WorldWideScience

Sample records for antibody targeting ns3

  1. Intracytoplasmic stable expression of IgG1 antibody targeting NS3 helicase inhibits replication of highly efficient hepatitis C Virus 2a clone

    Directory of Open Access Journals (Sweden)

    Clementi Massimo

    2010-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of action of this recombinant antibody and to determine whether or not this antibody inhibits replication and infectivity of a highly efficient JFH1 HCV 2a virus clone. Results The antiviral effect of intracellular expressed antibody against the HCV 2a virus strain was examined using a full-length green fluorescence protein (GFP labeled infectious cell culture system. For this purpose, a Huh-7.5 cell line stably expressing the NS3 helicase gene specific IgG1 antibody was prepared. Replication of full-length HCV-GFP chimera RNA and negative-strand RNA was strongly inhibited in Huh-7.5 cells stably expressing NS3 antibody but not in the cells expressing an unrelated control antibody. Huh-7.5 cells stably expressing NS3 helicase antibody effectively suppressed infectious virus production after natural infection and the level of HCV in the cell free supernatant remained undetectable after first passage. In contrast, Huh-7.5 cells stably expressing an control antibody against influenza virus had no effect on virus production and high-levels of infectious HCV were detected in culture supernatants over four rounds of infectivity assay. A recombinant adenovirus based expression system was used to demonstrate that Huh-7.5 replicon cell line expressing the intracellular antibody strongly inhibited the replication of HCV-GFP RNA. Conclusion Recombinant human anti-HCV NS3 antibody clone inhibits replication of HCV 2a virus and infectious virus production. Intracellular

  2. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.

    Science.gov (United States)

    Byrd, Chelsea M; Grosenbach, Douglas W; Berhanu, Aklile; Dai, Dongcheng; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Yang, Guang; Tyavanagimatt, Shanthakumar; Harver, Chris; Wineinger, Kristin A; Page, Jessica; Stavale, Eric; Stone, Melialani A; Fuller, Kathleen P; Lovejoy, Candace; Leeds, Janet M; Hruby, Dennis E; Jordan, Robert

    2013-04-01

    Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.

  3. A DIVA system based on the detection of antibodies to non-structural protein 3 (NS3) of Bluetongue virus

    OpenAIRE

    2009-01-01

    Abstract Vaccination programs for the control of bluetongue (BT) in ruminants have limitations due to difficulties in differentiating between vaccinated and virus infected animals (DIVA). To overcome this problem a DIVA test that looks at a differential immune response to bluetongue virus (BTV) non-structural protein 3 (NS3) was developed. The NS3 encoding gene of strain BTV4/22045/PT04 was inserted into expression vector pET-28a and expressed in Escherichia coli strain JM109. Reco...

  4. Development and evaluation of a truncated recombinant NS3 antigen-based indirect ELISA for detection of pestivirus antibodies in sheep and goats.

    Science.gov (United States)

    Kalaiyarasu, Semmannan; Mishra, Niranjan; Rajukumar, Katherukamem; Nema, Ram Kumar; Behera, Sthita Pragnya

    2015-01-01

    The aim of this study was to develop an indirect ELISA using the helicase domain of bovine viral diarrhoea virus (BVDV) NS3 protein instead of full-length NS3 protein for detection of BVDV and BDV antibodies in sheep and goats and its validation by comparing its sensitivity and specificity with virus neutralization test (VNT) as the reference test. The purified 50 kDa recombinant NS3 protein was used as the coating antigen in the ELISA. The optimal concentration of antigen was 320 ng/well at a serum dilution of 1:20 and the optimal positive cut-off optical density value was 0.40 based on test results of 418 VNT negative sheep and goat sera samples. When 569 serum samples from sheep (463) and goats (106) were tested, the ELISA showed a sensitivity of 91.71% and specificity of 94.59% with BVDV VNT. A good correlation (93.67%) was observed between the two tests. It showed a sensitivity of 85% and specificity of 86.6% with VNT in detecting BDV antibody positive or negative samples. This study demonstrates the efficacy of truncated recombinant NS3 antigen based ELISA for seroepidemiological study of pestivirus infection in sheep and goats.

  5. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    determine their targets on the cell. The newly discovered antibodies will then be engineered for utility as new highly specific drugs and diagnostics in...are from the aldo-keto reductase family (AKRs). Remarkably, 3 of the top 10 genes with induction in the mesenchymal TES2b cells Figure 1. Amino

  6. X-ray structure of the pestivirus NS3 helicase and its conformation in solution.

    Science.gov (United States)

    Tortorici, M Alejandra; Duquerroy, Stéphane; Kwok, Jane; Vonrhein, Clemens; Perez, Javier; Lamp, Benjamin; Bricogne, Gerard; Rümenapf, Till; Vachette, Patrice; Rey, Félix A

    2015-04-01

    unwinding specificity of pNS3h, which is active only on RNA duplexes. We also show that pNS3h has a highly dynamic behavior--a characteristic probably shared with NS3 helicases from all Flaviviridae members--that could be targeted for drug design by using recent algorithms to specifically block molecular motion. Compounds that lock the enzyme in a single conformation or limit its dynamic range of conformations are indeed likely to block its helicase function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  8. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  9. Differential humoral and cellular immunity induced by vaccination using plasmid DNA and protein recombinant expressing the NS3 protein of dengue virus type 3.

    Science.gov (United States)

    Hurtado-Melgoza, M L; Ramos-Ligonio, A; Álvarez-Rodríguez, L M; Meza-Menchaca, T; López-Monteon, A

    2016-12-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serine-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work we evaluated the potential of the NS3 (protease domain) as a protective antigen by comparing the administration of a recombinant protein versus a DNA vaccine in the mouse model. BALB/c mice were immunized with the recombinant protein NS3-DEN3 via intraperitoneal and with plasmid pcDNA3/NS3-DEN3 intramuscularly and the immune response was evaluated. The activity of T lymphocytes was analyzed by the MTT assay, and cells of mice immunized with the recombinant protein showed no activity when stimulated with the homologous protein. However, cells from mice immunized with DNA, responded to stimulation with the recombinant protein. When the expression (RT-PCR) and cytokine production (ELISA) was evaluated in the splenocytes, different behavior depending on the type of immunization was observed, splenocytes of mice immunized with the recombinant protein expressed cytokines such as IL-4, IL-10 and produced high concentrations of IL-1, IL-6 and TNFα. Splenocytes from mice immunized with DNA expressed IL-2 and IFNγ and did not produce IL-6. In addition, immunization with the recombinant protein induced the production of antibodies that are detected up to a dilution 1:3200 by ELISA and Western blot assays, however, the serum of mice immunized with DNA presented no detectable antibody titers. The results obtained in this study show that administration of pcDNA3/NS3-DEN3 induces a favorable response in the activation of T lymphocytes with low production of specific

  10. Portulaca oleracea L. as a Prospective Candidate Inhibitor of Hepatitis C Virus NS3 Serine Protease.

    Science.gov (United States)

    Noreen, Sobia; Hussain, Ishtiaq; Tariq, Muhammad Ilyas; Ijaz, Bushra; Iqbal, Shahid; Qamar-ul-Zaman; Ashfaq, Usman Ali; Husnain, Tayyab

    2015-06-01

    Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV.

  11. Expression of NS3/NS4A Proteins of Hepatitis C Virus in Huh7 Cells Following Engineering Its Eukaryotic Expression Vector.

    Science.gov (United States)

    Behzadi, Mohammad Amin; Alborzi, Abdolvahab; Pouladfar, Gholamreza; Dianatpour, Mehdi; Ziyaeyan, Mazyar

    2015-11-01

    Although the development of novel therapeutic regimens to combat hepatitis C virus (HCV) infection have been speeded up with successful results, no efficient vaccines exist yet. This study aimed to construct a eukaryotic expression vector encoding nonstructural proteins, NS3/NS4A, of HCV genotype 3a, and evaluate its expression on Huh7 cell surface. The NS3/NS4A sequence was isolated from a patient with HCV-3a chronic infection, cloned into intermediate vector pTZ57R/T, and then used for engineering a mammalian expression vector, pDisplay, to direct the respective protein to the secretory pathway and anchor it to the plasma membrane. The expression of the protein in Huh7 cell, which was transiently transfected with the vector using Lipofectamine, was determined by immunocytochemical staining assay with fluorescein isothiocyanate (FITC)-conjugated antibodies to the HA/myc tags located besides the fusion fragment. The results showed that the fragment was successfully amplified and cloned into a eukaryotic expression vector. Sequencing and enzyme digestion analysis confirmed the cloned gene completion and its correct position in the pDisply-NS3/NS4A plasmid. Immunocytochemical staining revealed that the target protein was expressed as a membrane-anchored protein in the Huh7 cells. This study can serve as a fundamental experiment for the construction of a NS3/NS4A eukaryotic expression vector and its expression in mammalian cells. Further research is underway to evaluate the fragment immunogenicity in lab animal models.

  12. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    Science.gov (United States)

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  13. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  14. Data center network performance evaluation in ns3

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José

    2015-01-01

    In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3 and subjec......In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3...... we scale the network from 16 to 512 switches. The performance measurements are supported by abstract metrics that that also give a cost and complexity indication in choosing the right topology for the required application....

  15. Data center network performance evaluation in ns3

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José

    2015-01-01

    In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3...... we scale the network from 16 to 512 switches. The performance measurements are supported by abstract metrics that that also give a cost and complexity indication in choosing the right topology for the required application....

  16. Glypican-3 antibodies: a new therapeutic target for liver cancer

    OpenAIRE

    Ho, Mingqian Feng, Mitchell

    2013-01-01

    Glypican-3 (GPC3) is an emerging therapeutic target in hepatocellular carcinoma (HCC), even though the biological function of GPC3 remains elusive. Currently human (MDX-1414 and HN3) and humanized mouse (GC33 and YP7) antibodies that target GPC3 for HCC treatment are under different stages of preclinical or clinical development. Humanized mouse antibody GC33 is being evaluated in a phase II clinical trial. Human antibodies MDX-1414 and HN3 are under different stages of preclinical evaluation....

  17. Molecular Dynamics of the ZIKA Virus NS3 Helicase

    Science.gov (United States)

    Raubenolt, Bryan; Rick, Steven; The Rick Group Team

    The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.

  18. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  19. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  20. Boosting antibody responses by targeting antigens to dendritic cells.

    Science.gov (United States)

    Caminschi, Irina; Shortman, Ken

    2012-02-01

    Delivering antigens directly to dendritic cells (DCs) in situ, by injecting antigens coupled to antibodies specific for DC surface molecules, is a promising strategy for enhancing vaccine efficacy. Enhanced cytotoxic T cell responses are obtained if an adjuvant is co-administered to activate the DC. Such DC targeting is also effective at enhancing humoral immunity, via the generation of T follicular helper cells. Depending on the DC surface molecule targeted, antibody production can be enhanced even in the absence of adjuvants. In the case of Clec9A as the DC surface target, enhanced antibody production is a consequence of the DC-restricted expression of the target molecule. Few other cells absorb the antigen-antibody construct, therefore, it persists in the bloodstream, allowing sustained antigen presentation, even by non-activated DCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    International Nuclear Information System (INIS)

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  2. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    International Nuclear Information System (INIS)

    D’Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-01-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained

  3. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  4. Targeting FcRn for the modulation of antibody dynamics.

    Science.gov (United States)

    Ward, E Sally; Devanaboyina, Siva Charan; Ober, Raimund J

    2015-10-01

    The MHC class I-related receptor, FcRn, is a multitasking protein that transports its IgG ligand within and across cells of diverse origins. The role of this receptor as a global regulator of IgG homeostasis and transport, combined with knowledge of the molecular details of FcRn-IgG interactions, has led to opportunities to modulate the in vivo dynamics of antibodies and their antigens through protein engineering. Consequently, the generation of half-life extended antibodies has shown a rapid expansion over the past decade. Further, FcRn itself can be targeted by inhibitors to induce decreased levels of circulating IgGs, which could have applications in multiple clinical settings. The engineering of antibody-antigen interactions to reduce antibody-mediated buffering of soluble ligand has also developed into an active area of investigation, leading to novel antibody platforms designed to result in more effective antigen clearance. Similarly, the target-mediated elimination of antibodies by internalizing, membrane bound antigens (receptors) can be decreased using novel engineering approaches. These strategies, combined with subcellular trafficking analyses of antibody/antigen/FcRn behavior in cells to predict in vivo behavior, have considerable promise for the production of next generation therapeutics and diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E. (UIC); (NWU); (Novalex); (DNSK)

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  6. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    Science.gov (United States)

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Structure-based drug design of novel peptidomimetic cellulose derivatives as HCV-NS3 protease inhibitors.

    Science.gov (United States)

    Saleh, Noha A; Elshemey, Wael M

    2017-10-15

    Hepatitis C Virus (HCV) represents a global health threat not only due to the large number of reported worldwide HCV infections, but also due to the absence of a reliable vaccine for its prevention. HCV NS3 protease is one of the most important targets for drug design aiming at the deactivation of HCV. In the present work, molecular docking simulations are carried out for suggested novel NS3 protease inhibitors applied to the Egyptian genotype 4. These inhibitors are modifications of dimer cellulose by adding a hexa-peptide to the cellulose at one of the positions 2, 3, 6, 2', 3' or 6'. Results show that the inhibitor compound with the hexa-peptide at position 6 shows significantly higher simulation docking score with HCV NS3 protease active site. This is supported by low total energy value of docking system, formation of two H-bonds with HCV NS3 protease active site residues, high binding affinity and increased stability in the interaction system. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The road to toxin-targeted therapeutic antibodies.

    Science.gov (United States)

    Kozel, Thomas R

    2014-07-08

    Once an infection by a toxin-producing bacterium is well established, therapies such as antibiotics that target bacterial growth may have little impact on the ultimate patient outcome. In such cases, toxin-neutralizing antibodies offer an opportunity to block key virulence factors. New work by A. K. Varshney, X. Wang, J. L. Aguilar, M. D. Scharff, and B. C. Fries [mBio 5(3):e01007-14, 2014, doi:10.1128/mBio.01007-14] highlights the role of the antibody isotype in determining the efficacy of toxin-neutralizing antibodies in vivo. Varshney et al. examined the role of antibody isotype for protection in murine models of staphylococcal enterotoxin B (SEB)-induced lethal shock and sepsis produced by SEB-producing Staphylococcus aureus. Murine antibodies of the IgG2a isotype were more protective than antibodies of the IgG1 and IgG2b isotypes that have identical variable regions and binding activity. These results add to the complexity inherent in the selection and optimization of antibodies for anti-infective passive immunization and emphasize the need to use relevant in vivo models to evaluate potential therapeutic monoclonal antibodies. Copyright © 2014 Kozel.

  9. Targeted cancer therapy through antibody fragments-decorated nanomedicines.

    Science.gov (United States)

    Alibakhshi, Abbas; Abarghooi Kahaki, Fatemeh; Ahangarzadeh, Shahrzad; Yaghoobi, Hajar; Yarian, Fatemeh; Arezumand, Roghaye; Ranjbari, Javad; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2017-12-28

    Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hinder reproducible manufacture in clinical studies. Therefore, novel approaches have moved towards minimizing and engineering conventional antibodies as fragments like scFv, Fab, nanobody, bispecific antibody, bifunctional antibody, diabody and minibody preserving their functional potential. Different formats of antibody fragments have been reviewed in this literature update, in terms of structure and function, as smart ligands in cancer diagnosis and therapy of tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    Science.gov (United States)

    Costa, Simone M; Yorio, Anna Paula; Gonçalves, Antônio J S; Vidale, Mariana M; Costa, Emmerson C B; Mohana-Borges, Ronaldo; Motta, Marcia A; Freire, Marcos S; Alves, Ada M B

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  11. Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient.

    Directory of Open Access Journals (Sweden)

    Paola J S Provazzi

    Full Text Available The hepatitis C virus (HCV is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.

  12. Specific targeting of tumor cells by lyophilisomes functionalized with antibodies

    NARCIS (Netherlands)

    van Bracht, Etienne; Stolle, Sarah; Hafmans, Theo G.; Boerman, Otto C.; Oosterwijk, Egbert; van Kuppevelt, Toin H.; Daamen, Willeke F.

    Lyophilisomes are a novel class of proteinaceous biodegradable nano/micro drug delivery capsules prepared by freezing, annealing and Iyophilization. In the present study, lyophilisomes were functionalized for active targeting by antibody conjugation in order to obtain a selective drug-carrier

  13. GABARAPL1 antibodies: target one protein, get one free!

    Science.gov (United States)

    Le Grand, Jaclyn Nicole; Chakrama, Fatima Zahra; Seguin-Py, Stéphanie; Fraichard, Annick; Delage-Mourroux, Régis; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël

    2011-11-01

    Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.

  14. Discovery of novel phosphonate derivatives as hepatitis C virus NS3 protease inhibitors.

    Science.gov (United States)

    Sheng, X Christopher; Pyun, Hyung-Jung; Chaudhary, Kleem; Wang, Jianying; Doerffler, Edward; Fleury, Melissa; McMurtrie, Darren; Chen, Xiaowu; Delaney, William E; Kim, Choung U

    2009-07-01

    A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.

  15. Antibody targeting of Cathepsin S induces antibody-dependent cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kwok Hang Fai

    2011-12-01

    Full Text Available Abstract Background Proteolytic enzymes have been implicated in driving tumor progression by means of their cancer cell microenvironment activity where they promote proliferation, differentiation, apoptosis, migration, and invasion. Therapeutic strategies have focused on attenuating their activity using small molecule inhibitors, but the association of proteases with the cell surface during cancer progression opens up the possibility of targeting these using antibody dependent cellular cytotoxicity (ADCC. Cathepsin S is a lysosomal cysteine protease that promotes the growth and invasion of tumour and endothelial cells during cancer progression. Our analysis of colorectal cancer patient biopsies shows that cathepsin S associates with the cell membrane indicating a potential for ADCC targeting. Results Here we report the cell surface characterization of cathepsin S and the development of a humanized antibody (Fsn0503h with immune effector function and a stable in vivo half-life of 274 hours. Cathepsin S is expressed on the surface of tumor cells representative of colorectal and pancreatic cancer (23%-79% positive expression. Furthermore the binding of Fsn0503h to surface associated cathepsin S results in natural killer (NK cell targeted tumor killing. In a colorectal cancer model Fsn0503h elicits a 22% cytotoxic effect. Conclusions This data highlights the potential to target cell surface associated enzymes, such as cathepsin S, as therapeutic targets using antibodies capable of elicitingADCC in tumor cells.

  16. NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting; Ren, Xiaoming; Adams, Rebecca L.; Pyle, Anna Marie; Ou, J. -H. James

    2017-10-25

    Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determine whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3' overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1.

    IMPORTANCEGenotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important

  17. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  18. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    Full text: Mucins are high molecular-weight heavily glycosylated glycoproteins with many oligosaccharide side-chains, linked to a protein backbone called apomucin. A total of 19 different mucin genes (MUC1-MUC4, MUC5B, MUC5AC, MUC6-MUC18) have been identified to date. Mucins are present on the surface of most epithelial cells and play a role in their protection and lubrication. In cancer cells the mucin molecule becomes altered, thus representing an important target for diagnosis and therapy. Urinary epithelial mucin1 (MUC1) is found to be frequently up-regulated and abnormally glycosylated in a number of common malignancies, including breast, bladder, colon, ovarian and gastric cancer. The monoclonal antibody C595 is an IgG3 murine MAb raised against the protein core of human MUC1. Epitope mapping has shown that C595 recognizes a tetrapeptide motif (RPAP) within the protein core of MUC1 mucin that contains a large domain of multiples of a highly conserved 20-amino-acid-repeat sequence (PDTRPAPGSTAPPAHGVTSA). This antibody has previously been radiolabelled with 99m Tc and 111 In and used for imaging a range of tumour types including ovary, breast and bladder. The antibody has also been radiolabelled with 67 Cu and 188 Re for the therapy of superficial bladder cancer. More recently we have investigated the pre-clinical use of the C595 antibody for targeted alpha therapy using 213 Bi which emits alpha particles with high linear energy transfer (LET), short range (80 m) radiation and has a short physical half-life of 45.6 minutes. Alpha particles are some 7300 times heavier than beta particles and in theory, following binding of an alpha immunocongugates to the target, a large fraction of the alpha particle energy is delivered to cancer cells, with minimal concomitant radiation of normal tissues. 213 Bi was produced from the 225 Ac/ 213 Bi generator. For antibody conjugation the chelator, cyclic diethylenetriaminepentacetic acid anhydride (DTPA) was used. Initial

  19. Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease

    Science.gov (United States)

    Frecer, Vladimir; Miertus, Stanislav

    2010-03-01

    Serine protease activity of the NS3 protein of Dengue virus is an important target of antiviral agents that interfere with the viral polyprotein precursor processing catalyzed by the NS3 protease (NS3pro), which is important for the viral replication and maturation. Recent studies showed that substrate-based peptidomimetics carrying an electrophilic warhead inhibit the NS2B-NS3pro cofactor-protease complex with inhibition constants in the low micromolar concentration range when basic amino acid residues occupy P1 and P2 positions of the inhibitor, and an aldehyde warhead is attached to the P1. We have used computer-assisted combinatorial techniques to design, focus using the NS2B-NS3pro receptor 3D structure, and in silico screen a virtual library of more than 9,200 peptidomimetic analogs targeted around the template inhibitor Bz-Nle-Lys-Arg-Arg- H (Bz—benzoyl) that are composed mainly of unusual amino acid residues in all positions P1-P4. The most promising virtual hits were analyzed in terms of computed enzyme-inhibitor interactions and Adsorption, Distribution, Metabolism and Excretion (ADME) related physico-chemical properties. Our study can direct the interest of medicinal chemists working on a next generation of antiviral chemotherapeutics against the Dengue Fever towards the explored subset of the chemical space that is predicted to contain peptide aldehydes with NS3pro inhibition potencies in nanomolar range which display ADME-related properties comparable to the training set inhibitors.

  20. In vitro inhibitory analysis of consensus siRNAs against NS3 gene of hepatitis C virus 1a genotype.

    Science.gov (United States)

    Shahid, Imran; AlMalki, Waleed Hassan; AlRabia, Mohammed Wanees; Mukhtar, Mohammed Hasan; Almalki, Shaia Saleh R; Alkahtani, Saad Ahmed; Ashgar, Sami S; Faidah, Hani S; Hafeez, Muhammad Hassan

    2017-07-01

    To explore inhibitory effects of genome-specific, chemically synthesized siRNAs (small interference RNA) against NS3 gene of hepatitis C virus (HCV) 1a genotype in stable Huh-7 (human hepatoma) cells as well as against viral replication in serum-inoculated Huh-7 cells. Stable Huh-7 cells persistently expressing NS3 gene were produced under antibiotic gentamycin (G418) selection. The cell clones resistant to 1000 μg antibiotic concentration (G418) were picked as stable cell clones. The NS3 gene expression in stable cell clone was confirmed by RT-PCR and Western blotting. siRNA cell cytotoxicity was determined by MTT cell proliferation assay. Stable cell lines were transfected with sequence specific siRNAs and their inhibitory effects were determined by RT-PCR, real-time PCR and Western blotting. The viral replication inhibition by siRNAs in serum inoculated Huh-7 cells was determined by real-time PCR. RT-PCR and Western blot analysis confirmed NS3 gene and protein expression in stable cell lines on day 10, 20 and 30 post transfection. MTT cell proliferation assay revealed that at most concentrated dose tested (50 nmol/L), siRNA had no cytotoxic effects on Huh-7 cells and cell proliferation remained unaffected. As demonstrated by the siRNA time-dependent inhibitory analysis, siRNA NS3-is44 showed maximum inhibition of NS3 gene in stable Huh-7 cell clones at 24 (80%, P = 0.013) and 48 h (75%, P = 0.002) post transfection. The impact of siRNAs on virus replication in serum inoculated Huh-7 cells also demonstrated significant decrease in viral copy number, where siRNA NS3-is44 exhibited 70% (P siRNA synergism (NS3-is33 + NS3-is44) decreased viral load by 84% (P siRNA (i.e., 64%-70% (P siRNAs mixture (NS5B-is88 + NS3-is33) targeting different region of HCV genome (NS5B and NS3) also decreased HCV viral load by 85% (P siRNA inhibitory effects alone (70% and 64% respectively, P siRNAs directed against NS3 gene significantly decreased mRNA and protein

  1. Cell Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer Michael Lilly, MD Richard Weisbart, MD Medical...0534, entitled Cell- penetrating bispecific antibodies for targeting oncogenic transcription factors in advanced prostate cancer . The research is a... Prostate cancer , antibody, bispecific, androgen receptor, castration-resistant 3

  2. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  3. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben

    2016-01-01

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and pre...

  4. Discovering key residues of dengue virus NS2b-NS3-protease: New binding sites for antiviral inhibitors design.

    Science.gov (United States)

    Aguilera-Pesantes, D; Robayo, L E; Méndez, P E; Mollocana, D; Marrero-Ponce, Y; Torres, F J; Méndez, M A

    2017-10-28

    The NS2B-NS3 protease is essential for the Dengue Virus (DENV) replication process. This complex constitutes a target for efficient antiviral discovery because a drug could inhibit the viral polyprotein processing. Furthermore, since the protease is highly conserved between the four Dengue virus serotypes, it is probable that a drug would be equally effective against all of them. In this article, a strategy is reported that allowed us to identify influential residues on the function of the Dengue NS2b-NS3 Protease. Moreover, this is a strategy that could be applied to virtually any protein for the search of alternative influential residues, and for non-competitive inhibitor development. First, we incorporated several features derived from computational alanine scanning mutagenesis, sequence, structure conservation, and other structure-based characteristics. Second, these features were used as variables to obtain a multilayer perceptron model to identify defined groups (clusters) of key residues as possible candidate pockets for binding sites of new leads on the DENV protease. The identified residues included: i) amino acids close to the beta sheet-loop-beta sheet known to be important in its closed conformation for NS2b ii) residues close to the active site, iii) several residues evenly spread on the NS2b-NS3 contact surface, and iv) some inner residues most likely related to the overall stability of the protease. In addition, we found concordance on our list of residues with previously identified amino acids part of a highly conserved peptide studied for vaccine development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue

    Directory of Open Access Journals (Sweden)

    Liliana Morales

    2017-01-01

    Resultados. Los anticuerpos producidos fueron útiles en ensayos de Western blot e inmunofluorescencia y se reportó por primera vez un anticuerpo policlonal anti-NS3 que permitió la inmunoprecipitación de la proteína viral y la detecta con Western blot sin necesidad de inducir sobreexpresión de NS3 o de usar extractos de células marcados metabólicamente con radioisótopos. Conclusión. Las proteínas recombinantes expresadas y los anticuerpos producidos constituyen herramientas valiosas para estudiar procesos infecciosos del DENV que involucren a la proteína NS3 y evaluar pruebas dirigidas a interferir las funciones de esta proteína.

  6. Males without apparent alloimmunization could have HLA antibodies that recognize target HLA specificities expressed on cells.

    Science.gov (United States)

    Nakamura, J; Nakajima, F; Kamada, H; Tadokoro, K; Nagai, T; Satake, M

    2017-05-01

    Human leukocyte antigen (HLA) antibodies, which are involved in the development of transfusion-related side effects such as transfusion-related lung injury, are sometimes found in males without a history of alloimmunization (eg, transplantation and transfusion). Whether HLA antibodies in male donors can interact with their target HLA specificities expressed on cells have not been completely investigated. The HLA antibodies detected in 7 male donors were characterized. Flow cytometry and immunocomplex capture fluorescence analysis were performed to evaluate the ability of these antibodies to bind with target HLA specificities expressed on cells. The association of these antibodies with complement was examined using anti-C1q antibody. Sustainability of HLA antibodies over time was compared in 26 male vs 57 female donors. The antibodies from all 7 donors recognized intact HLA molecules coated onto microbeads. The antibodies in 2 of 7 donors also recognized their target HLA specificities expressed on cells. Furthermore, the antibodies in one of these 2 donors showed HLA specificities that involved complement binding. Twenty-one of 26 initially positive male donors had turned negative for HLA antibody at least 1 year after their initial positive screening, whereas HLA antibody positivity was maintained for a long time in most female donors. Males without apparent alloimmunization could have HLA antibodies that recognize their target HLA specificities on cells and that could potentially modify molecular events in affected cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies.

    Science.gov (United States)

    Dingjan, Tamir; Spendlove, Ian; Durrant, Lindy G; Scott, Andrew M; Yuriev, Elizabeth; Ramsland, Paul A

    2015-10-01

    Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Primuline Derivatives That Mimic RNA to Stimulate Hepatitis C Virus NS3 Helicase-catalyzed ATP Hydrolysis*

    Science.gov (United States)

    Sweeney, Noreena L.; Shadrick, William R.; Mukherjee, Sourav; Li, Kelin; Frankowski, Kevin J.; Schoenen, Frank J.; Frick, David N.

    2013-01-01

    ATP hydrolysis fuels the ability of helicases and related proteins to translocate on nucleic acids and separate base pairs. As a consequence, nucleic acid binding stimulates the rate at which a helicase catalyzes ATP hydrolysis. In this study, we searched a library of small molecule helicase inhibitors for compounds that stimulate ATP hydrolysis catalyzed by the hepatitis C virus (HCV) NS3 helicase, which is an important antiviral drug target. Two compounds were found that stimulate HCV helicase-catalyzed ATP hydrolysis, both of which are amide derivatives synthesized from the main component of the yellow dye primuline. Both compounds possess a terminal pyridine moiety, which was critical for stimulation. Analogs lacking a terminal pyridine inhibited HCV helicase catalyzed ATP hydrolysis. Unlike other HCV helicase inhibitors, the stimulatory compounds differentiate between helicases isolated from various HCV genotypes and related viruses. The compounds only stimulated ATP hydrolysis catalyzed by NS3 purified from HCV genotype 1b. They inhibited helicases from other HCV genotypes (e.g. 1a and 2a) or related flaviviruses (e.g. Dengue virus). The stimulatory compounds interacted with HCV helicase in the absence of ATP with dissociation constants of about 2 μm. Molecular modeling and site-directed mutagenesis studies suggest that the stimulatory compounds bind in the HCV helicase RNA-binding cleft near key residues Arg-393, Glu-493, and Ser-231. PMID:23703611

  9. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication.

    Science.gov (United States)

    Kouretova, Jenny; Hammamy, M Zouhir; Epp, Anton; Hardes, Kornelia; Kallis, Stephanie; Zhang, Linlin; Hilgenfeld, Rolf; Bartenschlager, Ralf; Steinmetzer, Torsten

    2017-12-01

    West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH 2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11 µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.

  10. Engineered exosomes boost the HCV NS3-specific CD8+ T lymphocyte immunity in humans

    Directory of Open Access Journals (Sweden)

    Simona Anticoli

    2016-01-01

    Full Text Available At the present, no anti-Hepatitis C virus (HCV HCV vaccine is available, and many patients failed the treatment with new class of HCV inhibitors. In HCV infection, both experimental and clinic evidences indicate that a strong CTL-immune response could have significant therapeutic effects. We developed an innovative anti-HCV CD8+ T immunogen based on the uploading in engineered exosomes of full-length HCV-NS3 protein. HCV NS3 exosomes appeared immunogenic when injected in mice, as proven by the detection of a memory CD8+ T lymphocyte pool two weeks after the last of three immunizations. On the other hand, dendritic cells isolated from PBMCs of HCV infected patients activate autologous HCV NS3-specific CD8+ T lymphocytes upon challenge with HCV NS3 exosomes. These results provide the proof-of-principle that engineered exosomes can boost the CD8+ T cell immunity in HCV-infected patients, thus representing a suitable option for patients resisting the therapies with recently discovered HCV inhibitors.

  11. Molecular dynamic simulation of complex NS2B-NS3 DENV2 ...

    African Journals Online (AJOL)

    Nissia

    2013-07-10

    Jul 10, 2013 ... Molecular dynamic simulation of complex NS2B-NS3. DENV2 protease with potential ... results provide conformational changes of enzyme-inhibitor complex that is shown by root-mean- square deviation (RMSD) values. ..... utilized MMFF94x and NVT (N=constant number,. V=volume, and T=temperature) ...

  12. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination

    Directory of Open Access Journals (Sweden)

    Gupte Gouri M

    2012-03-01

    Full Text Available Abstract Background Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1 and non-structural region-3 (NS3 components. Results HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer to 92.2% (variant-4 when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18 and Th2 (Il4 genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. Conclusion The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes

  14. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination.

    Science.gov (United States)

    Gupte, Gouri M; Arankalle, Vidya A

    2012-03-27

    Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1) and non-structural region-3 (NS3) components. HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer) to 92.2% (variant-4) when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH)3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18) and Th2 (Il4) genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes, which could generate both cellular and humoral

  15. Identification and Analysis of Novel Inhibitors against NS3 Helicase and NS5B RNA-Dependent RNA Polymerase from Hepatitis C Virus 1b (Con1

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-11-01

    Full Text Available Hepatitis C virus (HCV leads to severe liver diseases, including liver fibrosis, cirrhosis and hepatocellular carcinoma. Non-structural protein 3 helicase (NS3h and non-structural protein 5B RNA-dependent RNA polymerase (NS5B are involved in the replication of HCV RNA genome, and have been proved to be excellent targets for discovery of direct-acting antivirals. In this study, two high-throughput screening systems, fluorescence polarization (FP-based ssDNA binding assay and fluorescence intensity (FI-based dsRNA formation assay, were constructed to identify candidate NS3h and NS5B inhibitors, respectively. A library of approximately 800 small molecules and crude extracts, derived from marine microorganisms or purchased from the National Compound Resource Center, China, were screened, with three hits selected for further study. Natural compound No.3A5, isolated from marine fungi, inhibited NS3h activity with an IC50 value of 2.8 μM. We further demonstrated that compound No.3A5 inhibited the abilities of NS3h to bind ssDNA in electrophoretic mobility shift assay and to hydrolyze ATP. The NS3h-inhibitory activity of compound No.3A5 was reversible in our dilution assay, which indicated there was no stable NS3h-No.3A5 complex formed. Additionally, compound No.3A5 exhibited no binding selectivity on NS3h or single strand binding protein of Escherichia coli. In NS5B assays, commercial compounds No.39 and No.94 previously reported as kinase inhibitors were found to disrupt dsRNA formation, and their IC50 values were 62.9 and 18.8 μM, respectively. These results highlight how identifying new uses for existing drugs is an effective method for discovering novel HCV inhibitors. To our knowledge, all inhibitors reported in this study were originally discovered with HCV anti-non-structural protein activities in vitro.

  16. Cloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients

    Directory of Open Access Journals (Sweden)

    Mahrou Sadri

    2015-02-01

    Full Text Available Objective(s: Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3 of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim of this study was cloning and expression of HCV NS3 helicase fragment in Escherichia coli BL21 (DE3 using pET102/D-TOPO expression vector and studying immunoreactivity of the expressed antigen in Iranian infected with hepatitis C. Materials and Methods: The viral RNA was extracted from the serum of HCV infected patient. The NS3 helicase region was amplified by RT-PCR. The PCR product was directionally cloned into the expression vector pET102/D-TOPO and transformed into the BL21 strain of E. coli (DE3. The transformed bacteria were then induced by adding 1mM isopropyl-β-D-thiogalactopyranoside (IPTG into the culture medium to enhance the protein expression. SDS-PAGE and western blotting were carried out to identify the protein under investigation, and finally purified recombinant fusion protein was used as the antigen for ELISA method. Results: Theinsertion of theDNA fragment of the NS3 regioninto the expression vectorwas further confirmed by PCR and sequencing. SDS-PAGE analysis showed the successful expression of the recombinant protein of interest. Furthermore, immunoreactivity of fusion NS3 helicase was confirmed by ELISA and western blotting. Conclusion: It seems that this recombinant protein could be a useful source of antigen for future studies on HCV diagnosis and therapy.

  17. Neurofilament light as an immune target for pathogenic antibodies.

    Science.gov (United States)

    Puentes, Fabiola; van der Star, Baukje J; Boomkamp, Stephanie D; Kipp, Markus; Boon, Louis; Bosca, Isabel; Raffel, Joel; Gnanapavan, Sharmilee; van der Valk, Paul; Stephenson, Jodie; Barnett, Susan C; Baker, David; Amor, Sandra

    2017-12-01

    Antibodies to neuronal antigens are associated with many neurological diseases including paraneoplastic neurological disorders, epilepsy, amyotrophic lateral sclerosis and multiple sclerosis. Immunization with neuronal antigens such as neurofilament light (NF-L), a neuronal intermediate filament in axons, has been shown to induce neurological disease and spasticity in mice. Also, although antibodies to NF-L are widely used as surrogate biomarkers of axonal injury in amyotrophic lateral sclerosis and multiple sclerosis, it remains to be elucidated if antibodies to NF-L contribute to neurodegeneration and neurological disease. To address this, we examined the pathogenic role of antibodies directed to NF-L in vitro using spinal cord co-cultures and in vivo in experimental autoimmune encephalomyelitis (EAE) and optic neuritis animal models of multiple sclerosis. Here we show that peripheral injections of antibodies to NF-L augmented clinical signs of neurological disease in acute EAE, increased retinal ganglion cell loss in experimental optic neuritis and induced neurological signs following intracerebral injection into control mice. The pathogenicity of antibodies to NF-L was also observed in spinal cord co-cultures where axonal loss was induced. Taken together, our results reveal that as well as acting as reliable biomarkers of neuronal damage, antibodies to NF-L exacerbate neurological disease, suggesting that antibodies to NF-L generated during disease may also be pathogenic and play a role in the progression of neurodegeneration. © 2017 John Wiley & Sons Ltd.

  18. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Janmaat, Maarten L.; Mutis, Tuna

    2016-01-01

    CD38 is a multifunctional cell surface protein that has receptor as well as enzyme functions. The protein is generally expressed at low levels on various hematological and solid tissues, while plasma cells express particularly high levels of CD38. The protein is also expressed in a subset of hema...... strong anti-tumor activity in preclinical models. The antibody engages diverse mechanisms of action, including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, programmed cell death, modulation of enzymatic activity...... combination therapies with existing as well as emerging therapies, which are currently evaluated in the clinic. Finally, CD38 antibodies may have a role in the treatment of diseases beyond hematological malignancies, including solid tumors and antibody-mediated autoimmune diseases. © 2016 John Wiley & Sons A....../S. Published by John Wiley & Sons Ltd....

  19. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    Science.gov (United States)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  20. Automatic Traffic-Based Internet Control Message Protocol (ICMP) Model Generation for ns-3

    Science.gov (United States)

    2015-12-01

    more protocols (especially at different layers of the OSI model ), implementing an inference engine to extract inter- and intrapacket dependencies, and...ARL-TR-7543 ● DEC 2015 US Army Research Laboratory Automatic Traffic-Based Internet Control Message Protocol (ICMP) Model ...ICMP) Model Generation for ns-3 by Jaime C Acosta and Felipe Jovel Survivability/Lethality Analysis Directorate, ARL Felipe Sotelo and Caesar

  1. Site-specifically radioiodinated antibody for targeting tumors

    International Nuclear Information System (INIS)

    Rea, D.W.; Ultee, M.E.; Belinka, B.A. Jr.; Coughlin, D.J.; Alvarez, V.L.

    1990-01-01

    Labeling of an antibody site specifically through its carbohydrate regions preserves its antigen-binding activity. Previously site-specific labeling studies have conjugated antibodies with metallic radioisotopes or drugs. We now report site-specific labeling with a new radioiodinated compound, 2-hydroxy-5-iodo-3-methylbenzoyl hydrazide, whose synthesis we described earlier. The compound is reacted with aldehyde groups produced by specific oxidation of the carbohydrate portion of the antibody with sodium m-periodate. Optimized conjugation conditions give good recovery of active antibody containing 10 groups per molecule. The conjugate is stable in solution for at least several weeks at both 4 and -70 degrees C. When injected into nude mice bearing LS174T human cancer xenografts, the conjugate of B72.3 antibody localizes well to tumor tissue, with low uptake by other organs. This biodistribution is similar to that of conjugate prepared by using solid-phase chloramine-T (Iodohead). There are only two significant differences. First, the carbohydrate conjugate is much less susceptible to dehalogenation, and thus shows much less thyroid uptake. Secondly, the biological half-life of the carbohydrate conjugate was about half that of the chloramine-T one. This could be due primarily to lysis of the hydrazine bond through which the antibody is attached to the compound, which would then be excreted rapidly by itself. The new reagent will be especially useful for antibodies which either cannot be labeled by chloramine-T methods, or whose activity is impaired by them

  2. Production of recombinant non-structural protein-3 hydrophobic domain deletion (NS3ΔHD) protein of bluetongue virus from prokaryotic expression system as an efficient diagnostic reagent.

    Science.gov (United States)

    Mohanty, Nihar Nalini; Chacko, Nirmal; Biswas, Sanchay Kumar; Chand, Karam; Pandey, Awadh Bihari; Mondal, Bimalendu; Hemadri, Divakar; Shivachandra, Sathish Bhadravati

    2016-09-01

    Serological diagnostics for bluetongue (BT), which is an infectious, non-contagious and arthropod-borne virus disease of ruminants, are primarily dependent on availability of high quality native or recombinant antigen(s) based on either structural/non-structural proteins in sufficient quantity. Non-structural proteins (NS1-NS4) of BT virus are presumed candidate antigens in development of DIVA diagnostics. In the present study, NS3 fusion gene encoding for NS3 protein containing the N- and C-termini with a deletion of two hydrophobic domains (118A to S141 aa and 162S to A182 aa) and intervening variable central domain (142D to K161 aa) of bluetongue virus 23 was constructed, cloned and over-expressed using prokaryotic expression system. The recombinant NS3ΔHD fusion protein (∼38 kDa) including hexa-histidine tag on its both termini was found to be non-cytotoxic to recombinant Escherichia coli cells and purified by affinity chromatography. The purified rNS3ΔHD fusion protein was found to efficiently detect BTV-NS3 specific antibodies in indirect-ELISA format with diagnostic sensitivity (DSn = 94.4%) and specificity (DSp = 93.9%). The study indicated the potential utility of rNS3ΔHD fusion protein as candidate diagnostic reagent in developing an indirect-ELISA for sero-surveillance of animals for BTV antibodies under DIVA strategy, wherever monovalent/polyvalent killed BT vaccine formulations devoid of NS proteins are being practiced for immunization. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  3. Synergy between vascular targeting agents and antibody-directed therapy

    International Nuclear Information System (INIS)

    Pedley, R. Barbara; El-Emir, Ethaar; Flynn, Aiden A.; Boxer, Geoffrey M.; Dearling, Jason; Raleigh, James A.; Hill, Sally A.; Stuart, Sam; Motha, Reeya; Begent, Richard H.J.

    2002-01-01

    Purpose: Tumor heterogeneity necessitates the use of combined therapies. We have shown that combining antibody-directed therapy with antivascular agents converts a subcurative to a curative treatment. The purpose of this study was to investigate, by radioluminographic and microscopic techniques, the regional effects of the two complementary therapies. Methods and Materials: Nude mice bearing colorectal tumors were injected with 125 I-labeled anti-carcinoembryonic antigen antibody, and images were obtained for antibody distribution and modeling studies using radioluminography. For therapy studies, the mice were given radioimmunotherapy alone ( 131 I-A5B7 anti-carcinoembryonic antigen antibody), the antivascular agent combretastatin A-4 3-0-phosphate (200 mg/kg), or both. Extra mice were used to study the regional tumor effects of these therapies over time: relevant histochemical procedures were performed on tissue sections to obtain composite digital microscopic images of apoptosis, blood vessels, perfusion, hypoxia, and morphology. Results: Antibody distribution, modeling, and immunohistochemistry showed how radioimmunotherapy (7.4 MBq/40 μg antibody) effectively treated the outer, well-oxygenated tumor region only. Combretastatin A-4 3-0-phosphate treated the more hypoxic center, and in doing so altered the relationship between tumor parameters. Conclusion: The combined complementary therapies produced cures by destroying tumor regions with different pathophysiologies. Relating these regional therapeutic effects to the relevant tumor parameters microscopically allows optimization of therapy and improved translation to clinical trials

  4. Protective vaccination with hepatitis C virus NS3 but not core antigen in a novel mouse challenge model.

    Science.gov (United States)

    El-Gogo, Susanne; Staib, Caroline; Lasarte, Juan José; Sutter, Gerd; Adler, Heiko

    2008-02-01

    Efficient vaccines against hepatitis C virus (HCV) infection are urgently needed. Vaccine development has been hampered by the lack of suitable small animal models to reliably test the protective capacity of immmunization. We used recombinant murine gammaherpesvirus 68 (MHV-68) as a novel challenge virus in mice and tested the efficacy of heterologous candidate human vaccines based on modified vaccinia virus Ankara or adenovirus, both delivering HCV non-structural NS3 or core proteins. Recombinant MHV-68 expressing NS3 (MHV-68-NS3) or core (MHV-68-core) were constructed and characterized in vitro and in vivo. Mice immunized with NS3-specific vector vaccines and challenged with MHV-68-NS3 were infected but showed significantly reduced viral loads in the acute and latent phase of infection. NS3-specific CD8+ T cells were amplified in immunized mice after challenge with MHV-68-NS3. By contrast, we did neither detect a reduction of viral load nor an induction of core-specific CD8+ T cells after core-specific immunization. Our data suggest that the challenge system using recombinant MHV-68 is a highly suitable model to test the immunogenicity and protective capacity of HCV candidate vaccine antigens. Using this system, we demonstrated the usefulness of NS3-specific immunization. By contrast, our analysis rather discarded core as a vaccine antigen.

  5. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.

    Science.gov (United States)

    Schöne, Tobias; Grimm, Lena Lisbeth; Sakai, Naoki; Zhang, Linlin; Hilgenfeld, Rolf; Peters, Thomas

    2017-10-01

    West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3 pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3 pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3 pro , we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3 pro . Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC 50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3 pro . To identify the matching protein binding site, chemical shift perturbation studies employing 1 H, 15 N-TROSY-HSQC experiments with uniformly 2 H, 15 N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3 pro inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  7. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells

    Czech Academy of Sciences Publication Activity Database

    Ohradanova-Repic, A.; Nogueira, E.; Hartl, I.; Gomes, A.C.; Preto, A.; Steinhuber, E.; Muehlgrabner, V.; Repic, M.; Kuttke, M.; Zwirzitz, A.; Prouza, M.; Suchánek, M.; Wozniak-Knopp, G.; Hořejší, Václav; Schabbauer, G.; Cavaco-Paulo, A.; Stockinger, H.

    2018-01-01

    Roč. 14, č. 1 (2018), s. 123-130 ISSN 1549-9634 Institutional support: RVO:68378050 Keywords : Active targeting * Liposome functionalization * Immunoliposome * Antibody engineering * Recombinant Fab antibody fragment Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.720, year: 2016

  8. Simulación de redes móviles ad hoc mediante ns-3

    OpenAIRE

    Yuste Delgado, Antonio

    2014-01-01

    Introducción a la herramienta de simulación de redes network simulator 3 (ns-3). Este simulador es una de los programas más utilizados en la actualidad para la simulación de redes de diversos tipos, desde las redes ad hoc a redes móviles. El profesor Antonio Yuste especialista en protocolos de enrutamiento en redes móviles ad hoc utiliza este software en sus simulaciones. El objetivo de la charla es una dar una visión general del simulador y explicarnos cómo simular redes ad hoc móviles. U...

  9. Significance of monoclonal antibodies against the conserved epitopes within non-structural protein 3 helicase of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Yixin Bian

    Full Text Available Nonstructural protein 3 (NS3 of hepatitis C virus (HCV, codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192-1459. Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope (1231PTGSGKSTK(1239 (EP05 or core motif (1373IPFYGKAI(1380 (EP21, respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59-79% chronic and weakly with 30-58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.

  10. NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Xun-Cheng Su

    Full Text Available BACKGROUND: The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation in the absence of inhibitor and lining the substrate binding site (closed conformation in the presence of an inhibitor. METHODS: In this work, nuclear magnetic resonance (NMR spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS: In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION: Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.

  11. Using llama derived single domain antibodies to target botulinum neurotoxins

    Science.gov (United States)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  12. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  13. Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity.

    Science.gov (United States)

    Takagi, Youhei; Matsui, Kouhei; Nobori, Haruaki; Maeda, Haruka; Sato, Akihiko; Kurosu, Takeshi; Orba, Yasuko; Sawa, Hirofumi; Hattori, Kazunari; Higashino, Kenichi; Numata, Yoshito; Yoshida, Yutaka

    2017-08-01

    NS2B-NS3 protease is an essential enzyme for the replication of dengue virus (DENV), which continues to be a serious threat to worldwide public health. We designed and synthesized a series of cyclic peptides mimicking the substrates of this enzyme, and assayed their activity against the DENV-2 NS2B-NS3 protease. The introduction of aromatic residues at the appropriate positions and conformational restriction generated the most promising cyclic peptide with an IC 50 of 0.95μM against NS2B-NS3 protease. Cyclic peptides with proper positioning of additional arginines and aromatic residues exhibited antiviral activity against DENV. Furthermore, replacing the C-terminal amide bond of the polybasic amino acid sequence with an amino methylene moiety stabilized the cyclic peptides against hydrolysis by NS2B-NS3 protease, while maintaining their enzyme inhibitory activity and antiviral activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...

  15. In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    R. Balajee

    2016-01-01

    Full Text Available To identify the ligand that binds to a target protein with high affinity is a nontrivial task in computer-assisted approaches. Antiviral drugs have been identified for NS2B/NS3 protease enzyme on the mechanism to cleave the viral protein using the computational tools. The consequence of the molecular docking, free energy calculations, and simulation protocols explores the better ligand. It provides in-depth structural insights with the catalytic triad of His51, Asp75, Ser135, and Gly133. The MD simulation was employed here to predict the stability of the complex. The alanine mutation has been performed and its stability was monitored by using the molecular dynamics simulation. The minimal RMSD value suggests that the derived complexes are close to equilibrium. The DFT outcome reveals that the HOMO-LUMO gap of Ligand19 is 2.86 kcal/mol. Among the considered ligands, Ligand19 shows the lowest gap and it is suggested that the HOMO of Ligand19 may transfer the electrons to the LUMO in the active regions. The calculated binding energy of Ligand19 using the DFT method is in good agreement with the docking studies. The pharmacological activity of ligand was performed and satisfies Lipinski rule of 5. Moreover, the computational results are compared with the available IC50 values of experimental results.

  16. Antibodies to autoantigen targets in myasthenia and their value in clinical practice

    Directory of Open Access Journals (Sweden)

    S. I. Dedaev

    2014-01-01

    Full Text Available Myasthenia gravis is a classic autoimmune disease, which clinical manifestations in the form of weakness and abnormal muscle fatigue, due to the damaging effect of polyclonal antibodies to different structures of the neuromuscular synapse and muscles. The study of autoimmune substrate with myasthenia is routine in many clinics dealing with the problems of neuromuscular pathology, and the identification of high concentration of serum antibodies to a number of antigenic structures is the gold standard in diagnosis.Determination of serum antibodies to various autoimmune targets is an important tool in clinical practice. The majority of patients shows the high concentration of antibodies to AchR that gives the opportunity to use it as an important diagnostic criterion. The specificity of changes in the concentration of AchR-antibodies due to pathogenetic treatment allows to objectify the suppression of autoimmune aggression and evaluate the reliability of remission. However, the absence of AchR-antibodies when there are clear clinical and electromyography signs of myasthenia gravis suggests an autoimmune attack against a number of other targets, the most studied of which is the MuSK. On the contrary, patients with myasthenia gravis associated with thymoma, almost always have a higher level of AchR-antibodies. The presence of thymoma is accompanied by the generation of antibodies to titin and RyR, which is also observed in persons with late-onset myasthenia without thymoma. High concentration of antibodies to these structures can be interpreted as a reliable sign of thymoma in patients younger than 60 years.

  17. How immunoglobulin G antibodies kill target cells: revisiting an old paradigm.

    Science.gov (United States)

    Biburger, Markus; Lux, Anja; Nimmerjahn, Falk

    2014-01-01

    The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo. © 2014 Elsevier Inc. All rights reserved.

  18. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    International Nuclear Information System (INIS)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of 125 I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka[Ag total]/1 + Ka[Ag total]. Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10 8 M -1 are not likely to be useful for drug targeting or tumor imaging

  19. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. We have studied the binding of 125I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind (formula; see text). Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10(8) M-1 are not likely to be useful for drug targeting or tumor imaging.

  20. Research of G3-PLC net self-organization processes in the NS-3 modeling framework

    Science.gov (United States)

    Pospelova, Irina; Chebotayev, Pavel; Klimenko, Aleksey; Myakochin, Yuri; Polyakov, Igor; Shelupanov, Alexander; Zykov, Dmitriy

    2017-11-01

    When modern infocommunication networks are designed, the combination of several data transfer channels is widely used. It is necessary for the purposes of improvement in quality and robustness of communication. Communication systems based on more than one data transfer channel are named heterogeneous communication systems. For the design of a heterogeneous network, the most optimal solution is the use of mesh technology. Mesh technology ensures message delivery to the destination under conditions of unpredictable interference environment situation in each of two channels. Therewith, one of the high-priority problems is the choice of a routing protocol when the mesh networks are designed. An important design stage for any computer network is modeling. Modeling allows us to design a few different variants of design solutions and also to compute all necessary functional specifications for each of these solutions. As a result, it allows us to reduce costs for the physical realization of a network. In this article the research of dynamic routing in the NS3 simulation modeling framework is presented. The article contains an evaluation of simulation modeling applicability in solving the problem of heterogeneous networks design. Results of modeling may be afterwards used for physical realization of this kind of networks.

  1. Rapid and sharp decline in HCV upon monotherapy with NS3 protease inhibitor, ACH-1625.

    Science.gov (United States)

    Agarwal, Atul; Zhang, Bao; Olek, Elizabeth; Robison, Heather; Robarge, Lisa; Deshpande, Milind

    2012-01-01

    ACH-1625 is a linear peptidomimetic inhibitor that non-covalently binds to HCV NS3 protease with high potency and specificity. Short-term monotherapy of HCV genotype-1 infection with ACH-1625 was found to be safe and resulted in ≥3.3 log(10) IU/ml mean viral load reduction. These viral load decay data were analysed to compare HCV dynamics with prior reports and estimate the antiviral efficiency of ACH-1625. Drug efficiency was estimated by analysing the viral decay following initiation of up to 5 days of monotherapy with ACH-1625 in 36 chronically infected HCV genotype-1 patients. During this monotherapy study, ACH-1625 was administered either twice-a-day for 4.5 days or once daily for 5 days at 5 different dose levels in 36 patients. A sharp viral decay during the first 48 h following the initiation of ACH-1625 treatment afforded high drug efficiency estimates (≥0.9934). In addition, an increase in the estimated drug efficiency was observed with increasing ACH-1625 dose. The observed anti-HCV response was fairly uniform in this proof-of-concept study across the population of 36 patients. Estimates of the treatment-independent viral kinetics parameters were consistent with prior reports and the estimated drug efficiency of ACH-1625 monotherapy was very high (≥0.9934) in fasted and fed states.

  2. Implementation and Evaluation of WLAN 802.11ac for Residential Networks in NS-3

    Directory of Open Access Journals (Sweden)

    Andy Bubune Amewuda

    2018-01-01

    Full Text Available Wi-Fi has been an amazingly successful technology. Its success may be attributed to the fact that, despite the significant advances made in technology over the last decade, it has remained backward compatible. 802.11ac is the latest version of the wireless LAN (WLAN standard that is currently being adopted, and it promises to deliver very high throughput (VHT, operating at the 5 GHz band. In this paper, we report on an implementation of 802.11ac wireless LAN for residential scenario based on the 802.11ax task group scenario document. We evaluate the 802.11ac protocol performance under different operating conditions. Key features such as modulation coding set (MCS, frame aggregation, and multiple-input multiple-output (MIMO were investigated. We also evaluate the average throughput, delay, jitter, optimum range for goodput, and effect of station (STA density per access point (AP in a network. ns-3, an open source network simulator with features supporting 802.11ac, was used to perform the simulation. Results obtained indicate that very high data rates are achievable. The highest data rate, the best mean delay, and mean jitter are possible under combined features of 802.11ac (MIMO and A-MPDU.

  3. Implementation of quantum key distribution network simulation module in the network simulator NS-3

    Science.gov (United States)

    Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav

    2017-10-01

    As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.

  4. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment

    Directory of Open Access Journals (Sweden)

    María Elena Iezzi

    2018-02-01

    Full Text Available Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs, in particular those engineered from the variable heavy-chain fragment (VHH gene found in Camelidae heavy-chain antibodies (or IgG2 and IgG3, are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.

  5. DNA-templated antibody conjugation for targeted drug delivery to cancer cells

    DEFF Research Database (Denmark)

    Liu, Tianqiang

    2016-01-01

    conjugation strategy. Recently, a site-selective antibody conjugation method called “DNA-templated protein conjugation (DTPC)” was developed by our group. The site-selective covalently attachment of single-stranded DNA (ssDNA) to proteins was achieved by using a metal-affinity DNA probe and DNA-templated...... state to get a good pharmacological performance. Recombinant antibody engineering with non-natural amino acids, or enzyme-mediated conjugation approaches (transglutaminase, Sortase A or endoglycosidase) have been reported for producing homogeneous antibody conjugates. However, these methods require...... organic synthesis due to the wide existence of the 3-histidine cluster in most wild-type proteins. In this thesis, three projects that relate to targeted drug delivery to cancer cells based on the DTPC method is described. The first project was a delivery system which uses transferrin as the targeting...

  6. Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    NARCIS (Netherlands)

    Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna

    2016-01-01

    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in

  7. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    NARCIS (Netherlands)

    Melchers, Mark; Bontjer, Ilja; Tong, Tommy; Chung, Nancy P. Y.; Klasse, Per Johan; Eggink, Dirk; Montefiori, David C.; Gentile, Maurizio; Cerutti, Andrea; Olson, William C.; Berkhout, Ben; Binley, James M.; Moore, John P.; Sanders, Rogier W.

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these

  8. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature

    NARCIS (Netherlands)

    Huang, XM; Molema, G; King, S; Watkins, L; Edgington, TS; Thorpe, PE

    1997-01-01

    Selective occlusion of tumor vasculature was tested as a therapy for solid tumors in a mouse model. The formation of blood clots (thrombosis) within the tumor Vessels was initiated by targeting the cell surface domain of human tissue factor, by means of a bispecific antibody, to an experimentally

  9. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer

    OpenAIRE

    Prabhsimranjot Singh; Sudhamshi Toom; Yiwu Huang

    2017-01-01

    Abstract Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB) specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2...

  10. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    Science.gov (United States)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  11. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies.

    Science.gov (United States)

    Botkjaer, Kenneth A; Fogh, Sarah; Bekes, Erin C; Chen, Zhuo; Blouse, Grant E; Jensen, Janni M; Mortensen, Kim K; Huang, Mingdong; Deryugina, Elena; Quigley, James P; Declerck, Paul J; Andreasen, Peter A

    2011-08-15

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation. © The Authors Journal compilation © 2011 Biochemical Society

  12. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches

    Directory of Open Access Journals (Sweden)

    Vivek Chandramohan

    2015-01-01

    Full Text Available Current combination therapy of PEG-INF and ribavirin against the Hepatitis C Virus (HCV genotype-1 infections is ineffective in maintaining sustained viral response in 50% of the infection cases. New compounds in the form of protease inhibitors can complement the combination therapy. Asunaprevir is new to the drug regiment as the NS3-4A protease inhibitor, but it is susceptible to two mutations, namely, R155K and D168A in the protein. Thus, in our study, we sought to evaluate Andrographolide, a labdane-diterpenoid from the Andrographis paniculata plant as an effective compound for inhibiting the NS3-4A protease as well as its concomitant drug-resistant mutants by using molecular docking and dynamic simulations. Our study shows that Andrographolide has best docking scores of −15.0862, −15.2322, and −13.9072 compared to those of Asunaprevir −3.7159, −2.6431, and −5.4149 with wild-type R155K and D168A mutants, respectively. Also, as shown in the MD simulations, the compound was good in binding the target proteins and maintains strong bonds causing very less to negligible perturbation in the protein backbone structures. Our results validate the susceptibility of Asunaprevir to protein variants as seen from our docking studies and trajectory period analysis. Therefore, from our study, we hope to add one more option in the drug regiment to tackle drug resistance in HCV infections.

  13. Variability and resistance mutations in the hepatitis C virus NS3 protease in patients not treated with protease inhibitors

    Directory of Open Access Journals (Sweden)

    Luciana Bonome Zeminian

    2013-02-01

    Full Text Available The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3 have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

  14. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule.

    Science.gov (United States)

    Nollet, Marie; Stalin, Jimmy; Moyon, Anaïs; Traboulsi, Waël; Essaadi, Amel; Robert, Stéphane; Malissen, Nausicaa; Bachelier, Richard; Daniel, Laurent; Foucault-Bertaud, Alexandrine; Gaudy-Marqueste, Caroline; Lacroix, Romaric; Leroyer, Aurélie S; Guillet, Benjamin; Bardin, Nathalie; Dignat-George, Françoise; Blot-Chabaud, Marcel

    2017-12-22

    CD146 is an adhesion molecule present on many tumors (melanoma, kidney, pancreas, breast, ...). In addition, it has been shown to be expressed on vascular endothelial and smooth muscle cells. Generating an antibody able to specifically recognize CD146 in cancer cells (designated as tumor CD146), but not in normal cells, would thus be of major interest for targeting tumor CD146 without affecting the vascular system. We thus generated antibodies against the extracellular domain of the molecule produced in cancer cells and selected an antibody that specifically recognizes tumor CD146. This antibody (TsCD146 mAb) was able to detect CD146-positive tumors in human biopsies and in vivo , by PET imaging, in a murine xenograft model. In addition, TsCD146 mAb antibody was able to specifically detect CD146-positive cancer microparticles in the plasma of patients. TsCD146 mAb displayed also therapeutic effects since it was able to reduce the growth of human CD146-positive cancer cells xenografted in nude mice. This effect was due to a decrease in the proliferation and an increase in the apoptosis of CD146-positive cancer cells after TsCD146-mediated internalization of the cell surface CD146. Thus, TsCD146 mAb could be of major interest for diagnostic and therapeutic strategies against CD146-positive tumors in a context of personalized medicine.

  15. A novel monoclonal antibody targeting coxsackie virus and adenovirus receptor inhibits tumor growth in vivo.

    Science.gov (United States)

    Kawada, Manabu; Inoue, Hiroyuki; Kajikawa, Masunori; Sugiura, Masahito; Sakamoto, Shuichi; Urano, Sakiko; Karasawa, Chigusa; Usami, Ihomi; Futakuchi, Mitsuru; Masuda, Tohru

    2017-01-11

    To create a new anti-tumor antibody, we conducted signal sequence trap by retrovirus-meditated expression method and identified coxsackie virus and adenovirus receptor (CXADR) as an appropriate target. We developed monoclonal antibodies against human CXADR and found that one antibody (6G10A) significantly inhibited the growth of subcutaneous as well as orthotopic xenografts of human prostate cancer cells in vivo. Furthermore, 6G10A also inhibited other cancer xenografts expressing CXADR, such as pancreatic and colorectal cancer cells. Knockdown and overexpression of CXADR confirmed the dependence of its anti-tumor activity on CXADR expression. Our studies of its action demonstrated that 6G10A exerted its anti-tumor activity primarily through both antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Moreover, 6G10A reacted with human tumor tissues, such as prostate, lung, and brain, each of which express CXADR. Although we need further evaluation of its reactivity and safety in human tissues, our results show that a novel anti-CXADR antibody may be a feasible candidate for cancer immunotherapy.

  16. Self-assembly of carbon nanotubes and antibodies on tumours for targeted, amplified delivery

    Science.gov (United States)

    Mulvey, J. Justin; Villa, Carlos H.; McDevitt, Michael R.; Escorcia, Freddy E.; Casey, Emily; Scheinberg, David A.

    2013-01-01

    Single-walled carbon nanotubes (SWNTs) can deliver imaging agents or drugs to tumours and offer significant advantages over approaches based on antibodies or other nanomaterials. In particular, the nanotubes can carry a substantial amount of cargo (100 times more than a monoclonal antibody), but can still be rapidly eliminated from circulation by renal filtration, like a small molecule, due to their high aspect ratio. Here we show that SWNTs can target tumours in a two-step approach in which nanotubes modified with morpholino oligonucleotide sequences bind to cancer cells that have been pre-targeted with antibodies modified with oligonucleotide strands complementary to those on the nanotubes. The nanotubes can carry fluorophores or radioisotopes, and were shown to selectively bind to cancer cells in vitro and in tumour-bearing xenografted mice. The binding process is also found to lead to antigen capping and internalization of the antibody/nanotube complexes. The nanotube conjugates were labelled with both alpha-particle and gamma-ray emitting isotopes, at high specific activities. Conjugates labelled with alpha-particle generating 225Ac were found to clear rapidly, thus mitigating radioisotope toxicity, and were shown to be therapeutically effective in vivo. PMID:24077028

  17. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer

    Directory of Open Access Journals (Sweden)

    Prabhsimranjot Singh

    2017-05-01

    Full Text Available Abstract Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2 are one such protein, specific for several cancers, particularly gastric cancer and its metastases, leading to the development of anti-claudin 18.2 specific antibody, claudiximab. This review will highlight the latest development of claudiximab as first in class IMAB for the treatment of gastric cancer.

  18. Development of antibody-based c-Met inhibitors for targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Lee D

    2015-02-01

    Full Text Available Dongheon Lee, Eun-Sil Sung, Jin-Hyung Ahn, Sungwon An, Jiwon Huh, Weon-Kyoo You Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea Abstract: Signaling pathways mediated by receptor tyrosine kinases (RTKs and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics. Keywords: hepatocyte growth factor, ligands, receptor tyrosine kinase, signaling pathway, therapeutic agent

  19. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies.

    Science.gov (United States)

    Ellwanger, Kristina; Reusch, Uwe; Fucek, Ivica; Knackmuss, Stefan; Weichel, Michael; Gantke, Thorsten; Molkenthin, Vera; Zhukovsky, Eugene A; Tesar, Michael; Treder, Martin

    2017-01-01

    To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb) antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR), and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving K D s in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC 50 values in the range of 1-10 pM in vitro . They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs' high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.

  20. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies

    Directory of Open Access Journals (Sweden)

    Kristina Ellwanger

    2017-05-01

    Full Text Available To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR, and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving KDs in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC50 values in the range of 1–10 pM in vitro. They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs’ high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.

  1. Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins.

    Science.gov (United States)

    Nyakatura, Elisabeth K; Zak, Samantha E; Wec, Anna Z; Hofmann, Daniel; Shulenin, Sergey; Bakken, Russell R; Aman, M Javad; Chandran, Kartik; Dye, John M; Lai, Jonathan R

    2018-03-02

    Filoviruses (family Filoviridae ) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30%-90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases. However, the 2013-2016 epidemic in western Africa, caused by Ebola virus (EBOV), illustrated the potential of filovirus outbreaks to escalate to a much larger scale (over 28,000 suspected cases). Monoclonal antibodies (mAbs) against the envelope glycoprotein represent a promising therapeutic platform for managing filovirus infections. However, mAbs that exhibit neutralization or protective properties against multiple filoviruses are rare. Here, we examined a panel of engineered bi- and trispecific antibodies, whereby variable fragments of mAbs that target epitopes from multiple filoviruses were combined, for their capacity to neutralize viral infection across filovirus species. We found that bispecific combinations targeting EBOV and Sudan virus (SUDV, another ebolavirus), provide potent cross-neutralization and protection in mice. Furthermore, trispecific combinations, targeting EBOV, SUDV, and MARV, exhibited strong neutralization potential against all three viruses. These results provide important insight into multispecific antibody engineering against filoviruses and will inform future immunotherapeutic discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Structure-guided Discovery of a Novel Non-peptide Inhibitor of Dengue Virus NS2B-NS3 Protease.

    Science.gov (United States)

    Li, Linfeng; Basavannacharya, Chandrakala; Chan, Kitti Wing Ki; Shang, Luqing; Vasudevan, Subhash G; Yin, Zheng

    2015-09-01

    Dengue fever is a fast emerging epidemic-prone viral disease caused by dengue virus serotypes 1-4. NS2B-NS3 protease of dengue virus is a validated target to develop antiviral agents. A major limitation in developing dengue virus protease inhibitors has been the lack of or poor cellular activity. In this work, we extracted and refined a pharmacophore model based on X-ray crystal structure and predicted binding patterns, followed by a three-dimensional flexible database filtration. These output molecules were screened according to a docking-based protocol, leading to the discovery of a compound with novel scaffold and good cell-based bioactivity that has potential to be further optimized. The discovery of this novel scaffold by combination of in silico methods suggests that structure-guided drug discovery can lead to the development of potent dengue virus protease inhibitors. © 2014 John Wiley & Sons A/S.

  3. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2011-03-01

    Full Text Available Botulinum neurotoxin (BoNT potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP to link biotinylated molecules to glycophorin A (GPA on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.

  4. Extracorporeal adsorption therapy: A Method to improve targeted radiation delivered by radiometal-labeled monoclonal antibodies.

    Energy Technology Data Exchange (ETDEWEB)

    Nemecek, Eneida R.; Green, Damian J.; Fisher, Darrell R.; Pagal, John M.; Lin, Yukang; Gopal, A. K.; Durack, Lawrence D.; Rajendran, Joseph G.; Wilbur, D. S.; Nilsson, Rune; Sandberg, Bengt; Press, Oliver W.

    2008-04-01

    Many investigators have demonstrated the ability to treat hematologic malignancies with radiolabeled monoclonal antibodies targeting hematopoietic antigens such as anti-CD20 and anti-CD45. [1-5] Although the remission rates achieved with radioimmunotherapy (RIT) are relatively high, many patients subsequently relapse presumably due to suboptimal delivery of enough radiation to eradicate the malignancy. The dose-response of leukemia and lymphoma to radiation has been proven. Substantial amounts of radiation can be delivered by RIT if followed by hematopoietic cell transplantation to rescue the bone marrow from myeloablation.[ref] However, the maximum dose of RIT that can be used is still limited by toxicity to normal tissues affected by nonspecific delivery of radiation. Efforts to improve RIT focus on improving the therapeutic ratios of radiation in target versus non-target tissues by removing the fraction of radioisotope that fails to bind to target tissues and circulates freely in the bloodstream perfusing non-target tissues. Our group and others have explored several alternatives for removal of unbound circulating antibody. [refs] One such method, extracorporeal adsorption therapy (ECAT) consists of removing unbound antibody by a method similar to plasmapheresis after critical circulation time and distribution of antibody into target tissues have been achieved. Preclinical studies of ECAT in murine xenograft models demonstrated significant improvement in therapeutic ratios of radioactivity. Chen and colleagues demonstrated that a 2-hour ECAT procedure could remove 40 to 70% of the radioactivity from liver, lung and spleen. [ref] Although isotope concentration in the tumor was initially unaffected, a 50% decrease was noted approximately 36 hours after the procedure. This approach was also evaluated in a limited phase I pilot study of patients with refractory B-cell lymphoma. [ref] After radiographic confirmation of tumor localization of a test dose of anti-CD20

  5. Targeted Killing of Virally Infected Cells by Radiolabeled Antibodies to Viral Proteins

    Science.gov (United States)

    Dadachova, Ekaterina; Patel, Mahesh C; Toussi, Sima; Apostolidis, Christos; Morgenstern, Alfred; Brechbiel, Martin W; Gorny, Miroslaw K; Zolla-Pazner, Susan; Casadevall, Arturo; Goldstein, Harris

    2006-01-01

    Background The HIV epidemic is a major threat to health in the developing and western worlds. A modality that targets and kills HIV-1-infected cells could have a major impact on the treatment of acute exposure and the elimination of persistent reservoirs of infected cells. The aim of this proof-of-principle study was to demonstrate the efficacy of a therapeutic strategy of targeting and eliminating HIV-1-infected cells with radiolabeled antibodies specific to viral proteins in vitro and in vivo. Methods and Findings Antibodies to HIV-1 envelope glycoproteins gp120 and gp41 labeled with radioisotopes bismuth 213 (213Bi) and rhenium 188 (188Re) selectively killed chronically HIV-1-infected human T cells and acutely HIV-1-infected human peripheral blood mononuclear cells (hPBMCs) in vitro. Treatment of severe combined immunodeficiency (SCID) mice harboring HIV-1-infected hPBMCs in their spleens with a 213Bi- or 188Re-labeled monoclonal antibody (mAb) to gp41 resulted in a 57% injected dose per gram uptake of radiolabeled mAb in the infected spleens and in a greater than 99% elimination of HIV-1-infected cells in a dose-dependent manner. The number of HIV-1-infected thymocytes decreased 2.5-fold in the human thymic implant grafts of SCID mice treated with the 188Re-labeled antibody to gp41 compared with those treated with the 188Re-control mAb. The treatment did not cause acute hematologic toxicity in the treated mice. Conclusions The current study demonstrates the effectiveness of HIV-targeted radioimmunotherapy and may provide a novel treatment option in combination with highly active antiretroviral therapy for the eradication of HIV. PMID:17090209

  6. Synergistic interactions between the NS3(hel and E proteins contribute to the virulence of dengue virus type 1.

    Directory of Open Access Journals (Sweden)

    Luana de Borba

    Full Text Available BACKGROUND: Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus (DENV in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus transmissibility and pathogenicity has been obtained. METHODOLOGY/PRINCIPAL FINDINGS: We used reverse genetics techniques to engineer DENV-1 viruses with subsets of mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1 not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in vivo. The results demonstrated that paired mutations in the envelope protein (E and in the helicase domain of the NS3 (NS3(hel protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3(hel mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype. CONCLUSIONS/SIGNIFICANCE: The generation of recombinant viruses carrying specific E and NS3(hel proteins mutations increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively correlated with central nervous system damage, the strength of the immune response and animal mortality. The introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and provide insights into virus/host interactions

  7. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis.

    Science.gov (United States)

    Ashraf, S Q; Umana, P; Mössner, E; Ntouroupi, T; Brünker, P; Schmidt, C; Wilding, J L; Mortensen, N J; Bodmer, W F

    2009-11-17

    The effect of glycoengineering a membrane specific anti-carcinoembryonic antigen (CEA) (this paper uses the original term CEA for the formally designated CEACAM5) antibody (PR1A3) on its ability to enhance killing of colorectal cancer (CRC) cell lines by human immune effector cells was assessed. In vivo efficacy of the antibody was also tested. The antibody was modified using EBNA cells cotransfected with beta-1,4-N-acetylglucosaminyltransferase III and the humanised hPR1A3 antibody genes. The resulting alteration of the Fc segment glycosylation pattern enhances the antibody's binding affinity to the FcgammaRIIIa receptor on human immune effector cells but does not alter the antibody's binding capacity. Antibody-dependent cellular cytotoxicity (ADCC) is inhibited in the presence of anti-FcgammaRIII blocking antibodies. This glycovariant of hPR1A3 enhances ADCC 10-fold relative to the parent unmodified antibody using either unfractionated peripheral blood mononuclear or natural killer (NK) cells and CEA-positive CRC cells as targets. NK cells are far more potent in eliciting ADCC than either freshly isolated monocytes or granulocytes. Flow cytometry and automated fluorescent microscopy have been used to show that both versions of hPR1A3 can induce antibody-dependent cellular phagocytosis (ADCP) by monocyte-derived macrophages. However, the glycovariant antibody did not mediate enhanced ADCP. This may be explained by the relatively low expression of FcgammaRIIIa on cultured macrophages. In vivo studies show the efficacy of glycoengineered humanised IgG1 PR1A3 in significantly improving survival in a CRC metastatic murine model. The greatly enhanced in vitro ADCC activity of the glycoengineered version of hPR1A3 is likely to be clinically beneficial.

  8. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes.

    Science.gov (United States)

    Suzich, J A; Tamura, J K; Palmer-Hill, F; Warrener, P; Grakoui, A; Rice, C M; Feinstone, S M; Collett, M S

    1993-01-01

    Sequence motifs within the nonstructural protein NS3 of members of the Flaviviridae family suggest that this protein possesses nucleoside triphosphatase (NTPase) and RNA helicase activity. The RNA-stimulated NTPase activity of this protein from prototypic members of the Pestivirus and Flavivirus genera has recently been established and enzymologically characterized. Here, we experimentally demonstrate that the NS3 protein from a member of the third genus of Flaviviridae, human hepatitis C virus (HCV), also possesses a polynucleotide-stimulated NTPase activity. Characterization of the purified HCV NTPase activity showed that it exhibited reaction condition optima with respect to pH, MgCl2, and salt identical to those of the representative pestivirus and flavivirus enzymes. However, each NTPase also possessed several unique properties when compared with one another. Notably, the profile of polynucleotide stimulation of the NTPase activity was distinct for the three enzymes. The HCV NTPase was the only one whose activity was significantly enhanced by a deoxyribopolynucleotide. Additional distinguishing features among the three enzymes relating to the kinetic properties of their NTPase activities are discussed. These studies provide a foundation for investigation of the putative RNA helicase activity of these proteins and for further study of the role of the NS3 proteins of members of the Flaviviridae in the replication cycle of these viruses. Images PMID:8396675

  9. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging.

    Science.gov (United States)

    Pijlman, Gorben P; Kondratieva, Natasha; Khromykh, Alexander A

    2006-11-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

  10. Purification of antibodies to bacterial antigens by an immunoadsorbent and a method to quantify their reaction with insoluble bacterial targets

    International Nuclear Information System (INIS)

    Mathews, H.L.; Minden, P.

    1979-01-01

    A combination of procedures was employed to develop a radioimmunoassay which quantified the binding of antibodies to antigens of either intact Propionibacterium acnes or to antigens of insoluble extracts derived from the bacteria. Reactive antibody populations were purified by use of bacterial immunoadsorbents which were prepared by coupling P. acnes to diethylaminoethyl cellulose. Binding of antibodies was detected with [ 125 I]staphylococcal protein A ([ 125 I]SpA) and optimal conditions for the assay defined by varying the amounts of antibodies, bacterial antigenic targets and [ 125 I]SpA. In antibody excess, 100% of available [ 125 I]SpA was bound by the target-antibody complexes. However, when antibody concentration was limiting, a linear relationship was demonstrated between per cent specific binding of[ 125 I]SpA and antibodies bound to bacterial targets. These results were achieved only with immunoadsorbent-purified antibody populations and not with hyperimmune sera or IgG. The radioimmunoassay detected subtle antigenic differences and similarities between P. acnes, P. acnes extracts and a variety of unrelated microorganisms. (Auth.)

  11. Fitness landscape of the human immunodeficiency virus envelope protein that is targeted by antibodies

    Science.gov (United States)

    Louie, Raymond H. Y.; Kaczorowski, Kevin J.; Chakraborty, Arup K.; McKay, Matthew R.

    2018-01-01

    HIV is a highly mutable virus, and over 30 years after its discovery, a vaccine or cure is still not available. The isolation of broadly neutralizing antibodies (bnAbs) from HIV-infected patients has led to renewed hope for a prophylactic vaccine capable of combating the scourge of HIV. A major challenge is the design of immunogens and vaccination protocols that can elicit bnAbs that target regions of the virus’s spike proteins where the likelihood of mutational escape is low due to the high fitness cost of mutations. Related challenges include the choice of combinations of bnAbs for therapy. An accurate representation of viral fitness as a function of its protein sequences (a fitness landscape), with explicit accounting of the effects of coupling between mutations, could help address these challenges. We describe a computational approach that has allowed us to infer a fitness landscape for gp160, the HIV polyprotein that comprises the viral spike that is targeted by antibodies. We validate the inferred landscape through comparisons with experimental fitness measurements, and various other metrics. We show that an effective antibody that prevents immune escape must selectively bind to high escape cost residues that are surrounded by those where mutations incur a low fitness cost, motivating future applications of our landscape for immunogen design. PMID:29311326

  12. Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice

    Directory of Open Access Journals (Sweden)

    Mane V

    2012-08-01

    Full Text Available Viraj Mane,1 Silvia Muro1, 21Institute for Bioscience and Biotechnology Research, 2Fischell Department of Bioengineering, University of Maryland, College Park, MD, USAAbstract: Drug delivery to the gastrointestinal (GI tract is key for improving treatment of GI maladies, developing oral vaccines, and facilitating drug transport into circulation. However, delivery of formulations to the GI tract is hindered by pH changes, degradative enzymes, mucus, and peristalsis, leading to poor GI retention. Targeting may prolong residence of therapeutics in the GI tract and enhance their interaction with this tissue, improving such aspects. We evaluated nanocarrier (NC and ligand-mediated targeting in the GI tract following gastric gavage in mice. We compared GI biodistribution, degradation, and endocytosis between control antibodies and antibodies targeting the cell surface determinant intercellular adhesion molecule 1 (ICAM-1, expressed on GI epithelium and other cell types. These antibodies were administered either as free entities or coated onto polymer NCs. Fluorescence and radioisotope tracing showed proximal accumulation, with preferential retention in the stomach, jejunum, and ileum; and minimal presence in the duodenum, cecum, and colon by 1 hour after administration. Upstream (gastric retention was enhanced in NC formulations, with decreased downstream (jejunal accumulation. Of the total dose delivered to the GI tract, ~60% was susceptible to enzymatic (but not pH-mediated degradation, verified both in vitro and in vivo. Attenuation of peristalsis by sedation increased upstream retention (stomach, duodenum, and jejunum. Conversely, alkaline NaHCO3, which enhances GI transit by decreasing mucosal viscosity, favored downstream (ileal passage. This suggests passive transit through the GI tract, governed by mucoadhesion and peristalsis. In contrast, both free anti-ICAM and anti-ICAM NCs demonstrated significantly enhanced upstream (stomach and duodenum

  13. The new face of bispecific antibodies: targeting cancer and much more.

    Science.gov (United States)

    Lum, Lawrence G; Davol, Pamela A; Lee, Randall J

    2006-01-01

    The term magic bullet was first coined by bacteriologist Paul Ehrlich in the late 1800s to describe a chemical with the ability to specifically target microorganisms while sparing normal host cells. His concept was later expanded to include treatments for cancer, but it is only in recent decades, with development and improvements in monoclonal antibody (mAb) technology, that the full therapeutic implications of "magic bullet" strategies have been realized. Expanding on the success of mAb-targeting, linking the specificity of two mAbs into a single agent, called a bispecific antibody (BiAb), allows for targeting of a therapeutic biological agent or cell to specific tissue antigens. Classically, BiAbs have been used for several decades to redirect cytotoxic T cells or other effector cells to kill tumor cells. Here, we review preclinical models and ongoing phase I clinical trials in which arming polyclonally activated T cells with BiAbs may provide anti-tumor activity without dose-limiting toxicities. Additionally, we review findings from this novel strategy that merges magic bullet technology with hematopoietic stem cells to repair injured myocardium. Arming stem cells with BiAbs directed at injury-associated antigens enhances specific homing and engraftment to myocardial infarctions and may significantly improve cardiac function, strongly suggesting new paradigms for BiAb-targeting applications in tissue repair.

  14. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  15. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  16. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137

    Directory of Open Access Journals (Sweden)

    Li SY

    2013-09-01

    Full Text Available Shi-Yan Li, Yizhen Liu Cancer Research Institute, Scott and White Healthcare, Temple, TX, USA Abstract: Knowledge of how the immune system recognizes and attempts to control cancer growth and development has improved dramatically. The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. Until recently, metastatic melanoma was a disease with limited treatment options and a poor prognosis. CD137 (also known as 4-1BB a member of the tumor necrosis factor (TNF receptor superfamily, is an activation-induced T cell costimulator molecule. Growing evidence indicates that anti-CD137 monoclonal antibodies possess strong antitumor properties, the result of their powerful capability to activate CD8+ T cells, to produce interferon (IFN-γ, and to induce cytolytic markers. Combination therapy of anti-CD137 with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Of importance, targeting CD137 eliminates established tumors, and the fact that anti-CD137 therapy acts in concert with other anticancer agents and/or radiation therapy to eradicate nonimmunogenic and weakly immunogenic tumors is an additional benefit. Currently, BMS-663513, a humanized anti-CD137 antibody, is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, ovarian cancer, and B-cell malignancies. In this review, we discuss the basis of the therapeutic potential of targeting CD137 in cancer treatment, focusing in particular, on BMS-663513 as an immune costimulatory monoclonal antibody for melanoma immunotherapy. Keywords: anti-CD137 monoclonal antibodies, immune costimulator molecule, BMS-663513

  17. Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies.

    Science.gov (United States)

    Samineni, Divya; Girish, Sandhya; Li, Chunze

    2016-12-01

    Suboptimal treatment for monoclonal antibodies (mAbs) directed against endogenous circulating soluble targets and the shed extracellular domains (ECD) of the membrane-bound targets is an important clinical concern due to the potential impact of mAbs on the in vivo efficacy and safety. Consequently, there are considerable challenges in the determination of an optimal dose and/or dosing regimen. Areas covered: This review outlines the impact of shed antigen targets from membrane-bound proteins and soluble targets on the PK and/or PD of therapeutic mAbs that have been approved in the last decade. We discuss various bioanalytical techniques that have facilitated the interpretation of the PK/PD properties of therapeutic mAbs and also considered the factors that may impact such measurements. Quantitative approaches include target-mediated PK models and bi- or tri-molecular interaction PK/PD models that describe the relationships between the antibody PK and the ensuing effects on PD biomarkers, to facilitate the mAb PK/PD characterization. Expert commentary: The proper interpretation of PK/PD relationships through the integrated PK/PD modeling and bioanalytical strategy facilitates a mechanistic understanding of the disease processes and dosing regimen optimization, thereby offering insights into developing effective therapeutic regimens. This review provides an overview of the impact of soluble targets or shed ECD on mAb PK/PD properties. We provide examples of quantitative approaches that facilitate the characterization of mAb PK/PD characteristics and their corresponding bioanalytical strategies.

  18. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region

    NARCIS (Netherlands)

    van Schie, K. A.; Hart, M. H.; de Groot, E. R.; Kruithof, S.; Aarden, L. A.; Wolbink, G. J.; Rispens, T.

    2015-01-01

    In a subset of patients, anti tumour necrosis factor (TNF) therapeutic antibodies are immunogenic, resulting in the formation of antidrug antibodies (ADAs). Neutralising ADAs compete with TNF for its binding site and reduces the effective serum concentration, causing clinical non-response. It is

  19. Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide.

    Science.gov (United States)

    Marks, Alexandra J; Cooper, Margaret S; Anderson, Robert J; Orchard, Kim H; Hale, Geoffrey; North, Janet M; Ganeshaguru, Kanagasabai; Steele, Andrew J; Mehta, Atul B; Lowdell, Mark W; Wickremasinghe, R Gitendra

    2005-03-15

    The alpha-helical amphipathic peptide D-(KLAKLAK)2 is toxic to eukaryotic cells if internalized by a suitable targeting mechanism. We have targeted this peptide to malignant hemopoietic cells via conjugation to monoclonal antibodies, which recognize lineage-specific cell surface molecules. An anti-CD19/peptide conjugate efficiently killed 3/3 B lymphoid lines. However, an anti-CD33/peptide conjugate was cytotoxic to only one of three CD33-positive myeloid leukemia lines. The IC50 towards susceptible lines were in the low nanomolar range. Conjugates were highly selective and did not kill cells that did not express the appropriate cell surface cognate of the antibody moiety. Anti-CD19/peptide conjugates efficiently killed cells from patients with chronic lymphocytic leukemia but anti-CD33/peptide reagents were less effective against fresh acute myeloid leukemia cells. We therefore suggest that amphipathic peptides may be of value as targeted therapeutic agents for the treatment of a subset of hematologic malignancies.

  20. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform.

    Science.gov (United States)

    van Rijn, Piet A; Maris-Veldhuis, Mieke A; Potgieter, Christiaan A; van Gennip, René G P

    2018-04-05

    African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. Currently, nine serotypes have been defined showing limited cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African Horse Sickness (AHS) in equids with a mortality up to 95% in naïve domestic horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are competent vectors of closely related bluetongue virus. AHS outbreaks cause huge economic losses in developing countries. In the developed world, outbreaks will result in losses in the equestrian industry and will have an enormous emotional impact on owners of pet horses. Live-attenuated vaccine viruses (LAVs) have been developed, however, safety of these LAVs are questionable due to residual virulence, reversion to virulence, and risk on virulent variants by reassortment between LAVs or with field AHSV. Research aims vaccines with improved profiles. Reverse genetics has recently being developed for AHSV and has opened endless possibilities including development of AHS vaccine candidates, such as Disabled Infectious Single Animal (DISA) vaccine. Here, virulent AHSV5 was recovered and its high virulence was confirmed by experimental infection of ponies. 'Synthetically derived' virulent AHSV5 with an in-frame deletion of 77 amino acids codons in genome segment 10 encoding NS3/NS3a protein resulted in similar in vitro characteristics as published NS3/NS3a knockout mutants of LAV strain AHSV4LP. In contrast to its highly virulent ancestor virus, this deletion AHSV5 mutant (DISA5) was completely safe for ponies. Two vaccinations with DISA5 as well as two vaccinations with DISA vaccine based on LAV strain AHSV4LP showed protection against lethal homologous AHSV. More research is needed to further improve efficacy, to explore the AHS DISA vaccine platform for all nine serotypes, and to study the vaccine profile

  1. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation.

    Science.gov (United States)

    Lee, J M; Lee, S H; Hwang, J-W; Oh, S J; Kim, B; Jung, S; Shim, S-H; Lin, P W; Lee, S B; Cho, M-Y; Koh, Y J; Kim, S Y; Ahn, S; Lee, J; Kim, K-M; Cheong, K H; Choi, J; Kim, K-A

    2016-08-25

    Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.

  2. Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria

    DEFF Research Database (Denmark)

    Kana, Ikhlaq Hussain; Adu, Bright; Tiendrebeogo, Régis Wendpayangde

    2017-01-01

    Background.: Plasmodium species antigens accessible at the time of merozoite release are likely targets of biologically functional antibodies. Methods.: Immunoglobulin G (IgG) antibodies against intact merozoites were quantified in the plasma of Ghanaian children from a longitudinal cohort using...... support previous studies that found OP of merozoites to be associated with protection against malaria and further shows IgG3 and GLURP antibodies are key in the OP mechanism, thus giving further impetus for the development of malaria vaccines targeting GLURP....

  3. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C

    2011-01-01

    , with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found......, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active u...

  4. Target-mediated drug disposition model and its approximations for antibody-drug conjugates.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2014-02-01

    Antibody-drug conjugate (ADC) is a complex structure composed of an antibody linked to several molecules of a biologically active cytotoxic drug. The number of ADC compounds in clinical development now exceeds 30, with two of them already on the market. However, there is no rigorous mechanistic model that describes pharmacokinetic (PK) properties of these compounds. PK modeling of ADCs is even more complicated than that of other biologics as the model should describe distribution, binding, and elimination of antibodies with different toxin load, and also the deconjugation process and PK of the released toxin. This work extends the target-mediated drug disposition (TMDD) model to describe ADCs, derives the rapid binding (quasi-equilibrium), quasi-steady-state, and Michaelis-Menten approximations of the TMDD model as applied to ADCs, derives the TMDD model and its approximations for ADCs with load-independent properties, and discusses further simplifications of the system under various assumptions. The developed models are shown to describe data simulated from the available clinical population PK models of trastuzumab emtansine (T-DM1), one of the two currently approved ADCs. Identifiability of model parameters is also discussed and illustrated on the simulated T-DM1 examples.

  5. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    Science.gov (United States)

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy

  6. Sustained Specific and Cross-Reactive T Cell Responses to Zika and Dengue Virus NS3 in West Africa.

    Science.gov (United States)

    Herrera, Bobby Brooke; Tsai, Wen-Yang; Chang, Charlotte A; Hamel, Donald J; Wang, Wei-Kung; Lu, Yichen; Mboup, Souleymane; Kanki, Phyllis J

    2018-04-01

    Recent studies on the role of T cells in Zika virus (ZIKV) infection have shown that T cell responses to Asian ZIKV infection are important for protection, and that previous dengue virus (DENV) exposure amplifies the protective T cell response to Asian ZIKV. Human T cell responses to African ZIKV infection, however, remain unexplored. Here, we utilized the modified anthrax toxin delivery system to develop a flavivirus enzyme-linked immunosorbent spot (ELISPOT) assay. Using human ZIKV and DENV samples from Senegal, West Africa, our results demonstrate specific and cross-reactive T cell responses to nonstructural protein 3 (NS3). Specifically, we found that T cell responses to NS3 protease are ZIKV and DENV specific, but responses to NS3 helicase are cross-reactive. Sequential sample analyses revealed immune responses sustained many years after infection. These results have important implications for African ZIKV/DENV vaccine development, as well as for potential flavivirus diagnostics based on T cell responses. IMPORTANCE The recent Zika virus (ZIKV) epidemic in Latin America and the associated congenital microcephaly and Guillain-Barré syndrome have raised questions as to why we have not recognized these distinct clinical diseases in Africa. The human immunologic response to ZIKV and related flaviviruses in Africa represents a research gap that may shed light on the mechanisms contributing to protection. The goal of our study was to develop an inexpensive assay to detect and characterize the T cell response to African ZIKV and DENV. Our data show long-term specific and cross-reactive human immune responses against African ZIKV and DENV, suggesting the usefulness of a diagnostic based on the T cell response. Additionally, we show that prior flavivirus exposure influences the magnitude of the T cell response. The identification of immune responses to African ZIKV and DENV is of relevance to vaccine development. Copyright © 2018 American Society for Microbiology.

  7. Oligoclonal antibody targeting ghrelin increases energy expenditure and reduces food intake in fasted mice.

    Science.gov (United States)

    Zakhari, Joseph S; Zorrilla, Eric P; Zhou, Bin; Mayorov, Alexander V; Janda, Kim D

    2012-02-06

    Ghrelin, an enteric peptide hormone linked to the pathophysiology of obesity has been a therapeutic target of great interest over the past decade. Many research efforts have focused on the antagonism of ghrelin's endogenous receptor GHSR1a, which is found along ascending vagal afferent fibers, as well as in the arcuate nucleus of the hypothalamus. Additionally, peptidic inhibitors of ghrelin O-acyltransferase, the enzyme responsible for the paracrine activation of ghrelin, have recently been studied. Our research has taken an alternative immunological approach, studying both active and passive vaccination as a means to sequester ghrelin in the periphery, with the original discovery in rat of decreased feed efficiency and adiposity, as well as increased metabolic activity. Using our previous hapten designs as a stepping-stone, three monoclonal antibodies (JG2, JG3, and JG4) were procured against ghrelin and tested in vivo. While mAb JG4 had the highest affinity for ghrelin, it failed to attenuate the orexigenic effects of food deprivation on energy metabolism or food intake in mice. However, animals that were administered a combination of JG3:JG4 (termed a doublet) or JG2:JG3:JG4 (termed a triplet) demonstrated higher heat dispersion and rate of respiration (higher CO(2) emission and O(2) consumption) during a 24 h fast refeed. Mice administered the triplet cocktail of JG2:JG3:JG4 also demonstrated decreased food intake upon refeeding as compared to control animals. Recently, Lu and colleagues reported that a passive approach using a single, high affinity N-terminally directed monoclonal antibody did not abrogate the effects of endogenous ghrelin. Our current report corroborates this finding, yet, refutes that a monoclonal antibody approach cannot be efficacious. Rather, we find that a multiple monoclonal antibody (oligoclonal) approach can reproduce the underlying logic to previously reported efficacies using active vaccinations.

  8. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens.

    Directory of Open Access Journals (Sweden)

    Clarissa Pozzi

    Full Text Available Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP of serotype 5 (CP5 or 8 (CP8 and/or a second antigen, a β-(1→6-polymer of N-acetyl-D-glucosamine (PNAG. Antibodies specific for either CP or PNAG antigens have excellent in vitro opsonic killing activity (OPKA, but when mixed together have potent interference in OPKA and murine protection. To ascertain if this interference could be abrogated by using a synthetic non-acetylated oligosaccharide fragment of PNAG, 9GlcNH(2, in place of chemically partially deacetylated PNAG, three conjugate vaccines consisting of 9GlcNH(2 conjugated to a non-toxic mutant of alpha-hemolysin (Hla H35L, CP5 conjugated to clumping factor B (ClfB, or CP8 conjugated to iron-surface determinant B (IsdB were used separately to immunize rabbits. Opsonic antibodies mediating killing of multiple S. aureus strains were elicited for all three vaccines and showed carbohydrate antigen-specific reductions in the tissue bacterial burdens in animal models of S. aureus skin abscesses, pneumonia, and nasal colonization. Carrier-protein specific immunity was also shown to be effective in reducing bacterial levels in infected lungs and in nasal colonization. However, use of synthetic 9GlcNH(2 to induce antibody to PNAG did not overcome the interference in OPKA engendered when these were combined with antibody to either CP5 or CP8. Whereas each individual vaccine showed efficacy, combining antisera to CP antigens and PNAG still abrogated individual OPKA activities, indicating difficulty in achieving a multi-valent vaccine targeting both the CP and PNAG antigens.

  9. Evaluating co-channel interference in long term evolution-advanced (LTE-Advanced) networks on NS-3 simulator

    CSIR Research Space (South Africa)

    Dzivhani, Mulalo

    2016-09-01

    Full Text Available for a particular noise level and bandwidth. The following equation demonstrates how the theoretical maximum user throughput (C) that can be experienced by a UE is converted from the calculated SINR of that UE [16] as shown in equation (3); C= 𝐵... will need to invest in the equipment and deploy a test-bed. However, this will require a lot of money, which can be a constrain for R&D. Network simulations such as NS-3 becomes a vital tool to setup large-scale networks and test Quality of Service...

  10. Exploiting the proteomics revolution in biotechnology: from disease and antibody targets to optimizing bioprocess development.

    Science.gov (United States)

    Heffner, Kelley M; Hizal, Deniz Baycin; Kumar, Amit; Shiloach, Joseph; Zhu, Jie; Bowen, Michael A; Betenbaugh, Michael J

    2014-12-01

    Recent advancements in proteomics have enabled the generation of high-quality data sets useful for applications ranging from target and monoclonal antibody (mAB) discovery to bioprocess optimization. Comparative proteomics approaches have recently been used to identify novel disease targets in oncology and other disease conditions. Proteomics has also been applied as a new avenue for mAb discovery. Finally, CHO and Escherichia coli cells represent the dominant production hosts for biopharmaceutical development, yet the physiology of these cells types has yet to be fully established. Proteomics approaches can provide new insights into these cell types, aiding in recombinant protein production, cell growth regulation, and medium formulation. Optimization of sample preparations and protein database developments are enhancing the quantity and accuracy of proteomic results. In these ways, innovations in proteomics are enriching biotechnology and bioprocessing research across a wide spectrum of applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates.

    Science.gov (United States)

    Marega, Riccardo; Prasetyanto, Eko Adi; Michiels, Carine; De Cola, Luisa; Bonifazi, Davide

    2016-10-01

    Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer

    Directory of Open Access Journals (Sweden)

    Belzile O

    2018-01-01

    Full Text Available Olivier Belzile,1 Xianming Huang,2,3 Jian Gong,2,3 Jay Carlson,2,3 Alan J Schroit,1 Rolf A Brekken,1 Bruce D Freimark2,3 1Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 2Department of Preclinical Research, 3Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA Abstract: Phosphatidylserine (PS is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer. Keywords: immunosuppression, tumor microenvironment, immunotherapy, imaging, phosphatidylserine, bavituximab

  13. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets

    Directory of Open Access Journals (Sweden)

    Carlos Cuesta-Mateos

    2018-01-01

    Full Text Available Today, monoclonal antibodies (mAbs are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs have been successfully developed. Non-LSAs (NLSAs are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs—marketed or in development—to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.

  14. Hepatitis C virus NS2 and NS3/4A proteins are potent inhibitors of host cell cytokine/chemokine gene expression

    Directory of Open Access Journals (Sweden)

    Hiscott John

    2006-09-01

    Full Text Available Abstract Background Hepatitis C virus (HCV encodes several proteins that interfere with the host cell antiviral response. Previously, the serine protease NS3/4A was shown to inhibit IFN-β gene expression by blocking dsRNA-activated retinoic acid-inducible gene I (RIG-I and Toll-like receptor 3 (TLR3-mediated signaling pathways. Results In the present work, we systematically studied the effect of all HCV proteins on IFN gene expression. NS2 and NS3/4A inhibited IFN gene activation. NS3/4A inhibited the Sendai virus-induced expression of multiple IFN (IFN-α, IFN-β and IFN-λ1/IL-29 and chemokine (CCL5, CXCL8 and CXCL10 gene promoters. NS2 and NS3/4A, but not its proteolytically inactive form NS3/4A-S139A, were found to inhibit promoter activity induced by RIG-I or its adaptor protein Cardif (or IPS-1/MAVS/VISA. Both endogenous and transfected Cardif were proteolytically cleaved by NS3/4A but not by NS2 indicating different mechanisms of inhibition of host cell cytokine production by these HCV encoded proteases. Cardif also strongly colocalized with NS3/4A at the mitochondrial membrane, implicating the mitochondrial membrane as the site for proteolytic cleavage. In many experimental systems, IFN priming dramatically enhances RNA virus-induced IFN gene expression; pretreatment of HEK293 cells with IFN-α strongly enhanced RIG-I expression, but failed to protect Cardif from NS3/4A-mediated cleavage and failed to restore Sendai virus-induced IFN-β gene expression. Conclusion HCV NS2 and NS3/4A proteins were identified as potent inhibitors of cytokine gene expression suggesting an important role for HCV proteases in counteracting host cell antiviral response.

  15. Discovery of novel potent and selective dipeptide hepatitis C virus NS3/4A serine protease inhibitors.

    Science.gov (United States)

    Raboisson, Pierre; Lin, Tse-I; Kock, Herman de; Vendeville, Sandrine; Vreken, Wim Van de; McGowan, David; Tahri, Abdellah; Hu, Lili; Lenz, Oliver; Delouvroy, Frederic; Surleraux, Dominique; Wigerinck, Piet; Nilsson, Magnus; Rosenquist, Sa; Samuelsson, Bertil; Simmen, Kenneth

    2008-09-15

    Starting from the previously reported HCV NS3/4A protease inhibitor BILN 2061, we have used a fast-follower approach to identify a novel series of HCV NS3/4A protease inhibitors in which (i) the P3 amino moiety and its capping group have been truncated, (ii) a sulfonamide is introduced in the P1 cyclopropyl amino acid, (iii) the position 8 of the quinoline is substituted with a methyl or halo group, and (iv) the ring size of the macrocycle has been reduced to 14 atoms. SAR analysis performed with a limited set of compounds led to the identification of N-{17-[8-chloro-2-(4-isopropylthiazol-2-yl)-7-methoxyquinolin-4-yloxy]-2,14-dioxo-3,15-diazatricyclo [13.3.0.0 [Bartenschlager, R.; Lohmann, V. J. Gen. Virol. 2000, 81, 1631; Vincent Soriano, Antonio Madejon, Eugenia Vispo, Pablo Labarga, Javier Garcia-Samaniego, Luz Martin-Carbonero, Julie Sheldon, Marcelle Bottecchia, Paula Tuma, Pablo Barreiro Expert Opin. Emerg. Drugs, 2008, 13, 1-19

  16. Antibody-mediated targeting of the transferrin receptor in cancer cells.

    Science.gov (United States)

    Luria-Pérez, Rosendo; Helguera, Gustavo; Rodríguez, José A

    Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  17. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells.

    Science.gov (United States)

    Gantke, Thorsten; Weichel, Michael; Herbrecht, Carmen; Reusch, Uwe; Ellwanger, Kristina; Fucek, Ivica; Eser, Markus; Müller, Thomas; Griep, Remko; Molkenthin, Vera; Zhukovsky, Eugene A; Treder, Martin

    2017-09-01

    Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Targeting angiogenesis for radioimmunotherapy with a {sup 177}Lu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ehlerding, Emily B.; Hernandez, Reinier [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Lacognata, Saige; Jiang, Dawei [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Ferreira, Carolina A. [University of Wisconsin - Madison, Department of Biomedical Engineering, Madison, WI (United States); Goel, Shreya [University of Wisconsin - Madison, Department of Materials Science and Engineering, Madison, WI (United States); Jeffery, Justin J. [University of Wisconsin - Madison, Small Animal Imaging Facility, Madison, WI (United States); Theuer, Charles P. [TRACON Pharmaceuticals, Inc., San Diego, CA (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin - Madison, Department of Materials Science and Engineering, Madison, WI (United States)

    2018-01-15

    Increased angiogenesis is a marker of aggressiveness in many cancers. Targeted radionuclide therapy of these cancers with angiogenesis-targeting agents may curtail this increased blood vessel formation and slow the growth of tumors, both primary and metastatic. CD105, or endoglin, has a primary role in angiogenesis in a number of cancers, making this a widely applicable target for targeted radioimmunotherapy. The anti-CD105 antibody, TRC105 (TRACON Pharmaceuticals), was conjugated with DTPA for radiolabeling with {sup 177}Lu (t{sub 1/2} 6.65 days). Balb/c mice were implanted with 4T1 mammary carcinoma cells, and five study groups were used: {sup 177}Lu only, TRC105 only, {sup 177}Lu-DTPA-IgG (a nonspecific antibody), {sup 177}Lu-DTPA-TRC105 low-dose, and {sup 177}Lu-DTPA-TRC105 high-dose. Toxicity of the agent was monitored by body weight measurements and analysis of blood markers. Biodistribution studies of {sup 177}Lu-DTPA-TRC105 were also performed at 1 and 7 days after injection. Ex vivo histology studies of various tissues were conducted at 1, 7, and 30 days after injection of high-dose {sup 177}Lu-DTPA-TRC105. Biodistribution studies indicated steady uptake of {sup 177}Lu-DTPA-TRC105 in 4T1 tumors between 1 and 7 days after injection (14.3 ± 2.3%ID/g and 11.6 ± 6.1%ID/g, respectively; n = 3) and gradual clearance from other organs. Significant inhibition of tumor growth was observed in the high-dose group, with a corresponding significant increase in survival (p < 0.001, all groups). In most study groups (all except the nonspecific IgG group), the body weights of the mice did not decrease by more than 10%, indicating the safety of the injected agents. Serum alanine transaminase levels remained nearly constant indicating no damage to the liver (a primary clearance organ of the agent), and this was confirmed by ex vivo histological analyses. {sup 177}Lu-DTPA-TRC105, when administered at a sufficient dose, is able to curtail tumor growth and provide a

  19. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  20. Chimeric Monoclonal Antibody Cetuximab Targeting Epidermal Growth Factor-Receptor in Advanced Non-Melanoma Skin Cancer

    OpenAIRE

    Uwe Wollina; Georgi Tchernev; Torello Lotti

    2017-01-01

    BACKGROUND: Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis. AIM: We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017. METHODS: The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: ...

  1. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.

    Science.gov (United States)

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; Deoliveira, Rosane B; Garrett, Wendy S; Lu, Xi; O'Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N; Kayatani, Alexander K K; Maira-Litràn, Tomas; Gening, Marina L; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bakaletz, Lauren O; Pelton, Stephen I; Golenbock, Douglas T; Pier, Gerald B

    2013-06-11

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.

  2. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  3. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro

    International Nuclear Information System (INIS)

    Satishkumar, R; Vertegel, A A

    2011-01-01

    The objective of this paper was to study the effect of antibody-directed targeting of S. aureus by comparing the activities of lysostaphin conjugated to biodegradable polylactide nanoparticles (NPs) in the presence and in the absence of co-immobilized anti-S. aureus antibody. Lysostaphin–antibody–NP conjugates were synthesized through physical adsorption at different enzyme:antibody:NP ratios. The synthesized enzyme–NP conjugates were characterized by means of dynamic light scattering and zeta potential analysis, and the total protein binding yield on the NPs was characterized using Alexa Fluor 350 and 594 dyes for the S. aureus antibody and lysostaphin respectively. We observed enhanced antimicrobial activity for both enzyme-coated and enzyme–antibody-coated NPs for lysostaphin coatings corresponding to ∼ 40% of the initial monolayer and higher compared to the free enzyme case (p < 0.05). At the highest antibody coating concentration, bacterial lysis rates for antibody-coated samples were significantly higher than for lysostaphin-coated samples lacking the antibody (p < 0.05). Such enzyme–NP conjugates thus have the potential for becoming novel therapeutic agents for treating antibiotic-resistant S. aureus infections.

  4. Immunization with a Recombinant Expression Vector Encoding NS3/NS4A of Hepatitis C Virus Genotype 3a Elicits Cell-Mediated Immune Responses in C57BL/6 Mice.

    Science.gov (United States)

    Behzadi, Mohammad Amin; Alborzi, Abdolvahab; Kalani, Mehdi; Pouladfar, Gholamreza; Dianatpour, Mehdi; Ziyaeyan, Mazyar

    2016-04-01

    Today, hepatitis C virus (HCV) infection is considered as one of the most significant international health concerns. Although novel therapeutic regimens against the infection have shown satisfactory results, no approved vaccine exists yet. This study aimed to evaluate the immunogenicity of a DNA vaccine candidate for HCV-3a, based on nonstructural proteins NS3/NS4A, in C57BL/6 mice. Immunogenicity effect of pDisplay-NS3/NS4A was analyzed through immunization with 100 and 200 μg concentrations of the construct with complete Freund's adjuvant, monophosphoryl lipid A (MPL), or without adjuvant. The frequencies of different splenic mononuclear cells were measured using the Mouse Th1/Th2/Th17 Phenotyping Kit. Moreover, the number of T-CD8(+) cells was determined using conjugated anti-CD8a and anti-CD3e antibodies by flow cytometry. As observed, the frequencies of Th1, T-CD8(+), and Th2 cells increased in all the experimental groups, compared with the controls. The highest levels of the respective cells were seen in the group immunized with 200 μg of the construct with MPL. Also, there were positive correlations between the frequency of Th1 cells and those of Th2 and T-CD8(+) cells in all the immunized groups, but were significant in those receiving adjuvants. The frequency of Th17 cells did not statistically change among the groups. Taken together, our findings revealed that the constructed DNA vaccine encoding HCV-3a NS3/NS4A gene induces the cell-mediated immune responses significantly. However, its coadministration with adjuvants exhibits more efficient results than the recombinant plasmid alone. Further study is currently underway to evaluate the specific immune responses and recognize the responsible antigenic epitopes.

  5. Characterization and Imaging of Antibody-Coated Gold Nanoparticles for Targeted Treatment of Microbial Keratitis

    Science.gov (United States)

    Mahan, Matthew

    Microbial keratitis (MK) is an infection of the cornea by pathogenic organisms that causes inflammation and irritation. It can lead to full or partial blindness if left untreated. Current clinical treatment methods rely on high frequency application of topical drugs which are subject to the issues of patient compliance and microbial resistance. In this work, gold nanoparticles (AuNP) were proposed as an alternative treatment method in light-based therapies. Particle formulation methods were investigated and assessed using transmission electron microscopy (TEM) and ultraviolet/visible spectroscopy (UV-Vis). AuNP of 20 nm diameter were used as platforms to attach monoclonal antibodies anti-FLAG or anti-F1 to enhance their cell-targeting ability as well as polyethylene glycol to reduce non-specific binding and protein adsorption. These functionalized particles were qualitatively assessed using UV-Vis. The antibody-functionalized AuNP were then assessed for their ability to attach directly to Pseudomonas aeruginosa, expressing FLAG peptide, or Aspergillus fumigatus, expressing the F1 receptor. Attachment was imaged using dark field microscopy, transmission electron microscopy, and fluorescence microscopy.

  6. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  7. Evaluation of tumor targeting with radiolabeled F(ab2 fragment of a humanized monoclonal antibody

    Directory of Open Access Journals (Sweden)

    "Babaei MH

    2002-08-01

    Full Text Available Humanized monoclonal antibody U36 and its F(ab'2 fragment, radio labeled with 125I, were tested for tumor localization in nude mice bearing a squamous cell carcinoma xenograft line derived from a head and neck carcinoma. Monoclonal antibody IgG or F(ab'2 fragment were injected in parallel and at days 1, 2 and 3, mice were dissected for determination of isotope biodistribution. IgG as well as F(ab'2 showed highly specific localization in tumor tissue. The mean tumor uptake (n=3 is expressed as the percentage of the injected dose per gram of tumor tissue (%ID/g. %ID/g of IgG was 11.7% at day 1 and decreased to 10.9% at day 3 whereas %ID/g of F(ab'2 was 2.9% at day 1 and decreased on following days. Tumor to blood ratios (T/B at day 1 were 0.86 for IgG and 1.32 for F(ab'2 and reached a maximum at day 3 with values of 4.41 and 1.84 respectively. These findings suggest that the superior tumor to non-tumor ratios in the day of 1 render the F(ab'2 fragment more qualified for specific targeting radioisotopes to tumor xenografts in this exprimental setting.

  8. Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2012-02-01

    Full Text Available Single domain antibodies (sdAb are the recombinantly expressed variable regions from the heavy-chain-only antibodies found in camelids and sharks. SdAb are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. Starting with our previously isolated ricin binding sdAb determined to bind to four non-overlapping epitopes, we constructed a series of sdAb pairs, which were genetically linked through peptides of different length. We designed the series so that the sdAb are linked in both orientations with respect to the joining peptide. We confirmed that each of the sdAb in the constructs was able to bind to the ricin target, and have evidence that they are both binding ricin simultaneously. Through this work we determined that the order of genetically linked sdAb seems more important than the linker length. The genetically linked sdAb allowed for improved ricin detection with better limits of detection than the best anti-ricin monoclonal we evaluated, however they were not able to refold as well as unlinked component sdAb.

  9. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein

    Science.gov (United States)

    Robinson, Luke N.; Ong, Li Ching; Rowley, Kirk J.; Winnett, Alexander; Tan, Hwee Cheng; Hobbie, Sven; Shriver, Zachary; Babcock, Gregory J.; Alonso, Sylvie; Ooi, Eng Eong

    2018-01-01

    Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible. PMID:29425203

  10. Resistance Analyses of HCV NS3/4A Protease and NS5B Polymerase from Clinical Studies of Deleobuvir and Faldaprevir.

    Directory of Open Access Journals (Sweden)

    Kristi L Berger

    Full Text Available The resistance profile of anti-hepatitis C virus (HCV agents used in combination is important to guide optimal treatment regimens. We evaluated baseline and treatment-emergent NS3/4A and NS5B amino-acid variants among HCV genotype (GT-1a and -1b-infected patients treated with faldaprevir (HCV protease inhibitor, deleobuvir (HCV polymerase non-nucleoside inhibitor, and ribavirin in multiple clinical studies.HCV NS3/4A and NS5B population sequencing (Sanger method was performed on all baseline plasma samples (n = 1425 NS3; n = 1556 NS5B and on post-baseline plasma samples from patients with virologic failure (n = 113 GT-1a; n = 221 GT-1b. Persistence and time to loss of resistance-associated variants (RAVs was estimated using Kaplan-Meier analysis.Faldaprevir RAVs (NS3 R155 and D168 and deleobuvir RAVs (NS5B 495 and 496 were rare (90%. Virologic relapse was associated with RAVs in both NS3 and NS5B (53% GT-1b; 52% GT-1b; some virologic relapses had NS3 RAVs only (47% GT-1a; 17% GT-1b. Median time to loss of GT-1b NS5B P495 RAVs post-treatment (5 months was less than that of GT-1b NS3 D168 (8.5 months and GT-1a R155 RAVs (11.5 months.Faldaprevir and deleobuvir RAVs are more prevalent among virologic failures than at baseline. Treatment response was not compromised by common NS3 polymorphisms; however, alanine at NS5B amino acid 499 at baseline (wild-type in GT-1a, polymorphism in GT-1b may reduce response to this deleobuvir-based regimen.

  11. Steady-state NTPase activity of Dengue virus NS3: number of catalytic sites, nucleotide specificity and activation by ssRNA.

    Directory of Open Access Journals (Sweden)

    J Jeremías Incicco

    Full Text Available Dengue virus nonstructural protein 3 (NS3 unwinds double stranded RNA driven by the free energy derived from the hydrolysis of nucleoside triphosphates. This paper presents the first systematic and quantitative characterization of the steady-state NTPase activity of DENV NS3 and their interaction with ssRNA. Substrate curves for ATP, GTP, CTP and UTP were obtained, and the specificity order for these nucleotides - evaluated as the ratio (kcat /KM - was GTP[Formula: see text]ATP[Formula: see text]CTP [Formula: see text] UTP, which showed that NS3 have poor ability to discriminate between different NTPs. Competition experiments between the four substrates indicated that all of them are hydrolyzed in one and the same catalytic site of the enzyme. The effect of ssRNA on the ATPase activity of NS3 was studied using poly(A and poly(C. Both RNA molecules produced a 10 fold increase in the turnover rate constant (kcat and a 100 fold decrease in the apparent affinity (KM for ATP. When the ratio [RNA bases]/[NS3] was between 0 and [Formula: see text]20 the ATPase activity was inhibited by increasing both poly(A and poly(C. Using the theory of binding of large ligands (NS3 to a one-dimensional homogeneous lattice of infinite length (RNA we tested the hypothesis that inhibition is the result of crowding of NS3 molecules along the RNA lattices. Finally, we discuss why this hypothesis is consistent with the idea that the ATPase catalytic cycle is tightly coupled to the movement of NS3 helicase along the RNA.

  12. A novel mouse monoclonal antibody targeting ErbB2 suppresses breast cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Seiji [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan); Matsushita, Hirohisa; Ohbayashi, Hirokazu [Department of Research and Development, Nichirei Biosciences Inc., Tokyo 104-8402 (Japan); Semba, Kentaro [Department of Life Science and Medical Bio-Science, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan)

    2009-07-03

    Overexpression of ErbB2 in breast cancer is associated with increased recurrence and worse prognosis. Accumulating evidences suggest that molecular targeted therapy is a promising anticancer strategy. In this study, we produced a novel anti-ErbB2 monoclonal antibody, 6G10, that recognized an epitope distinct from the trastuzumab binding site. 6G10 induced aggregation of BT474 breast cancer cells and inhibited proliferation of various breast cancer cell lines including BT474. A growth inhibition assay showed that 6G10 had EC{sub 50} values comparable to trastuzumab, indicating that the drugs have a similar level of potency. Furthermore, intraperitoneal administration of 6G10 completely inhibited the growth of xenografted tumors derived from BT474 and SK-BR-3 cells. These data suggested that 6G10 has great therapeutic potential and could be administered to patients alternatively, or synergistically, with trastuzumab.

  13. Novel approaches to cancer targeting using epitope-binding properties that mimic monoclonal antibodies

    International Nuclear Information System (INIS)

    1998-01-01

    The investigators have extensive experience in all of the techniques required for this project including: animal models of tumors, quantitative autoradiography, radiochemistry, peptide synthesis, organic synthesis, molecular biology, kinetic modeling and radionuclide imaging both with single photon and PET agents. Preliminary results and progress in the following areas are presented: (1) Establishment of an in vivo tumor model and successful targeting of this tumor using monoclonal antibodies raised to p185 erbB2 , (2a) Screening of a synthetic peptide combinatorial library, (2b) Screening of a phage display peptide library, (3) Determination of the epitope recognized by ICR12, (4) Radiolabeling with 99m Tc, 18 F and * I (radioiodines), (5) High resolution positron emission tomography (PET) studies of tumors, and (6) Development of a high resolution (∼mm) PET camera

  14. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    International Nuclear Information System (INIS)

    Kato, Yukinari; Vaidyanathan, Ganesan; Kaneko, Mika Kato; Mishima, Kazuhiko; Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles; Keir, Stephen T.; Kuan, C.-T.; Bigner, Darell D.; Zalutsky, Michael R.

    2010-01-01

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG 2a ), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with 125 I using Iodogen [ 125 I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[ 131 I]iodobenzoate ([ 131 I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of 125 I-NZ-1(Iodogen) and that of [ 131 I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K D ) of NZ-1 was determined to be 1.2x10 -10 M by surface plasmon resonance and 9.8x10 -10 M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [ 131 I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3±0.8% of initially bound radioactivity at 8 h) compared to that from the 125 I-NZ-1(Iodogen) (10.0±0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [ 131 I]SGMIB-NZ-1 (39.9±8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of 125 I-NZ-1(Iodogen) (29.7±6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  15. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukinari, E-mail: yukinari-k@bea.hi-ho.ne.j [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kaneko, Mika Kato [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Mishima, Kazuhiko [Saitama Medical University International Medical Center 1397-1 Yamane Hidaka-shi, Saitama 350-1298 (Japan); Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Keir, Stephen T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T.; Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-10-15

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG{sub 2a}), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with {sup 125}I using Iodogen [{sup 125}I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of {sup 125}I-NZ-1(Iodogen) and that of [{sup 131}I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K{sub D}) of NZ-1 was determined to be 1.2x10{sup -10} M by surface plasmon resonance and 9.8x10{sup -10} M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [{sup 131}I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3{+-}0.8% of initially bound radioactivity at 8 h) compared to that from the {sup 125}I-NZ-1(Iodogen) (10.0{+-}0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [{sup 131}I]SGMIB-NZ-1 (39.9{+-}8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of {sup 125}I-NZ-1(Iodogen) (29.7{+-}6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  16. Comparative analysis of bispecific antibody and streptavidin-targeted radioimmunotherapy for B cell cancers

    Science.gov (United States)

    Green, Damian J.; Frayo, Shani L.; Lin, Yukang; Hamlin, Donald K.; Fisher, Darrell R.; Frost, Sofia H.L.; Kenoyer, Aimee L.; Hylarides, Mark D.; Gopal, Ajay K.; Gooley, Theodore A.; Orozco, Johnnie J.; Till, Brian G.; O’Steen, Shyril; Orcutt, Kelly D.; Wilbur, D. Scott; Wittrup, K. Dane; Press, Oliver W.

    2016-01-01

    Streptavidin (SA)-biotin pretargeted radioimmunotherapy (PRIT) that targets CD20 in non-Hodgkin lymphoma (NHL) exhibits remarkable efficacy in model systems, but SA immunogenicity and interference by endogenous biotin may complicate clinical translation of this approach. In this study, we engineered a bispecific fusion protein (FP) that evades the limitations imposed by this system. Briefly, one arm of the FP was an anti-human CD20 antibody (2H7) with the other arm of the FP an anti-chelated radiometal trap for a radiolabeled ligand (yttrium[Y]-DOTA) captured by a very high-affinity anti-Y-DOTA scFv antibody (C825). Head-to-head biodistribution experiments comparing SA-biotin and bispecific FP (2H7-Fc-C825) PRIT in murine subjects bearing human lymphoma xenografts demonstrated nearly identical tumor targeting by each modality at 24 hrs. However, residual radioactivity in the blood and normal organs was consistently higher following administration of 1F5-SA compared to 2H7-Fc-C825. Consequently, tumor-to-normal tissue ratios of distribution were superior for 2H7-Fc-C825 (p<0.0001). Therapy studies in subjects bearing either Ramos or Granta subcutaneous lymphomas demonstrated that 2H7-Fc-C825 PRIT is highly effective and significantly less myelosuppressive than 1F5-SA (p<0.0001). All animals receiving optimal doses of 2H7-Fc-C825 followed by 90Y-DOTA were cured by 150 days, whereas the growth of tumors in control animals progressed rapidly with complete morbidity by 25 days. In addition to demonstrating reduced risk of immunogenicity and an absence of endogenous biotin interference, our findings offer a preclinical proof of concept for the preferred use of bispecific PRIT in future clinical trials, due to a slightly superior biodistribution profile, less myelosuppression and superior efficacy. PMID:27590740

  17. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles.

    Science.gov (United States)

    Millenbaugh, Nancy J; Baskin, Jonathan B; DeSilva, Mauris N; Elliott, W Rowe; Glickman, Randolph D

    2015-01-01

    The continued emergence of multidrug resistant bacterial infections and the decline in discovery of new antibiotics are major challenges for health care throughout the world. This situation has heightened the need for novel antimicrobial therapies as alternatives to traditional antibiotics. The combination of metallic nanoparticles and laser exposure has been proposed as a strategy to induce physical damage to bacteria, regardless of antibiotic sensitivity. The purpose of this study was to test the antibacterial effect of antibody-targeted gold nanoparticles combined with pulsed laser irradiation. Gold nanoparticles conjugated to antibodies specific to Staphylococcus aureus peptidoglycan were incubated with suspensions of methicillin-resistant and methicillin-sensitive S. aureus (MRSA and MSSA). Bacterial suspensions were then exposed to 8 ns pulsed laser irradiation at a wavelength of 532 nm and fluences ranging from 1 to 5 J/cm(2). Viability of the bacteria following laser exposure was determined using colony forming unit assays. Scanning electron microscopy was used to confirm the binding of nanoparticles to bacteria and the presence of cellular damage. The laser-activated nanoparticle treatment reduced the surviving population to 31% of control in the MSSA population, while the survival in the MRSA population was reduced to 58% of control. Significant decreases in bacterial viability occurred when the laser fluence exceeded 1 J/cm(2), and this effect was linear from 0 to 5 J/cm(2) (r (2)=0.97). Significantly less bactericidal effect was observed for nonfunctionalized nanoparticles or functionalized nanoparticles without laser activation. Laser-activated nanoparticles targeted to S. aureus surface antigens significantly reduced the percentage of viable organisms and represents a promising new treatment modality that could be used either alone or as an adjunct to existing, conventional antibiotic therapy.

  18. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  19. In Vitro Evaluation of Novel Inhibitors against the NS2B-NS3 Protease of Dengue Fever Virus Type 4

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2013-12-01

    Full Text Available The discovery of potent therapeutic compounds against dengue virus is urgently needed. The NS2B-NS3 protease (NS2B-NS3pro of dengue fever virus carries out all enzymatic activities needed for polyprotein processing and is considered to be amenable to antiviral inhibition by analogy. Virtual screening of 300,000 compounds using Autodock 3 on the GVSS platform was conducted to identify novel inhibitors against the NS2B-NS3pro. Thirty-six compounds were selected for in vitro assay against NS2B-NS3pro expressed in Pichia pastoris. Seven novel compounds were identified as inhibitors with IC50 values of 3.9 ± 0.6–86.7 ± 3.6 μM. Three strong NS2B-NS3pro inhibitors were further confirmed as competitive inhibitors with Ki values of 4.0 ± 0.4, 4.9 ± 0.3, and 3.4 ± 0.1 μM, respectively. Hydrophobic and hydrogen bond interactions between amino acid residues in the NS3pro active site with inhibition compounds were also identified.

  20. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments.

    Science.gov (United States)

    Fagète, Séverine; Botas-Perez, Ledicia; Rossito-Borlat, Irène; Adea, Kenneth; Gueneau, Franck; Ravn, Ulla; Rousseau, François; Kosco-Vilbois, Marie; Fischer, Nicolas; Hartley, Oliver

    2017-09-01

    Antibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity. Phagemids encoding a first antibody fragment (scFv) fused to phage coat protein via the first leucine zipper are rescued in bacteria expressing a second scFv fused to the second leucine zipper as a soluble periplasmic protein, so that it is acquired by phage during assembly. Using a soluble scFv specific for a human CD3-derived peptide, we show that its acquisition by phage displaying an irrelevant antibody is sufficiently robust to drive selection of rare phage (1 in 105) over three rounds of panning. We then set up a model selection experiment using a cell line expressing the chemokine receptor CCR5 fused to the CD3 peptide together with a panel of phage clones capable displaying either an anti-CCR5 scFv or an irrelevant antibody, with or without the capacity to acquire the soluble anti-CD3 scFv. In this experiment we showed that rare phage (1 in 105) capable of displaying the two different scFvs can be specifically enriched over four rounds of panning. This approach has the potential to be applied to the identification of pairs of ligands capable of co-engaging two different user-defined targets, which would facilitate the discovery of novel bispecific antibodies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Detection of dengue NS1 and NS3 proteins in placenta and umbilical cord in fetal and maternal death.

    Science.gov (United States)

    Nunes, Priscila Conrado Guerra; Paes, Marciano Viana; de Oliveira, Carlos Alberto Basilio; Soares, Ana Carla Gomes; de Filippis, Ana Maria Bispo; Lima, Monique da Rocha Queiroz; de Barcelos Alves, Ada Maria; da Silva, Juliana Fernandes Amorim; de Oliveira Coelho, Janice Mery Chicarino; de Carvalho Rodrigues, Francisco das Chagas; Nogueira, Rita Maria Ribeiro; Dos Santos, Flávia Barreto

    2016-08-01

    In Brazil, dengue is a public health problem with the occurrence of explosive epidemics. This study reports maternal and fetal deaths due to dengue and which tissues of placenta and umbilical cord were analyzed by molecular methods and immunohistochemistry. The dengue NS3 and NS1 detection revealed the viral presence in different cells from placenta and umbilical cord. In the latter, DENV-2 was detected at a viral titer of 1,02 × 10(4) amounts of viral RNA. It was shown that the DENV markers analyzed here may be an alternative approach for dengue fatal cases investigation, especially involving maternal and fetal death. J. Med. Virol. 88:1448-1452, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    Science.gov (United States)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  3. Genetic diversity of NS3 protease from Brazilian HCV isolates and possible implications for therapy with direct-acting antiviral drugs

    Directory of Open Access Journals (Sweden)

    Allan Peres-da-Silva

    2012-03-01

    Full Text Available The hepatitis C virus (HCV NS3 protease has been one of the molecular targets of new therapeutic approaches. Its genomic sequence variability in Brazilian HCV isolates is poorly documented. To obtain more information on the magnitude of its genetic diversity, 114 Brazilian HCV samples were sequenced and analysed together with global reference sequences. Genetic distance (d analyses revealed that subtype 1b had a higher degree of heterogeneity (d = 0.098 than subtypes 1a (d = 0.060 and 3a (d = 0.062. Brazilian isolates of subtype 1b were distributed in the phylogenetic tree among sequences from other countries, whereas most subtype 1a and 3a sequences clustered into a single branch. Additional characterisation of subtype 1a in clades 1 and 2 revealed that all but two Brazilian subtype 1a sequences formed a distinct and strongly supported (approximate likelihood-ratio test = 93 group of sequences inside clade 1. Moreover, this subcluster inside clade 1 presented an unusual phenotypic characteristic in relation to the presence of resistance mutations for macrocyclic inhibitors. In particular, the mutation Q80K was found in the majority of clade 1 sequences, but not in the Brazilian isolates. These data demonstrate that Brazilian HCV subtypes display a distinct pattern of genetic diversity and reinforce the importance of sequence information in future therapeutic approaches.

  4. Cell-Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2015-10-01

    either antibody occurred rapidly, and was maximum between 1 and 3hrs after antibody addition. When antibody was removed from the culture medium a...substantial quantity of the cell associated antibody was lost, appearing into the fresh medium rapidly. However between 25-50% of the initial cell...plasmid pTCON2 encodes the Saccharomyces aga2 gene, with Myc tag. When transfected into yeast, the aga2 protein is secreted and then binds to aga1

  5. Rebmab200, a Humanized Monoclonal Antibody Targeting the Sodium Phosphate Transporter NaPi2b Displays Strong Immune Mediated Cytotoxicity against Cancer: A Novel Reagent for Targeted Antibody Therapy of Cancer

    Science.gov (United States)

    dos Santos, Mariana Lopes; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A.; Degaki, Theri Leica; Soares, Ibere C.; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A. F.; Ritter, Gerd; Moro, Ana Maria

    2013-01-01

    NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab

  6. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody

    Science.gov (United States)

    Torkashvand, Fatemeh; Vaziri, Behrouz; Maleknia, Shayan; Heydari, Amir; Vossoughi, Manouchehr; Davami, Fatemeh; Mahboudi, Fereidoun

    2015-01-01

    Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB) multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44) cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM) to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb) titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds. PMID:26480023

  7. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  8. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    Directory of Open Access Journals (Sweden)

    Edward Coulstock

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR. Our results show that the murine IFNα2 homolog (mIFNα2 fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  9. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study.

    NARCIS (Netherlands)

    Tejpar, S.; Piessevaux, H.; Claes, K.; Piront, P.; Hoenderop, J.G.J.; Verslype, C.; Cutsem, E. van

    2007-01-01

    BACKGROUND: Preliminary evidence suggests that magnesium wasting occurs in patients who are treated with epidermal-growth-factor receptor (EGFR)-targeting antibodies for colorectal cancer. The mechanism of this side-effect is unknown, and if all or a subset of patients are affected is also unclear.

  10. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Millenbaugh NJ

    2015-03-01

    Full Text Available Nancy J Millenbaugh,1 Jonathan B Baskin,1 Mauris N DeSilva,1 W Rowe Elliott,1 Randolph D Glickman2 1Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA; 2Department of Ophthalmology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USAPurpose: The continued emergence of multidrug resistant bacterial infections and the decline in discovery of new antibiotics are major challenges for health care throughout the world. This situation has heightened the need for novel antimicrobial therapies as alternatives to traditional antibiotics. The combination of metallic nanoparticles and laser exposure has been proposed as a strategy to induce physical damage to bacteria, regardless of antibiotic sensitivity. The purpose of this study was to test the antibacterial effect of antibody-targeted gold nanoparticles combined with pulsed laser irradiation.Methods: Gold nanoparticles conjugated to antibodies specific to Staphylococcus aureus peptidoglycan were incubated with suspensions of methicillin-resistant and methicillin-sensitive S. aureus (MRSA and MSSA. Bacterial suspensions were then exposed to 8 ns pulsed laser irradiation at a wavelength of 532 nm and fluences ranging from 1 to 5 J/cm2. Viability of the bacteria following laser exposure was determined using colony forming unit assays. Scanning electron microscopy was used to confirm the binding of nanoparticles to bacteria and the presence of cellular damage.Results: The laser-activated nanoparticle treatment reduced the surviving population to 31% of control in the MSSA population, while the survival in the MRSA population was reduced to 58% of control. Significant decreases in bacterial viability occurred when the laser fluence exceeded 1 J/cm2, and this effect was linear from 0 to 5 J/cm2 (r2=0.97. Significantly less bactericidal effect was observed for nonfunctionalized nanoparticles or

  11. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo

    OpenAIRE

    Williams, Katherine L.; Wahala, Wahala M.P.B.; Orozco, Susana; de Silva, Aravinda M.; Harris, Eva

    2012-01-01

    The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mic...

  12. Direct targeting of cancer cells with antibodies: What can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias?

    Science.gov (United States)

    Golay, Josée

    2017-12-01

    Following approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-NHL and CLL, many other unconjugated IgG1 MAbs have been tested in pre-clinical and clinical trials for the treatment of lymphoid neoplasms. Relatively few have been approved however and these are directed against a limited number of target antigens (CD20, CD52, CCR4, CD38, CD319). We review here the known biological properties of these antibodies and discuss which factors may have led to their success or may, on the contrary, limit their clinical application. Common factors of the approved MAbs are that the target antigen is expressed at relatively high levels on the neoplastic targets and their mechanism of action is mostly immune-mediated. Indeed most of these MAbs induce ADCC and phagocytosis by macrophages, and many also activate complement, leading to target cell lysis. In contrast direct cell death induction is not a common feature but may enhance efficacy in some cases. Interestingly, a key factor for the success of several MAbs appears to be their capacity to skew immunity towards an anti-tumour mode, by inhibiting/depleting suppressor cells and/or activating immune cells within the microenvironment, independently of FcγRs. We also expose here some of the strategies employed by industry to expand the clinical use of these molecules beyond their original indication. Interestingly, due to the central role of lymphocytes in the control of the immune response, several of the antibodies are now successfully used to treat many different autoimmune diseases and have also been formally approved for some of these new indications. There is little doubt that this trend will continue and that the precise mechanisms of therapeutic MAbs will be further dissected and better understood in the context of both tumour immunology and autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Time-Evolution Contrast of Target MRI Using High-Stability Antibody Functionalized Magnetic Nanoparticles: An Animal Model

    Directory of Open Access Journals (Sweden)

    K. W. Huang

    2014-01-01

    Full Text Available In this work, high-quality antibody functionalized Fe3O4 magnetic nanoparticles are synthesized. Such physical characterizations as particle morphology, particle size, stability, and relaxivity of magnetic particles are investigated. The immunoreactivity of biofunctionalized magnetic nanoparticles is examined by utilizing immunomagnetic reduction. The results show that the mean diameter of antibody functionalized magnetic nanoparticles is around 50 nm, and the relaxivity of the magnetic particles is 145 (mM·s−1. In addition to characterizing the magnetic nanoparticles, the feasibility of using the antibody functionalized magnetic nanoparticles for the contrast medium of target magnetic resonance imaging is investigated. These antibody functionalized magnetic nanoparticles are injected into mice bearing with tumor. The tumor magnetic-resonance image becomes darker after the injection and then recovers 50 hours after the injection. The tumor magnetic-resonance image becomes the darkest at around 20 hours after the injection. Thus, the observing time window for the specific labeling of tumors with antibody functionalized magnetic nanoparticles was found to be 20 hours after injecting biofunctionalized magnetic nanoparticles into mice. The biopsy of tumor is stained after the injection to prove that the long-term darkness of tumor magnetic-resonance image is due to the specific anchoring of antibody functionalized magnetic nanoparticles at tumor.

  14. A Mucin1 C-terminal Subunit-directed Monoclonal Antibody Targets Overexpressed Mucin1 in Breast Cancer.

    Science.gov (United States)

    Wu, Guang; Kim, Dongbum; Kim, Jung Nam; Park, Sangkyu; Maharjan, Sony; Koh, Heeju; Moon, Kyungduk; Lee, Younghee; Kwon, Hyung-Joo

    2018-01-01

    Background: Mucin1 (MUC1) is a highly glycosylated transmembrane protein that has gained attention because of its overexpression in various cancers. However, MUC1-targeted therapeutic antibodies have not yet been approved for cancer therapy. MUC1 is cleaved to two subunits, MUC1-N and MCU1-C. MUC1-N is released from the cell surface, making MUC1-C a more reasonable target for cancer therapy. Therefore, we produced a monoclonal antibody (anti-hMUC1) specific to the extracellular region of MUC1-C and evaluated its effects in vitro and in vivo . Methods : We produced a monoclonal antibody (anti-hMUC1) using a purified recombinant human MUC1 polypeptide and our novel immunization protocol. The reactivity of anti-hMUC1 was characterized by ELISA, western blotting and immunoprecipitation analyses. The localization of the antibody in the breast cancer cells after binding was determined by confocal image analysis. The effects of the antibody on the growth of cells were also investigated. We injected anti-hMUC1 and performed in vivo tracing analysis in xenograft mouse models. In addition, expression of MUC1 in tissue sections from patients with breast cancer was assessed by immunohistochemistry with anti-hMUC1. Results : The anti-hMUC1 antibody recognized recombinant MUC1 as well as native MUC1-C protein in breast cancer cells. Anti-hMUC1 binds to the membrane surface of cells that express MUC1 and is internalized in some cancer cell lines. Treatment with anti-hMUC1 significantly reduced proliferation of cells in which anti-hMUC1 antibody is internalized. Furthermore, the anti-hMUC1 antibody was specifically localized in the MUC1-expressing breast cancer cell-derived tumors in xenograft mouse models. Based on immunohistochemistry analysis, we detected significantly higher expression of MUC1 in cancer tissues than in normal control tissues. Conclusion : Our results reveal that the anti-hMUC1 antibody targets the extracellular region of MUC1-C subunit and may have utility in

  15. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ulrika Wendel

    Full Text Available Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.

  16. Effective Depletion of Pre-existing Anti-AAV Antibodies Requires Broad Immune Targeting

    Directory of Open Access Journals (Sweden)

    Victoria M. Velazquez

    2017-03-01

    Full Text Available Pre-existing antibodies (Abs to AAV pose a critical challenge for the translation of gene therapies. No effective approach is available to overcome pre-existing Abs. Given the complexity of Ab production, overcoming pre-existing Abs will require broad immune targeting. We generated a mouse model of pre-existing AAV9 Abs to test multiple immunosuppressants, including bortezomib, rapamycin, and prednisolone, individually or in combination. We identified an effective approach combining rapamycin and prednisolone, reducing serum AAV9 Abs by 70%–80% at 4 weeks and 85%–93% at 8 weeks of treatment. The rapamycin plus prednisolone treatment resulted in significant decreases in the frequency of B cells, plasma cells, and IgG-secreting and AAV9-specific Ab-producing plasma cells in bone marrow. The rapamycin plus prednisolone treatment also significantly reduced frequencies of IgD−IgG+ class-switched/FAS+CL7+ germinal center B cells, and of activated CD4+ T cells expressing PD1 and GL7, in spleen. These data suggest that rapamycin plus prednisolone has selective inhibitory effects on both T helper type 2 support of B cell activation in spleen and on bone marrow plasma cell survival, leading to effective AAV9 Abs depletion. This promising immunomodulation approach is highly translatable, and it poses minimal risk in the context of therapeutic benefits promised by gene therapy for severe monogenetic diseases, with a single or possibly a few treatments over a lifetime.

  17. An intracellular targeted antibody detects EGFR as an independent prognostic factor in ovarian carcinomas

    International Nuclear Information System (INIS)

    Noske, Aurelia; Denkert, Carsten; Schwabe, Michael; Weichert, Wilko; Darb-Esfahani, Silvia; Buckendahl, Ann-Christin; Sehouli, Jalid; Braicu, Elena I; Budczies, Jan; Dietel, Manfred

    2011-01-01

    In ovarian cancer, the reported rate of EGFR expression varies between 4-70% depending on assessment method and data on patient outcome are conflicting. Methods: In this study we investigated EGFR expression and its prognostic value in a cohort of 121 invasive ovarian carcinomas, using a novel antibody against the intracellular domain of the receptor. We further evaluated an association between EGFR, the nuclear transporter CRM1 as well as COX-2. Furthermore, we evaluated EGFR expression in ten ovarian cancer cell lines and incubated cancer cells with Leptomycin B, a CRM1 specific inhibitor. We observed a membranous and cytoplasmic EGFR expression in 36.4% and 64% of ovarian carcinomas, respectively. Membranous EGFR was an independent prognostic factor for poor overall survival in ovarian cancer patients (HR 2.7, CI 1.1-6.4, p = 0.02) which was also found in the serous subtype (HR 4.6, CI 1.6-13.4, p = 0.004). We further observed a significant association of EGFR with COX-2 and nuclear CRM1 expression (chi-square test for trends, p = 0.006 and p = 0.013, respectively). In addition, combined membranous EGFR/COX-2 expression was significantly related to unfavorable overall survival (HR 7.2, CI 2.3-22.1, p = 0.001). In cell culture, we observed a suppression of EGFR protein levels after exposure to Leptomycin B in OVCAR-3 and SKOV-3 cells. Our results suggest that the EGFR/COX-2/CRM1 interaction might be involved in progression of ovarian cancer and patient prognosis. Hence, it is an interesting anti-cancer target for a combination therapy. Further studies will also be needed to investigate whether EGFR is also predictive for benefit from EGFR targeted therapies

  18. Murine CR1/2 targeted antigenized single-chain antibody fragments induce transient low affinity antibodies and negatively influence an ongoing immune response.

    Science.gov (United States)

    Prechl, József; Molnár, Eszter; Szekeres, Zsuzsanna; Isaák, Andrea; Papp, Krisztián; Balogh, Péter; Erdei, Anna

    2007-01-01

    We have generated a single-chain antibody which recognizes murine CR1/2 and carries a genetically fused influenza hemagglutinin derived peptide. Theoretically such a construct is able to crosslink the B cell antigen receptor and CR1/2 on peptide specific B cells. The construct was able to reach its CR1/2 positive target cells, yet intraperitoneal delivery of the construct elicited an IgM response only slightly exceeding that induced by the free peptide. Providing T cell help by the injection of peptide specific lymphocytes did not alter the response in essence, that is anti-peptide IgG was not detectable even after booster immunizations. When used as a booster vaccine following injection of the peptide in adjuvant, the construct even inhibited the development of IgG1 and IgG3 anti-peptide antibodies. These data indicate that although targeting of antigen to CR1/2 on B cells can enhance transient proliferation or differentiation of antigen specific B cells it cannot induce strong, longlasting humoral immune responses. Furthermore, CR1/2 targeting constructs may negatively influence an ongoing immune reaction.

  19. Biomeasures and mechanistic modeling highlight PK/PD risks for a monoclonal antibody targeting Fn14 in kidney disease.

    Science.gov (United States)

    Chen, Xiaoying; Farrokhi, Vahid; Singh, Pratap; Ocana, Mireia Fernandez; Patel, Jenil; Lin, Lih-Ling; Neubert, Hendrik; Brodfuehrer, Joanne

    2018-01-01

    Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.

  20. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  1. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen

    Science.gov (United States)

    Hart, Peter J.; O’Shaughnessy, Colette M.; Siggins, Matthew K.; Bobat, Saeeda; Kingsley, Robert A.; Goulding, David A.; Crump, John A.; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F.; MacLennan, Calman A.

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies. PMID:26741681

  2. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Directory of Open Access Journals (Sweden)

    Peter J Hart

    Full Text Available Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  3. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Science.gov (United States)

    Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman A

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  4. Potent Inhibitors of the Hepatitis C Virus NS3 Protease: Design and Synthesis of Macrocyclic Substrate-Based [beta]-Strand Mimics

    Energy Technology Data Exchange (ETDEWEB)

    Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.; Duceppe, Jean-Simon; Faucher, Anne-Marie; Ferland, Jean-Marie; Grand-Maître, Chantal; Poirier, Martin; Simoneau, Bruno; Tsantrizos, Youla S. (Boehringer)

    2008-06-30

    The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

  5. Identification of amino acids involved in recognition by dengue virus NS3-specific, HLA-DR15-restricted cytotoxic CD4+ T-cell clones.

    Science.gov (United States)

    Zeng, L; Kurane, I; Okamoto, Y; Ennis, F A; Brinton, M A

    1996-05-01

    The majority of T-cell clones derived from a donor who experienced dengue illness following receipt of a live experimental dengue virus type 3 (DEN3) vaccine cross-reacted with all four serotypes of dengue virus, but some were serotype specific or only partially cross-reactive. The nonstructural protein, NS3, was immuno-dominant in the CD4+ T-cell response of this donor. The epitopes of four NS3-specific T-cell clones were analyzed. JK15 and JK13 recognized only DEN3 NS3, while JK44 recognized DEN1, DEN2, and DEN3 NS3 and JK5 recognized DEN1, DEN3, and West Nile virus NS3. The epitopes recognized by these clones on the DEN3 NS3 protein were localized with recombinant vaccinia viruses expressing truncated regions of the NS3 gene, and then the minimal recognition sequence was mapped with synthetic peptides. Amino acids critical for T-cell recognition were assessed by using peptides with amino acid substitutions. One of the serotype-specific clones (JK13) and the subcomplex- and flavivirus-cross-reactive clone (JK5) recognized the same core epitope, WITDFVGKTVW. The amino acid at the sixth position of this epitope is critical for recognition by both clones. Sequence analysis of the T-cell receptors of these two clones showed that they utilize different VP chains. The core epitopes for the four HLA-DR15-restricted CD4+ CTL clones studied do not contain motifs similar to those proposed by previous studies on endogenous peptides eluted from HLA-DR15 molecules. However, the majority of these dengue virus NS3 core epitopes have a positive amino acid (K or R) at position 8 or 9. Our results indicate that a single epitope can induce T cells with different virus specificities despite the restriction of these T cells by the same HLA-DR15 allele. This finding suggests a previously unappreciated level of complexity for interactions between human T-cell receptors and viral epitopes with very similar sequences on infected cells.

  6. Development and Characterization of a Camelid Single Domain Antibody-Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Uger, Marni D; Wisniewski, Pawel; Chao, Heman

    2017-01-01

    Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MS E peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[( N -maleimidopropionamido)-diethyleneglycol] ester (SM(PEG) 2 ), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol

  7. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Science.gov (United States)

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Kaneko, Kan; Hook, Sarah; Janssen, Peter H; Wedlock, D Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  8. SEARCH FOR TARGET TISSUE IN THE EYE ORBIT FOR AUTOIMMUNE AGGRESSION OF THYROID ANTIBODIES IN ENDOCRINE OPHTHALMOPATHY

    Directory of Open Access Journals (Sweden)

    V. G. Likhvantseva

    2017-01-01

    Full Text Available We searched for a possible target tissue in eye orbit for thyroid autoantibodies in endocrine ophthalmopathy (Graves’ disease, using correlation analysis method. We examined a group of 139 patients (278 eye orbits with thyroid-associated ophthalmopathy associated with diffuse toxic goiter. Serological parameters (antibodies to thyroid-stimulating hormone receptor; thyroglobulin, thyroid peroxidase were compared with instrumental diagnostic data (multi-layer CT, ultrasonography of eye orbit, and exophthalmometer, as well as clinical symptoms. Statistical correlation analysis enabled us to show different degrees of association between thyroid antibodies and clinical manifestations of Graves’ disease and eye orbit involvement. Especially, carriers of antibodies to TSH receptor and thyroglobulin (as compared to seronegative patients exhibited higher exophthalmos scores (19.16±0.26 mm, p < 0.001, and 19.41±0.40 mm, p < 0.05, respectively, and with total muscle index (2.42±0.05, p < 0.01, and 2.42±0.08, respectively. Meanwhile, eyelids in carriers of antibodies to TSH receptor and thyroid peroxidase proved to be more swollen (p < 0.001, p < 0.05, respectively. Carriage of antibodies to thyroglobulin was associated with synchronous involvement of two structures of the eye orbit: extraocular muscles and retrobulbar tissue, which is reflected by increase in the average ntegral exophthalmos index within the group.

  9. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases.

    Science.gov (United States)

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison

    2014-05-01

    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  10. Design of New Competitive Dengue Ns2b/Ns3 Protease Inhibitors—A Computational Approach

    Directory of Open Access Journals (Sweden)

    Noorsaadah Abd. Rahman

    2011-02-01

    Full Text Available Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA. The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA with various substituents.

  11. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells.

    Science.gov (United States)

    Kim, Jung Seok; Shin, Dae Hwan; Kim, Jin-Seok

    2018-01-10

    Glioblastoma stem cells (GSCs), which are identified as subpopulation of CD133 + /ALDH1 + , are known to show resistance to the most of chemotherapy and radiation therapy, leading to the recurrence of tumor in glioblastoma multiforme (GBM) patients. Also, delivery of temozolomide (TMZ), a mainline treatment of GBM, to the GBM site is hampered by various barriers including the blood-brain barrier (BBB). A dual-targeting immunoliposome encapsulating TMZ (Dual-LP-TMZ) was developed by using angiopep-2 (An2) and anti-CD133 monoclonal antibody (CD133 mAb) for BBB transcytosis and specific delivery to GSCs, respectively. The size, zeta potential and drug encapsulation efficiency of Dual-LP-TMZ were 203.4nm in diameter, -1.6mV and 99.2%, respectively. The in vitro cytotoxicity of Dual-LP-TMZ against U87MG GSCs was increased by 425- and 181-folds when compared with that of free TMZ and non-targeted TMZ liposome (LP-TMZ) (10.3μM vs. 4380μM and 1869μM in IC 50 , respectively). Apoptosis and anti-migration ability of Dual-LP-TMZ in U87MG GSCs were also significantly enhanced comparing with those of free TMZ or LP-TMZ. In vivo study clearly showed a significant reduction in tumor size after intravenous administrations of Dual-LP-TMZ to the orthotopically-implanted brain tumor mice when compared with free TMZ or LP-TMZ. Increased life span (ILS) and median survival time (MST) of tumor-bearing mice were also increased when treated with Dual-LP-TMZ (211.2% in ILS and 49.2days in MST) than with free TMZ (0% in ILS and 23.3day in MST). These data indicate that conjugation of both An2 peptide and CD133 mAb to TMZ-encapsulating liposome is very effective in delivering the TMZ to GSCs via BBB, suggesting a potential use of Dual-LP-TMZ as a therapeutic modality for GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging

    NARCIS (Netherlands)

    Pijlman, G.P.; Kondratieva, N.; Khromykh, A.A.

    2006-01-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A.

  13. Broadening CD4(+) and CD8(+) T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes

    DEFF Research Database (Denmark)

    Filskov, Jonathan; Mikkelsen, Marianne; Hansen, Paul R.

    2017-01-01

    and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice...

  14. Radioimmunotherapy of fungal diseases: the therapeutic potential of cytocidal radiation delivered by antibody targeting fungal cell surface antigens

    OpenAIRE

    Joshua D Nosanchuk; Ekaterina eDadachova

    2012-01-01

    Radioimmunotherapy is the targeted delivery of cytocidal radiation to cells via specific antibody. Although mature for the treatment of cancer, RIT of infectious diseases is in pre-clinical development. However, as there is an obvious and urgent need for novel approaches to treat infectious diseases, RIT can provide us with a powerful approach to combat serious diseases, including invasive fungal infections. For example, RIT has proven more effective than standard amphotericin B for the treat...

  15. A CD276 Antibody Guided Missile with One Warhead and Two Targets: The Tumor and Its Vasculature.

    Science.gov (United States)

    Khan, Kabir A; Kerbel, Robert S

    2017-04-10

    In this issue of Cancer Cell, Seaman et al. demonstrate that antibody drug conjugates (ADCs) against CD276 expressed by tumor cells and tumor vasculature have promising anti-tumor activity while showing little toxicity. Importantly, these agents have the potential to target both angiogenic vessels and non-angiogenic vessels co-opted by tumor cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The potential of targeted antibody prophylaxis in SARS outbreak control: a mathematic analysis

    NARCIS (Netherlands)

    Bogaards, Johannes Antonie; Putter, Hein; Jan Weverling, Gerrit; ter Meulen, Jan; Goudsmit, Jaap

    2007-01-01

    BACKGROUND: Severe acute respiratory syndrome (SARS) coronavirus-like viruses continue to circulate in animal reservoirs. If new mutants of SARS coronavirus do initiate another epidemic, administration of prophylactic antibodies to risk groups may supplement the stringent isolation procedures that

  17. Hepacivirus NS3/4A Proteases Interfere with MAVS Signaling in both Their Cognate Animal Hosts and Humans: Implications for Zoonotic Transmission.

    Science.gov (United States)

    Anggakusuma; Brown, Richard J P; Banda, Dominic H; Todt, Daniel; Vieyres, Gabrielle; Steinmann, Eike; Pietschmann, Thomas

    2016-12-01

    Multiple novel members of the genus Hepacivirus have recently been discovered in diverse mammalian species. However, to date, their replication mechanisms and zoonotic potential have not been explored in detail. The NS3/4A serine protease of hepatitis C virus (HCV) is critical for cleavage of the viral polyprotein. It also cleaves the cellular innate immune adaptor MAVS, thus decreasing interferon (IFN) production and contributing to HCV persistence in the human host. To investigate the conservation of fundamental aspects of the hepaciviral life cycle, we explored if MAVS cleavage and suppression of innate immune signaling represent a common mechanism employed across different clades of the genus Hepacivirus to enhance viral replication. To estimate the zoonotic potential of these nonhuman hepaciviruses, we assessed if their NS3/4A proteases were capable of cleaving human MAVS. NS3/4A proteases of viruses infecting colobus monkeys, rodents, horses, and cows cleaved the MAVS proteins of their cognate hosts and interfered with the ability of MAVS to induce the IFN-β promoter. All NS3/4A proteases from nonhuman viruses readily cleaved human MAVS. Thus, NS3/4A-dependent cleavage of MAVS is a conserved replication strategy across multiple clades within the genus Hepacivirus Human MAVS is susceptible to cleavage by these nonhuman viral proteases, indicating that it does not pose a barrier for zoonotic transmission of these viruses to humans. Virus infection is recognized by cellular sensor proteins triggering innate immune signaling and antiviral defenses. While viruses have evolved strategies to thwart these antiviral programs in their cognate host species, these evasion mechanisms are often ineffective in a novel host, thus limiting viral transmission across species. HCV, the best-characterized member of the genus Hepacivirus within the family Flaviviridae, uses its NS3/4A protease to disrupt innate immune signaling by cleaving the cellular adaptor protein MAVS

  18. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Denicar Lina Nascimento Fabris Maeda

    2017-09-01

    Full Text Available The heat-labile toxins (LT produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV envelope glycoprotein domain III (EDIII, which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

  19. Modulating antibody affinity towards the transferrin receptor to increase brain uptake of anti-transferrin receptor antibody targeted gold nanoparticles

    DEFF Research Database (Denmark)

    Johnsen, Kasper Bendix; Bak, Martin; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier (BBB) that under physiological conditions precludes entrance of most substances contained in the systemic circulation. Thus, this barrier must be overcome to deliver medicines into the brain parenchyma. The transfer......Drug delivery to the brain is hampered by the presence of the blood-brain barrier (BBB) that under physiological conditions precludes entrance of most substances contained in the systemic circulation. Thus, this barrier must be overcome to deliver medicines into the brain parenchyma....... The transferrin receptor is exclusively expressed on capillaries of the brain, which makes it an interesting target for transport of drugs towards the brain. However, the current evidence on the receptor movement in brain capillaries does not suggest transcytosis, and delivering medicines or nanoparticles using...

  20. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    Science.gov (United States)

    Mac, Jenny T.; Nuñez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.; Vullev, Valentine I.; Anvari, Bahman

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. These erythrocyte-derived optical nano-probes may provide a potential platform for clinical translation, and enable molecular imaging of cancer biomarkers. PMID:27446657

  1. Highly Specific PET Imaging of Prostate Tumors in Mice with an Iodine-124-Labeled Antibody Fragment That Targets Phosphatidylserine

    OpenAIRE

    Stafford, Jason H.; Hao, Guiyang; Best, Anne M.; Sun, Xiankai; Thorpe, Philip E.

    2013-01-01

    Phosphatidylserine (PS) is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab')2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab')2 was...

  2. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  3. Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria.

    Science.gov (United States)

    Cardoso, Ana R; Cabral-Miranda, Gustavo; Reyes-Sandoval, Arturo; Bachmann, Martin F; Sales, M Goreti F

    2017-05-15

    Sensitive detection of specific antibodies by biosensors has become of major importance for monitoring and controlling epidemics. Here we report a development of a biosensor able to specifically measure antibodies in a drop of unmodified blood serum. Within minutes, the detection system measures presence of antibodies against Plasmodium vivax, a causing agent for malaria. The biosensor consists of a layer of carbon nanotubes (CNTs) which were casted on a carbon working electrode area of a three-electrode system and oxidized. An amine layer was produced next by modifying the surface with EDAC/NHS followed by reaction with a diamine compound. Finally, the protein fragments derived from P. vivax containing well-known antigen sequences were casted on this layer and bound through electrostatic interactions, involving hydrogen and ionic bonding. All these chemical changes occurring at the carbon surface along the biosensor assembly were followed and confirmed by Fourier Transformed Infrared s pectrometry (FTIR) and Raman spectroscopy. The presence of antibodies in serum was detected by monitoring the electrical properties of the layer, making use of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), against a standard iron probe. Overall, the charge-transfer resistance decreased after antibody binding, because there was an additional amount of protein bound to the surface. This hindered the access of the iron redox probe to the conductive support at the electrode surface. Electrical changes could be measured at antibody concentration as low as ~6-50pg/L (concentrations in the range of 10-15M) and as high as ~70μg/L. Specific measurement with low background was even possible in undiluted serum. Hence, this novel biosensor allows assessing serum antibody levels in real time and in un-manipulated serum samples on-site where needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    Science.gov (United States)

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  5. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells.

    Science.gov (United States)

    Kaiser, Philipp D; Maier, Julia; Traenkle, Bjoern; Emele, Felix; Rothbauer, Ulrich

    2014-11-01

    In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pepinsky, R. Blake; Silvian, Laura; Berkowitz, Steven A.; Farrington, Graham; Lugovskoy, Alexey; Walus, Lee; Eldredge, John; Capili, Allan; Mi, Sha; Graff, Christilyn; Garber, Ellen (Biogen)

    2010-11-15

    Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.

  7. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jing Jin

    2015-12-01

    Full Text Available We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV infection. Potently neutralizing antibodies (NAbs blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  8. A Novel VHH Antibody Targeting the B Cell-Activating Factor for B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Wen Wu

    2014-05-01

    Full Text Available Objective: To construct an immune alpaca phage display library, in order to obtain a single domain anti-BAFF (B cell-activating factor antibody. Methods: Using phage display technology, we constructed an immune alpaca phage display library, selected anti-BAFF single domain antibodies (sdAbs, cloned three anti-BAFF single-domain antibody genes into expression vector pSJF2, and expressed them efficiently in Escherichia coli. The affinity of different anti-BAFF sdAbs were measured by Bio layer interferometry. The in vitro biological function of three sdAbs was investigated by cell counting kit-8 (CCK-8 assay and a competitive enzyme-linked immunosorbent assay (ELISA. Results: We obtained three anti-BAFF single domain antibodies (anti-BAFF64, anti-BAFF52 and anti-BAFFG3, which were produced in high yield in Escherichia coli and inhibited tumor cell proliferation in vitro. Conclusion: The selected anti-BAFF antibodies could be candidates for B-cell lymphoma therapies.

  9. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells.

    Science.gov (United States)

    Kurosawa, Nobuyuki; Yoshioka, Megumi; Isobe, Masaharu

    2011-04-13

    Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. We developed a single-step cloning method, target-selective homologous recombination (TS-HR), in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector) with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique. © 2011 Kurosawa et al; licensee BioMed Central Ltd.

  10. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells

    Directory of Open Access Journals (Sweden)

    Isobe Masaharu

    2011-04-01

    Full Text Available Abstract Background Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. Results We developed a single-step cloning method, target-selective homologous recombination (TS-HR, in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. Conclusion The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique.

  11. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  12. Tyramide Signal Amplification for Antibody-overlay Lectin Microarray: A Strategy to Improve the Sensitivity of Targeted Glycan Profiling

    Science.gov (United States)

    Meany, Danni L.; Hackler, Laszlo; Zhang, Hui; Chan, Daniel W.

    2011-01-01

    Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentration. We describe a new Tyramide Signal Amplification (TSA) for Antibody-overlay Lectin Microarray procedure for sensitive profiling of glycosylation patterns. We demonstrated that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein Prostate Specific Antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a sub-nanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of Prostate Specific Membrane Antigen (PSMA) using the TSA and ALM. Thus, the Tyramide Signal Amplification for Antibody-overlay Lectin Microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms. PMID:21133419

  13. Investigating Antivenom Function and Cross-Reactivity – a Study of Antibodies and Their Targets

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Andersen, Mikael Rørdam

    Venomous snakebites are regarded as one of the World’s most neglected tropical diseases/conditions with up to 2.5 million victims every year. The best-practice treatment is antivenom derived from the blood of large mammals (typically horses or sheep) immunized with venom of one or more snake...... species. The active toxin neutralizing components in antivenom are complex mixtures of antibodies (or fragments here of). The individual antibodies are adapted by the immune system of the production animal to bind specific to parts of each toxin used in the immunization procedure. In many cases antivenom...

  14. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  15. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...

  16. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Etrych, Tomáš; Chytil, Petr; Jelínková, Markéta; Říhová, Blanka

    2004-01-01

    Roč. 12, č. 8 (2004), s. 477-489 ISSN 1061-186X R&D Projects: GA ČR GA305/02/1425 Keywords : HPMA copolymers * doxorubicin * antibody Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.907, year: 2004

  17. Construction of dystrophin fusion proteins to raise targeted antibodies to different epitopes

    NARCIS (Netherlands)

    Ginjaar, H. B.; van Paassen, H. B.; den Dunnen, J. T.; Man, N. T.; Morris, G. E.; Moorman, A. F.; van Ommen, G. J.

    1992-01-01

    For the study of the structure and function relationship of dystrophin, defective in DMD, and for diagnostic purposes it is important to dispose of antibodies against different parts of the protein. We have made five different constructs for the expression of fusion proteins containing parts of the

  18. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  19. Paclitaxel-loaded nanoparticles decorated with anti-CD133 antibody: a targeted therapy for liver cancer stem cells

    Science.gov (United States)

    Jin, Cheng; Yang, Zhaoxu; Yang, Jingyue; Li, Haimin; He, Yong; An, Jiaze; Bai, Ling; Dou, Kefeng

    2014-01-01

    Recent studies have revealed the existence of liver cancer stem cells (CSCs). Therefore, there is an urgent need for new and effective treatment strategies specific to liver CSCs. In this work, the poly( d, l-lactide-coglycolide) nanoparticles containing paclitaxel were prepared by emulsification-solvent evaporation method. The nanoparticles decorated with anti-CD133 antibody, termed targeted nanoparticles, were prepared by carbodiimide chemistry for liver CSCs. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, and in vitro release) were investigated. Cellular uptake and accumulation in tumor tissue of nanoparticles were observed. To assess anti-tumor activity of nanoparticles in vitro and in vivo, cell survival assay and tumor regression study were carried out using liver cancer cell lines (Huh7 and HepG2) and their xenografts. Particle size of targeted nanoparticles was 429.26 ± 41.53 nm with zeta potential of -11.2 mV. Targeted nanoparticles possessed spherical morphology and high encapsulation efficiency (87.53 ± 5.9 %). The accumulation of targeted nanoparticles depends on dual effects of passive and active targeting. Drug-loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. Targeted nanoparticles resulted in significant improvement in therapeutic response through selectively eliminating CD133 positive subpopulation. These results suggested that the novel nanoparticles could be a promising candidate with excellent therapeutic efficacy for targeting liver CSCs.

  20. A novel dimeric inhibitor targeting Beta2GPI in Beta2GPI/antibody complexes implicated in antiphospholipid syndrome.

    Directory of Open Access Journals (Sweden)

    Alexey Kolyada

    2010-12-01

    Full Text Available β2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS, an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of β2GPI generated by anti-β2GPI antibodies is pathologically important, in contrast to monomeric β2GPI which is abundant in plasma.We created a dimeric inhibitor, A1-A1, to selectively target β2GPI in β2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1 and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of β2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of β2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of β2GPI present in human serum, β2GPI purified from human plasma and the individual domain V of β2GPI. We demonstrated that when β2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of β2GPI to cardiolipin, regardless of the source of β2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of β2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-β2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric β2GPI to cardiolipin.Our results suggest that the approach of using a dimeric inhibitor to block β2GPI in the pathological multivalent β2GPI/antibody complexes holds significant promise. The novel inhibitor A1-A1 may be a starting point in the development of an effective therapeutic for antiphospholipid syndrome.

  1. A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    A Kolyada; C Lee; A De Biasio; N Beglova

    2011-12-31

    {beta}2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of {beta}2GPI generated by anti-{beta}2GPI antibodies is pathologically important, in contrast to monomeric {beta}2GPI which is abundant in plasma. We created a dimeric inhibitor, A1-A1, to selectively target {beta}2GPI in {beta}2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of {beta}2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of {beta}2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of {beta}2GPI present in human serum, {beta}2GPI purified from human plasma and the individual domain V of {beta}2GPI. We demonstrated that when {beta}2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of {beta}2GPI to cardiolipin, regardless of the source of {beta}2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of {beta}2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-{beta}2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric {beta}2GPI to cardiolipin. Our results suggest that the approach of using a dimeric inhibitor to block {beta}2GPI in the pathological multivalent {beta}2GPI/antibody complexes holds significant promise. The novel inhibitor A1-A1 may be a starting point in the development of an effective therapeutic for antiphospholipid syndrome.

  2. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Directory of Open Access Journals (Sweden)

    Supatsak Subharat

    Full Text Available Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2 formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation. A control group of sheep (n = 6 was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  3. No correspondence between resistance mutations in the HCV-NS3 protease at baseline and early telaprevir-based triple therapy

    Directory of Open Access Journals (Sweden)

    Luísa Hoffmann

    2015-06-01

    Full Text Available Direct-acting antiviral (DAA-based therapy is the new standard treatment for chronic hepatitis C virus (HCV infection. However, protease inhibitor (PI-resistant viral variants have been often described. This study aimed to examine HCV-NS3 protease variants at baseline and at 4 weeks under triple therapy. To this end, we analyzed the presence of variants in HCV-NS3 protease region from peripheral blood samples of 16 patients infected with HCV-1 at baseline and at 4 weeks of combined therapy with telaprevir, pegylated interferon, and ribavirin, using next-generation sequencing. Several variants with synonymous and non-synonymous amino acid substitutions were detected at both time points. Variants detected at low frequency corresponded to 74% (HCV-1a and 35% (HCV-1b of non-synonymous substitutions. We found nine PI-resistance-associated variants (V36A, T54S, V55I, Q80K, Q80R, V107I, I132V, D168E, M175L in HCV-NS3 of 10 patients. There was no correspondence of resistance-associated variant profile between baseline and at 4 weeks. Moreover, these resistance variants at baseline and short-term treatment are not good predictors of outcome under triple therapy. Our study also shows a large number of others minor and major non-synonymous variants in HCV-NS3 early in telaprevir-based therapy that can be important for further drug resistance association studies with newly developed PI agents.

  4. Internalization of secreted antigen–targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen receptor axis

    Science.gov (United States)

    Thorek, Daniel L. J.; Watson, Philip A.; Lee, Sang-Gyu; Ku, Anson T.; Bournazos, Stylianos; Braun, Katharina; Kim, Kwanghee; Sjöström, Kjell; Doran, Michael G.; Lamminmäki, Urpo; Santos, Elmer; Veach, Darren; Turkekul, Mesruh; Casey, Emily; Lewis, Jason S.; Abou, Diane S.; van Voss, Marise R. H.; Scardino, Peter T.; Strand, Sven-Erik; Alpaugh, Mary L.; Scher, Howard I.; Lilja, Hans; Larson, Steven M.; Ulmert, David

    2017-01-01

    Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. Understanding this resistance is confounded by a lack of noninvasive means to assess AR activity in vivo. We report intracellular accumulation of a secreted antigen-targeted antibody (SATA) that can be used to characterize disease, guide therapy, and monitor response. AR-regulated human kallikrein-related peptidase 2 (free hK2) is a prostate tissue-specific antigen produced in prostate cancer and androgen-stimulated breast cancer cells. Fluorescent and radio conjugates of 11B6, an antibody targeting free hK2, are internalized and noninvasively report AR pathway activity in metastatic and genetically engineered models of cancer development and treatment. Uptake is mediated by a mechanism involving the neonatal Fc receptor. Humanized 11B6, which has undergone toxicological tests in nonhuman primates, has the potential to improve patient management in these cancers. Furthermore, cell-specific SATA uptake may have a broader use for molecularly guided diagnosis and therapy in other cancers. PMID:27903863

  5. Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide.

    Science.gov (United States)

    Ko, Y T; Hartner, W C; Kale, A; Torchilin, V P

    2009-01-01

    The treatment of myocardial ischemia using gene therapy is a rather novel but promising approach. Gene delivery to target cells may be enhanced by using double-targeted delivery systems simultaneously capable of extracellular accumulation and intracellular penetration. With this in mind, we have used low cationic liposomes-plasmid DNA complexes (lipoplexes) modified with cell-penetrating transactivating transcriptional activator (TAT) peptide (TATp) and/or with monoclonal anti-myosin monoclonal antibody 2G4 (mAb 2G4) specific toward cardiac myosin, for targeted gene delivery to ischemic myocardium. In vitro transfection of both normoxic and hypoxic cardiomyocytes was enhanced by the presence of TATp as determined by fluorescence microscopy and ELISA. The in vitro transfection was further enhanced by the additional modification with mAb 2G4 antibody in the case of hypoxic, but not normoxic cardiomyocytes. However, we did not observe a synergism between TATp and mAb 2G4 ligands under our experimental condition. In in vivo experiments, we have clearly demonstrated an increased accumulation of mAb 2G4-modified TATp lipoplexes in the ischemic rat myocardium and significantly enhanced transfection of cardiomyocytes in the ischemic zone. Thus, the genetic transformation of normoxic and hypoxic cardiomyocytes can be enhanced by using lipoplexes modified with TATp and/or mAb 2G4. Such complexes also demonstrate an increased accumulation in the ischemic myocardium and effective transfection of hypoxic cardiomyocytes in vivo.

  6. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Lavrsen, Kirstine; Madsen, Caroline B; Rasch, Morten G

    2013-01-01

    not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed...... to Tn-MUC1 was investigated using BiaCore. The availability of Tn-MUC1 on the surface of breast cancer cells was evaluated by immunohistochemistry, confocal microscopy, and flow cytometry, followed by in vitro assessment of antibody-dependent cellular cytotoxicity by mAb 5E5. Biacore analysis...... is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies....

  7. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).

    Science.gov (United States)

    Qin, Zijian; Wang, Maolin; Yan, Aixia

    2017-07-01

    In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    Science.gov (United States)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  9. Toward anticancer immunotherapeutics: well-defined polymer-antibody conjugates for selective dendritic cell targeting.

    Science.gov (United States)

    Tappertzhofen, Kristof; Bednarczyk, Monika; Koynov, Kaloian; Bros, Matthias; Grabbe, Stephan; Zentel, Rudolf

    2014-10-01

    This paper describes the synthesis of semitelechelic maleimide-modified N-(2-hydroxypropyl)methacrylamid) (HPMA) based polymers of narrow dispersity that can be conjugated e.g. to anti-DEC-205 antibodies affording "star-like" topologies (one antibody decorated with several polymer chains). FCS revealed a hydrodynamic diameter of R(h)  = 7.9 nm and SEC narrow dispersity (1.45). Primary in vitro studies with bone marrow derived dendritic cells (DC) show higher cellular binding and uptake rates compared to control samples. Moreover, incubating these conjugates to primary splenocytes demonstrates a much higher affinity to the primary DCs than to any other immune cell population within the spleen. This differentiation is, thereby, much more pronounced for the star-like conjugates than for conjugates made from polymers statistically modified with anti-DEC-205. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Target antigens for Hs-14 monoclonal antibody and their various expression in normozoospermic and asthenozoospermic men

    Czech Academy of Sciences Publication Activity Database

    Čapková, Jana; Margaryan, Hasmik; Kubátová, Alena; Novák, Petr; Pěknicová, Jana

    2015-01-01

    Roč. 25, č. 11 (2015) ISSN 2051-4190 R&D Projects: GA ČR(CZ) GAP503/12/1834; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 ; RVO:61388971 Keywords : acrosome * human sperm atozoa * monoclonal antibody * asthenozoospermia * transitional endoplasmic reticulum ATPase Subject RIV: CE - Biochemistry http://link.springer.com/article/10.1186/s12610-015-0025-0

  11. Cytoplasmic-anti-neutrophil cytoplasmic antibodies targeting myeloperoxidase in Wegener′s granulomatosis: A rare phenomenon

    Directory of Open Access Journals (Sweden)

    Bhavana M Venkatesh

    2014-01-01

    Full Text Available Wegener′s granulomatosis (WG patients can rarely have antineutrophil cytoplasmic antibodies (ANCAs directed against myeloperoxidase (MPO, producing a cytoplasmic pattern on indirect immunofluorescence (IIF. This has important implications in the diagnosis and pathophysiology of the disease. We present to you a report of three cases of WG, demonstrating a cytoplasmic-ANCA pattern on indirect IIF, but directed against MPO. It is necessary to diagnose a patient taking into account both the autoimmune test results and the clinical features.

  12. Cell-penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2014-10-01

    person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c. THIS PAGE U UU 9 19b...blocking buffer has not helped increase specific signal. This suggests that the problem is not promiscuous binding of mouse antibody by the capture

  13. Oculocutaneous albinism: developing novel antibodies targeting the proteins associated with OCA2 and OCA4.

    Science.gov (United States)

    Kondo, Taisuke; Namiki, Takeshi; Coelho, Sergio G; Valencia, Julio C; Hearing, Vincent J

    2015-01-01

    Patients with oculocutaneous albinism (OCA) have severely decreased pigmentation of their skin, hair and eyes. OCA2 and OCA4 result from mutations of the OCA2 and SLC45A2 genes, respectively, both of which disrupt the trafficking of the critical melanogenic enzyme tyrosinase to melanosomes. Both proteins encoded by those loci (termed P and MATP, respectively) have 12 putative transmembrane regions and are thought to function as transporters, although their functions and subcellular localizations remain to be characterized. To generate specific antibodies against unique synthetic peptides encoded by P and MATP that could be used to characterize their functions and subcellular localizations. Western blotting and immunohistochemistry were used to assess the specificity of antibodies and to colocalize P and MATP proteins with various subcellular markers. Specific antibodies to the P and MATP proteins were generated that work well for Western blotting and immunohistochemistry. The localizations of P and MATP with various subcellular organelles were characterized using confocal microscopy, which revealed that they colocalize to some extent with LAMP2, but do not significantly colocalize with markers of the ER, Golgi or melanosomes. Interestingly, both P and MATP colocalize significantly with BLOC-1, a sorting component involved in the intracellular trafficking of melanosomal/lysosomal constituents. These results provide a basis to understand how disrupted functions of P or MATP result in the misrouting of tyrosinase and cause the hypopigmentation seen in OCA2 and OCA4. Copyright © 2014. Published by Elsevier Ireland Ltd.

  14. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells....... This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus...

  15. Tumour targeting with monovalent fragments of anti-neuroblastoma antibody chCE7

    International Nuclear Information System (INIS)

    Carrel, F.; Novak-Hofer, I.; Ruch, C.; Zimmermann, K.; Amstutz, H.

    1997-01-01

    The in vitro and in vivo behaviour of the monovalent single chain (scFv) and Fab-fragments derived from anti-neuroblastoma antibody chCE7 is reported. When comparing tumour uptake and -retention of radioactivity of 67 Cu-labelled monovalent chCE7 with divalent chCE7 F(ab') 2 the advantage of the radiocopper label over the radioiodine label was more pronounced with the divalent (internalising) F(ab') 2 fragments. (author) 1 fig., 1 ref

  16. In Vitro Methods for Comparing Target Binding and CDC Induction Between Therapeutic Antibodies: Applications in Biosimilarity Analysis.

    Science.gov (United States)

    Salinas-Jazmín, Nohemi; González-González, Edith; Vásquez-Bochm, Luz X; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2017-05-04

    Therapeutic monoclonal antibodies (mAbs) are relevant to the treatment of different pathologies, including cancers. The development of biosimilar mAbs by pharmaceutical companies is a market opportunity, but it is also a strategy to increase drug accessibility and reduce therapy-associated costs. The protocols detailed here describe the evaluation of target binding and CDC induction by rituximab in Daudi cells. These two functions require different structural regions of the antibody and are relevant to the clinical effect induced by rituximab. The protocols allow the side-to-side comparison of a reference rituximab and a marketed rituximab biosimilar. The evaluated products showed differences both in target binding and CDC induction, suggesting that there are underlying physicochemical differences and highlighting the need to analyze the impact of those differences in the clinical setting. The methods reported here constitute simple and inexpensive in vitro models for the evaluation of the activity of rituximab biosimilars. Thus, they can be useful during biosimilar development, as well as for quality control in biosimilar production. Furthermore, the presented methods can be extrapolated to other therapeutic mAbs.

  17. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Anna-Maria Georgoudaki

    2016-05-01

    Full Text Available Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME. Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming TAM populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, FcγRIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.

  18. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  19. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Rami Yossef

    Full Text Available Natural killer (NK cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D. Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  20. Targeting Fibroblast Growth Factor 23 Signaling with Antibodies and Inhibitors, Is There a Rationale?

    Directory of Open Access Journals (Sweden)

    Seiji Fukumoto

    2018-02-01

    Full Text Available Fibroblast growth factor 23 (FGF23 is a phosphotropic hormone mainly produced by bone. FGF23 reduces serum phosphate by suppressing intestinal phosphate absorption through reducing 1,25-dihydroxyvitamin D and proximal tubular phosphate reabsorption. Excessive actions of FG23 result in several kinds of hypophosphatemic rickets/osteomalacia including X-linked hypophosphatemic rickets (XLH and tumor-induced osteomalacia. While neutral phosphate and active vitamin D are standard therapies for child patients with XLH, these medications have several limitations both in their effects and adverse events. Several approaches that inhibit FGF23 actions including anti-FGF23 antibodies and inhibitors of FGF signaling have been shown to improve phenotypes of model mice for FG23-related hypophosphatemic diseases. In addition, clinical trials indicated that a humanized anti-FGF23 antibody increased serum phosphate and improved quality of life in patients with XLH. Furthermore, circulatory FGF23 is high in patients with chronic kidney disease (CKD. Many epidemiological studies indicated the association between high FGF23 levels and various adverse events especially in patients with CKD. However, it is not known whether the inhibition of FGF23 activities in patients with CKD is beneficial for these patients. In this review, recent findings concerning the modulation of FGF23 activities are discussed.

  1. A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    International Nuclear Information System (INIS)

    Daniels-Wells, Tracy R; Nicodemus, Christopher F; Penichet, Manuel L; Helguera, Gustavo; Leuchter, Richard K; Quintero, Rafaela; Kozman, Maggie; Rodríguez, José A; Ortiz-Sánchez, Elizabeth; Martínez-Maza, Otoniel; Schultes, Birgit C

    2013-01-01

    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 and CD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa. Binding characteristics of the antibody were determined by ELISA and flow cytometry. In vitro degranulation was determined by the release of β-hexosaminidase from effector cells. In vivo degranulation was monitored in human FcεRIα transgenic mice using the passive cutaneous anaphylaxis assay. These mice were also used for a vaccination study to determine the in vivo anti-cancer effects of this antibody. Significant differences in survival were determined using the Log Rank test. In vitro T-cell activation was studied using human dendritic cells and autologous T cells. The anti-PSA IgE, expressed in murine myeloma cells, is properly assembled and secreted, and binds the antigen and FcεRI. In addition, this antibody is capable of triggering effector cell degranulation in vitro and in vivo when artificially cross-linked, but not in the presence of the natural soluble antigen, suggesting that such an interaction will not trigger systemic anaphylaxis. Importantly, the anti-PSA IgE combined with PSA also triggers immune activation in vitro and in vivo and significantly prolongs the survival of human FcεRIα transgenic mice challenged with PSA-expressing tumors in a prophylactic vaccination setting. The anti-PSA IgE exhibits

  2. Novel nucleotide and amino acid covariation between the 5'UTR and the NS2/NS3 proteins of hepatitis C virus: bioinformatic and functional analyses.

    Directory of Open Access Journals (Sweden)

    Hung-Yu Sun

    Full Text Available Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd nucleotide of the 5'UTR with the 14(th, 41(st, 76(th, 110(th, 211(th and 212(th residues of NS2 and with the 71(st, 175(th and 621(st residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR₂₄₃ and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR₂₄₃ depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR₂₄₃-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR₂₄₃ co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.

  3. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  4. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin

    International Nuclear Information System (INIS)

    Demartis, S.; Tarli, L.; Neri, D.; Borsi, L.; Zardi, L.

    2001-01-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211 At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. (orig.)

  5. N-Acetylgalactosamino Dendrons as Clearing Agents to Enhance Liver Targeting of Model Antibody-Fusion Protein

    Science.gov (United States)

    Yoo, Barney; Cheal, Sarah M.; Torchon, Geralda; Dilhas, Anna; Yang, Guangbin; Pu, Jun; Punzalan, Blesida; Larson, Steven M.; Ouerfelli, Ouathek

    2014-01-01

    Dendrimer clearing agents represent a unique class of compounds for use in multistep targeting (MST) in radioimmunotherapy and imaging. These compounds were developed to facilitate the removal of excess tumor-targeting monoclonal antibody (mAb) prior to administration of the radionuclide to minimize exposure of normal tissue to radiation. Clearing agents are designed to capture the circulating mAb, and target it to the liver for metabolism. Glycodendrons are ideally suited for MST applications as these highly branched compounds are chemically well-defined thus advantageous over heterogeneous macromolecules. Previous studies have described glycodendron 3 as a clearing agent for use in three-step MST protocols, and early in vivo assessment of 3 showed promise. However, synthetic challenges have hampered its availability for further development. In this report we describe a new sequence of chemical steps which enables the straightforward synthesis and analytical characterization of this class of dendrons. With accessibility and analytical identification solved, we sought to evaluate both lower and higher generation dendrons for hepatocyte targeting as well as clearance of a model protein. We prepared a series of clearing agents where a single biotin is connected to glycodendrons displaying four, eight, sixteen or thirty-two α-thio-N-acetylgalactosamine (α–SGalNAc) units, resulting in compounds with molecular weights ranging from 2 to 17 kDa, respectively. These compounds were fully characterized by LCMS and NMR. We then evaluated the capacity of these agents to clear a model 131I-labeled single chain variable fragment antibody-streptavidin (131I-scFv-SAv) fusion protein from blood and tissue in mice, and compared their clearing efficiencies to that of a 500 kDa dextran-biotin conjugate. Glycodendrons and dextran-biotin exhibited enhanced blood clearance of the scFv-SAv construct. Biodistribution analysis showed liver targeting/uptake of the scFv-SAv construct to

  6. Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer.

    Science.gov (United States)

    Reardon, Patrick N; Sage, Harvey; Dennison, S Moses; Martin, Jeffrey W; Donald, Bruce R; Alam, S Munir; Haynes, Barton F; Spicer, Leonard D

    2014-01-28

    The membrane proximal external region (MPER) of HIV-1 glycoprotein (gp) 41 is involved in viral-host cell membrane fusion. It contains short amino acid sequences that are binding sites for the HIV-1 broadly neutralizing antibodies 2F5, 4E10, and 10E8, making these binding sites important targets for HIV-1 vaccine development. We report a high-resolution structure of a designed MPER trimer assembled on a detergent micelle. The NMR solution structure of this trimeric domain, designated gp41-M-MAT, shows that the three MPER peptides each adopt symmetric α-helical conformations exposing the amino acid side chains of the antibody binding sites. The helices are closely associated at their N termini, bend between the 2F5 and 4E10 epitopes, and gradually separate toward the C termini, where they associate with the membrane. The mAbs 2F5 and 4E10 bind gp41-M-MAT with nanomolar affinities, consistent with the substantial exposure of their respective epitopes in the trimer structure. The traditional structure determination of gp41-M-MAT using the Xplor-NIH protocol was validated by independently determining the structure using the DISCO sparse-data protocol, which exploits geometric arrangement algorithms that guarantee to compute all structures and assignments that satisfy the data.

  7. Validating Missing Proteins in Human Sperm Cells by Targeted Mass-Spectrometry- and Antibody-based Methods.

    Science.gov (United States)

    Carapito, Christine; Duek, Paula; Macron, Charlotte; Seffals, Marine; Rondel, Karine; Delalande, François; Lindskog, Cecilia; Fréour, Thomas; Vandenbrouck, Yves; Lane, Lydie; Pineau, Charles

    2017-12-01

    The present study is a contribution to the "neXt50 challenge", a coordinated effort across C-HPP teams to identify the 50 most tractable missing proteins (MPs) on each chromosome. We report the targeted search of 38 theoretically detectable MPs from chromosomes 2 and 14 in Triton X-100 soluble and insoluble sperm fractions from a total of 15 healthy donors. A targeted mass-spectrometry-based strategy consisting of the development of LC-PRM assays (with heavy labeled synthetic peptides) targeting 92 proteotypic peptides of the 38 selected MPs was used. Out of the 38 selected MPs, 12 were identified with two or more peptides and 3 with one peptide after extensive SDS-PAGE fractionation of the two samples and with overall low-intensity signals. The PRM data are available via ProteomeXchange in PASSEL (PASS01013). Further validation by immunohistochemistry on human testes sections and cytochemistry on sperm smears was performed for eight MPs with antibodies available from the Human Protein Atlas. Deep analysis of human sperm still allows the validation of MPs and therefore contributes to the C-HPP worldwide effort. We anticipate that our results will be of interest to the reproductive biology community because an in-depth analysis of these MPs may identify potential new candidates in the context of human idiopathic infertilities.

  8. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence

    Science.gov (United States)

    Thuy Nguyen, Hanh; Thapa, Raj Kumar; Shin, Beom Soo; Jeong, Jee-Heon; Kim, Jae-Ryong; Yong, Chul Soon; Kim, Jong Oh

    2017-03-01

    Premature cellular senescence refers to the state of irreversible cell cycle arrest due to DNA damage or other stresses. In this study, CD9 monoclonal antibody (CD9mAb) was successfully conjugated to the surface of PEGylated liposomes for targeted delivery of rapamycin (LR-CD9mAb) to overcome senescence of CD9 receptor-overexpressing cells. LR-CD9mAb has a small particle size (143.3 ± 2.4 nm), narrow size distribution (polydispersity index: 0.220 ± 0.036), and negative zeta potential (-14.6 ± 1.2 mV). The uptake of CD9-targeted liposomes by premature senescent human dermal fibroblasts (HDFs) was higher than that by young HDFs, as displayed by confocal microscopic images. The senescence might not be reversed by treatment with rapamycin; however, the drug promoted cell proliferation and reduced the number of cells that expressed the senescence-associated-β-galactosidase (SA-β-gal). These effects were further confirmed by cell viability, cell cycle, and Western blotting analyses. Moreover, CD9-targeted liposomes showed better anti-senescence activity, in comparison with free rapamycin or the conventional liposomal formulation, suggesting the potential application of this system in further in vivo studies.

  9. Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery

    Directory of Open Access Journals (Sweden)

    Eliot. P. Botosoa

    2011-01-01

    Full Text Available Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR. Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.

  10. L1 cell adhesion molecule as a potential therapeutic target in murine models of endometriosis using a monoclonal antibody approach.

    Directory of Open Access Journals (Sweden)

    Cássia G T Silveira

    Full Text Available BACKGROUND/AIMS: The neural cell adhesion molecule L1CAM is a transmembrane glycoprotein abnormally expressed in tumors and previously associated with cell proliferation, adhesion and invasion, as well as neurite outgrowth in endometriosis. Being an attractive target molecule for antibody-based therapy, the present study assessed the ability of the monoclonal anti-L1 antibody (anti-L1 mAb to impair the development of endometriotic lesions in vivo and endometriosis-associated nerve fiber growth. METHODS AND RESULTS: Endometriosis was experimentally induced in sexually mature B6C3F1 (n=34 and CD-1 nude (n=21 mice by autologous and heterologous transplantation, respectively, of endometrial fragments into the peritoneal cavity. Transplantation was confirmed four weeks post-surgery by in vivo magnetic resonance imaging and laparotomy, respectively. Mice were then intraperitoneally injected with anti-L1 mAb or an IgG isotype control antibody twice weekly, over a period of four weeks. Upon treatment completion, mice were sacrificed and endometrial implants were excised, measured and fixed. Endometriosis was histologically confirmed and L1CAM was detected by immunohistochemistry. Endometriotic lesion size was significantly reduced in anti-L1-treated B6C3F1 and CD-1 nude mice compared to mice treated with control antibody (P<0.05. Accordingly, a decreased number of PCNA positive epithelial and stromal cells was detected in autologously and heterologously induced endometriotic lesions exposed to anti-L1 mAb treatment. Anti-L1-treated mice also presented a diminished number of intraperitoneal adhesions at implantation sites compared with controls. Furthermore, a double-blind counting of anti-neurofilament L stained nerves revealed significantly reduced nerve density within peritoneal lesions in anti-L1 treated B6C3F1 mice (P=0.0039. CONCLUSIONS: Local anti-L1 mAb treatment suppressed endometriosis growth in B6C3F1 and CD-1 nude mice and exerted a potent

  11. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  12. Multiple antigen target approach using the Accuplex4 BioCD system to detect Borrelia burgdorferi antibodies in experimentally infected and vaccinated dogs.

    Science.gov (United States)

    Moroff, Scott; Woodruff, Colby; Woodring, Todd; Sokolchik, Irene; Lappin, Michael R

    2015-09-01

    The primary objective of our study was to optimize detection of serum antibodies to Borrelia burgdorferi using a new commercial automated fluorescence system (Accuplex4 BioCD system, Antech Diagnostics, Lake Success, New York). The system used multiple natural and artificial peptides-outer surface proteins (OspA, OspC, OspF), an outer membrane protein (P39), and a proprietary synthetic peptide (small Lyme peptide [SLP])-and the results were compared with a commercially available enzyme-linked immunosorbent assay that uses a proprietary peptide (C6). Sera from 4 groups were evaluated: dogs vaccinated with 1 of 3 commercially available vaccines (n = 18); dogs infested with adult Ixodes scapularis (black-legged tick; n = 18); dogs previously vaccinated and then infested with I. scapularis (n = 18); and dogs with B. burgdorferi infection that were then vaccinated (n = 14). All of the vaccines evaluated induced OspA responses. However, antibodies against OspF or C6 were not induced in any of the vaccinated dogs. Additionally, the OspF antibodies had 100% sensitivity and specificity when compared to antibodies against C6 peptide. In B. burgdorferi-infected dogs, antibodies against OspC and SLP were detected in serum sooner than antibodies against the other targets. Low levels of antibodies against OspA developed in 6 of 14 B. burgdorferi-infected, unvaccinated dogs and had the shortest duration compared to the other antibodies. Detection of antibody responses to multiple B. burgdorferi targets with this system can be used to help differentiate vaccinated dogs from exposed dogs as well as acute infection from chronic infection. © 2015 The Author(s).

  13. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4.

    Science.gov (United States)

    Kurane, I; Zeng, L; Brinton, M A; Ennis, F A

    1998-01-20

    The role of dengue virus-specific serotype-cross-reactive T lymphocytes in recovery from and pathogenesis of dengue virus infections is not known. In the present paper, we have defined a dengue serotype-cross-reactive epitope recognized by two CD4+ CD8- cytotoxic T lymphocyte (CTL) clones, JK36 and JK46. These T cell clones were established from the peripheral blood T lymphocytes of a dengue-3-immune donor, using a limiting dilution method. JK36 and JK46 were cross-reactive for dengue virus types 2, 3, and 4, but not for type 1, and recognized the NS3 protein. The smallest synthetic peptide recognized by JK36 was an 8-amino acid peptide that contains amino acids (aa) 226 to 233 (VVAAEMEE) of NS3. The smallest peptide recognized by JK46 was an 11-amino acid peptide that contains aa 224 to 234 (TRVVAAEMEEA). HLA-DR15 was the restriction allele for recognition of these peptides by both JK36 and JK46. This is the first epitope to be defined that is recognized by human CD4+ CTL cross-reactive for dengue virus types 2, 3, and 4.

  14. Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4+ CD8- cytotoxic T lymphocyte clones.

    Science.gov (United States)

    Kurane, I; Okamoto, Y; Dai, L C; Zeng, L L; Brinton, M A; Ennis, F A

    1995-09-01

    The role of flavivirus-cross-reactive T lymphocytes in recovery from and pathogenesis of flavivirus infections is not known. In the present paper, we have defined a flavivirus-cross-reactive epitope recognized by two CD4+ CD8- cytotoxic T lymphocyte (CTL) clones, JK4 and JK43. The T cell clones were established from the peripheral blood T lymphocytes of a dengue-4-immune donor, using a limiting-dilution method with dengue-4 antigen. These two T cell clones were cross-reactive for dengue virus types 1, 2, 3 and 4, yellow fever virus and West Nile virus, and recognized NS3 protein. The smallest synthetic peptide recognized by these T cell clones was an identical 9 amino acid peptide which contains amino acids 146 to 154 (VIGLYGNGV) of dengue-4 NS3. HLA-DR15 was the restriction allele for recognition of this epitope by JK4 and JK43. JK4 and JK43 both used T cell receptor V alpha 8, but JK4 used V beta 8 and JK43 used V beta 2. This result indicates that this epitope is recognized by two flavivirus-cross-reactive CD4+ T cell clones which originated from different T cells in vivo.

  15. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor, E-mail: manzoork@aims.amrita.edu, E-mail: ullasmony@aims.amrita.edu [Amrita Centre for Nanoscience and Molecular Medicine, Amrita Institute of Medical Science, Cochin 682 041 (India)

    2011-07-15

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with {approx} 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of {approx} 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in {approx} 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of {approx} 12 nm retained bright fluorescence over an extended duration of {approx} a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of {approx} 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of {approx} 8.2% in human peripheral blood cells (PBMCs) which are CD33{sup low}. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  16. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Science.gov (United States)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-07-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  17. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    International Nuclear Information System (INIS)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-01-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ∼ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ∼ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ∼ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ∼ 12 nm retained bright fluorescence over an extended duration of ∼ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ∼ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ∼ 8.2% in human peripheral blood cells (PBMCs) which are CD33 low . The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  18. Quantitative in vitro and in vivo models to assess human IgE B cell receptor crosslinking by IgE and EMPD IgE targeting antibodies.

    Science.gov (United States)

    Vigl, Benjamin; Salhat, Nina; Parth, Michela; Pankevych, Halyna; Mairhofer, Andreas; Bartl, Stefan; Smrzka, Oskar W

    2017-10-01

    Targeting plasma IgE by therapeutic mABs like Omalizumab (Xolair ® ) is current clinical practice for severe allergic conditions or other IgE related diseases like chronic urticaria. As an alternative to soluble IgE targeting, IgE supply can be lowered by targeting the Extracellular Membrane Proximal Domain (EMPD) of the IgE B cell receptor (BCR) present on IgE switched B cells. This ultimately leads to apoptosis of these cells upon IgE BCR crosslinking. Since tools to selectively assess the efficacy of IgE BCR crosslinking by IgE targeting antibodies are limited, a readily quantifiable cell model was developed that allows to specifically address IgE BCR crosslinking activity in vitro. The new cell model allowed for a direct quantitative comparison of anti-EMPD IgE therapeutic prototype antibody 47H4 with anti-IgE(Ce3) directed therapeutic antibody Omalizumab and with a newly selected anti-human EMPD IgE monoclonal antibody, designated mAB 15cl12. Furthermore, a complementing mouse model was developed that allows for in vivo validation of antibodies addressing human EMPD IgE. It carries a targetable humanized EMPD IgE sequence that has been introduced by seamless genomic replacement of the endogenous EMPD encoding sequence. The model allowed to directly compare IgE lowering activity of two anti-human EMPD IgE therapeutic antibodies in vivo. Our tools provide the means for quantitative assessment of IgE BCR crosslinking activity which is increasingly gaining attention with respect to forthcoming second generation anti-IgE clinical candidates such as Ligelizumab or other clinical candidates featuring additional effector functions such as IgE BCR crosslinking activity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41.

    Directory of Open Access Journals (Sweden)

    Rachel P J Lai

    2011-12-01

    Full Text Available Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs that target the membrane proximal external region (MPER of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly

  20. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Jason H Stafford

    Full Text Available Phosphatidylserine (PS is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab'2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab'2 was labeled with the positron-emitting isotope iodine-124 ((124I and the resulting probe was injected into nude mice bearing subcutaneous or orthotopic human PC3 prostate tumors. Biodistribution studies showed that (124I-PGN635 F(ab'2 localized with remarkable specificity to the tumors with little uptake in other organs, including the liver and kidneys. Clear delineation of the tumors was achieved by PET 48 hours after injection. Radiation of the tumors with 15 Gy or systemic treatment of the mice with 10 mg/kg docetaxel increased localization in the tumors. Tumor-to-normal (T/N ratios were inversely correlated with tumor growth measured over 28 days. These data indicate that (124I-PGN635 F(ab'2 is a promising new imaging agent for predicting tumor response to therapy.

  1. A Mouse Monoclonal Antibody against Dengue Virus Type 1 Mochizuki Strain Targeting Envelope Protein Domain II and Displaying Strongly Neutralizing but Not Enhancing Activity

    Science.gov (United States)

    Kotaki, Tomohiro; Konishi, Eiji

    2013-01-01

    Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans. PMID:24049185

  2. Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis.

    Science.gov (United States)

    Ishizaki, Jun; Takemori, Ayako; Suemori, Koichiro; Matsumoto, Takuya; Akita, Yoko; Sada, Ken-Ei; Yuzawa, Yukio; Amano, Koichi; Takasaki, Yoshinari; Harigai, Masayoshi; Arimura, Yoshihiro; Makino, Hirofumi; Yasukawa, Masaki; Takemori, Nobuaki; Hasegawa, Hitoshi

    2017-09-29

    Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study). Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO

  3. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    Science.gov (United States)

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  4. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases.

    Science.gov (United States)

    Samy, Eileen; Wax, Stephen; Huard, Bertrand; Hess, Henry; Schneider, Pascal

    2017-01-02

    The B cell-stimulating molecules, BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand), are critical factors in the maintenance of the B cell pool and humoral immunity. In addition, BAFF and APRIL are involved in the pathogenesis of a number of human autoimmune diseases, with elevated levels of these cytokines detected in the sera of patients with systemic lupus erythematosus (SLE), IgA nephropathy, Sjögren's syndrome, and rheumatoid arthritis. As such, both molecules are rational targets for new therapies in B cell-driven autoimmune diseases, and several inhibitors of BAFF or BAFF and APRIL together have been investigated in clinical trials. These include the BAFF/APRIL dual inhibitor, atacicept, and the BAFF inhibitor, belimumab, which is approved as an add-on therapy for patients with active SLE. Post hoc analyses of these trials indicate that baseline serum levels of BAFF and BAFF/APRIL correlate with treatment response to belimumab and atacicept, respectively, suggesting a role for the two molecules as predictive biomarkers. It will, however, be important to refine future testing to identify active forms of BAFF and APRIL in the circulation, as well as to distinguish between homotrimer and heteromer configurations. In this review, we discuss the rationale for dual BAFF/APRIL inhibition versus single BAFF inhibition in autoimmune disease, by focusing on the similarities and differences between the physiological and pathogenic roles of the two molecules. A summary of the preclinical and clinical data currently available is also presented.

  5. Therapeutic monoclonal antibodies and the need for targeted pharmacovigilance in India.

    Science.gov (United States)

    Kalaivani, M; Singh, Abhishank; Kalaiselvan, V

    2015-01-01

    A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs.

  6. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity

    NARCIS (Netherlands)

    Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F.O.; Diebold, S.S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is

  7. Pharmacokinetics and tumor targeting of 131I-labeled F(ab')2 fragments of the chimeric monoclonal antibody G250: preclinical and clinical pilot studies.

    NARCIS (Netherlands)

    Brouwers, A.H.; Mulders, P.F.A.; Oosterwijk, E.; Buijs, W.C.A.M.; Corstens, F.H.M.; Boerman, O.C.; Oyen, W.J.G.

    2004-01-01

    INTRODUCTION: Clinical and animal studies of chimeric monoclonal antibody G250 (moAb cG250) for the targeting of clear-cell renal cell carcinoma (RCC), to date, have been with the intact IgG form. To determine whether F(ab')2 fragments are more suited for radioimmunotherapy (RIT) than intact IgG,

  8. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  9. Lipid Target in Very High-Risk Cardiovascular Patients: Lesson from PCSK9 Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Giovanni Ciccarelli

    2018-03-01

    Full Text Available The role of low-density lipoproteins (LDLs as a major risk factor for cardiovascular disease has been demonstrated by several epidemiological studies. The molecular basis for LDLs in atherosclerotic plaque formation and progression is not completely unraveled yet. Pharmacological modulation of plasma LDL-C concentrations and randomized clinical trials addressing the impact of lipid-lowering interventions on cardiovascular outcome have clearly shown that reducing plasma LDL-C concentrations results in a significant decrease in major cardiovascular events. For many years, statins have represented the most powerful pharmacological agents available to lower plasma LDL-C concentrations. In clinical trials, it has been shown that the greater the reduction in plasma LDL-C concentrations, the lower the rate of major cardiovascular events, especially in high-risk patients, because of multiple risk factors and recurrent events. However, in a substantial number of patients, the recommended LDL target is difficult to achieve because of different factors: genetic background (familial hypercholesterolemia, side effects (statin intolerance, or high baseline plasma LDL-C concentrations. In the last decade, our understanding of the molecular mechanisms involved in LDL metabolism has progressed significantly and the key role of proprotein convertase subtilisin/kexin type 9 (PCSK9 has emerged. This protein is an enzyme able to bind the LDL receptors (LDL-R on hepatocytes, favoring their degradation. Blocking PCSK9 represents an intriguing new therapeutic approach to decrease plasma LDL-C concentrations, which in recent studies has been demonstrated to also result in a significant reduction in major cardiovascular events.

  10. Lipid Target in Very High-Risk Cardiovascular Patients: Lesson from PCSK9 Monoclonal Antibodies.

    Science.gov (United States)

    Ciccarelli, Giovanni; D'Elia, Saverio; De Paulis, Michele; Golino, Paolo; Cimmino, Giovanni

    2018-03-17

    The role of low-density lipoproteins (LDLs) as a major risk factor for cardiovascular disease has been demonstrated by several epidemiological studies. The molecular basis for LDLs in atherosclerotic plaque formation and progression is not completely unraveled yet. Pharmacological modulation of plasma LDL-C concentrations and randomized clinical trials addressing the impact of lipid-lowering interventions on cardiovascular outcome have clearly shown that reducing plasma LDL-C concentrations results in a significant decrease in major cardiovascular events. For many years, statins have represented the most powerful pharmacological agents available to lower plasma LDL-C concentrations. In clinical trials, it has been shown that the greater the reduction in plasma LDL-C concentrations, the lower the rate of major cardiovascular events, especially in high-risk patients, because of multiple risk factors and recurrent events. However, in a substantial number of patients, the recommended LDL target is difficult to achieve because of different factors: genetic background (familial hypercholesterolemia), side effects (statin intolerance), or high baseline plasma LDL-C concentrations. In the last decade, our understanding of the molecular mechanisms involved in LDL metabolism has progressed significantly and the key role of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged. This protein is an enzyme able to bind the LDL receptors (LDL-R) on hepatocytes, favoring their degradation. Blocking PCSK9 represents an intriguing new therapeutic approach to decrease plasma LDL-C concentrations, which in recent studies has been demonstrated to also result in a significant reduction in major cardiovascular events.

  11. Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Paul M.; Wang, Alan Xiangdong; Good, Andrew C.; Sun, Li-Qiang; Combrink, Keith D.; Campbell, Jeffrey A.; Chen, Jie; Tu, Yong; Sin, Ny; Venables, Brian L.; Sit, Sing-Yuen; Chen, Yan; Cocuzza, Anthony; Bilder, Donna M.; D’Andrea, Stanley; Zheng, Barbara; Hewawasam, Piyasena; Ding, Min; Thuring, Jan; Li, Jianqing; Hernandez, Dennis; Yu, Fei; Falk, Paul; Zhai, Guangzhi; Sheaffer, Amy K.; Chen, Chaoqun; Lee, Min S.; Barry, Diana; Knipe, Jay O.; Li, Wenying; Han, Yong-Hae; Jenkins, Susan; Gesenberg, Christoph; Gao, Qi; Sinz, Michael W.; Santone, Kenneth S.; Zvyaga, Tatyana; Rajamani, Ramkumar; Klei, Herbert E.; Colonno, Richard J.; Grasela, Dennis M.; Hughes, Eric; Chien, Caly; Adams, Stephen; Levesque, Paul C.; Li, Danshi; Zhu, Jialong; Meanwell, Nicholas A.; McPhee, Fiona

    2014-03-13

    The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.

  12. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Timo Heidt

    Full Text Available BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111Indium ((111In via bifunctional DTPA ( = (111In-LIBS/(111In-control. Autoradiography after incubation with (111In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2, 4010 ± 630 DLU/mm(2 and 4520 ± 293 DLU/mm(2 produced a significantly higher ligand uptake compared to (111In-control (2101 ± 76 DLU/mm(2, 1181 ± 96 DLU/mm(2 and 1866 ± 246 DLU/mm(2 indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2 vs. 17390 ± 7470 DLU/mm(2; P<0.05. These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01. CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of

  13. Targeting Antibodies to Carbon Nano tube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    International Nuclear Information System (INIS)

    Stefansson, S.; Ahn, S.N.; Kwon, H.H.

    2012-01-01

    Many carbon nano tube field-effect transistor (CNT-FET) studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalized CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalized the circuits.

  14. Characterization and cancer cell targeted imaging properties of human antivascular endothelial growth factor monoclonal antibody conjugated CdTe/ZnS quantum dots.

    Science.gov (United States)

    Pang, Lili; Xu, Jian; Shu, Chang; Guo, Jin; Ma, Xiaona; Liu, Yu; Zhong, Wenying

    2014-12-01

    High luminescence quantum yield water-soluble CdTe/ZnS core/shell quantum dots (QDs) stabilized with thioglycolic acid were synthesized. QDs were chemically coupled to fully humanized antivascular endothelial growth factor165 monoclonal antibodies to produce fluorescent probes. These probes can be used to assay the biological affinity of the antibody. The properties of QDs conjugated to an antibody were characterized by ultraviolet and visible spectrophotometry, fluorescent spectrophotometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transmission electron microscopy and fluorescence microscopy. Cell-targeted imaging was performed in human breast cancer cell lines. The cytotoxicity of bare QDs and fluorescent probes was evaluated in the MCF-7 cells with an MTT viability assay. The results proved that CdTe/ZnS QD-monoclonal antibody nanoprobes had been successfully prepared with excellent spectral properties in target detections. Surface modification by ZnS shell could mitigate the cytotoxicity of cadmium-based QDs. The therapeutic effects of antivascular endothelial growth factor antibodies towards cultured human cancer cells were confirmed by MTT assay. Copyright © 2014 John Wiley & Sons, Ltd.

  15. TriFabs—Trivalent IgG-Shaped Bispecific Antibody Derivatives: Design, Generation, Characterization and Application for Targeted Payload Delivery

    Directory of Open Access Journals (Sweden)

    Klaus Mayer

    2015-11-01

    Full Text Available TriFabs are IgG-shaped bispecific antibodies (bsAbs composed of two regular Fab arms fused via flexible linker peptides to one asymmetric third Fab-sized binding module. This third module replaces the IgG Fc region and is composed of the variable region of the heavy chain (VH fused to CH3 with “knob”-mutations, and the variable region of the light chain (VL fused to CH3 with matching “holes”. The hinge region does not contain disulfides to facilitate antigen access to the third binding site. To compensate for the loss of hinge-disulfides between heavy chains, CH3 knob-hole heterodimers are linked by S354C-Y349C disulphides, and VH and VL of the stem region may be linked via VH44C-VL100C disulphides. TriFabs which bind one antigen bivalent in the same manner as IgGs and the second antigen monovalent “in between” these Fabs can be applied to simultaneously engage two antigens, or for targeted delivery of small and large (fluorescent or cytotoxic payloads.

  16. Antibody responses to NY-ESO-1 in primary breast cancer identify a subtype target for immunotherapy.

    Science.gov (United States)

    Hamaï, Ahmed; Duperrier-Amouriaux, Karine; Pignon, Pascale; Raimbaud, Isabelle; Memeo, Lorenzo; Colarossi, Cristina; Canzonieri, Vincenzo; Perin, Tiziana; Classe, Jean-Marc; Campone, Mario; Jézéquel, Pascal; Campion, Loïc; Ayyoub, Maha; Valmori, Danila

    2011-01-01

    The highly immunogenic human tumor antigen NY-ESO-1 (ESO) is a target of choice for anti-cancer immune therapy. In this study, we assessed spontaneous antibody (Ab) responses to ESO in a large cohort of patients with primary breast cancer (BC) and addressed the correlation between the presence of anti-ESO Ab, the expression of ESO in the tumors and their characteristics. We found detectable Ab responses to ESO in 1% of the patients. Tumors from patients with circulating Ab to ESO exhibited common characteristics, being mainly hormone receptor (HR)⁻ invasive ductal carcinomas of high grade, including both HER2⁻ and HER2⁺ tumors. In line with these results, we detected ESO expression in 20% of primary HR⁻ BC, including both ESO Ab⁺ and Ab⁻ patients, but not in HR⁺ BC. Interestingly, whereas expression levels in ESO⁺ BC were not significantly different between ESO Ab⁺ and Ab⁻ patients, the former had, in average, significantly higher numbers of tumor-infiltrated lymph nodes, indicating that lymph node invasion may be required for the development of spontaneous anti-tumor immune responses. Thus, the presence of ESO Ab identifies a tumor subtype of HR⁻ (HER2⁻ or HER2⁺) primary BC with frequent ESO expression and, together with the assessment of antigen expression in the tumor, may be instrumental for the selection of patients for whom ESO-based immunotherapy may complement standard therapy.

  17. Sequential Multivariate Cell Culture Modeling at Multiple Scales Supports Systematic Shaping of a Monoclonal Antibody Toward a Quality Target.

    Science.gov (United States)

    Sokolov, Michael; Morbidelli, Massimo; Butté, Alessandro; Souquet, Jonathan; Broly, Hervé

    2017-12-28

    The development of cell culture processes is highly complex and requires a large number of experiments on various scales to define the design space of the final process and fulfil the regulatory requirements. This work follows an almost complete process development cycle for a biosimilar monoclonal antibody, from high throughput screening and optimization to scale-up and process validation. The key goal of this analysis is to apply tailored multivariate tools to support decision-making at every stage of process development. A toolset mainly based on Principal Component Analysis, Decision Trees, and Partial Least Square Regression combined with a Genetic Algorithm is presented. It enables to visualize the sequential improvement of the high-dimensional quality profile towards the target, provides a solid basis for the selection of effective process variables and allows to dynamically predict the complete set of product quality attributes. Additionally, this work shows the deep level of process knowledge which can be deduced from small scale experiments through such multivariate tools. The presented methodologies are generally applicable across various processes and substantially reduce the complexity, experimental effort as well as the costs and time of process development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Peptide Targeted by Human Antibodies Associated with HIV Vaccine-Associated Protection Assumes a Dynamic α-Helical Structure.

    Science.gov (United States)

    Aiyegbo, Mohammed S; Shmelkov, Evgeny; Dominguez, Lorenzo; Goger, Michael; Battacharya, Shibani; deCamp, Allan C; Gilbert, Peter B; Berman, Phillip W; Cardozo, Timothy

    2017-01-01

    The only evidence of vaccine-induced protection from HIV acquisition in humans was obtained in the RV144 HIV vaccine clinical trial. One immune correlate of risk in RV144 was observed to be higher titers of vaccine-induced antibodies (Abs) reacting with a 23-mer non-glycosylated peptide with the same amino acid sequence as a segment in the second variable (V2) loop of the MN strain of HIV. We used NMR to analyze the dynamic 3D structure of this peptide. Distance restraints between spatially proximate inter-residue protons were calculated from NOE cross peak intensities and used to constrain a thorough search of all possible conformations of the peptide. α-helical folding was strongly preferred by part of the peptide. A high-throughput structure prediction of this segment in all circulating HIV strains demonstrated that α-helical conformations are preferred by this segment almost universally across all subtypes. Notably, α-helical conformations of this segment of the V2 loop cluster cross-subtype-conserved amino acids on one face of the helix and the variable amino acid positions on the other in a semblance of an amphipathic α-helix. Accordingly, some Abs that protected against HIV in RV144 may have targeted a specific, conserved α-helical peptide epitope in the V2 loop of HIV's surface envelope glycoprotein.

  19. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles

    Science.gov (United States)

    Moradi Khaniabadi, P.; S. A Majid, A. M.; Asif, M.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, D.; Jaafar, M. S.

    2017-05-01

    Effective and specific diagnostic imaging techniques are important in early-stage breast cancer treatment. The objective of this study was to develop a specific breast cancer contrast agent for magnetic resonance imaging (MRI). In so doing, superparamagnetic iron oxide nanoparticles (SPIONs) were conjugated to C595 monoclonal antibody using EDC chemistry to produce nanoprobe with high relaxivity and narrow size (87.4±0.7 nm). To test the developed nanoprobe in vitro, assessments including Cell toxicity, targeting efficacy, cellular binding, and MR imaging were carried out. The results indicated that after 6 hrs incubation with MCF-7 cells at 200 to 25 µg Fe/ml doses, 76% to 16% T2 reduction was obtained. The presence of iron localised in MCF-7 cells measured by atomic absorption spectroscopy (AAS) was about 9.95±0.09 ppm iron/cell at higher doses of nanoprobe. Moreover, a linear relationship between iron concentration of nontoxic SPION-C595 and T2 relaxation times was observed. This study also revealed that developed nanoprobe might be used as a specific negative contrast agent for detecting breast cancer.

  20. Antibody-mediated Targeting of the Urokinase-type Plasminogen Activator Proteolytic Function Neutralizes Fibrinolysis in Vivo

    DEFF Research Database (Denmark)

    Lund, Ida K.; Jögi, Annika; Rono, Birgitte

    2008-01-01

    models, we have now developed murine monoclonal antibodies (mAbs) directed against murine uPA by immunization of uPA-deficient mice with the recombinant protein. Guided by enzyme-linked immunosorbent assay, Western blotting, surface plasmon resonance, and enzyme kinetic analyses, we have selected two...... highly potent and inhibitory anti-uPA mAbs (mU1 and mU3). Both mAbs recognize epitopes located on the B-chain of uPA that encompasses the catalytic site. In enzyme activity assays in vitro, mU1 blocked uPA-catalyzed plasminogen activation as well as plasmin-mediated pro-uPA activation, whereas mU3 only...... fibrinolysis in tissue-type plasminogen activator (tPA)-deficient mice, resulting in a phenotype mimicking that of uPA;tPA double deficient mice. Importantly, this is the first report demonstrating specific antagonist-directed targeting of mouse uPA at the enzyme activity level in a normal physiological...

  1. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78.

    Directory of Open Access Journals (Sweden)

    Leo Rasche

    Full Text Available In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.

  2. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  3. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    Science.gov (United States)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive

  4. Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.

    Science.gov (United States)

    Williams, Y J; Rea, S M; Popovski, S; Skillman, L C; Wright, A-D G

    2014-12-01

    Binding of IgG antibodies to Entodinium spp. in the rumen of sheep (Ovis aries) was investigated by adding IgG, purified from plasma, directly into the rumen. Plasma IgG was sourced from sheep that had or had not been immunized with a vaccine containing whole fixed Entodinium spp. cells. Ruminal fluid was sampled approximately 2 h after each antibody dosing. Binding of protozoa by a specific antibody was detected using an indirect fluorescent antibody test. An antibody titer in the ruminal fluid was determined by ELISA, and the concentration of ruminal fluid ammonia-N and ruminal pH were also determined. Entodinium spp. and total protozoa from IgG-infused sheep were enumerated by microscopic counts. Two-hourly additions of IgG maintained a low antibody titer in the rumen for 12 h and the binding of the antibody to the rumen protozoa was demonstrated. Increased ammonia-N concentrations and altered ruminal fluid pH patterns indicated that additional fermentation of protein was occurring in the rumen after addition of IgG. No reduction in numbers of Entodinium spp. was observed (P>0.05). Although binding of antibodies to protozoa has been demonstrated in the rumen, it is unclear how much cell death occurred. On the balance of probability, it would appear that the antibody was degraded or partially degraded, and the impact of this on protozoal populations and the measurement of a specific titer is also unclear.

  5. Antiprothrombin Antibodies

    Directory of Open Access Journals (Sweden)

    Polona Žigon

    2015-05-01

    Full Text Available In patients with the antiphospholipid syndrome (APS, the presence of a group of pathogenic autoantibodies called antiphospholipid antibodies causes thrombosis and pregnancy complications. The most frequent antigenic target of antiphospholipid antibodies are phospholipid bound β2-glycoprotein 1 (β2GPI and prothrombin. The international classification criteria for APS connect the occurrence of thrombosis and/or obstetric complications together with the persistence of lupus anticoagulant, anti-cardiolipin antibodies (aCL and antibodies against β2GPI (anti-β2GPI into APS. Current trends for the diagnostic evaluation of APS patients propose determination of multiple antiphospholipid antibodies, among them also anti-prothrombin antibodies, to gain a common score which estimates the risk for thrombosis in APS patients. Antiprothrombin antibodies are common in APS patients and are sometimes the only antiphospholipid antibodies being elevated. Methods for their determination differ and have not yet been standardized. Many novel studies confirmed method using phosphatidylserine/prothrombin (aPS/PT ELISA as an antigen on solid phase encompass higher diagnostic accuracy compared to method using prothrombin alone (aPT ELISA. Our research group developed an in-house aPS/PT ELISA with increased analytical sensitivity which enables the determination of all clinically relevant antiprothrombin antibodies. aPS/PT exhibited the highest percentage of lupus anticoagulant activity compared to aCL and anti-β2GPI. aPS/PT antibodies measured with the in-house method associated with venous thrombosis and presented the strongest independent risk factor for the presence of obstetric complications among all tested antiphospholipid antibodies

  6. Antibodies Targeting EMT

    Science.gov (United States)

    2015-10-01

    cdh ) expression by FACS, and inspected visually for maintence of an epithelial phenotype. At 5 days post induction, E- cdh expression between the...an E- cdh high and E- cdh low population. This segregation is not seen in the control cell population. Additionally, 10 days into the twist induction...selecting cells that retained an epithelial phenotype. Selection is accomplished by FACS sorting for the expression epithelial junction protein E- cdh

  7. [Targeted tumor suppression by a secreted fusion protein consisting of anti- erbB2 antibody and reversed caspase-3 to SKBr3 cells].

    Science.gov (United States)

    Zhang, Li-hong; Jia, Lin-tao; Yu, Cui-juan; Qu, Ping; Dong, Hai-long; Zhao, Jing; Xu, Yan-ming; Wang, Cheng-Ji; Yang, An-gang

    2003-04-10

    To investigate the targeted killing effect to SKBr3 cells due to the expression of a secreted fusion protein consisting of anti-erbB2 antibody and reversed caspase-3. A recombinant plasmid pCMV-e23scFv-PEII-revcasp 3 was constructed by subcloning reversed caspase-3 gene to the downstream of anti-erbB2 antibody and transfected into Jurkat cells. The cell lines which secreted expressing fusion protein stably were selected. The fusion protein in media was detected by ELISA and the media was used to culture human breast cancer SKBr3 cells. The recombinant plasmids with liposomes was administrated to BALB/C nude mouses bearing SKBr3 tumor by intramuscular injection. The targetting effect of the recombinant fusion protein caspase-3 was detected by indirect immunofluorescence staining. Fusion protein can be expressed and secreted by Jurkat cells stably and kill SKBr3 cells. Significant prolonged survival time (prolonged by 72%) and inhibition of tumor growth in vivo (within inhibition ratio of 77%) were seen in the group administered with recombinant plasmids. Indirect immunofluorescence staining showed that the recombinant fusion protein caspase-3 has targetting effect. Secreted expression of the fusion protein consisting of anti-erbB2 antibody and reversed caspase-3 can targetedly induce SKBr3 cells to death.

  8. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  9. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  10. Targeted deposition of antibodies on a multiplex CMOS microarray and optimization of a sensitive immunoassay using electrochemical detection.

    Directory of Open Access Journals (Sweden)

    John Cooper

    2010-03-01

    Full Text Available The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.

  11. Targeted therapies for the treatment of non-small-cell lung cancer: Monoclonal antibodies and biological inhibitors.

    Science.gov (United States)

    Silva, Ana P S; Coelho, Priscila V; Anazetti, Maristella; Simioni, Patricia U

    2017-04-03

    The usual treatments for patients with non-small-cell lung cancer (NSCLC), such as advanced lung adenocarcinoma, are unspecific and aggressive, and include lung resection, radiotherapy and chemotherapy. Recently, treatment with monoclonal antibodies and biological inhibitors has emerged as an effective alternative, generating effective results with few side effects. In recent years, several clinical trials using monoclonal antibodies presented potential benefits to NSCLC, and 4 of them are already approved for the treatment of NSCLC, such as cetuximab, bevacizumab, nivolumab and pembrolizumab. Also, biological inhibitors are attractive tolls for biological applications. Among the approved inhibitors are crizotinib, erlotinib, afatinib and gefitinib, and side effects are usually mild to intense. Nevertheless, biological molecule treatments are under development, and several new monoclonal antibodies and biological inhibitors are in trial to treat NSCLC. Also under trial study are as follows: anti-epidermal growth factor receptor (EGFR) antibodies (nimotuzumab and ficlatuzumab), anti-IGF 1 receptor (IGF-1R) monoclonal antibody (figitumumab), anti-NR-LU-10 monoclonal antibody (nofetumomab) as well as antibodies directly affecting the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) molecule (ipilimumab and tremelimumab), to receptor activator of nuclear factor-kappa B ligand (RANKL) (denosumab) or to polymerase enzyme (veliparib and olaparib). Among new inhibitors under investigation are poly-ADP ribose polymerase (PARP) inhibitors (veliparib and olaparib) and phosphatidylinositol 3-kinase (PI3K) inhibitor (buparlisib). However, the success of immunotherapies still requires extensive research and additional controlled trials to evaluate the long-term benefits and side effects.

  12. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    OpenAIRE

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; Lardinois, Didier

    2015-01-01

    T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting fola...

  13. Elimination of Tumor Cells Using Folate Receptor Targeting by Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles in a Murine Breast Cancer Model

    Directory of Open Access Journals (Sweden)

    Evan S. Krystofiak

    2012-01-01

    Full Text Available Background. The chemotherapeutic treatment of cancer suffers from poor specificity for targeting the tumor cells and often results in adverse effects such as systemic toxicity, damage to nontarget tissues, and development of drug-resistant tumors in patients. Increasingly, drug nanocarriers have been explored as a way of lessening or overcoming these problems. In this study, antibody-conjugated Au-coated magnetite nanoparticles, in conjunction with inductive heating produced by exposure to an oscillating magnetic field (OMF, were evaluated for their effects on the viability of tumor cells in a murine model of breast cancer. Treatment effects were evaluated by light microscopy and SEM. Results. 4T1 mammary epithelial carcinoma cells overexpressing the folate receptor were targeted with an anti-folate receptor primary antibody, followed by labeling with secondary antibody-conjugated Au-coated magnetite nanoparticles. In the absence of OMF exposure, nanoparticle labeling had no effect on 4T1 cell viability. However, following OMF treatment, many of the labeled 4T1 cells showed extensive membrane damage by SEM analysis, and dramatically reduced viability as assessed using a live/dead staining assay. Conclusions. These results demonstrate that Au-coated magnetite targeted to tumor cells through binding to an overexpressed surface receptor, in the presence of an OMF, can lead to tumor cell death.

  14. Anti-PDGF receptor β antibody-conjugated squarticles loaded with minoxidil for alopecia treatment by targeting hair follicles and dermal papilla cells.

    Science.gov (United States)

    Aljuffali, Ibrahim A; Pan, Tai-Long; Sung, Calvin T; Chang, Shu-Hao; Fang, Jia-You

    2015-08-01

    This study developed lipid nanocarriers, called squarticles, conjugated with anti-platelet-derived growth factor (PDGF)-receptor β antibody to determine whether targeted Minoxidil (MXD) delivery to the follicles and dermal papilla cells (DPCs) could be achieved. Squalene and hexadecyl palmitate (HP) were used as the matrix of the squarticles. The PDGF-squarticles showed a mean diameter and zeta potential of 195 nm and -46 mV, respectively. Nanoparticle encapsulation enhanced MXD porcine skin deposition from 0.11 to 0.23 μg/mg. The antibody-conjugated nanoparticles ameliorated follicular uptake of MXD by 3-fold compared to that of the control solution in the in vivo mouse model. Both vertical and horizontal skin sections exhibited a wide distribution of nanoparticles in the follicles, epidermis, and deeper skin strata. The encapsulated MXD moderately elicited proliferation of DPCs and vascular endothelial growth factor (VEGF) expression. The active targeting of PDGF-squarticles may be advantageous to improving the limited success of alopecia therapy. Topical use of minoxidil is only one of the very few treatment options for alopecia. Nonetheless, the current delivery method is far from ideal. In this article, the authors developed lipid nanocarriers with anti-platelet-derived growth factor receptor ? antibody to target dermal papilla cells, and showed enhanced uptake of minoxidil. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  16. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Targeted polymer drug conjugates for cancer diagnosis and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Ban-An; Gada, Keyur S.; Patil, Vishwesh; Panwar, Rajiv; Mandapati, Savitri [Northeastern University, Department of Pharmaceutical Sciences, Bouve College of Health Sciences, School of Pharmacy, Boston, MA (United States); Hatefi, Arash [Rutgers University, Department of Pharmaceutics, New Brunswick, NJ (United States); Majewski, Stan [West Virginia University, Department of Radiology, Morgantown, WV (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Jefferson Lab, Newport News, VA (United States)

    2014-08-15

    Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20). After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD). Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice. Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities. (orig.)

  17. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  18. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle.

    Directory of Open Access Journals (Sweden)

    Katrin Spiesberger

    Full Text Available 30 years ago, the potential of bispecific antibodies to engage cytotoxic T cells for the lysis of cancer cells was discovered. Today a variety of bispecific antibodies against diverse cell surface structures have been developed, the majority of them produced in mammalian cell culture systems. Beside the r28M, described here, no such bispecific antibody is known to be expressed by transgenic livestock, although various biologicals for medical needs are already harvested-mostly from the milk-of these transgenics. In this study we investigated the large-scale purification and biological activity of the bispecific antibody r28M, expressed in the blood of transgenic cattle. This tandem single-chain variable fragment antibody is designed to target human CD28 and the melanoma/glioblastoma-associated cell surface chondroitin sulfate proteoglycan 4 (CSPG4.With the described optimized purification protocol an average yield of 30 mg enriched r28M fraction out of 2 liters bovine plasma could be obtained. Separation of this enriched fraction by size exclusion chromatography into monomers, dimers and aggregates and further testing regarding the biological activity revealed the monomer fraction as being the most appropriate one to continue working with. The detailed characterization of the antibody's activity confirmed its high specificity to induce the killing of CSPG4 positive cells. In addition, first insights into tumor cell death pathways mediated by r28M-activated peripheral blood mononuclear cells were gained. In consideration of possible applications in vivo we also tested the effect of the addition of different excipients to r28M.Summing up, we managed to purify monomeric r28M from bovine plasma in a large-scale preparation and could prove that its biological activity is unaffected and still highly specific and thus, might be applicable for the treatment of melanoma.

  19. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    Science.gov (United States)

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  20. An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack.

    Directory of Open Access Journals (Sweden)

    Tobias Jahn

    Full Text Available Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30(+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer.

  1. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia.

    Science.gov (United States)

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2018-01-01

    A BCL1 leukemia-cell-targeted polymer-drug conjugate with a narrow molecular weight distribution consisting of an N-(2-hydroxypropyl)methacrylamide copolymer carrier and the anticancer drug pirarubicin is prepared by controlled radical copolymerization followed by metal-free click chemistry. A targeting recombinant single chain antibody fragment (scFv) derived from a B1 monoclonal antibody is attached noncovalently to the polymer carrier via a coiled coil interaction between two complementary peptides. Two pairs of coiled coil forming peptides (abbreviated KEK/EKE and KSK/ESE) are used as linkers between the polymer-pirarubicin conjugate and the targeting protein. The targeted polymer conjugate with the coiled coil linker KSK/ESE exhibits 4× better cell binding activity and 2× higher cytotoxicity in vitro compared with the other conjugate. Treatment of mice with established BCL1 leukemia using the scFv-targeted polymer conjugate leads to a markedly prolonged survival time of the experimental animals compared with the treatment using the free drug and the nontargeted polymer-pirarubicin conjugate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Advantages of Papio anubis for preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28

    Science.gov (United States)

    Poirier, Nicolas; Mary, Caroline; Le Bas-Bernardet, Stephanie; Daguin, Veronique; Belarif, Lyssia; Chevalier, Melanie; Hervouet, Jeremy; Minault, David; Ville, Simon; Charpy, Vianney; Blancho, Gilles; Vanhove, Bernard

    2014-01-01

    Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo. PMID:24598534

  3. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  4. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes

    Directory of Open Access Journals (Sweden)

    Daniela V. Andrade

    2017-09-01

    Full Text Available The four dengue virus serotypes (DENV1 to 4 cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14 displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%, with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16, resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines.

  5. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  6. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma.

    Science.gov (United States)

    Maekawa, Naoya; Konnai, Satoru; Takagi, Satoshi; Kagawa, Yumiko; Okagawa, Tomohiro; Nishimori, Asami; Ikebuchi, Ryoyo; Izumi, Yusuke; Deguchi, Tatsuya; Nakajima, Chie; Kato, Yukinari; Yamamoto, Keiichi; Uemura, Hidetoshi; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-08-21

    Immunotherapy targeting immune checkpoint molecules, programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), using therapeutic antibodies has been widely used for some human malignancies in the last 5 years. A costimulatory receptor, PD-1, is expressed on T cells and suppresses effector functions when it binds to its ligand, PD-L1. Aberrant PD-L1 expression is reported in various human cancers and is considered an immune escape mechanism. Antibodies blocking the PD-1/PD-L1 axis induce antitumour responses in patients with malignant melanoma and other cancers. In dogs, no such clinical studies have been performed to date because of the lack of therapeutic antibodies that can be used in dogs. In this study, the immunomodulatory effects of c4G12, a canine-chimerised anti-PD-L1 monoclonal antibody, were evaluated in vitro, demonstrating significantly enhanced cytokine production and proliferation of dog peripheral blood mononuclear cells. A pilot clinical study was performed on seven dogs with oral malignant melanoma (OMM) and two with undifferentiated sarcoma. Objective antitumour responses were observed in one dog with OMM (14.3%, 1/7) and one with undifferentiated sarcoma (50.0%, 1/2) when c4G12 was given at 2 or 5 mg/kg, every 2 weeks. c4G12 could be a safe and effective treatment option for canine cancers.

  7. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML.

    Science.gov (United States)

    Kung Sutherland, May S; Walter, Roland B; Jeffrey, Scott C; Burke, Patrick J; Yu, Changpu; Kostner, Heather; Stone, Ivan; Ryan, Maureen C; Sussman, Django; Lyon, Robert P; Zeng, Weiping; Harrington, Kimberly H; Klussman, Kerry; Westendorf, Lori; Meyer, David; Bernstein, Irwin D; Senter, Peter D; Benjamin, Dennis R; Drachman, Jonathan G; McEarchern, Julie A

    2013-08-22

    Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.

  8. Two-step targeting and dosimetry for small cell lung cancer xenograft with anti-NCAM/antihistamine bispecific antibody and radioiodinated bivalent hapten.

    Science.gov (United States)

    Hosono, M; Hosono, M N; Kraeber-Bodéré, F; Devys, A; Thédrez, P; Faivre-Chauvet, A; Gautherot, E; Barbet, J; Chatal, J F

    1999-07-01

    The "affinity enhancement system," a two-step targeting technique using bispecific antibody and radiolabeled bivalent hapten, has been reported to be useful for carcinoembryonic antigen-expressing tumors. The purpose of this study was to evaluate the efficacy of this method for targeting human small cell lung cancer using an antineural cell adhesion molecule antibody. Antineural cell adhesion molecule/antihistamine bispecific antibody NK1NBL1-679 was prepared by coupling an equimolecular quantity of a Fab' fragment of NK1NBL1 to a Fab fragment of antihistamine 679. Athymic mice inoculated with NCI-H69 small cell lung cancer cells expressing neural cell adhesion molecule were administered bispecific antibody and then 48 h later 125I-labeled bivalent histamine hapten. 125I-labeled intact NK1NBL1 was injected into other groups of mice. Biodistributions were examined as a function of time. In mice of the two-step targeting, tumor uptake was 2.5 +/- 0.2, 3.2 +/- 0.4, 6.4 +/- 2.0, 7.2 +/- 2.7, 6.1 +/- 2.1 and 2.2 +/- 0.4 %ID/g at 5, 30 min, 5, 24, 48 and 96 h, and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios were 1.4 +/- 1.1, 10.8 +/- 13.2 and 4.6 +/- 4.7, respectively, at 5 h, whereas 125I-labeled NK1NBL1 showed a tumor uptake of 5.7 +/- 0.4 %ID/g and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios of 0.3 +/- 0.1, 1.1 +/- 0.2 and 0.9 +/- 0.1, respectively, at 5 h. These results were confirmed by autoradiographic studies, which demonstrated clear tumor-to-normal tissue contrast. Dosimetry showed that the affinity enhancement system could enhance the therapeutic potential of the antineural cell adhesion molecule antibody NK1NBL1. This two-step targeting method seems promising for the diagnosis and therapy of small cell lung cancer.

  9. Selection of replicon variants resistant to ACH-806, a novel hepatitis C virus inhibitor with no cross-resistance to NS3 protease and NS5B polymerase inhibitors.

    Science.gov (United States)

    Yang, Wengang; Zhao, Yongsen; Fabrycki, Joanne; Hou, Xiaohong; Nie, Xingtie; Sanchez, Amy; Phadke, Avinash; Deshpande, Milind; Agarwal, Atul; Huang, Mingjun

    2008-06-01

    We have discovered a novel class of compounds active against hepatitis C virus (HCV), using a surrogate cellular system, HCV replicon cells. The leading compound in the series, ACH-806 (GS-9132), is a potent and specific inhibitor of HCV. The selection of resistance replicon variants against ACH-806 was performed to map the mutations conferring resistance to ACH-806 and to determine cross-resistance profiles with other classes of HCV inhibitors. Several clones emerged after the addition of ACH-806 to HCV replicon cells at frequencies and durations similar to that observed with NS3 protease inhibitors and NS5B polymerase inhibitors. Phenotypic analyses of these clones revealed that they are resistant to ACH-806 but remain sensitive to other classes of HCV inhibitors. Moreover, no significant change in the susceptibility to ACH-806 was found when the replicon cellular clones resistant to NS3 protease inhibitors and NS5B polymerase inhibitors were examined. Sequencing of the entire coding region of ACH-806-resistant replicon variants yielded several consensus mutations. Reverse genetics identified two single mutations in NS3, a cysteine-to-serine mutation at amino acid 16 and an alanine-to-valine mutation at amino acid 39, that are responsible for the resistance of the replicon variants to ACH-806. Both mutations are located at the N terminus of NS3 where extensive interactions with the central hydrophobic region of NS4A exist. These data provide evidence that ACH-806 inhibits HCV replication by a novel mechanism.

  10. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite.

    Science.gov (United States)

    Kisalu, Neville K; Idris, Azza H; Weidle, Connor; Flores-Garcia, Yevel; Flynn, Barbara J; Sack, Brandon K; Murphy, Sean; Scho N, Arne; Freire, Ernesto; Francica, Joseph R; Miller, Alex B; Gregory, Jason; March, Sandra; Liao, Hua-Xin; Haynes, Barton F; Wiehe, Kevin; Trama, Ashley M; Saunders, Kevin O; Gladden, Morgan A; Monroe, Anthony; Bonsignori, Mattia; Kanekiyo, Masaru; Wheatley, Adam K; McDermott, Adrian B; Farney, S Katie; Chuang, Gwo-Yu; Zhang, Baoshan; Kc, Natasha; Chakravarty, Sumana; Kwong, Peter D; Sinnis, Photini; Bhatia, Sangeeta N; Kappe, Stefan H I; Sim, B Kim Lee; Hoffman, Stephen L; Zavala, Fidel; Pancera, Marie; Seder, Robert A

    2018-03-19

    Development of a highly effective vaccine or antibodies for the prevention and ultimately elimination of malaria is urgently needed. Here we report the isolation of a number of human monoclonal antibodies directed against the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) from several subjects immunized with an attenuated Pf whole-sporozoite (SPZ) vaccine (Sanaria PfSPZ Vaccine). Passive transfer of one of these antibodies, monoclonal antibody CIS43, conferred high-level, sterile protection in two different mouse models of malaria infection. The affinity and stoichiometry of CIS43 binding to PfCSP indicate that there are two sequential multivalent binding events encompassing the repeat domain. The first binding event is to a unique 'junctional' epitope positioned between the N terminus and the central repeat domain of PfCSP. Moreover, CIS43 prevented proteolytic cleavage of PfCSP on PfSPZ. Analysis of crystal structures of the CIS43 antigen-binding fragment in complex with the junctional epitope determined the molecular interactions of binding, revealed the epitope's conformational flexibility and defined Asn-Pro-Asn (NPN) as the structural repeat motif. The demonstration that CIS43 is highly effective for passive prevention of malaria has potential application for use in travelers, military personnel and elimination campaigns and identifies a new and conserved site of vulnerability on PfCSP for next-generation rational vaccine design.

  11. Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies

    NARCIS (Netherlands)

    Heskamp, Sandra; Boerman, Otto C.; Molkenboer-Kuenen, Janneke D. M.; Oyen, Wim J. G.; van der Graaf, Winette T. A.; van Laarhoven, Hanneke W. M.

    2013-01-01

    Bevacizumab (antivascular endothelial growth factor [anti-VEGF]) and cetuximab (antiepidermal growth factor receptor [anti-EGFR]) are approved antibodies for treatment of cancer. However, in advanced colorectal cancer, the combination fails to improve survival. As the reason for the lack of activity

  12. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.

    Science.gov (United States)

    Berglund, A K; Schnabel, L V

    2017-07-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. Experimental controlled study. Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. This study examined MSC death in vitro only and utilized antisera from a small number of horses. The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death. © 2016 The

  13. Use of Tc-rCRP as a target for lytic antibody titration after experimental Trypanosoma cruzi infection.

    Science.gov (United States)

    Marques, Tatiane; Silva, Gustavo Caetano; Henrique Paiva, Priscila Moraes; Nascentes, Gabriel Antônio Nogueira; Ramirez, Luis Eduardo; Norris, Karen; Meira, Wendell Sérgio Ferreira

    2018-01-01

    Experimental Chagas disease has been used as a model to identify several host/parasite interaction factors involved in immune responses to Trypanosoma cruzi infection. One of the factors inherent to this parasite is the complement regulatory protein (Tc-CRP), a major epitope that induces production of lytic antibodies during T. cruzi infections. Previous studies have evaluated the function of Tc-CRP as an antigenic marker via ELISAs, which demonstrated high sensitivity and specificity when compared to other methods. Therefore, this study aimed to assess and compare the levels of lytic antibodies induced by this protein following experimental infection using different T. cruzi strains. Our results demonstrated that infections induced by strains isolated from vectors resulted in subpatent parasitaemia and low reactivity, as assessed by Tc-rCRP ELISAs. On the other hand, mice inoculated with T. cruzi strains isolated from patients developed patent parasitaemia, and presented elevated lytic antibodies titres, as measured by Tc-rCRP ELISA. In addition, comparison between different mouse lineages demonstrated that Balb/c mice were more reactive than C57BL/6 mice in almost all types of infections, except those infected by the AQ-4 strain. Parasites from the Hel strain generated the greatest lytic antibody response in all evaluated models. Therefore, application of sensitive techniques for monitoring immune responses would enable us to establish growth curves for lytic antibodies during the course of the infection, and allow us to discriminate between T. cruzi strains that originate from different hosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pan-HER - an antibody mixture targeting EGFR, HER2, and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers

    DEFF Research Database (Denmark)

    Ellebaek, Sofie; Pedersen, Susanne Brix; Grandal, Michael

    2016-01-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting m...... with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan...... development of Pan-HER in resistant settings. This article is protected by copyright. All rights reserved....

  15. Tumor-Shed Antigen Affects Antibody Tumor Targeting: Comparison of Two 89Zr-Labeled Antibodies Directed against Shed or Nonshed Antigens

    Directory of Open Access Journals (Sweden)

    Jae-Ho Lee

    2018-01-01

    Full Text Available We investigated the effect of shed antigen mesothelin on the tumor uptake of amatuximab, a therapeutic anti-mesothelin mAb clinically tested in mesothelioma patients. The B3 mAb targeting a nonshed antigen was also analyzed for comparison. The mouse model implanted with A431/H9 tumor, which expresses both shed mesothelin and nonshed Lewis-Y antigen, provided an ideal system to compare the biodistribution and PET imaging profiles of the two mAbs. Our study demonstrated that the tumor and organ uptakes of 89Zr-B3 were dose-independent when 3 doses, 2, 15, and 60 μg B3, were compared at 24 h after injection. In contrast, tumor and organ uptakes of 89Zr-amatuximab were dose-dependent, whereby a high dose (60 μg was needed to achieve tumor targeting comparable to the low dose (2 μg of 89Zr-B3, suggesting that shed mesothelin may affect amatuximab tumor targeting as well as serum half-life. The autoradiography analysis showed that the distribution of 89Zr-B3 was nonuniform with the radioactivity primarily localized at the tumor periphery independent of the B3 dose. However, the autoradiography analysis for 89Zr-amatuximab showed dose-dependent distribution profiles of the radiolabel; at 10 μg dose, the radiolabel penetrated toward the tumor core with its activity comparable to that at the tumor periphery, whereas at 60 μg dose, the distribution profile became similar to those of 89Zr-B3. These results suggest that shed antigen in blood may act as a decoy requiring higher doses of mAb to improve serum half-life as well as tumor targeting. Systemic mAb concentration should be at a severalfold molar excess to the shed Ag in blood to overcome the hepatic processing of mAb-Ag complexes. On the other hand, mAb concentration should remain lower than the shed Ag concentration in the tumor ECS to maximize tumor penetration by passing binding site barriers.

  16. Nanoparticle Mediated Drug Delivery of Rolipram to Tyrosine Kinase B Positive Cells in the Inner Ear with Targeting Peptides and Agonistic Antibodies

    Directory of Open Access Journals (Sweden)

    Rudolf eGlueckert

    2015-05-01

    Full Text Available AimSystemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated.Methods We tested lipid based nanocapsules (LNCs, Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. ResultsPlain NPs show some selectivity in uptake related to the in-vitro system properties, carrier material and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin induced apoptosis.DiscussionMost NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of

  17. Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer.

    Science.gov (United States)

    Hosono, M N; Hosono, M; Mishra, A K; Faivre-Chauvet, A; Gautherot, E; Barbet, J; Knapp, F F; Chatal, J F

    2000-06-01

    We have evaluated the potential of 188Re-labeled monoclonal antibodies (MAbs) modified with 2-iminothiolane (2IT) for targeting small-cell lung cancer (SCLC). Radiolabeled MAbs NK1NBL1 and C218 recognizing neural cell adhesion molecule were injected i.v. into athymic mice inoculated with human SCLC tumors, and the biodistribution was examined. NK1NBL1 localized in the tumors better than C218. 188Re-labeled MAbs cleared from the blood faster than 125I-labeled counterparts, resulting in higher tumor-to-blood ratios. In conclusion, the 188Re-labeled MAbs are attractive candidates for imaging and therapy of SCLC.

  18. SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells.

    Science.gov (United States)

    Hussain, Ahmad Fawzi; Kampmeier, Florian; von Felbert, Verena; Merk, Hans-F; Tur, Mehmet Kemal; Barth, Stefan

    2011-12-21

    Cancer cells can be killed by photosensitizing agents that induce toxic effects when exposed to nonhazardous light, but this also causes significant damage to surrounding healthy cells. The specificity of photodynamic therapy can be increased by conjugating photosensitizing agents to antibodies and antibody fragments that bind specifically to tumor cell antigens. However, standard conjugation reactions produce heterogeneous products whose targeting specificity and spectroscopic properties can be compromised. In this study, we used an antibody fragment (scFv-425) that binds to the epidermal growth factor receptor (EGFR) as a model to investigate the use of SNAP-tag fusions as an improved conjugation strategy. The scFv-425-SNAP-tag fusion protein allowed the specific conjugation of a chlorin e6 photosensitizer modified with O(6)-benzylguanine, generating a homogeneous product that was delivered specifically to EGFR(+) cancer cells and resulted in significant, tumor cell-specific cytotoxicity. The impact of our results on the development of photodynamic therapy is discussed.

  19. Multiple antibody targets on herpes B glycoproteins B and D identified by screening sera of infected rhesus macaques with peptide microarrays.

    Directory of Open Access Journals (Sweden)

    Sven-Kevin Hotop

    Full Text Available Herpes B virus (or Herpesvirus simiae or Macacine herpesvirus 1 is endemic in many populations of macaques, both in the wild and in captivity. The virus elicits only mild clinical symptoms (if any in monkeys, but can be transmitted by various routes, most commonly via bites, to humans where it causes viral encephalitis with a high mortality rate. Hence, herpes B constitutes a considerable occupational hazard for animal caretakers, veterinarians and laboratory personnel. Efforts are therefore being made to reduce the risk of zoonotic infection and to improve prognosis after accidental exposure. Among the measures envisaged are serological surveillance of monkey colonies and specific diagnosis of herpes B zoonosis against a background of antibodies recognizing the closely related human herpes simplex virus (HSV. 422 pentadecapeptides covering, in an overlapping fashion, the entire amino acid sequences of herpes B proteins gB and gD were synthesized and immobilized on glass slides. Antibodies present in monkey sera that bind to subsets of the peptide collection were detected by microserological techniques. With 42 different rhesus macaque sera, 114 individual responses to 18 different antibody target regions (ATRs were recorded, 17 of which had not been described earlier. This finding may pave the way for a peptide-based, herpes B specific serological diagnostic test.

  20. Intracellular Targeting of CEA Results in Th1-Type Antibody Responses Following Intradermal Genetic Vaccination by a Needle-Free Jet Injection Device

    Directory of Open Access Journals (Sweden)

    Susanne Johansson

    2007-01-01

    Full Text Available The route and method of immunization, as well as the cellular localization of the antigen, can influence the generation of an immune response. In general, intramuscular immunization results in Th1 responses, whereas intradermal delivery of DNA by gene gun immunization often results in more Th2 responses. Here we investigate how altering the cellular localization of the tumor antigen CEA (carcinoembryonic antigen affects the quality and amplitude of DNA vaccine-induced antibody responses in mice following intradermal delivery of DNA by a needle-free jet injection device (Biojector. CEA was expressed either in a membrane-bound form (wild-type CEA or in two truncated forms (CEA6 and CEA66 with cytoplasmic localization, where CEA66 was fused to a promiscuous T-helper epitope from tetanus toxin. Repeated intradermal immunization of BALB/c mice with DNA encoding wild-type CEA produced high antibody titers of a mixed IgG1/IgG2a ratio. In contrast, utilizing the DNA construct that resulted in intracellular targeting of CEA led to a reduced capacity to induce CEA-specific antibodies, but instead induced a Th1-biased immune response.

  1. Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders.

    Science.gov (United States)

    Sinmaz, Nese; Tea, Fiona; Pilli, Deepti; Zou, Alicia; Amatoury, Mazen; Nguyen, Tina; Merheb, Vera; Ramanathan, Sudarshini; Cooper, Sandra T; Dale, Russell C; Brilot, Fabienne

    2016-12-01

    Anti-Dopamine-2 receptor (D2R) antibodies have been recently identified in a subgroup of children with autoimmune movement and psychiatric disorders, however the epitope(s) and mechanism of pathogenicity remain unknown. Here we report a major biological role for D2R extracellular N-terminus as a regulator of receptor surface availability, and as a major epitope targeted and impaired in brain autoimmunity. In transfected human cells, purified anti-D2R antibody from patients specifically and significantly reduced human D2R surface levels. Next, human D2R mutants modified in their extracellular domains were subcloned, and we analyzed the region bound by 35 anti-D2R antibody-positive patient sera using quantitative flow cytometry on live transfected cells. We found that N-glycosylation at amino acids N5 and/or N17 was critical for high surface expression in interaction with the last 15 residues of extracellular D2R N-terminus. No anti-D2R antibody-positive patient sera bound to the three extracellular loops, but all patient sera (35/35) targeted the extracellular N-terminus. Overall, patient antibody binding was dependent on two main regions encompassing amino acids 20 to 29, and 23 to 37. Residues 20 to 29 contributed to the majority of binding (77%, 27/35), among which 26% (7/27) sera bound to amino acids R20, P21, and F22, 37% (10/27) patients were dependent on residues at positions 26 and 29, that are different between humans and mice, and 30% (8/27) sera required R20, P21, F22, N23, D26, and A29. Seven patient sera bound to the region 23 to 37 independently of D26 and A29, but most sera exhibited N-glycosylation-independent epitope recognition at N23. Interestingly, no evident segregation of binding pattern according to patient clinical phenotype was observed. D2R N-terminus is a central epitope in autoimmune movement and psychiatric disorders and this knowledge could help the design of novel specific immune therapies tailored to improve patient outcome.

  2. Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein.

    Science.gov (United States)

    Batista, Milene Tavares; Souza, Renata D; Ferreira, Ewerton L; Robinette, Rebekah; Crowley, Paula J; Rodrigues, Juliana F; Brady, L Jeannine; Ferreira, Luís C S; Ferreira, Rita C C

    2014-12-01

    Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  4. A new double-antibody sandwich ELISA targeting Plasmodium falciparum aldolase to evaluate anti-malarial drug sensitivity

    Directory of Open Access Journals (Sweden)

    Brun Reto

    2009-10-01

    Full Text Available Abstract Background The standard in vitro test to assess anti-malarial activity of chemical compounds is the [3H]hypoxanthine incorporation assay. It is a radioactivity-based method to measure DNA replication of Plasmodium in red blood cells. The method is highly reproducible, however, the handling of radioactive material is costly, hazardous and requires the availability of appropriate technology and trained staff. Several other ways to evaluate in vitro anti-malarial activity do exist, all with their own assets and limitations. Methods The newly developed double-antibody sandwich ELISA described here is based on the properties of a non-overlapping pair of monoclonal antibodies directed against Plasmodium falciparum aldolase. This glycolytic enzyme possesses some unique nucleotide sequences compared to the human isoenzymes and has been highly conserved through evolution. Out of twenty possibilities, the most sensitive antibody pair was selected and used to quantitatively detect parasite aldolase in infected blood lysates. Results A total of 34 compounds with anti-malarial activity were tested side-by-side by ELISA and the [3H]hypoxanthine incorporation assay. The novel ELISA provided IC50s closely paralleling those from the radioactivity-based assay (R = 0.99, p Conclusion The newly developed ELISA presents several advantages over the comparative method, the [3H]hypoxanthine incorporation assay. The assay is highly reproducible, less hazardous (involves no radioactivity and requires little and cheap technical equipment. Relatively unskilled personnel can conduct this user-friendly assay. All this makes it attractive to be employed in resource-poor laboratories.

  5. A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure.

    Science.gov (United States)

    Lee, Jeong Hyun; Andrabi, Raiees; Su, Ching-Yao; Yasmeen, Anila; Julien, Jean-Philippe; Kong, Leopold; Wu, Nicholas C; McBride, Ryan; Sok, Devin; Pauthner, Matthias; Cottrell, Christopher A; Nieusma, Travis; Blattner, Claudia; Paulson, James C; Klasse, Per Johan; Wilson, Ian A; Burton, Dennis R; Ward, Andrew B

    2017-04-18

    Broadly neutralizing antibodies (bnAbs) to HIV delineate vaccine targets and are prophylactic and therapeutic agents. Some of the most potent bnAbs target a quaternary epitope at the apex of the surface HIV envelope (Env) trimer. Using cryo-electron microscopy, we solved the atomic structure of an apex bnAb, PGT145, in complex with Env. We showed that the long anionic HCDR3 of PGT145 penetrated between glycans at the trimer 3-fold axis, to contact peptide residues from all three Env protomers, and thus explains its highly trimer-specific nature. Somatic hypermutation in the other CDRs of PGT145 were crucially involved in stabilizing the structure of the HCDR3, similar to bovine antibodies, to aid in recognition of a cluster of conserved basic residues hypothesized to facilitate trimer disassembly during viral entry. Overall, the findings exemplify the creative solutions that the human immune system can evolve to recognize a conserved motif buried under a canopy of glycans. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Jose Luis Hernández

    Full Text Available S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF, via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.

  7. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody.

    Science.gov (United States)

    Huang, Jie; Ishino, Tetsuya; Chen, Gang; Rolzin, Paul; Osothprarop, Trina F; Retting, Kelsey; Li, Lingna; Jin, Ping; Matin, Marla J; Huyghe, Bernard; Talukdar, Saswata; Bradshaw, Curt W; Palanki, Moorthy; Violand, Bernard N; Woodnutt, Gary; Lappe, Rodney W; Ogilvie, Kathleen; Levin, Nancy

    2013-08-01

    Fibroblast growth factor (FGF)21 improves insulin sensitivity, reduces body weight, and reverses hepatic steatosis in preclinical species. We generated long-acting FGF21 mimetics by site-specific conjugation of the protein to a scaffold antibody. Linking FGF21 through the C terminus decreased bioactivity, whereas bioactivity was maintained by linkage to selected internal positions. In mice, these CovX-Bodies retain efficacy while increasing half-life up to 70-fold compared with wild-type FGF21. A preferred midlinked CovX-Body, CVX-343, demonstrated enhanced in vivo stability in preclinical species, and a single injection improved glucose tolerance for 6 days in ob/ob mice. In diet-induced obese mice, weekly doses of CVX-343 reduced body weight, blood glucose, and lipids levels. In db/db mice, CVX-343 increased glucose tolerance, pancreatic β-cell mass, and proliferation. CVX-343, created by linkage of the CovX scaffold antibody to the engineered residue A129C of FGF21 protein, demonstrated superior preclinical pharmacodynamics by extending serum half-life of FGF21 while preserving full therapeutic functionality.

  8. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk (Korea, Republic of); Chang, Suhwan [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young-Hwa [BK21-plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@dau.ac.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biological Sciences, Dong-A University, Busan (Korea, Republic of)

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  9. Comparative targeting of human colon-carcinoma multicell spheroids using one- and two-step (bispecific antibody) techniques.

    Science.gov (United States)

    Devys, A; Thedrez, P; Gautherot, E; Faivre-Chauvet, A; Saï-Maurel, C; Rouvier, E; Auget, J L; Barbet, J; Chatal, J F

    1996-09-17

    In the perspective of radioimmunotherapy (RIT) of micrometastases, we compared, in multicell spheroids (MS), the uptake and retention kinetics of 125I-F(ab)'2 F6 anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb), and the affinity enhancement system (AES) using an anti-CEA/anti-DTPA-indium bispecific antibody (BsMAb) and a 125I-labeled di-DTPA-In-tyrosine-lysine bivalent hapten. We used MS of colorectal tumor cell lines expressing CEA strongly (LS 174T), weakly (HT-29) or not at all (HRT-18). Uptake and retention kinetics of 125I-F(ab)'2 F6 and 125I-BsMAb used alone gave similar results. The highest uptake values, obtained with LS 174T MS, were slightly lower with AES than with 125I-F(ab)'2 F6. However, effective retention half-lives were longer for AES than for 125I-F(ab)'2 F6 or for 111In-labeled monovalent hapten after pre-incubation of spheroids with BsMAb. Autoradiography showed the same slow and heterogeneous distribution of 125I-F(ab)'2 F6 and 125I-BsMAb. These results indicate that the 2-step technique is more favorable for RIT: uptake values were approximately the same but uptake kinetics were more rapid, and retention half-life was longer than with the one-step technique.

  10. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response.

    Science.gov (United States)

    Silveira, G F; Strottmann, D M; de Borba, L; Mansur, D S; Zanchin, N I T; Bordignon, J; dos Santos, C N Duarte

    2016-01-01

    Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV. © 2015 British Society for Immunology.

  11. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Pang

    Full Text Available The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2, to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively (P<0.01. Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.

  12. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kashyap, Manoj K; Amaya-Chanaga, Carlos I; Kumar, Deepak; Simmons, Brett; Huser, Nanni; Gu, Yin; Hallin, Max; Lindquist, Kevin; Yafawi, Rolla; Choi, Michael Y; Amine, Ale-Ali; Rassenti, Laura Z; Zhang, Cathy; Liu, Shu-Hui; Smeal, Tod; Fantin, Valeria R; Kipps, Thomas J; Pernasetti, Flavia; Castro, Januario E

    2017-05-19

    The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. We show

  13. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome.

    Directory of Open Access Journals (Sweden)

    Soraya S Pereira

    Full Text Available In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ₈₅ of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ₈₅. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB, surface plasmon resonance (SPR device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ₈₅ in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with

  14. Identifying Candidate Targets of Immune Responses in Zika Virus Based on Homology to Epitopes in Other Flavivirus Species.

    Science.gov (United States)

    Xu, Xiaojun; Vaughan, Kerrie; Weiskopf, Daniela; Grifoni, Alba; Diamond, Michael S; Sette, Alessandro; Peters, Bjoern

    2016-11-15

    The current outbreak of Zika virus has resulted in a massive effort to accelerate the development of ZIKV-specific diagnostics and vaccines. These efforts would benefit greatly from the definition of the specific epitope targets of immune responses in ZIKV, but given the relatively recent emergence of ZIKV as a pandemic threat, few such data are available. We used a large body of epitope data for other Flaviviruses that was available from the IEDB for a comparative analysis against the ZIKV proteome in order to project targets of immune responses in ZIKV. We found a significant level of overlap between known antigenic sites from other Flavivirus proteins with residues on the ZIKV polyprotein. The E and NS1 proteins shared functional antibody epitope sites, whereas regions of T cell reactivity were conserved within NS3 and NS5 for ZIKV.  Discussion: Our epitope based analysis provides guidance for which regions of the ZIKV polyprotein are most likely unique targets of ZIKV-specific antibodies, and which targets in ZIKV are most likely to be cross-reactive with other Flavivirus species. These data may therefore provide insights for the development of antibody- and T cell-based ZIKV-specific diagnostics, therapeutics and prophylaxis.

  15. Epitope mapping of inhibitory antibodies targeting the C2 domain of coagulation factor VIII by hydrogen-deuterium exchange mass spectrometry

    Science.gov (United States)

    Sevy, Alexander M.; Healey, John F.; Deng, Wei; Spiegel, P. Clint; Meeks, Shannon L.; Li, Renhao

    2014-01-01

    Summary Background The development of anti-factor VIII (fVIII) antibodies (inhibitors) is a significant complication in the management of patients with hemophilia A, leading to significant increases in morbidity and treatment cost. Using a panel of anti-fVIII monoclonal antibodies (MAbs) to different epitopes on fVIII, we recently have shown that epitope specificity, inhibitor kinetics, and time to maximum inhibition are more important than inhibitor titer in predicting response to fVIII and the combination of fVIII and recombinant factor VIIa. In particular, a subset of high-titer inhibitors responded to high dose fVIII, which would not be predicted based on their inhibitor titer alone. Thus the ability to quickly map the epitope spectrum of patient plasma using a clinically feasible assay may fundamentally change how clinicians approach the treatment of high-titer inhibitor patients. Objectives To map the epitopes of anti-fVIII MAbs, of which 3 are classical inhibitors and one non-classical, using hydrogen-deuterium exchange coupled with liquid chromatography-mass spectrometry (HDX-MS). Methods Binding epitopes of 4 MAbs targeting fVIII C2 domain were mapped using HDX-MS. Results The epitopes determined by HDX-MS are consistent with those obtained earlier through structural characterization and antibody competition assays. In addition classical and non-classical inhibitor epitopes could be distinguished using a limited subset of C2-derived peptic fragments. Conclusion Our results demonstrate the effectiveness and robustness of the HDX-MS method for epitope mapping and suggest a potential role of rapid mapping of fVIII inhibitor epitopes in facilitating individualized treatment of inhibitor patients. PMID:24152306

  16. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Novel antibody-based drugs for PD-L1 and TRAIL-R targeted cancer immunotherapy

    NARCIS (Netherlands)

    Hendriks, Djoke

    2017-01-01

    Immunotherapy aims to destroy cancer cells using cells or molecules of the immune system. This can be achieved by either targeting cancer cells directly or by improving an ongoing anticancer immune response in the patient. It was recently discovered that cancer cells overexpress PD-L1 protein on

  18. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment

    Directory of Open Access Journals (Sweden)

    Olumide Babajide Gbolahan

    2017-07-01

    Full Text Available Intensive chemotherapeutic protocols and allogeneic stem cell transplantation continue to represent the mainstay of acute myeloid leukemia (AML treatment. Although this approach leads to remissions in the majority of patients, long-term disease control remains unsatisfactory as mirrored by overall survival rates of approximately 30%. The reason for this poor outcome is, in part, due to various toxicities associated with traditional AML therapy and the limited ability of most patients to tolerate such treatment. More effective and less toxic therapies therefore represent an unmet need in the management of AML, a disease for which therapeutic progress has been traditionally slow when compared to other cancers. Several studies have shown that leukemic blasts elicit immune responses that could be exploited for the development of novel treatment concepts. To this end, early phase studies of immune-based therapies in AML have delivered encouraging results and demonstrated safety and feasibility. In this review, we discuss opportunities for immunotherapeutic interventions to enhance the potential to achieve a cure in AML, thereby focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment.

  19. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  20. Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Masako N. [Osaka City Univ. (Japan); Hosono, Makoto; Mishra, A.K.; Faivre-Chauvet, A.; Gautherot, E.; Barbet, J.; Knapp, F.F.R. Jr; Chatal, J.F.

    2000-06-01

    We have evaluated the potential of {sup 188}Re-labeled monoclonal antibodies (MAbs) modified with 2-iminothiolane (2IT) for targeting small-cell lung cancer (SCLC). Radiolabeled MAbs NK1NBL1 and C218 recognizing neural cell adhesion molecule were injected i.v. into athymic mice inoculated with human SCLC tumors, and the biodistribution was examined. NK1NBL1 localized in the tumors better than C218. {sup 188}Re-labeled MAbs cleared from the blood faster than {sup 125}I-labeled counterparts, resulting in higher tumor-to-blood ratios. In conclusion, the {sup 188}Re-labeled MAbs are attractive candidates for imaging and therapy of SCLC. (author)

  1. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen.

    Directory of Open Access Journals (Sweden)

    Kelcey G Patterson

    Full Text Available Superantigens (SAgs are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA. To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv antibody to recognize 5T4 (scFv5T4. Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as 'next-generation' TTSs for cancer immunotherapy.

  2. EGFR targeting monoclonal antibody combines with an mTOR inhibitor and potentiates tumor inhibition by acting on complementary signaling hubs

    International Nuclear Information System (INIS)

    James, Roshan; Vishwakarma, Siddharth; Chivukula, Indira V; Basavaraj, Chetana; Melarkode, Ramakrishnan; Montero, Enrique; Nair, Pradip

    2012-01-01

    Nimotuzumab, an anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody, has been used extensively in many solid tumors and confers significant survival advantage. The antibody has limited skin toxicity and is generally well tolerated. Similar to other anti-EGFR therapies, patients may relapse a few months after treatment. In this study we show for the first time, the use of Nimotuzumab along with Sirolimus has synergistic effect on tumor inhibition as compared with the drugs used individually, in Nimotuzumab responsive and nonresponsive cell lines. In vitro studies prove that while Sirolimus (25 nmol/L) affects the signal downstream to mammalian target of rapamycin (mTOR), Nimotuzumab (83 nmol/L) downregulates pTYR, pMAPK and pSTAT3 by 40%, 20% and 30%, respectively. The combination, targeting these two different signaling hubs, may be associated with the synergistic inhibition observed. In vivo, the use of half human therapeutic equivalent doses for both the drugs substantially reduces tumors established in nude as well as severe combined immunodeficiency (SCID) mice by EGFR overexpressing A-431 cells. The drug combination reduces cell proliferation and the expression of signal transduction molecules. Treated tumors are better differentiated as compared with those established in the control mice. Tumor microarray demonstrates that Nimotuzumab and the combination groups segregate independently to the Sirolimus and the control treatment. The combination uniquely downregulated 55% of the altered tumor genes, extending beyond the typical pathways associated with Nimotuzumab and Sirolimus downstream pathways inhibition. These results would suggest that this nontoxic drug combination improves therapeutic benefit even in patients with low-EGFR expression and severely immunocompromised because of their current medication

  3. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor.

    Science.gov (United States)

    Sano, Kohei; Ohashi, Manami; Kanazaki, Kengo; Ding, Ning; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2015-08-28

    Photoacoustic (PA) imaging is an attractive imaging modality for sensitive and depth imaging of biomolecules with high resolution in vivo. The aim of this study was to evaluate the effectiveness of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (panitumumab; Pan) labeled with indocyanine green derivative (ICG-EG4-Sulfo-OSu), Pan-EG4-ICG, as a PA imaging probe to target cancer-associated EGFR. In vitro PA imaging studies demonstrated that Pan-EG4-ICG yielded high EGFR-specific PA signals in EGFR-positive cells. To determine the optimal injection dose and scan timing, we investigated the biodistribution of radiolabeled Pan-EG4-ICG (200-400 μg) in A431 tumor (EGFR++)-bearing mice. The highest tumor accumulation (29.4% injected dose/g) and high tumor-to-blood ratio (2.1) was observed 7 days after injection of Pan-EG4-ICG (400 μg). In in vivo PA imaging studies using Pan-EG4-ICG (400 μg), the increase in PA signal (114%) was observed in A431 tumors inoculated in the mammary glands 7 days post-injection. Co-injection of excess Pan resulted in a 35% inhibition of this PA signal, indicating the EGFR-specific accumulation. In conclusion, the ICG-labeled monoclonal antibody (i.e., panitumumab) has the potential to enhance target-specific PA signal, leading to the discrimination of aggressiveness and metastatic potential of tumors and the selection of effective therapeutic strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  5. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  6. Restricted Cell Surface Expression of Receptor Tyrosine Kinase ROR1 in Pediatric B-Lineage Acute Lymphoblastic Leukemia Suggests Targetability with Therapeutic Monoclonal Antibodies

    Science.gov (United States)

    Dave, Hema; Anver, Miriam R.; Butcher, Donna O.; Brown, Patrick; Khan, Javed; Wayne, Alan S.; Baskar, Sivasubramanian; Rader, Christoph

    2012-01-01

    Background Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL), short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs) that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies. Methodology and Principal Findings Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues. Conclusions and Significance Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies. PMID:23285131

  7. Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Hema Dave

    Full Text Available Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL, short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies.Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues.Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies.

  8. Definition of the region on NS3 which contains multiple epitopes recognized by dengue virus serotype-cross-reactive and flavivirus-cross-reactive, HLA-DPw2-restricted CD4+ T cell clones.

    Science.gov (United States)

    Okamoto, Y; Kurane, I; Leporati, A M; Ennis, F A

    1998-04-01

    The epitopes recognized by six CD4+ CD8- cytotoxic T lymphocyte (CTL) clones established from a dengue-3 virus-immune donor were defined. (i) Three CTL clones, JK10, JK34 and JK39, were cross-reactive for dengue virus types 1-4. (ii) One clone, JK28, was cross-reactive for dengue virus types 1-4 and West Nile virus. (iii) Two clones, JK26 and JK49, were cross-reactive for dengue virus types 1-4, West Nile virus and yellow fever virus. The clones, except for JK49, recognized the same epitope on NS3 in an HLA-DPw2-restricted fashion. The smallest synthetic peptide recognized by the five CTL clones was a 10 aa peptide which comprises aa 255-264 on dengue virus NS3. JK49 recognized the overlapping epitope which comprises aa 257-266 in an HLA-DPw2-restricted fashion. Analysis of T cell receptor (TCR) usage by these T cell clones revealed that (i) JK10 and JK34 use V alpha11, and JK34 and JK28 use V beta23, and (ii) the amino acid sequences of the V(D)J junctional region of the TCR were different among these five CTL clones. There were, however, single amino acid conservations among TCRs of some of these T cell clones. These results indicate that the region on NS3 which comprises aa 255-266 contains multiple epitopes recognized by dengue serotype-cross-reactive and flavivirus-cross-reactive CD4+ CTL in an HLA-DPw2-restricted fashion and that a single epitope can be recognized by T cells which have heterogeneous virus specificities.

  9. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting.

    Science.gov (United States)

    Ucisik, Mehmet H; Küpcü, Seta; Breitwieser, Andreas; Gelbmann, Nicola; Schuster, Bernhard; Sleytr, Uwe B

    2015-04-01

    Selective targeting of tumor cells by nanoparticle-based drug delivery systems is highly desirable because it maximizes the drug concentration at the desired target while simultaneously protecting the surrounding healthy tissues. Here, we show a design for smart nanocarriers based on a biomimetic approach that utilizes the building principle of virus envelope structures. Emulsomes and CurcuEmulsomes comprising a tripalmitin solid core surrounded by phospholipid layers are modified by S-layer proteins that self-assemble into a two-dimensional array to form a surface layer. One significant advantage of this nanoformulation is that it increases the solubility of the lipophilic anti-cancer agent curcumin in the CurcuEmulsomes by a factor of 2700. In order to make the emulsomes specific for IgG, the S-layer protein is fused with two protein G domains. This S-layer fusion protein preserves its recrystallization characteristics, forming an ordered surface layer (square lattice with 13 nm unit-by-unit distance). The GG domains are presented in a predicted orientation and exhibit a selective binding affinity for IgG. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch.

    Science.gov (United States)

    MacLeod, Daniel T; Choi, Nancy M; Briney, Bryan; Garces, Fernando; Ver, Lorena S; Landais, Elise; Murrell, Ben; Wrin, Terri; Kilembe, William; Liang, Chi-Hui; Ramos, Alejandra; Bian, Chaoran B; Wickramasinghe, Lalinda; Kong, Leopold; Eren, Kemal; Wu, Chung-Yi; Wong, Chi-Huey; Kosakovsky Pond, Sergei L; Wilson, Ian A; Burton, Dennis R; Poignard, Pascal

    2016-05-17

    The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody.

    Science.gov (United States)

    Ding, Ning; Sano, Kohei; Kanazaki, Kengo; Ohashi, Manami; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2016-12-01

    The feasibility of iron oxide nanoparticles (IONPs) conjugated with anti-epidermal growth factor receptor 2 (HER2) single-chain antibody (scFv-IONPs) as novel HER2-targeted magnetic resonance (MR) contrast agents was investigated. The scFv-IONPs were prepared and identified. For in vitro MRI, NCI-N87 (HER2 high expression) and SUIT2 (low expression) cells were incubated with scFv-IONPs. For in vivo MRI, NCI-N87 and SUIT2 tumor-bearing mice were intravenously injected with scFv-IONPs and imaged before and 24 h post-injection. The scFv-IONPs demonstrated high transverse relaxivity (296.3 s -1  mM -1 ) and affinity toward HER2 (K D  = 11.7 nM). In the in vitro MRI, NCI-N87 cells treated with scFv-IONPs exhibited significant MR signal reduction (44.6 %) than SUIT2 cells (6.8 %). In the in vivo MRI, decrease of MR signals in NCI-N87 tumors (19.3 %) was more notable than that in SUIT2 tumors (6.2 %). The scFv-IONPs enabled HER2-specific tumor MR imaging, suggesting the potential of scFv-IONPs as a robust HER2-targeted MR contrast agent.

  12. [Treatment of liver cancer in vitro and in mice by monoclonal antibody targeting epithelial specific antigen-positive liver cancer stem cells in combination with cisplatin].

    Science.gov (United States)

    He, Y Y; Yu, L; Rong, Y; Sun, L X; Sun, L C; Yang, Z H; Ran, Y L; Li, L

    2016-05-23

    .0%, and that of the cisplatin monotherapy was 56.7%. McAb 15D2 is a functional monoclonal antibody targeting liver cancer stem cells, which could be a potential monoclonal antibody drug for the stem cell-targeted therapy of liver cancer.

  13. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  14. Epitope mapping of inhibitory antibodies targeting the C2 domain of coagulation factor VIII by hydrogen-deuterium exchange mass spectrometry.

    Science.gov (United States)

    Sevy, A M; Healey, J F; Deng, W; Spiegel, P C; Meeks, S L; Li, R

    2013-12-01

    The development of anti-factor VIII antibodies (inhibitors) is a significant complication in the management of patients with hemophilia A, leading to significant increases in morbidity and treatment cost. Using a panel of mAbs against different epitopes on FVIII, we have recently shown that epitope specificity, inhibitor kinetics and time to maximum inhibition are more important than inhibitor titer in predicting responses to FVIII and the combination of FVIII and recombinant FVIIa. In particular, a subset of high-titer inhibitors responded to high-dose FVIII, which would not be predicted on the basis of their inhibitor titer alone. Thus, the ability to quickly map the epitope spectrum of patient plasma with a clinically feasible assay may fundamentally change how clinicians approach the treatment of high-titer inhibitor patients. To map the epitopes of anti-FVIII mAbs, three of which are classic inhibitors and one of which is a non-classic inhibitor, by the use of hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS). The binding epitopes of four mAbs targeting the FVIII C2 domain were mapped with HDX-MS. The epitopes determined with HDX-MS are consistent with those obtained earlier through structural characterization and antibody competition assays. In addition, classic and non-classic inhibitor epitopes could be distinguished by the use of a limited subset of C2 domain-derived peptic fragments. Our results demonstrate the effectiveness and robustness of the HDX-MS method for epitope mapping, and suggest a potential role of rapid mapping of FVIII inhibitor epitopes in facilitating individualized treatment of inhibitor patients. © 2013 International Society on Thrombosis and Haemostasis.

  15. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies.

    Science.gov (United States)

    Datta-Mannan, Amita; Lu, Jirong; Witcher, Derrick R; Leung, Donmienne; Tang, Ying; Wroblewski, Victor J

    2015-01-01

    The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application.

  16. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    Science.gov (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  17. Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response.

    Science.gov (United States)

    Dubrovskaya, Viktoriya; Guenaga, Javier; de Val, Natalia; Wilson, Richard; Feng, Yu; Movsesyan, Arlette; Karlsson Hedestam, Gunilla B; Ward, Andrew B; Wyatt, Richard T

    2017-09-01

    Extensive shielding by N-glycans on the surface of the HIV envelope glycoproteins (Env) restricts B cell recognition of conserved neutralizing determinants. Elicitation of broadly neutralizing antibodies (bNAbs) in selected HIV-infected individuals reveals that Abs capable of penetrating the glycan shield can be generated by the B cell repertoire. Accordingly, we sought to determine if targeted N-glycan deletion might alter antibody responses to Env. We focused on the conserved CD4 binding site (CD4bs) since this is a known neutralizing determinant that is devoid of glycosylation to allow CD4 receptor engagement, but is ringed by surrounding N-glycans. We selectively deleted potential N-glycan sites (PNGS) proximal to the CD4bs on well-ordered clade C 16055 native flexibly linked (NFL) trimers to potentially increase recognition by naïve B cells in vivo. We generated glycan-deleted trimer variants that maintained native-like conformation and stability. Using a panel of CD4bs-directed bNAbs, we demonstrated improved accessibility of the CD4bs on the N-glycan-deleted trimer variants. We showed that pseudoviruses lacking these Env PNGSs were more sensitive to neutralization by CD4bs-specific bNAbs but remained resistant to non-neutralizing mAbs. We performed rabbit immunogenicity experiments using two approaches comparing glycan-deleted to fully glycosylated NFL trimers. The first was to delete 4 PNGS sites and then boost with fully glycosylated Env; the second was to delete 4 sites and gradually re-introduce these N-glycans in subsequent boosts. We demonstrated that the 16055 PNGS-deleted trimers more rapidly elicited serum antibodies that more potently neutralized the CD4bs-proximal-PNGS-deleted viruses in a statistically significant manner and strongly trended towards increased neutralization of fully glycosylated autologous virus. This approach elicited serum IgG capable of cross-neutralizing selected tier 2 viruses lacking N-glycans at residue N276 (natural or

  18. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial.

    Science.gov (United States)

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Ferrer, Ludovic; Faivre-Chauvet, Alain; Campion, Loïc; Vuillez, Jean-Philippe; Devillers, Anne; Chang, Chien-Hsing; Goldenberg, David M; Chatal, Jean-François; Barbet, Jacques

    2006-02-01

    Safety, targeting, and antitumor efficacy of pretargeted radioimmunotherapy using anti-carcinoembryonic antigen (CEA) hMN-14 x m734 bispecific antibody (BsmAb) and 131I-di-diethylenetriamine pentaacetic acid (DTPA)-indium hapten were evaluated in a phase I study performed on patients with CEA-expressing tumors. Twenty-two patients with nonmedullary thyroid carcinoma (non-MTC) (group I, 13 patients) or medullary thyroid carcinoma (MTC) (group II, 9 patients) were enrolled. These patients received a 75 mg/m2 (11 patients) or 40 mg/m2 (11 patients) dose of BsmAb and escalating activities of (131)I-di-DTPA-indium 5 d later. Toxicity and tumor response were assessed in 20 patients who received a therapeutic (>2.2 GBq) hapten dose of radioactivity. The percentage of lesions detected by immunoscintigraphy after injection of the therapeutic dose of hapten was 70% on an anatomic-site basis. High bone uptake was relatively frequent. A transient grade I or II hepatic toxicity was observed in 5 patients (45%) injected with 75 mg/m2 of BsmAb and in 1 patient (11%) injected with 40 mg/m2. No other nonhematologic toxicity was observed. With 75 mg/m2 of BsmAb, hematologic toxicity was high: 5 cases of grade III or IV leukopenia (45%) and 5 cases of grade III or IV thrombopenia (45%). With a 40 mg/m2 dose of BsmAb, hematologic toxicity was reduced significantly: 3 cases of grade III or IV leukopenia (33%) and 1 case of grade III or IV thrombopenia (11%) (P = 0.02). Toxicity was significantly higher in MTC patients than in non-MTC patients (P = 0.019). Nine cases of tumor stabilization of 3 mo to more than 12 mo were observed (45%), 6 in the MTC group and 3 in the non-MTC group. The rate of disease stabilization was significantly higher with 75 mg/m2 of BsmAb (64%) than with 40 mg/m2 (22%) (P = 0.04). Human antimouse antibody elevation was observed in 1 patient (8%) and human antihuman antibody in 4 (33%). A BsmAb dose of 40 mg/m2 and a 5-d interval appeared to be a better dose

  19. Increased serum anti-mycobacterial antibody titers in rheumatoid arthritis patients: Is there any specific antigenic target?

    International Nuclear Information System (INIS)

    Cetin, Emel S.; Aksoy, Ali M

    2007-01-01

    Objective was to investigate the presence of immunoreactivity against mycobacterial antigens in the sera of patients with rheumatoid arthritis (Ra) and to detect the target of the immune reaction. This study was carried out on 60 patients with RA, and 25 patients with no joint diseases in the laboratory of Clinical Microbiology Department of Ankara University Medical Faculty, Ankara, Turkey between July 2003 to January 2004. Secreted and cellular antigens of Mycobacterium tuberculosis (M. tuberculosis) H37Rv and Mycobacterium bovis (M. bovis) were isolated and purified by high performance liquid chromatography to antigenic fractions. The immunoreactivity of patient and control sera against these antigens were determined by enzyme-linked immunosorbent assay (ELISA). Immunoreactivity against mycobacterial antigens in RA patients were significantly higher than controls. Significant difference between patients and controls has been determined with M. bovis Bacillus Calmette Guerin (BCG) culture fluid and sonicate antigens, but not with M. tuberculosis H37Rv. This suggests that the antigen triggering immune response in patients with RA may belong to or mainly expressed on M. bovis BCG. The ELISA results showed significant difference between RA patients and controls with all antigenic fractions. Presence of increased immunoreactivity against mycobacterial antigens in the sera of patients with RA was detected. When statistical analysis was considered, we cannot put forward any antigenic fraction alone as the one responsible for the increased reactivity. (author)

  20. A comparison of targeting of neuroblastoma with mIBG and anti L1-CAM antibody mAb chCE7: therapeutic efficacy in a neuroblastoma xenograft model and imaging of neuroblastoma patients

    NARCIS (Netherlands)

    Hoefnagel, C. A.; Rutgers, M.; Buitenhuis, C. K.; Smets, L. A.; de Kraker, J.; Meli, M.; Carrel, F.; Amstutz, H.; Schubiger, P. A.; Novak-Hofer, I.

    2001-01-01

    Iodine-131 labelled anti L1-CAM antibody mAb chCE7 was compared with the effective neuroblastoma-seeking agent 131I-labelled metaiodobenzylguanidine (MIBG) with regard to (a) its therapeutic efficacy in treating nude mice with neuroblastoma xenografts and (b) its tumour targeting ability in

  1. In vivo imaging and specific targeting of P-glycoprotein expression in multidrug resistant nude mice xenografts with [{sup 125}I]MRK-16 monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Andrew M.; Rosa, Eddie; Mehta, Bippin M.; Divgi, Chaitanya R.; Finn, Ronald D.; Biedler, June L.; Tsuruo, Takashi; Kalaigian, Hovannes; Larson, Steven M

    1995-05-01

    Multidrug resistance (MDR) in tumors is associated with P-glycoprotein (Pgp) expression. In vivo quantitation of Pgp may allow MDR to be evaluated noninvasively prior to treatment planning. The purpose of this study was to radiolabel MRK-16, a monoclonal antibody that targets an external epitope of P-glycoprotein, and perform in vivo quantitation of P-glycoprotein in a MDR xenograft nude mouse model. MRK-16 was labeled with {sup 125}I by the iodogen method, with subsequent purification by size exclusion chromatography. Groups of 10 Balb/c mice were each xenografted with colchicine-resistant or -sensitive neuroblastoma cell lines, respectively. Whole body clearance and tumor uptake over time was quantitated by gamma camera imaging, and biodistribution studies were performed with [{sup 125}]MRK-16 and an isotype matched control antibody, A33. Quantitative autoradiography and immunohistochemistry analysis of tumors was also evaluated to confirm specific targeting of [{sup 125}I]MRK-16. Peak tumor uptake was at 2-3 days post-injection, and was significantly greater in resistance compared to sensitive tumors (mean % injected dose/g {+-} SD) (18.76 {+-} 2.94 vs 10.93 {+-} 0.96; p < 0.05). Quantitative autoradiography verified these findings (19.13 {+-} 0.622 vs 12.08 {+-} 0.38, p < 0.05). Specific binding of [{sup 125}I]MRK-16 was confirmed by comparison to [{sup 131}I]A33 in biodistribution studies, and localized to cellular components of tissue stroma by comparison of histologic and autoradiographic sections of sensitive and resistant tumors. Immunoblot analysis demonstrated a 4.5-fold difference in P-glycoprotein expression between sensitive and resistant cell lines without colchicine selective pressure. We conclude that in vivo quantitation of P-glycoprotein in MDR tumors can be performed with [{sup 125}I]MRK-16. These findings suggest a potential clinical application for radiolabeled MRK-16 in the in vivo evaluation of multidrug resistance in tumors.

  2. Natural and Man-made Antibody Repertories for Antibody Discovery

    Directory of Open Access Journals (Sweden)

    Juan C eAlmagro

    2012-11-01

    Full Text Available Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of human, mice and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity and composition of a repertoire impact the antibody discovery process.

  3. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsieh WJ

    2012-06-01

    Full Text Available Wan-Ju Hsieh,1 Chan-Jung Liang,1 Jen-Jie Chieh,4 Shu-Huei Wang,1 I-Rue Lai,1 Jyh-Horng Chen,2 Fu-Hsiung Chang,3 Wei-Kung Tseng,4–6 Shieh-Yueh Yang,4 Chau-Chung Wu,7 Yuh-Lien Chen11Institute of Anatomy and Cell Biology, College of Medicine, 2Department of Electrical Engineering, 3Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan; 4Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan; 5Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Taipei, Taiwan; 6Department of Medical Imaging and Radiological Sciences, I-Shou University, Taipei, Taiwan; 7Department of Internal Medicine and Primary Care Medicine, National Taiwan University Hospital, Taipei, TaiwanBackground: Active targeting by specific antibodies combined with nanoparticles is a promising technology for cancer imaging and detection by magnetic resonance imaging (MRI. The aim of the present study is to investigate whether the systemic delivery of antivascular endothelial growth factor antibodies conjugating to the surface of functionalized supermagnetic iron oxide nanoparticles (anti-VEGF-NPs led to target-specific accumulation in the tumor.Methods: The VEGF expression in human colon cancer and in Balb/c mice bearing colon cancers was examined by immunohistochemistry. The distribution of these anti-VEGF-NPs particles or NPs particles were evaluated by MRI at days 1, 2, or 9 after the injection into the jugular vein of Balb/c mice bearing colon cancers. Tumor and normal tissues (liver, spleen, lung, and kidney were collected and were examined by Prussian blue staining to determine the presence and distribution of NPs in the tissue sections.Results: VEGF is highly expressed in human and mouse colon cancer tissues. MRI showed significant changes in the T*2 signal and T2 relaxation in the anti-VEGF-NP- injected-mice, but not in mice injected with NP alone. Examination of paraffin

  4. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  5. Preparation and Evaluation of 99mTc-labeled anti-CD11b Antibody Targeting Inflammatory Microenvironment for Colon Cancer Imaging.

    Science.gov (United States)

    Cheng, Dengfeng; Zou, Weihong; Li, Xiao; Xiu, Yan; Tan, Hui; Shi, Hongcheng; Yang, Xiangdong

    2015-06-01

    CD11b, an active constituent of innate immune response highly expressed in myeloid-derived suppressor cells (MDSCs), can be used as a marker of inflammatory microenvironment, particularly in tumor tissues. In this research, we aimed to fabricate a (99m)Tc-labeled anti-CD11b antibody as a probe for CD11b(+) myeloid cells in colon cancer imaging with single-photon emission computed tomography (SPECT). In situ murine colon tumor model was established in histidine decarboxylase knockout (Hdc(-/-)) mice by chemicals induction. (99m)Tc-labeled anti-CD11b was obtained with labeling yields of over 30% and radiochemical purity of over 95%. Micro-SPECT/CT scans were performed at 6 h post injection to investigate biodistributions and targeting of the probe. In situ colonic neoplasma as small as 3 mm diameters was clearly identified by imaging; after dissection of the animal, anti-CD11b immunofluorescence staining was performed to identify infiltration of CD11b+ MDSCs in microenvironment of colonic neoplasms. In addition, the images displayed intense signal from bone marrow and spleen, which indicated the origin and migration of CD11b(+) MDSCs in vivo, and these results were further proved by flow cytometry analysis. Therefore, (99m)Tc-labeled anti-CD11b SPECT displayed the potential to facilitate the diagnosis of colon tumor in very early stage via detection of inflammatory microenvironment. © 2014 John Wiley & Sons A/S.

  6. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  7. Sustained Virologic Response at 24 Weeks after the End of Treatment Is a Better Predictor for Treatment Outcome in Real-World HCV-Infected Patients Treated by HCV NS3/4A Protease Inhibitors with Peginterferon plus Ribavirin.

    Science.gov (United States)

    Kanda, Tatsuo; Nakamoto, Shingo; Sasaki, Reina; Nakamura, Masato; Yasui, Shin; Haga, Yuki; Ogasawara, Sadahisa; Tawada, Akinobu; Arai, Makoto; Mikami, Shigeru; Imazeki, Fumio; Yokosuka, Osamu

    2016-01-01

    Direct-acting antiviral agents against HCV with or without peginterferon plus ribavirin result in higher eradication rates of HCV and shorter treatment duration. We examined which is better for predicting persistent virologic response, the assessment of serum HCV RNA at 12 or 24 weeks after the end of treatment for predicting sustained virologic response (SVR12 or SVR24, respectively) in patients treated by HCV NS3/4A protease inhibitors with peginterferon plus ribavirin. In all, 149 Japanese patients infected with HCV genotype 1b treated by peginterferon plus ribavirin with telaprevir or simeprevir were retrospectively analyzed: 59 and 90 patients were treated with telaprevir- and simeprevir-including regimens, respectively. HCV RNA was measured by TaqMan HCV Test, version 2.0, real-time PCR assay. SVR12 or SVR24, respectively, was defined as HCV RNA negativity at 12 or 24 weeks after ending treatment. Total SVR rates were 78.0% and 66.7% in the telaprevir and simeprevir groups, respectively. In the telaprevir group, all 46 patients with SVR12 finally achieved SVR24. In the simeprevir group, 60 (93.8%) of the total 64 patients with SVR12 achieved SVR24, with the other 4 patients all being previous-treatment relapsers. SVR12 was suitable for predicting persistent virologic response in almost all cases. In simeprevir-including regimens, SVR12 could not always predict persistent virologic response. Clinicians should use SVR24 for predicting treatment outcome in the use of HCV NS3/4A protease inhibitors with peginterferon plus ribavirin for any group of real-world patients chronically infected with HCV.

  8. Bifunctional antibodies for radioimmunotherapy.

    Science.gov (United States)

    Chatal, J F; Faivre-Chauvet, A; Bardies, M; Peltier, P; Gautherot, E; Barbet, J

    1995-04-01

    In two-step targeting technique using bifunctional antibodies, a nonradiolabeled immunoconjugate with slow uptake kinetics (several days) is initially injected, followed by a small radiolabeled hapten with fast kinetics (several hours) that binds to the bispecific immunoconjugate already taken up by the tumor target. In patients with colorectal or medullary thyroid cancer, clinical studies performed with an anti-CEA/anti-DTPA-indium bifunctional antibody and an indium-111-labeled di-DTPA-TL bivalent hapten showed that tumor uptake was not modified compared to results for F(ab')2 fragments of the same anti-CEA antibody directly labeled with indium-111, whereas the radioactivity of normal tissues was significantly reduced (3- to 6-fold). The fast tumor uptake kinetics (several hours) and high or very high tumor-to-normal tissue ratios obtained with the bifunctional antibody technique are favorable parameters for efficient radioimmunotherapy.

  9. The value of gamma camera and computed tomography data set coregistration to assess Lewis Y antigen targeting in small cell lung cancer by 111Indium-labeled humanized monoclonal antibody 3S193

    International Nuclear Information System (INIS)

    Quaia, Emilio; Krug, Lee M.; Pandit-Taskar, Neeta; Nagel, Andrew; Reuter, Victor E.; Humm, John; Divgi, Chaitanya

    2008-01-01

    Aim: To assess the value of data set coregistration of gamma camera and computed tomography (CT) in the assessment of targeting of humanized monoclonal antibody 3S193 labeled with indium-111 ( 111 In-hu3S193) to small cell lung cancer (SCLC). Methods and materials: Ten patients (6 male and 4 female; mean age ± S.D., 60 ± 4 years), from an overall population of 20 patients with SCLCs expressing Lewis Y antigen at immunohistochemical analysis, completed a four weekly injections of 111 In-hu3S193 and underwent gamma camera imaging. All had had, as part of their baseline evaluation, Fluorine18 fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Two readers in consensus retrospectively coregistered the gamma camera images with the CT component of the FDG PET/CT by automatic or manual alignment. The resulting image sets were visually examined and SCLC lesions targeting at coregistered gamma camera and CT was correlated side-by-side with the 18 F-FDG uptake. Results: A total number of 31 lesions from SCLC with a thoracic (n = 13) or extrathoracic location (n = 18) were all positive on FDG PET/CT. Coregistration of the gamma camera to the CT demonstrated targeting of antibody to all lesions >2 cm (n = 20) and in a few lesions ≤2 cm (n = 2), with no visualization of most lesions ≤2 cm (n = 9). No 111 In-hu3S193 uptake in normal tissues was observed. Conclusion: Coregistration of antibody gamma camera imaging to FDG PET/CT is feasible and allows valuable assessment of 111 In-hu3S193 antibody targeting to SCLC lesions >2 cm, while lesions ≤2 cm reveal a limited targeting

  10. Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses.

    Science.gov (United States)

    Zurawski, Gerard; Shen, Xiaoying; Zurawski, Sandra; Tomaras, Georgia D; Montefiori, David C; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E; Kao, Shing-Fen; Yu, Xuesong; Sato, Alicia; Yates, Nicole L; LaBranche, Celia; Stanfield-Oakley, Sherry; Kibler, Karen; Jacobs, Bertram; Salazar, Andres; Self, Steve; Fulp, William; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Pantaleo, Giuseppe; Levy, Yves

    2017-05-01

    We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4 + and CD8 + T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1. IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens

  11. Targeting Alpha Toxin and ClfA with a Multimechanistic Monoclonal-Antibody-Based Approach for Prophylaxis of Serious Staphylococcus aureus Disease

    Directory of Open Access Journals (Sweden)

    C. Tkaczyk

    2016-06-01

    Full Text Available Staphylococcus aureus produces numerous virulence factors, each contributing different mechanisms to bacterial pathogenesis in a spectrum of diseases. Alpha toxin (AT, a cytolytic pore-forming toxin, plays a key role in skin and soft tissue infections and pneumonia, and a human anti-AT monoclonal antibody (MAb, MEDI4893*, has been shown to reduce disease severity in dermonecrosis and pneumonia infection models. However, interstrain diversity and the complex pathogenesis of S. aureus bloodstream infections suggests that MEDI4893* alone may not provide adequate protection against S. aureus sepsis. Clumping factor A (ClfA, a fibrinogen binding protein, is an important virulence factor facilitating S. aureus bloodstream infections. Herein, we report on the identification of a high-affinity anti-ClfA MAb, 11H10, that inhibits ClfA binding to fibrinogen, prevents bacterial agglutination in human plasma, and promotes opsonophagocytic bacterial killing (OPK. 11H10 prophylaxis reduced disease severity in a mouse bacteremia model and was dependent on Fc effector function and OPK. Additionally, prophylaxis with 11H10 in combination with MEDI4893* provided enhanced strain coverage in this model and increased survival compared to that obtained with the individual MAbs. The MAb combination also reduced disease severity in murine dermonecrosis and pneumonia models, with activity similar to that of MEDI4893* alone. These results indicate that an MAb combination targeting multiple virulence factors provides benefit over a single MAb neutralizing one virulence mechanism by providing improved efficacy, broader strain coverage, and protection against multiple infection pathologies.

  12. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  13. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies.

    Directory of Open Access Journals (Sweden)

    Benjamin A H Jensen

    Full Text Available It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of different tumors. In the present report, we have formally tested this hypothesis. Comparing the efficiency of combination antibody therapy against two antigenically distinct variants of the B16.F10 melanoma cell line, we observed that antibody therapy delayed the growth of a variant expressing an exogenous antigen (P<0.0001, while this treatment failed to protect against the non-transfected parental line (P = 0.1850 consistent with published observations. As both cell lines are poorly immunogenic in wild type mice, these observations suggested that the magnitude of the tumor targeting T-cell repertoire plays a major role in deciding the efficiency of this antibody treatment. To directly test this assumption, we made use of mice expressing the exogenous antigen as a self-antigen and therefore carrying a severely purged T-cell repertoire directed against the major tumor antigen. Notably, combination therapy completely failed to inhibit tumor growth in the latter mice (P = 0.8584. These results underscore the importance of a functionally intact T-cell population as a precondition for the efficiency of treatment with immunomodulatory antibodies. Clinically, the implication is that this type of antibody therapy should be attempted as an early form of tumor-specific immunotherapy before extensive exhaustion of the tumor-specific T-cell repertoire has occurred.

  14. The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-07-01

    Full Text Available Abstract Background Overexpression of the RON receptor tyrosine kinase contributes to epithelial cell transformation, malignant progression, and acquired drug resistance. RON also has been considered as a potential target for therapeutic intervention. This study determines biochemical features and inhibitory activity of a mouse monoclonal antibody (mAb Zt/f2 in experimental cancer therapy. Results Zt/f2 is a mouse IgG2a mAb that is highly specific and sensitive to human RON and its oncogenic variants such as RON160 (ED50 = 2.3 nmol/L. Receptor binding studies revealed that Zt/f2 interacts with an epitope(s located in a 49 amino acid sequence coded by exon 11 in the RON β-chain extracellular sequences. This sequence is critical in regulating RON maturation and phosphorylation. Zt/f2 did not compete with ligand macrophage-stimulating protein for binding to RON; however, its engagement effectively induced RON internalization, which diminishes RON expression and impairs downstream signaling activation. These biochemical features provide the cellular basis for the use of Zt/f2 to inhibit tumor growth in animal model. Repeated administration of Zt/f2 as a single agent into Balb/c mice results in partial inhibition of tumor growth caused by transformed NIH-3T3 cells expressing oncogenic RON160. Colon cancer HT-29 cell-mediated tumor growth in athymic nude mice also was attenuated following Zt/f2 treatment. In both cases, ~50% inhibition of tumor growth as measured by tumor volume was achieved. Moreover, Zt/f2 in combination with 5-fluorouracil showed an enhanced inhibition effect of ~80% on HT-29 cell-mediated tumor growth in vivo. Conclusions Zt/f2 is a potential therapeutic mAb capable of inhibiting RON-mediated oncogenesis by colon cancer cells in animal models. The inhibitory effect of Zt/f2 in vivo in combination with chemoagent 5-fluorouracil could represent a novel strategy for future colon cancer therapy.

  15. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans

    Science.gov (United States)

    Masure, Dries; Wang, Tao; Nejsum, Peter; Hokke, Cornelis H.; Geldhof, Peter

    2016-01-01

    Background The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Methodology/Principal Findings Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12) that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively) and specificity (95.5% and 90.0%) in pigs and humans, respectively. Conclusions/Significance These findings show the presence of a highly stage specific, glycolipid-like component (As12) that is actively secreted by infectious Ascaris larvae and which acts as a major antibody

  16. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Science.gov (United States)

    Vlaminck, Johnny; Masure, Dries; Wang, Tao; Nejsum, Peter; Hokke, Cornelis H; Geldhof, Peter

    2016-12-01

    The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12) that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively) and specificity (95.5% and 90.0%) in pigs and humans, respectively. These findings show the presence of a highly stage specific, glycolipid-like component (As12) that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  17. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Directory of Open Access Journals (Sweden)

    Johnny Vlaminck

    2016-12-01

    Full Text Available The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential.Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12 that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively and specificity (95.5% and 90.0% in pigs and humans, respectively.These findings show the presence of a highly stage specific, glycolipid-like component (As12 that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  18. A rapid immunization strategy with a live attenuated tetravalent dengue vaccine elicits protective neutralizing antibody responses in non-human primates

    Directory of Open Access Journals (Sweden)

    Yuping eAmbuel

    2014-06-01

    Full Text Available Dengue viruses (DENVs cause approximately 390 million cases of DENV infections annually and over 3 billion people worldwide are at risk of infection. No dengue vaccine is currently available nor is there an antiviral therapy for DENV infections. We have developed a tetravalent live-attenuated DENV vaccine (TDV that consists of a molecularly characterized attenuated DENV-2 strain (TDV-2 and three chimeric viruses containing the pre-membrane and envelope genes of DENV-1, -3 and -4 expressed in the context of the TDV-2 genome. To impact dengue vaccine delivery in endemic areas and immunize travelers, a simple and rapid immunization strategy (RIS is preferred. We investigated RIS consisting of two full vaccine doses being administered subcutaneously or intradermally on the initial vaccination visit (day 0 at two different anatomical locations with a needle-free disposable syringe jet injection (DSJI delivery devices (PharmaJet in non-human primates (NHP. This vaccination strategy resulted in efficient priming and induction of neutralizing antibody responses to all four DENV serotypes comparable to those elicited by the traditional prime and boost (two months later vaccination schedule. In addition, the vaccine induced CD4+ and CD8+ T cells producing IFN-γ, IL-2, and TNF-α, and targeting the DENV-2 NS1, NS3 and NS5 proteins. Moreover, vaccine-specific T cells were cross-reactive with the non-structural NS3 and NS5 proteins of DENV-4. When animals were challenged with DENV-2 they were protected with no detectable viremia, and exhibited sterilizing immunity (no increase of neutralizing titers post- challenge. RIS could decrease vaccination visits and provide quick immune response to all four DENV serotypes. This strategy could increase vaccination compliance and would be especially advantageous for travelers into endemic areas.

  19. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model.

    Science.gov (United States)

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages.

  20. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model.

    Directory of Open Access Journals (Sweden)

    Daniela Maisel

    Full Text Available CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP of the malignant cells by macrophages.

  1. Analysis of Naturally Occurring Resistance-Associated Variants to NS3/4A Protein Inhibitors, NS5A Protein Inhibitors, and NS5B Polymerase Inhibitors in Patients With Chronic Hepatitis C.

    Science.gov (United States)

    Sun, Danhui; Dai, Mingjia; Shen, Shanshan; Li, Chunyang; Yan, Xuebing

    2018-03-21

    The first NS3/4A hepatitis C virus (HCV) protease inhibitors telaprevir and boceprevir were approved in 2011, and both NS5A and NS5B polymerase inhibitors were launched. Recently, direct-acting antivirals (DAAs) have had a major impact on patients infected with HCV. HCV DAAs are highly effective antivirals with fewer side effects. DAAs have been developed for the treatment of HCV infection in combination with PEG-IFN-α/RBV as well as in IFN-free regimens. However, some drug resistance mutations occur when a single oral DAA is used for treatment, which indicates that there is a low-frequency drug resistance mutation in HCV patients before the application of antiviral drugs. Our research showed that natural resistance to HCV DAAs was found in treatment-naive CHC patients and that the drug resistance mutation rates differ in various HCV genotypes. Many challenges posed by natural resistance should be considered in the context of DAA therapies.

  2. Impact of HCV kinetics on treatment outcome differs by the type of real-time HCV assay in NS3/4A protease inhibitor-based triple therapy.

    Science.gov (United States)

    Ogawa, Eiichi; Furusyo, Norihiro; Murata, Masayuki; Hayashi, Takeo; Shimizu, Motohiro; Mukae, Haru; Toyoda, Kazuhiro; Hotta, Taeko; Uchiumi, Takeshi; Hayashi, Jun

    2016-02-01

    Repeated measurement of the HCV RNA level is essential for properly monitoring treatment efficacy. The aim of this study was to determine the utility of two HCV real-time assays in the evaluation of the impact of hepatitis C virus (HCV) kinetics on the outcome of triple therapy with NS3/4A protease inhibitors (PIs), telaprevir or simeprevir. This study consisted of 171 Japanese patients infected with HCV genotype 1. All 3266 serum samples taken during and post treatment were tested with both the COBAS AmpliPrep/COBAS TaqMan (CAP/CTM) HCV Test v2.0 and the Abbott RealTime (ART) HCV Test. Of the 2597 samples undetectable (lower limit of detection [HCV RNA by the CAP/CTM assay from the on and post treatment, 400 (15.4%) (369 detectable/less than the lower limitation of quantification [HCV RNA HCV RNA being once HCV RNA (detectable/HCV RNA after 12 weeks (without PI-treatment period). The superior ability to detect low-level HCV RNA by ART could be useful for predicting SVR by difficult-to-treat patients in the early period and relapse in the late period. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  4. Prospective Preliminary In Vitro Investigation of a Magnetic Iron Oxide Nanoparticle Conjugated with Ligand CD80 and VEGF Antibody As a Targeted Drug Delivery System for the Induction of Cell Death in Rodent Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Anne Marie Kay Kovach

    2016-10-01

    Full Text Available Target drug deliveries using nanotechnology are a novel consideration in the treatment of cancer. We present herein an in vitro mouse model for the preliminary investigation of the efficacy of an iron oxide nanoparticle complex conjugated to vascular endothelial growth factor (VEGF antibody and ligand cluster of differentiation 80 (CD80 for the purpose of eventual translational applications in the treatment of human osteosarcoma (OSA. The 35 nm diameter iron oxide magnetic nanoparticles are functionalized with an n-hydroxysuccinimide biocompatible coating and are conjugated on the surface to proteins VEGF antibody and ligand CD80. Combined, these proteins have the ability to target OSA cells and induce apoptosis. The proposed system was tested on a cancerous rodent osteoblast cell line (ATCCTMNPO CRL-2836 at four different concentrations (0.1, 1.0, 10.0, and 100.0 μg/mL of ligand CD80 alone, VEGF antibody alone, and a combination thereof (CD80+VEGF. Systems were implemented every 24 h over different sequential treatment timelines: 24, 48, and 72 h, to find the optimal protein concentration required for a reduction in cell proliferation. Results demonstrated that a combination of ligand CD80 and VEGF antibody was consistently most effective at reducing aberrant osteoblastic proliferation for both the 24- and 72-h timelines. At 48 h, however, an increase in cell proliferation was documented for the 0.1 and 1 μg/mL groups. For the 24- and 72-h tests, concentrations of 1.0 μg/mL of CD80+VEGF and 0.1 μg/mL of VEGF antibody were most effective. Concentrations of 10.0 and 100.0 μg/mL of CD80+VEGF reduced cell proliferation, but not as remarkably as the 1.0 μg/mL concentration. In addition, cell proliferation data showed that multiple treatments (72-h test induced cell death in the osteoblasts better than a single treatment. Future targeted drug delivery system research includes trials in OSA cell lines from greater phylum

  5. The prevalence of the pre-existing hepatitis C viral variants and the evolution of drug resistance in patients treated with the NS3-4a serine protease inhibitor telaprevir

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2008-01-01

    Telaprevir (VX-950), a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV genotype 1. Some patients experience viral breakthrough, which has been shown to be associated with emergence of telaprevir-resistant HCV variants during treatment. The exact mechanisms underlying the rapid selection of drug resistant viral variants during dosing are not fully understood. In this paper, we develop a two-strain model to study the pre-treatment prevalence of the mutant virus and derive an analytical solution of the mutant frequency after administration of the protease inhibitor. Our analysis suggests that the rapid increase of the mutant frequency during therapy is not due to mutant growth but rather due to the rapid and profound loss of wild-type virus, which uncovers the pre-existing mutant variants. We examine the effects of backward mutation and hepatocyte proliferation on the pre-existence of the mutant virus and the competition between wild-type and drug resistant virus during therapy. We then extend the simple model to a general model with multiple viral strains. Mutations during therapy do not play a significant role in the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Hepatocyte proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. The study provides a theoretical framework for exploring the prevalence of pre-existing mutant variants and the evolution of drug resistance during treatment with other protease inhibitors or HCV polymerase inhibitors.

  6. Complexes of Streptavidin-Fused Antigens with Biotinylated Antibodies Targeting Receptors on Dendritic Cell Surface: A Novel Tool for Induction of Specific T-Cell Immune Responses

    Czech Academy of Sciences Publication Activity Database

    Staněk, Ondřej; Linhartová, Irena; Majlessi, L.; Leclerc, C.; Šebo, Peter

    2012-01-01

    Roč. 51, č. 3 (2012), s. 221-232 ISSN 1073-6085 R&D Projects: GA AV ČR KAN200520702; GA ČR GA310/08/0447; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : Streptavidin * Antigen delivery * Biotinylated antibody Subject RIV: EE - Microbiology, Virology Impact factor: 2.262, year: 2012

  7. STRUKTUR PROTEOMIK VIRUS DENGUE DAN MANFAATNYA SEBAGAI TARGET ANTIVIRUS

    Directory of Open Access Journals (Sweden)

    Novia Rachmayanti

    2014-09-01

    Full Text Available AbstrakVirus dengue (DENV telah menyebabkan sekitar 50 juta kasus infeksi demam berdarah setiap tahunnya, akan tetapi hingga saat ini belum terdapat vaksin maupun antivirus yang mampu mencegah atau mengobati penyakit tersebut. Selama pengembangan vaksin dan antivirus, diperoleh berbagai informasi tentang struktur protein DENV yang dapat dimanfaatkan sebagai target obat. Makalah membahas tentang struktur proteomik pada DENV, yaitu glikoprotein pada envelope, NS3 protease, NS3 helikase, NS5 metiltransferase, dan NS5 RNA-dependent RNA polimerase.AbstractDengue virus (DENV has caused over 50 millions infection every year. However, to date neither vaccine nor medicine could be used to prevent or cure the illness. During researches in finding the vaccine or antiviral for DENV, information on DENV protein structure has been obtained which is potentially used as drug target. This paper disscuss DENV proteomic structure that consist of envelope glicoprotein, NS3 protease, NS3 helicase, NS5 methyl-transferase, and NS5 RNA-dependent RNA polymerase.

  8. Synthesis, characterization, and in vitro evaluation of targeted gold nanoshelled poly(d,l-lactide-co-glycolide) nanoparticles carrying anti p53 antibody as a theranostic agent for ultrasound contrast imaging and photothermal therapy.

    Science.gov (United States)

    Xu, Li; Wan, Caifeng; Du, Jing; Li, Hongli; Liu, Xuesong; Yang, Hong; Li, Fenghua

    2017-03-01

    Breast cancer is the leading cause of cancer-related deaths in women and earlier detection can substantially reduce deaths from breast cancer. Polymers with targeted ligands are widely used in the field of molecular ultrasound imaging and targeted tumor therapy. In our study, the nanotheranostic agent was fabricated through filling perfluoropropane (C 3 F 8 ) into poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NPs), followed by the formation of gold nanoshell on the surface, then conjugated with anti p53 antibody which has high specificity with the p53 protein overexpressing in breast cancer. The average diameter of the gold nanoshelled PLGA NPs carrying anti p53 antibody (p53-PLGA@Au NPs) was 247 ± 108.2 nm. The p53-PLGA@Au NPs had well-defined spherical morphology and hollow interiors observed by electron microscope, and had a good photothermal effect under the irradiation of an 808 nm laser. The results of laser scanning confocal microscope (LSCM) and flow cytometer (FCM) indicated the specific targeting of p53-PLGA@Au NPs conjugating with breast cancer MCF-7 cells overexpressing p53 protein in vitro. Also the ultrasound imaging experiments in vitro showed that p53-PLGA@Au NPs were suitable for ultrasound contrast imaging. In conclusion, the p53-PLGA@Au NPs are demonstrated to be novel targeted UCAs and may have potential applications in the early diagnosis and targeted near-infrared (NIR) photothermal therapy of breast cancer in the future.

  9. Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment.

    Science.gov (United States)

    Wu, Xueling; Zhou, Tongqing; O'Dell, Sijy; Wyatt, Richard T; Kwong, Peter D; Mascola, John R

    2009-11-01

    The region of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 that engages its primary cellular receptor CD4 forms a site of vulnerability to neutralizing antibodies. The monoclonal antibody b12 exploits the conservation and accessibility of the CD4-binding site to neutralize many, though not all, HIV-1 isolates. To understand the basis of viral resistance to b12, we used the atomic-level definition of b12-gp120 contact sites to study a panel of diverse circulating viruses. A combination of sequence analysis, computational modeling, and site-directed mutagenesis was used to determine the influence of amino acid variants on binding and neutralization by b12. We found that several substitutions within the dominant b12 contact surface, called the CD4-binding loop, mediated b12 resistance, and that these substitutions resided just proximal to the known CD4 contact surface. Hence, viruses varied in key b12 contact residues that are proximal to, but not part of, the CD4 contact surface. This explained how viral isolates were able to evade b12 neutralization while maintaining functional binding to CD4. In addition, some viruses were resistant to b12 despite minimal sequence variation at b12 contact sites. Such neutralization resistance usually could be reversed by alterations at residues thought to influence the quaternary configuration of the viral envelope spike. To design immunogens that elicit neutralizing antibodies directed to the CD4-binding site, researchers need to address the antigenic variation within this region of gp120 and the restricted access to the CD4-binding site imposed by the native configuration of the trimeric viral envelope spike.

  10. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bluetongue virus nonstructural protein NS3/NS3a is not essential for virus replication

    NARCIS (Netherlands)

    Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is

  12. Serine-stretch protein (SERP) of Plasmodium falciparum corresponds to the exoantigen Ag2, a target of antibodies associated with protection against malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hundt, E; Hansen, Morten Bagge

    1994-01-01

    A mixture of Plasmodium falciparum exoantigens inducing lymphocyte activation and cytokine production was shown to contain the malaria vaccine candidate, the serine-stretch protein. This protein was shown serologically to correspond to Ag2, an exoantigen recognized by antibodies linked...... with protection against malaria. The glycophorin-binding protein, the histidine-rich protein II, the S-antigen, the heat shock protein 70, the ring-infected erythrocyte surface antigen, and the apical membrane antigen-1 were also shown serologically to be present in the mixture of exoantigens....

  13. Ultrasonic Analysis of Peptide- and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of αvβ3-Expressing Cells

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2004-04-01

    Full Text Available The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. In this manuscript, three distinct contrast agents targeted to the αvβ3 integrin are examined. The αvβ3 integrin has been shown to be highly expressed on metastatic tumors and endothelial cells during neovascularization, and its expression has been shown to correlate with tumor grade. Specific adhesion of these contrast agents to αvβ3-expressing cell monolayers is demonstrated in vitro, and compared with that of nontargeted agents. Acoustic studies illustrate a backscatter amplitude increase from monolayers exposed to the targeted contrast agents of up to 13-fold (22 dB relative to enhancement due to control bubbles. A linear dependence between the echo amplitude and bubble concentration was observed for bound agents. The decorrelation of the echo from adherent targeted agents is observed over successive pulses as a function of acoustic pressure and bubble density. Frequency–domain analysis demonstrates that adherent targeted bubbles exhibit high-amplitude narrowband echo components, in contrast to the primarily wideband response from free microbubbles. Results suggest that adherent targeted contrast agents are differentiable from free-floating microbubbles, that targeted contrast agents provide higher sensitivity in the detection of angiogenesis, and that conventional ultrasound imaging techniques such as signal subtraction or decorrelation detection can be used to detect integrin-expressing vasculature with sufficient signal-to-noise.

  14. The future of antibodies as cancer drugs.

    Science.gov (United States)

    Reichert, Janice M; Dhimolea, Eugen

    2012-09-01

    Targeted therapeutics such as monoclonal antibodies (mAbs) have proven successful as cancer drugs. To profile products that could be marketed in the future, we examined the current commercial clinical pipeline of mAb candidates for cancer. Our analysis revealed trends toward development of a variety of noncanonical mAbs, including antibody-drug conjugates (ADCs), bispecific antibodies, engineered antibodies and antibody fragments and/or domains. We found substantial diversity in the antibody sequence source, isotype, carbohydrate residues, targets and mechanisms of action (MOA). Although well-validated targets, such as epidermal growth factor receptor (EGFR) and CD20, continue to provide opportunities for companies, we found notable trends toward targeting less-well-validated antigens and exploration of innovative MOA such as the generation of anticancer immune responses or recruitment of cytotoxic T cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Antibody-mediated targeting of antigen to C-type lectin-like receptors Clec9A and Clec12A elicits different vaccination outcomes.

    Science.gov (United States)

    Macri, Christophe; Dumont, Claire; Panozza, Scott; Lahoud, Mireille H; Caminschi, Irina; Villadangos, Jose A; Johnston, Angus P R; Mintern, Justine D

    2017-01-01

    Targeting antigen (Ag) to dendritic cell (DC) surface receptors is a potential new mode of vaccination. C-type lectin-like receptors Clec9A and Clec12A are attractive receptor targets however their targeting in vivo elicits significantly different outcomes for unknown reasons. To gain insight into the mechanisms responsible, we have examined the intrinsic capacity of Clec9A and Clec12A to elicit MHC I and MHC II Ag presentation following ex vivo targeting with primary murine DC. Both receptors exhibited high rates of internalization by CD8 + DCs, while Clec12A delivered a significantly higher Ag owing to its higher expression level. Targeting Ag to immature CD8 + DCs via both Clec9A and Clec12A failed to elicit MHC I cross-presentation above that of controls, while Clec12A was the superior receptor to target following CD8 + DC maturation. CD8 - DCs were unable to elicit MHC I cross-presentation regardless of the receptor targeted. For MHC II presentation, targeting Ag to Clec12A enabled significant responses by both immature CD8 + and CD8 - DCs, whereas Clec9A did not elicit significant MHC II Ag presentation by either DC subset, resting or mature. Therefore, Clec9A and Clec12A exhibit different intrinsic capacities to elicit MHC I and MHC II presentation following direct Ag targeting, though they can only elicit MHC I responses if the DC expressing the receptor is equipped with the capacity to cross-present. Our conclusions have consequences for the exploitation of these receptors for vaccination purposes, in addition to providing insight into their roles as Ag targets in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120.

    Science.gov (United States)

    Ponomarenko, Natalia A; Vorobiev, Ivan I; Alexandrova, Elena S; Reshetnyak, Andrew V; Telegin, Georgy B; Khaidukov, Sergey V; Avalle, Bérangère; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    We have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens. A dramatic increase of gp120 degradation level by purified polyclonal IgG from immunized versus nonimmunized mice has been demonstrated by a newly developed fluorescence-based assay. This activity was inhibited by anti-mouse immunoglobulin antibodies as well as by Ser- and His-reactive covalent inhibitors. A dominant proteolysis site in recombinant gp120 incubated with purified polyclonal IgG from immunized mice was shown by SDS-PAGE. The SELDI-based mass spectrometry revealed that these antibodies exhibited significant specificity toward the Pro484-Leu485 peptide bond. The sequence surrounding this site is present in nearly half of the HIV-I variants. This novel strategy can be generalized for creating a catalytic vaccine against viral pathogens.

  17. New blocking antibodies impede adhesion, migration and survival of ovarian cancer cells, highlighting MFGE8 as a potential therapeutic target of human ovarian carcinoma.

    Directory of Open Access Journals (Sweden)

    Lorenzo Tibaldi

    Full Text Available Milk Fat Globule--EGF--factor VIII (MFGE8, also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients.

  18. Development of novel anti-Kv 11.1 antibody-conjugated PEG-TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells

    Science.gov (United States)

    Sette, Angelica; Spadavecchia, Jolanda; Landoulsi, Jessem; Casale, Sandra; Haye, Bernard; Crociani, Olivia; Arcangeli, Annarosa

    2013-12-01

    Titanium dioxide (TiO2) has been widely used in many nanotechnology areas including nanomedicine, where it could be proposed for the photodynamic and sonodynamic cancer therapies. However, TiO2 nanoformulations have been shown to be toxic for living cells. In this article, we report the development of a new delivery system, based on nontoxic TiO2 nanoparticles, further conjugated with a monoclonal antibody against a novel and easily accessible tumor marker, e.g., the Kv 11.1 potassium channel. We synthesized, by simple solvothermal method, dicarboxylic acid-terminated PEG TiO2 nanocrystals (PEG-TiO2 NPs). Anti-Kv 11.1 monoclonal antibodies (Kv 11.1-Mab) were further linked to the terminal carboxylic acid groups. Proper conjugation was confirmed by X-ray photoelectron spectroscopy analysis. Kv 11.1-Mab-PEG-TiO2 NPs efficiently recognized the specific Kv 11.1 antigen, both in vitro and in pancreatic ductal adenocarcinoma (PDAC) cells, which express the Kv 11.1 channel onto the plasma membrane. Both PEG TiO2 and Kv 11.1-Mab-PEG-TiO2 NPs were not cytotoxic, but only Kv 11.1-Mab-PEG-TiO2 NPs were efficiently internalized into PDAC cells. Data gathered from this study may have further applications for the chemical design of nanostructures to be applied for therapeutic purposes in pancreatic cancer.

  19. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2015-12-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  20. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM.

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    Full Text Available The urokinase plasminogen activator receptor (uPAR plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268-275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM, a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.

  1. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.

    Science.gov (United States)

    Vaks, Lilach; Benhar, Itai

    2011-01-01

    The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.

  2. Antibody biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... and automated, the hybrid cells can be stored for many years in liquid nitrogen and antibodies production is homogeneous. The hybridoma method .... they may be modified to vehicle active molecules such as radio-isotopes, toxins, cytokines, enzyme etc. In these cases, the therapeutic effect is due to ...

  3. Catalytic Antibodies

    Indian Academy of Sciences (India)

    The ability of the highly evolved machinery of immune system to produce structurally and functionally complex ... to Pauling, if the structure of the antigen binding site of antibodies were to be produced in a random ..... where the immune system of the body is destructive, as in autoimmune disorders or after organ transplant.

  4. Catalytic Antibodies

    Indian Academy of Sciences (India)

    While chemistry provides the framework for understanding the structure and function of biomolecules, the immune sys- tem provides a highly evolved natural process to generate one class of complex biomolecules – the antibodies. A combination of the two could be exploited to generate new classes of molecules with novel ...

  5. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    Science.gov (United States)

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant. © 2015 John Wiley & Sons Ltd.

  6. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans

    DEFF Research Database (Denmark)

    Vlaminck, Johnny; Masure, Dries; Wang, Tao

    2016-01-01

    Background The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating...... larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Methodology/Principal Findings Pigs were immunized...... by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies...

  7. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy.

    Science.gov (United States)

    Goldenberg, David M; Sharkey, Robert M; Paganelli, Giovanni; Barbet, Jacques; Chatal, Jean-François

    2006-02-10

    This article reviews the methods of pretargeting, which involve separating the targeting antibody from the subsequent delivery of an imaging or therapeutic agent that binds to the tumor-localized antibody. This provides enhanced tumor:background ratios and the delivery of a higher therapeutic dose than when antibodies are directly conjugated with radionuclides, as currently practiced in cancer radioimmunotherapy. We describe initial promising clinical results using streptavidin-antibody constructs with biotin-radionuclide conjugates in the treatment of patients with malignant gliomas, and of bispecific antibodies with hapten-radionuclides in the therapy of tumors expressing carcinoembryonic antigen, such as medullary thyroid and small-cell lung cancers.

  8. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine

    2017-01-01

    model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.......A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non......-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly...

  9. Immunogenicity and In Vitro and In Vivo Protective Effects of Antibodies Targeting a Recombinant Form of the Streptococcus mutans P1 Surface Protein

    OpenAIRE

    Batista, Milene Tavares; Souza, Renata D.; Ferreira, Ewerton L.; Robinette, Rebekah; Crowley, Paula J.; Rodrigues, Juliana F.; Brady, L. Jeannine; Ferreira, Luís C. S.; Ferreira, Rita C. C.

    2014-01-01

    Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P139–512), produced in Bacillus subtilis and encompassing a functional dom...

  10. Construction of Rabbit Immune Antibody Libraries.

    Science.gov (United States)

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  11. Antibody Modeling and Structure Analysis. Application to biomedical problems.

    OpenAIRE

    Chailyan, Anna

    2013-01-01

    Background The usefulness of antibodies and antibody derived artificial constructs in various medical and biochemical applications has made them a prime target for protein engineering, modelling, and structure analysis. The huge number of known antibody sequences, that far outpaces the number of solved structures, raises the need for reliable automatic methods of antibody structure prediction. Antibodies have a very characteristic molecular structure that is reflected in their modelli...

  12. Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB.

    Science.gov (United States)

    Awoniyi, Dolapo O; Baumann, Ralf; Chegou, Novel N; Kriel, Belinda; Jacobs, Ruschca; Kidd, Martin; Loxton, Andre G; Kaempfer, Susanne; Singh, Mahavir; Walzl, Gerhard

    2017-06-06

    Immunoglobulin G (IgG) based tests for the diagnosis of active tuberculosis (TB) disease often show a lack of specificity in TB endemic regions, which is mainly due to a high background prevalence of LTBI. Here, we investigated the combined performance of the responses of different Ig classes to selected mycobacterial antigens in primary healthcare clinic attendees with signs and symptoms suggestive of TB. The sensitivity and specificity of IgA, IgG and/or IgM to LAM and 7 mycobacterial protein antigens (ESAT-6, Tpx, PstS1, AlaDH, MPT64, 16kDa and 19kDa) and 2 antigen combinations (TUB, TB-LTBI) in the plasma of 63 individuals who underwent diagnostic work-up for TB after presenting with symptoms and signs compatible with possible active TB were evaluated. Active TB was excluded in 42 individuals of whom 21 has LTBI whereas active TB was confirmed in 21 patients of whom 19 had a follow-up blood draw at the end of 6-month anti-TB treatment. The leading single serodiagnostic markers to differentiate between the presence or absence of active TB were anti-16 kDa IgA, anti-MPT64 IgA with sensitivity and specificity of 90%/90% and 95%/90%, respectively. The combined use of 3 or 4 antibodies further improved this performance to accuracies above 95%. After successful completion of anti-TB treatment at month 6, the levels of 16 kDa IgA and 16 kDa IgM dropped significantly whereas LAM IgG and TB-LTBI IgG increased. These results show the potential of extending investigation of anti-tuberculous IgG responses to include IgM and IgA responses against selected protein and non-protein antigens in differentiating active TB from other respiratory diseases in TB endemic settings.

  13. Human CD4+ T cells lyse target cells via granzyme/perforin upon circumvention of MHC class II restriction by an antibody-like immunoreceptor.

    Science.gov (United States)

    Hombach, Andreas; Köhler, Heike; Rappl, Gunter; Abken, Hinrich

    2006-10-15

    Immune elimination of tumor cells requires the close cooperation between CD8+ CTL and CD4+ Th cells. We circumvent MHC class II-restriction of CD4+ T cells by expression of a recombinant immunoreceptor with an Ab-derived binding domain redirecting specificity. Human CD4+ T cells grafted with an immunoreceptor specific for carcinoembryonic Ag (CEA) are activated to proliferate and secrete cytokines upon binding to CEA+ target cells. Notably, redirected CD4+ T cells mediate cytolysis of CEA+ tumor cells with high efficiencies. Lysis by redirected CD4+ T cells is independent of death receptor signaling via TNF-alpha or Fas, but mediated by perforin and granzyme because cytolysis is inhibited by blocking the release of cytotoxic granules, but not by blocking of Fas ligand or TNF-alpha. CD4+ T cells redirected by Ab-derived immunoreceptors in a MHC class II-independent fashion substantially extend the power of an adoptive, Ag-triggered immunotherapy not only by CD4+ T cell help, but also by cytolytic effector functions. Because cytolysis is predominantly mediated via granzyme/perforin, target cells that are resistant to death receptor signaling become sensitive to a cytolytic attack by engineered CD4+ T cells.

  14. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells

    International Nuclear Information System (INIS)

    Bergman, Ira; Whitaker-Dowling, Patricia; Gao Yanhua; Griffin, Judith A.; Watkins, Simon C.

    2003-01-01

    Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. It is an oncolytic virus that is safe in humans. Recombinant virus can be made directly from plasmid components. We attempted to create a virus that targeted specifically to breast cancer cells. Nonreplicating and replicating pseudotype VSV were created whose only surface glycoprotein (gp) was a Sindbis gp, called Sindbis-ZZ, modified to severely reduce its native binding function and to contain the Fc-binding domain of Staphylococcus aureus protein A. When titered on Her2/neu overexpressing SKBR3 human breast cancer cells, pseudotype VSV coated with Sindbis-ZZ had 5 /ml. This work demonstrates the ability to easily create, directly from plasmid components, an oncolytic replicating VSV with a restricted host cell range

  15. Polymer cancerostatics targeted with an antibody fragment bound via a coiled coil motif: in vivo therapeutic efficacy against murine BCL1 leukemia

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2018-01-01

    Roč. 18, č. 1 (2018), s. 1-11, č. článku 1700173. ISSN 1616-5187 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MZd(CZ) NV16-28594A; GA ČR(CZ) GA16-17207S; GA ČR GA13-12885S Institutional support: RVO:61389013 ; RVO:68378050 ; RVO:61388971 Keywords : cancer therapy * coiled coil * drug targeting Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UMG-J); EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Polymer science (UMG-J); Microbiology (MBU-M) Impact factor: 3.238, year: 2016

  16. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study.

    Science.gov (United States)

    Doi, Toshihiko; Shitara, Kohei; Naito, Yoichi; Shimomura, Akihiko; Fujiwara, Yasuhiro; Yonemori, Kan; Shimizu, Chikako; Shimoi, Tatsunori; Kuboki, Yasutoshi; Matsubara, Nobuaki; Kitano, Atsuko; Jikoh, Takahiro; Lee, Caleb; Fujisaki, Yoshihiko; Ogitani, Yusuke; Yver, Antoine; Tamura, Kenji

    2017-11-01

    Antibody-drug conjugates have emerged as a powerful strategy in cancer therapy and combine the ability of monoclonal antibodies to specifically target tumour cells with the highly potent killing activity of drugs with payloads too toxic for systemic administration. Trastuzumab deruxtecan (also known as DS-8201) is an antibody-drug conjugate comprised of a humanised antibody against HER2, a novel enzyme-cleavable linker, and a topoisomerase I inhibitor payload. We assessed its safety and tolerability in patients with advanced breast and gastric or gastro-oesophageal tumours. This was an open-label, dose-escalation phase 1 trial done at two study sites in Japan. Eligible patients were at least 20 years old with breast or gastric or gastro-oesophageal carcinomas refractory to standard therapy regardless of HER2 status. Participants received initial intravenous doses of trastuzumab deruxtecan from 0·8 to 8·0 mg/kg and dose-limiting toxicities were assessed over a 21-day cycle; thereafter, dose reductions were implemented as needed and patients were treated once every 3 weeks until they had unacceptable toxic effects or their disease progressed. Primary endpoints included identification of safety and the maximum tolerated dose or recommended phase 2 dosing and were analysed in all participants who received at least one dose of study drug. The dose-escalation study is the first part of a two-part study with the second dose-expansion part ongoing and enrolling patients as of July 8, 2017, in Japan and the USA. This trial is registered at ClinicalTrials.gov, number NCT02564900. Between Aug 28, 2015, and Aug 26, 2016, 24 patients were enrolled and received trastuzumab deruxtecan (n=3 for each of 0·8, 1·6, 3·2, and 8·0 mg/kg doses; n=6 for each of 5·4 and 6·4 mg/kg). Up to the study cutoff date of Feb 1, 2017, no dose-limiting toxic effects, substantial cardiovascular toxic effects, or deaths occurred. One patient was removed from the activity analysis because they

  17. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Andrew V Oleinikov

    2009-04-01

    Full Text Available Plasmodium falciparum-infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLbetaC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLbetaC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2betaC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2betaC2(PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLbetaC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLbetaC2 domain. DBL2betaC2(PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2betaC2(PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.

  18. Safety and Clinical Activity of a Combination Therapy Comprising Two Antibody-Based Targeting Agents for the Treatment of Non-Hodgkin Lymphoma: Results of a Phase I/II Study Evaluating the Immunoconjugate Inotuzumab Ozogamicin With Rituximab

    Science.gov (United States)

    Fayad, Luis; Offner, Fritz; Smith, Mitchell R.; Verhoef, Gregor; Johnson, Peter; Kaufman, Jonathan L.; Rohatiner, Ama; Advani, Anjali; Foran, James; Hess, Georg; Coiffier, Bertrand; Czuczman, Myron; Giné, Eva; Durrant, Simon; Kneissl, Michelle; Luu, Kenneth T.; Hua, Steven Y.; Boni, Joseph; Vandendries, Erik; Dang, Nam H.

    2013-01-01

    Purpose Inotuzumab ozogamicin (INO) is an antibody-targeted chemotherapy agent composed of a humanized anti-CD22 antibody conjugated to calicheamicin, a potent cytotoxic agent. We performed a phase I/II study to determine the maximum-tolerated dose (MTD), safety, efficacy, and pharmacokinetics of INO plus rituximab (R-INO) for treatment of relapsed/refractory CD20+/CD22+ B-cell non-Hodgkin lymphoma (NHL). Patients and Methods A dose-escalation phase to determine the MTD of R-INO was followed by an expanded cohort to further evaluate the efficacy and safety at the MTD. Patients with relapsed follicular lymphoma (FL), relapsed diffuse large B-cell lymphoma (DLBCL), or refractory aggressive NHL received R-INO every 4 weeks for up to eight cycles. Results In all, 118 patients received one or more cycles of R-INO (median, four cycles). Most common grade 3 to 4 adverse events were thrombocytopenia (31%) and neutropenia (22%). Common low-grade toxicities included hyperbilirubinemia (25%) and increased AST (36%). The MTD of INO in combination with rituximab (375 mg/m2) was confirmed to be the same as that for single-agent INO (1.8 mg/m2). Treatment at the MTD yielded objective response rates of 87%, 74%, and 20% for relapsed FL (n = 39), relapsed DLBCL (n = 42), and refractory aggressive NHL (n = 30), respectively. The 2-year progression-free survival (PFS) rate was 68% (median, not reached) for FL and 42% (median, 17.1 months) for relapsed DLBCL. Conclusion R-INO demonstrated high response rates and long PFS in patients with relapsed FL or DLBCL. This and the manageable toxicity profile suggest that R-INO may be a promising option for CD20+/CD22+ B-cell NHL. PMID:23295790

  19. VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Fushida S

    2013-10-01

    Full Text Available Sachio Fushida, Katsunobu Oyama, Jun Kinoshita, Yasumichi Yagi, Kouichi Okamoto, Hidehiro Tajima, Itasu Ninomiya, Takashi Fujimura, Tetsuo OhtaDepartment of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, JapanBackground: In gastric cancer, poor prognosis is associated with peritoneal dissemination, which often accompanies malignant ascites. We searched for a target molecule in peritoneal metastasis and investigated its clinical utility as a biomarker.Methods: Biopsy specimens from both primary lesions and peritoneal metastasis, and if possible, malignant ascites, were obtained from 40 patients with gastric cancer. Vascular endothelial growth factor (VEGF expression was analyzed by immunohistochemical staining and enzyme-linked immunosorbent assay.Results: VEGF expression was seen in 70% of peritoneal samples. Of the 40 patients, 35 had malignant ascites. These 35 patients were divided into two groups: 15 with ascites found beyond the pelvic cavity (large group and 20 whose ascites were within the pelvic cavity (small group. The two groups did not significantly differ by serum VEGF levels, but ascites VEGF levels in the large group were significantly higher than in the small group (P < 0.0001. Serum VEGF and ascites VEGF levels were highly correlated in the large group (r = 0.686. A high ascites VEGF level was found to be a risk factor for survival (P = 0.045. We include a report of a patient with chemoresistant refractory gastric cancer and symptomatic ascites who obtained 8 months of palliation from systemic bevacizumab.Conclusion: Anti-VEGF therapies are promising, and the ascites VEGF level is an important marker in managing patients with gastric cancer and peritoneal metastasis.Keywords: vascular endothelial growth factor, malignant ascites, peritoneal metastasis, gastric cancer, bevacizumab

  20. Induction of broadly neutralising HCV antibodies in mice by integration-deficient lentiviral vector-based pseudotyped particles.

    Directory of Open Access Journals (Sweden)

    Yao Deng

    Full Text Available INTRODUCTION: Integration-deficient lentiviral vectors (IDLVs are a promising platform for immunisation to elicit both humoral immunity and cellular mediated immunity (CMI. Here, we compared the specific immunity in mice immunised via different regimens (homologous and cocktail with IDLV-based HCV pseudoparticles (HCVpps carrying pseudotyped glycoproteins E1E2 and bearing the HCV NS3 gene. Humoral and cell-mediated immune responses were also evaluated after IDLV-HCVpp immunisation combined with heterologous rAd5-CE1E2 priming protocols. Sera from the mice effectively elicited anti-E1, -E2, and -NS3 antibody responses, and neutralised various HCVpp subtypes (1a, 1b, 2a, 3a and 5a. No significant CMI was detected in the groups immunised with IDLV-based HCVpps. In contrast, the combination of rAd5-CE1E2 priming and IDLV-based HCVpp boosting induced significant CMI against multiple antigens (E1, E2, and NS3. CONCLUSION: IDLV-based HCVpps are a promising vaccination platform and the combination of rAd5-CE1E2 and IDLV-based HCVpp prime-boost strategy should be further explored for the development of a cross-protective HCV vaccine.

  1. Peptide-Based Vaccinology: Experimental and Computational Approaches to Target Hypervariable Viruses through the Fine Characterization of Protective Epitopes Recognized by Monoclonal Antibodies and the Identification of T-Cell-Activating Peptides

    Directory of Open Access Journals (Sweden)

    Matteo Castelli

    2013-01-01

    Full Text Available Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization of monoclonal antibodies (mAbs, still represents the best approach to identify protective epitopes. In particular, a protective mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing. Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.

  2. Antibody-Directed Phototherapy (ADP

    Directory of Open Access Journals (Sweden)

    M. Adil Butt

    2013-04-01

    Full Text Available Photodynamic therapy (PDT is a clinically-approved but rather under-exploited treatment modality for cancer and pre-cancerous superficial lesions. It utilises a cold laser or LED to activate a photochemical reaction between a light activated drug (photosensitiser-drug and oxygen to generate cytotoxic oxygen species. These free radical species damage cellular components leading to cell death. Despite its benefits, the complexity, limited potency and side effects of PDT have led to poor general usage. However, the research area is very active with an increasing understanding of PDT-related cell biology, photophysics and significant progress in molecular targeting of disease. Monoclonal antibody therapy is maturing and the next wave of antibody therapies includes antibody-drug conjugates (ADCs, which promise to be more potent and curable. These developments could lift antibody-directed phototherapy (ADP to success. ADP promises to increase specificity and potency and improve drug pharmacokinetics, thus delivering better PDT drugs whilst retaining its other benefits. Whole antibody conjugates with first generation ADP-drugs displayed problems with aggregation, poor pharmacokinetics and loss of immuno-reactivity. However, these early ADP-drugs still showed improved selectivity and potency. Improved PS-drug chemistry and a variety of conjugation strategies have led to improved ADP-drugs with retained antibody and PS-drug function. More recently, recombinant antibody fragments have been used to deliver ADP-drugs with superior drug loading, more favourable pharmacokinetics, enhanced potency and target cell selectivity. These improvements offer a promise of better quality PDT drugs.

  3. Immunotherapy with GD2 specific monoclonal antibodies

    International Nuclear Information System (INIS)

    Cheung, N.K.V.; Medof, E.M.; Munn, D.

    1988-01-01

    Targeted immunotherapy focuses anti-tumor activity of antibodies and effector cells, which are actively developed by the host or adoptively transferred, onto tumor cells and into tumor sites. Such tumor selective therapy can be more specific and efficient. The value of such an approach is evident in the classical interaction of antibodies. This paper reports that the ganglioside G D2 is an ideal antigen for specific tumor targeting because of its relative lack of heterogeneity among human neuroblastoma, its high density on tumor cells, its lack of antigen modulation upon binding to antibody, and its restricted distribution in normal tissues

  4. Therapeutic Antibodies against Intracellular Tumor Antigens

    Directory of Open Access Journals (Sweden)

    Iva Trenevska

    2017-08-01

    Full Text Available Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8–10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I molecules. These tumor-associated peptide–MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm or T-cell receptor (TCR-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.

  5. Differential Targeting of Viral Components by CD4+ versus CD8+ T Lymphocytes in Dengue Virus Infection

    Science.gov (United States)

    Kumaran, Emmanuelle A. P.; Jovanovic, Vojislav; Nadua, Karen; Teo, En Wei; Pang, Shyue Wei; Teo, Guo Hui; Gan, Victor Chih Hao; Lye, David C.; Leo, Yee Sin; Hanson, Brendon J.; Smith, Kenneth G. C.; Bertoletti, Antonio; Kemeny, David M.; MacAry, Paul A.

    2013-01-01

    Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection. PMID:23255803

  6. Antibody-targeted thrombus imaging and thrombolysis

    International Nuclear Information System (INIS)

    Wu Guoxin; Ruan Changgeng

    1993-05-01

    In respect of thrombus imaging, the femoral arterial or venous thrombus model was prepared in dogs and imaged with single photon emission computerized tomography (SPECT). After 4 hours of injection of 131 I-SZ-51 the radioactivity ratio between thrombus and blood (T/B) was 18 : 1 and 8 : 1 for arterial and venous thrombus respectively. The result conformed with the T/B ratio of the removed thrombus and blood after 24 hours of injection of radiotracer. It indicates that the McAb SZ-51 has a great potential to bind with thrombus. In respect of thrombolysis, the Fab(fragment, antigen-binding) fragment of McAb SZ-51 was chemically conjugated of urokinase (UK) by the disulfide-linking reagent SPDP and 2-iminothiolane. The resulting conjugate was 3 to 5 times as potent as UK in vitro in human platelet-rich plasma assay. The increase of fibrinolytic potency was accompanied by a decrease of consumption of plasminogen and fibrinogen. It shows that the increase of potency is the result of selectivity increase

  7. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients

    Science.gov (United States)

    Higgs, Brandon W; Zhu, Wei; Morehouse, Chris; White, Wendy I; Brohawn, Philip; Guo, Xiang; Rebelatto, Marlon; Le, Chenxiong; Amato, Anthony; Fiorentino, David; Greenberg, Steven A; Drappa, Jorn; Richman, Laura; Greth, Warren; Jallal, Bahija; Yao, Yihong

    2014-01-01

    Objective To assess the pharmacodynamic effects of sifalimumab, an investigational anti-IFN-α monoclonal antibody, in the blood and muscle of adult dermatomyositis and polymyositis patients by measuring neutralisation of a type I IFN gene signature (IFNGS) following drug exposure. Methods A phase 1b randomised, double-blinded, placebo controlled, dose-escalation, multicentre clinical trial was conducted to evaluate sifalimumab in dermatomyositis or polymyositis patients. Blood and muscle biopsies were procured before and after sifalimumab administration. Selected proteins were measured in patient serum with a multiplex assay, in the muscle using immunohistochemistry, and transcripts were profiled with microarray and quantitative reverse transcriptase PCR assays. A 13-gene IFNGS was used to measure the pharmacological effect of sifalimumab. Results The IFNGS was suppressed by a median of 53–66% across three time points (days 28, 56 and 98) in blood (p=0.019) and 47% at day 98 in muscle specimens post-sifalimumab administration. Both IFN-inducible transcripts and proteins were prevalently suppressed following sifalimumab administration. Patients with 15% or greater improvement from baseline manual muscle testing scores showed greater neutralisation of the IFNGS than patients with less than 15% improvement in both blood and muscle. Pathway/functional analysis of transcripts suppressed by sifalimumab showed that leucocyte infiltration, antigen presentation and immunoglobulin categories were most suppressed by sifalimumab and highly correlated with IFNGS neutralisation in muscle. Conclusions Sifalimumab suppressed the IFNGS in blood and muscle tissue in myositis patients, consistent with this molecule's mechanism of action with a positive correlative trend between target neutralisation and clinical improvement. These observations will require confirmation in a larger trial powered to evaluate efficacy. PMID:23434567

  8. Antiphospholipid antibody: laboratory, pathogenesis and clinical manifestations

    Directory of Open Access Journals (Sweden)

    T. Ziglioli

    2011-06-01

    Full Text Available Antiphospholipid antibodies (aPL represent a heterogeneous group of antibodies that recognize various antigenic targets including beta2 glycoprotein I (β2GPI, prothrombin (PT, activated protein C, tissue plasminogen activator, plasmin and annexin A2. The most commonly used tests to detect aPL are: lupus anticoagulant (LAC, a functional coagulation assay, anticardiolipin antibody (aCL and anti-β2GPI antibody (anti-β2GPI, which are enzyme-linked immunoassay (ELISA. Clinically aPL are associated with thrombosis and/or with pregnancy morbidity. Apparently aPL alone are unable to induce thrombotic manifestations, but they increase the risk of vascular events that can occur in the presence of another thrombophilic condition; on the other hand obstetrical manifestations were shown to be associated not only to thrombosis but mainly to a direct antibody effect on the trophoblast.

  9. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. HIV antibodies for treatment of HIV infection.

    Science.gov (United States)

    Margolis, David M; Koup, Richard A; Ferrari, Guido

    2017-01-01

    The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However, antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Furthermore, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small-molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. HIV antibodies for treatment of HIV infection

    Science.gov (United States)

    Margolis, David M.; Koup, Richard A.; Ferrari, Guido

    2016-01-01

    Summary The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Further, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. PMID:28133794

  12. Radioimmunotherapy with Tenarad, a {sup 131}I-labelled antibody fragment targeting the extra-domain A1 of tenascin-C, in patients with refractory Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Aloj, Luigi [Istituto Nazionale Tumori ' ' Fondazione G. Pascale' ' - IRCCS, Struttura Complessa di Medicina Nucleare, Napoli (Italy); D' Ambrosio, Laura; Aurilio, Michela; Morisco, Anna; Caraco' , Corradina; Di Gennaro, Francesca; Lastoria, Secondo [Istituto Nazionale Tumori ' ' Fondazione G. Pascale' ' - IRCCS, Struttura Complessa Medicina Nucleare, Napoli (Italy); Frigeri, Ferdinando; Capobianco, Gaetana; Pinto, Antonio [Istituto Nazionale Tumori ' ' Fondazione G. Pascale' ' - IRCCS, Struttura Complessa di Ematologia Oncologica, Napoli (Italy); Giovannoni, Leonardo; Menssen, Hans D. [Philogen, SpA, Siena (Italy); Neri, Dario [Institute of Pharmaceutical Sciences, ETH, Zurich (Switzerland)

    2014-05-15

    The extra-domain A1 of tenascin-C (TC-A1) is highly expressed in the extracellular matrix of tumours and on newly formed blood vessels and is thus a valuable target for radionuclide therapy. Tenarad is a fully human miniantibody or small immunoprotein (SIP, molecular weight 80 kDa) labelled with {sup 131}I that is derived from a TC-A1-binding antibody. Previous phase I/II studies with a similar compound ({sup 131}I-L19SIP) used for radioimmunotherapy (RIT) have shown preliminary efficacy in a variety of cancer types. In this ongoing phase I/II trial, Tenarad was administered to patients with recurrent Hodgkin's lymphoma (HL) refractory to conventional treatments. Eight patients (four men, four women; age range 19 - 41) were enrolled between April 2010 and March 2011. All patients had received a median of three previous lines of chemotherapy (range three to six) and seven had also undergone autologous stem cell transplantation (ASCT) or bone marrow transplantation. In addition, seven patients received external beam radiation. All patients had nodal disease, constitutional B symptoms and some showed extranodal disease in skeletal bone (four patients), lung (three), liver (two) and spleen (one). Baseline assessments included whole-body FDG PET with contrast-enhanced CT and diagnostic Tenarad planar and SPECT studies. Patients were considered eligible to receive a therapeutic dose of Tenarad (2.05 GBq/m{sup 2}) if tumour uptake was more than four times higher than that of muscle. All patients were eligible and received the therapeutic dose of Tenarad. Only one patient developed grade 4 thrombocytopenia and leucocytopenia, requiring hospitalization and therapeutic intervention. All other patients had haematological toxicity of grade 3 or lower, which resolved spontaneously. At the first response assessment (4 - 6 weeks after therapy), one patient showed a complete response, one showed a partial response (PR) and five had disease stabilization (SD). Five patients

  13. Acetylcholine receptor antibody

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  14. Platelet antibodies blood test

    Science.gov (United States)

    This blood test shows if you have antibodies against platelets in your blood. Platelets are a part of the blood ... Chernecky CC, Berger BJ. Platelet antibody - blood. In: Chernecky ... caused by platelet destruction, hypersplenism, or hemodilution. ...

  15. A double-sandwich ELISA for identification of monoclonal antibodies suitable for sandwich immunoassays

    Science.gov (United States)

    The sandwich immunoassay (sIA) is an invaluable technique for concentrating, detecting, and quantifying target antigens. The two critical components required are a capture antibody and a detection antibody, each binding a different epitope on the target antigen. The specific antibodies incorporated...

  16. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    -selective immobilization of antibodies in designed cavities in 2D and 3D DNA origami structures. Two tris(NTA) modified strands are inserted into the cavity to form NTA-metal complexes with histidine clusters on the Fc domain. Subsequent covalent linkage to the antibody was achieved by coupling to lysines. Atomic force...... microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  17. Discovery of (1R,5S)-N-[3-Amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a Selective, Potent, Orally Bioavailable Hepatitis C Virus NS3 Protease Inhibitor: A Potential Therapeutic Agent for the Treatment of Hepatitis C Infection

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, Srikanth; Bogen, Stephane L.; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond; Hendrata, Siska; Huang, Yuhua; Pan, Weidong; Parekh, Tejal; Pinto, Patrick; Popov, Veljko; Pike, Russel; Ruan, Sumei; Santhanam, Bama; Vibulbhan, Bancha; Wu, Wanli; Yang, Weiying; Kong, Jianshe; Liang, Xiang; Wong, Jesse; Liu, Rong; Butkiewicz, Nancy; Chase, Robert; Hart, Andrea; Agrawal, Sony; Ingravallo, Paul; Pichardo, John; Kong, Rong; Baroudy, Bahige; Malcolm, Bruce; Guo, Zhuyan; Prongay, Andrew; Madison, Vincent; Broske, Lisa; Cui, Xiaoming; Cheng, Kuo-Chi; Hsieh, Yunsheng; Brisson, Jean-Marc; Prelusky, Danial; Korfmacher, Walter; White, Ronald; Bogdanowich-Knipp, Susan; Pavlovsky, Anastasia; Bradley, Prudence; Saksena, Anil K.; Ganguly, Ashit; Piwinski, John; Girijavallabhan, Viyyoor; Njoroge, F. George (SPRI)

    2008-06-30

    Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-{alpha} or polyethylene glycol (PEG)-interferon-{alpha} alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.

  18. Scaling NS-3 DCE Experiments on Multi-Core Servers

    Science.gov (United States)

    2016-06-15

    access data that is resident in another core’s cache , for example a variable that is shared between threads, a cache coherency protocol comes into...play to ensure a consistent view of the data across the cores. This is sometimes called a ccNUMA ( cache - coherent NUMA) architecture, though the cc...prefix is often omitted because nearly all modern NUMA architectures incorporate cache coherency . 4. DCE OBSERVATIONS This section describes our

  19. Disaggregation of amyloid plaque in brain of Alzheimer's disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide.

    Science.gov (United States)

    Sumbria, Rachita K; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2013-09-03

    Anti-amyloid antibodies (AAA) are under development as new therapeutics that disaggregate the amyloid plaque in brain in Alzheimer's disease (AD). However, the AAAs are large molecule drugs that do not cross the blood-brain barrier (BBB), in the absence of BBB disruption. In the present study, an AAA was re-engineered for receptor-mediated transport across the BBB via the endogenous BBB transferrin receptor (TfR). A single chain Fv (ScFv) antibody form of an AAA was fused to the carboxyl terminus of each heavy chain of a chimeric monoclonal antibody (mAb) against the mouse TfR, and this produced a tetravalent bispecific antibody designated the cTfRMAb-ScFv fusion protein. Unlike a conventional AAA, which has a plasma half-time of weeks, the cTfRMAb-ScFv fusion protein is cleared from plasma in mice with a mean residence time of about 3 h. Therefore, a novel protocol was developed for the treatment of one year old presenilin (PS)-1/amyloid precursor protein (APP) AD double transgenic PSAPP mice, which were administered daily subcutaneous (sc) injections of 5 mg/kg of the cTfRMAb-ScFv fusion protein for 12 consecutive weeks. At the end of the treatment, brain amyloid plaques were quantified with confocal microscopy using both Thioflavin-S staining and immunostaining with the 6E10 antibody against Abeta amyloid fibrils. Fusion protein treatment caused a 57% and 61% reduction in amyloid plaque in the cortex and hippocampus, respectively. No increase in plasma immunoreactive Abeta amyloid peptide, and no cerebral microhemorrhage, was observed. Chronic daily sc treatment of the mice with the fusion protein caused no immune reactions and only a low titer antidrug antibody response. In conclusion, re-engineering AAAs for receptor-mediated BBB transport allows for reduction in brain amyloid plaque without cerebral microhemorrhage following daily sc treatment for 12 weeks.

  20. Monoclonal antibodies and cancer

    International Nuclear Information System (INIS)

    Haisma, H.J.

    1987-01-01

    The usefulness of radiolabeled monoclonal antibodies for imaging and treatment of human (ovarian) cancer was investigated. A review of tumor imaging with monoclonal antibodies is presented. Special attention is given to factors that influence the localization of the antibodies in tumors, isotope choice and methods of radiolabeling of the monoclonal antibodies. Two monoclonal antibodies, OC125 and OV-TL3, with high specificity for human epithelial ovarian cancer are characterized. A simple radio-iodination technique was developed for clinical application of the monoclonal antibodies. The behavior of monoclonal antibodies in human tumor xenograft systems and in man are described. Imaging of tumors is complicated because of high background levels of radioactivity in other sites than the tumor, especially in the bloodpool. A technique was developed to improve imaging of human tumor xenographs in nude mice, using subtraction of a specific and a non-specific antibody, radiolabeled with 111 In, 67 Ga and 131 I. To investigate the capability of the two monoclonal antibodies, to specifically localize in human ovarian carcinomas, distribution studies in mice bearing human ovarian carcinoma xenografts were performed. One of the antibodies, OC125, was used for distribution studies in ovarian cancer patients. OC125 was used because of availability and approval to use this antibody in patients. The same antibody was used to investigate the usefulness of radioimmunoimaging in ovarian cancer patients. The interaction of injected radiolabeled antibody OC125 with circulating antigen and an assay to measure the antibody response in ovarian cancer patients after injection of the antibody is described. 265 refs.; 30 figs.; 19 tabs

  1. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells

    NARCIS (Netherlands)

    D.D. Drabek (Dubravka); R. Janssens (Rick); Boer, E. (Ernie de); Rademaker, R. (Rik); Kloess, J. (Johannes); J.J. Skehel (John ); Grosveld, F. (Frank)

    2016-01-01

    textabstractSeveral technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and

  2. Radiolabeled antibody imaging

    International Nuclear Information System (INIS)

    Wahl, R.L.

    1987-01-01

    Radiolabeled antibodies, in particular monoclonal antibodies, offer the potential for the specific nuclear imaging of malignant and benign diseases in man. If this imaging potential is realized, they may also have a large role in cancer treatment. This paper reviews: (1) what monoclonal antibodies are and how they differ from polyclonal antibodies, (2) how they are produced and radiolabeled, (3) the results of preclinical and clinical trials in cancer imaging, including the utility of SPECT and antibody fragments, (4) the role of antibodies in the diagnosis of benign diseases, (5) alternate routes of antibody delivery, (6) the role of these agents in therapy, and (7) whether this technology ''revolutionizes'' the practice of nuclear radiology, or has a more limited complementary role in the imaging department

  3. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech; Pedersen, Sara Ram; Christensen, Jan Pravsgaard

    2013-01-01

    It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of dif...

  4. Targeted immunotherapy in Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin

    2015-01-01

    In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13.......In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13....

  5. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: What have we learned?

    OpenAIRE

    Deng, Rong; Iyer, Suhasini; Theil, Frank-Peter; Mortensen, Deborah L; Fielder, Paul J; Prabhu, Saileta