four causes: rejection 36 (64%), glomerulonephritis 10 (18%), polyoma virus nephropathy 4 (7%) and intercurrent events 6 (11%). Every rejection loss had evidence of antibody-mediated rejection by the time of failure. Among rejection losses, 17 of 36 (47%) had been independently identified as nonadherent by attending clinicians. Nonadherence was more frequent in patients who progressed to failure (32%) versus those who survived (3%). Pure T-cell-mediated rejection, acute kidney injury, drug toxicity and unexplained progressive fibrosis were not causes of loss. This prospective cohort indicates that many actual failures after indication biopsies manifest phenotypic features of antibody-mediated or mixed rejection and also underscores the major role of nonadherence.

  10. Neosporosis. Aspects of epidemiology and host immune response.

    Science.gov (United States)

    Innes, E A; Buxton, D; Maley, S; Wright, S; Marks, J; Esteban, I; Rae, A; Schock, A; Wastling, J

    2000-01-01

    was the primary cause of abortion. CD4+ T-cells, interferon gamma and macrophages have all been found to significantly inhibit multiplication of N. caninum tachyzoites. The nature of a protective immune response and its modulation in the pregnant animal is discussed.

  11. Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response.

    Science.gov (United States)

    Liu, Zhenguang; Xing, Jie; Zheng, Sisi; Bo, Ruonan; Luo, Li; Huang, Yee; Niu, Yale; Li, Zhihua; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi

    2016-05-20

    Liposome-based vaccine delivery systems are known to enhance immune responses. Ganoderma lucidum polysaccharides (GLP) have been widely studied as immunomodulator and it could be as inducers of strong immune responses. In the research, GLP and ovalbumin (OVA) were encapsulated into liposome as vaccine and inoculated to mice. The magnitude and kinetics of the humoral and cellular immune responses were investigated. The results showed that GLP-OVA-loaded liposomes (GLPL/OVA) could induce more powerful antigen-specific immune responses than each single-component formulation. Mice immunized with GLPL/OVA displayed higher antigen-specific IgG antibodies, better splenocytes proliferation, higher cytokine secretion by splenocytes and significant activation of CD3+CD4+ and CD3+CD8+ T cells. Thus the GLPL/OVA formulation produced a heightened humoral and cellular immune response, with an overall Th1 bias. Enhanced immune responses elicited by the GLPL/OVA formulation might be attributed to effective activation and mature of DC in draining lymph nodes. Overall, these findings indicate that GLPL have the potential to enhance immune responses as vaccine delivery systems.

  12. Cells involved in the immune response. XXIX Establishment of optimal conditions for the primary and secondary immune responses by rabbit lymphoid cells in vitro.

    Science.gov (United States)

    Richter, M; Behelak, Y

    1975-01-01

    Attempts were made to initiate the primary and secondary humoral immune responses to sheep red blood cells (SRBC) in vitro as determined by the hemolytic plaque-forming cell (PFC) response, with cell suspensions prepared from a variety of lymphoid organs of the rabbit- thymus, bone marrow, spleen, appendix, sacculus rotundus, Peyer's patches, popliteal lymph node and circulating leukocytes. A number of different media and gaseous phases were utilized in order to establish the optimal conditions for the immune response in vitro. The induction of a secondary PFC response was consistently obtained with 'memory' spleen cells obtained from rabbits 3-6 months following intravenous immunization with SRBC but not with cells of any of the other lymphoid organs, and this response probably represents the activity of memory cells which reside in the rabbit spleen. A primary response was observed only with 'normal' spleen cells, and the medium which faciliated the response was different from that which facilitated the induction of the secondary response in vitro. It was also observed, using a medium in which normal spleen cells were incapable of generating PFC', that mixed cultures of normal spleen and normal appendix or bone marrow cells could give a marked PFC reponse in vitro. Whether the PFC response to SRBCs obtained with the lymphoid cells of normal, unimmunized rabbits represent a true primary response, a secondary response, or a response of a different nature as a consequence of continuous subthreshold immunization of the rabbit with enteric microorganisms which cross-react with the antigen, remains to be determined. However, out initial successes with cultures consisting of cells of at least two distinct lymphoid organs in cases where the cells of any one of these organs could not respond, suggest that interaction of at least two functionally distinct cells is required and that the repsonse observed in vitro is probably a primary immune response.

  13. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation.

    Science.gov (United States)

    Rascio, Federica; Pontrelli, Paola; Accetturo, Matteo; Oranger, Annarita; Gigante, Margherita; Castellano, Giuseppe; Gigante, Maddalena; Zito, Anna; Zaza, Gianluigi; Lupo, Antonio; Ranieri, Elena; Stallone, Giovanni; Gesualdo, Loreto; Grandaliano, Giuseppe

    2015-09-01

    Chronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy. Messenger RNA and microRNA profiling of PBMCs and CD4(+) T lymphocytes was performed using Agilent microarrays in eight randomly selected patients per group from CAMR and control subjects. Results were evaluated statistically and by functional pathway analysis (Ingenuity Pathway Analysis) and validated in the remaining subjects. In PBMCs, 45 genes were differentially expressed between the two groups, most of which were up-regulated in CAMR and were involved in type I interferon signalling. In the same patients, 16 microRNAs were down-regulated in CAMR subjects compared to controls: four were predicted modulators of six mRNAs identified in the transcriptional analysis. In silico functional analysis supported the involvement of type I interferon signalling. To further confirm this result, we investigated the transcriptomic profiles of CD4(+) T lymphocytes in an independent group of patients, observing that the activation of type I interferon signalling was a specific hallmark of CAMR. In addition, in CAMR patients, we detected a reduction of circulating BDCA2(+) dendritic cells, the natural type I interferon-producing cells, and their recruitment into the graft along with increased expression of MXA, a type I interferon-induced protein, at the tubulointerstitial and vascular level. Finally, interferon alpha mRNA expression was significantly increased in CAMR compared to control

  14. Complement Inhibition for Prevention and Treatment of Antibody-Mediated Rejection in Renal Allograft Recipients.

    Science.gov (United States)

    Jordan, S C; Choi, J; Kahwaji, J; Vo, A

    2016-04-01

    Therapeutic interventions aimed at the human complement system are recognized as potentially important strategies for the treatment of inflammatory and autoimmune diseases because there is often evidence of complement-mediated injury according to pathologic assessments. In addition, there are a large number of potential targets, both soluble and cell bound, that might offer potential for new drug development, but progress in this area has met with significant challenges. Currently, 2 drugs are approved aimed at inhibition of complement activation. The first option is eculizumab (anti-C5), which is approved for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Eculizumab has also been studied in human transplantation for the treatment and prevention of antibody-mediated rejection (ABMR). Initial data from uncontrolled studies suggested a significant benefit of eculizumab for the prevention of ABMR in highly HLA-sensitized patients, but a subsequent randomized, placebo-controlled trial failed to meet its primary endpoint. Anecdotal data, primarily from case studies, showed benefits in treating complement-mediated ABMR. A second approved complement-inhibiting therapy is C1 esterase inhibitor (C1-INH), which is approved for use in patients with hereditary angioedema, a condition caused by mutations in the gene that codes for C1-INH. A recent placebo-controlled trial of C1-INH for prevention of ABMR in HLA-sensitized patients found that the drug was safe, with evidence for inhibition of systemic complement activation and complement-activating donor-specific antibodies. Other drugs are now under development.

  15. Dromedary immune response and specific Kv2.1 antibody generation using a specific immunization approach.

    Science.gov (United States)

    Hassiki, Rym; Labro, Alain J; Benlasfar, Zakaria; Vincke, Cécile; Somia, Mahmoud; El Ayeb, Mohamed; Muyldermans, Serge; Snyders, Dirk J; Bouhaouala-Zahar, Balkiss

    2016-12-01

    Voltage-gated potassium (Kv) channels form cells repolarizing power and are commonly expressed in excitable cells. In non-excitable cells, Kv channels such as Kv2.1 are involved in cell differentiation and growth. Due to the involvement of Kv2.1 in several physiological processes, these channels are promising therapeutic targets. To develop Kv2.1 specific antibody-based channel modulators, we applied a novel approach and immunized a dromedary with heterologous Ltk- cells that overexpress the mouse Kv2.1 channel instead of immunizing with channel protein fragments. The advantage of this approach is that the channel is presented in its native tetrameric configuration. Using a Cell-ELISA, we demonstrated the ability of the immune serum to detect Kv2.1 channels on the surface of cells that express the channel. Then, using a Patch Clamp electrophysiology assay we explored the capability of the dromedary serum in modulating Kv2.1 currents. Cells that were incubated for 3h with serum taken at Day 51 from the start of the immunization displayed a statistically significant 2-fold reduction in current density compared to control conditions as well as cells incubated with serum from Day 0. Here we show that an immunization approach with cells overexpressing the Kv2.1 channel yields immune serum with Kv2.1 specific antibodies.

  16. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response.

    Science.gov (United States)

    Zaiss, Anne K; Vilaysane, Akosua; Cotter, Matthew J; Clark, Sharon A; Meijndert, H Christopher; Colarusso, Pina; Yates, Robin M; Petrilli, Virginie; Tschopp, Jurg; Muruve, Daniel A

    2009-06-01

    Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.

  17. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A.; Thörn, Karolina; Cairns, Tina M.; Wegmann, Frank; Sattentau, Quentin J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes. PMID:28082979

  18. Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses.

    Science.gov (United States)

    Hoth, J Jason; Wells, Jonathan D; Yoza, Barbara K; McCall, Charles E

    2012-04-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.

  19. The Murine Humoral Immune Response to Hepatitis B Surface Antigen: Idiotype Network Pathways.

    Science.gov (United States)

    Schick, Michael Roy

    Recognition of a wide spectrum in disease outcomes following Hepatitis B Virus (HBV) infection has led to the suggestion that individual differences may be due to characteristics of the immune response. HBV, a hepatotropic virus, is not directly cytopathic to the host hepatocytes but the cellular damage which does not occur may be due to the host's own immune response. It is this variety in immune response capabilities following natural infection or vaccination which led to the present study in which the murine humoral immune response to hepatitis B surface antigen (HBsAg) was examined. Following immunization with purified HBsAg an anti-HBs response could be detected in 19 inbred strains of mice. The response, which varied among the strains, was linked to the major histocompatibility complex (MHC). Among high responders to HBsAg were two strains in which a poor response to a single epitope could be detected. Although quantitatively serum from these strains resembled serum from other high responders, there was a major difference in the qualitative aspects. Included within this study was the role of idotype networks within the murine anti-HBs response. By directly targeting HBsAg-specific B cells within the framework of an idiotype network by an Ab-2, it was possible to circumvent T cell-dependent regulation of an immune response. In each of five inbred strains of mice immunized with a polyclonal rabbit Ab-2 an Ab-3 population with HBsAg-specificity (Ab -1^') was induced. These mice were also immunized with HBsAg resulting in a higher anti-HBs response as compared to HBsAg immunization alone in all of the strains tested except for one. The response in this strain, normally a low responder to HBsAg, indicated that the mechanisms for genetic restriction of the anti -HBs response was still active, although it was not apparent during anti-Id immunization. The effects of an anti-Id on the murine antibody response to HBsAg may lead to insights on the presence of idiotype

  20. Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors

    Directory of Open Access Journals (Sweden)

    Chenjie Fei

    2016-03-01

    Full Text Available Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s, and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus leukocyte immune-type receptors (IpLITRs, which appear to be important regulators of several innate cellular responses via classical as well

  1. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  2. Macrophage polarisation: immune responses of carp against parasites

    OpenAIRE

    Joerink, M.

    2006-01-01

    In the studies described in this thesis we used a natural host-parasite model of two parasites ( Trypanoplasma borreli and Trypanosoma carassii ) infecting common carp ( Cyprinus carpio L.), to obtain more knowledge about the phenomenon of macrophage polarisation in 'the evolutionary older' teleosts and the consequences of differential activation for the individual host.The general aspects of the teleost immune system are very similar to those of the mammalian immune system. Polarisation of m...

  3. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  4. Microbiota and host immune responses: a love-hate relationship.

    Science.gov (United States)

    Tomkovich, Sarah; Jobin, Christian

    2016-01-01

    A complex relationship between the microbiota and the host emerges early at birth and continues throughout life. The microbiota includes the prokaryotes, viruses and eukaryotes living among us, all of which interact to different extents with various organs and tissues in the body, including the immune system. Although the microbiota is most dense in the lower intestine, its influence on host immunity extends beyond the gastrointestinal tract. These interactions with the immune system operate through the actions of various microbial structures and metabolites, with outcomes ranging from beneficial to deleterious for the host. These differential outcomes are dictated by host factors, environment, and the type of microbes or products present in a specific ecosystem. It is also becoming clear that the microbes are in turn affected and respond to the host immune system. Disruption of this complex dialogue between host and microbiota can lead to immune pathologies such as inflammatory bowel diseases, diabetes and obesity. This review will discuss recent advances regarding the ways in which the host immune system and microbiota interact and communicate with one another.

  5. Innate and adaptive immune responses in allergic contact dermatitis and autoimmune skin diseases.

    Science.gov (United States)

    Edele, Fanny; Esser, Philipp R; Lass, Christian; Laszczyk, Melanie N; Oswald, Eva; Strüh, Christian M; Rensing-Ehl, Anne; Martin, Stefan F

    2007-12-01

    Allergic contact dermatitis is induced by chemicals or metal ions. A hallmark of this T cell mediated skin disease is the activation of the innate immune system by contact allergens. This immune response results in inflammation and is a prerequisite for the activation of the adaptive immune system with tissue-specific migration of effector and regulatory T cells. Recent studies have begun to address in detail the innate immune cells as well as the innate receptors on these cells and the associated signaling pathways which lead to skin inflammation. We review here recent findings regarding innate and adaptive immune responses and immune regulation of contact dermatitis and other skin diseases as well as recent developments towards an in vitro assessment of the allergenic potential of chemicals. The elucidation of the innate inflammatory pathways, cellular components and mediators will help to identify new drug targets for more efficient treatment of allergic contact dermatitis and hopefully also for its prevention.

  6. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes.

    Science.gov (United States)

    Mishra, Dinesh; Mishra, Pradyumna Kumar; Dubey, Vaibhav; Nahar, Manoj; Dabadghao, Sunil; Jain, N K

    2008-04-23

    We have evaluated the efficiency of novel modified liposomes (ethosomes) for transcutaneous immunization (TCI) against Hepatitis B. Antigen-loaded ethosomes were prepared and characterized for shape, lamellarity, fluidity, size distribution, and entrapment efficiency. Spectral bio-imaging and flow cytometric studies showed efficient uptake of Hepatitis B surface antigen (HBsAg)-loaded ethosomes by murine dendritic cells (DCs) in vitro, reaching a peak by 180 min. Transcutaneous delivery potential of the antigen-loaded system using human cadaver skin demonstrated a much higher skin permeation of the antigen in comparison to conventional liposomes and soluble antigen preparation. Topically applied HBsAg-loaded ethosomes in experimental mice showed a robust systemic and mucosal humoral immune response compared to intramuscularly administered alum-adsorbed HBsAg suspension, topically applied plain HBsAg solution and hydroethanolic (25%) HBsAg solution. The ability of the antigen-pulsed DCs to stimulate autologous peripheral blood lymphocytes was demonstrated by BrdU assay and a predominantly TH1 type of immune response was observed by multiplex cytometric bead array analysis. HBsAg-loaded ethosomes are able to generate a protective immune response and their ability to traverse and target the immunological milieu of the skin may find a potential application in the development of a transcutaneous vaccine against Hepatitis B virus (HBV).

  7. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available UNLABELLED: Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response. CLINICAL TRIAL REGISTRATION: NCT01391494 and NCT01512706.

  8. Activation of unfolded protein response and autophagy during HCV infection modulates innate immune response.

    Science.gov (United States)

    Estrabaud, Emilie; De Muynck, Simon; Asselah, Tarik

    2011-11-01

    Autophagy, a process for catabolizing cytoplasmic components, has been implicated in the modulation of interactions between RNA viruses and their host. However, the mechanism underlying the functional role of autophagy in the viral life cycle still remains unclear. Hepatitis C virus (HCV) is a single-stranded, positive-sense, membrane-enveloped RNA virus that can cause chronic liver disease. Here we report that HCV induces the unfolded protein response (UPR), which in turn activates the autophagic pathway to promote HCV RNA replication in human hepatoma cells. Further analysis revealed that the entire autophagic process through to complete autolysosome maturation was required to promote HCV RNA replication and that it did so by suppressing innate antiviral immunity. Gene silencing or activation of the UPR-autophagy pathway activated or repressed, respectively, IFN-β activation mediated by an HCV-derived pathogen-associated molecular pattern (PAMP). Similar results were achieved with a PAMP derived from Dengue virus (DEV), indicating that HCV and DEV may both exploit the UPR-autophagy pathway to escape the innate immune response. Taken together, these results not only define the physiological significance of HCV-induced autophagy, but also shed light on the knowledge of host cellular responses upon HCV infection as well as on exploration of therapeutic targets for controlling HCV infection.

  9. Vaccination Enhances Early Immune Responses in White Shrimp Litopenaeus vannamei after Secondary Exposure to Vibrio alginolyticus

    OpenAIRE

    Yong-Chin Lin; Jiann-Chu Chen; Morni, Wan Zabidii W.; Dedi Fazriansyah Putra; Chien-Lun Huang; Chang-Che Li; Jen-Fang Hsieh

    2013-01-01

    BACKGROUND: Recent work suggested that the presence of specific memory or some form of adaptive immunity occurs in insects and shrimp. Hypervariable pattern recognition molecules, known as Down syndrome cell adhesion molecules, are able to mount specific recognition, and immune priming in invertebrates. In the present study, we attempted to understand the immune response pattern of white shrimp Litopenaeus vannamei which received primary (PE) and secondary exposure (SE) to Vibrio alginolyticu...

  10. Optimization of mucosal responses after intramuscular immunization with integrase defective lentiviral vector.

    Directory of Open Access Journals (Sweden)

    Alessandra Rossi

    Full Text Available Many infectious agents infiltrate the host at the mucosal surfaces and then spread systemically. This implies that an ideal vaccine should induce protective immune responses both at systemic and mucosal sites to counteract invasive mucosal pathogens. We evaluated the in vivo systemic and mucosal antigen-specific immune response induced in mice by intramuscular administration of an integrase defective lentiviral vector (IDLV carrying the ovalbumin (OVA transgene as a model antigen (IDLV-OVA, either alone or in combination with sublingual adjuvanted OVA protein. Mice immunized intramuscularly with OVA and adjuvant were compared with IDLV-OVA immunization. Mice sublingually immunized only with OVA and adjuvant were used as a positive control of mucosal responses. A single intramuscular dose of IDLV-OVA induced functional antigen-specific CD8+ T cell responses in spleen, draining and distal lymph nodes and, importantly, in the lamina propria of the large intestine. These results were similar to those obtained in a prime-boost regimen including one IDLV immunization and two mucosal boosts with adjuvanted OVA or vice versa. Remarkably, only in groups vaccinated with IDLV-OVA, either alone or in prime-boost regimens, the mucosal CD8+ T cell response persisted up to several months from immunization. Importantly, following IDLV-OVA immunization, the mucosal boost with protein greatly increased the plasma IgG response and induced mucosal antigen-specific IgA in saliva and vaginal washes. Overall, intramuscular administration of IDLV followed by protein boosts using the sublingual route induced strong, persistent and complementary systemic and mucosal immune responses, and represents an appealing prime-boost strategy for immunization including IDLV as a delivery system.

  11. A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites.

    Directory of Open Access Journals (Sweden)

    Marjorie Mauduit

    Full Text Available Immunization with irradiated Plasmodium sporozoites induces sterile immunity in rodents, monkeys and humans. The major surface component of the sporozoite the circumsporozoite protein (CS long considered as the antigen predominantly responsible for this immunity, thus remains the leading candidate antigen for vaccines targeting the parasite's pre-erythrocytic (PE stages. However, this role for CS was questioned when we recently showed that immunization with irradiated sporozoites (IrrSpz of a P. berghei line whose endogenous CS was replaced by that of P. falciparum still conferred sterile protection against challenge with wild type P. berghei sporozoites. In order to investigate the involvement of CS in the cross-species protection recently observed between the two rodent parasites P. berghei and P. yoelii, we adopted our gene replacement approach for the P. yoelii CS and exploited the ability to conduct reciprocal challenges. Overall, we found that immunization led to sterile immunity irrespective of the origin of the CS in the immunizing or challenge sporozoites. However, for some combinations, immune responses to CS contributed to the acquisition of protective immunity and were dependent on the immunizing IrrSpz dose. Nonetheless, when data from all the cross-species immunization/challenges were considered, the immune responses directed against non-CS parasite antigens shared by the two parasite species played a major role in the sterile protection induced by immunization with IrrSpz. This opens the perspective to develop a single vaccine formulation that could protect against multiple parasite species.

  12. Wild skylarks seasonally modulate energy budgets but maintain energetically costly inflammatory immune responses throughout the annual cycle

    NARCIS (Netherlands)

    Hegemann, A.; Matson, K.D.; Versteegh, M.A.; Tieleman, B.I.

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase res

  13. Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    NARCIS (Netherlands)

    Hegemann, Arne; Matson, Kevin D.; Versteegh, Maaike A.; Tieleman, B. Irene

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase res

  14. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system....... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  15. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  16. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    Science.gov (United States)

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  17. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  18. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets

    DEFF Research Database (Denmark)

    Martel, Cyril Jean-Marie; Agger, Else Marie; Poulsen, Julie Juul;

    2011-01-01

    Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune...... response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different...... experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved...

  19. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    Science.gov (United States)

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  20. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    nonspecific manner and in the absence of germinal center formation, which is consistent with the observed lack of PC-specific memory (Wu et al., 2002...like receptor 9 by DNA from different bacterial species. Infect. Immun. 74: 940-946. Dasari, P., Nicholson, I.C., Hodge, G., Dandie, G.W., and Zola

  1. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels;

    2009-01-01

    of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals...

  2. Immune response in virus model structured by cell infection-age.

    Science.gov (United States)

    Browne, Cameron

    2016-10-01

    This paper concerns modeling the coupled within-host population dynamics of virus and CTL (Cytotoxic T Lymphocyte) immune response. There is substantial evidence that the CTL immune response plays a crucial role in controlling HIV in infected patients. Recent experimental studies have demonstrated that certain CTL variants can recognize HIV infected cells early in the infected cell lifecycle before viral production, while other CTLs only detect viral proteins (epitopes) presented on the surface of infected cells after viral production. The kinetics of epitope presentation and immune recognition can impact the efficacy of the immune response. We extend previous virus models to include cell infection-age structure in the infected cell compartment and immune response killing/activation rates of a PDE-ODE system. We characterize solutions to our system utilizing semigroup theory, determine equilibria and reproduction numbers, and prove stability and persistence results. Numerical simulations show that ' early immune recognition' precipitates both enhanced viral control and sustained oscillations via a Hopf bifurcation. In addition to inducing oscillatory dynamics, considering immune process rates to be functions of cell infection-age can also lead to coexistence of multiple distinct immune effector populations.

  3. Energetic and developmental costs of mounting an immune response in greenfinches (Carduelis chloris)

    NARCIS (Netherlands)

    Amat, Juan A.; Aguilera, Eduardo; Visser, G. Henk

    2007-01-01

    It is assumed that there is a trade-off between the costs allocated to mounting an immune defence and those allocated to costly functions such as breeding and moulting. The physiological basis for this is that mounting an immune response to pathogen challenge has energetic and/or nutrient costs whic

  4. The bradykinin B2 receptor in the early immune response against Listeria infection

    NARCIS (Netherlands)

    Kaman, W.E.; Wolterink, A.F.W.M.; Bader, M.; Boele, L.C.L.; Kleij, D. van der

    2009-01-01

    The endogenous danger signal bradykinin was recently found implicated in the development of immunity against parasites via dendritic cells. We here report an essential role of the B2 (B2R) bradykinin receptor in the early immune response against Listeria infection. Mice deficient in B2R (B2R-/- mice

  5. Basal inflammation and innate immune response in chronic multisite musculoskeletal pain

    NARCIS (Netherlands)

    Generaal, E.; Vogelzangs, N.; MacFarlane, G.J.; Geenen, R.; Smit, J.H.; Dekker, J.; Penninx, B.W.J.H.

    2014-01-01

    Dysregulation of the immune system may play a role in chronic pain, although study findings are inconsistent. This cross-sectional study examined whether basal inflammatory markers and the innate immune response are associated with the presence and severity of chronic multisite musculoskeletal pain.

  6. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone o...

  7. T helper cell polarisation as a measure of the maturation of the immune response

    NARCIS (Netherlands)

    Cameron, S.B.; Stolte, H.H.; Chow, A.W.; Savelkoul, H.F.J.

    2003-01-01

    BACKGROUND: T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigens in vivo display strong effects on T-h subset differentiation. The aim of the study was to detect the intrinsic capacity

  8. Predation risk increases immune response in a larval dragonfly (Leucorrhinia intacta).

    Science.gov (United States)

    Duong, Tammy M; McCauley, Shannon J

    2016-06-01

    Predators often negatively affect prey performance through indirect, non-consumptive effects. We investigated the potential relationship between predator-induced stress and prey immune response. To test this, we administered a synthetic immune challenge into dragonfly larvae (Leucorrhinia intacta) and assessed a key immune response (level of encapsulation) in the presence and absence of a caged predator (Anax junius) at two temperatures (22 degrees C and 26 degrees C). We hypothesized that immune response would be lowered when predators were present due to lowered allocation of resources to immune function and leading to reduced encapsulation of the synthetic immune challenge. Contrary to our expectations, larvae exposed to caged predators had encapsulated monofilaments significantly more than larvae not exposed to caged predators. Levels of encapsulation did not differ across temperatures, nor interact with predator exposure. Our results suggest that the previously observed increase in mortality of L. intacta exposed to caged predators is not driven by immune suppression. In situations of increased predation risk, the exposure to predator cues may induce higher levels of melanin production, which could lead to physiological damage and high energetic costs. However, the costs and risks of increased allocations to immune responses and interactions with predation stress remain unknown.

  9. Deregulation of innate and adaptive immune responses in human papillomavirus infection and cancer

    NARCIS (Netherlands)

    Karim, Rezaul

    2015-01-01

    HPVs need to avoid immune responses of the host in order to establish persistent infection. HPVs achieve this by dampening innate immunity of keratinocytes, the major cell type targeted by HPV. As there is reduced production of danger signals including antimicrobial molecules, proinflammatory cytoki

  10. Coincidence of cellular and antibody mediated rejection in heart transplant recipients – preliminary report

    Science.gov (United States)

    Nożyński, Jerzy; Konecka-Mrówka, Dominika; Babińska, Agnieszka; Flak, Bożena; Hrapkowicz, Tomasz; Zembala, Marian

    2014-01-01

    Antibody mediated rejection (AMR) can significantly influence the results of orthotopic heart transplantation (OHT). However, AMR and cellular rejection (CR) coexistence is poorly described. Therefore we performed a prospective pilot study to assess AMR/CR concomitance in endomyocardial biopsies (EMBs) obtained electively in 27 OHT recipients (21 M/6 F, 45.4 ± 14.4 y/o). Biopsy samples were paraffin embedded and processed typically with hematoxylin/eosin staining to assess CR, and, if a sufficient amount of material remained, treated with immunohistochemical methods to localize particles C3d and C4d as markers of antibody dependent complement activation. With this approach 80 EMBs, including 41 (51%) harvested within the first month after OHT, were qualified for the study. Among them 14 (18%) were C3d+, 37 (46%) were C4d+, and 12 (15%) were both C3d and C4d positive. At least one C3d+, C4d+, and C3d/C4d+ EMB was found in 10 (37%), 17 (63%), and 8 (30%) patients, respectively. Among 37 CR0 EMBs C3d was observed in 4 (11%), C4d in 17 (46%), and both C3d/C4d in 3 (8%) cases. Among 28 CR1 EMBs C3d was observed in 3 (11%), C4d in 11 (39%), and C3d/C4d in 3 (11%) cases. Among 15 CR2 EMBs C3d was observed in 7 (47%), C4d in 9 (60%), and C3d/C4d in 6 (40%) cases. Differences in C3d and C3d/C4d occurrence between grouped CR0-1 EMBs and CR2 EMBs (7/65 – 11% vs. 7/15 – 47%; 6/65 – 9% vs. 6/15 – 40%) were significant (p = 0.0035 and p = 0.0091, respectively, χ2 test). In conclusion, apparently frequent CR and AMR coexistence demonstrated in this preliminary study warrants further investigation in this field. PMID:26336395

  11. Coincidence of cellular and antibody mediated rejection in heart transplant recipients - preliminary report.

    Science.gov (United States)

    Zakliczyński, Michał; Nożyński, Jerzy; Konecka-Mrówka, Dominika; Babińska, Agnieszka; Flak, Bożena; Hrapkowicz, Tomasz; Zembala, Marian

    2014-03-01

    Antibody mediated rejection (AMR) can significantly influence the results of orthotopic heart transplantation (OHT). However, AMR and cellular rejection (CR) coexistence is poorly described. Therefore we performed a prospective pilot study to assess AMR/CR concomitance in endomyocardial biopsies (EMBs) obtained electively in 27 OHT recipients (21 M/6 F, 45.4 ± 14.4 y/o). Biopsy samples were paraffin embedded and processed typically with hematoxylin/eosin staining to assess CR, and, if a sufficient amount of material remained, treated with immunohistochemical methods to localize particles C3d and C4d as markers of antibody dependent complement activation. With this approach 80 EMBs, including 41 (51%) harvested within the first month after OHT, were qualified for the study. Among them 14 (18%) were C3d+, 37 (46%) were C4d+, and 12 (15%) were both C3d and C4d positive. At least one C3d+, C4d+, and C3d/C4d+ EMB was found in 10 (37%), 17 (63%), and 8 (30%) patients, respectively. Among 37 CR0 EMBs C3d was observed in 4 (11%), C4d in 17 (46%), and both C3d/C4d in 3 (8%) cases. Among 28 CR1 EMBs C3d was observed in 3 (11%), C4d in 11 (39%), and C3d/C4d in 3 (11%) cases. Among 15 CR2 EMBs C3d was observed in 7 (47%), C4d in 9 (60%), and C3d/C4d in 6 (40%) cases. Differences in C3d and C3d/C4d occurrence between grouped CR0-1 EMBs and CR2 EMBs (7/65 - 11% vs. 7/15 - 47%; 6/65 - 9% vs. 6/15 - 40%) were significant (p = 0.0035 and p = 0.0091, respectively, χ(2) test). In conclusion, apparently frequent CR and AMR coexistence demonstrated in this preliminary study warrants further investigation in this field.

  12. Studying the immune response to human viral infections using zebrafish.

    Science.gov (United States)

    Goody, Michelle F; Sullivan, Con; Kim, Carol H

    2014-09-01

    Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish.

  13. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses.

    Science.gov (United States)

    Kim, Younghoon; Mylonakis, Eleftherios

    2012-07-01

    Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits.

  14. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine.

    Science.gov (United States)

    Gorantala, Jyotsna; Grover, Sonam; Rahi, Amit; Chaudhary, Prerna; Rajwanshi, Ravi; Sarin, Neera Bhalla; Bhatnagar, Rakesh

    2014-04-20

    In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax.

  15. Metabolic mechanisms of cancer-induced inhibition of immune responses.

    Science.gov (United States)

    Viola, Antonella; Bronte, Vincenzo

    2007-08-01

    During progression, tumors become refractory to the offensive weapons of the immune system. It has been known for a long time that the tumor microenvironment presents a profound modification in the metabolism of arachidonic acid and amino acids such as l-triptophan and l-arginine. However, only in the last decade we have started to appreciate how these changes might cause dysfunctions in cells of both adaptive and innate immune system. The knowledge of these complex and partially interconnected metabolic pathways is offering new targets for an integrated pharmacological approach aiming at freeing tumor-specific T lymphocytes from the latches of cancer influence.

  16. Cooperative Automated Worm Response and Detection Immune Algorithm

    CERN Document Server

    Kim, Jungwon; Aickelin, Uwe; McLeod, Julie

    2010-01-01

    The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.

  17. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts.

    Science.gov (United States)

    Rothman, Alan L; Currier, Jeffrey R; Friberg, Heather L; Mathew, Anuja

    2015-12-10

    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.

  18. Recombinant lipidated dengue-3 envelope protein domain III stimulates broad immune responses in mice.

    Science.gov (United States)

    Chiang, Chen-Yi; Liu, Shih-Jen; Hsieh, Chun-Hsiang; Chen, Mei-Yu; Tsai, Jy-Ping; Liu, Hsueh-Hung; Chen, I-Hua; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-02-17

    The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.

  19. Immune modulation in response to stress and relaxation.

    Science.gov (United States)

    Mahbub-E-Sobhani; Haque, N; Salma, U; Ahmed, A

    2011-03-15

    Traditional medical science has kept the mind separate from the body. Recently people realize the effect of mind on health and psychoneuroimmunology is the new evolved science that describes the interactions between psyche and soma. In this review through a typical psycho-neuro-endocrino-immune network the effects of psychological stress (acute, brief naturalistic and chronic) and relaxation on immune modulation has been shown. From this network Corticotrophin Releasing Factor (CRF), Adrenocorticotrophic Hormone (ACTH), Glucocorticoids (GC), alpha-endorphin and Met-enkephalin are found as important endocrine components and T cells, B cells, monocytes/macrophages, Natural Killer (NK) cells and their cytokines that is Tumor Necrosis Factor-alpha (TNF-alpha), Interferon Gamma (IFN-alpha) and interleukins such as IL-1, IL-2, IL-4, IL-6, IL-10, IL-12 etc. are found as important immune components. Finally, it has been shown that, acute, brief naturalistic and chronic stress have different immune modulatory activities which are harmful to one's homeostasis and relaxation can help to maintain that homeostasis.

  20. Effect of tylosin tartrate on humoral immune responses in chickens.

    Science.gov (United States)

    Baba, T; Yamashita, N; Kodama, H; Mukamoto, M; Asada, M; Nakamoto, K; Nose, Y; McGruder, E D

    1998-06-01

    While many antimicrobial agents have been reported to cause immunosuppression in animals, macrolide antibiotics enhance the immune function. Tylosin tartrate is a macrolide antibiotic approved for the control of mycoplasmosis in poultry. The purpose of this investigation was to determine the effect of tylosin on the humoral immune functions in chickens. Three days after oral tylosin tartrate administration, 4- or 8-week-old chickens were immunized intravenously with carbolic acid-killed Brucella abortus bacterin or sheep red blood cells. Seven days (plasma antibodies titre) or 4 days (antibody forming cells) post-immunization, there was a significant increase in antibody production as well as in the numbers of antibody-producing cells in tylosin tartrate-administered chickens compared with the untreated controls. However, 3 days after tylosin tartrate administration, there was no difference in the distribution of T-lymphocyte subpopulations (CD4 or CD8 positive cells) or B lymphocytes (surface immunoglobulin positive cells) in either the peripheral blood or spleens or untreated control chickens.

  1. Fungal strategies for overcoming host innate immune response.

    NARCIS (Netherlands)

    Chai, L.; Netea, M.G.; Vonk, A.G.; Kullberg, B.J.

    2009-01-01

    A successful pathogen is one that is able to effectively survive and evade detection by the host innate immune defense. Fungal pathogens have adopted strategies which evade host defense and eventually cause disease in at-risk patients. Shielding of stimulatory surface recognition molecules, shedding

  2. Optimizing DC cross-presentation, orchestrating the immune response

    NARCIS (Netherlands)

    Flinsenberg, T.W.H.

    2014-01-01

    Cord blood (CB) stem cell transplantation (SCT) is a last resort treatment for several malignancies, immune- and metabolic disorders. Although the safety of this procedure has improved over the past decades, room for improvement remains. Two of the major causes contributing to post-SCT mortality are

  3. Immunity

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920630 Effects of the spleen on immunestate of patients with gastric cancer.QIUDengbo (仇登波), et al. Dept General Surg,Union Hosp, Tongji Med Univ, Wuhan, 430022.Natl Med J China 1992; 72(6): 334-337. For analysing the effects of the spleen on im-mune state of gastric cancer patients.T-lym-

  4. Longitudinal analysis of antibody response to immunization in paediatric survivors after allogeneic haematopoietic stem cell transplantation

    Science.gov (United States)

    Inaba, Hiroto; Hartford, Christine M.; Pei, Deqing; Posner, Meredith J.; Yang, Jie; Hayden, Randall T.; Srinivasan, Ashok; Triplett, Brandon M.; McCulllers, Jon A.; Pui, Ching-Hon; Leung, Wing

    2011-01-01

    Summary The long-term antibody responses to re-immunization in recipients of allogeneic haematopoietic stem cell transplantation (allo-HSCT) have not been well studied. We prospectively and longitudinally evaluated the antibody responses to 8 vaccine antigens (diphtheria, tetanus, pertussis, measles, mumps, rubella, hepatitis B, and poliovirus) and assessed the factors associated with negative titres in 210 allo-HSCT recipients at St. Jude Children’s Research Hospital. Antibody responses lasting for more than 5 years after immunization were observed in most patients for tetanus (95.7%), rubella (92.3%), poliovirus (97.9%), and, in diphtheria-tetanus-acellular pertussis (DTaP) recipients, diphtheria (100%). However, responses to pertussis (25.0%), measles (66.7%), mumps (61.5%), hepatitis B (72.9%), and diphtheria in tetanus-diphtheria (Td) recipients (48.6%) were less favourable, with either only transient antibody responses or persistently negative titres. Factors associated with vaccine failure were older age at immunization; lower CD3, CD4 or CD19 counts; higher IgM concentrations; positive recipient cytomegalovirus serology; negative titres before immunization; acute or chronic graft-versus-host disease; and radiation during preconditioning. These response patterns and clinical factors can be used to formulate re-immunization and monitoring strategies. Patients at risk for vaccine failure should have long-term follow-up; those with loss of antibody response or no seroconversion should receive booster immunizations. PMID:22017512

  5. The role of the immune response in MULV-induced lymphomagenesis.

    Science.gov (United States)

    Marshall, D J; Gaulton, G N

    1996-12-01

    Although the exact mechanisms of murine leukemia virus (MuLV)-induced lymphomagenesis have yet to be elucidated, it is clear that the immune reponse to viral proteins plays a critical role in this disease process. The parameters for lymphomagenesis are governed by an inverse relationship between viral persistence and immune responsiveness. MuLV have evolved ways to avoid immune detection either by altering their own genome or by altering the host environment. In addition, the intrathymic replication of MuLV during thymocyte maturation and immune selection plays an important role in T cell repertoire development and immune inhibition. These viruses have served as a highly effective experimental model in understanding the many pathways by which MuLV have overcome immune detection and thereby led to lymphomagenesis.

  6. Immune Responses in Cattle Inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii

    Science.gov (United States)

    Cattle were inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii to compare antigen-specific immune responses to varied patterns of mycobacterial disease. Disease expression ranged from colonization with associated pathology (M. bovis), colonization without path...

  7. Immune Response Testing of Electrospun Polymers: An Important Consideration in the Evaluation of Biomaterials

    Directory of Open Access Journals (Sweden)

    Matthew J. Smith

    2007-07-01

    Full Text Available Due primarily to cell sourcing issues, many in the field of tissue engineering have opted to create scaffolds that promote in situ regeneration, using the body as both the bioreactor and the cell source for the remodeling of scaffolds, resulting in the formation of native tissue. This practice raises many concerns, with the body’s immune response to such an implant often being neglected as a potential problem in preliminary design and biocompatibility testing. More importantly, what happens over time in terms of the immune responses as the biodegradable scaffold structures being utilized to promote in situ regeneration begin to degrade, forming structural fragments and degradation products? In summary, immune response evaluations are critical considerations that must be conducted when evaluating bioresorbable scaffolds. In addition, it is essential that these evaluations analyze materials for their potential dose-response and time-course effects on the various components of innate and acquired immunity.

  8. PELA microspheres loaded H.pylori lysates and their mucosal immune response

    Institute of Scientific and Technical Information of China (English)

    Jian-MinRen; Quan-MingZou; Fu-KunWang; QingHe; WeiChen; Wen-KunZen

    2002-01-01

    AIM:To prepare poly(D,L-lactiede)-polyethylene glycol copolymer(PELA)micrspheres loaded H.pylori lysates or cystografin and observe their targeting in gastrointestinal mucous membrane or analyze the mucosal immune responses by oral administration.

  9. Intercellular Trogocytosis Plays an Important Role in Modulation of Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Khawaja Ashfaque Ahmed; Manjunatha Ankathatti Munegowda; Yufeng Xie; Jim Xiang

    2008-01-01

    Intercellular communication is an important means of molecular information transfer through exchange of membrane proteins from cells to cells. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the cellular communication through the intercellular exchange of intact membrane patches, also called trogocytosis, which is a ubiquitous phenomenon. Immune responses against pathogens or any foreign antigens require fine immune regulation, where cellular communications are mediated by either soluble or cell surface molecules. It has been demonstrated that the membrane molecule transfer between immune cells such as dendritic and T cells can be derived through internalization/recycling pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Recent evidence implicates the trogocytosis as an important mechanism of the immune system to modulate immune responses. Exchange of membrane molecules/ antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we discuss the possible mechanisms of trogocytosis and its physiological relevance to immune system, with special reference to T cells and the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules. Cellular & Molecular Immunology. 2008;5(4):261-269.

  10. Immune response in the larvae of the black soldier fly Hermetia illucens

    Directory of Open Access Journals (Sweden)

    A Zdybicka-Barabas

    2017-01-01

    Full Text Available The black soldier fly Hermetia illucens is an ecological decomposer used for biodegradation of organic waste. Its larvae can develop on a wide range of decaying plant and animal matter, including manure and food scraps, i.e., habitats that are extremely rich in various microorganisms. Living such conditions requires very well-functioning immune mechanisms. However, the immune response processes have not been examined so far in H. illucens larvae. In order to shed light on the immune system in the black soldier fly, in the present study we have examined H. illucens hemocytes and analyzed the effects of immune challenge of H. illucens larvae on the activity of the key components insect humoral immune response, i.e., phenoloxidase, lysozyme, and antimicrobial peptides.

  11. Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response.

    Directory of Open Access Journals (Sweden)

    Nikolaus Rieber

    Full Text Available In a number of countries, whole cell pertussis vaccines (wcP were replaced by acellular vaccines (aP due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4(+ T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ and Th2 (IL-4, IL-5, IL-10 cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8(+ T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8(+CD69(+ activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8(+ memory T cells may contribute to protection against clinical pertussis.

  12. Ambivalent Role of the Innate Immune Response in Rabies Virus Pathogenesis▿†

    OpenAIRE

    Chopy, Damien; Pothlichet, Julien; Lafage, Mireille; Mégret, Françoise; Fiette, Laurence; Si-Tahar, Mustapha; Lafon, Monique

    2011-01-01

    The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role o...

  13. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  14. Muscovy duck reovirus infection rapidly activates host innate immune signaling and induces an effective antiviral immune response involving critical interferons.

    Science.gov (United States)

    Chen, Zhilong; Luo, Guifeng; Wang, Quanxi; Wang, Song; Chi, Xiaojuan; Huang, Yifan; Wei, Haitao; Wu, Baocheng; Huang, Shile; Chen, Ji-Long

    2015-02-25

    Muscovy duck reovirus (MDRV) is a highly pathogenic virus in waterfowl and causes significant economic loss in the poultry industry worldwide. Because the host innate immunity plays a key role in defending against virus invasion, more and more attentions have been paid to the immune response triggered by viral infection. Here we found that the genomic RNA of MDRV was able to rapidly induce the production of interferons (IFNs) in host. Mechanistically, MDRV infection induced robust expression of IFNs in host mainly through RIG-I, MDA5 and TLR3-dependent signaling pathways. In addition, we observed that silencing VISA expression in 293T cells could significantly inhibit the secretion of IFNs. Remarkably, the production of IFNs was reduced by inhibiting the activation of NF-κB or knocking down the expression of IRF-7. Furthermore, our study showed that treatment of 293T cells and Muscovy duck embryo fibroblasts with IFNs markedly impaired MDRV replication, suggesting that these IFNs play an important role in antiviral response during the MDRV infection. Importantly, we also detected the induced expression of RIG-I, MDA5, TLR3 and type I IFN in Muscovy ducks infected with MDRV at different time points post infection. The results from in vivo studies were consistent with those in 293T cells infected with MDRV. Taken together, our findings reveal that the host can resist MDRV invasion by activating innate immune response involving RIG-I, MDA5 and TLR3-dependent signaling pathways that govern IFN production.

  15. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens.

    Science.gov (United States)

    Murai, Atsushi; Kitahara, Kazuki; Okumura, Shouta; Kobayashi, Misato; Horio, Fumihiko

    2016-02-01

    Recent studies have emphasized the crucial role of gut microbiota in triggering and modulating immune response. We aimed to determine whether the modification of gut microbiota by oral co-administration of two antibiotics, ampicillin and neomycin, would lead to changes in the antibody response to antigens in chickens. Neonatal chickens were given or not given ampicillin and neomycin (0.25 and 0.5 g/L, respectively) in drinking water. At 2 weeks of age, the chicks were muscularly or orally immunized with antigenic keyhole limpet hemocyanin (KLH), and then serum anti-KLH antibody levels were examined by ELISA. In orally immunized chicks, oral antibiotics treatment enhanced antibody responses (IgM, IgA, IgY) by 2-3-fold compared with the antibiotics-free control, while the antibiotics did not enhance antibody responses in the muscularly immunized chicks. Concomitant with their enhancement of antibody responses, the oral antibiotics also lowered the Lactobacillus species in feces. Low doses of antibiotics (10-fold and 100-fold lower than the initial trial), which failed to change the fecal Lactobacillus population, did not modify any antibody responses when chicks were orally immunized with KLH. In conclusion, oral antibiotics treatment enhanced the antibody response to orally exposed antigens in chickens. This enhancement of antibody response was associated with a modification of the fecal Lactobacillus content, suggesting a possible link between gut microbiota and antibody response in chickens.

  16. Babassu aqueous extract (BAE as an adjuvant for T helper (Th1-dependent immune responses in mice of a Th2 immune response-prone strain

    Directory of Open Access Journals (Sweden)

    Nascimento Flavia RF

    2011-01-01

    Full Text Available Abstract Background The aqueous extract of a Brazilian palm-tree fruit - the babassu - (BAE exerts a clear immunostimulative activity in vivo. In the present work, the possibility that BAE can promote Th1 immune responses in mice of a Th2 immune response-prone strain - the BALB/c was investigated. BAE itself, and preparations consisting of Leishmania amazonensis promastigote extract (LE, adsorbed or not to Al(OH3, and in the presence or not of BAE, were used as immunogens. LE and Al(OH3 have been shown to preferentially elicit Th2 immune responses. Results The addition of BAE to LE-containing immunogenic preparations, adsorbed or not to Al(OH3, clearly promoted the in vitro production of interferon γ (IFN-γ, a major Th1-dependent cytokine, and not of interleukin (IL-4 (a Th2-dependent cytokine, by LE-stimulated splenocytes of immunized BALB/c mice. It also promoted the in vivo formation of IgG2a anti-LE antibodies. However, immunization with LE by itself led to an increased production of IL-4 by LE-stimulated splenocytes, and this production, albeit not enhanced, was not reduced by the addition of BAE to the immunogen. On the other hand, the IL-4 production by LE-stimulated splenocytes was significantly lower in mice immunized with a preparation containing Al(OH3-adsorbed LE and BAE than in mice immunized with the control preparation of Al(OH3-adsorbed LE without BAE. Moreover, an increased production of IFN-γ, and not of IL-4, was observed in the culture supernatants of splenocytes, from BAE-immunized mice, which were in vitro stimulated with BAE or which received no specific in vitro stimulus. No differences in IL-10 (an immunoregulatory cytokine levels in the supernatants of splenocytes from mice that were injected with BAE, in relation to splenocytes from control mice, were observed. The spontaneous ex vivo production of NO by splenocytes of mice that had been injected with BAE was significantly higher than the production of NO by

  17. Gut response induced by weaning in piglet features marked changes in immune and inflammatory response.

    Science.gov (United States)

    Bomba, Lorenzo; Minuti, Andrea; Moisá, Sonia J; Trevisi, Erminio; Eufemi, Elisa; Lizier, Michela; Chegdani, Fatima; Lucchini, Franco; Rzepus, Marcin; Prandini, Aldo; Rossi, Filippo; Mazza, Raffaele; Bertoni, Giuseppe; Loor, Juan J; Ajmone-Marsan, Paolo

    2014-12-01

    At weaning, piglets are exposed to many stressors, such as separation from the sow, mixing with other litters, end of lactational immunity, and a change in their environment and gut microbiota. The sudden change of feeding regime after weaning causes morphological and histological changes in the small intestine which are critical for the immature digestive system. Sixteen female piglets were studied to assess the effect of sorbic acid supplementation on the small intestine tissue transcriptome. At weaning day (T0, piglet age 28 days), four piglets were sacrificed and ileal tissue samples collected. The remaining 12 piglets were weighed and randomly assigned to different postweaning (T5, piglet age 33 days) diets. Diet A (n = 6) contained 5 g/kg of sorbic acid. In diet B (n = 6), the organic acids were replaced by barley flour. Total RNA was isolated and then hybridized to CombiMatrix CustomArray™ 90-K platform microarrays, screening about 30 K genes. Even though diet had no detectable effect on the transcriptome during the first 5 days after weaning, results highlighted some of the response mechanisms to the stress of weaning occurring in the piglet gut. A total of 205 differentially expressed genes were used for functional analysis using the bioinformatics tools BLAST2GO, Ingenuity Pathway Analysis 8.0, and Dynamic Impact Approach (DIA). Bioinformatic analysis revealed that apoptosis, RIG-I-like, and NOD-like receptor signaling were altered as a result of weaning. Interferons and caspases gene families were the most activated after weaning in response to piglets to multiple stressors. Results suggest that immune and inflammatory responses were activated and likely are a cause of small intestine atrophy as revealed by a decrease in villus height and villus/crypt ratio.

  18. The role of metalloproteinase ADAM17 in regulating ICOS ligand-mediated humoral immune responses

    DEFF Research Database (Denmark)

    Marczynska, Joanna; Ozga, Aleksandra; Wlodarczyk, Agnieszka;

    2014-01-01

    cells. Shedding is largely attributed to a family of a disintegrin and metalloprotease domain (ADAM) metalloproteases, including ADAM17. Although ADAM17 is well known to contribute to the innate immune response, mainly by releasing TNF-α, much less is known about whether/how this metalloprotease...... regulates adaptive immunity. To determine whether ADAM17 contributes to regulating adaptive immune responses, we took advantage of ADAM17 hypomorphic (ADAM17(ex/ex)) mice, in which ADAM17 expression is reduced by 90-95% compared with wild-type littermates. In this study, we show that that ADAM17 deficiency...

  19. Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance?

    Science.gov (United States)

    Steinstraesser, Lars; Kraneburg, Ursula M; Hirsch, Tobias; Kesting, Marco; Steinau, Hans-Ulrich; Jacobsen, Frank; Al-Benna, Sammy

    2009-09-09

    Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections.

  20. Differential timing of antibody-mediated phagocytosis and cell-free killing of invasive African Salmonella allows immune evasion.

    Science.gov (United States)

    Siggins, Matthew K; O'Shaughnessy, Colette M; Pravin, John; Cunningham, Adam F; Henderson, Ian R; Drayson, Mark T; MacLennan, Calman A

    2014-04-01

    Nontyphoidal Salmonellae commonly cause fatal bacteraemia in African children lacking anti-Salmonella antibodies. These are facultative intracellular bacteria capable of cell-free and intracellular survival within macrophages. To better understand the relationship between extracellular and intracellular infection in blood and general mechanisms of Ab-related protection against Salmonella, we used human blood and sera to measure kinetics of Ab and complement deposition, serum-mediated bactericidal killing and phagocytosis of invasive African Salmonella enterica serovar Typhimurium D23580. Binding of antibodies peaked by 30 s, but C3 deposition lagged behind, peaking after 2-4 min. C5b-9 deposition was undetectable until between 2 and 6 min and peaked after 10 min, after which time an increase in serum-mediated killing occurred. In contrast, intracellular, opsonized Salmonellae were readily detectable within 5 min. By 10 min, around half of monocytes and most neutrophils contained bacteria. The same kinetics of serum-mediated killing and phagocytosis were observed with S. enterica Typhimurium laboratory strain SL1344, and the S. enterica Enteritidis African invasive isolate D24954 and laboratory strain PT4. The differential kinetics between cell-free killing and phagocytosis of invasive nontyphoidal Salmonella allows these bacteria to escape the blood and establish intracellular infection before they are killed by the membrane attack complex.

  1. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine

    Directory of Open Access Journals (Sweden)

    Danylo Sirskyj

    2016-07-01

    Full Text Available Mechanistic details underlying the resulting protective immune response generated by mucosal vaccines remain largely unknown. We investigated the involvement of Toll-like receptor signaling in the induction of humoral immune responses following oral immunization with Dukoral, comparing wild type mice with TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. Although all groups generated similar levels of IgG antibodies, the proliferation of CD4+ T-cells in response to V. cholerae was shown to be mediated via MyD88/TLR signaling, and independently of Trif signaling. The results demonstrate differential requirements for generation of immune responses. These results also suggest that TLR pathways may be modulators of the quality of immune response elicited by the Dukoral vaccine. Determining the critical signaling pathways involved in the induction of immune response to this vaccine would be beneficial, and could contribute to more precisely-designed versions of other oral vaccines in the future.

  2. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Artur Summerfield

    2009-11-01

    Full Text Available Dendritic cells (DC are major players in both innate and adaptive immune responses against influenza virus. These immune responses, as well as the important interface between the innate and adaptive systems, are orchestrated by specialized subsets of DC, including conventional steady-state DC, migratory DC and plasmacytoid DC. The characteristics and efficacy of the responses are dependent on the relative activity of these DC subsets, rendering DC crucial for the development of both naïve and memory immune responses. However, due to their critical role, DC also contribute to the immunopathological processes observed during acute influenza, such as that caused by the pathogenic H5N1 viruses. Therein, the role of different DC subsets in the induction of interferon type I, proinflammatory cytokine and chemokine responses is important for the outcome of interaction between the virus and host immune defences. The present review will present current knowledge on this area, relating to the importance of DC activity for the induction of efficacious humoral and cell-mediated immune responses. This will include the main viral elements associated with the triggering or inhibition of DC activation. Finally, the current knowledge on understanding how differences in various vaccines influence the manner of immune defence induction will be presented.

  3. Validation of assays to monitor immune responses in the Syrian golden hamster (Mesocricetus auratus).

    Science.gov (United States)

    Zivcec, Marko; Safronetz, David; Haddock, Elaine; Feldmann, Heinz; Ebihara, Hideki

    2011-05-31

    The Syrian golden hamster (Mesocricetus auratus) is a valuable but under-utilized animal model for studies of human viral pathogens such as bunyaviruses, arenaviruses, flaviviruses, henipaviruses, and SARS-coronavirus. A lack of suitable reagents and specific assays for monitoring host responses has limited the use of this animal model to clinical observations, pathology and humoral immune responses. The objective of this study was to establish and validate assays to monitor host immune responses in the hamster including important pro-inflammatory, anti-inflammatory and innate immune responses, as well as markers of apoptosis, cell proliferation, cell junction integrity and coagulation. Commercially available mouse and rat ELISA and luminex panels were screened for potential cross-reactivity, but were found to be of limited value for studying host responses in hamsters. Subsequently, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays for the detection of 51 immune-related and four internal reference genes were developed. To validate the immune-related assays, hamsters were infected with vesicular stomatitis virus (VSV), Indiana species, or treated with lipopolysaccharide (LPS) and host immune responses were monitored in selected organs. Ribosomal protein L18 was identified as the most stable internal reference gene. In conclusion, these new assays will greatly improve the use of the hamster as an important small animal model in infectious disease research.

  4. Immune response profiles after caterpillar exposure: a case report

    Directory of Open Access Journals (Sweden)

    Tamar A Smith-Norowitz

    2010-07-01

    Full Text Available Tamar A Smith-Norowitz1,3, Kevin B Norowitz1, Stephan Kohlhoff1,3, Kaushal Kalra1,3, Seto Chice2,3, Martin H Bluth41Departments of Pediatrics, 2Pathology, 3Center for Allergy and Asthma Research, SUNY Downstate Medical Center, NY, USA; 4Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USARationale: The role of the immune response to caterpillar exposure is not well described. This case study is the first to report a patient who presented with an allergic reaction after exposure to the larvae of the sycamore tussock moth, Halysidota harrisii Walsh, 1864.Methods: Blood was collected from an allergic asthmatic adult (m/42 y/o at 2 hrs – 2 wks after contact urticaria with associated dyspnea after exposure to the larvae of the sycamore tussock moth, Halysidota harrisii Walsh, 1864. Distributions of blood lymphocytes (CD4+, CD8+, CD8+CD60+, CD19+, CD23+, CD16/56+, CD25, CD45RA+, CD45RO+, monocytes (CD1d+, levels of serum immunoglobulins (IgM, IgG, IgA, IgE, and cytokines (IFN-γ, IL-4, TNF-a were studied (flow cytometry, nephelometry, UniCAP Total IgE Fluoroenzymeimmunoassay, cytokine ELISA, clinical toxicology.Results: Numbers of CD4+ T cells, CD25+ cells, CD19+ B cells, and CD1d+ monocytes decreased (22, 27, 33, 20%, respectively one week post reaction, CD45RA+ naïve T cells decreased at 36 hours (21%,while CD8+CD60+ T cells and CD23+ cells decreased 48 hrs (33, 74%, respectively post reaction. In contrast, numbers of CD16/56+ NK precursor cells increased (60% 12 hrs, then decreased (65% 48 hrs post reaction; other lymphocyte subsets were unaffected. Serum IgM, IgG and IgA were within normal range; however, serum IgE demonstrated a bimodal elevation at 2 hrs (15% and one week post reaction. Levels of IFN-γ, IL-4, and TNF-a were not detected in serum pre-exposure (<1.0–4.0 pg/mL. However, high levels of IFN-γ (187–319 pg/mL and TNF-a (549–749 pg/mL were detected in serum 24–36 hrs and 3.5–24 hrs post

  5. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter.

    Science.gov (United States)

    Shaughnessy, Ronan G; Meade, Kieran G; Cahalane, Sarah; Allan, Brenda; Reiman, Carla; Callanan, John J; O'Farrelly, Cliona

    2009-12-15

    Salmonella enterica serovar Typhimurium and Campylobacter jejuni are major human pathogens, yet colonise chickens without causing pathology. The aim of this study was to compare intestinal innate immune responses to both bacterial species, in a 4-week-old broiler chicken model. Challenged and control birds were sacrificed and tissue samples taken for histopathology and RNA extraction. No significant clinical or pathological changes were observed in response to infection with either bacterial species. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative real-time PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species (Pimmune genes in both infection models shed light on the tailored responses of the host immune system to specific microbes. It is further evidence that innate regulation of these responses is an important prerequisite to preventing development of disease.

  6. Quercetin and Its Anti-Allergic Immune Response

    OpenAIRE

    Jiri Mlcek; Tunde Jurikova; Sona Skrovankova; Jiri Sochor

    2016-01-01

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inf...

  7. Host control of malaria infections: constraints on immune and erythropoeitic response kinetics.

    Directory of Open Access Journals (Sweden)

    Philip G McQueen

    Full Text Available The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection to those with compensatory erythropoiesis (boosted RBC production or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating clinically, this suggests that P

  8. Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes.

    Science.gov (United States)

    Chen, Xiaoming; Wang, Lianyan; Liu, Qi; Jia, Jilei; Liu, Yuan; Zhang, Weifeng; Ma, Guanghui; Su, Zhiguo

    2014-12-01

    Recombinant viral subunit-based vaccines have gained increasing attention due to their enhanced safety over the classic live-attenuated or inactivated vaccines. The low immunogenicity of the subunit antigen alone, however, requires the addition of an adjuvant to induce immunity. Particulate-based delivery systems have great potential for developing new vaccine adjuvants, compared to traditional aluminum-based saline adjuvants. The physicochemical properties of particulate vaccines have been extensively investigated; however, few studies have focused on how the administration route of various adjuvant-antigen combinations impacts the efficacy of the immune response. Here, for the first time, the viral Hepatitis B surface antigen (HBsAg) was combined with aluminum-based or cationic-microsphere (MP) based adjuvants to investigate the characteristics of immune responses elicited after immunization via the subcutaneous, intramuscular, or intraperitoneal routes respectively. In vitro, the MP-based vaccine significantly increased dendritic cell (DC) activation with up-regulated CD40 and CD80 expression and IL-12 production compared to alum-based vaccine. After immunization, both MP and alum-based vaccines produced increased IgG titers in mice. The administration route of these vaccines did influenced immune responses. The MP-based vaccine delivered via the intramuscular route yielded the highest levels of the IgG2a isotype. The alum-based vaccine, delivered via the same route, produced an IgG1-dominated humoral immune response. Moreover, subcutaneous and intramuscular immunizations with MP-based vaccine augmented Granzyme B, Th1-type cytokines (IL-2, IL-12, and IFN-γ), and Th2 cytokine IL-4 secretions. These results demonstrate that MP-based vaccines have the capacity to induce higher cellular and humoral immune response especially via an intramuscular administration route than an alum-based vaccine.

  9. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  10. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs.

    Science.gov (United States)

    Nagalakshmi, D; Dhanalakshmi, K; Himabindu, D

    2009-10-01

    An experiment of 150 days was conducted on 42 male Nellore lambs (28.3 +/- 0.64 kg) to determine the effect of zinc (Zn) supplementation (0,15, 30 and 45 ppm) in diet from inorganic (ZnSO(4)) and organic (Zn proteinate) sources on immune response and antioxidant enzyme activities by allotting them randomly to 7 groups in completely randomized design. The basal diet (BD) contained 29.28 ppm Zn. The humoral immune response assessed at 75 d against B. abortus was higher (Peffect on titres against chicken RBC antigen. The cell mediated immune response assessed as delayed type hypersensitivity (DTH) response against phytohaemagglutinin-P and in vitro lymphocyte proliferative response against concanavalin A at 150 d was higher (Peffect on immune response. The DTH response and antibody titres against B.abortus were higher (Pconcentration and alkaline phosphatase (ALP) activity (75 d of experiment) was higher in Zn supplemented lambs. The ALP activity increased (P enzyme activities and immune response compared to ZnSO(4).

  11. Citrobacter rodentium-induced colitis: A robust model to study mucosal immune responses in the gut.

    Science.gov (United States)

    Koroleva, Ekaterina P; Halperin, Sydney; Gubernatorova, Ekaterina O; Macho-Fernandez, Elise; Spencer, Cody M; Tumanov, Alexei V

    2015-06-01

    Citrobacter rodentium is a natural mouse pathogen which reproducibly infects mice and causes intestinal disease. The C. rodentium model of infection is very useful for investigating host-pathogen immune interactions in the gut, and can also be used to understand the pathogenesis of several important human intestinal disorders, including Crohn's disease, ulcerative colitis, dysbiosis and colon tumorigenesis. Both innate and adaptive immune responses play a critical role in protection against C. rodentium. Here, we summarize the role of immune components in protection against C. rodentium and describe techniques for the analysis of innate and adaptive mucosal immune responses, including setting up the infection, analysis of colonic hyperplasia and bacterial dissemination, evaluation of antibody responses, and purification and analysis of intestinal epithelial and lymphoid cells.

  12. Antagonizing interferon-mediated immune response by porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Wang, Rong; Zhang, Yan-Jin

    2014-01-01

    Interferons (IFNs) are important components in innate immunity involved in the first line of defense to protect host against viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV) leads to severe economic losses for swine industry since being first identified in early 1990s. PRRSV interplays with host IFN production and IFN-activated signaling, which may contribute to the delayed onset and low level of neutralizing antibodies, as well as weak cell-mediated immune response in infected pigs. PRRSV encodes several proteins that act as antagonists for the IFN signaling. In this review, we summarized the various strategies used by PRRSV to antagonize IFN production and thwart IFN-activated antiviral signaling, as well as the variable interference with IFN-mediated immune response by different PRRSV strains. Thorough understanding of the interaction between PRRSV and host innate immune response will facilitate elucidation of PRRSV pathogenesis and development of a better strategy to control PRRS.

  13. A novel single-dose dengue subunit vaccine induces memory immune responses.

    Directory of Open Access Journals (Sweden)

    Chen-Yi Chiang

    Full Text Available To protect against dengue viral infection, a novel lipidated dengue subunit vaccine was rationally designed to contain the consensus amino acid sequences derived from four serotypes of dengue viruses. We found that the lipidated consensus dengue virus envelope protein domain III (LcED III is capable of activating antigen-presenting cells and enhancing cellular and humoral immune responses. A single-dose of LcED III immunization in mice without extra adjuvant formulation is sufficient to elicit neutralizing antibodies against all four serotypes of dengue viruses. In addition, strong memory responses were elicited in mice immunized with a single-dose of LcED III. Quick, anamnestic neutralizing antibody responses to a live dengue virus challenge were elicited at week 28 post-immunization. These results demonstrate the promising possibility of a future successful tetravalent vaccine against dengue viral infections that utilizes one-dose vaccination with LcED III.

  14. Shigella manipulates host immune responses by delivering effector proteins with specific roles

    Directory of Open Access Journals (Sweden)

    Hiroshi eAshida

    2015-05-01

    Full Text Available The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and adaptive immune system, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors via the type III secretion system (T3SS that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.

  15. Antagonizing Interferon-Mediated Immune Response by Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2014-01-01

    Full Text Available Interferons (IFNs are important components in innate immunity involved in the first line of defense to protect host against viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV leads to severe economic losses for swine industry since being first identified in early 1990s. PRRSV interplays with host IFN production and IFN-activated signaling, which may contribute to the delayed onset and low level of neutralizing antibodies, as well as weak cell-mediated immune response in infected pigs. PRRSV encodes several proteins that act as antagonists for the IFN signaling. In this review, we summarized the various strategies used by PRRSV to antagonize IFN production and thwart IFN-activated antiviral signaling, as well as the variable interference with IFN-mediated immune response by different PRRSV strains. Thorough understanding of the interaction between PRRSV and host innate immune response will facilitate elucidation of PRRSV pathogenesis and development of a better strategy to control PRRS.

  16. EFFECTS OF SULPIRIDE-INDUCED D2 DOPAMINE RECEPTOR BLOCKADE ON IMMUNE RESPONSIVENESS OF RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2006-08-01

    Full Text Available The involvement of catecholamine receptors (D2 dopamine was investigated in restraint stress, influence immune system, with concomitant changes in immune response. Adults rats pretreated once with LPS (a bacterial product (25μg/250μl, i.p., produce an immune response, were subjected to i.p. injection with sulpiride (4 mg/kg b.w., i.p., a selective antagonist for D2 dopamine receptors, after 3 days postimmunization. After 18 days later, we assessed the total protein number, antibody titer, lymphocyte number and albumin/globulin ratio. In summary, we provide that D2 dopamine receptor blockade impaired immune responsiveness in restraint stress.

  17. Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines.

    Science.gov (United States)

    Klasse, Per Johan; Moore, John P

    2012-10-01

    Correlates of protection (CoPs) against infection by primate lentiviruses remain undefined. Modest protection against HIV-1 was observed in one human vaccine trial, whereas previous trials and vaccine-challenge experiments in non-human primates have yielded inconsistent but intriguing results. Although high levels of neutralizing antibodies are known to protect macaques from mucosal and intravenous viral challenges, antibody or other adaptive immune responses associated with protection might also be mere markers of innate immunity or susceptibility. Specific strategies for augmenting the design of both human trials and animal experiments could help to identify mechanistic correlates of protection and clarify the influences of confounding factors. Robust protection may, however, require the combined actions of immune responses and other host factors, thereby limiting what inferences can be drawn from statistical associations. Here, we discuss how to analyze immune protection against primate lentiviruses, and how host factors could influence both the elicitation and effectiveness of vaccine-induced responses.

  18. Selection for brain size impairs innate, but not adaptive immune responses.

    Science.gov (United States)

    Kotrschal, Alexander; Kolm, Niclas; Penn, Dustin J

    2016-03-16

    Both the brain and the immune system are energetically demanding organs, and when natural selection favours increased investment into one, then the size or performance of the other should be reduced. While comparative analyses have attempted to test this potential evolutionary trade-off, the results remain inconclusive. To test this hypothesis, we compared the tissue graft rejection (an assay for measuring innate and acquired immune responses) in guppies (Poecilia reticulata) artificially selected for large and small relative brain size. Individual scales were transplanted between pairs of fish, creating reciprocal allografts, and the rejection reaction was scored over 8 days (before acquired immunity develops). Acquired immune responses were tested two weeks later, when the same pairs of fish received a second set of allografts and were scored again. Compared with large-brained animals, small-brained animals of both sexes mounted a significantly stronger rejection response to the first allograft. The rejection response to the second set of allografts did not differ between large- and small-brained fish. Our results show that selection for large brain size reduced innate immune responses to an allograft, which supports the hypothesis that there is a selective trade-off between investing into brain size and innate immunity.

  19. Controlled release strategies for modulating immune responses to promote tissue regeneration.

    Science.gov (United States)

    Dumont, Courtney M; Park, Jonghyuck; Shea, Lonnie D

    2015-12-10

    Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.

  20. Assessment of protective immune responses against hydatid disease in sheep by immunization with synthetic peptide antigens.

    Science.gov (United States)

    Woollard, D J; Heath, D D; Lightowlers, M W

    2000-08-01

    Four synthetic peptides which comprise the immunodominant linear epitopes of the EG95 recombinant protein, were investigated for their ability to induce host-protective immunity against Echinococcus granulosus in sheep. Sheep were immunized with either free peptide or peptide conjugated to diphtheria toxoid and challenge infected with E. granulosus eggs. All of the peptides elicited specific antibody, but these did not kill the parasite in in vitro culture assays, nor did the peptides induce protection against challenge infection. In contrast, anti-EG95 antibodies affinity purified against each of the 4 peptides were lethal to the parasite in in vitro culture. These affinity-purified antibodies were shown to contain specific antibody to both peptide and EG95. In in vitro inhibition assays, the peptides did not diminish anti-EG95 antibody binding to EG95 or parasite lysis in oncosphere killing assays. These results suggest that the fine specificities of antibodies raised against the recombinant protein are different to those raised against the peptide immunogens and that the majority of the antibody induced by vaccination with EG95 is raised against conformational determinants.

  1. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua.

    Science.gov (United States)

    Shrestha, Sony; Kim, Yonggyun

    2009-09-01

    Cyclooxygenase (COX) and lipoxygenase (LOX) can catalyze the oxidation of C20 fatty acids to produce certain eicosanoids, which play roles in mediating immune responses in insects. Despite their critical role in insect immunity, there have been few studies of the unique effects of different eicosanoids on immune responses. This study analyzed cellular and humoral immune responses of the beet armyworm, Spodoptera exigua, using seven eicosanoids selected from two major eicosanoid subgroups: prostaglandin (PG) and leukotriene (LT), derived from catalytic activities of COX and LOX respectively. Upon bacterial challenge, all seven eicosanoids (PGA(1), PGB(2), PGD(2), PGE(1), PGE(2), PGF(1alpha), and LTB(4)) significantly induced hemocyte nodulation and phagocytosis in the presence of dexamethasone, an eicosanoid biosynthesis inhibitor. However, only PGs induced cell lysis of oenocytoids to release prophenoloxidase, which resulted in an increase in phenoloxidase activity. These seven eicosanoids also induced expression of humoral immune-associated genes, including prophenoloxidase, serpin, dopa decarboxylase, cecropin, and lysozyme, in which PGB(2) and PGE(1) did not induce gene expression of prophenoloxidase. To understand the interactions between different eicosanoids, mixture effects of these eicosanoids were compared with their individual eicosanoid effects on mediating nodule formation in response to bacterial challenge. All six single PGs showed increases in nodule formation in a dose-dependent manner without significant difference among the different types. LTB(4) was more potent than the tested PGs in mediating the cellular immune response. At low doses, all combinations of two eicosanoids showed significant additive effects on nodule formation. These results indicate that immune target cells, such as hemocyte and fat body, of S. exigua can respond to different COX and LOX products to express cellular and humoral immune responses, and their overlapping, additive

  2. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Directory of Open Access Journals (Sweden)

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  3. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Zhu

    Full Text Available BACKGROUND: Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26% showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. CONCLUSIONS/SIGNIFICANCE: obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular

  4. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    Science.gov (United States)

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  5. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni

    Directory of Open Access Journals (Sweden)

    Heckel David G

    2007-12-01

    Full Text Available Abstract Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus. Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni

  6. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alexandra Anderson

    Full Text Available The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.

  7. Enhanced responses to tumor immunization following total body irradiation are time-dependent.

    Directory of Open Access Journals (Sweden)

    Adi Diab

    Full Text Available The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8(+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8(+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference

  8. Ambivalent role of the innate immune response in rabies virus pathogenesis.

    Science.gov (United States)

    Chopy, Damien; Pothlichet, Julien; Lafage, Mireille; Mégret, Françoise; Fiette, Laurence; Si-Tahar, Mustapha; Lafon, Monique

    2011-07-01

    The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.

  9. Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines.

    Science.gov (United States)

    Ovsyannikova, Inna G; Salk, Hannah M; Larrabee, Beth R; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Single-nucleotide polymorphisms (SNPs) in candidate immune response genes were evaluated for associations with measles- and rubella-specific neutralizing antibodies, interferon (IFN)-γ, and interleukin (IL)-6 secretion in two separate association analyses in a cohort of healthy immunized subjects. We identified six SNP associations shared between the measles-specific and rubella-specific immune responses, specifically neutralizing antibody titers (DDX58), secreted IL-6 (IL10RB, IL12B), and secreted IFN-γ (IFNAR2, TLR4). An intronic SNP (rs669260) in the antiviral innate immune receptor gene, DDX58, was significantly associated with increased neutralizing antibody titers for both measles and rubella viral antigens post-MMR vaccination (p values 0.02 and 0.0002, respectively). Significant associations were also found between IL10RB (rs2284552; measles study p value 0.006, rubella study p value 0.00008) and IL12B (rs2546893; measles study p value 0.005, rubella study p value 0.03) gene polymorphisms and variations in both measles- and rubella virus-specific IL-6 responses. We also identified associations between individual SNPs in the IFNAR2 and TLR4 genes that were associated with IFN-γ secretion for both measles and rubella vaccine-specific immune responses. These results are the first to indicate that there are SNP associations in common across measles and rubella vaccine immune responses and that SNPs from multiple genes involved in innate and adaptive immune response regulation may contribute to the overall human antiviral response.

  10. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    Science.gov (United States)

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells.

  11. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4(+) T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment.

  12. Immune response varies with rate of dispersal in invasive cane toads (Rhinella marina.

    Directory of Open Access Journals (Sweden)

    Gregory P Brown

    Full Text Available What level of immunocompetence should an animal maintain while undertaking long-distance dispersal? Immune function (surveillance and response might be down-regulated during prolonged physical exertion due to energy depletion, and/or to avoid autoimmune reactions arising from damaged tissue. On the other hand, heightened immune vigilance might be favored if the organism encounters novel pathogens as it enters novel environments. We assessed the links between immune defense and long-distance movement in a population of invasive cane toads (Rhinella marina in Australia. Toads were radio-tracked for seven days to measure their activity levels and were then captured and subjected to a suite of immune assays. Toads that moved further showed decreased bacteria-killing ability in their plasma and decreased phagocytic activity in their whole blood, but a heightened skin-swelling response to phytohemagglutinin. Baseline and post-stress corticosterone levels were unrelated to distance moved. Thus, long-distance movement in cane toads is associated with a dampened response in some systems and enhanced response in another. This pattern suggests that sustained activity is accompanied by trade-offs among immune components rather than an overall down or up-regulation. The finding that high mobility is accompanied by modification of the immune system has important implications for animal invasions.

  13. Influences of large sets of environmental exposures on immune responses in healthy adult men.

    Science.gov (United States)

    Yi, Buqing; Rykova, Marina; Jäger, Gundula; Feuerecker, Matthias; Hörl, Marion; Matzel, Sandra; Ponomarev, Sergey; Vassilieva, Galina; Nichiporuk, Igor; Choukèr, Alexander

    2015-08-26

    Environmental factors have long been known to influence immune responses. In particular, clinical studies about the association between migration and increased risk of atopy/asthma have provided important information on the role of migration associated large sets of environmental exposures in the development of allergic diseases. However, investigations about environmental effects on immune responses are mostly limited in candidate environmental exposures, such as air pollution. The influences of large sets of environmental exposures on immune responses are still largely unknown. A simulated 520-d Mars mission provided an opportunity to investigate this topic. Six healthy males lived in a closed habitat simulating a spacecraft for 520 days. When they exited their "spacecraft" after the mission, the scenario was similar to that of migration, involving exposure to a new set of environmental pollutants and allergens. We measured multiple immune parameters with blood samples at chosen time points after the mission. At the early adaptation stage, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations. For cell population frequencies, we found the subjects displayed increased neutrophils. These results may presumably represent the immune changes occurred in healthy humans when migrating, indicating that large sets of environmental exposures may trigger aberrant immune activity.

  14. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune