WorldWideScience

Sample records for antibody inhibits angiogenesis

  1. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Powers David

    2007-11-01

    Full Text Available Abstract Background Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin α5β1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200, inhibits endothelial cell growth and movement in vitro, independent of the growth factor milieu, and inhibits tumor growth in vivo in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine α5β1, precluding its use in standard mouse xenograft models. Methods We generated a panel of rat-anti-mouse α5β1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for α5β1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis in vitro. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models. Results A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin α5β1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC50 = 5.3 nM. In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40–60% (p Conclusion The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-α5β1

  2. Effect of Low Molecular Weight Heparins (LMWHs on antiphospholipid Antibodies (aPL-mediated inhibition of endometrial angiogenesis.

    Directory of Open Access Journals (Sweden)

    Silvia D'Ippolito

    Full Text Available Antiphospholipid syndrome (APS is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity in the presence of circulating antiphospholipid antibodies (aPL. Different pathogenic mechanisms for aPL-mediated pregnancy failure have been proposed. In particular a direct effect of aPL on both maternal and fetal side of the placental tissue has been reported, since their reactivity with β2-glycoprotein I (β2GPI makes them adhere to trophoblast and human endometrial endothelial cell (HEEC membranes. β2GPI can be recognized by aPL that, once bound, interfere with both trophoblast functions and with the HEEC differentiation.APS patients can be successfully treated with Low Molecular Weight Heparin (LMWH. Recent reports suggest that LMWH acts through mechanisms alternative to its well known anticoagulant effect, because of its ability to bind β2GPI. In our previous studies, we showed that LMWH is able to reduce the aPL binding to trophoblasts and restore cell invasiveness and differentiation. So far, however, no study has described its effects on endometrial angiogenesis.The aim of our research was to evaluate whether two LMWHs, tinzaparin and enoxaparin, have an effect on the aPL-inhibited endometrial angiogenesis. This prompted us to investigate: (i in vitro HEEC angiogenesis through a Matrigel assay; (ii VEGF secretion by ELISA; (iii matrix metalloproteinase-2 (MMP-2 activity by gelatin zymography; (iv Nuclear Factor-κB (NF-κB DNA binding activity by colorimetric assay; (v STAT-3 activation by a sandwich-ELISA kit. Furthermore, using an in vivo murine model we investigated the LMWHs effects on angiogenesis.We demonstrated that the addition of LMWHs prevents aPL-inhibited HEEC angiogenesis, both in vitro and in vivo, and is able to restore the aPL inhibited NF-κB and/or STAT-3 activity, the VEGF secretion and the MMPs activity.The demonstration of a beneficial role for LMWHs on the aPL-inhibited HEEC angiogenesis

  3. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains.

    Science.gov (United States)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis.

  4. Curcumin inhibition of angiogenesis and adipogenesis

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Adipokines produced by fat cells stimulate this process. Some dietary polyphenols with antiangiogenic activity may suppress adipose tissue growth not only by inhibiting angiogenesis, but also by interferin...

  5. An IP-10 (CXCL10-derived peptide inhibits angiogenesis.

    Directory of Open Access Journals (Sweden)

    Cecelia C Yates-Binder

    Full Text Available Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3 and, activation by its ligand IP-10 (CXCL10, both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.

  6. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  7. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  8. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression.

    Directory of Open Access Journals (Sweden)

    Matthew E Hardee

    Full Text Available BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an

  9. Liposomal targeting of glucocorticoids to inhibit tumor angiogenesis

    NARCIS (Netherlands)

    Banciu, M.

    2007-01-01

    Glucocorticoids (GC) have inhibitory actions on solid tumor growth due to suppressive effects on tumor angiogenesis and inflammation. When evaluating the preclinical studies on solid tumor growth inhibition, it appears that GC-induced antitumor effects are achieved by using substantially higher dose

  10. Angiogenesis Inhibition in Prostate Cancer: Current Uses and Future Promises

    Directory of Open Access Journals (Sweden)

    Jeanny B. Aragon-Ching

    2010-01-01

    Full Text Available Angiogenesis has been well recognized as a fundamental part of a multistep process in the evolution of cancer progression, invasion, and metastasis. Strategies for inhibiting angiogenesis have been one of the most robust fields of cancer investigation, focusing on the vascular endothelial growth factor (VEGF family and its receptors. There are numerous regulatory drug approvals to date for the use of these agents in treating a variety of solid tumors. While therapeutic efficacy has been established, challenges remain with regards to overcoming resistance and assessing response to antiangiogenic therapies. Prostate cancer is the most common noncutaneous malignancy among American men and angiogenesis plays a role in disease progression. The use of antiangiogenesis agents in prostate cancer has been promising and is hereby explored.

  11. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  12. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    OpenAIRE

    Donatella Del Bufalo; Daniela Trisciuoglio; Marco Scarsella; Giulia D'Amati; Antonio Candiloro; Angela Iervolino; Carlo Leonetti; Gabriella Zupi

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  13. Antimyeloma effects of resveratrol through inhibition of angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HU Yu; SUN Chun-yan; HUANG Jing; HONG Liu; ZHANG Lu; CHU Zhang-bo

    2007-01-01

    Background In multiple myeloma (MM), bone marrow angiogenesis parallels tumour progression and correlates with disease activity. Recent studies have proved resveratrol possesses antiangiogenic activity in vitro and in vivo. In this study, we examined the effects of resveratrol on myeloma cell dependent angiogenesis and the effects of resveratrol on some important angiogenic factors of RPMI 8226 cells.Methods RPMI 8226 cells were cocultured with human umbilical vein endothelial cells (HUVECs) to evaluate the effects of myeloma cells on angiogenesis. The RPMI 8226 cells were treated with various concentrations of resveratrol (6.25-50.00 μmol/L) for different times (12-72 hours). Reverse transcriptase polymerase chain reaction (RT-PCR) was used to assay vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), metalloproteinases (MMP)-2 and MMP-9 mRNA. Gelatin zymography was used to analyze MMP-2 and MMP-9 activity. VEGF and bFGF proteins secreted by the cells in the medium were quantified by enzyme linked immunosorbent assay (ELISA).Results Cell proliferation, migration and differentiation of HUVECs markedly increased by coculture with RPMI 8226 cells. Resveratrol inhibited proliferation, migration and tube formation of HUVECs cocultured with myeloma cells in a dose dependent manner. Treatment of RPMI 8226 cells with resveratrol caused a decrease in MMP-2 and MMP-9 activity.Resveratrol inhibited VEGF and bFGF protein expression in a dose and time dependent manner. Furthermore,decreased levels of VEGF, bFGF, MMP-2 and MMP-9 mRNA from cells treated with various concentrations of resveratrol confirmed its antiangiogenic action at the level of gene expression.Conclusions Resveratrol inhibits multiple myeloma angiogenesis by regulating expression and secretion of VEGF,bFGF, MMP-2 and MMP-9. Resveratrol may be a potential candidate for the treatment of multiple myeloma.

  14. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  15. Selective PKCalpha inhibition uncouples platelet angiogenesis promotion from collagen-induced aggregation

    OpenAIRE

    Radomski, Marek

    2013-01-01

    Platelets promote angiogenesis by releasing angiogenesis-regulating factors from their α-granules upon aggregation. This effect has both physiologic and pathologic significance as it may contribute to carcinogenesis. Platelet α-granule release and aggregation are regulated, in part, via protein kinase C (PKC) α and β signaling. Our study investigated the effects of PKC inhibition on aggregation, angiogenesis-regulator secretion from α-granules, and platelet-stimulated angiogenesis. We hypothe...

  16. Identification of colorectal cancer metastasis markers by an angiogenesis-related cytokine-antibody array

    OpenAIRE

    Abajo, A.; Bitarte, N; Zarate, R; Boni, V; Lopez, I; Gonzalez-Huarriz, M. (Marisol); Rodriguez, J.; Bandres, E; Garcia-Foncillas, J.

    2012-01-01

    AIM: To investigate the angiogenesis-related protein expression profile characterizing metastatic colorectal cancer (mCRC) with the aim of identifying prognostic markers. METHODS: The expression of 44 angiogenesis-secreted factors was measured by a novel cytokine antibody array methodology. The study evaluated vascular endothelial growth factor (VEGF) and its soluble vascular endothelial growth factor receptor (sVEGFR)-1 protein levels by enzyme immunoassay (EIA) in a panel of 16 CRC...

  17. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  18. Recombinant Mouse Canstatin Inhibits Chicken Embryo Chorioallantoic Membrane Angiogenesis and Endothelial Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong HOU; Tian-Yun WANG; Bao-Mei YUAN; Yu-Rong CHAI; Yan-Long JIA; Fang TIAN; Jian-Min WANG; Le-Xun XUE

    2004-01-01

    Human canstatin, a 24 kD fragment of the α2 chain of type Ⅳ collagen, has been proved to be one of the most effective inhibitors of angiogenesis and tumor growth. To investigate in vivo antiangiogenesis activity and in vitro effects on endothelial cell proliferation of recombinant mouse canstatin, the cDNA of mouse canstatin was introduced into an expression vector pQE40 to construct a prokaryotic expression vector pQE-mCan. The recombinant mouse canstatin efficiently expressed in E. coli M 15 after IPTG induction was monitored by SDS-PAGE and by Western blotting with an anti-hexahistidine tag antibody. The expressed mouse canstatin, mainly as inclusion bodies, accounted for approximately 35% of the total bacterial proteins. The inclusion bodies were washed, lysed and purified by the nickel affinity chromatography to a purity of approximately 93%. The refolded mouse canstatin was tested on the chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. In addition, recombinant mouse canstatin potently inhibited endothelial cell proliferation with no inhibition on non-endothelial cells. Taken together, these findings demonstrate that the recombinant mouse canstatin effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells.

  19. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    Science.gov (United States)

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  20. Antisense angiopoietin-1 inhibits tumorigenesis and angiogenesis of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Kai-Chun Wu; De-Xin Zhang; Dai-Ming Fan

    2006-01-01

    AIM: To investigate the effect of angiopoietin-1 (Ang-1)on biological behaviors in vitro and tumorigenesis and angiogenesis in vitro of human gastric cancer cells.METHODS: Human full-length Ang-1 gene was cloned from human placental tissues by RT-PCR method.Recombinant human Ang-1 antisense eukaryotic expression vector was constructed by directional cloning,and transfected by lipofectin method into human gastric cancer line SGC7901 with high Ang-1 expression level.Inhibition efficiency was confirmed by semi- quantitive PCR and Western blot method. Cell growth curve and cell cycle were observed with MTT assays and flow cytometry, respectively. Nude mice tumorigenicity test was employed to compare in vitro tumorigenesis of cells with Ang-1 suppression. Microvessel density (MVD) of implanted tumor tissues was analyzed by immunohistochemistry for factor Ⅷ staining.RESULTS: Full-length Ang-1 gene was successfully cloned and stable transfectants were established,namely 7Ang1- for antisense, and 7901P for empty vector transfected. 7Ang1- cells showed down-regulated Ang-1 expression, while its in vitro proliferation and cell cycle distribution were not significantly changed.In contrast, xenograft of 7Ang1- cells in nude mice had lower volume and weight than those of 7901P after 30 days' implantation (P<0.01, 293.00±95.54 mg vs. 624.00±77.78 mg) accompanied with less vessel formation with MVD 6.00±1.73 compared to 7901P group 8.44±1.33 (P<0.01).CONCLUSION: Ang-1 may play an important role in tumorigenesis and angiogenesis of gastric cancer, and targeting its expression may be beneficial for the therapy of gastric cancer.

  1. Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Weipeng Bian; Fei Chen; Ling Bai; Ping Zhang; Wenxin Qin

    2008-01-01

    Dihydrotanshinone I (DI),a naturally occurring compound extracted from Salvia miltiorrhiza Bunge,has been reported to have cytotoxicity to a variety of tumor cells.In this study,we investigated its anti-angiogenic capacity in human umbilical vein endothelial cells.DI induced a potent cytotoxicity to human umbilical vein endothelial cells,with an IC50 value of approximately 1.28 μg/ml.At 0.25.1 μg/ml,DI dose-dependently suppressed human umbilical vein endothelial cell migration,invasion,and tube formation detected by wound healing,Transwell invasion and Matrigel tube formation assays,respectively.Moreover,DI showed significant in vivo anti-angiogenic activity in chick embryo chorioallantoic membrane assay.DI induced a 61.1% inhibitory rate of microvessel density at 0.2 μg/egg.Taken together,our results showed that DI could inhibit angiogenesis through suppressing endothelial cell proliferation,migration,invasion and tube formation,indicating that DI has a potential to be developed as a novel anti-angiogenic agent.

  2. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  3. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  4. Inhibition of Breast Cancer Metastasis and Angiogenesis by Antiosteopontin Single-Chain Fv-Fc Fusion Protein

    Directory of Open Access Journals (Sweden)

    Ling Peng

    2009-05-01

    Full Text Available Osteopontin (OPN is associated with many diseases, and its role in tumor growth and metastasis has been studied in breast cancers. Previous studies have described anti-OPN antibodies that could inhibit tumor cell adhesion and invasion in vitro, but until now, there are no systematic studies on antitumor effects of anti-OPN antibodies in vivo. In the present study, we have raised several anti-OPN single-chain variable fragments from phage antibody library and expressed them as single-chain variable fragment-constant region fragment fusion proteins in Chinese hamster ovary cells. Of them, two antibodies (1A12 and 2H8 were able to inhibit MDA-MB-435s breast cancer cell attachment, invasion, migration, and colony formation in soft agar. Furthermore, 1A12 and 2H8 inhibited the anti-apoptotic and prosurvival functions of OPN in human umbilical vein endothelial cell. In human umbilical vein endothelial cell capillary tube formation, chicken chorioallantoic membrane assay, and rabbit corneal micropocket assay, the two antibodies showed markedly inhibitory effects toward angiogenesis. We investigated antitumor effects of anti-OPN antibodies in nude mice by assessing xenograft tumor growth and lung metastasis potential. The results showed that the two antibodies were capable of delaying primary tumor growth and reducing spontaneous lung metastasis. Epitope mappings of these two anti-OPN antibodies were performed, and a new binding site of 1A12 was revealed. In summary, the present study has demonstrated the roles of anti-OPN antibodies in blocking the function of OPN, suggesting that they may have the potential to be developed for future clinical use.

  5. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2.

    Science.gov (United States)

    Spratlin, Jennifer

    2011-04-01

    Angiogenesis, a well-recognized characteristic of malignancy, has been exploited more than any other pathway targeted by biologic anti-neoplastic therapies. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the critical receptor involved in malignant angiogenesis with its activation inducing a number of other cellular modifications resulting in tumor growth and metastases. Ramucirumab (IMC-1121B; ImClone Systems Corporation, Branchburg, NJ) is a fully human monoclonal antibody developed to specifically inhibit VEGFR-2. Ramucirumab is currently being investigated in multiple clinical trials across a variety of tumor types. Herein, angiogenesis inhibition in cancer is reviewed and up-to-date information on the clinical development of ramucirumab is presented.

  6. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    Science.gov (United States)

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  7. The axonal repellent Slit2 inhibits pericyte migration: potential implications in angiogenesis.

    Science.gov (United States)

    Guijarro-Muñoz, I; Cuesta, A M; Alvarez-Cienfuegos, A; Geng, J G; Alvarez-Vallina, L; Sanz, L

    2012-02-15

    The Slit family of secreted proteins acts through the Roundabout (Robo) receptors to repel axonal migration during central nervous system development. Emerging evidence shows that Slit/Robo interactions also play a role in angiogenesis. The effect of Robo signaling on endothelial cells has been shown to be context-dependent. However, the role of Slit/Robo in pericytes has been largely unexplored. The aim of this study was to determine the effect of Slit2 on primary human pericytes and to address the underlying mechanisms, including the receptors potentially implicated. We demonstrate that both Robo1 and Robo4 are expressed by human pericytes. In the presence of their ligand Slit2, spontaneous and PDGF-induced migration of pericytes was impaired. This antimigratory activity of Slit-2 correlated with the inhibition of actin-based protrusive structures. Interestingly, human pericyte interaction with immobilized Slit2 was inhibited in the presence of anti-Robo1 and anti-Robo4 blocking antibodies, suggesting the implication of both receptors. These results add new insights into the role of Slit proteins during the angiogenic process that relies on the directional migration not only of endothelial cells but also of pericytes.

  8. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  9. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Science.gov (United States)

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  10. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4.

    Science.gov (United States)

    Li, Yi-Ze; Wen, Lei; Wei, Xu; Wang, Qian-Rong; Xu, Long-Wen; Zhang, Hong-Mei; Liu, Wen-Chao

    2016-09-01

    Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors. PMID:27431648

  11. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis.

  12. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    Science.gov (United States)

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers. PMID:25776491

  13. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  14. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats.

    Science.gov (United States)

    Gao, Jin-Hang; Wen, Shi-Lei; Feng, Shi; Yang, Wen-Juan; Lu, Yao-Yao; Tong, Huan; Liu, Rui; Tang, Shi-Hang; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Xie, Hui-Qi; Tang, Cheng-Wei

    2016-10-01

    Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)-hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK-HIF-1α-VEGF signaling pathway. PMID:27380212

  15. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  16. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    International Nuclear Information System (INIS)

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future

  17. Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Shen, Aling; Cai, Qiaoyan; Xu, Wei; Li, Huang; Zhan, Youzhi; Hong, Zhenfeng; Peng, Jun

    2013-02-01

    Sonic hedgehog (SHH) signaling pathway promotes the process of angiogenesis, contributing to the growth and progression of many human malignancies including colorectal cancer (CRC), which therefore has become a promising target for cancer chemotherapy. Hedyotis diffusa Willd (HDW), as a well-known traditional Chinese herbal medicine, has long been used in China for the clinic treatment of various cancers. Recently, we reported that HDW can inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. In addition, we demonstrated the anti-angiogenic activity of HDW in vitro. To further elucidate the mechanism of the tumoricidal activity of HDW, by using a CRC mouse xenograft model we evaluated the in vivo effect of the ethanol extract of HDW (EEHDW) on tumor angiogenesis, and investigated the underlying molecular mechanisms. We found that EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of antitumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2. Taken together, we propose for the first time that Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of SHH-mediated tumor angiogenesis. PMID:23291612

  18. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling.

    Science.gov (United States)

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.

  19. PPAR-γ Activation Inhibits Angiogenesis by Blocking ELR+CXC Chemokine Production in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Venkateshwar G. Keshamouni

    2005-03-01

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPAR-γ results in inhibition of tumor growth in various types of cancers, but the mechanism(s by which PPAR-γ induces growth arrest has not been completely defined. In a recent study, we demonstrated that treatment of A549 (human non small cell lung cancer cell line tumor-bearing SCID mice with PPAR-γ ligands troglitazone (Tro and pioglitazone significantly inhibits primary tumor growth. In this study, immunohistochemical analysis of Tro-treated and Pio-treated tumors with factor VIII antibody revealed a significant reduction in blood vessel density compared to tumors in control animals, suggesting inhibition of angiogenesis. Further analysis showed that treatment of A549 cells in vitro with Tro or transient transfection of A549 cells with constitutively active PPAR-γ (VP16-PPAR-γ construct blocked the production of the angiogenic ELR +CXC chemokines IL-8 (CXCL8, ENA-78 (CXCL5, Gro-α (CXCL1. Similarly, an inhibitor of NF-ΚB activation (PDTC also blocked CXCL8, CXCL5, CXCL1 production, consistent with their NF-ΚB-dependent regulation. Conditioned media from A549 cells induce human microvascular endothelial cell (HMVEC chemotaxis. However, conditioned media from Tro-treated A549 cells induced significantly less HMVEC chemotaxis compared to untreated A549 cells. Furthermore, PPAR-γ activation inhibited NF-ΚB transcriptional activity, as assessed by TransAM reporter gene assay. Collectively, our data suggest that PPAR-γ ligands can inhibit tumor-associated angiogenesis by blocking the production of ELR+CXC chemokines, which is mediated through antagonizing NF-ΚB activation. These antiangiogenic effects likely contribute to the inhibition of primary tumor growth by PPAR-γ ligands.

  20. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  1. Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma

    OpenAIRE

    Dasari, Venkata Ramesh; Kaur, Kiranpreet; Velpula, Kiran Kumar; Dinh, Dzung H.; Andrew J Tsung; Mohanam, Sanjeeva; Rao, Jasti S.

    2010-01-01

    Angiogenesis involves the formation of new blood vessels by rerouting or remodeling existing ones and is believed to be the primary method of vessel formation in gliomas. To study the mechanisms by which angiogenesis of glioma cells can be inhibited by human umbilical cord blood stem cells (hUCBSC), we studied two glioma cell lines (SNB19, U251) and a glioma xenograft cell line (5310) alone and in co-culture with hUCBSC. Conditioned media from co-cultures of glioma cells with hUCBSC showed re...

  2. Cytochalasin D, a tropical fungal metabolite, inhibits CT26 tumor growth and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Feng-Ying Huang; Yue-Nan Li; Wen-Li Mei; Hao-Fu Dai; Peng Zhou; Guang-Hong Tan

    2012-01-01

    Objective:To investigate whether cytochalasin D can induce antitumor activities in a tumor model.Methods: Murine CT26 colorectal carcinoma cells were culturedin vitro and cytochalasin D was used as a cytotoxic agent to detect its capabilities of inhibitingCT26 cell proliferation and inducing cell apoptosis by MTT and aTUNEL-based apoptosis assay. MurineCT26 tumor model was established to observe the tumor growth and survival time. Tumor tissues were used to detect the microvessel density by immunohistochemistry. In addition, alginate encapsulated tumor cell assay was used to quantify the tumor angiogenesis in vivo.Results: Cytochalasin D inhibited CT26 tumor cell proliferation in time and dose dependent manner and induced significantCT26 cell apoptosis, which almost reached the level induced by the positive control nuclease. The optimum effective dose of cytochalasinD for in vivo therapy was about50 mg/kg. CytochalasinD in vivotreatment significantly inhibited tumor growth and prolonged the survival times inCT26 tumor-bearing mice. The results of immunohistochemistry analysis and alginate encapsulation assay indicated that the cytochalasinD could effectively inhibited tumor angiogenesis. Conclusions:Cytochalasin D inhibitsCT26 tumor growth potentially through inhibition of cell proliferation, induction of cell apoptosis and suppression of tumor angiogenesis.

  3. KR-31831, benzopyran derivative, inhibits VEGF-induced angiogenesis of HUVECs through suppressing KDR expression.

    Science.gov (United States)

    Park, Shi-Young; Seo, Eun-Hee; Song, Hyun Seok; Jung, Seung-Youn; Lee, Young-Kyoung; Yi, Kyu-Yang; Yoo, Sung-Eun; Kim, Yung-Jin

    2008-06-01

    Angiogenesis is important in the development and progression of cancer, therefore the therapeutic approach based on anti-angiogenesis may represent a promising therapeutic option. KR-31831 is a novel anti-ischemic agent. Previously, we reported the anti-angiogenic activity of KR-31831. In the present study we investigated the molecular mechanisms underlying anti-angiogenic activity of KR-31831. We show that KR-31831 inhibits vascular endothelial growth factor (VEGF)-induced proliferation and tube formation via release of intracellular Ca2+ and phosphorylation of extra-cellular regulated kinase 1/2 (Erk 1/2) in human umbilical vein endothelial cells (HUVECs). Moreover, the expression of VEGF receptor 2 (VEGFR2, known as Flk-1 or KDR) was reduced by the treatment of KR-31831. These results suggest that KR-31831 may have inhibitory effects on tumor angiogenesis through down-regulation of KDR expression.

  4. Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development.

    Science.gov (United States)

    Chouinard-Pelletier, Guillaume; Jahnsen, Espen D; Jones, Elizabeth A V

    2013-01-01

    Vascular development is believed to occur first by vasculogenesis followed by angiogenesis. Though angiogenesis is the formation of new vessels, we found that vascular density actually decreases during this second stage. The onset of the decrease coincided with the entry of erythroblasts into circulation. We therefore measured the level of shear stress at various developmental stages and found that it was inversely proportional to vascular density. To investigate whether shear stress was inhibitory to angiogenesis, we altered shear stress levels either by preventing erythroblasts from entering circulation ("low" shear stress) or by injection of a starch solution to increase the blood plasma viscosity ("high" shear stress). By time-lapse microscopy, we show that reverse intussusception (merging of two vessels) is inversely proportional to the level of shear stress. We also found that angiogenesis (both sprouting and splitting) was inversely proportional to shear stress levels. These effects were specific to the arterial or venous plexus however, such that the effect on reverse intussusception was present only in the arterial plexus and the effect on sprouting only in the venous plexus. We cultured embryos under altered shear stress in the presence of either DAPT, a Notch inhibitor, or DMH1, an inhibitor of the bone morphogenetic protein (BMP) pathway. DAPT treatment phenocopied the inhibition of erythroblast circulation ("low" shear stress) and the effect of DAPT treatment could be partially rescued by injection of starch. Inhibition of the BMP signaling prevented the reduction in vascular density that was observed when starch was injected to increase shear stress levels.

  5. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma

    OpenAIRE

    J. Hu; Dong, A.; Fernandez-Ruiz, V. (Verónica); Shan, J.; Kawa, M. (Milosz); Martinez-Anso, E. (Eduardo); J. Prieto; Qian, C

    2009-01-01

    Aberrant activation of Wnt signaling plays an important role in hepatocarcinogenesis. In addition to direct effects on tumor cells, Wnt signaling might be involved in the organization of tumor microenvironment. In this study, we have explored whether Wnt signaling blockade by exogenous expression of Wnt antagonists could inhibit tumor angiogenesis and control tumor growth. Human Wnt inhibitory factor 1 (WIF1) and secreted frizzled-related protein 1 (sFRP1) were each fused with Fc fragment of ...

  6. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis

    OpenAIRE

    Cuiling Qi; Bin Li; Yang Yang; Yongxia Yang; Jialin Li; Qin Zhou; Yinxin Wen; Cuiling Zeng; Lingyun Zheng; Qianqian Zhang; Jiangchao Li; Xiaodong He; Jia Zhou; Chunkui Shao; Lijing Wang

    2016-01-01

    Drug repurposing of non-cancer drugs represents an attractive approach to develop new cancer therapy. Using the TRAMP transgenic mouse model, glipizide, a widely used drug for type 2 diabetes mellitus, has been identified to suppress prostate cancer (PC) growth and metastasis. Angiogenesis is intimately associated with various human cancer developments. Intriguingly, glipizide significantly reduces microvessel density in PC tumor tissues, while not inhibiting prostate cancer cell proliferatio...

  7. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    OpenAIRE

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; d'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  8. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Takayama, Yusuke; Hattori, Noboru; Hamada, Hironobu; Masuda, Takeshi; Omori, Keitaro; Akita, Shin; Iwamoto, Hiroshi; Fujitaka, Kazunori; Kohno, Nobuoki

    2016-06-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor that secretes various angiogenic factors. The main inhibitor of plasminogen activators, PAI-1 (SERPINE1), has been implicated in tumor progression and angiogenesis, and high PAI-1 expression has been associated with poor prognosis in MPM patients. In this study, we examined the antiangiogenic effects of PAI-1 inhibition in MPM. We administered the PAI-1 inhibitor, SK-216, to orthotopic mouse models in which MPM cells expressing high levels of VEGF (VEGFA) or bFGF (FGF2) were intrapleurally transplanted. SK-216 administration reduced tumor weights and the degree of angiogenesis in intrapleural tumors, irrespective of their angiogenic expression profiles. In addition, a combination of SK-216 and the chemotherapeutic agent cisplatin significantly reduced tumor weights compared with monotherapy, prolonging the survival of animals compared with cisplatin treatment alone. Furthermore, SK-216 inhibited migration and tube formation of cultured human umbilical vein endothelial cells induced by various angiogenic factors known to be secreted by MPM. These findings suggest that PAI-1 inactivation by SK-216 may represent a general strategy for inhibiting angiogenesis, including for the treatment of MPM. Cancer Res; 76(11); 3285-94. ©2016 AACR. PMID:27197170

  9. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  10. Amentoflavone inhibits angiogenesis of endothelial cells and stimulates apoptosis in hypertrophic scar fibroblasts.

    Science.gov (United States)

    Zhang, Jinli; Liu, Zhihe; Cao, Wenjuan; Chen, Liying; Xiong, Xifeng; Qin, Shengnan; Zhang, Zhi; Li, Xiaojian; Hu, Chien-an A

    2014-08-01

    Amentoflavone (8-[5-(5,7-dihydroxy-4-oxo-chromen-2-yl)-2-hydroxy-phenyl]-5,7-dihydroxy-2-(4-hydroxyphenyl) chromen-4-one; AF) is a biflavonoid derived from the extracts of Selaginella tamariscina. It has been shown that AF has diverse biological effects such as antitumour, etc. It is well known that high cell proliferation, viability, angiogenesis and low apoptosis are key factors in hypertrophic scar formation. In this study, we report that AF inhibited viability and stimulated apoptosis in hypertrophic scar fibroblasts (HSFBs). Incubation of HSFBs with AF showed its inhibitory effect on cell viability and the exhibition of a series of cellular changes that were consistent with apoptosis. By Western-blot analysis, our data indicated significant increases in the amounts of cleaved caspases 3, 8, 9 and Bax, several apoptotic promoters and a significant decrease in translationally controlled tumour protein (TCTP), an apoptotic inhibitor, in HSFBs treated with AF. Furthermore, AF showed significant inhibitions on the viability, migration and tube formation of endothelial cells, which are associated with angiogenesis. In conclusion, this study suggests that AF stimulates apoptosis in HSFBs and inhibits angiogenesis of endothelial cells. Therefore, AF is a promising molecule that can be used in hypertrophic scar treatment.

  11. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  12. Synergistic Inhibition of Angiogenesis by Artesunate and Captopril In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Benjamin Krusche

    2013-01-01

    Full Text Available Inhibition of angiogenesis represents one major strategy of cancer chemotherapy. In the present investigation, we investigated the synergism of artesunate and captopril to inhibit angiogenesis. Artesunate is an antimalarial derivative of artemisinin from the Chinese medicinal plant, Artemisia annua L., which also reveals profound anticancer activity in vitro and in vivo. Captopril is an angiotensin I-converting (ACE inhibitor, which is well established in Western academic medicine. Both compounds inhibited migration of human umbilical vein endothelial cells (HUVECs in vitro. The combination of both drugs resulted in synergistically inhibited migration. Whereas artesunate inhibited HUVEC growth in the XTT assay, captopril did not, indicating independent modes of action. We established a chorioallantoic membrane (CAM assay of quail embryos (Coturnix coturnix L. and a computer-based evaluation routine for quantitative studies on vascularization processes in vivo. Artesunate and captopril inhibited blood vessel formation and growth. For the first time, we demonstrated that both drugs revealed synergistic effects when combined. These results may also have clinical impact, since cardiovascular diseases and cancer frequently occur together in older cancer patients. Therefore, comorbid patients may take advantage, if they take captopril to treat cardiovascular symptoms and artesunate to treat cancer.

  13. Synergistic inhibition of angiogenesis by artesunate and captopril in vitro and in vivo.

    Science.gov (United States)

    Krusche, Benjamin; Arend, Joachim; Efferth, Thomas

    2013-01-01

    Inhibition of angiogenesis represents one major strategy of cancer chemotherapy. In the present investigation, we investigated the synergism of artesunate and captopril to inhibit angiogenesis. Artesunate is an antimalarial derivative of artemisinin from the Chinese medicinal plant, Artemisia annua L., which also reveals profound anticancer activity in vitro and in vivo. Captopril is an angiotensin I-converting (ACE) inhibitor, which is well established in Western academic medicine. Both compounds inhibited migration of human umbilical vein endothelial cells (HUVECs) in vitro. The combination of both drugs resulted in synergistically inhibited migration. Whereas artesunate inhibited HUVEC growth in the XTT assay, captopril did not, indicating independent modes of action. We established a chorioallantoic membrane (CAM) assay of quail embryos (Coturnix coturnix L.) and a computer-based evaluation routine for quantitative studies on vascularization processes in vivo. Artesunate and captopril inhibited blood vessel formation and growth. For the first time, we demonstrated that both drugs revealed synergistic effects when combined. These results may also have clinical impact, since cardiovascular diseases and cancer frequently occur together in older cancer patients. Therefore, comorbid patients may take advantage, if they take captopril to treat cardiovascular symptoms and artesunate to treat cancer. PMID:24223058

  14. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  15. Potent inhibition of angiogenesis and liver tumor growth by administration of an aerosol containing a transferrin-liposome-endostatin complex

    Institute of Scientific and Technical Information of China (English)

    Xi Li; Geng-Feng Fu; Yan-Rong Fan; Chan-Fu Shi; Xin-Juan Liu; Gen-Xing Xu; Jian-Jun Wang

    2003-01-01

    AIM: To obtain an efficient delivery system for transportingendostatin gene to mouse liver tumor xenografts byadministration of aerosol.METHODS: Recombinant plasmid pcDNA3.0/endostatincontaining human endostatin gene together with signalpeptide from alkaline phosphatase were transferred intohuman umbilical vein endothelial cell (HUVEC) by transfenin(TF)-liposome-endostatin complex. Western blot was usedto detect the expression of human endostatin in transfectedHUVEC cells and its medium. After the tumor-bearing micewere administrated with TF-liposome-endostatin complex,the lung tissue was analyzed by immunohistochemicalmethod for expression of endostatin and the tumors weretreated with CD-31 antibody to detect the density ofmicrovesseles in tumor tissues. The inhibition of tumorgrowth was estimated by the weight of tumors from groupstreated with different dos es of TF-liposome-endostatincomplex. DNA fragmentation assay was used to detect theapoptosis of the cells from primary liver tumor.RESULTS: Western blot analysis and immunohistochemicalmethod confirmed the expression of endostatin proteininvitro and in vivo. After the tumor sections were treated withCD-31 antibody, the positive reaction cells appeared brownwhile the negative cells were colorless. The positively stainedarea of the TF-liposome-endostatin treated group wassignificantly smaller (P<0.01, 645.8+55.2 μm2) than that ofthe control group (1325.4+198.5 μm2). The data showed asignificant inhibition of angiogenesis. After administrationof TF-liposome-endostatin, comparing with the control groupadministrated with TF-liposome-pcDNA3.0, liver tumorgrowth in the mice treated with 50, 250 and 500 mg DNA/kg was inhibited by 36.6 %, 40.8 %, and 72.8 %, respectively(P<0.01). And a typical DNA fragmentation of apoptosis wasfound in the cells from tumor tissues of the mice treatedwith TF-liposome-endostatin but none in the control group.CONCLUSION: Endostatin gene could be efficientlytransported into the mice

  16. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis.

    Science.gov (United States)

    Merk, Henriette; Zhang, Siwei; Lehr, Thorsten; Müller, Christoph; Ulrich, Melanie; Bibb, James A; Adams, Ralf H; Bracher, Franz; Zahler, Stefan; Vollmar, Angelika M; Liebl, Johanna

    2016-02-01

    Therapeutic success of VEGF-based anti-angiogenic tumor therapy is limited due to resistance. Thus, new strategies for anti-angiogenic cancer therapy based on novel targets are urgently required. Our previous in vitro work suggested that small molecule Cdk5 inhibitors affect angiogenic processes such as endothelial migration and proliferation. Moreover, we recently uncovered a substantial role of Cdk5 in the development of lymphatic vessels. Here we pin down the in vivo impact of endothelial Cdk5 inhibition in angiogenesis and elucidate the underlying mechanism in order to judge the potential of Cdk5 as a novel anti-angiogenic and anti-cancer target. By the use of endothelial-specific Cdk5 knockout mouse models and various endothelial and tumor cell based assays including human tumor xenograft models, we show that endothelial-specific knockdown of Cdk5 results in excessive but non-productive angiogenesis during development but also in tumors, which subsequently leads to inhibition of tumor growth. As Cdk5 inhibition disrupted Notch function by reducing the generation of the active Notch intracellular domain (NICD) and Cdk5 modulates Notch-dependent endothelial cell proliferation and sprouting, we propose that the Dll4/Notch driven angiogenic signaling hub is an important and promising mechanistic target of Cdk5. In fact, Cdk5 inhibition can sensitize tumors to conventional anti-angiogenic treatment as shown in tumor xenograft models. In summary our data set the stage for Cdk5 as a drugable target to inhibit Notch-driven angiogenesis condensing the view that Cdk5 is a promising target for cancer therapy. PMID:26755662

  17. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells.

    Directory of Open Access Journals (Sweden)

    Gomathy Narayanan

    Full Text Available Increased levels of intracellular copper stimulate angiogenesis in human umbilical vein endothelial cells (HUVECs. Copper transporter 1 (CTR1 is a copper importer present in the cell membrane and plays a major role in copper transport. In this study, three siRNAs targeting CTR1 mRNA were designed and screened for gene silencing. HUVECs when exposed to 100 µM copper showed 3 fold increased proliferation, migration by 1.8-fold and tube formation by 1.8-fold. One of the designed CTR1 siRNA (si 1 at 10 nM concentration decreased proliferation by 2.5-fold, migration by 4-fold and tube formation by 2.8-fold. Rabbit corneal packet assay also showed considerable decrease in matrigel induced blood vessel formation by si 1 when compared to untreated control. The designed si 1 when topically applied inhibited angiogenesis. This can be further developed for therapeutic application.

  18. Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia

    DEFF Research Database (Denmark)

    Carlström, Mattias; Wentzel, Parri; Skøtt, Ole;

    2009-01-01

    and placentae were smaller (2.8 g and 0.51 g) than the pregnant controls rats' fetuses and placentae (3.5 g and 0.56 g). Resorptions tended to be higher in the pregnant Suramin-treated rat litters compared with the pregnant control rat litters (P = 0.08). The area of the maternal blood vessels...... and fetal outcome exerted by the angiogenesis inhibitor Suramin (100 mg/kg i.p.) during early placentation. Blood pressure and heart rate were measured continuously with telemetry in Sprague-Dawley rats of four experimental groups: nonpregnant controls, Suramin-treated nonpregnant rats, pregnant controls...... in the mesometrial triangle was smaller in the pregnant Suramin-treated rats group than in the pregnant control rats group. CONCLUSION: The inhibition of uterine angiogenesis increases maternal blood pressure and compromises fetal and placental development. Placental hypoxia and subsequent activation of the renin...

  19. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. PMID:24096161

  20. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  1. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    OpenAIRE

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of ...

  2. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    OpenAIRE

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopep...

  3. Identification of colorectal cancer metastasis markers by an angiogenesis-related cytokine-antibody array

    Institute of Scientific and Technical Information of China (English)

    Ana Abajo; Nerea Bitarte; Ruth Zarate; Valentina Boni; Ines Lopez; Marisol Gonzalez-Huarriz; Javier Rodriguez; Eva Bandres; Jesus Garcia-Foncillas

    2012-01-01

    AIM:To investigate the angiogenesis-related protein expression profile characterizing metastatic colorectal cancer (mCRC) with the aim of identifying prognostic markers.METHODS:The expression of 44 angiogenesissecreted factors was measured by a novel cytokine antibody array methodology.The study evaluated vascular endothelial growth factor (VEGF) and its soluble vascular endothelial growth factor receptor (sVEGFR)-1 protein levels by enzyme immunoassay (EIA) in a panel of 16 CRC cell lines.mRNA VEGF and VEGF-A isoforms were quantified by quantitative reverse-transcription polymerase chain reaction (Q-RT-PCR) and vascular endothelial growth factor receptor (VEGFR)-2 expression was analyzed by flow cytometry.RESULTS:Metastasis-derived CRC cell lines expressed a distinctive molecular profile as compared with those isolated from a primary tumor site.Metastatic CRC cell lines were characterized by higher expression of angiogenin-2 (Ang-2),macrophage chemoattractant proteins-3/4 (MCP-3/4),matrix metalloproteinase-1 (MMP-1),and the chemokines interferon γ inducible T cell α chemoattractant protein (I-TAC),monocyte chemoattractant protein 1-309,and interleukins interleukin (IL)-2 and IL-1α,as compared to primary tumor cell lines.In contrast,primary CRC cell lines expressed higher levels of interferon γ (IFN-γ),insulin-like growth factor-1 (IGF-1),IL-6,leptin,epidermal growth factor (EGF),placental growth factor (PIGF),thrombopoietin,transforming growth factor β1 (TGF-β1) and VEGF-D,as compared with the metastatic cell lines.VEGF expression does not significantly differ according to the CRC cellular origin in normoxia.Severe hypoxia induced VEGF expression up-regulation but contrary to expectations,metastatic CRC cell lines did not respond as much as primary cell lines to the hypoxic stimulus.In CRC primary-derived cell lines,we observed a twofold increase in VEGF expression between normoxia and hypoxia as compared to metastatic cell lines.CRC cell lines express a

  4. Inhibition of tumor angiogenesis by angiostatin: from recombinant protein to gene therapy.

    Science.gov (United States)

    Dell'Eva, Raffaella; Pfeffer, Ulrich; Indraccolo, S; Albini, Adriana; Noonan, Douglas

    2002-01-01

    Tumor growth, local invasion, and metastatic dissemination are dependent on the formation of new microvessels. The process of angiogenesis is regulated by a balance between pro-angiogenic and anti-angiogenic factors, and the shift to an angiogenic phenotype (the "angiogenic switch") is a key event in tumor progression. The use of anti-angiogenic agents to restore this balance represents a promising approach to cancer treatment. Known physiological inhibitors include trombospondin, several interleukins, and the proteolytic break-down products of several proteins. Angiostatin, an internal fragment of plasminogen, is one of the more potent of this latter class of angiogenesis inhibitors. Like endostatin, another anti-angiogenic peptide derived from collagen XVIII, angiostatin can induce tumor vasculature regression, leading to a complete cessation of tumor growth. Inhibitors of angiogenesis target normal endothelial cells, therefore the development of resistance to these drugs is unlikely. The efficacy of angiostatin has been demonstrated in animal models for many different types of solid tumors. Anti-angiogenic cancer therapy with angiostatin requires prolonged administration of the peptide. The production of the functional polypeptides is expensive and technical problems related to physical properties and purity are frequently encountered. Gene transfer represents an alternative method to deliver angiostatin. Gene therapy has the potential to produce the therapeutic agent in high concentrations in a local area for a sustained period, thereby avoiding the problems encountered with long-term administration of recombinant proteins, monoclonal antibodies, or anti-angiogenic drugs. In this review we compare the different gene therapy strategies that have been applied to angiostatin, with special regard to their ability to provide sufficient angiostatin at the target site. PMID:12901356

  5. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  6. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    Science.gov (United States)

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  7. Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models

    Science.gov (United States)

    Zhao, Qianqian; Wang, Zhaopeng; Wang, Zhaoxia; Wu, Licun; Zhang, Weidong

    2016-01-01

    Aspirin is known to have inhibitory effects on growth development in various types of tumor. In previous studies, it was observed to inhibit angiogenesis by downregulating the expression of vascular endothelial growth factor-A (VEGF-A). In the present study, murine H22 hepatocarcinoma and S180 sarcoma models were used to ascertain whether aspirin could inhibit angiogenesis and promote autophagy in tumors. Tumor-bearing mice were randomly divided into four groups with 10 mice per group: i) no treatment; ii) low-dose aspirin (100 mg/kg); iii) high-dose aspirin (400 mg/kg); iv) everolimus group (4 mg/kg). The effects of high-dose aspirin were validated through preliminary experiments. The drug treatment was administered every day for 14 days. The tumor size was measured every other day and then the tumor growth curve was plotted, and the tumor inhibitory rates were calculated. The expression levels of phosphorylated mammalian target of rapamycin (p-mTOR), hypoxia-inducible factor-1α (HIF-1α), VEGF-A, UNC-51-like kinase-1 (ULK1) and microtubule-associated protein 1 light chain 3A (LC3A) were detected by immunohistochemistry and western blot analysis, respectively. We observed that tumor growth delay was achieved in both H22 hepatocarcinoma and S180 sarcoma models following treatment with aspirin. The tumor growth inhibition rates induced by low and high-dose aspirin and everolimus were 19.6, 33.6 and 53.7% (PHIF-1α and VEGF-A was decreased, while the expression of ULK1 and LC3A was increased following treatment with aspirin and everolimus. The changes were more apparent in the high-dose aspirin and everolimus groups (PHIF-1α and VEGF-A. Alternatively, aspirin may induce autophagy by inhibiting the mTOR signaling target and then increasing ULK1 and LC3A.

  8. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI

    Directory of Open Access Journals (Sweden)

    Tobias Bäuerle

    2008-05-01

    Full Text Available The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT and magnetic resonance imaging (MRI. After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15 were compared with sham-treated animals (n = 17. Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05. This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05. Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI.

  9. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  10. sFlt Multivalent Conjugates Inhibit Angiogenesis and Improve Half-Life In Vivo

    Science.gov (United States)

    Altiok, Eda I.; Browne, Shane; Khuc, Emily; Moran, Elizabeth P.; Qiu, Fangfang; Zhou, Kelu; Santiago-Ortiz, Jorge L.; Ma, Jian-xing; Chan, Matilda F.; Healy, Kevin E.

    2016-01-01

    Current anti-VEGF drugs for patients with diabetic retinopathy suffer from short residence time in the vitreous of the eye. In order to maintain biologically effective doses of drug for inhibiting retinal neovascularization, patients are required to receive regular monthly injections of drug, which often results in low patient compliance and progression of the disease. To improve the intravitreal residence time of anti-VEGF drugs, we have synthesized multivalent bioconjugates of an anti-VEGF protein, soluble fms-like tyrosine kinase-1 (sFlt) that is covalently grafted to chains of hyaluronic acid (HyA), conjugates that are termed mvsFlt. Using a mouse corneal angiogenesis assay, we demonstrate that covalent conjugation to HyA chains does not decrease the bioactivity of sFlt and that mvsFlt is equivalent to sFlt at inhibiting corneal angiogenesis. In a rat vitreous model, we observed that mvsFlt had significantly increased intravitreal residence time compared to the unconjugated sFlt after 2 days. The calculated intravitreal half-lives for sFlt and mvsFlt were 3.3 and 35 hours, respectively. Furthermore, we show that mvsFlt is more effective than the unconjugated form at inhibiting retinal neovascularization in an oxygen-induced retinopathy model, an effect that is most likely due to the longer half-life of mvsFlt in the vitreous. Taken together, our results indicate that conjugation of sFlt to HyA does not affect its affinity for VEGF and this conjugation significantly improves drug half-life. These in vivo results suggest that our strategy of multivalent conjugation could substantially improve upon drug half-life, and thus the efficacy of currently available drugs that are used in diseases such as diabetic retinopathy, thereby improving patient quality of life. PMID:27257918

  11. Celecoxib-erlotinib combination delays growth and inhibits angiogenesis in EGFR-mutated lung cancer.

    Science.gov (United States)

    Li, Yi Xiao; Wang, Jia Le; Gao, Meng; Tang, Hao; Gui, Rong; Fu, Yun Feng

    2016-01-01

    Combination treatment for non-small cell lung cancer (NSCLC) is becoming more popular due to the anticipation that it may be more effective than single drug treatment. In addition, there are efforts to genetically screen patients for specific mutations in light of attempting to administer specific anticancer agents that are most effective. In this study, we evaluate the anticancer and anti-angiogenic effects of low dose celecoxib-erlotinib combination in NSCLC in vitro and in vivo. In NSCLC cells harboring epidermal growth factor receptor (EGFR) mutations, combination celecoxib-erlotinib treatment led to synergistic cell death, but there was minimal efficacy in NSCLC cells with wild-type EGFR. In xenograft models, combination treatment also demonstrated greater inhibition of tumor growth compared to individual treatment. The anti-tumor effect observed was secondary to the targeting of angiogenesis, evidenced by decreased vascular endothelial growth factor A (VEGFA) levels and decreased levels of CD31 and microvessel density. Combination treatment targets angiogenesis through the modulation of of the PI3K/AKT and ERK/Raf1-1 pathway in NSCLC with EGFR exon 19 deletions. These findings may have significant clinical implications in patients with tumors harboring EGFR exon 19 deletions as they may be particularly sensitive to this regimen. PMID:27508092

  12. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael L Vasil

    2009-05-01

    Full Text Available The hemolytic phospholipase C (PlcHR expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase. Data presented herein indicate that picomolar (pM concentrations of PlcHR are selectively lethal to endothelial cells (EC. An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS, but not control peptides (i.e., GDGRS, block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation, which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature. Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization. An active site mutant of PlcHR (Thr178Ala exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where

  13. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    Science.gov (United States)

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans. PMID:9661892

  14. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  15. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions.

    Directory of Open Access Journals (Sweden)

    Carla N Olivares

    Full Text Available The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA through its receptor CD44 has been described to be involved in the process of angiogenesis.To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU on endometriosis-related angiogenesis.The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6, 20 mg/kg 4-MU (n = 8 or 80 mg/kg 4-MU (n = 7 throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the

  16. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  17. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    International Nuclear Information System (INIS)

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice

  18. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hye Young Kim

    Full Text Available High mobility group box chromosomal protein 1 (HMGB-1 released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3-24 hr by HMGB1, which was recovered by pretreatment with cilostazol (1-30 µM or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.

  19. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    Directory of Open Access Journals (Sweden)

    J. Brian Morgan

    2015-03-01

    Full Text Available The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula. Kalkitoxin exhibited N-methyl-d-aspartate (NMDA-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1. The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM. Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC complex I (NADH-ubiquinone oxidoreductase. Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF in tumor cells.

  20. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Science.gov (United States)

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  1. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  2. ELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP

    OpenAIRE

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HU...

  3. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Wang; Gui-Ying Zhang

    2005-01-01

    AIM: It has been reported that regular consumption of nonsteroidal anti-inflammatory drugs like indomethacin decreases the incidence and mortality rate of a number of gastrointestinal cancers. We aimed to explore the efficacy and possible mechanisms of indomethacin on tumor growth and tumor angiogenesis of human colon cancer xenografts in nude mice,METHODS: MTT (thiazolyl blue) assay was used to assess the effect of indomethacin on cultured human colorectal cancer cell line HCT116. HCT116 cells were inoculated subcutaneously into BALB/c-nu/nu mice. After oral administration of indomethacin, 3 mg/kg·d for 4 wk, animals were sacrificed by cervical dislocation. Immunohistochemical staining was employed to determine the microvessel density (MVD) and vascular endothelial growth factor (VEGF)expression in tumor tissues.RESULTS: Indomethacin, a non-selective COX inhibitor,significantly decreased the viability of HCT116 cells in a dose-dependent manner (P<0.05) with 50% inhibition at approximately 318.2±12.7 μmol/L. Growth of HCT116 cell tumor was significantly suppressed by indomethacin. The tumor volume was significantly decreased in the treated group (458.89±32.07 mm3) compared to the control group (828.21±31.59 mm3) (P<0.05). The MVD of the treated group (19.50±5.32) was markedly decreased compared to the control group (37.40±4.93) (P<0.001). The VEGF expression of the treated group (1.19±0.17) was obviously reduced as compared to the control group (1.90±0.48)(P<0.01). The decrease in MVD was positively correlated with the decrease of VEGF expression (rs = 0.714, P<0.05).We did not see gastrointestinal complications in the treated group and no differences were noted in the body weight of the mice between the two groups throughout the study (P>0.05).CONCLUSION: Indomethacin can significantly decrease the viability of cultured HCT116 cells and retard human colorectal HCT116 cell tumor growth via inhibiting tumor angiogenesis, which might be through

  4. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    Directory of Open Access Journals (Sweden)

    Bellou Sofia

    2012-05-01

    Full Text Available Abstract Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME, inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P  Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK

  5. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma

    NARCIS (Netherlands)

    Babae, N.; Bourajjaj, M.; Liu, Y.; Beijnum, J.R.; Cerisoli, F.; Scaria, P.V.; Verheul, Mark; Berkel, M.P.; Pieters, E.H.; Haastert, van R.J.; Yousefi, A.; Mastrobattista, E.; Storm, G.; Berezikov, E.; Cuppen, E.; Woodle, M.; Schaapveld, R.Q.J.; Prevost, G.P.; Griffioen, A.W.; Noort, P.I.; Schiffelers, R.M.

    2014-01-01

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC via

  6. Curcumin Inhibits Angiogenesis and Adipogenesis in Cell Culture System and in Mice Fed High Fat Diet

    Science.gov (United States)

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin on angiogenesis and adipocyte development in a ...

  7. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    Science.gov (United States)

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; D'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    Abstract The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase- 2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1–10 µg/ml), whereas 50 µg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors. PMID:15548359

  8. Total Saponin from Root of Actinidia valvata Dunn Inhibits Hepatoma 22 Growth and Metastasis In Vivo by Suppression Angiogenesis

    Directory of Open Access Journals (Sweden)

    Guo-Yin Zheng

    2012-01-01

    Full Text Available The root of Actinidia valvata dunn has been widely used in the treatment of hepatocellular carcinoma (HCC, proved to be beneficial for a longer and better life in China. In present work, total saponin from root of Actinidia valvata Dunn (TSAVD was extracted, and its effects on hepatoma H22-based mouse in vivo were observed. Primarily transplanted hypodermal hepatoma H22-based mice were used to observe TSAVD effect on tumor growth. The microvessel density (MVD, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF are characterized factors of angiogenesis, which were compared between TSAVD-treated and control groups. Antimetastasis effect on experimental pulmonary metastasis hepatoma mice was also observed in the study. The results demonstrated that TSAVD can effectively inhibit HCC growth and metastasis in vivo, inhibit the formation of microvessel, downregulate expressions of VEGF and bFGF, and retrain angiogenesis of hepatoma 22 which could be one of the reasons.

  9. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    Science.gov (United States)

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity. PMID:23744558

  10. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs.

    Directory of Open Access Journals (Sweden)

    Simona Delle Monache

    Full Text Available The formation of new blood vessels is an essential therapeutic target in many diseases such as cancer, ischemic diseases, and chronic inflammation. In this regard, extremely low-frequency (ELF electromagnetic fields (EMFs seem able to inhibit vessel growth when used in a specific window of amplitude. To investigate the mechanism of anti-angiogenic action of ELF-EMFs we tested the effect of a sinusoidal magnetic field (MF of 2 mT intensity and frequency of 50 Hz on endothelial cell models HUVEC and MS-1 measuring cell status and proliferation, motility and tubule formation ability. MS-1 cells when injected in mice determined a rapid tumor-like growth that was significantly reduced in mice inoculated with MF-exposed cells. In particular, histological analysis of tumors derived from mice inoculated with MF-exposed MS-1 cells indicated a reduction of hemangioma size, of blood-filled spaces, and in hemorrhage. In parallel, in vitro proliferation of MS-1 treated with MF was significantly inhibited. We also found that the MF-exposure down-regulated the process of proliferation, migration and formation of tubule-like structures in HUVECs. Using western blotting and immunofluorescence analysis, we collected data about the possible influence of MF on the signalling pathway activated by the vascular endothelial growth factor (VEGF. In particular, MF exposure significantly reduced the expression and activation levels of VEGFR2, suggesting a direct or indirect influence of MF on VEGF receptors placed on cellular membrane. In conclusion MF reduced, in vitro and in vivo, the ability of endothelial cells to form new vessels, most probably affecting VEGF signal transduction pathway that was less responsive to activation. These findings could not only explain the mechanism of anti-angiogenic action exerted by MFs, but also promote the possible development of new therapeutic applications for treatment of those diseases where excessive angiogenesis is involved.

  11. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis.

    Science.gov (United States)

    Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-08-01

    Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. PMID:27210504

  12. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells.

    Science.gov (United States)

    Chu, Shu-Chen; Yu, Cheng-Chia; Hsu, Li-Sung; Chen, Kuo-Shuen; Su, Mei-Yu; Chen, Pei-Ni

    2014-12-01

    Metastasis is the most common cause of cancer-related death in patients, and epithelial-to-mesenchymal transition (EMT) is essential for cancer metastasis, which is a multistep complicated process that includes local invasion, intravasation, extravasation, and proliferation at distant sites. When cancer cells metastasize, angiogenesis is also required for metastatic dissemination, given that an increase in vascular density will allow easier access of tumor cells to circulation, and represents a rational target for therapeutic intervention. Berberine has several anti-inflammation and anticancer biologic effects. In this study, we provided molecular evidence that is associated with the antimetastatic effect of berberine by showing a nearly complete inhibition on invasion (P metalloproteinase-2 and urokinase-type plasminogen activator. Berberine reversed transforming growth factor-β1-induced EMT and caused upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and snail-1. Selective snail-1 inhibition by snail-1-specific small interfering RNA also showed increased E-cadherin expression in SiHa cells. Berberine also reduced tumor-induced angiogenesis in vitro and in vivo. Importantly, an in vivo BALB/c nude mice xenograft model and tail vein injection model showed that berberine treatment reduced tumor growth and lung metastasis by oral gavage, respectively. Taken together, these findings suggested that berberine could reduce metastasis and angiogenesis of cervical cancer cells, thereby constituting an adjuvant treatment of metastasis control.

  13. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis

  14. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Jiang, Aihua; Gao, Hua; Kelley, Mark R; Qiao, Xiaoxi

    2011-01-01

    This study examines the role of APE1/Ref-1 in the retina and its potential as a therapeutic target for inhibiting retinal angiogenesis. APE1/Ref-1 expression was quantified by Western blot. The role of APE1/Ref-1 redox function in endothelial cell in vitro angiogenesis was examined by treating retinal vascular endothelial cells (RVECs) with APX3330, a small molecule inhibitor of APE1/Ref-1 redox activity. In vitro methods included a proliferation assay, a transwell migration assay, a Matrigel tube formation assay, and a Real-Time Cell Analysis (RTCA) using the xCELLigence System. In vivo functional studies of APE1/Ref-1 were carried out by treating very low density lipoprotein (VLDL) receptor knockout mice (Vldlr(-/-)) with intravitreal injection of APX3330, and subsequent measurement of retinal angiomatous proliferation (RAP)-like neovascularization for one week. APE1/Ref-1 was highly expressed in the retina and in RVECs and pericytes in mice. APX3330 (1-10 μM) inhibited proliferation, migration and tube formation of RVECs in vitro in a dose-dependent manner. Vldlr(-/-) RVECs were more sensitive to APX3330 than wild-type RVECs. In Vldlr(-/-) mice, a single intravitreal injection of APX3330 at the onset of RAP-like neovascularization significantly reduced RAP-like neovascularization development. APE1/Ref-1 is expressed in retinal vascular cells. APX3330 inhibits RVEC angiogenesis in vitro and significantly reduces RAP-like neovascularization in Vldlr(-/-) mice. These data support the conclusion that APE1/Ref-1 redox function is required for retinal angiogenesis. Thus, APE1/Ref-1 may have potential as a therapeutic target for treating neovascular age-related macular degeneration and other neovascular diseases.

  15. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  16. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  17. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells. PMID:22802136

  18. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    Science.gov (United States)

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  19. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension.

    Science.gov (United States)

    Kiefer, Fabrice N; Misteli, Heidi; Kalak, Nabil; Tschudin, Karin; Fingerle, Jürgen; Van der Kooij, Maaike; Stumm, Michael; Sumanovski, Lazar T; Sieber, Cornel C; Battegay, Edouard J

    2002-01-01

    Arterial hypertension (AH) is characterized by reduced nitric oxide (NO) biosynthesis, vasoconstriction, and reduced microvascular density. In this study we asked whether AH also reduces the number of microvessels by impairing angiogenesis. AH was induced in Dahl salt-sensitive rats (DSS) with a salt diet and in Wistar-Kyoto rats by inhibiting NO formation with Nomega-nitro-L-arginine (NNA). Three weeks after induction of AH, two wound chambers containing collagen I (Vitrogen) were sutured into the mesenteric cavity of each animal. After additional 14 days, wound chamber neovascularization and the extent of vascularized connective tissue ingrowth were quantified. In NNA-induced AH, the number of newly formed vessels and the ingrowth of vascularized connective tissue into the wound chamber decreased as compared to controls. However, the number of newly formed vessels and the ingrowth of vascularized connective tissue did not change with increasing blood pressure in salt-fed DSS rats as compared to those fed a normal diet. Inhibition of NO biosynthesis, but not necessarily elevating blood pressure, reduces angiogenesis. Microvascular rarefaction in AH may be partially due to reduced angiogenesis because of impaired NO biosynthesis.

  20. Local inhibition of angiogenesis results in an atrophic non-union in a rat osteotomy model

    Directory of Open Access Journals (Sweden)

    M Fassbender

    2011-07-01

    Full Text Available Long bone and in particular tibia fractures frequently fail to heal. A disturbed revascularisation is supposed to be a major cause for impaired bone healing or the development of non-unions. We aim to establish an animal model, which reliably mimics the clinical situation. Human microvascular endothelial cells (HMEC-1 and primary human osteoblast like cells (POBs were cultured with different angiogenesis-inhibitors (Fumagillin, SU5416, Artesunate and 3,5,4’-Trimethoxystilbene released out of poly(D,L-Lactide (PDLLA coated k-wires and cell activity was determined. Discs containing PDLLA or PDLLA + Fumagillin/Artesunate were placed at the chorionallantoic membrane of hen eggs and the effect on vessel formation and egg vitality was observed. Tibia osteotomy was performed in rats and stabilised with K-wires coated with PDLLA + Fumagillin or with PDLLA only (control group. The healing was compared at different time points to the PDLLA control. Fumagillin and Artesunate inhibited the activity of HMEC-1 with minor effect on POBs. Artesunate caused embryonic death, whereas Fumagillin had no effects on egg vitality, but reduced the blood vessels. In the animal study all rats showed an impaired healing with reduced biomechanical stability. The Fumagillin treated tibiae had a significantly decreased callus size at day 42 and 84, less blood vessels in the early callus, a reduced histological callus size at day 10, 28 and 84, as well as an altered callus composition. This study presents a less vascularised, atrophic, tibia non-union and can be used in further investigations to analyse the pathology of atrophic non-union and to test new interventions.

  1. Identification of Novel Biomarkers for Metastatic Colorectal Cancer Using Angiogenesis-Antibody Array and Intracellular Signaling Array.

    Directory of Open Access Journals (Sweden)

    Seyung Chung

    Full Text Available Colorectal cancer (CRC is one of the three leading causes for cancer mortality. CRC kills over 600,000 people annually worldwide. The most common cause of death from CRC is the metastasis to distant organs. However, biomarkers for CRC metastasis remain ill-defined. We compared primary and metastatic CRC cell lines for their angiogenesis-protein profiles and intracellular signaling profiles to identify novel biomarkers for CRC metastasis. To this end, we used primary and metastatic CRC cell lines as a model system and normal human colon cell line as a control. The angiogenesis profiles two isogenic CRC cell lines, SW480 and SW620, and HT-29 and T84 revealed that VEGF was upregulated in both SW620 and T84 whereas coagulation factor III, IGFBP-3, DPP IV, PDGF AA/AB, endothelin I and CXCL16 were downregulated specifically in metastatic cell lines. Furthermore, we found that TIMP-1, amphiregulin, endostatin, angiogenin were upregulated in SW620 whereas downregulated in T84. Angiogenin was downregulated in T84 and GM-CSF was also downregulated in SW620. To induce CRC cell metastasis, we treated cells with pro-inflammatory cytokine IL-6. Upon IL-6 treatment, epithelial-mesenchymal transition was induced in CRC cells. When DLD-1 and HT-29 cells were treated with IL-6; Akt, STAT3, AMPKα and Bad phosphorylation levels were increased. Interestingly, SW620 showed the same signal activation pattern with IL-6 treatment of HT-29 and DLD-1. Our data suggest that Akt, STAT3, AMPKα and Bad activation can be biomarkers for metastatic colorectal cancer. IL-6 treatment specifically reduced phosphorylation levels of EGFR, HER2 receptor, Insulin R and IGF-1R in receptor tyrosine kinase array study with HT-29. Taken together, we have identified novel biomarkers for metastatic CRC through the angiogenesis-antibody array and intracellular signaling array studies. Present study suggests that those novel biomarkers can be used as CRC prognosis biomarkers, and as

  2. VEGF Silencing Inhibits Human Osteosarcoma Angiogenesis and Promotes Cell Apoptosis via PI3K/AKT Signaling Pathway.

    Science.gov (United States)

    Zhao, Jian; Zhang, Zi-Ru; Zhao, Na; Ma, Bao-An; Fan, Qing-Yu

    2015-11-01

    Vascular endothelial growth factor (VEGF) is one of the most effective angiogenic factors that promote generation of tumor vasculature. VEGF is usually up-regulated in multiple cancers including osteosarcoma and glioma. To further explore the potential molecular mechanism that inhibits tumor growth induced by interference of VEGF expression, we constructed a Lv-shVEGF vector and assessed the efficiency of VEGF silencing and its influence in U2OS cells. The data demonstrate that Lv-shVEGF has high inhibition efficiency on VEGF expression, which inhibits proliferation and promotes apoptosis of U2OS cells in vitro. Our results also indicate that inhibition of VEGF expression suppresses osteosarcoma tumor growth in vivo and reduces osteosarcoma angiogenesis. We also found that the activations of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) were considerably reduced after osteosarcoma cells were treated with Lv-shVEGF. Taken together, our data demonstrate that VEGF silencing suppresses cell proliferation, promotes cell apoptosis, and reduces osteosarcoma angiogenesis through inactivation of PI3K/AKT signaling pathway. PMID:27352347

  3. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.

    Science.gov (United States)

    Ejaz, Asma; Wu, Dayong; Kwan, Paul; Meydani, Mohsen

    2009-05-01

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. We investigated the effect of curcumin, the major polyphenol in turmeric spice, on angiogenesis, adipogenesis, differentiation, apoptosis, and gene expression involved in lipid and energy metabolism in 3T3-L1 adipocyte in cell culture systems and on body weight gain and adiposity in mice fed a high-fat diet (22%) supplemented with 500 mg curcumin/kg diet for 12 wk. Curcumin (5-20 micromol/L) suppressed 3T3-L1 differentiation, caused apoptosis, and inhibited adipokine-induced angiogenesis of human umbilical vein endothelial cells. Supplementing the high-fat diet of mice with curcumin did not affect food intake but reduced body weight gain, adiposity, and microvessel density in adipose tissue, which coincided with reduced expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Curcumin increased 5'AMP-activated protein kinase phosphorylation, reduced glycerol-3-phosphate acyl transferase-1, and increased carnitine palmitoyltransferase-1 expression, which led to increased oxidation and decreased fatty acid esterification. The in vivo effect of curcumin on the expression of these enzymes was also confirmed by real-time RT-PCR in subcutaneous adipose tissue. In addition, curcumin significantly lowered serum cholesterol and expression of PPARgamma and CCAAT/enhancer binding protein alpha, 2 key transcription factors in adipogenesis and lipogenesis. The curcumin suppression of angiogenesis in adipose tissue together with its effect on lipid metabolism in adipocytes may contribute to lower body fat and body weight gain. Our findings suggest that dietary curcumin may have a potential benefit in preventing obesity.

  4. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.

    Science.gov (United States)

    Luo, Haitao; Rankin, Gary O; Liu, Lingzhi; Daddysman, Matthew K; Jiang, Bing-Hua; Chen, Yi Charlie

    2009-01-01

    Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers.

  5. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells.

    Science.gov (United States)

    Cheng, Huawen

    2016-01-01

    BACKGROUND Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. MATERIAL AND METHODS CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. RESULTS CD146 protein was significantly up-regulated in cervical cancer cells (Pcancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (Papoptosis (Pcancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity. PMID:27647179

  6. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs

  7. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  8. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.

  9. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    PAN Rong; DAI Yue; GAO Xing-hua; XIA Yu-feng

    2008-01-01

    Objective To study the effects and mechanisms of scopolin isolated from the stems of Erycibe obtusifolia Benth in arthritis-associated inflammation and angiogenesis. Methods Adjuvant-induced arthritic rat, an animal model for human RA was used in this study for examining the potential remedial effect of scopolin. The swelling in both inoculated and non-inoculated paws, body weights and articular index (AI) scores were detected to evaluate the severity of the arthritis. Histologic assessment of tissue sections from rat ankles was also performed. Furthermore, the blood vessel density in the synovial tissues was quantitatively evaluated. In addition, expressions of VEGF, FGF-2, TNF-α, IL-1β and IL-6 in rat synovial tissues were determined by immunohistochemistry assay in an attempt to explain the mechanisms of scopolin for suppressing arthritis. Results Scopolin dose-dependently inhibited both inoculated and non-inoculated paw swelling in rat AIA. The mean AI scores of scopolin treated groups were also dose-dependently lower than that of model group. In addition, compared with the weights of model group, the mean body weights of rats treated with scopolin (50,100 mg·kg-1) were higher from day 13 to 22, perhaps indicative of healthier animals. The histologic architecture of the joint was highly abnormal in the model group rats, while high dose of scopolin treated rats preserved a nearly normal histologic architecture of the joint. Moreover, the new blood vessels were reduced dose-dependently in the synovial tissue of rat AIA treated with scopolin. Further, scopolin reduced the overexpression of IL-6,VEGF and FGF-2 in rat synovial tissues. Conclusions Scopolin is capable of reducing clinical symptoms of rat AIA by inhibiting inflammation and angiogenesis, and this compound may be a potent therapeutic agent for angiogenesis related diseases and can serve as structural base for screening for more potent synthetic analogs.

  10. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-02-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as

  11. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  12. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  13. Cancer Immunotherapy of Targeting Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Jianmei Hou; Ling Tian; Yuquan Wei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  14. Yiguanjian decoction and its ingredients inhibit angiogenesis in carbon tetrachloride-induced cirrhosis mice

    OpenAIRE

    Zhou, Ya-Ning; Mu, Yong-Ping; Fu, Wen-Wei; Ning, Bing-Bing; Du, Guang-Li; Chen, Jia-Mei; Sun, Ming-yu; Zhang, Hua; Hu, Yi-yang; Liu, Cheng-Hai; Xu, Lie-Ming; Liu, Ping

    2015-01-01

    Background Cirrhosis is associated with angiogenesis and disruption of hepatic vascular architecture. Yiguanjian (YGJ) decoction, a prescription from traditional Chinese medicine, is widely used for treating liver diseases. We studied whether YGJ or its ingredients (iYGJ) had an anti-angiogenic effect and explored possible mechanisms underlying this process. Methods Cirrhosis was induced with carbon tetrachloride (CCl4) (ip) in C57BL/6 mice for 6 weeks. From week 4 to week 6, cirrhotic mice w...

  15. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  16. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    Science.gov (United States)

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy.

  17. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    Science.gov (United States)

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  18. Coral-Derived Compound WA-25 Inhibits Angiogenesis by Attenuating the VEGF/VEGFR2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2015-02-01

    Full Text Available Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2 suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFPy1 and Tg(kdrl:mCherryci5-fli1a:negfpy7 zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs. The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. Results: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1 expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. Conclusions: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. General Significance: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial

  19. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Science.gov (United States)

    Choy, Milly M; Zhang, Summer L; Costa, Vivian V; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-11-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  20. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  1. MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the potential of dynamic magnetic resonance imaging (MRI) enhanced by macromolecular contrast agents to monitor noninvasively the therapeutic effect of an anti-angiogenesis VEGF receptor kinase inhibitor in an experimental cancer model. MDA-MB-435, a poorly differentiated human breast cancer cell line, was implanted into the mammary fat pad in 20 female homozygous athymic rats. Animals were assigned randomly to a control (n=10) or drug treatment group (n=10). Baseline dynamic MRI was performed on sequential days using albumin-(GdDTPA)30 (6.0 nm diameter) and ultrasmall superparamagnetic iron oxide (USPIO) particles (30 nm diameter). Subjects were treated either with PTK787/ZK 222584, a VEGF receptor tyrosine kinase inhibitor, or saline given orally twice daily for 1 week followed by repeat MRI examinations serially using each contrast agent. Employing a unidirectional kinetic model comprising the plasma and interstitial water compartments, tumor microvessel characteristics including fractional plasma volume and transendothelial permeability (KPS) were estimated for each contrast medium. Tumor growth and the microvascular density, a histologic surrogate of angiogenesis, were also measured. Control tumors significantly increased (PPS) based on MRI assays using both macromolecular contrast media. In contrast, tumor growth was significantly reduced (PPS values declined slightly. Estimated values for the fractional plasma volume did not differ significantly between treatment groups or contrast agents. Microvascular density counts correlated fairly with the tumor growth rate (r=0.64) and were statistically significant higher (PPS), using either of two macromolecular contrast media, were able to detect effects of treatment with a VEGF receptor tyrosine kinase inhibitor on tumor vascular permeability. In a clinical setting such quantitative MRI measurements could be used to monitor tumor anti-angiogenesis therapy. (orig.)

  2. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  3. Anti-adjuvant arthritis of recombinant human endostatin in rats via inhibition of angiogenesis and proinflammatory factors

    Institute of Scientific and Technical Information of China (English)

    Li YUE; Hua WANG; Li-hua LIU; Yu-xian SHEN; Wei WEI

    2004-01-01

    AIM: To investigate the profile of endostatin on adjuvant arthritis (AA) and angiogenesis blockade in synovitis.METHODS: The model of rat AA was induced by injection of intradermal complete Freund's adjuvant (CFA). Hind paw volume of rat was measured by volume meter and the activities of interleukin- 1 (IL- 1) and IL-2 Were measured by the assay of thymocytes proliferation. IL-1 β and tumor necrosis factor-α (TNF-α) produced by synoviocytes was estimated with radioimmunoassay. The number of new blood vessels in knee joint synovium was counted under microscope by hematoxylin and eosin (HE) staining. RESULTS: The secondary inflammation of AA rats appeared on the 10th day after injection of CFA. The therapeutic administration of endostatin (0.1, 0.5, and 2.5secondary paw swelling and the number of new blood vessels in the synovium of AA rats. Endostatin significantly decreased the production of IL-1 derived from both peritoneal macrophages and synoviocytes and IL-2 from splenocytes, especially at the dose of 2.5 mg/kg. This effect of endostatin also was seen on TNF-α produced by synoviocytes. CONCLUSION: The recombinant human endostatin had an inhibitory effect on rat AA, which was related to its anti-angiogenesis and inhibition of proinflammatory cytokines.

  4. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation

    Science.gov (United States)

    Liu, Yuanyuan; Gao, Jing; Huang, Shuangsheng; Hu, Lamei; Wang, Zhiqiang; Wang, Zheyuan; Chen, Xiao; Zhang, Xiaoyu; Li, Wenguang

    2016-01-01

    Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies. PMID:27698866

  5. NSK-01105, a Novel Sorafenib Derivative, Inhibits Human Prostate Tumor Growth via Suppression of VEGFR2/EGFR-Mediated Angiogenesis

    Science.gov (United States)

    Yu, Pengfei; Ye, Liang; Wang, Hongbo; Du, Guangying; Zhang, Jianzhao; Zuo, Yanhua; Zhang, Jinghai; Tian, Jingwei

    2014-01-01

    The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities. PMID:25551444

  6. Inhibitory Effects of Anti-VEGF Antibody on the Growth and Angiogenesis of Estrogen-induced Pituitary Prolactinoma in Fischer 344 Rats: Animal Model of VEGF-targeted Therapy for Human Endocrine Tumors

    International Nuclear Information System (INIS)

    Estrogen-induced pituitary prolactin-producing tumors (PRLoma) in F344 rats express a high level of vascular endothelial growth factor (VEGF) associated with marked angiogenesis and angiectasis. To investigate whether tumor development in E2-induced PRLoma is inhibited by anti-VEGF monoclonal antibody (G6-31), we evaluated tumor growth and observed the vascular structures. With simultaneous treatment with G6-31 for the latter three weeks of the 13-week period of E2 stimulation (E2+G6-31 group), the following inhibitory effects on the PRLoma were observed in the E2+G6-31 group as compared with the E2-only group. In the E2+G6-31 group, a tendency to reduction in pituitary weight was observed and significant differences were observed as (1) reductions in the Ki-67-positive anterior cells, (2) increases in TUNEL-positive anterior cells, and (3) repair of the microvessel count by CD34-immunohistochemistry. The characteristic “blood lakes” in PRLomas were improved and replaced by repaired microvascular structures on 3D observation using confocal laser scanning microscope. These inhibitory effects due to anti-VEGF antibody might be related to the autocrine/paracrine action of VEGF on the tumor cells, because VEGF and its receptor are co-expressed on the tumor cells. Thus, our results demonstrate that anti-VEGF antibody exerted inhibitory effects on pituitary tumorigenesis in well-established E2 induced PRLomas

  7. A synthetic dl-nordihydroguaiaretic acid (Nordy, inhibits angiogenesis, invasion and proliferation of glioma stem cells within a zebrafish xenotransplantation model.

    Directory of Open Access Journals (Sweden)

    Xiaojun Yang

    Full Text Available The zebrafish (Danio rerio and their transparent embryos represent a promising model system in cancer research. Compared with other vertebrate model systems, we had previously shown that the zebrafish model provides many advantages over mouse or chicken models to study tumor invasion, angiogenesis, and tumorigenesis. In this study, we systematically investigated the biological features of glioma stem cells (GSCs in a zebrafish model, such as tumor angiogenesis, invasion, and proliferation. We demonstrated that several verified anti-angiogenic agents inhibited angiogenesis that was induced by xenografted-GSCs. We next evaluated the effects of a synthetic dl-nordihydroguaiaretic acid compound (dl-NDGA or "Nordy", which revealed anti-tumor activity against human GSCs in vitro by establishing parameters through studying its ability to suppress angiogenesis, tumor invasion, and proliferation. Furthermore, our results indicated that Nordy might inhibit GSCs invasion and proliferation through regulation of the arachidonate 5-lipoxygenase (Alox-5 pathway. Moreover, the combination of Nordy and a VEGF inhibitor exhibited an enhanced ability to suppress angiogenesis that was induced by GSCs. By contrast, even following treatment with 50 µM Nordy, there was no discernible effect on zebrafish embryonic development. Together, these results suggested efficacy and safety of using Nordy in vivo, and further demonstrated that this model should be suitable for studying GSCs and anti-GSC drug evaluation.

  8. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    Science.gov (United States)

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  9. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lavie, Muriel [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Struyf, Sofie [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Stroh-Dege, Alexandra; Rommelaere, Jean [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Van Damme, Jo [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Dinsart, Christiane, E-mail: c.dinsart@dkfz.de [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany)

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.

  10. Human plasminogen kringle 1-5 inhibits angiogenesis and induces thrombomodulin degradation in a protein kinase A-dependent manner.

    Science.gov (United States)

    Cho, Chia-Fong; Chen, Po-Ku; Chang, Po-Chiao; Wu, Hau-Lin; Shi, Guey-Yueh

    2013-10-01

    Kringle 1-5 (K1-5), an endogenous proteolytic fragment of human plasminogen (Plg), is an angiostatin-related protein that inhibits angiogenesis. Many angiostatin-related proteins have been identified, but the detailed molecular mechanisms underlying their antiangiogenic effects remain unclear. Thrombomodulin (TM) is a transmembrane glycoprotein that plays a major role in the anticoagulation process in endothelial cells. Previously, we demonstrated that recombinant TM could interact with Plg to enhance Plg activation. In the present study, we investigated the interaction between TM and K1-5, and their functions in endothelial cells. We found that K1-5 colocalized with TM and directly interacted with TM through the TM lectin-like domain. After K1-5 interacted with TM, it induced TM internalization and degradation. In addition, the K1-5-induced TM internalization and degradation in proteasomes after ubiquitin modification were dependent on protein kinase A (PKA). Moreover, a PKA-specific inhibitor reversed the effects of K1-5 on cell migration and tube formation. Consistent with these findings, TM overexpression resulted in increased cell migration; moreover, K1-5 inhibited the increase of TM-mediated cell migration in a PKA-dependent manner. We determined that TM acts as a K1-5 receptor and that K1-5 induces TM internalization, ubiquitination, and degradation through the PKA pathway, by which K1-5 may inhibit endothelial cell migration and tube formation. PMID:23880609

  11. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Grazia Marano

    2012-05-01

    Full Text Available Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethylfuran as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.The most active compound, (4-{[(β-D-galactopyranosyloxy]methyl}furan-3-ylmethyl hydrogen sulfate (GSF, inhibited the activation of matrix-metalloproteinase-2 (MMP-2 as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM proteins, fibrinogen and fibronectin.In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyloxy]methyl}furan (BGF nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethylfuran, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site.These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  12. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Science.gov (United States)

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  13. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  14. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading.

    Science.gov (United States)

    Spatz, Jordan M; Ellman, Rachel; Cloutier, Alison M; Louis, Leeann; van Vliet, Miranda; Suva, Larry J; Dwyer, Denise; Stolina, Marina; Ke, Hua Zhu; Bouxsein, Mary L

    2013-04-01

    Sclerostin, a product of the SOST gene produced mainly by osteocytes, is a potent negative regulator of bone formation that appears to be responsive to mechanical loading, with SOST expression increasing following mechanical unloading. We tested the ability of a murine sclerostin antibody (SclAbII) to prevent bone loss in adult mice subjected to hindlimb unloading (HLU) via tail suspension for 21 days. Mice (n = 11-17/group) were assigned to control (CON, normal weight bearing) or HLU and injected with either SclAbII (subcutaneously, 25 mg/kg) or vehicle (VEH) twice weekly. SclAbII completely inhibited the bone deterioration due to disuse, and induced bone formation such that bone properties in HLU-SclAbII were at or above values of CON-VEH mice. For example, hindlimb bone mineral density (BMD) decreased -9.2% ± 1.0% in HLU-VEH, whereas it increased 4.2% ± 0.7%, 13.1% ± 1.0%, and 30.6% ± 3.0% in CON-VEH, HLU-SclAbII, and CON-SclAbII, respectively (p bone volume, assessed by micro-computed tomography (µCT) imaging of the distal femur, was lower in HLU-VEH versus CON-VEH (p bone outcomes appeared to be enhanced by normal mechanical loading. Altogether, these results confirm the ability of SclAbII to abrogate disuse-induced bone loss and demonstrate that sclerostin antibody treatment increases bone mass by increasing bone formation in both normally loaded and underloaded environments.

  15. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.

    Science.gov (United States)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-12-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors.

  16. Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT

    Science.gov (United States)

    Aguirre, Anna Rita; Loureiro, Jesús; Abensur, Hugo; Sandoval, Pilar; Sánchez-Tomero, José Antonio; del Peso, Gloria; Jiménez-Heffernan, José Antonio; Ruiz-Carpio, Vicente; Selgas, Rafael; López-Cabrera, Manuel; Aguilera, Abelardo; Liappas, Georgios

    2015-01-01

    Preservation of peritoneal membrane (PM) is essential for long-term survival in peritoneal dialysis (PD). Continuous presence of PD fluids (PDF) in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT) and endothelial-to-mesenchymal transition (Endo-MT) seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group) presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group). Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-β, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT. PMID:26688823

  17. Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT

    Directory of Open Access Journals (Sweden)

    Guadalupe Tirma González-Mateo

    2015-01-01

    Full Text Available Preservation of peritoneal membrane (PM is essential for long-term survival in peritoneal dialysis (PD. Continuous presence of PD fluids (PDF in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT and endothelial-to-mesenchymal transition (Endo-MT seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group. Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-β, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT.

  18. STAT5b as Molecular Target in Pancreatic Cancer—Inhibition of Tumor Growth, Angiogenesis, and Metastases

    Directory of Open Access Journals (Sweden)

    Christian Moser

    2012-10-01

    Full Text Available The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC. We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometastatic and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angiogenesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.

  19. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  20. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells.

    Science.gov (United States)

    Sousa, M; Machado, V; Costa, R; Figueira, M E; Sepodes, B; Barata, P; Ribeiro, L; Soares, R

    2016-07-01

    Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory, and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signaling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10 to 250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay), and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI50  = 87,64 ± 6,59 μg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signaling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. J. Cell. Biochem. 117: 1604-1612, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590362

  1. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  2. Betaine inhibits in vitro and in vivo angiogenesis through suppression of the NF-κB and Akt signaling pathways.

    Science.gov (United States)

    Yi, Eui-Yeun; Kim, Yung-Jin

    2012-11-01

    Angiogenesis is defined as the formation of new blood vessels form existing vessels surrounding a tumor. The process of angiogenesis is an important step for tumor growth and metastasis, as is inflammation. Thus, angiogenesis inhibitors that suppress inflammation have been studied as an anticancer treatment. Recently, many research groups have investigated the anti-angiogenic activity of natural compounds since some have been demonstrated to have anticancer properties. Among many natural compounds, we focused on betaine, which is known to suppress inflammation. Betaine, trimethylglycine (TMG), was first discovered in the juice of sugar beets and was later shown to be present in wheat, shellfish and spinach. In Southeast Asia, betaine is used in traditional oriental medicine for the treatment of hepatic disorders. Here, we report the anti-angiogenic action of betaine. Betaine inhibited in vitro angiogenic cascade, tube formation, migration and invasion of human umbilical vein endothelial cells (HUVECs). Betaine also inhibited in vivo angiogenesis in the mouse Matrigel plug assay. The mRNA expression levels of basic fibroblast growth factor (bFGF), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in HUVECs were decreased by betaine treatment. In addition, betaine suppressed NF-κB and Akt activation. PMID:22940742

  3. A mathematical model of systemic inhibition of angiogenesis in metastatic development

    OpenAIRE

    Benzekry, Sebastien; Gandolfi, Alberto; Hahnfeldt, Philip

    2013-01-01

    Nous pr\\'{e}sentons un mod\\'{e}le math\\'{e}matique d\\'{e}crivant le d\\'{e}veloppement temporel d'une population de tumeurs en interactions mutuelles \\textit{via} des signaux d'inhibition de l'angiog\\'{e}n\\'{e}se. Bas\\'{e} sur une d\\'{e}rivation biophysique, il d\\'{e}crit la dynamique, \\'{a} l'\\'{e}chelle de l'organisme, qui r\\'{e}sulte de l'influence relative de trois processus: naissance (diss\\'{e}mination de tumeurs secondaires), croissance et inhibition (de l'angiog\\'{e}n\\'{e}se). Le mod\\'...

  4. TSU-68 (SU6668) inhibits local tumor growth and liver metastasis of human colon cancer xenografts via anti-angiogenesis.

    Science.gov (United States)

    Yorozuya, Kyoko; Kubota, Tetsuro; Watanabe, Masahiko; Hasegawa, Hirotoshi; Ozawa, Soji; Kitajima, Masaki; Chikahisa, Lumi Muramatsu; Yamada, Yuji

    2005-09-01

    A number of receptor tyrosine kinases (RTKs) are involved in angiogenesis. TSU-68 (SU-6668) was developed as an inhibitor of RTKs involved in VEGF, bFGF and PDGF signaling, which then inhibits endothelial cell proliferation. We investigated the antitumor effects of TSU-68 against human colon cancer xenografts in male SCID mice and its anti-angiogenic activity using a dorsal air-sac (DAS) assay. TSU-68 was administered orally at a dose of 200 mg/kg twice daily. Mice bearing human colon carcinoma, HT-29, or WiDr xenografts were treated for 16 days. To determine the effect on hepatic metastasis, cell suspensions of HT-29 or WAV-I were injected into the spleen of mice on day 0, and mice treated for 28 days starting from day 1. For the DAS assay, HT-29, WiDr or WAV-I cells suspended in PBS at 2 x 10(7) cells/Millipore chamber were implanted subcutaneously into SCID mice, which were then treated from day 0 to 5, On day 6, the anti-angiogenic effects were assessed. Results indicated that TSU-68 significantly inhibited the growth of subcutaneous tumors. In the hepatic metastasis model, liver weights of the TSU-68-treated group were significantly reduced, compared to those of control mice. In the DAS assay, the angiogenic indices of the treated groups were significantly decreased for HT-29, WiDr and WAV-I tumors, with T/C ratios of 13.4, 50 and 35.3%, respectively. As TSU-68 significantly inhibited tumor growth and liver metastasis formation of human colon cancer xenografts, probably through anti-angiogenic activity, this agent may be useful for the treatment of colon cancer.

  5. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Federica Finetti

    Full Text Available BACKGROUND: Blockade of Prostaglandin (PG E(2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1 gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β increased mPGES-1 expression, PGE(2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF and fibroblast growth factor-2 (FGF-2 expression. AF3485 reduced PGE(2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION: Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.

  6. ADENOVIRUS-MEDIATED EXPRESSION OF PEX, A NONCATALYTIC FRAGMENT OF MATRIX METALLOPROTEINASE-2, AND IT'S INHIBITION ON ANGIOGENESIS AND TUMOR GROWTH

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  7. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  8. Angiogenesis and tumor

    Directory of Open Access Journals (Sweden)

    Kamran Mansouri

    2010-12-01

    Full Text Available Angiogenesis, the process of new blood vessel formation from existing ones, plays an important role in the physiologic circumstances such as embryonic development, placenta formation, and wound healing. It is also crucial to progress of pathogenic processes of a variety of disorders, including tumor growth and metastasis. In general, angiogenesis process is a multi-factorial and highly structured sequence of cellular events comprising migration, proliferation and differentiation of endothelial cells and finally vascular formation, maturation and remodeling.Thereby, angiogenesis inhibition as a helping agent to conventional therapies such as chemotherapy and radiation has attracted the scientists’ attentions studying in this field.

  9. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection.

    Science.gov (United States)

    Chan, Kuan Rong; Zhang, Summer Li-Xin; Tan, Hwee Cheng; Chan, Ying Kai; Chow, Angelia; Lim, Angeline Pei Chiew; Vasudevan, Subhash G; Hanson, Brendon J; Ooi, Eng Eong

    2011-07-26

    The interaction of antibodies, dengue virus (DENV), and monocytes can result in either immunity or enhanced virus infection. These opposing outcomes of dengue antibodies have hampered dengue vaccine development. Recent studies have shown that antibodies neutralize DENV by either preventing virus attachment to cellular receptors or inhibiting viral fusion intracellularly. However, whether the antibody blocks attachment or fusion, the resulting immune complexes are expected to be phagocytosed by Fc gamma receptor (FcγR)-bearing cells and cleared from circulation. This suggests that only antibodies that are able to block fusion intracellularly would be able to neutralize DENV upon FcγR-mediated uptake by monocytes whereas other antibodies would have resulted in enhancement of DENV replication. Using convalescent sera from dengue patients, we observed that neutralization of the homologous serotypes occurred despite FcγR-mediated uptake. However, FcγR-mediated uptake appeared to be inhibited when neutralized heterologous DENV serotypes were used instead. We demonstrate that this inhibition occurred through the formation of viral aggregates by antibodies in a concentration-dependent manner. Aggregation of viruses enabled antibodies to cross-link the inhibitory FcγRIIB, which is expressed at low levels but which inhibits FcγR-mediated phagocytosis and hence prevents antibody-dependent enhancement of DENV infection in monocytes. PMID:21746897

  10. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    Directory of Open Access Journals (Sweden)

    Sun Andy

    2010-04-01

    Full Text Available Abstract Background Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. Methods The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP-2, MMP-9, and urokinase plasminogen activator (uPA was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. Results THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression

  11. Selenium Induces an Anti-tumor Effect Via Inhibiting Intratumoral Angiogenesis in a Mouse Model of Transplanted Canine Mammary Tumor Cells.

    Science.gov (United States)

    Li, Wenyu; Guo, Mengyao; Liu, Yuzhu; Mu, Weiwei; Deng, Ganzhen; Li, Chengye; Qiu, Changwei

    2016-06-01

    Selenium (Se) has been widely reported to possess anti-tumor effects. Angiogenesis is the formation of new blood vessels and is required to supply oxygen, nutrients, and growth factors for tumor growth, progression, and metastasis. To explore whether the anti-tumor effect of Se was associated with angiogenesis in vivo, we studied the effects of sodium selenite (Sel) and methylseleninic acid (MSA) on tumors induced by canine mammary tumor cells (CMT1211) in mice; cyclophosphamide (CTX) served as a positive control. The results showed that the Se content was significantly increased in the Sel and MSA groups. Se significantly inhibited the tumor weights and volumes. Large necrotic areas and scattered and abnormal small necrotic areas were observed in the Se treatment group. Immunofluorescence double staining showed a reduction in the microvessel density (MVD) and increment in the vessel maturation index (VMI) compared with the untreated control group. As expected, the protein and mRNA levels of the angiogenesis factors angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) were decreased in the Se-treated tumors by IHC, as shown by western blotting and RT-QPCR. We also found that organic Se MSA provided stronger inhibition of tumor growth compared with inorganic sodium selenite (Sel). Altogether, our results indicated that Se exerted anti-tumor effects in vivo at least partially by inhibiting angiogenic factors. PMID:26507439

  12. Direct binding of recombinant plasminogen kringle 1-3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM.

    Science.gov (United States)

    Youn, Mi-Ran; Park, Mee-Hee; Choi, Chang-Ki; Ahn, Byung-Cheol; Kim, Hak Yong; Kang, Sang Sun; Hong, Yong-Kil; Joe, Young Ae; Kim, Jong-Soo; You, Weon-Kyoo; Lee, Hyo-Sil; Chung, Soo-Il; Chang, Soo-Ik

    2006-05-12

    Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 microM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin. PMID:16564503

  13. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration.

    Science.gov (United States)

    Park, J Y; Shin, M S; Kim, S N; Kim, H Y; Kim, K H; Shin, K S; Kang, K S

    2016-04-01

    Although the peel of the hallabong (Citrus sphaerocarpa) fruit is rich in polysaccharides, which are valuable dietary ingredients for human health, it is normally wasted. The present study aimed to utilize the peel waste and identify properties it may have against breast cancer metastasis. Hallabong peel extract containing crude polysaccharides was fractionated by gel permeation chromatography to produce four different polysaccharide fractions (HBE-I, -II, -III, and -IV). The HBE polysaccharides significantly blocked tube formation of human umbilical vein vascular endothelial cells (HUVECs), at a concentration of 12.5 or 25 μg/mL. Tube formation appeared to be more sensitive to HBE-II than to other HBE polysaccharides. HBE-II also inhibited breast cancer cell migration, through downregulation of matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 triple-negative breast cancer cells. Therefore, inhibition of tube formation and MMP-9-mediated migration observed in HUVEC and MDA-MB-231 cells, respectively, are likely to be important therapeutic targets in triple-negative breast cancer metastasis. PMID:26778161

  14. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  15. Cathepsin B and uPAR Knockdown Inhibits Tumor-induced Angiogenesis by Modulating VEGF Expression in Glioma

    OpenAIRE

    MALLA, RAMA RAO; Gopinath, Sreelatha; Christopher S Gondi; Alapati, Kiranmai; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2011-01-01

    Angiogenesis, which is the process of sprouting of new blood vessels from pre-existing vessels, is vital for tumor progression. Proteolytic remodeling of extracellular matrix is a key event in vessel sprouting during angiogenesis. Urokinase plasminogen activator receptor (uPAR) and cathepsin B are both known to be overexpressed and implicated in tumor angiogenesis. In the present study, we observed that knockdown of uPAR and cathepsin B using puPAR (pU), pCathepsin B (pC), and a bicistronic c...

  16. Antibody to a molecular marker of cell position inhibits synapse formation in retina.

    OpenAIRE

    Trisler, D.; Bekenstein, J; Daniels, M P

    1986-01-01

    A topographic gradient of TOP molecules in retina can be used to identify neuron position. Antibody to TOP from hybridoma cells that were injected into in vivo embryo eyes diffused into the retina and bound in a topographic gradient of [antibody.TOP] ([Ab.TOP]) complexes. Synapse formation in retina was inhibited in the presence of anti-TOP antibody. This suggests that TOP is involved in synapse formation and that recognition of position by neurons is necessary for normal synapse formation.

  17. Gamma Interferon Inhibits Production of Anti-OspA Borreliacidal Antibody In Vitro

    OpenAIRE

    Munson, Erik L.; Du Chateau, Brian K.; Jensen, Jani R.; Callister, Steven M.; DeCoster, David J.; Schell, Ronald F.

    2002-01-01

    The ability of a Lyme borreliosis vaccine to induce and maintain sustained levels of borreliacidal antibody is necessary for prolonged protection against infection with Borrelia burgdorferi. Vaccination against infection with B. burgdorferi could be improved by determining the mechanism(s) that influences the production of protective borreliacidal antibody. Borreliacidal antibody was inhibited in cultures of lymph node cells obtained from C3H/HeJ mice vaccinated with formalin-inactivated B. b...

  18. Nanotherapy silencing the interleukin-8 gene produces regression of prostate cancer by inhibition of angiogenesis.

    Science.gov (United States)

    Aalinkeel, Ravikumar; Nair, Bindukumar; Chen, Chih-Kuang; Mahajan, Supriya D; Reynolds, Jessica L; Zhang, Hanguang; Sun, Haotian; Sykes, Donald E; Chadha, Kailash C; Turowski, Steven G; Bothwell, Katelyn D; Seshadri, Mukund; Cheng, Chong; Schwartz, Stanley A

    2016-08-01

    Interleukin-8 (IL-8) is a pro-angiogenic cytokine associated with aggressive prostate cancer (CaP). We detected high levels of IL-8 in sera from patients with CaP compared with healthy controls and patients with benign prostatic hypertrophy. This study examines the role of IL-8 in the pathogenesis of metastatic prostate cancer. We developed a biocompatible, cationic polylactide (CPLA) nanocarrier to complex with and efficiently deliver IL-8 small interfering RNA (siRNA) to CaP cells in vitro and in vivo. CPLA IL-8 siRNA nanocomplexes (nanoplexes) protect siRNA from rapid degradation, are non-toxic, have a prolonged lifetime in circulation, and their net positive charge facilitates penetration of cell membranes and subsequent intracellular trafficking. Administration of CPLA IL-8 siRNA nanoplexes to immunodeficient mice bearing human CaP tumours produced significant antitumour activities with no adverse effects. Systemic (intravenous) or local intra-tumour administration of IL-8 siRNA nanoplexes resulted in significant inhibition of CaP growth. Magnetic resonance imaging and ultrasonography of experimental animals demonstrated reduction of tumour perfusion in vivo following nanoplex treatment. Staining of tumour sections for CD31 confirmed significant damage to tumour neovasculature after nanoplex therapy. These studies demonstrate the efficacy of IL-8 siRNA nanotherapy for advanced, treatment-resistant human CaP. PMID:27159450

  19. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  20. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  1. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  2. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  3. Insulin action is blocked by a monoclonal antibody that inhibits insulin receptor kinase

    International Nuclear Information System (INIS)

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin

  4. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor-1 receptor signaling.

    Science.gov (United States)

    Tsai, An-Chi; Pan, Shiow-Lin; Lai, Chin-Yu; Wang, Chih-Ya; Chen, Chien-Chih; Shen, Chien-Chang; Teng, Che-Ming

    2011-07-01

    Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10⁻⁸ M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer. PMID:20951021

  5. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Directory of Open Access Journals (Sweden)

    Gunnar Houen

    2013-06-01

    Full Text Available Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti

  6. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  7. Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro.

    Science.gov (United States)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D; Larsen, Line S; Houen, Gunnar

    2013-01-01

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  8. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    International Nuclear Information System (INIS)

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  9. Antibodies against electronegative LDL inhibit atherosclerosis in LDLr-/- mice

    Directory of Open Access Journals (Sweden)

    D.M. Grosso

    2008-12-01

    Full Text Available In order to determine the effect of antibodies against electronegative low-density lipoprotein LDL(- on atherogenesis, five groups of LDL low receptor-deficient (LDLr-/- mice (6 per group were immunized with the following antibodies (100 µg each: mouse anti-LDL(- monoclonal IgG2b, rabbit anti-LDL(- polyclonal IgG or its Fab fragments and mouse irrelevant monoclonal IgG and non-immunized controls. Antibodies were administered intravenously one week before starting the hypercholesterolemic diet (1.25% cholesterol and then every week for 21 days. The passive immunization with anti-LDL(- monoclonal IgG2b, polyclonal antibody and its derived Fab significantly reduced the cross-sectional area of atherosclerotic lesions at the aortic root of LDLr-/- mice (28.8 ± 9.7, 67.3 ± 17.02, 56.9 ± 8.02 µm² (mean ± SD, respectively compared to control (124.9 ± 13.2 µm². Vascular cell adhesion molecule-1 protein expression, quantified by the KS300 image-analyzing software, on endothelium and the number of macrophages in the intima was also decreased in aortas of mice treated with anti-LDL(- monoclonal antibody (3.5 ± 0.70 per field x 10 compared to controls (21.5 ± 3.5 per field x 10. Furthermore, immunization with the monoclonal antibody decreased the concentration of LDL(- in blood plasma (immunized: 1.0 ± 1.4; control: 20.5 ± 3.5 RLU, the amount of cholesterol oxides in plasma (immunized: 4.7 ± 2.7; control: 15.0 ± 2.0 pg COx/mg cholesterol and liver (immunized: 2.3 ± 1.5; control: 30.0 ± 26.0 pg COx/mg cholesterol, and the hepatic content of lipid hydroperoxides (immunized: 0.30 ± 0.020; control: 0.38 ± 0.15 ng/mg protein. In conclusion, antibodies against electronegative LDL administered intravenously may play a protective role in atherosclerosis.

  10. Anti-angiogenesis therapies: their potential in cancer management

    Directory of Open Access Journals (Sweden)

    Andrew Eichholz

    2010-05-01

    Full Text Available Andrew Eichholz, Shairoz Merchant, Andrew M GayaDepartment of Clinical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United KingdomAbstract: Angiogenesis plays an important role in normal animal growth and development. This process is also vital for the growth of tumors. Angiogenesis inhibitors have a different mechanism of action to traditional chemotherapy agents and radiation therapy. The angiogenesis inhibitors can act synergistically with conventional treatments and tend to have non-overlapping toxicities. There are four drugs which have a proven role in treating cancer patients. Bevacizumab is a humanized monoclonal antibody that binds to and neutralizes vascular endothelial growth factor (VEGF. Sunitinib and sorafenib inhibit multiple tyrosine kinase receptors that are important for angiogenesis. Thalidomide inhibits the activity of basic fibroblast growth factor-2 (bFGF. The licensed indications and the supporting evidence are discussed. Other drugs are currently being tested in clinical trials and the most promising of these drugs are discussed. Aflibercept, also known as VEGF-trap, is a recombinant fusion protein that binds to circulating VEGF. The vascular disrupting agents act by targeting established blood vessels. These exciting new treatments have the potential to transform the management of cancer.Keywords: angiogenesis, bevacizumab, tyrosine kinase inhibitors, thalidomide, aflibercept, vascular disrupting agents

  11. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading.

    Science.gov (United States)

    Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D; Lanza, Gregory M; Silva, Matthew J

    2014-09-01

    Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αv β3 integrin-targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF-loaded limbs was increased compared with non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF- and LBF-loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αv β3 integrin-mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research. PMID:24644077

  12. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasuyuki, E-mail: y.fujii@po.rd.taisho.co.jp [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Igarashi, Yasuyuki [Laboratory of Biomembrane and Biofunctional Chemistry, Hokkaido University, Sapporo, Hokkaido 060-0812 (Japan); Goitsuka, Ryo [Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022 (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  13. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    Science.gov (United States)

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  14. Cancer gene therapy targeting angiogenesis: An updated review

    OpenAIRE

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized an...

  15. Antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity

    International Nuclear Information System (INIS)

    Two site-specific antibodies that immunoprecipitate the human insulin receptor have been prepared by immunizing rabbits with chemically synthesized peptides derived from the cDNA-predicted amino acid sequence of the β subunit of the proreceptor. Antibodies to the carboxyl terminus (AbP5) and to a domain around tyrosine-960 (AbP4) specifically recognize the β subunit of the receptor on immunoblots. Both antibodies immunoprecipitated 125I-labeled insulin-receptor complexes and the autophosphorylated receptor. Although neither antibody inhibited insulin binding to the receptor, both insulin-dependent autophosphorylation and exogenous substrate phosphorylation were inhibited by AbP4. Inhibition by AbP4 was dependent upon the phosphorylation state of the receptor; it was not detected when the receptor was autophosphorylated prior to addition of AbP4. AbP4 did not inhibit activity of the related epidermal growth factor (EGF)-receptor tyrosine protein kinase nor did it inhibit the activity of cAMP-dependent kinase or protein kinase C. The observation that an antibody directed to residues 952-967 of the proreceptor neutralizes the protein kinase activity of the β subunit suggest that this region may play a critical role in the function of the hormone-dependent, protein tyrosine-specific kinase activity of the insulin receptor

  16. Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Shuhai Li; Hui Tian; Weiming Yue; Lin Li; Cun Gao; Libo Si; Wenjun Li

    2013-01-01

    Metastasis-associated protein 1 (MTA1) high expression has been detected in a wide variety of human aggressive tumors and plays important roles in the malignant biological behaviors such as invasion,metastasis,and angiogenesis.However,the specific roles and mechanisms of MTA1 protein in regulating the malignant behaviors of non-small-cell lung cancer (NSCLC) cells still remain unclear.To elucidate the detailed functions of MTA1 protein,we down-regulated the MTA1 protein expression in NSCLC cell line by RNA interference (RNAi) in vitro,and found that down-regulation of MTA1 protein significantly inhibited the migration and invasion potentials of 95D cells.Further research revealed that down-reguiation of MTA1 protein significantly decreased the activity of matrix metalloproteinase-9,which could be the mechanism responsible for the inhibition of 95D cells migration and invasion.In addition,the tube formation assay demonstrated that the number of complete tubes induced by the conditioned medium of MTA1-siRNA 95D cells was significantly smaller than that of 95D cells.These findings demonstrate that MTA1 protein plays important roles in regulating the migration,invasion,and angiogenesis potentials of 95D cells,suggesting that MTA1 protein down-regulation by RNAi might be a novel therapeutic approach to inhibit the progression of NSCLC.

  17. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  18. Recombinant snake venom cystatin inhibits tumor angiogenesis in vitro and in vivo associated with downregulation of VEGF-A165, Flt-1 and bFGF.

    Science.gov (United States)

    Xie, Qun; Tang, Nanhong; Wan, Rong; Qi, Yuanlin; Lin, Xu; Lin, Jianyin

    2013-05-01

    Previous studies have shown that recombinant snake venom cystatin (sv-cystatin) inhibits the invasion and metastasis of tumor cells in vitro and in vivo. The purpose of this study was to investigate the ability of recombinant sv-cystatin to inhibit tumor angiogenesis in vitro and in vivo, and the mechanisms underlying this effect. Recombinant sv-cystatin inhibited proliferation of human umbilical vein endothelial cells (HUVECs) at 100 and 200 μg/mL after 72, 96 and 120 h. Recombinant sv-cystatin also inhibited tumor-endothelial cell adhesion at 25, 50, 100 and 200 μg/mL. Recombinant sv-cystatin inhibited capillary-like tube formation by HUVECs at 10, 25, 50, 100 and 200 μg/mL following 12, 24 and 36 h incubation. Furthermore, recombinant sv-cystatin significantly suppressed microvessel density (MVD) of lung tumor colonies in C57BL/6 mice inoculated in the lateral tail vein with B16F10 melanoma cells. Administration of recombinant sv-cystatin significantly decreased MVD of primary tumor tissues in nude mice implanted subcutaneously with human hepatocellular carcinoma cells (MHCC97H). Exposure of B16F10 and MHCC97H cells to increasing doses of recombinant sv-cystatin suppressed secretion of vascular endothelial growth factor (VEGF)-A165 and basic fibroblast growth factor (bFGF) into the surrounding medium (P cystatin (P cystatin inhibits tumor angiogenesis associated with downregulation of VEGF-A165, Flt-1 and bFGF. This suggests that recombinant sv-cystatin may have potential pharmaceutical applications as an antiangiogenic and antimetastatic therapeutic agent.

  19. Tumor Angiogenesis: Insights and Innovations

    Directory of Open Access Journals (Sweden)

    Fernando Nussenbaum

    2010-01-01

    Full Text Available Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.

  20. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition

    Directory of Open Access Journals (Sweden)

    Xiaocong Yu

    2016-01-01

    Full Text Available Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89 on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells.

  1. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition.

    Science.gov (United States)

    Yu, Xiaocong; Duval, Mark; Gawron, Melissa; Posner, Marshall R; Cavacini, Lisa A

    2016-01-01

    Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89) on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv) molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells. PMID:27419146

  2. {sup 177}Lu-labeled-VG76e monoclonal antibody in tumor angiogenesis: a comparative study using DOTA and DTPA chelating systems

    Energy Technology Data Exchange (ETDEWEB)

    Fani, M.; Psimadas, D. [Inst. of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research ' ' Demokritos' ' , Athens (Greece); Biomedica Life Sciences S.A., Athens (Greece); Bouziotis, P.; Gourni, E.; Varvarigou, A.D. [Inst. of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research ' ' Demokritos' ' , Athens (Greece); Harris, A.L. [Weatherall Inst. of Molecular Medicine, Cancer Research U.K., Univ. of Oxford (United Kingdom); Loudos, G. [Biomedical Simulations and Imaging Lab., National Technical Univ. of Athens (Greece); Maecke, H.R. [Div. of Radiological Chemistry, Univ. Hospital Basel (Switzerland)

    2007-07-01

    Vascular endothelial growth factor (VEGF) is one of the molecules which regulate angiogenesis, a phenomenon observed in many diseases, including cancer. VG76e, an anti-VEGF monoclonal antibody, was labeled with {sup 177}Lu via p-SCN-Bz-DOTA and CHX-A''-DTPA chelating systems, in order to investigate its possible therapeutic use. Labeling was performed by a 30 min incubation of {sup 177}LuCl{sub 3} and each immunoconjugate, at 37 C. Radiochemical analysis showed the formation of a single radioactive species, at a yield higher than 98%, for both immunoconjugates. Kits have been formulated for both VG76e-DOTA and VG76e-DTPA. Stability studies, in the presence of a competitor excess, showed that both radiolabeled species remained sufficiently stable (95%) for at least 48 h. Biodistribution results in normal mice were similar for both radioimmunoconjugates, with no significant bone uptake. Gamma camera images of tumor-bearing mice showed satisfactory visualization of the tumor 24 h p.i., while a higher uptake was observed at 48 h p.i. Our findings indicate that both the bifunctional chelating agents p-SCN-Bz-DOTA and CHX-A''-DTPA can be used for the labeling of VG76e with {sup 177}Lu, with high labeling yield and stability. Their in vivo behaviour in normal and tumor-bearing mice looks promising and they can be successfully used for tumor imaging studies. (orig.)

  3. Global Tumor RNA Expression in Early Establishment of Experimental Tumor Growth and Related Angiogenesis following Cox-Inhibition Evaluated by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Kent Lundholm

    2007-01-01

    Full Text Available Altered expression of COX-2 and overproduction of prostaglandins, particularly prostaglandin E2, are common in malignant tumors. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs attenuate tumor net growth, tumor related cachexia, improve appetite and prolong survival. We have also reported that COX-inhibition (indomethacin interfered with early onset of tumor endothelial cell growth, tumor cell proliferation and apoptosis. It is however still unclear whether such effects are restricted to metabolic alterations closely related to eicosanoid pathways and corresponding regulators, or whether a whole variety of gene products are involved both up- and downstream effects of eicosanoids. Therefore, present experiments were performed by the use of an in vivo, intravital chamber technique, where micro-tumor growth and related angiogenesis were analyzed by microarray to evaluate for changes in global RNA expression caused by indomethacin treatment. Indomethacin up-regulated 351 and down-regulated 1852 genes significantly (p < 0.01; 1066 of these genes had unknown biological function. Genes with altered expression occurred on all chromosomes. Our results demonstrate that indomethacin altered expression of a large number of genes distributed among a variety of processes in the carcinogenic progression involving angiogenesis, apoptosis, cell-cycling, cell adhesion, inflammation as well as fatty acid metabolism and proteolysis. It remains a challenge to distinguish primary key alterations from secondary adaptive changes in transcription of genes altered by cyclooxygenase inhibition.

  4. A potential novel treatment strategy: inhibition of angiogenesis and inflammation by resveratrol for regression of endometriosis in an experimental rat model.

    Science.gov (United States)

    Ozcan Cenksoy, Pinar; Oktem, Mesut; Erdem, Ozlem; Karakaya, Cengiz; Cenksoy, Cahit; Erdem, Ahmet; Guner, Haldun; Karabacak, Onur

    2015-03-01

    The aim of our study was to evaluate the effectiveness of resveratrol in experimentally induced endometrial implants in rats through inhibiting angiogenesis and inflammation. Endometrial implants were surgically induced in 24 female Wistar-Albino rats in the first surgery. After confirmation of endometriotic foci in the second surgery, the rats were divided into resveratrol (seven rats), leuprolide acetate (eight rats), and control (seven rats) groups and medicated for 21 d. In the third surgery, the measurements of mean areas and histopathological analysis of endometriotic lesions, VEGF, and MCP-1 measurements in blood and peritoneal fluid samples, and immunohistochemical staining were evaluated. After treatment, significant reductions in mean areas of implants (p treatment were also significantly lower in the resveratrol and leuprolide acetate groups. Resveratrol appears to be a potential novel therapeutic agent in the treatment of endometriosis through inhibiting angiogenesis and inflammation. Further studies are needed to determine the optimum effective dose in humans and to evaluate other effects on reproductive physiology.

  5. Inhibitors of Angiogenesis.

    Science.gov (United States)

    Büning, H; Hacker, U T

    2016-01-01

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented. PMID:27236560

  6. 强力霉素抑制角膜移植后的新生血管%Doxycycline inhibits corneal angiogenesis after keratoplasty

    Institute of Scientific and Technical Information of China (English)

    黎韦华; 徐建刚; 张雪菲; 凌士奇

    2009-01-01

    能抑制角膜移植后角膜新生血管的生长,延长植片的生存时间.%BACKROUND:Corneal hemangiogenesis occurs in 40%-60%patients after keratoplasty.Blood vessel is one of the high risk factors for corneal immunological rejection.To inhibit corneal hemangiogenesis would prolong the survival time of the grafts and promote the successful rate of the keratoplasty.OBJECTIVE:To explore the inhibitive effects of doxycycline on corneal angiogenesis after keratoplasty.DESIGN,TIME AND SETTING:A randomized controlled animal experiment was performed at the State Key Laboratory of Ophthalmology(No.2006DA105054),Zhongshan Ophthalmic Center,Sun Yat-sen University from March to August 2007.MATERIALS:A total of 48 healthy dean Sprague Dawley rats served as recipients(right eye)and 24 Wistar rats as donors(both eyes).CD31-PEfluorescent antibody was obtained from Sigma,USA.Sandwich enzyme-linked immunosorbent assay(ELISA)kit for vascular endothelial growth factor(VEGF)was brought from RapidBio,USA.METHODS:Corneal allogenic transplantation models were established in rats.Recipients were equally and randomly divided into 2 groups:saline control group and doxycycline group.Twenty minutes prior to surgery,mydriasis was performed using 1%atropine,with a diameter of 2.75 mm of implant and 2.5 mm of implant bed.In the saline control group,conjunctiva of the right eye received saline,three times a day,following surgery.In the doxycycline group,conjunctiva of the right eye received 1%doxycycline,three times a day,till 30 days following surgery.MAIN OUTCOME MEASURES:The following parameters were measured:corneal angiogenesis using immunofluorescence,expression of VEGF protein by using ELISA.RESULTS:Compared with the survival time of saline control group[(9.67±2.73)days],the mean survival time of doxycycline group[(20.67±3.01)days]was significantly prolonged(P<0.01).The mean percentages of neovascularized corneal area in the saline control group were(4.00±1.00)%,(14.33±4

  7. Downregulation of FoxM1 inhibits proliferation, invasion and angiogenesis of HeLa cells in vitro and in vivo.

    Science.gov (United States)

    Chen, Hong; Zou, Yang; Yang, Hong; Wang, Jingjing; Pan, Hong

    2014-12-01

    FoxM1 is a specific transcription factor that has an important function in aggressive human carcinomas, including cervical cancer. However, the specific function and internal molecular mechanism in cervical cancer remain unclear. In this study, RNAi-mediated FoxM1 knockdown inhibited cell growth. This process also decreased the migration and invasion activities of HeLa cells in vitro. Downregulation of FoxM1 inhibited tumor growth and angiogenesis in vivo. In addition, the expressions of uPA, matrix metalloproteinase (MMP)-2, MMP-9 and VEGF were significantly decreased in vitro and in vivo. These results suggested that the inactivation of FoxM1 could be a novel therapeutic target for cervical cancer treatment.

  8. Streptococcus pneumoniae-Induced Inhibition of Rat Ependymal Cilia Is Attenuated by Antipneumolysin Antibody

    OpenAIRE

    Hirst, Robert A; Mohammed, Bashir J.; Mitchell, Timothy J.; Andrew, Peter W.; O'Callaghan, Christopher

    2004-01-01

    Ciliated ependymal cells line the ventricular surfaces and aqueducts of the brain. In ex vivo experiments, pneumolysin caused rapid inhibition of the ependymal ciliary beat frequency and caused ependymal cell disruption. Wild-type pneumococci and pneumococci deficient in pneumolysin caused ciliary slowing, but penicillin lysis of wild-type, not pneumolysin-deficient, pneumococci increased the extent of ciliary inhibition. This effect was abolished by antipneumolysin antibody. Ependymal ciliar...

  9. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.

    Science.gov (United States)

    Gu, Jian-Wei; Makey, Kristina L; Tucker, Kevan B; Chinchar, Edmund; Mao, Xiaowen; Pei, Ivy; Thomas, Emily Y; Miele, Lucio

    2013-01-01

    The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50-100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression.

  10. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8.

    Science.gov (United States)

    Li, Shiqing; Kussie, Paul; Ferguson, Kathryn M

    2008-02-01

    Therapeutic anticancer strategies that target and inactivate the epidermal growth factor receptor (EGFR) are under intense study in the clinic. Here we describe the mechanism of EGFR inhibition by an antibody drug IMC-11F8. IMC-11F8 is a fully human antibody that has similar antitumor potency as the chimeric cetuximab/Erbitux and might represent a safer therapeutic alternative. We report the X-ray crystal structure of the Fab fragment of IMC-11F8 (Fab11F8) in complex with the entire extracellular region and with isolated domain III of EGFR. We compare this to our previous study of the cetuximab/EGFR interaction. Fab11F8 interacts with a remarkably similar epitope, but through a completely different set of interactions. Both the similarities and differences in binding of these two antibodies have important implications for the development of inhibitors that could exploit this same mechanism of EGFR inhibition.

  11. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C;

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...

  12. Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody

    NARCIS (Netherlands)

    K. Ohnuma (Kei); B.L. Haagmans (Bart); R. Hatano (Ryo); V.S. Raj (Stalin); H. Mou (Huihui); S. Iwata (Satoshi); R.L. Dang (Rong); B.J. Bosch (Berend Jan); C. Morimoto (Chikao)

    2013-01-01

    textabstractWe identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also sign

  13. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative.

    Science.gov (United States)

    Ayala-Nuñez, Nilda V; Jarupathirun, Patsaporn; Kaptein, Suzanne J F; Neyts, Johan; Smit, Jolanda M

    2013-10-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier that SA-17, a doxorubicin derivative, efficiently inhibits the in vitro infection of DENV and yellow fever virus. Here we explored SA-17's mechanism of inhibition and investigated if the compound is active against ADE of DENV infection. Since enhanced infectivity stimulated by antibodies has been observed with standard and immature DENV, both types of virions were included in the study. We observed that SA-17 (i) inhibits DENV infection by preventing binding/entry to the cell and (ii) interferes with antibody-mediated infection of both standard and immature DENV2. SA-17 markedly reduced the infectivity of DENV2 in ADE conditions, with IC50s ranging from 0.26 to 2.89μM. The compound exerted its activity when added before, during, and after antibody-opsonization of standard and immature virus. Thus, molecules with the characteristics of SA-17 may be attractive antiviral agents since they can be used both to block DENV2 entry during primary and secondary infection and to inhibit ADE of standard and immature virus. PMID:23994499

  14. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E;

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or...

  15. Erlotinib-Cisplatin Combination Inhibits Growth and Angiogenesis through c-MYC and HIF-1α in EGFR-Mutated Lung Cancer In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jasmine G. Lee

    2015-02-01

    Full Text Available Combination treatment for non–small cell lung cancer (NSCLC is becoming more popular due to the anticipation that it may be more effective than single drug treatment. In addition, there are efforts to genetically screen patients for specific mutations in light of attempting to administer specific anticancer agents that are most effective. In this study, we evaluate the anticancer and anti-angiogenic effects of low dose erlotinib-cisplatin combination in NSCLC in vitro and in vivo. In NSCLC cells harboring epidermal growth factor receptor (EGFR mutations, combination erlotinib-cisplatin treatment led to synergistic cell death, but there was minimal efficacy in NSCLC cells with wild-type EGFR. In xenograft models, combination treatment also demonstrated greater inhibition of tumor growth compared to individual treatment. The anti-tumor effect observed was secondary to the targeting of angiogenesis, evidenced by decreased vascular endothelial growth factor (VEGF levels and decreased levels of CD31 and microvessel density. Combination treatment targets angiogenesis through down-regulation of the c-MYC/hypoxia inducible factor 1-alpha (HIF-1α pathway. In fact, cell lines with EGFR exon 19 deletions expressed high basal levels of c-MYC and HIF-1α and correlate with robust responses to combination treatment. These results suggest that low dose erlotinib-cisplatin combination exhibits its anti-tumor activity by targeting angiogenesis through the modulation of the c-MYC/HIF-1α/VEGF pathway in NSCLC with EGFR exon 19 deletions. These findings may have significant clinical implications in patients with tumors harboring EGFR exon 19 deletions as they may be particularly sensitive to this regimen.

  16. Murine epidermal growth factor (EGF) fragment (33-42) inhibits both EGF- and laminin-dependent endothelial cell motility and angiogenesis.

    Science.gov (United States)

    Nelson, J; Allen, W E; Scott, W N; Bailie, J R; Walker, B; McFerran, N V; Wilson, D J

    1995-09-01

    Laminin, murine epidermal growth factor (mEGF), and the synthetic laminin peptide Lam.B1(925-933) (a linear peptide from the B1 chain of murine laminin, CDPGY1GSR-amide) all stimulate endothelial cell motility above basal rates, whereas a synthetic mEGF fragment, mEGF33-42 (a linear peptide from the C-loop of mEGF, acetyl-C-[S-Acm]-VIGYSGDR-C-[S-Acm]-amide), inhibits motility. In both human SK HEP-1 and embryonic chick endothelial cells, mEGF33-42 blocks both EGF- and laminin-stimulated locomotion of endothelial cells. In vivo, mEGF33-42 also blocks both laminin- and mEGF-induced angiogenesis in the chick. In the human cell line. Lam.B1(925-933) has an additive effect in coincubation with either laminin or mEGF, but it blocks their effects in the chick cells. Lam.B1(925-933) alone stimulates angiogenesis in the chick but blocks laminin-induced angiogenesis. Thus, mEGF33-42 acts as a general laminin antagonist, whereas Lam.B1(925-933) acts as a laminin agonist in human cells, but in chick cells it acts as a partial antagonist. We propose that the presence of an anionic group at the eighth residue of mEGF33-42 may be the source of the antagonistic effects seen with this peptide as compared with the laminin fragment. These findings have important implications in the design of human antiangiogenic agents, and also in the use of chick models in the study of human disease. PMID:7543818

  17. Ramucirumab (IMC-1121B): a novel attack on angiogenesis.

    Science.gov (United States)

    Spratlin, Jennifer L; Mulder, Karen E; Mackey, John R

    2010-07-01

    Angiogenesis is a critical hallmark of malignancy, and attempts to inhibit this process have characterized the age of biologic anticancer therapies for solid tumors. VEGF receptor-2 is the premier receptor responsible for many of the cancer-driven VEGF-induced spectrum of biologic changes, including modification of blood vessel structure and function, proliferation and migration. Unlike all clinically approved angiogenesis inhibitors, the fully human monoclonal antibody ramucirumab (IMC-1121B) specifically and potently inhibits VEGF receptor-2. Phase I clinical trials have shown safety across a wide range of ramucirumab doses with impressive, albeit early, evidence of both stable disease and partial responses in a variety of tumor types. In this article, we review the current data on ramucirumab and make comparisons with commercially available antiangiogenic agents.

  18. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis.

    Science.gov (United States)

    Zou, Gang-Ming; Karikari, Collins; Kabe, Yasuaki; Handa, Hiroshi; Anders, Robert A; Maitra, Anirban

    2009-04-01

    The apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape-1/Ref-1) is a multi-functional protein, involved in DNA repair and the activation of redox-sensitive transcription factors. The Ape-1/Ref-1 redox domain acts as a cytoprotective element in normal endothelial cells, mitigating the deleterious effects of apoptotic stimuli through induction of survival signals. We explored the role of the Ape-1/Ref-1 redox domain in the maintenance of tumor-associated endothelium, and of endothelial progenitor cells (EPCs), which contribute to tumor angiogenesis. We demonstrate that E3330, a small molecule inhibitor of the Ape-1/Ref-1 redox domain, blocks the in vitro growth of pancreatic cancer-associated endothelial cells (PCECs) and EPCs, which is recapitulated by stable expression of a dominant-negative redox domain mutant. Further, E3330 blocks the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into CD31(+) endothelial progeny. Exposure of PCECs to E3330 results in a reduction of H-ras expression and intracellular nitric oxide (NO) levels, as well as decreased DNA-binding activity of the hypoxia-inducible transcription factor, HIF-1alpha. E3330 also reduces secreted and intracellular vascular endothelial growth factor expression by pancreatic cancer cells, while concomitantly downregulating the cognate receptor Flk-1/KDR on PCECs. Inhibition of the Ape-1/Ref-1 redox domain with E3330 or comparable angiogenesis inhibitors might be a potent therapeutic strategy in solid tumors.

  19. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    Science.gov (United States)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  20. How phototherapy affects angiogenesis

    Science.gov (United States)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  1. Inhibition of HCV 3a genotype entry through Host CD81 and HCV E2 antibodies

    Directory of Open Access Journals (Sweden)

    Ashfaq Usman A

    2011-11-01

    Full Text Available Abstract Background HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage hepatocellular carcinoma and death. HCV glycoproteins play an important role in HCV entry by binding with CD81 receptors. Hence inhibition of virus at entry step is an important target to identify antiviral drugs against HCV. Methods and result The present study elaborated the role of CD81 and HCV glycoprotein E2 in HCV entry using retroviral pseudo-particles of 3a local genotype. Our results demonstrated that HCV specific antibody E2 and host antibody CD81 showed dose- dependent inhibition of HCV entry. HCV E2 antibody showed 50% reduction at a concentration of 1.5 ± 1 μg while CD81 exhibited 50% reduction at a concentration of 0.8 ± 1 μg. In addition, data obtained with HCVpp were also confirmed with the infection of whole virus of HCV genotype 3a in liver cells. Conclusion Our data suggest that HCV specific E2 and host CD81 antibodies reduce HCVpp entry and full length viral particle and combination of host and HCV specific antibodies showed synergistic effect in reducing the viral titer.

  2. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  3. Angiogenesis and Anti-Angiogenic Treatments

    Directory of Open Access Journals (Sweden)

    Ersin Demirer

    2013-10-01

    Full Text Available Blood vessels in our body is developed by vasculogenesis and angiogenesis. There have been new advances in molecular pathology and tumor biology areas in recent years. Angiogenesis is modulated by the balance between angiogenic and anti-angiogenic factors. Angiogenesis plays a key role in tumor growth. Drugs inhibiting angiogenesis have been in use in various malign or non-malign diseases. Inhibition of angiogenesis in malign diseases is a very attractive subject in medicine and studies are going on about long term affects and toxicities. Inhibition of angiogenesis is not an only treatment choice alone. It is a supplemental treatment option applied with conventional chemotherapy, radiotherapy, surgery, immunotherapy and hormonal therapy. It has been used in colorectal carcinoma, renal cell carcinoma, non-small cell lung cancer, glioblastoma, heoatocellular carcinoma, pancreatic neuroendocrine tumor, tyroid medullary cancer.

  4. Discovery and characterization of a novel cyclic peptide that effectively inhibits ephrin binding to the EphA4 receptor and displays anti-angiogenesis activity.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Han

    Full Text Available The EphA4 receptor tyrosine kinase regulates a variety of physiological and pathological processes during neural development and the formation of tumor blood vessels; thus, it represents a new and promising therapeutic target. We used a combination of phage peptide display and computer modeling/docking approaches and discovered a novel cyclic nonapeptide, now designated TYY. This peptide selectively inhibits the binding of the ephrinA5 ligand with EphA4 and significantly blocks angiogenesis in a 3D matrigel culture system. Molecular docking reveals that TYY recognizes the same binding pocket on EphA4 that the natural ephrin ligand binds to and that the Tyr3 and Tyr4 side chains of TYY are both critical for the TYY/EphA4 interaction. The discovery of TYY introduces a valuable probe of EphA4 function and a new lead for EphA4-targeted therapeutic development.

  5. Human C-C chemokine receptor 3 monoclonal antibody inhibits pulmonary inflammation in allergic mice

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Hua-hao SHEN; Wen LI; Hua-qiong HUANG

    2007-01-01

    Aim:To evaluate the effect of C-C chemokine receptor 3 (CCR3) blockade on pulmonary inflammation and mucus production in allergic mice. Methods:We used the synthetic peptide of the CCR3 NH2-terminal as the immunizing antigen and generated murine monoclonal antibody against the human CCR3. In addition,the generated antibody was administered to mice sensitized and challenged with ovalbumin. The inflammatory cells in bronchoalveolar lavage,cytokine levels,pulmonary histopathology,and mucus secretion were examined. Results:The Western blotting analysis indicated that the generated antibody bound to CCR3 specifically. The allergic mice treated with the antihuman CCR3 antibody exhibited a significant reduction of pulmonary inflammation accompanied with the alteration of cytokine. Conclusion:The antibody we generated was specific to CCR3. The inhibition of airway inflammation and mucus overproduction by the antibody suggested that the blockade of CCR3 is an appealing therapeutical target for asthma. The present research may provide an experimental basis for the further study of this agent.

  6. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus.

    Science.gov (United States)

    Jacob, Christian L; Lamorte, Louie; Sepulveda, Eliud; Lorenz, Ivo C; Gauthier, Annick; Franti, Michael

    2013-09-01

    Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection. PMID:23849792

  7. Use of bacteriophage particles displaying influenza virus hemagglutinin for the detection of hemagglutination-inhibition antibodies.

    Science.gov (United States)

    Domm, William; Brewer, Matthew; Baker, Steven F; Feng, Changyong; Martínez-Sobrido, Luis; Treanor, John; Dewhurst, Stephen

    2014-03-01

    Bacteriophage lambda capsids provide a flexible molecular scaffold that can be engineered to display a wide range of exogenous proteins, including full-length viral glycoproteins produced in eukaryotic cells. One application for such particles lies in the detection of virus-specific antibodies, since they may obviate the need to work with infectious stocks of highly pathogenic or emerging viruses that can pose significant biosafety and biocontainment challenges. Bacteriophage lambda capsids were produced that displayed an insect-cell derived, recombinant H5 influenza virus hemagglutinin (HA) on their surface. The particles agglutinated red blood cells efficiently, in a manner that could be blocked using H5 HA-specific monoclonal antibodies. The particles were then used to develop a modified hemagglutinination-inhibition (HAI) assay, which successfully identified human sera with H5 HA-specific HAI activity. These results demonstrate the utility of HA-displaying bacteriophage capsids for the detection of influenza virus-specific HAI antibodies.

  8. PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation.

    Science.gov (United States)

    Mabeta, Peace

    2016-09-01

    PF573,228 is a compound that targets focal adhesion kinase (FAK), a non-receptor protein kinase, which is over-expressed in various tumors. The aim of this study was to evaluate the effects of PF573,228 on the cells derived from mouse vascular tumors, namely, endothelioma cells. The treatment of endothelioma cells with PF573,228 reduced their growth with an IC50 of approximately 4.6 μmol L-1 and inhibited cell migration with an IC50 of about 0.01 μmol L-1. Microscopic studies revealed morphological attributes of apoptosis. These observations were confirmed by ELISA, which showed increased caspase-3 activity. PF573,228 also inhibited angiogenesis in a dose-dependent manner, with an IC50 of approximately 3.7 μmol L-1, and abrogated the phosphorylation of cell survival proteins, proline-rich Akt substrate (PRAS40) and S6 ribosomal protein (S6RP). Array data further revealed that PF573,228 induced caspase-3 activation, thus promoting apoptosis. Since all the processes inhibited by PF573,228 provide important support to tumor survival and progression, the drug may have a potential role in the treatment of vascular tumors. PMID:27383888

  9. A novel action mechanism for MPT0G013, a derivative of arylsulfonamide, inhibits tumor angiogenesis through up-regulation of TIMP3 expression.

    Science.gov (United States)

    Wang, Chih-Ya; Liou, Jing-Ping; Tsai, An-Chi; Lai, Mei-Jung; Liu, Yi-Min; Lee, Hsueh-Yun; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming

    2014-10-30

    Tissue inhibitors of metalloproteinases 3 (TIMP3) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), acting as potent antiangiogenic proteins. In this study, we demonstrated that the arylsulfonamide derivative MPT0G013 has potent antiangiogenic activities in vitro and in vivo viainducing TIMP3 expression. Treatments with MPT0G013 significantly inhibited endothelial cell functions, such as cell proliferation, migration, and tube formation, as well as induced p21 and cell cycle arrest at the G0/G1 phase. Subsequent microarray analysis showed significant induction of TIMP3 gene expression by MPT0G013, and siRNA-mediated blockage of TIMP3 up-regulation abrogated the antiangiogenic activities of MPT0G013 and prevented inhibition of p-AKT and p-ERK proteins. Importantly, MPT0G013 exhibited antiangiogenic activities in in vivo Matrigel plug assays, inhibited tumor growth and up-regulated TIMP3 and p21 proteins in HCT116 mouse xenograft models. These data suggest potential therapeutic application of MPT0G013 for angiogenesis-related diseases such as cancer.

  10. Monoclonal Antibodies Recognizing HIV-1 gp41 Could Inhibit Env-Mediated Syncytium Formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Geng; CHEN Yinghua

    2005-01-01

    Some monoclonal antibodies (mAbs) could inhibit infection by HIV-1. In this study, four mAbs against HIV-1 gp41 were prepared in mice. All four mAbs could bind to the recombinant soluble gp41 and recognize the native envelope glycoprotein gp160 expressed on the HIV-Env+ CHO-WT cell in flow cytometry analysis. Interestingly, the results show that all four mAbs purified by affinity chromatography could inhibit HIV-1 Env-mediated membrane fusion (syncytium formation) by 40%-60% at 10 μg/mL, which implies potential inhibitory activities against HIV-1.

  11. [Detection of influenza B virus antibodies in different age groups using hemagglutination inhibition tests].

    Science.gov (United States)

    Sonuvar, S; Kocabeyoğlu, O; Emekdaş

    1991-01-01

    Antibody levels against influenza B virus were investigated by using hemagglutination-inhibition (HA-I) tests in 402 sera obtained from different age groups. Hemagglutination antigens were obtained by production of influenza B virus (B/Singapur/LLC 6201) in trypsinized Madin Darby Bovine Kidney (MDBK) cell cultured and they were used in tests. In 355 out of 402 sera (88.3%) antibodies against influenza B virus were detected at titers varying between 1/20 and 1/1280. However in 47 sera (11.7%) no antibodies were detected at 1/20 titer. High titers of antibody (1/640-1/1280) were not detected in none of the sera obtained from an age group between 1 and 14. However high titer antibodies were detected in 15.6% of the sera from an age group between 26 and 35, in the 17.3% of the sera from a group above 50 years of age. Our findings suggest that the increase in the rates of seropositivity against influenza B virus depends on getting older and, that the infections by this virus may be widely seen in our country.

  12. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    Science.gov (United States)

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  13. Vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition by mangosteen pericarp ethanolic extract (Garcinia mangostana Linn in hypercholesterol-diet-given Rattus norvegicus Wistar strain

    Directory of Open Access Journals (Sweden)

    Wihastuti TA

    2014-08-01

    Full Text Available Titin Andri Wihastuti,1 Djanggan Sargowo,2 Askandar Tjokroprawiro,3 Nur Permatasari,4 Mohammad Aris Widodo,4 Setyowati Soeharto4 1Department of Biomedical, Medical Faculty, Brawijaya University, Malang, Indonesia; 2Department of Cardiology, Medical Faculty, Brawijaya University, Malang, Indonesia; 3Department of Endocrinology, Medical Faculty, Airlangga University, Surabaya, Indonesia; 4Department of Pharmacology, Medical Faculty, Brawijaya University, Malang, Indonesia Background: Oxidative stress in atherosclerosis produces H2O2 and triggers the activation of nuclear factor kappa beta (NF-κB and increase of inducible nitric oxide synthase (iNOS. The formation of vasa vasorum occurs in atherosclerosis. Vasa vasorum angiogenesis is mediated by VEGFR-1 and upregulated by hypoxia-inducible factor-1α (HIF-1α. The newly formed vasa vasorum are fragile and immature and thus increase plaque instability. It is necessary to control vasa vasorum angiogenesis by using mangosteen pericarp antioxidant. This study aims to demonstrate that mangosteen pericarp ethanolic extract can act as vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition in rats given a hypercholesterol diet. Methods: This was a true experimental laboratory, in vivo posttest with control group design, with 20 Rattus norvegicus Wistar strain rats divided into five groups (normal group, hypercholesterol group, and hypercholesterol groups with certain doses of mangosteen pericarp ethanolic extract: 200, 400, and 800 mg/kg body weight. The parameters of this study were H2O2 measured by using colorimetric analysis, as well as NF-κB, iNOS, and HIF-1α, which were measured by using immunofluorescence double staining and observed with a confocal laser scanning microscope in aortic smooth muscle cell. The angiogenesis of vasa vasorum was quantified from VEGFR-1 level in aortic tissue and confirmed with hematoxylin and eosin staining. Results: Analysis of variance

  14. Angiogenesis Assays.

    Science.gov (United States)

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  15. Lycopene Enriched Tomato Extract Inhibits Hypoxia, Angiogenesis, and Metastatic Markers in early Stage N-Nitrosodiethylamine Induced Hepatocellular Carcinoma.

    Science.gov (United States)

    Bhatia, Nisha; Gupta, Prachi; Singh, Baljinder; Koul, Ashwani

    2015-01-01

    Targeting altered pathways during initial stage of hepatocellular carcinoma (HCC) development is viewed as an effective and promising strategy to control this disease. Present study investigated the potential effect of lycopene-enriched tomato extract (LycT) on hypoxia-induced factor (HIF)-1α, HOX, VEGF, CD31, matrix metalloproteinase (MMP)-2, MMP-9, and alpha fetoprotein (AFP)expression during initial stages of N-nitrosodiethylamine (NDEA) induced HCC. Female Balb/c mice (8-10 wk) were assigned to 4 groups: control, NDEA (200 mg NDEA i.p./kg body weight, cumulative), LycT (5 mg lycopene orally/kg body weight; 3 times a week), and LycT + NDEA. LycT treatment began 2 wk before NDEA administration and continued until the end of the 10 wk study. The onset of HCC by NDEA was associated with significant alteration in serum biochemical markers [alanine transaminases (ALT), aspartate transaminases (AST), and alkaline phosphatases (ALP), lactate dehydrogenase (LDH), urea, A/G ratio, and bilirubin] and in liver histopathology. LycT treatment significantly reduced the levels of these markers. LycT treatment to NDEA mice also led to significant reduction in protein levels of AFP, HIF-1α, VEGF, CD31, MMP-2, and MMP-9 in comparison with NDEA group alone. These parameters are important biomarkers of hypoxia, angiogenesis, and metastasis, which reflect the advanced disease stage. The study provides evidence that prophylactic dietary supplementation with LycT may counteract HCC progression and/or protect against disease onset. PMID:26474105

  16. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-06-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  17. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Science.gov (United States)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  18. Chronic inhibition of cyclooxygenase-2 attenuates antibody responses against vaccinia infection.

    Science.gov (United States)

    Bernard, Matthew P; Bancos, Simona; Chapman, Timothy J; Ryan, Elizabeth P; Treanor, John J; Rose, Robert C; Topham, David J; Phipps, Richard P

    2010-02-01

    Generation of optimal humoral immunity to vaccination is essential to protect against devastating infectious agents such as the variola virus that causes smallpox. Vaccinia virus (VV), employed as a vaccine against smallpox, provides an important model of infection. Herein, we evaluated the importance cyclooxygenase-2 (Cox-2) in immunity to VV using Cox-2 deficient mice and Cox-2 selective inhibitory drugs. The effects of Cox-2 inhibition on antibody responses to live viruses such as vaccinia have not been previously described. Here, we used VV infection in Cox-2 deficient mice and in mice chronically treated with Cox-2 selective inhibitors and show that the frequency of VV-specific B cells was reduced, as well as the production of neutralizing IgG. VV titers were approximately 70 times higher in mice treated with a Cox-2 selective inhibitor. Interestingly, Cox-2 inhibition also reduced the frequency of IFN-gamma producing CD4(+) T helper cells, important for class switching. The significance of these results is that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs), and other drugs that inhibit Cox-2 activity or expression, blunt the ability of B cells to produce anti-viral antibodies, thereby making vaccines less effective and possibly increasing susceptibility to viral infection. These new findings support an essential role for Cox-2 in regulating humoral immunity.

  19. A human monoclonal antibody which inhibits the coaggregation activity of Porphyromonas gingivalis.

    OpenAIRE

    Abiko, Y; Ogura, N; Matsuda, U; Yanagi, K.; Takiguchi, H

    1997-01-01

    A B-cell line producing a human monoclonal antibody (HuMAb) against a recombinant 40-kDa outer membrane protein (OMP) of Porphyromonas gingivalis was constructed by in vivo immunization of a severe combined immunodeficiency C.B.-17/Icr mouse, which had been injected with human peripheral blood lymphocytes, with recombinant 40-kDa OMP and subsequent Epstein-Barr virus immortalization of B cells isolated from the spleen of the mouse. This HuMAb inhibited coaggregation between P. gingivalis vesi...

  20. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  1. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt;

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited...

  2. Luteolin抑制血管生成的机制研究%Angiogenesis inhibition mechanism of luteolin in human cancer

    Institute of Scientific and Technical Information of China (English)

    李文仿; 欧琴; 王耕; 赵宗彬

    2015-01-01

    Objective:To study the blood vessels inhibition mechanism with luteolin. Methods:Different concen-trations of luteolin Processing human microvascular endothelial cells,cell growth,and MDA-MB 231 culture medium mediated chemotaxis were observed,and IL-8 signal in endothelial cell activation was observed. Results:Luteolin in-hibited microvascular endothelial cell Proliferation,and breast cancer cells MDA-MB 231 culture medium mediated of endothelial cell chemotaxis,and significantly inhibited IL-8 on endothelial cell activation. Conclusion:Luteolin can inhibit microvascular endothelial cell Proliferation and MDA -MB 231 culture medium mediated chemotaxis. Luteolin can inhibit the IL-8 signal activation of human microvascular endothelial cells,indicates luteolin anti-an-giogenesis effect in the Prevention of cancer recurrence and metastasis.%目的:探讨luteolin对血管的抑制机制。方法:采用不同浓度luteolin处理人微血管内皮细胞,观察luteolin对内皮细胞生长,乳腺癌细胞MDA-MB 231培养液介导的内皮细胞趋化抑制作用。并探讨luteolin对内皮细胞中IL-8信号激活的抑制作用,及luteolin对血管生成抑制作用机制。结果:Luteolin对人微血管内皮细胞细胞增殖抑制作用明显( P<0.01)。Luteolin可抑制乳腺癌细胞MDA-MB 231培养液介导的内皮细胞趋化作用( P<0.01),并明显抑制IL-8对内皮细胞ERK及AKT的激活。结论:Luteolin可抑制人微血管内皮细胞增殖及乳腺癌细胞MDA-MB 231培养液介导的趋化作用,并可抑制IL-8对人微血管内皮细胞的信号激活作用,luteolin抗血管生成作用在预防恶性肿瘤复发及转移中可能有重要的作用。

  3. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Cai

    Full Text Available BACKGROUND: Tetramethylpyrazine (TMP is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation. METHODOLOGY/PRINCIPAL FINDINGS: Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment. CONCLUSIONS: These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under

  4. A novel peptide (GX1 homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy

    Directory of Open Access Journals (Sweden)

    Wang Li

    2009-09-01

    Full Text Available Abstract Background The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα, in gastric cancer therapy. Results Tetrazolium salt (MTT assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC (44% and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC (62%. Flow-cytometry (FCM and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p in vivo, with the microvessel count decreasing from 21 to 11 (p In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p p 3 vs. 134 mm3, p p Conclusion GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.

  5. The novel desmopressin analogue [V4Q5]dDAVP inhibits angiogenesis, tumour growth and metastases in vasopressin type 2 receptor-expressing breast cancer models

    Science.gov (United States)

    GARONA, JUAN; PIFANO, MARINA; ORLANDO, ULISES D.; PASTRIAN, MARIA B.; IANNUCCI, NANCY B.; ORTEGA, HUGO H.; PODESTA, ERNESTO J.; GOMEZ, DANIEL E.; RIPOLL, GISELLE V.; ALONSO, DANIEL F.

    2015-01-01

    Desmopressin (dDAVP) is a safe haemostatic agent with previously reported antitumour activity. It acts as a selective agonist for the V2 vasopressin membrane receptor (V2r) present on tumour cells and microvasculature. The purpose of this study was to evaluate the novel peptide derivative [V4Q5]dDAVP in V2r-expressing preclinical mouse models of breast cancer. We assessed antitumour effects of [V4Q5]dDAVP using human MCF-7 and MDA-MB-231 breast carcinoma cells, as well as the highly metastatic mouse F3II cell line. Effect on in vitro cancer cell growth was evaluated by cell proliferation and clonogenic assays. Cell cycle distribution was analysed by flow cytometry. In order to study the effect of intravenously administered [V4Q5]dDAVP on tumour growth and angiogenesis, breast cancer xenografts were generated in athymic mice. F3II cells were injected into syngeneic mice to evaluate the effect of [V4Q5]dDAVP on spontaneous and experimental metastatic spread. In vitro cytostatic effects of [V4Q5]dDAVP against breast cancer cells were greater than those of dDAVP, and associated with V2r-activated signal transduction and partial cell cycle arrest. In MDA-MB-231 xenografts, [V4Q5]dDAVP (0.3 μg/kg, thrice a week) reduced tumour growth and angiogenesis. Treatment of F3II mammary tumour-bearing immunocompetent mice resulted in complete inhibition of metastatic progression. [V4Q5]dDAVP also displayed greater antimetastatic efficacy than dDAVP on experimental lung colonisation by F3II cells. The novel analogue was well tolerated in preliminary acute toxicology studies, at doses ≥300-fold above that required for anti-angiogenic/antimetastatic effects. Our data establish the preclinical activity of [V4Q5]dDAVP in aggressive breast cancer, providing the rationale for further clinical trials. PMID:25846632

  6. A monoclonal antibody against KCNK9 K+ channel extracellular domain inhibits tumour growth and metastasis

    Science.gov (United States)

    Sun, Han; Luo, Liqun; Lal, Bachchu; Ma, Xinrong; Chen, Lieping; Hann, Christine L.; Fulton, Amy M.; Leahy, Daniel J.; Laterra, John

    2016-01-01

    Two-pore domain potassium (K2P) channels act to maintain cell resting membrane potential—a prerequisite for many biological processes. KCNK9, a member of K2P family, is implicated in cancer, owing to its overexpression in human tumours and its ability to promote neoplastic cell survival and growth. However, KCNK9's underlying contributions to malignancy remain elusive due to the absence of specific modulators. Here we describe the development of monoclonal antibodies against the KCNK9 extracellular domain and their functional effects. We show that one antibody (Y4) with the highest affinity binding induces channel internalization. The addition of Y4 to KCNK9-expressing carcinoma cells reduces cell viability and increases cell death. Systemic administration of Y4 effectively inhibits growth of human lung cancer xenografts and murine breast cancer metastasis in mice. Evidence for Y4-mediated carcinoma cell autonomous and immune-dependent cytotoxicity is presented. Our study reveals that antibody-based KCNK9 targeting is a promising therapeutic strategy in KCNK9-expressing malignancies. PMID:26842342

  7. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  8. Immunotherapy of tumor by targeting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HOU; Jianmei; TIAN; Ling; WEI; Yuquan

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.

  9. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    Science.gov (United States)

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  10. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation.

    Science.gov (United States)

    Zhang, Y M; Dai, B L; Zheng, L; Zhan, Y Z; Zhang, J; Smith, W W; Wang, X L; Chen, Y N; He, L C

    2012-10-11

    Colorectal cancer represents the fourth commonest malignancy, and constitutes a major cause of significant morbidity and mortality among other diseases. However, the chemical therapy is still under development. Angiogenesis plays an important role in colon cancer development. We developed HMQ18-22 (a novel analog of taspine) with the aim to target angiogenesis. We found that HMQ18-22 significantly reduced angiogenesis of chicken chorioallantoic membrane (CAM) and mouse colon tissue, and inhibited cell migration and tube formation as well. Then, we verified the interaction between HMQ18-22 and VEGFR2 by AlphaScreen P-VEGFR assay, screened the targets on angiogenesis by VEGF Phospho Antibody Array, validated the target by western blot and RNAi in lovo cells. We found HMQ18-22 could decrease phosphorylation of VEGFR2(Tyr(1214)), VEGFR1(Tyr(1333)), Akt(Tyr(326)), protein kinase Cα (PKCα) (Tyr(657)) and phospholipase-Cγ-1 (PLCγ-1) (Tyr(771)). Most importantly, HMQ18-22 inhibited proliferation of lovo cell and tumor growth in a human colon tumor xenografted model of athymic mice. Compared with normal lovo cells proliferation, the inhibition on proliferation of knockdown cells (VEGFR2, VEGFR1, Akt, PKCα and PLCγ-1) by HMQ18-22 decreased. These results suggested that HMQ18-22 is a novel angiogenesis inhibitor and can be a useful therapeutic candidate for colon cancer intervention.

  11. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1.

    Science.gov (United States)

    Gohongi, T; Fukumura, D; Boucher, Y; Yun, C O; Soff, G A; Compton, C; Todoroki, T; Jain, R K

    1999-10-01

    Angiogenesis inhibitors produced by a primary tumor can create a systemic anti-angiogenic environment and maintain metastatic tumor cells in a state of dormancy. We show here that the gallbladder microenvironment modulates the production of transforming growth factor (TGF)-beta1, a multifunctional cytokine that functions as an endogenous anti-angiogenic and anti-tumor factor in a cranial window preparation. We found that a wide variety of human gallbladder tumors express TGF-beta1 irrespective of histologic type. We implanted a gel impregnated with basic fibroblast growth factor or Mz-ChA-2 tumor in the cranial windows of mice without tumors or mice with subcutaneous or gallbladder tumors to study angiogenesis and tumor growth at a secondary site. Angiogenesis, leukocyte-endothelial interaction in vessels and tumor growth in the cranial window were substantially inhibited in mice with gallbladder tumors. The concentration of TGF-beta1 in the plasma of mice with gallbladder tumors was 300% higher than that in the plasma of mice without tumors or with subcutaneous tumors. In contrast, there was no difference in the plasma levels of other anti- and pro-angiogenic factors. Treatment with neutralizing antibody against TGF-beta1 reversed both angiogenesis suppression and inhibition of leukocyte rolling induced by gallbladder tumors. TGF-beta1 also inhibited Mz-ChA-2 tumor cell proliferation. Our results indicate that the production of anti-angiogenesis/proliferation factors is regulated by tumor-host interactions. PMID:10502827

  12. Inhibitor of growth 4 suppresses colorectal cancer growth and invasion by inducing G1 arrest, inhibiting tumor angiogenesis and reversing epithelial-mesenchymal transition.

    Science.gov (United States)

    Qu, Hui; Yin, Hong; Yan, Su; Tao, Min; Xie, Yufeng; Chen, Weichang

    2016-05-01

    Previous studies have found that inhibitor of growth 4 (ING4), a tumor suppressor, is reduced in human colorectal cancer (CRC), and is inversely correlated with clinical Dukes' stage, histological grade, lymph node metastasis and microvessel density (MVD). However, its underlying mechanism remains undetermined. In the present study, we analyzed ING4 expression in a panel of human CRC cells using low (LS174T and SW480) and high (LoVo and SW620) metastatic cell lines. We demonstrated that both the low and high metastatic CRC cells exhibited a lower level of ING4 compared to the level in normal human colorectal mucous epithelial FHC cells. Furthermore, ING4 expression in high metastatic CRC cells was less than that in low metastatic CRC cells. We then generated a lentivirus construct expressing ING4 and green fluorescent protein (GFP), established a ING4-stably transgenic LoVo CRC cell line, and investigated the effect of lentiviral-mediated ING4 expression on high metastatic LoVo CRC cells. Gain-of-function studies revealed that ING4 significantly inhibited LoVo CRC cell growth and invasion in vitro and induced cell cycle G1 phase arrest. Moreover, ING4 obviously suppressed LoVo CRC subcutaneously xenografted tumor growth and reduced tumor MVD in vivo in athymic BALB/c nude mice. Mechanistically, ING4 markedly upregulated P21 and E-cadherin but downregulated cyclin E, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), Snail1, N-cadherin and vimentin in the LoVo CRC cells. Our data provide compelling evidence that i) ING4 suppresses CRC growth possibly via induction of G1 phase arrest through upregulation of P21 cyclin-dependent kinase (CDK) inhibitor and downregulation of cyclin E as well as inhibition of tumor angiogenesis through reduction of IL-6, IL-8 and VEGF proangiogenic factors; ii) ING4 inhibits CRC invasion and metastasis probably via a switch from mesenchymal marker N-cadherin to epithelial marker E-cadherin through downregulation of

  13. Cinnamon extract inhibits angiogenesis in zebrafish and human endothelial cells by suppressing VEGFR1, VEGFR2, and PKC-mediated MAP kinase

    OpenAIRE

    Bansode, R. R.; Leung, T; Randolph, P.; L. L. Williams; Ahmedna, M.

    2013-01-01

    Angiogenesis is a process of new blood vessel generation and under pathological conditions, lead to tumor development, progression, and metastasis. Many bioactive components have been studied for its antiangiogenic properties as a preventive strategy against tumor development. This study is focused on the effects of cinnamon extract in modulating the pathway involved in angiogenesis. Human umbilical vein endothelial cells (HUVEC) were treated with cinnamon extract at a concentration of 25 μg/...

  14. Inhibition of Insulin Degradation by Hepatoma Cells after Microinjection of Monoclonal Antibodies to a Specific Cytosolic Protease

    Science.gov (United States)

    Shii, Kozui; Roth, Richard A.

    1986-06-01

    Four monoclonal antibodies were identified by their ability to bind to 125I-labeled insulin covalently linked to a cytosolic insulin-degrading enzyme from human erythrocytes. All four antibodies were also found to remove more than 90% of the insulin-degrading activity from erythrocyte extracts. These antibodies were shown to be directed to different sites on the enzyme by mapping studies and by their various properties. Two antibodies recognized the insulin-degrading enzyme from rat liver; one inhibited the erythrocyte enzyme directly; and two recognized the enzyme after gel electrophoresis and transfer to nitrocellulose filters. By this latter procedure and immunoprecipitation from metabolically labeled cells, the enzyme from a variety of tissues was shown to be composed of a single polypeptide chain of apparent Mr 110,000. Finally, these monoclonal antibodies were microinjected into the cytoplasm of a human hepatoma cell line to assess the contribution of this enzyme to insulin degradation in the intact cell. In five separate experiments, preloading of cells with these monoclonal antibodies resulted in an inhibition of insulin degradation of 18-54% (average 39%) and increased the amount of 125I-labeled insulin associated with the cells. In contrast, microinjection of control antibody or an extraneous monoclonal antibody had no effect on insulin degradation or on the amount of insulin associated with the cells. Moreover, the monoclonal antibodies to the insulin-degrading enzyme caused no significant inhibition of degradation of another molecule, low density lipoprotein. Thus, these results support a role for this enzyme in insulin degradation in the intact cell.

  15. INHIBITION OF Acinetobacter baumannii ADHESION BY ANTI-FIMBRIAL ANTIBODY: THE FIMBRIAL ANTIGEN EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Hadeel K. Musafer

    2013-01-01

    Full Text Available Collecting samples of Acinetobacter baumannii taken from different clinical cases of wounds, septicemia, and urinary tract infections. That was accomplished by taking (296 samples from Baghdad educational hospital and Ibn-al-Baladi hospital. Samples were cultured on solid media (McConkey and blood agars, and according to microscopical, cultural, and biochemical identification, in addition to using API 20-E system, (21 isolates of A. baumannii were identified and in percentage of 47.619, 9.523, 14.285, and 28.571 for wound, blood, sputum, and urine samples, respectively. Methods: detection of fimbriated bacterial isolates among 21 isolates, and all those isolated were fimbriae forming isolates; isolate number (9 was selected as an effective isolate in formation of fimbriae. Non-forming fimbriae isolate of Shigella flexneri is used as negative control. Results and Conclusion: the average of adherence of fimbriated bacterial cell with human epithelial cells was reached (50 adherent bacterial cell per epithelial cell compared with the average of adherence of control isolate (12 adherent bacterial cell per epithelial cell, the inhibition processes are performed: Inhibition of bacterial adherence by specific antibodies of fimbriae antigen showed inhibition effect of adherence in respect to fimbriated isolate A. baumannii 9 also the subminimum inhibitory concentration for four antibiotics (Gentamicin, Tobramycin, Cefepime, and Amikacin inhibit the adherence of fimbriated isolate. The isolates (used in the study have the ability to agglutinate Saccharomyces cerevisiae and human red blood corpuscles (RBCs. The study of effect of different fimbriae extract concentrations (25, 50, 100 μg/ml on immune cells; consequently, reached to the following results: Concentrations of (25, 50, 100 μg/ml showed a negative effect on lymphocyte and PMNs viability which increased significantly (P≤0.05 with increasing of fimbriae extract concentration. On the other hand

  16. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  17. Complex role of matrix metalloproteinases in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    SANGQINGXIANGAMY

    1998-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.

  18. Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity.

    Science.gov (United States)

    Sanabria-Ayala, Víctor; Belmont, Iaraset; Abraham, Landa

    2015-01-01

    Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity. Afterward, they were used to screen a library of phage-displayed dodecapeptides; as a result, 41 phage mimotope clones were isolated and grouped according to their amino acid sequence, finding the consensus A1 (VPTXPI), A2 (VPTXXI), B (LTPGQ), and D (DPLPR). Antibodies against selected phage mimotope clones were obtained by rabbit's immunization; these ones clearly recognized TTPI by both Western blot and ELISA. However, only the mimotope PDTS16 (DSVTPTSVMAVA) clone, which belongs to the VPTXXI consensus, raised antibodies capable of inhibiting the TTPI catalytic activity in 45 %. Anti-PDTS16 antibodies were confronted to several synthetic peptides that encompass the 1/3NH2TTPI, and they only recognized three, which share the motif FDTLQK belonging to the helix-α1 in TTPI. This suggests that this motif is the main part of the epitope recognized by anti-PDTS16 antibodies and revealed its importance for TTPI catalysis.

  19. Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis.

    Science.gov (United States)

    Pan, Yunlong; Ding, Hui; Qin, Li; Zhao, Xiaoxu; Cai, Jiye; Du, Bin

    2013-10-01

    The inhibition of the binding between VEGFs and their receptors reduces angiogenesis and retards tumor growth. Owing to the large amount of antibodies required, the antibody-based anti-angiogenic drug remains limited. Gold nanoparticles (AuNPs) displayed excellent biocompatibility, low toxicity and anti-angiogenic effect, but the mechanism of anti-angiogenesis was unknown. Here, the antitumor effects of a well-dispersed AuNPs, specifically regarding its influence on VEGF signaling, were examined mechanistically. The effects of AuNPs on the interaction of VEGF with its receptor, VEGFR2 were observed using near-field scanning optical microscopy/quantum dot (NSOM/QD) imaging. We found AuNPs can reduce VEGF165-induced VEGFR2 and AKT phosphorylation. Furthermore, the antitumor effects of AuNPs were determined using xenograft and ascites model. AuNPs inhibited VEGF165-VEGFR2 interaction and suppressed the formation of nanodomains of VEGFR2 on the HUVEC. As determined by CD34 immunhistochemistry, AuNPs reduced angiogenesis in a liver tumor nude mice model, as observed by a decreased microvascular density in liver tumor sections and reduced the tumor weight and volume. In addition, AuNPs inhibited ascites formation in mice. Taken together, this study provides new insights into nanomaterial-based antitumor drug development. PMID:24015504

  20. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer.

    Science.gov (United States)

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R S; Iskander, A S M; Shankar, Adarsh; Ali, Meser M; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (pbreast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (pmelatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis. PMID:24416386

  1. Inhibition of Neisseria gonorrhoeae attachment to HeLa cells with monoclonal antibody directed against a protein II.

    OpenAIRE

    Sugasawara, R J; Cannon, J G; Black, W J; Nachamkin, I; Sweet, R L; Brooks, G F

    1983-01-01

    This study showed that a protein II (PII) of Neisseria gonorrhoeae FA1090 appeared to act as a mediator of attachment to HeLa cells. Two colony variants of FA1090 were selected. Both gonococcal variants were nonpiliated, but one contained a PII and the other did not. A monoclonal antibody (1090-10.1), which was directed against the PII, inhibited the apparent PII-mediated attachment to HeLa cells. Antibodies produced from clone 1035-4, which had no PII specificity, did not inhibit the attachm...

  2. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Science.gov (United States)

    Packham, Ian M; Watson, Steve P; Bicknell, Roy; Egginton, Stuart

    2014-01-01

    We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F) of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, Pplatelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, PVEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration. PMID:25238071

  3. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Directory of Open Access Journals (Sweden)

    Ian M Packham

    Full Text Available We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, P<0.001 that was abolished by platelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, P<0.01 was unaffected. Granulocyte/monocyte depletion showed this response was not immune-regulated. VEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration.

  4. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors.

    Directory of Open Access Journals (Sweden)

    Patrick A Murphy

    Full Text Available Binding of α5β1 and αvβ3/β5 integrin receptors on the endothelium to their fibronectin substrate in the extracellular matrix has been targeted as a possible means of blocking tumor angiogenesis and tumor growth. However, clinical trials of blocking antibodies and peptides have been disappointing despite promising preclinical results, leading to questions about the mechanism of the inhibitors and the reasons for their failure. Here, using tissue-specific and inducible genetics to delete the α5 and αv receptors in the endothelium or their fibronectin substrate, either in the endothelium or globally, we show that both are dispensable for tumor growth, in transplanted tumors as well as spontaneous and angiogenesis-dependent RIP-Tag-driven pancreatic adenocarcinomas. In the nearly complete absence of fibronectin, no differences in vascular density or the deposition of basement membrane laminins, ColIV, Nid1, Nid2, or the TGFβ binding matrix proteins, fibrillin-1 and -2, could be observed. Our results reveal that fibronectin and the endothelial fibronectin receptor subunits, α5 and αv, are dispensable for tumor angiogenesis, suggesting that the inhibition of angiogenesis induced by antibodies or small molecules may occur through a dominant negative effect, rather than a simple functional block.

  5. Monoclonal antibody targeting chikungunya virus envelope 1 protein inhibits virus release.

    Science.gov (United States)

    Masrinoul, Promsin; Puiprom, Orapim; Tanaka, Atsushi; Kuwahara, Miwa; Chaichana, Panjaporn; Ikuta, Kazuyoshi; Ramasoota, Pongrama; Okabayashi, Tamaki

    2014-09-01

    Chikungunya virus (CHIKV) causes an acute clinical illness characterized by sudden high fever, intense joint pain, and skin rash. Recent outbreaks of chikungunya disease in Africa and Asia are a major public health concern; however, there is currently no effective licensed vaccine or specific treatment. This study reported the development of a mouse monoclonal antibody (MAb), CK47, which recognizes domain III within the viral envelope 1 protein and inhibited the viral release process, thereby preventing the production of progeny virus. The MAb had no effect on virus entry and replication processes. Thus, CK47 may be a useful tool for studying the mechanisms underlying CHIKV release and may show potential as a therapeutic agent.

  6. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension.

    Science.gov (United States)

    Darville, Nicolas; van Heerden, Marjolein; Mariën, Dirk; De Meulder, Marc; Rossenu, Stefaan; Vermeulen, An; Vynckier, An; De Jonghe, Sandra; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy

    2016-05-28

    The intramuscular (IM) administration of long-acting injectable (LAI) aqueous nano-/microsuspensions elicits a chronic granulomatous injection site reaction, which recently has been hypothesized to drive the (pro)drug dissolution and systemic absorption resulting in flip-flop pharmacokinetics. The goal of this mechanistic study was to investigate the effects of the local macrophage infiltration and angiogenesis on the systemic drug exposure following a single IM administration of a paliperidone palmitate (PP) LAI nano-/microsuspension in the rat. Liposomal clodronate (CLO) and sunitinib (SNT) were co-administered to inhibit the depot infiltration and nano-/microparticle phagocytosis by macrophages, and the neovascularization of the depot, respectively. Semi-quantitative histopathology of the IM administration sites at day 1, 3, 7, 14, 21 and 28 after dosing with PP-LAI illustrated that CLO significantly decreased the rate and extent of the granulomatous inflammatory reaction. The macrophage infiltration was slowed down, but only partially suppressed by CLO and this translated in paliperidone (PAL) plasma concentration-time profiles that resembled those observed upon injection of PP-LAI only, albeit with a lower PAL input rate and delayed maximum plasma concentration (CMAX). Conversely, SNT treatment completely suppressed the granulomatous reaction, besides effectively inhibiting the neovascularization of the PP-LAI depot. This resulted in an even slower systemic PAL input with delayed and lower maximum PAL CMAX. The reduced PP-LAI lymph node retention after CLO and SNT treatment, as well as pharmacokinetic drug-drug interactions were rejected as possible sources of the observed pharmacokinetic differences. The biphasic PAL plasma concentration-time profiles could best be described by an open first-order disposition model with parallel fast (first-order) and slow (sequential zero-first-order) absorption. The correlation of the pharmacokinetic data with the

  7. Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    2015-08-01

    Full Text Available Existing antibodies (Abs used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B contains a zinc endopeptidase light chain (LC domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS. The equilibrium dissociation constants (KD of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM. Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.

  8. SSB peptide and DNA co-immunization induces inhibition of anti-dsDNA antibody production in rabbits

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Patients with systemic lupus erythematosus often have various autoantibodies.The relationship between these antibodies is still poorly understood.The aim of the present study was to observe the anti-SSB antibody and anti-dsDNA antibody production profiles following immunization with synthetic SSB peptide alone,DNA alone or co-immunization with these two antigens.Methods SSB 214-225 aa peptide was synthesized by organic chemistry solid-phase peptide synthesis.Rabbits were immunized with the foliowing antigens:synthetic SSB peptide linked with keyhole limpet hemocyanin (KLH),DNA,SSB plus dsDNA,KLH and PBS.Antibodies were measured by ELISA.Histopathology and direct immufluorescence assays were also applied.Results Ainit-SSB and anti-dsDNA antibodies were produced following immunization with SSB peptide and DNA respectively.The level of SSB antibody in the co-immunization group was higher than that of the SSB peptide immunization group.The level of anti-dsDNA antibody in the co-immunization group was,however,lower than that in the DNA immunization group.Meanwhile,the level of anti-SSB antibody was higher than that of anti-DNA antibody in the co-immunization group.No morphological or immunological abnormalities were found in the heart,liver,kidney,spleen or skin tissues.Conclusion Inhibition of anti-dsDNA-antibody was induced by co-immunization with synthesized SSB peptide and DNA,which might explain,at least partly,the mild disease in some LE subsets associated with SSB antibody.

  9. Immunotherapy of hepatoma with a monoclonal antibody against murine endoglin

    Institute of Scientific and Technical Information of China (English)

    Guang-Hong Tan; Feng-Ying Huang; Hua Wang; Yong-Hao Huang; Ying-Ying Lin; Yue-Nan Li

    2007-01-01

    AIM: To explore the capability of a monoclonal antibody(mAb) against murine endoglin to inhibit tumor angiogenesis and suppression of hepatoma growth in murine models.METHODS: A monoclonal antibody against murine endoglin was purified by affinity chromatography and passively transfused through tail veins in two murine hepatoma models. Tumor volume and survival time were observed at three-day intervals for 48 d. Microvessels in tumor tissues were detected by immunohistochemistry against CD31, and angiogenesis in vivo was determined by alginate encapsulated assay. In addition, tumor cell apoptosis was detected by TUNEL assay.RESULTS: Passive immunotherapy with anti-endoglin mAb could effectively suppress tumor growth, and prolonged the survival time of hepatoma-bearing mice.Angiogenesis was apparently inhibited within the tumor tissues, and the vascularization of alginate beads was also reduced in the mice passively transfused with antiendoglin mAb. In addition, increased apoptotic cells were observed within the tumor tissues from the mice passively transfused with anti-endoglin mAb.CONCLUSION: Passive immunotherapy with antiendoglin mAb effectively inhibits tumor growth via inhibiting tumor angiogenesis and increasing tumor cell apoptosis, which may be highly correlated with the blockage of endoglin-related signal pathway induced by anti-endoglin mAb.

  10. Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor

    Energy Technology Data Exchange (ETDEWEB)

    Green, S.J.; Underhill, C.B. (Georgetown Univ. Medical Center, Washington, DC (USA)); Tarone, G. (Univ. of Turin (Italy))

    1988-10-01

    To examine the role of the hyaluronate receptor in cell to cell adhesion, the authors have employed the K-3 monoclonal antibody (MAb) which specifically binds to the hyaluronate receptor and blocks its ability to interact with hyaluronate. In the first set of experiments, they investigated the spontaneous aggregation of SV-3T3 cells, which involves two distinct mechanisms, one of which is dependent upon the presence of divalent cation and the other is independent. The divalent cation-independent aggregation was found to be completely inhibited by both intact and Fab fragments of the K-3 MAb. In contrast, the K-3 MAb had no effect on the divalent cation-dependent aggregation of cells. In a second set of experiments, we examined alveolar macrophages. The presence of hyaluronate receptors on alveolar macrophages was demonstrated by the fact that detergent extracts of these cells could bind ({sup 3})hyaluronate, and this binding was blocked by the K-3 MAb. Immunoblot analysis of alveolar macrophages showed that the hyaluronate receptor had a M{sub r} of 99,500, which is considerably larger than the 85,000 M{sub r} for that on BHK cells. When hyaluronate was added to suspensions of alveolar macrophages, the cells were induced to aggregate. This effect was inhibited by the K-3 MAb, suggesting that the hyaluronate-induced aggregation was mediated by the receptor.

  11. Antibodies against analogous heptad repeat peptide HR212 of Newcastle Disease Virus inhibit virus-cell membrane fusion

    Institute of Scientific and Technical Information of China (English)

    LI Ying; TIEN Po

    2007-01-01

    Membrane fusion is a key step in enveloped virus entry. Highly conserved heptad repeat regions (HR1 and HR2) of Newcastle disease virus (NDV) fusion protein (F) are critical functional domains for viral membrane fusion. They display different conformations in the membrane fusion states and are viewed as candidate targets for neutralizing antibody responses. We previously reported that an analog of heptad repeat peptides HR2-HR1-HR2(HR212) and HR2 could inhibit NDV induced cell-cell membrane fusion. Here, we show that HR212 can induce the production of highly potent antibody in immunized rabbits, which could recognize full length peptides of both HR1 and HR2, and inhibit NDV hemagglutination and NDV entry. These suggest that either HR212 or its antibody could be an inhibitor of virus-induced cell-cell membrane fusion.

  12. INHIBITION OF IN VITRO FERTILIZATION IN THE HAMSTER BY ANTIBODIES RAISED AGAINST THE RAT SPERM PROTEIN SP22

    Science.gov (United States)

    INHIBITION OF IN VITRO FERTILIZATION IN THE HAMSTER BY ANTIBODIES RAISED AGAINST THE RAT SPERM PROTEIN SP22. SC Jeffay*, SD Perreault, KL Bobseine*, JE Welch*, GR Klinefelter, US EPA, Research Triangle Park, NC. SP22, a rat sperm membrane protein that is highly-correlated w...

  13. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    OpenAIRE

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; Ye, Yong

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentra...

  14. Molecular characterization of monoclonal antibodies that inhibit acetylcholinesterase by targeting the peripheral site and backdoor region.

    Directory of Open Access Journals (Sweden)

    Yves Bourne

    Full Text Available The inhibition properties and target sites of monoclonal antibodies (mAbs Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE, have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis.

  15. Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Bianco, Cesare; Totino, Paulo Renato Rivas;

    2011-01-01

    The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region h...

  16. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G.

    Science.gov (United States)

    Preithner, Susanne; Elm, Stefanie; Lippold, Sandra; Locher, Mathias; Wolf, Andreas; da Silva, Antonio J; Baeuerle, Patrick A; Prang, Nadja S

    2006-03-01

    A common feature of human IgG1 antibodies used for cancer treatment is that their anti-tumour efficacy requires high serum trough levels and continued therapy for several months. Treatment cycles, thereby, consume several grams of IgG1 translating into significant drug needs and costs. The basis for the low in vivo efficacy, which is in contrast to high in vitro antibody-dependent cellular cytotoxicity (ADCC), is not well understood. Here, we have explored factors contributing to this discrepancy using adecatumumab (MT201), a fully human monoclonal IgG1 against epithelial cell adhesion molecule (Ep-CAM) and trastuzumab (Herceptin), a humanized IgG1 with specificity for the human epithelial growth factor receptor type 2 (HER-2) antigen. We found that physiological levels of human sera strongly inhibited ADCC of both IgG1 antibodies. Effects showed some dependence on the density of Ep-CAM and HER-2 targets, the tumour cell line tested and on effector cell and serum donors. Removal of IgG by affinity chromatography abolished the inhibitory effect of a serum pool. Inhibition of ADCC was fully restored by adding back the IgG fraction or by an equal amount of IgG from a commercial source. We further demonstrate that CD56-positive lymphocytes within human PBMC contributed >90% to ADCC and that normal serum levels of IgG effectively competed for in vitro binding of an IgG1 antibody to low-affinity Fcgamma receptor type III (CD16), as is present on natural killer (NK) cells. Competition of serum IgG for binding of therapeutic IgG1 to NK cell may be one important reason why high antibody doses are required in the clinic for treatment of cancer by an ADCC-based mechanism. PMID:16102830

  17. Inhibition of B cell growth factor (BCGF) by monoclonal antibodies directed against the C3d receptor (CR2).

    Science.gov (United States)

    Perri, R T; Wilson, B S; Kay, N E

    1986-04-01

    Normal human B cell proliferation is controlled by various immunoregulatory signals including the T cell-derived lymphokine B cell growth factor (BCGF). Human BCGF provides the final proliferative signal to normal, activated B cells. We herein show that anti-CR2 monoclonal antibodies inhibit human B cell responsiveness to purified BCGF. Addition of anti-CR2 antibody, AB5, was capable of completely inhibiting BCGF-mediated enhancement of either anti-mu or staphylococcal protein A-activated human B cells (191 +/- 21 cpm vs. 3942 +/- 622 cpm, mean +/- SEM). Inhibition of B cell response to BCGF by AB5 occurred in a dose-dependent manner. Monoclonal antibody anti-B2, which recognizes the same 140-kDa glycoprotein as AB5, in comparable concentrations also inhibited B cell responsiveness to BCGF. Monoclonal antibodies of the same subclass (IgG1) showed no inhibitory effect on BCGF enhancement of B cell proliferation. The F(ab')2 fragment of AB5 generated by pepsin digestion was similarly inhibitory as was the intact Ig. AB5-mediated inhibition was independent of the target B cell state of activation. Both resting and activated B cells (anti-mu or staphylococcal protein A activated) incubated with similar concentrations of AB5 were unresponsive to BCGF. The ability of anti-CR2 antibodies to block BCGF-dependent B cell proliferation suggests that occupancy of C3d membrane receptors may result in modulation of B cell proliferation in physiologic or clinical disease states. PMID:2938967

  18. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Directory of Open Access Journals (Sweden)

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  19. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Science.gov (United States)

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  20. Trimeresurus venom inhibition of anti-HPA-1a and anti-HPA-1b antibody binding to human platelets.

    Science.gov (United States)

    Wlodar, S J; Stone, D L; Sinor, L T

    1995-01-01

    A solid-phase red cell adherence assay was used to demonstrate the specific inhibitory effect of seven species of Trimeresurus snake venom on the binding of HPA-1a- and HPA-1b-specific platelet antibodies. Trimeresurus venom did not inhibit the binding of HLA-, HPA-3a-, HPA-3b-, HPA-4a-, HPA-5a-, and HPA-5b-specific platelet antibodies. Venom from other genera of snakes, including representatives from Agkistrodon, Ancistrodon, Bitis, Bothrops, Bungarus, Causus, Crotalus, Dendroaspis, Ecis, Micrurus, Naja, Notechis, Ophiophagus, Pseudechis, Sepedon (Hemachatus), and Vipera, all failed to specifically inhibit anti-HPA-1a and HPA-1b binding. These results may indicate that the component in Trimeresurus snake venom previously reported to bind to the platelet GPIIb-IIIa complex, inhibiting fibrinogen binding, binds close to the HPA-1a and HPA-1b epitopes.

  1. Inhibition of K562 cell growth and tumor angiogenesis in nude mice by transfection of anti-VEGF hairpin ribozyme gene into the cells

    Institute of Scientific and Technical Information of China (English)

    许文林

    2006-01-01

    Objective To explore the effect of anti-VEGF hairpin ribozyme gene on the tumor cell growth and tumor angiogenesis in nude mice. Methods The recombinant eukaryotic expression plasmid pcDNA-RZ containing anti-VEGF hairpin ribozyme gene and the empty vector plasmid pcDNA were introduced separately into K562 cells

  2. Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175.

    Directory of Open Access Journals (Sweden)

    Edwin Chen

    Full Text Available Disrupting erythrocyte invasion by Plasmodium falciparum is an attractive approach to combat malaria. P. falciparum EBA-175 (PfEBA-175 engages the host receptor Glycophorin A (GpA during invasion and is a leading vaccine candidate. Antibodies that recognize PfEBA-175 can prevent parasite growth, although not all antibodies are inhibitory. Here, using x-ray crystallography, small-angle x-ray scattering and functional studies, we report the structural basis and mechanism for inhibition by two PfEBA-175 antibodies. Structures of each antibody in complex with the PfEBA-175 receptor binding domain reveal that the most potent inhibitory antibody, R217, engages critical GpA binding residues and the proposed dimer interface of PfEBA-175. A second weakly inhibitory antibody, R218, binds to an asparagine-rich surface loop. We show that the epitopes identified by structural studies are critical for antibody binding. Together, the structural and mapping studies reveal distinct mechanisms of action, with R217 directly preventing receptor binding while R218 allows for receptor binding. Using a direct receptor binding assay we show R217 directly blocks GpA engagement while R218 does not. Our studies elaborate on the complex interaction between PfEBA-175 and GpA and highlight new approaches to targeting the molecular mechanism of P. falciparum invasion of erythrocytes. The results suggest studies aiming to improve the efficacy of blood-stage vaccines, either by selecting single or combining multiple parasite antigens, should assess the antibody response to defined inhibitory epitopes as well as the response to the whole protein antigen. Finally, this work demonstrates the importance of identifying inhibitory-epitopes and avoiding decoy-epitopes in antibody-based therapies, vaccines and diagnostics.

  3. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    Science.gov (United States)

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  4. An antisperm monoclonal antibody inhibits sperm fusion with zona-free hamster eggs but not homologous eggs.

    Science.gov (United States)

    Primakoff, P; Hyatt, H

    1986-09-01

    The zona-free hamster egg penetration assay (HEPA) was evaluated as a test for identifying fertilization-blocking antibodies. A monoclonal antibody, AH-20, that binds to the surface of guinea pig sperm was used to test antibody inhibition of sperm-egg fusion. AH-20 strongly inhibited guinea pig sperm fusion with zona-free hamster eggs but had no effect on guinea pig sperm fusion with zona-free guinea pig eggs. No inhibition by AH-20 was found in the homologous fusion assay over a wide range of sperm concentration, fertilization rate, and fertilization index. The results suggest that although guinea pig sperm can fuse with both hamster and guinea pig eggs, some aspect of the fusion mechanism is different in the two cases. The findings also indicate that HEPA, which is frequently used to assess the fertility potential of human sperm, can identify as blockers of sperm-egg fusion antibodies that have no effect on homologous sperm-egg fusion. PMID:3527769

  5. Cytoskeletal inhibitors, anti-adhesion molecule antibodies, and lectins inhibit hepatocyte spheroid formation.

    Directory of Open Access Journals (Sweden)

    Nakamura M

    2002-02-01

    Full Text Available We investigated the role of cytoskeletons, adhesion molecules, membrane-glycosylations, and proteoglycans in forming the shape of adult rat hepatocyte spheroids. Isolated hepatocytes were cultured on dishes coated with chondroitin sulfate phosphatidyl ethanolamine (CS-PE. Spheroid-forming ability was observed after adding cytoskeletal inhibitors (cytochalasin D, colchicine, okadaic acid, mycalolide B, anti-adhesion molecule antibodies (anti-E-cadherin, anti-connexin 32, anti-zo-1, a glycosphingolipid synthetic inhibitor (N-butyldeoxynojirimycin, a proteoglycan synthetic inhibitor (p-nitrophenyl-beta-D-xylopyranoside, and several lectins. Localization of actin was studied using confocal microscopy after rhodamine-phalloidin staining. Adding cytoskeletal inhibitors on the initial day resulted in weakly clustered cell aggregates rather than smoothly formed spheroids. These effects disappeared at lower reagent concentrations. When reagents were added on day 3, after the formation of spheroids, only mycalolide B was associated with an irregular spheroid surface; the others had no effect. Adding the anti-E-cadherin, anti-connexin 32 on the initial day showed inhibition of spheroid formation, but anti-zo-1 and proteoglycan synthetic inhibitor had no effects. Among the several lectins, only Wheat Germ Agglutinin (WGA, Ricinus communis Agglutinin I (RCA-I, and Concanavalin A (ConA showed inhibition. These results suggest that cytoskeletal conformation and some adhesion molecules are necessary to form spheroids. Based on the interactions between lectins and hepatocytes in the present study, hepatocytes appear to contain an N-linked complex or N-linked hybrid glycosylated chains.

  6. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kamisasanuki, Taro [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Tokushige, Saori [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Terasaki, Hiroto [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Khai, Ngin Cin; Wang, Yuqing [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Sakamoto, Taiji [Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kosai, Ken-ichiro, E-mail: kosai@m2.kufm.kagoshima-u.ac.jp [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2011-09-16

    Highlights: {yields} CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. {yields} Targeting CD9 expression is effective in an angiogenic disease model. {yields} Targeting CD9 expression predominantly affects activated endothelial cells. {yields} CD9 is involved in endothelial cell proliferation, but not survival. {yields} CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus

  7. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    International Nuclear Information System (INIS)

    Highlights: → CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. → Targeting CD9 expression is effective in an angiogenic disease model. → Targeting CD9 expression predominantly affects activated endothelial cells. → CD9 is involved in endothelial cell proliferation, but not survival. → CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects

  8. INHIBITION OF HUMAN EXPERIMENTAL GASTRIC CARCINOMA METASTASIS IN VIVO BY P-SELECTIN MONOCLONAL ANTIBODY

    Institute of Scientific and Technical Information of China (English)

    陈金联; 陈维雄; 朱金水; 陈尼维; 姚明; 周同

    2001-01-01

    Objeetive To study the role of cell adhesion molecule P-selectin monoclonal antibody ( MAb ) in tumor metastasis of an orthotopic metastatic model. Methods SCID mice were implanted orthotopically SGC-7901 human gastric cancer tissue. 3d later, animals received i. v. injections of PBS or P-selectin MAb ( 100μg /injection ) twice weekly for 3 weeks. 42d after operation, all animals were sacrificed. Tissues from all organs were obtained for histopathological evaluation. Results 10 of the animals ( n = 11 ) treated with PBS were found to develop metastatic tumors in the regional lymph nodes, liver, and lung. In contrast, 2 of the animals ( n = 9 ) treated with P-selectin MAb developed metastatic tumors in the organs examined. The expression of P-selectin mRNA in gastric cancer tissue of SCID mice with tumor metastasis was higher than that without such metastasis. Conclusion P-selectin expression is associated with tumor metastasis, and the metastasis may be inhibited by the MAb.

  9. Potentiation of thrombin generation in hemophilia A plasma by coagulation factor VIII and characterization of antibody-specific inhibition.

    Directory of Open Access Journals (Sweden)

    Bhavya S Doshi

    Full Text Available Development of inhibitory antibodies to coagulation factor VIII (fVIII is the primary obstacle to the treatment of hemophilia A in the developed world. This adverse reaction occurs in 20-30% of persons with severe hemophilia A treated with fVIII-replacement products and is characterized by the development of a humoral and neutralizing immune response to fVIII. Patients with inhibitory anti-fVIII antibodies are treated with bypassing agents including recombinant factor VIIa (rfVIIa. However, some patients display poor hemostatic response to bypass therapy and improved treatment options are needed. Recently, we demonstrated that fVIII inhibitors display widely variable kinetics of inhibition that correlate with their respective target epitopes. Thus, it was hypothesized that for antibodies that display slow rates of inhibition, supplementation of rfVIIa with fVIII would result in improved thrombin generation and be predictive of clinical responses to this novel treatment regimen. In order to test this hypothesis, 10 murine monoclonal antibodies (MAbs with non-overlapping epitopes spanning fVIII, differential inhibition titers, and inhibition kinetics were studied using a thrombin generation assay. Of the 3 MAbs with high inhibitory titers, only the one with fast and complete (classically defined as "type I" kinetics displayed significant inhibition of thrombin generation with no improvement upon supplementation of rfVIIa with fVIII. The other two MAbs that displayed incomplete (classically defined as "type II" inhibition did not suppress the potentiation of thrombin generation by fVIII. All antibodies that did not completely inhibit fVIII activity demonstrated potentiation of thrombin generation by the addition of fVIII as compared to rfVIIa alone. In conclusion, fVIII alone or in combination with rfVIIa corrects the thrombin generation defect produced by the majority of anti-fVIII MAbs better than single agent rfVIIa. Therefore, combined f

  10. A novel microtubule-modulating agent EM011 inhibits angiogenesis by repressing the HIF-1α axis and disrupting cell polarity and migration

    OpenAIRE

    Karna, Prasanthi; Rida, Padmashree C. G.; Turaga, Ravi Chakra; Gao, Jinmin; Gupta, Meenakshi; Fritz, Andreas; Werner, Erica; Yates, Clayton; Zhou, Jun; Aneja, Ritu

    2012-01-01

    Endothelial tubular morphogenesis relies on an exquisite interplay of microtubule dynamics and actin remodeling to propel directed cell migration. Recently, the dynamicity and integrity of microtubules have been implicated in the trafficking and efficient translation of the mRNA for HIF-1α (hypoxia-inducible factor), the master regulator of tumor angiogenesis. Thus, microtubule-disrupting agents that perturb the HIF-1α axis and neovascularization cascade are attractive anticancer drug candida...

  11. Leishmania (Viannia) braziliensis nucleoside triphosphate diphosphohydrolase (NTPDase 1): localization and in vitro inhibition of promastigotes growth by polyclonal antibodies.

    Science.gov (United States)

    Porcino, Gabriane Nascimento; Carvalho-Campos, Cristiane; Maia, Ana Carolina Ribeiro Gomes; Detoni, Michelle Lima; Faria-Pinto, Priscila; Coimbra, Elaine Soares; Marques, Marcos José; Juliano, Maria Aparecida; Juliano, Luiz; Diniz, Vanessa Álvaro; Corte-Real, Suzana; Vasconcelos, Eveline Gomes

    2012-10-01

    Nucleoside triphosphate diphosphohydrolase (NTPDase) activity was recently characterized in Leishmania (Viannia) braziliensis promastigotes (Lb), and an antigenic conserved domain (r82-121) from the specific NTPDase 1 isoform was identified. In this work, mouse polyclonal antibodies produced against two synthetic peptides derived from this domain (LbB1LJ, r82-103; LbB2LJ, r102-121) were used. The anti-LbB1LJ or anti-LbB2LJ antibodies were immobilized on protein A-sepharose and immunoprecipitated the NTPDase 1 of 48 kDa and depleted approximately 40% of the phosphohydrolytic activity from detergent-homogenized Lb preparation. Ultrastructural immunocytochemical microscopy identified the NTPDase 1 on the parasite surface and in its subcellular cytoplasmic vesicles, mitochondria, kinetoplast and nucleus. The ATPase and ADPase activities of detergent-homogenized Lb preparation were partially inhibited by anti-LbB1LJ antibody (43-79%), which was more effective than that inhibition (18-47%) by anti-LbB2LJ antibody. In addition, the immune serum anti-LbB1LJ (67%) or anti-LbB2LJ (33%) was cytotoxic, significantly reducing the promastigotes growth in vitro. The results appoint the conserved domain from the L. braziliensis NTPDase as an important target for inhibitor design and the potential application of these biomolecules in experimental protocols of disease control. PMID:22921497

  12. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans[S

    OpenAIRE

    Müller, Nike; Schulte, Dominik M.; Türk, Kathrin; Freitag-Wolf, Sandra; Hampe, Jochen; Zeuner, Rainald; Johann O Schröder; Gouni-Berthold, Ioanna; Heiner K Berthold; Krone, Wilhelm; Rose-John, Stefan; Schreiber, Stefan; Laudes, Matthias

    2015-01-01

    Lipoprotein (a) [Lp(a)] is a highly atherogenic lipid particle. Although earlier reports suggested that Lp(a) levels are mostly determined by genetic factors, several recent studies have revealed that Lp(a) induction is also caused by chronic inflammation. Therefore, we aimed to examine whether cytokine blockade by monoclonal antibodies may inhibit Lp(a) metabolism. We found that interleukin 6 (IL-6) blockade by tocilizumab (TCZ) reduced Lp(a) while TNF-α-inhibition by adalimumab in humans ha...

  13. The Hemostatic System and Angiogenesis in Malignancy

    Directory of Open Access Journals (Sweden)

    Marek Z. Wojtukiewicz

    2001-01-01

    Full Text Available Coagulopathy and angiogenesis are among the most consistent host responses associated with cancer. These two respective processes, hitherto viewed as distinct, may in fact be functionally inseparable as blood coagulation and fibrinolysis, in their own right, influence tumor angiogenesis and thereby contribute to malignant growth. In addition, tumor angiogenesis appears to be controlled through both standard and non-standard functions of such elements of the hemostatic system as tissue factor, thrombin, fibrin, plasminogen activators, plasminogen, and platelets. “Cryptic” domains can be released from hemostatic proteins through proteolytic cleavage, and act systemically as angiogenesis inhibitors (e.g., angiostatin, antiangiogenic antithrombin III aaATIII. Various components of the hemostatic system either promote or inhibit angiogenesis and likely act by changing the net angiogenic balance. However, their complex influences are far from being fully understood. Targeted pharmacological and/ or genetic inhibition of pro-angiogenic activities of the hemostatic system and exploitation of endogenous angiogenesis inhibitors of the angiostatin and aaATIII variety are under study as prospective anti-cancer treatments.

  14. Adenovirus-expressed preS2 antibody inhibits hepatitis B virus infection and hepatic carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Qian Zhang; Zhi-Qing Li; Hu Liu; Jia-He Yang

    2012-01-01

    AIM: To investigate the inhibitory effect of hepatitis B virus (HBV) preS2 antibody (preS2Ab) against HBV infection and HBV-associated hepatic carcinogenesis. METHODS: An adenoviral vector carrying the fulllength light and heavy chains of the HBV preS2Ab gene, Ad315-preS2Ab, was constructed. Enzyme linked immunosorbent assay (ELISA) and Western blotting analyses were used to determine the preS2Ab expression levels in vitro . Immunofluorescent techniques were used to examine the binding affinity between the expressed HBV preS2Ab and HBV-positive liver cells. ELISAs were also used to determine hepatitis B surface antigen (HBsAg) levels to assess the inhibitory effect of the preS2Ab against HBV infection in L02 cells. The inhibitory effect of preS2Ab against hepatic carcinogenesiswas studied with diethylnitrosamine (DEN)-induced hepatocellular carcinomas (HCCs) in HBV transgenic mice. RESULTS: The expression of HBV preS2Ab increased with increases in the multiplicity of infection (MOI) of Ad315-preS2Ab in L02 cells, with 350.87 ± 17.37 μg/L of preS2Ab when the MOI was 100 plaque forming units (pfu)/cell. The expressed preS2Abs could recognize liver cells from HBV transgenic mice. ELISA results showed that L02 cells expressing preS2Ab produced less HBsAg after treatment with the serum of HBV patients than parental L02 cells expressing no preS2Ab. HBV transgenic mice treated with Ad315-preS2Ab had fewer and smaller cancerous nodes after induction with DEN than mice treated with a blank Ad315 vector or untreated mice. Additionally, the administration of Ad315-preS2Ab could alleviate hepatic cirrhosis and decrease the serum levels of alanine transaminase and aspartate transaminase. CONCLUSION: Adenovirus-mediated HBV preS2Ab expression could inhibit HBV infection in L02 cells, and then inhibit DEN-induced hepatocellular carcinogenesis and protect hepatic function in HBV transgenic mice.

  15. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity.

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    Full Text Available The paralytic disease botulism is caused by botulinum neurotoxins (BoNT, multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC of BoNT serotype A (BoNT/A was targeted for generation of monoclonal antibodies (mAbs that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS. Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10-11 M to 3.53×10-8 M (mean KD 5.38×10-9 M and median KD 1.53×10-9 M, as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10-9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.

  16. Post-streptococcal auto-antibodies inhibit protein disulfide isomerase and are associated with insulin resistance.

    Directory of Open Access Journals (Sweden)

    Adi Aran

    Full Text Available Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33% and without (67% markers of recent streptococcal infections [anti-Streptolysin O (ASLO or anti-DNAse B (ADB]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI, an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61 and PDI (P328-338. The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001. Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001, and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039 and insulin resistance (Homeostatic Model Assessment (HOMA 4.1 vs. 3.1, n = 1215, p = 0.004, in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances.

  17. Radiometric cytolysis inhibition assay, a new rapid test for neutralizing antibodies to intact and trypsin-cleaved poliovirus

    International Nuclear Information System (INIS)

    We have developed a new rapid test, the radiometric cytolysis inhibition assay (RACINA), for the determination of neutralizing poliovirus antibodies. HeLa cells prelabeled with 51Cr, [3H]leucine, or, preferentially, with [3H]uridine are used as sensitive quantitative indicators of residual infectious virus. Both suspensions and monolayer cultures of the indicator cells can be used. Neutralization of a fraction of a high-titer virus preparation can be scored after the first replication cycle at 8 to 10 h. By lowering the incubation temperature to 30 degree C, the completion of the cytolysis due to the first replication cycle of poliovirus was delayed beyond 21 h. This makes it possible to use the RACINA, unlike the standard microneutralization assay, for measuring antibodies to trypsin-cleaved polioviruses. The RACINA was found to be as sensitive as and more reproducible than the standard microneutralization assay in the measurement of neutralizing poliovirus antibodies. The RACINA is a rapid and reliable test for neutralizing antibodies and in principle it may be applicable for quantitation of neutralizing antibodies to other cytolytic agents as well

  18. Anti-DNase I antibodies in systemic lupus erythematosus: diagnostic value and share in the enzyme inhibition.

    Science.gov (United States)

    Trofimenko, A S; Gontar, I P; Zborovsky, A B; Paramonova, O V

    2016-04-01

    Diagnostic accuracy of anti-DNase I antibodies measurement in a differentiation between SLE and other autoimmune rheumatic diseases was evaluated. The share of anti-DNase I and actin in the DNase I activity decrease in SLE was established. Serum samples were obtained from 54 patients with verified SLE, 52 control patients with other autoimmune rheumatic diseases, and 44 healthy persons. Anti-DNase I concentrations were measured by ELISA. Free and actin inhibited DNase I activities were evaluated in the fresh serum samples. The appraisal of antibodies and actin effects on DNase I activity was made using multiple regression. Anti-DNase I antibodies were positive in 35 SLE and 8 control patients, without significant difference between the mean antibody concentrations. Sensitivity of this test was 64.81 %, and specificity-84.62 %. Mean free DNase I activity in SLE was somewhat lower than in the control group as a result of augmented frequency of extremely low enzyme activities. On the contrary, after the exclusion of the latter cases we have revealed elevated mean free DNase I activity in the other SLE patients comparing to the similar control subgroup. Unlike the controls, low serum DNase I activity in SLE arose not only from actin and antibody action, but also, in half of the cases, from unidentified factor, related to active SLE. The accuracy of the anti-DNase I antibodies measurement is approximate to the present reference standard of SLE diagnostics. We first demonstrated that neither antibodies nor actin caused DNase I activity decrease in SLE.

  19. Impact of KITENIN on tumor angiogenesis and lymphangiogenesis in colorectal cancer.

    Science.gov (United States)

    Oh, Hyung-Hoon; Park, Kang-Jin; Kim, Nuri; Park, Sun-Young; Park, Young-Lan; Oak, Chan-Young; Myung, Dae-Seong; Cho, Sung-Bum; Lee, Wan-Sik; Kim, Kyung-Keun; Joo, Young-Eun

    2016-01-01

    Angiogenesis and lymphangiogenesis are involved in the dissemination of tumor cells from solid tumors to regional lymph nodes and various distant sites. KAI1 COOH-terminal interacting tetraspanin (KITENIN) contributes to tumor progression and poor clinical outcomes in various cancers including colorectal cancer. The aim of the present study was to evaluate whether KITENIN affects tumor angiogenesis and lymphangiogenesis in colorectal cancer. A KITENIN small interfering RNA vector was used to silence KITENIN expression in colorectal cancer cell lines including DLD1 and SW480 cells. To evaluate the ability of KITENIN to induce angiogenesis and lymphangiogenesis in human umbilical vein endothelial cells (HUVECs) and lymphatic endothelial cells (HLECs), we performed Matrigel invasion and tube formation assays. Immunohistochemistry was used to determine the expression of KITENIN in colorectal cancer tissues. Angiogenesis and lymphangiogenesis were evaluated by immunostaining with CD34 and D2-40 antibodies. KITENIN silencing inhibited both HUVEC invasion and tube formation in the DLD1 and SW480 cells. KITENIN silencing led to decreased expression of the angiogenic inducers vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α and increased expression of the angiogenic inhibitor angiostatin. KITENIN silencing did not inhibit either HLEC invasion or tube formation in all tested cells, but it resulted in decreased expression of the lymphangiogenic inducer VEGF-C. KITENIN expression was significantly associated with tumor stage, depth of invasion, lymph node and distant metastases and poor survival. The mean microvessel density was significantly higher in the KITENIN-positive tumors than that in the KITENIN-negative tumors. However, the mean lymphatic vessel density of KITENIN-positive tumors was not significantly higher than that of the KITENIN-negative tumors. These results suggest that KITENIN promotes tumor progression by enhancing angiogenesis in

  20. The strong in vivo anti-tumor effect of the UIC2 monoclonal antibody is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Gábor Szalóki

    Full Text Available P-glycoprotein (Pgp extrudes a large variety of chemotherapeutic drugs from the cells, causing multidrug resistance (MDR. The UIC2 monoclonal antibody recognizes human Pgp and inhibits its drug transport activity. However, this inhibition is partial, since UIC2 binds only to 10-40% of cell surface Pgps, while the rest becomes accessible to this antibody only in the presence of certain substrates or modulators (e.g. cyclosporine A (CsA. The combined addition of UIC2 and 10 times lower concentrations of CsA than what is necessary for Pgp inhibition when the modulator is applied alone, decreased the EC50 of doxorubicin (DOX in KB-V1 (Pgp+ cells in vitro almost to the level of KB-3-1 (Pgp- cells. At the same time, UIC2 alone did not affect the EC50 value of DOX significantly. In xenotransplanted severe combined immunodeficient (SCID mice co-treated with DOX, UIC2 and CsA, the average weight of Pgp+ tumors was only ∼10% of the untreated control and in 52% of these animals we could not detect tumors at all, while DOX treatment alone did not decrease the weight of Pgp+ tumors. These data were confirmed by visualizing the tumors in vivo by positron emission tomography (PET based on their increased 18FDG accumulation. Unexpectedly, UIC2+DOX treatment also decreased the size of tumors compared to the DOX only treated animals, as opposed to the results of our in vitro cytotoxicity assays, suggesting that immunological factors are also involved in the antitumor effect of in vivo UIC2 treatment. Since UIC2 binding itself did not affect the viability of Pgp expressing cells, but it triggered in vitro cell killing by peripheral blood mononuclear cells (PBMCs, it is concluded that the impressive in vivo anti-tumor effect of the DOX-UIC2-CsA treatment is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity (ADCC.

  1. The strong in vivo anti-tumor effect of the UIC2 monoclonal antibody is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity.

    Science.gov (United States)

    Szalóki, Gábor; Krasznai, Zoárd T; Tóth, Ágnes; Vízkeleti, Laura; Szöllősi, Attila G; Trencsényi, György; Lajtos, Imre; Juhász, István; Krasznai, Zoltán; Márián, Teréz; Balázs, Margit; Szabó, Gábor; Goda, Katalin

    2014-01-01

    P-glycoprotein (Pgp) extrudes a large variety of chemotherapeutic drugs from the cells, causing multidrug resistance (MDR). The UIC2 monoclonal antibody recognizes human Pgp and inhibits its drug transport activity. However, this inhibition is partial, since UIC2 binds only to 10-40% of cell surface Pgps, while the rest becomes accessible to this antibody only in the presence of certain substrates or modulators (e.g. cyclosporine A (CsA)). The combined addition of UIC2 and 10 times lower concentrations of CsA than what is necessary for Pgp inhibition when the modulator is applied alone, decreased the EC50 of doxorubicin (DOX) in KB-V1 (Pgp+) cells in vitro almost to the level of KB-3-1 (Pgp-) cells. At the same time, UIC2 alone did not affect the EC50 value of DOX significantly. In xenotransplanted severe combined immunodeficient (SCID) mice co-treated with DOX, UIC2 and CsA, the average weight of Pgp+ tumors was only ∼10% of the untreated control and in 52% of these animals we could not detect tumors at all, while DOX treatment alone did not decrease the weight of Pgp+ tumors. These data were confirmed by visualizing the tumors in vivo by positron emission tomography (PET) based on their increased 18FDG accumulation. Unexpectedly, UIC2+DOX treatment also decreased the size of tumors compared to the DOX only treated animals, as opposed to the results of our in vitro cytotoxicity assays, suggesting that immunological factors are also involved in the antitumor effect of in vivo UIC2 treatment. Since UIC2 binding itself did not affect the viability of Pgp expressing cells, but it triggered in vitro cell killing by peripheral blood mononuclear cells (PBMCs), it is concluded that the impressive in vivo anti-tumor effect of the DOX-UIC2-CsA treatment is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity (ADCC). PMID:25238617

  2. Inhibition of lipoxygenase activity in lentil protoplasts by monoclonal antibodies introduced into the cells via electroporation

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Maccarrone, M.; Veldink, G.A.

    1992-01-01

    The isolation of lentil protoplasts and the transfer of anti-lipoxygenase monoclonal antibodies into plant protoplasts by electroporation is reported. The dependence of the efficiency of monoclonal antibody incorporation on the field strength is shown as well. The transferred immunoglobulins retaine

  3. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role...

  4. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    Yureeda Qazi; Surekha Maddula; Balamurali K. Ambati

    2009-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.

  5. Epitope specificity and isotype of monoclonal anti-D antibodies dictate their ability to inhibit phagocytosis of opsonized platelets.

    Science.gov (United States)

    Kjaersgaard, Mimi; Aslam, Rukhsana; Kim, Michael; Speck, Edwin R; Freedman, John; Stewart, Donald I H; Wiersma, Erik J; Semple, John W

    2007-08-15

    Rh immune globulin (WinRho SDF; Cangene, Mississauga, ON, Canada) is an effective treatment for autoimmune thrombocytopenic purpura; however, maintaining a sustained supply for its use in autoimmune thrombocytopenic purpura and its primary indication, hemolytic disease of the newborn, makes the development of alternative reagents desirable. We compared Rh immune globulin and 6 human monoclonal anti-D antibodies (MoAnti-D) with differing isotypes and specificities for their ability to opsonize erythrocytes and inhibit platelet phagocytosis in an in vitro assay. Results demonstrated that opsonization of erythrocytes with Rh immune globulin significantly (P < .001) reduced phagocytosis of fluorescently labeled opsonized platelets in an Fc-dependent manner. Of the MoAnti-D that shared specificity but differed in isotype, only IgG3 antibodies could significantly (P < .001) inhibit platelet phagocytosis. In contrast, 2 MoAnti-D shared isotypes and differed in specificity; however, only one could significantly (P < .001) inhibit platelet phagocytosis. The results suggest that MoAnti-D epitope specificity and isotypes are critical requirements for optimal inhibition of opsonized platelet phagocytosis. PMID:17456719

  6. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action.

    Science.gov (United States)

    Geoghegan, James C; Diedrich, Gundo; Lu, Xiaojun; Rosenthal, Kim; Sachsenmeier, Kris F; Wu, Herren; Dall'Acqua, William F; Damschroder, Melissa M

    2016-01-01

    CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states.

  7. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action.

    Science.gov (United States)

    Geoghegan, James C; Diedrich, Gundo; Lu, Xiaojun; Rosenthal, Kim; Sachsenmeier, Kris F; Wu, Herren; Dall'Acqua, William F; Damschroder, Melissa M

    2016-01-01

    CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states. PMID:26854859

  8. Inhibition of Hepatitis C Virus-Like Particle Binding to Target Cells by Antiviral Antibodies in Acute and Chronic Hepatitis C

    Science.gov (United States)

    Steinmann, Daniel; Barth, Heidi; Gissler, Bettina; Schürmann, Peter; Adah, Mohammed I.; Gerlach, J. Tilman; Pape, Gerd R.; Depla, Erik; Jacobs, Dirk; Maertens, Geert; Patel, Arvind H.; Inchauspé, Geneviève; Liang, T. Jake; Blum, Hubert E.; Baumert, Thomas F.

    2004-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic viral hepatitis worldwide. The study of antibody-mediated virus neutralization has been hampered by the lack of an efficient and high-throughput cell culture system for the study of virus neutralization. The HCV structural proteins have been shown to assemble into noninfectious HCV-like particles (HCV-LPs). Similar to serum-derived virions, HCV-LPs bind and enter human hepatocytes and hepatoma cell lines. In this study, we developed an HCV-LP-based model system for a systematic functional analysis of antiviral antibodies from patients with acute or chronic hepatitis C. We demonstrate that cellular HCV-LP binding was specifically inhibited by antiviral antibodies from patients with acute or chronic hepatitis C in a dose-dependent manner. Using a library of homologous overlapping envelope peptides covering the entire HCV envelope, we identified an epitope in the N-terminal E2 region (SQKIQLVNTNGSWHI; amino acid positions 408 to 422) as one target of human antiviral antibodies inhibiting cellular particle binding. Using a large panel of serum samples from patients with acute and chronic hepatitis C, we demonstrated that the presence of antibodies with inhibition of binding activity was not associated with viral clearance. In conclusion, antibody-mediated inhibition of cellular HCV-LP binding represents a convenient system for the functional characterization of human anti-HCV antibodies, allowing the mapping of envelope neutralization epitopes targeted by naturally occurring antiviral antibodies. PMID:15308699

  9. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt;

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited...... in a concentration dependent manner by MAb against the beta-chain but not against the alpha-chain. No cross-reactivity was found between MAb against LFA-1 and against the CD4 receptor (MAb Leu3a). MAbs against the beta-chain and the CD4 receptor were found to act synergistically in inhibiting HIV infection....... These data indicate that the beta-chain of LFA-1 in addition to the CD4 receptor may be involved in HIV infection in vitro....

  10. Neuraminidase inhibiting antibody responses in pigs differ between influenza A virus N2 lineages and by vaccine type.

    Science.gov (United States)

    Sandbulte, Matthew R; Gauger, Phillip C; Kitikoon, Pravina; Chen, Hongjun; Perez, Daniel R; Roth, James A; Vincent, Amy L

    2016-07-19

    The neuraminidase (NA) protein of influenza A viruses (IAV) has important functional roles in the viral replication cycle. Antibodies specific to NA can reduce viral replication and limit disease severity, but are not routinely measured. We analyzed NA inhibiting (NI) antibody titers in serum and respiratory specimens of pigs vaccinated with intramuscular whole-inactivated virus (WIV), intranasal live-attenuated influenza virus (LAIV), and intranasal wild type (WT) IAV. NI titers were also analyzed in sera from an investigation of piglet vaccination in the presence of passive maternally-derived antibodies. Test antigens contained genetically divergent swine-lineage NA genes homologous or heterologous to the vaccines with mismatched hemagglutinin genes (HA). Naïve piglets responded to WIV and LAIV vaccines and WT infection with strong homologous serum NI titers. Cross-reactivity to heterologous NAs depended on the degree of genetic divergence between the NA genes. Bronchoalveolar lavage specimens of LAIV and WT-immunized groups also had significant NI titers against the homologous antigen whereas the WIV group did not. Piglets of vaccinated sows received high levels of passive NI antibody, but their NI responses to homologous LAIV vaccination were impeded. These data demonstrate the utility of the enzyme-linked lectin assay for efficient NI antibody titration of serum as well as respiratory tract secretions. Swine IAV vaccines that induce robust NI responses are likely to provide broader protection against the diverse and rapidly evolving IAV strains that circulate in pig populations. Mucosal antibodies to NA may be one of the protective immune mechanisms induced by LAIV vaccines.

  11. Neuraminidase inhibiting antibody responses in pigs differ between influenza A virus N2 lineages and by vaccine type.

    Science.gov (United States)

    Sandbulte, Matthew R; Gauger, Phillip C; Kitikoon, Pravina; Chen, Hongjun; Perez, Daniel R; Roth, James A; Vincent, Amy L

    2016-07-19

    The neuraminidase (NA) protein of influenza A viruses (IAV) has important functional roles in the viral replication cycle. Antibodies specific to NA can reduce viral replication and limit disease severity, but are not routinely measured. We analyzed NA inhibiting (NI) antibody titers in serum and respiratory specimens of pigs vaccinated with intramuscular whole-inactivated virus (WIV), intranasal live-attenuated influenza virus (LAIV), and intranasal wild type (WT) IAV. NI titers were also analyzed in sera from an investigation of piglet vaccination in the presence of passive maternally-derived antibodies. Test antigens contained genetically divergent swine-lineage NA genes homologous or heterologous to the vaccines with mismatched hemagglutinin genes (HA). Naïve piglets responded to WIV and LAIV vaccines and WT infection with strong homologous serum NI titers. Cross-reactivity to heterologous NAs depended on the degree of genetic divergence between the NA genes. Bronchoalveolar lavage specimens of LAIV and WT-immunized groups also had significant NI titers against the homologous antigen whereas the WIV group did not. Piglets of vaccinated sows received high levels of passive NI antibody, but their NI responses to homologous LAIV vaccination were impeded. These data demonstrate the utility of the enzyme-linked lectin assay for efficient NI antibody titration of serum as well as respiratory tract secretions. Swine IAV vaccines that induce robust NI responses are likely to provide broader protection against the diverse and rapidly evolving IAV strains that circulate in pig populations. Mucosal antibodies to NA may be one of the protective immune mechanisms induced by LAIV vaccines. PMID:27325350

  12. Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action.

    OpenAIRE

    Roth, R A; Cassell, D J; Wong, K. Y.; Maddux, B A; Goldfine, I D

    1982-01-01

    Antibodies to the insulin receptor were prepared in BALB/c mice by immunization with IM-9 human lymphocytes, a cell type that has a large number of plasma membrane insulin receptors. The spleens of these mice were then removed, and their lymphocytes were fused to a mouse myeloma cell line, FO cells. After screening over 1,200 resulting hybrids, one stable hybrid was obtained that produced IgG1 antibodies directed towards the insulin receptor. This antibody blocked 125I-labeled insulin binding...

  13. Methotrexate Locally Released from Poly(e-Caprolactone) Implants: Inhibition of the Inflammatory Angiogenesis Response in a Murine Sponge Model and the Absence of Systemic Toxicity.

    Science.gov (United States)

    De Oliveira, Leandro Gonzaga; Figueiredo, Letîcia Aparecida; Fernandes-Cunha, Gabriella Maria; Marina Barcelos, De Miranda; Machado, Laser Antonio; Dasilva, Gisele Rodrigues; Sandra Aparecida Lima, De Moura

    2015-11-01

    In this study, the methotrexate (MTX) was incorporated into the poly(e-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-a and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3731-3742, 2015. PMID:27524686

  14. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies.

    Directory of Open Access Journals (Sweden)

    Irene A Abela

    Full Text Available HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo.

  15. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies.

    Science.gov (United States)

    Abela, Irene A; Berlinger, Livia; Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F; Rusert, Peter; Trkola, Alexandra

    2012-01-01

    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655

  16. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4

    International Nuclear Information System (INIS)

    Despite the importance of MMP activity in the regulation of angiogenesis, relatively little is known about the role of TIMP-4, the most recently discovered endogenous MMP inhibitor, in modulating neovascularization. It has largely been assumed that all TIMPs are capable of inhibiting angiogenesis in vivo. However, it is now widely appreciated that TIMPs-1, -2, and -3 differ significantly in their ability to modulate angiogenic processes in vitro and angiogenesis in vivo. In order to study the effect of TIMP-4 in controlling angiogenesis, we have cloned and expressed TIMP-4 in a Pichia pastoris expression system, purified it to homogeneity, and tested its ability to regulate angiogenesis in vivo and in vitro. Our studies demonstrate that TIMP-4 is an inhibitor of capillary endothelial cell migration, but not of proliferation or of angiogenesis in vivo

  17. Pancreatic cancer cell inhibition and anti-angiogenesis by angiostatin in vivo and in vitro%血管抑素对胰腺癌血管生成的抑制作用

    Institute of Scientific and Technical Information of China (English)

    石磊; 岳媛; 王作仁

    2011-01-01

    Objective To observe the inhibition of pancreatic cancer cells with anti-angiogenesis by angiostatin in vitro and in vivo. Methods The recombinant vector pcDNA3. 1 (+ )-angiostatin was transfected into human pancreatic cancer cells PC-3 with lipofectamine 2000. Angiostatin protein expression was determined by Western blot. The supernatant was collected to treat endothelial cells and cell proliferation in vitro was observed under microscope. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34 antibody. Results After transfected into PC-3 with lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experiment group transfected with pcDNA 3. L( + )-angiostatin and vector control group. After treatment with the supernatant, the endothelial cell (ECV-304) proliferation was inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experiment group as compared to those in the control group. The microvessel density was obviously smaller in the experiment group (19. 6 + 3. 6) than in the blank control group (48.5±4.7) and the liposome control group (51.1±5.4). Conclusion Angiostatin inhibits the proliferation of endothelial cell growth in vitro and further exerts an anti-tumor function through antiangiogenesis in a paracrine way in vivo.%目的 观察血管抑素在胰腺癌血管生成中的作用.方法 采用Lipofectamine 2000基因转染技术将真核表达载体pcDNA3.1(+)-angiostatin导入人胰腺癌PC-3细胞,筛选阳性克隆并扩大培养.PC-3细胞分为血管抑素转染组、空白对照组及脂质体对照组,分别检测各组血管抑素蛋白表达;利用显微镜下细胞计数法测定转染前后PC-3细胞的体外生长曲线;检测各组PC-3细胞培养上清所分泌的血管抑素对血管内皮细胞ECV-304增殖的影响.进一步

  18. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  19. Soliton driven angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  20. Galectin-3 induces pulmonary artery endothelial cell morphogenesis and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LI Yu-mei; WANG Xiao-yan; ZHU Da-ling

    2016-01-01

    AIM:Increasing evidence suggests that carbohydrate-binding proteins play an essential role in tumor growth and metastasis .Ga-lectin-3, a multifunctional protein of an expanding family of β-galactoside-binding animal lectins , is the major nonintegrin cellular laminin-binding protein , and is implicated in a variety of biologic events , such as inflammation and angiogenesis .Because galectin-3 expression was shown to participate in mediating tumor angiogenesis and initiate signaling cascades in several diseases .We hypothe-sized that galectin-3 may promote pulmonary vascular endothelial neovascularization .METHODS:Hypoxic and MCT rat model of pul-monary artery remodeling was used .The mRNA and protein levels of galectin-3 in rats were measured by in situ hybrization and West-ern blot analysis.Endothelial cell (EC) proliferation, migration and tube formation were measured using MTT , cell scratch and Matri-gel assays, respectively.Protein expression was quantitated by Western blot analysis .LC 3A/B staining was detected with cellular im-munofluorescence staining .RESULTS:We found that galectin-3 was localized on the intima and adventitial wall .Galectin-3 was in-creased after rat hypoxia and MCT administration .Galectin-3 promoted EC proliferation , migration and tube formation , while its roles were reversed by RNA interference.Galectin-3 induced Atg 5, Beclin-1, LAMP-2, and LC 3A/B expression increases.Galectin-3 al-so increased LC 3A/B staining in ECs.Akt/mTOR and GSK-3βsignaling pathways were activated after galectin-3 treated ECs using its specific phosphorylation antibodies , while blocked it with LY294002 inhibited cell autophagy and EC dynamic alterations induced by galectin-3.CONCLUSION:These findings demonstrate that galectin-3 can induce an Akt signaling cascade leading to cell autoph-agy, and then the differentiation and angiogenesis of pulmonary artery endothelial cells .

  1. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD. PMID:17693481

  2. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Bruna Victorasso Jardim-Perassi

    Full Text Available As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231. After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT with Technetium-99m tagged vascular endothelial growth factor (VEGF C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM decreased cell viability (p0.05 images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor in melatonin treated mice (p<0.05. However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05. In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.

  3. Development and evaluation of a monoclonal antibody-based inhibition ELISA for the quantification of chymosin in solution.

    Science.gov (United States)

    Rolet-Répécaud, O; Arnould, C; Dupont, D; Gavoye, S; Beuvier, E; Achilleos, C

    2015-05-20

    Chymosin is the major enzyme of natural rennet, traditionally used in cheese making for its high milk-clotting activity. For technical reasons, an accurate characterization of rennet should include its total clotting activity and also its enzymatic composition. Monoclonal antibodies specific to chymosin were obtained from mice immunized with purified bovine chymosin, and an inhibition enzyme-linked immunosorbent assay (ELISA) was developed for the quantification of chymosin in solution. No cross-reactivity was observed with other milk-clotting enzymes commonly used in cheese making. The limit of detection and limit of quantification were 125 and 400 ng/mL, respectively. The values of precision within and among runs were 7.23 and 7.39%, respectively, and satisfying recovery, from 92 to 119%, was found for spiked samples. The inhibition ELISA was successfully applied to commercial rennets, and the results were consistent with those obtained using the standard chromatographic method (IDF 110: A, 1987).

  4. Angiogenesis and liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Gülsüm ?zlem Elpek

    2015-01-01

    Recent data indicate that hepatic angiogenesis,regardless of the etiology, takes place in chronic liverdiseases (CLDs) that are characterized by inflammationand progressive fibrosis. Because antiangiogenictherapy has been found to be efficient inthe prevention of fibrosis in experimental models ofCLDs, it is suggested that blocking angiogenesis couldbe a promising therapeutic option in patients withadvanced fibrosis. Consequently, efforts are beingdirected to revealing the mechanisms involved inangiogenesis during the progression of liver fibrosis.Literature evidences indicate that hepatic angiogenesisand fibrosis are closely related in both clinical andexperimental conditions. Hypoxia is a major inducer ofangiogenesis together with inflammation and hepaticstellate cells. These profibrogenic cells stand at theintersection between inflammation, angiogenesis andfibrosis and play also a pivotal role in angiogenesis.This review mainly focuses to give a clear view on therelevant features that communicate angiogenesis withprogression of fibrosis in CLDs towards the-end point ofcirrhosis that may be translated into future therapies.The pathogenesis of hepatic angiogenesis associatedwith portal hypertension, viral hepatitis, non-alcoholicfatty liver disease and alcoholic liver disease are alsodiscussed to emphasize the various mechanisms involvedin angiogenesis during liver fibrogenesis.

  5. Plasmodium falciparum 19-kilodalton merozoite surface protein 1 (MSP1)-specific antibodies that interfere with parasite growth in vitro can inhibit MSP1 processing, merozoite invasion, and intracellular parasite development.

    Science.gov (United States)

    Moss, David K; Remarque, Edmond J; Faber, Bart W; Cavanagh, David R; Arnot, David E; Thomas, Alan W; Holder, Anthony A

    2012-03-01

    Merozoite surface protein 1 (MSP1) is a target for malaria vaccine development. Antibodies to the 19-kDa carboxy-terminal region referred to as MSP1(19) inhibit erythrocyte invasion and parasite growth, with some MSP1-specific antibodies shown to inhibit the proteolytic processing of MSP1 that occurs at invasion. We investigated a series of antibodies purified from rabbits immunized with MSP1(19) and AMA1 recombinant proteins for their ability to inhibit parasite growth, initially looking at MSP1 processing. Although significant inhibition of processing was mediated by several of the antibody samples, there was no clear relationship with overall growth inhibition by the same antibodies. However, no antibody samples inhibited processing but not invasion, suggesting that inhibition of MSP1 processing contributes to but is not the only mechanism of antibody-mediated inhibition of invasion and growth. Examining other mechanisms by which MSP1-specific antibodies inhibit parasite growth, we show that MSP1(19)-specific antibodies are taken up into invaded erythrocytes, where they persist for significant periods and result in delayed intracellular parasite development. This delay may result from antibody interference with coalescence of MSP1(19)-containing vesicles with the food vacuole. Antibodies raised against a modified recombinant MSP1(19) sequence were more efficient at delaying intracellular growth than those to the wild-type protein. We propose that antibodies specific for MSP1(19) can mediate inhibition of parasite growth by at least three mechanisms: inhibition of MSP1 processing, direct inhibition of invasion, and inhibition of parasite development following invasion. The balance between mechanisms may be modulated by modifying the immunogen used to induce the antibodies.

  6. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress

    NARCIS (Netherlands)

    Fox, Julie M.; Long, Feng; Edeling, Melissa A.; Lin, Hueylie; van Duijl-Richter, Mareike K. S.; Fong, Rachel H.; Kahle, Kristen M.; Smit, Jolanda M.; Jin, Jing; Simmons, Graham; Doranz, Benjamin J.; Crowe, James E.; Fremont, Daved H.; Rossmann, Michael G.; Diamond, Michael S.

    2015-01-01

    We screened a panel of mouse and human monoclonal antibodies (MAbs) against chikungunya virus and identified several with inhibitory activity against multiple alphaviruses. Passive transfer of broadly neutralizing MAbs protected mice against infection by chikungunya, Mayaro, and O'nyong'nyong alphav

  7. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa; Jarupathirun, Patsaporn; Kaptein, Suzanne; Neyts, Johan; Smit, Jolanda

    2013-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier tha

  8. Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein.

    NARCIS (Netherlands)

    Shahrooei, M.; Hira, V.; Stijlemans, B.; Merckx, R.; Hermans, P.W.M.; Eldere, J. van

    2009-01-01

    Several well-studied proteins with defined roles in Staphylococcus epidermidis biofilm formation are LPXTG motif-containing proteins. Here, we investigate the possible use of the LPXTG motif-containing protein SesC (S. epidermidis surface protein C; accession no. NP_765787) as a target for antibodie

  9. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies.

    Directory of Open Access Journals (Sweden)

    Atul Asati

    Full Text Available Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA

  10. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies.

    Science.gov (United States)

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  11. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies.

    Science.gov (United States)

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  12. Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells.

    Science.gov (United States)

    Bancos, Simona; Bernard, Matthew P; Topham, David J; Phipps, Richard P

    2009-01-01

    The widely used non-steroidal anti-inflammatory drugs (NSAIDs) function mainly through inhibition of cyclooxygenases 1 and 2 (Cox-1 and Cox-2). Unlike Cox-1, Cox-2 is considered an inducible and pro-inflammatory enzyme. We previously reported that Cox-2 is upregulated in activated human B lymphocytes and using Cox-2 selective inhibitors that Cox-2 is required for optimal antibody synthesis. It is not known whether commonly used non-prescription and non-Cox-2 selective drugs also influence antibody synthesis. Herein, we tested a variety of Cox-1/Cox-2 non-selective NSAIDs, namely ibuprofen, tylenol, aspirin and naproxen and report that they blunt IgM and IgG synthesis in stimulated human peripheral blood mononuclear cells (PBMC). Ibuprofen had its most profound effects in inhibiting human PBMCs and purified B lymphocyte IgM and IgG synthesis when administered in the first few days after activation. As shown by viability assays, ibuprofen did not kill B cells. The implications of this research are that the use of widely available NSAIDs after infection or vaccination may lower host defense. This may be especially true for the elderly who respond poorly to vaccines and heavily use NSAIDs.

  13. Inhibition of Spontaneous Breast Cancer Metastasis by Anti—Thomsen-Friedenreich Antigen Monoclonal Antibody JAA-F11

    Directory of Open Access Journals (Sweden)

    Jamie Heimburg

    2006-11-01

    Full Text Available Thomsen-Friedenreich antigen (TF-Ag is expressed in many carcinomas, including those of the breast, colon, bladder, prostate. TF-Ag is important in adhesion and metastasis and as a potential immunotherapy target. We hypothesized that passive transfer of JAAF11, an anti -TF-Ag monoclonal antibody, may create a survival advantage for patients with TIF-Ag -expressing tumors by cytotoxicity, blocking of tumor cell adhesion, inhibition of metastasis. This was tested using in vitro models of tumor cell growth; cytotoxicity assays; in vitro, ex vivo, in vivo models of cancer metastasis; and, finally, in vivo effects in mice with metastatic breast cancer. Unlike some anti-TF-Ag antibodies, JAA-F11 did not enhance breast carcinoma cell growth. JAA-F11 did not induce the killing of 4T1 tumor cells through complement-dependent cytotoxicity or apoptotic mechanisms. However, JAA-F11 blocked the stages of metastasis that involve the adhesion of human breast carcinoma cells to human endothelial cells (human umbilical vein endothelial cells and human bone marrow endothelial cells 60 in in vitro static adhesion models, in a perfused ex vivo model, in murine lung vasculature in an in vivo metastatic deposit formation assay. JAA-F11 significantly extended the median survival time of animals bearing metastatic 4T1 breast tumors and caused a > 50% inhibition of lung metastasis.

  14. Growth inhibition of Staphylococcus aureus and escherichia coli strains by neutralizing IgY antibodies from ostrich egg yolk

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Tobias

    2012-06-01

    Full Text Available Ostrich raising around the world have some key factors and farming profit depend largely on information and ability of farmers to rear these animals. Non fertilized eggs from ostriches are discharged in the reproduction season. Staphylococcus aureus and Escherichia coli are microorganisms involved in animal and human diseases. In order to optimize the use of sub products of ostrich raising, non fertilized eggs of four selected birds were utilized for development of polyclonal IgY antibodies. The birds were immunized (200ug/animal with purified recombinant staphylococcal enterotoxin C (recSEC and synthetic recRAP, both derived from S. aureus, and recBFPA and recEspB involved in E. coli pathogenicity, diluted in FCA injected in the braquial muscle. Two subsequent immunization steps with 21 days intervals were repeated in 0,85% saline in FIA. Blood and eggs samples were collected before and after immunization steps. Egg yolk immunoglobulins were purified by precipitation with 19% sodium sulfate and 20% ammonium sulphate methodologies. Purified IgY 50µL aliquots were incubated in 850µL BHI broth containing 50µL inoculums of five strains of S. aureus and five strains of E.coli during four hours at 37ºC. Growth inhibition was evaluated followed by photometry reading (DO550nm. Egg yolk IgY preparation from hiperimmunized birds contained antibodies that inhibited significantly (p<0,05 growth of strains tested. Potential use of ostrich IgY polyclonal antibodies as a diagnostic and therapeutic tool is proposed for diseased animals.

  15. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    Science.gov (United States)

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  16. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation.

    Science.gov (United States)

    Patel, Dipa; Bassi, Rajiv; Hooper, Andrea; Prewett, Marie; Hicklin, Daniel J; Kang, Xiaoqiang

    2009-01-01

    Human carcinomas frequently express one or more members of the epidermal growth factor receptor family. Two family members, epidermal growth factor receptor (EGFR) and c-erbB2/neu (HER2), homodimerize or heterodimerize upon activation with ligand and trigger potent mechanisms of cellular proliferation, differentiation and migration. In this study, we examined the effect of the anti-EGFR monoclonal antibody Erbitux (cetuximab) on human tumor cells expressing both EGFR and HER2. Investigation of the effect of cetuximab on the activation of EGFR-EGFR, EGFR-HER2 and HER2-HER2 homodimers and heterodimers was conducted using the NCI-N87 human gastric carcinoma cell line. Treatment of NCI-N87 cells with cetuximab completely inhibited formation of EGFR-EGFR homodimers and EGFR-HER2 heterodimers. Activation of HER2-HER2 homodimers was not appreciably stimulated by exogenous ligand and was not inhibited by cetuximab treatment. Furthermore, cetuximab inhibited EGF-induced EGFR and HER2 phosphorylation in CAL27, NCI-H226 and NCI-N87 cells. The activation of downstream signaling molecules such as AKT, MAPK and STAT-3 were also inhibited by cetuximab in these cells. To examine the effect of cetuximab on the growth of tumors in vivo, athymic mice bearing established NCI-N87 or CAL27 xenografts were treated with cetuximab (1 mg, i.p., q3d). The growth of NCI-N87 and CAL27 tumors was significantly inhibited with cetuximab therapy compared to the control groups (p<0.0001 in both cases). In the CAL27 xenograft model, tumor growth inhibition by cetuximab treatment was similar to that by cetuximab and trastuzumab combination treatment. Immunohistological analysis of cetuximab-treated tumors showed a decrease in EGFR-HER2 signaling and reduced tumor cell proliferation. These results suggest that cetuximab may be useful in the treatment of carcinomas co-expressing EGFR and HER2. PMID:19082474

  17. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody*

    Directory of Open Access Journals (Sweden)

    Merkel George

    2006-06-01

    Full Text Available Abstract Background To further our understanding of the structure and function of HIV-1 integrase (IN we developed and characterized a library of monoclonal antibodies (mAbs directed against this protein. One of these antibodies, mAb33, which is specific for the C-terminal domain, was found to inhibit HIV-1 IN processing activity in vitro; a corresponding Fv fragment was able to inhibit HIV-1 integration in vivo. Our subsequent studies, using heteronuclear nuclear magnetic resonance spectroscopy, identified six solvent accessible residues on the surface of the C-terminal domain that were immobilized upon binding of the antibody, which were proposed to comprise the epitope. Here we test this hypothesis by measuring the affinity of mAb33 to HIV-1 proteins that contain Ala substitutions in each of these positions. To gain additional insight into the mode of inhibition we also measured the DNA binding capacity and enzymatic activities of the Ala substituted proteins. Results We found that Ala substitution of any one of five of the putative epitope residues, F223, R224, Y226, I267, and I268, caused a decrease in the affinity of the mAb33 for HIV-1 IN, confirming the prediction from NMR data. Although IN derivatives with Ala substitutions in or near the mAb33 epitope exhibited decreased enzymatic activity, none of the epitope substitutions compromised DNA binding to full length HIV-1 IN, as measured by surface plasmon resonance spectroscopy. Two of these derivatives, IN (I276A and IN (I267A/I268A, exhibited both increased DNA binding affinity and uncharacteristic dissociation kinetics; these proteins also exhibited non-specific nuclease activity. Results from these investigations are discussed in the context of current models for how the C-terminal domain interacts with substrate DNA. Conclusion It is unlikely that inhibition of HIV-1 IN activity by mAb33 is caused by direct interaction with residues that are essential for substrate binding. Rather

  18. Differential inhibition of lipopolysaccharide-induced phenomena by anti-tumor necrosis factor alpha antibody.

    OpenAIRE

    Vogel, S N; Havell, E A

    1990-01-01

    Tumor necrosis factor alpha (TNF alpha) has been implicated as a major mediator of lipopolysaccharide (LPS)-induced phenomena. Administration to mice of a polyclonal, monospecific antibody prepared against recombinant murine TNF alpha abolished detection of LPS-induced TNF alpha activity and significantly reduced levels of LPS-induced colony-stimulating factor but failed to reduce the production of LPS-induced interferon, corticosterone, or LPS-induced hypoglycemia.

  19. Radiolabeled biomolecules for early cancer detection and therapy via angiogenesis targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bouziotis, P. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece)]. E-mail: pennybil@yahoo.gr; Psimadas, D. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece): Biomedica Life Sciences SA, Athens, Hellas (Greece); Fani, M. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece): Biomedica Life Sciences SA, Athens, Hellas (Greece); Gourni, E. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece); Loudos, G. [Biomedical Simulations and Imaging Laboratory, N.T.U.A., Athens, Hellas (Greece); Xanthopoulos, S. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece); Archimandritis, S.C. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece); Varvarigou, A.D. [Institute of Radioisotopes-Radiodiagnostic Products, N.C.S.R. ' Demokritos' , 153 10 Athens, Hellas (Greece)

    2006-12-20

    Tumors cannot grow or metastasize without the formation of new blood vessels, i.e. without angiogenesis. A variety of anti-angiogenic agents leading to angiogenesis inhibition are in the clinical trial phase, among which are: (i) molecules which inhibit the action of Vascular Endothelial Growth Factors, VEGF and (ii) molecules which obstruct migration, differentiation and proliferation of endothelial cells, via their binding to receptors of the {alpha}{sub {nu}}{beta}{sub 3} integrins. Certain derivatives of the abovementioned categories, labeled with radionuclides, which emit {gamma}-radiation or {beta}-particles or positrons, have been proposed and are being evaluated as possible radiopharmaceuticals, for the detection and/or treatment of primary or metastatic cancer at an early stage. For the study of angiogenesis the following have been described: (a) antibodies targeting VEGF, labeled with radionuclides emitting {beta}- and/or {gamma}-radiation, which can be applied for the diagnosis and, possibly, for the treatment of cancer (b) peptide derivatives which contain the amino-acid sequence RGD (Arg-Gly-Asp) and compete for the {alpha}{sub {nu}}{beta}{sub 3} integrins, with the proteins of the stroma. It has been found that these radiolabeled biomolecules localize in tumors and can be used for the visualization and, possibly, for tumor eradication of primary and metastatic cancer. In our laboratory radiolabeling of biomolecules by beta and/or gamma emitters is a principal research goal. In the present work we are presenting our results on the labeling of monoclonal antibodies and peptides with {beta}- and {gamma}-emitting isotopes, as well as on their in vivo evaluation in experimental animal models, by use of specially dedicated imaging devices.

  20. Evening primrose oil and celecoxib inhibited pathological angiogenesis, inflammation, and oxidative stress in adjuvant-induced arthritis: novel role of angiopoietin-1.

    Science.gov (United States)

    El-Sayed, R M; Moustafa, Y M; El-Azab, M F

    2014-10-01

    Rheumatoid arthritis is a chronic inflammatory disease characterized by overproduction of inflammatory mediators along with undermined oxidative defensive mechanisms. Pathological angiogenesis was found to play a critical role in the progression of this disease. The current study was carried out to evaluate the anti-angiogenic, anti-inflammatory, and anti-oxidant effects of evening primrose oil (EPO), rich in gamma linolenic acid (GLA), either alone or in combination with aspirin or celecoxib, on adjuvant-induced arthritis. Arthritis was induced by subcutaneous injection of complete Freund's adjuvant (CFA) in the right hind paw of male albino rats. All treatments were administered orally from day 0 (EPO, 5 g/kg b.w.) or day 4 (celecoxib, 5 mg/kg; aspirin, 150 mg/kg) till day 27 after CFA injection. In the arthritic group, the results revealed significant decrease in the body weight and increase in ankle circumference, plasma angiopoietin-1 (ANG-1) and tumor necrosis factor-alpha (TNF-α) levels. Anti-oxidant status was suppressed as manifested by significant decline in reduced glutathione content along with decreased enzymatic activity of superoxide dismutase and increased lipid peroxidation. Oral administration of EPO exerted normalization of body weight, ANG-1, and TNF-α levels with restoration of activity as shown by reduced malondialdehyde levels. Moreover, histopathological examination demonstrated that EPO significantly reduced the synovial hyperplasia and inflammatory cells invasion in joint tissues, an effect that was enhanced by combination with aspirin or celecoxib. The joint use of GLA-rich natural oils, which possess anti-angiogenic, anti-inflammatory, and anti-oxidant activities, with traditional analgesics represents a promising strategy to restrain the progression of rheumatoid arthritis.

  1. Immunisation with recombinant PfEMP1 domains elicits functional rosette-inhibiting and phagocytosis-inducing antibodies to Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Ashfaq Ghumra

    Full Text Available BACKGROUND: Rosetting is a Plasmodium falciparum virulence factor implicated in the pathogenesis of life-threatening malaria. Rosetting occurs when parasite-derived P. falciparum Erythrocyte Membrane Protein One (PfEMP1 on the surface of infected erythrocytes binds to human receptors on uninfected erythrocytes. PfEMP1 is a possible target for a vaccine to induce antibodies to inhibit rosetting and prevent severe malaria. METHODOLOGY/FINDINGS: We examined the vaccine potential of the six extracellular domains of a rosette-mediating PfEMP1 variant (ITvar9/R29var1 from the R29 parasite strain by immunizing rabbits with recombinant proteins expressed in E. coli. Antibodies raised to each domain were tested for surface fluorescence with live infected erythrocytes, rosette inhibition and phagocytosis-induction. Antibodies to all PfEMP1 domains recognized the surface of live infected erythrocytes down to low concentrations (0.02-1.56 µg/ml of total IgG. Antibodies to all PfEMP1 domains except for the second Duffy-Binding-Like region inhibited rosetting (50% inhibitory concentration 0.04-4 µg/ml and were able to opsonize and induce phagocytosis of infected erythrocytes at low concentrations (1.56-6.25 µg/ml. Antibodies to the N-terminal region (NTS-DBL1α were the most effective in all assays. All antibodies were specific for the R29 parasite strain, and showed no functional activity against five other rosetting strains. CONCLUSIONS/SIGNIFICANCE: These results are encouraging for vaccine development as they show that potent antibodies can be generated to recombinant PfEMP1 domains that will inhibit rosetting and induce phagocytosis of infected erythrocytes. However, further work is needed on rosetting mechanisms and cross-reactivity in field isolates to define a set of PfEMP1 variants that could induce functional antibodies against a broad range of P. falciparum rosetting parasites.

  2. A novel monoclonal anti-CD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus cell-cell transmission.

    Directory of Open Access Journals (Sweden)

    Isabel Fofana

    Full Text Available BACKGROUND AND AIMS: Hepatitis C virus (HCV infection is a challenge to prevent and treat because of the rapid development of drug resistance and escape. Viral entry is required for initiation, spread, and maintenance of infection, making it an attractive target for antiviral strategies. METHODS: Using genetic immunization, we produced four monoclonal antibodies (mAbs against the HCV host entry factor CD81. The effects of antibodies on inhibition of HCV infection and dissemination were analyzed in HCV permissive human liver cell lines. RESULTS: The anti-CD81 mAbs efficiently inhibited infection by HCV of different genotypes as well as a HCV escape variant selected during liver transplantation and re-infecting the liver graft. Kinetic studies indicated that anti-CD81 mAbs target a post-binding step during HCV entry. In addition to inhibiting cell-free HCV infection, one antibody was also able to block neutralizing antibody-resistant HCV cell-cell transmission and viral dissemination without displaying any detectable toxicity. CONCLUSION: A novel anti-CD81 mAb generated by genetic immunization efficiently blocks HCV spread and dissemination. This antibody will be useful to further unravel the role of virus-host interactions during HCV entry and cell-cell transmission. Furthermore, this antibody may be of interest for the development of antivirals for prevention and treatment of HCV infection.

  3. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Juan Reguera

    Full Text Available The coronaviruses (CoVs are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10-20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN, a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs of two closely related CoV strains, transmissible gastroenteritis virus (TGEV and porcine respiratory CoV (PRCV, in complex with their receptor, porcine APN (pAPN, or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs.

  4. Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro

    Institute of Scientific and Technical Information of China (English)

    Li HUANG; Qing-an XU; Chang LIU; Ming-wen FAN; Yu-hong LI

    2013-01-01

    Aim: To investigate the effects of anti-caries DNA vaccine-induced salivary secretory immunoglobulin A (S-IgA) antibodies on Streptococcus mutans (S.mutans) adherence and biofilms formation in vitro.Methods: Adult female Wistar rats were intranasally immunized with the anti-caries DNA vaccine pGJA-P/VAX.Their saliva samples were collected at different times after the immunization,and S-IgA antibody level in the saliva and its inhibition on S.mutans adherence were examined.The effects of S-IgA in the saliva with the strongest inhibitory effects were examined at 3 different stages,ie acquired pellicles,biofilm formation and production of mature biofilms.The number of viable bacteria and depth of the biofilm at 16 h in each stage were determined using counting colony forming units and using a confocal laser scanning microscopy (CLSM).The participation of S-IgA in acquired pellicles and its aggregation with S.mutans were also observed under CLSM.Results: The S-lgA titer in saliva reached its peak and exhibited the strongest inhibition on S.mutans adhesion at 10 weeks after the immunization.The colonies and depth of the biofilm in the saliva-pretreated group were 41.79% and 41.02%,respectively,less than the control group.The colonies and depth of the biofilm in the co-culture group were 27.4% and 22.81% less than the control group.The assembly of S.mutans and S-IgA was observed under CLSM after co-cultivation.In the mature-stage biofilm,no differences were observed between the different groups.Conclusion: These results demonstrate that the anti-caries DNA vaccine induces the production of specific S-IgA antibodies that may prevent dental caries by inhibiting the initial adherence of S.mutans onto tooth surfaces,thereby reducing the accumulation of S.mutans on the acquired pellicles.

  5. Neutralizing antibodies induced by recombinant virus-like particles of enterovirus 71 genotype C4 inhibit infection at pre- and post-attachment steps.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Ku

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is a major causative agent of hand, foot and mouth disease, which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Antibodies elicited by experimental EV71 vaccines could neutralize infection in vitro and passively protect animal models from lethal challenge, indicating that neutralizing antibodies play an essential role in protection. However, how neutralizing antibodies inhibit infection in vitro remains unclear. METHODS/FINDINGS: In the present study, we explored the mechanisms of neutralization by antibodies against EV71 virus-like particles (VLPs. Recombinant VLPs of EV71 genotype C4 were produced in insect cells using baculovirus vectors. Immunization with the VLPs elicited a high-titer, EV71-specific antibody response in mice. Anti-VLP mouse sera potently neutralized EV71 infection in vitro. The neutralizing antibodies in the anti-VLP mouse sera were found to target mainly an extremely conserved epitope (FGEHKQEKDLEYGAC located at the GH loop of the VP1 protein. The neutralizing anti-VLP antisera were able to inhibit virus binding to target cells efficiently. In addition, post-attachment treatment of virus-bound cells with the anti-VLP antisera also neutralized virus infection, although the antibody concentration required was higher than that of the pre-attachment treatment. CONCLUSIONS: Collectively, our findings represent a valuable addition to the understanding of mechanisms of EV71 neutralization and have strong implications for EV71 vaccine development.

  6. Effect of angiogenesis on Solanine and VEGF antibody in chicken embryo transplantation model of human colon cancer cells%龙葵碱联合VEGF抗体对人结肠癌鸡胚移植模型血管生成的影响

    Institute of Scientific and Technical Information of China (English)

    杨雪峰; 邓冬雪; 张桃; 宁伟伟; 郑兴斌; 谢铭

    2016-01-01

    目的:建立人结肠癌鸡胚移植模型,探讨龙葵碱、VEGF抗体及两者联合对人结肠癌细胞诱导肿瘤血管生成及肿瘤增殖的影响。方法将人结肠癌H T‐29细胞鸡胚移植模型分为实验组和对照组,实验组加入龙葵碱、V EG F抗体和龙葵碱+VEGF抗体混合液,对照组加入磷酸盐缓冲液(PBS)液。通过立体显微镜照相、IPP 6.0图像分析软件分析图片;免疫组织化学方法检测CD34抗原和ki‐67抗原,观察龙葵碱、VEGF抗体和龙葵碱联合VEGF抗体对肿瘤血管生成及肿瘤增殖的影响。结果肿瘤血管面积、CD34抗原和ki‐67抗原表达:龙葵碱+VEGF抗体组明显优于单药VEGF抗体组和龙葵碱组,VEGF抗体组优于龙葵碱组,3组均明显优于对照组(P<0.01)。结论龙葵碱、VEGF抗体及两者联合时均能抑制人结肠癌 HT‐29细胞系诱导的肿瘤血管生成及肿瘤增殖,为抗肿瘤血管生成提供了一种新途径。%Objective To establish model of the chicken embryo transplantation of human colon cancer cells ,and investigate the effect of Solanine、VEGF antibody and Solanine combined with VEGF antibody on human colon cancer cells induce tumor angio‐genesis and tumor proliferation .Methods The model of the chicken embryo transplantation of human colon cancer HT‐29 cells were divided into three experimental group and control group .We added to the chick embryo chorioallantoic membrane with Sola‐nine、VEGF antibody and Solanine+ VEGF antibody mixture ,PBS was added to the control group .Then we analysed picture through the stereomicroscope and IPP 6 .0 image analysis software ,using immunohistochemistry envision method to detect of CD34 antigen and ki‐67 antigen ,and observing effect of Solanine group ,VEGF antibody group ,Solanine+ VEGF antibody group and the effect on the tumor angiogenesis and tumor proliferation .Results The tumor angiogenesis ,CD34 antigen and ki‐67 antigen

  7. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways

    Directory of Open Access Journals (Sweden)

    Ferrari Stefano

    2009-12-01

    Full Text Available Abstract Background Osteosarcoma (OS is the most common primary bone tumour in children and young adults. Despite improved prognosis, metastatic or relapsed OS remains largely incurable and no significant improvement has been observed in the last 20 years. Therefore, the search for alternative agents in OS is mandatory. Results We investigated phospho-ERK 1/2, MCL-1, and phospho-Ezrin/Radixin/Moesin (P-ERM as potential therapeutic targets in OS. Activation of these pathways was shown by immunohistochemistry in about 70% of cases and in all OS cell lines analyzed. Mutational analysis revealed no activating mutations in KRAS whereas BRAF gene was found to be mutated in 4/30 OS samples from patients. Based on these results we tested the multi-kinase inhibitor sorafenib (BAY 43-9006 in preclinical models of OS. Sorafenib inhibited OS cell line proliferation, induced apoptosis and downregulated P-ERK1/2, MCL-1, and P-ERM in a dose-dependent manner. The dephosphorylation of ERM was not due to ERK inhibition. The downregulation of MCL-1 led to an increase in apoptosis in OS cell lines. In chick embryo chorioallantoic membranes, OS supernatants induced angiogenesis, which was blocked by sorafenib and it was also shown that sorafenib reduced VEGF and MMP2 production. In addition, sorafenib treatment dramatically reduced tumour volume of OS xenografts and lung metastasis in SCID mice. Conclusion In conclusion, ERK1/2, MCL-1 and ERM pathways are shown to be active in OS. Sorafenib is able to inhibit their signal transduction, both in vitro and in vivo, displaying anti-tumoural activity, anti-angiogenic effects, and reducing metastatic colony formation in lungs. These data support the testing of sorafenib as a potential therapeutic option in metastatic or relapsed OS patients unresponsive to standard treatments.

  8. Inhibition of Entamoeba histolytica proteolytic activity by human salivary IgA antibodies.

    Science.gov (United States)

    Guerrero-Manríquez, G G; Sánchez-Ibarra, F; Avila, E E

    1998-11-01

    Entamoeba histolytica is a protozoan parasite that causes amoebiasis in humans; as the infection occurs mainly in the intestinal epithelium, the secretory immune response of the host could have an influence on the outcome. Secretory IgA antibodies against E. histolytica have been detected in asymptomatic and symptomatic patients, but little is known about their protective role. E. histolytica cysteine proteases seem to be involved in the pathogenesis of amoebiasis; therefore, it is important to evaluate the human IgA response against these proteases and its effect on their enzymatic activity. When human saliva samples with and without antibodies against E. histolytica were tested by Western blot against one purified 70 kDa amoebic cysteine protease, 84% of anti-amoeba-positive samples recognized it. The secretory IgA purified from a pool of anti-protease-positive samples had a strong in vitro inhibitory effect on the E. histolytica proteolytic activity. These results suggest that this effect, if it occurs in vivo, could be an important protective factor against this parasite.

  9. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer.

    Science.gov (United States)

    Sridhar, Srikala S; Shepherd, Frances A

    2003-12-01

    It has now been almost 30 years since Dr J. Folkman first proposed that inhibition of angiogenesis could play a key role in treating cancer; however, it is only recently that anti-angiogenesis agents have entered the clinical setting. The search for novel therapies is particularly important in lung cancer, where the majority of patients succumb to their disease despite aggressive treatments. Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190. Drugs that are similar to endogenous inhibitors of angiogenesis including endostatin, angiostatin and interferons. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:14611919

  10. 重组表达人载脂蛋白(a)羧基末端kringle结构域抑制新生血管%Recombinant human apolipoprotein (a)carboxyl terminal kringles inhibites angiogenesis

    Institute of Scientific and Technical Information of China (English)

    申乐; 陈保生; 薛红

    2013-01-01

    Objective To characterize some purified recombinant Apo (a) kringles expressed by Pichia pastoris and to illustrate their antiangiogenic and antitumorogenic capacities.Methods Two recombinant proteins RHAKA (kringle Ⅴ) and RHAKB (kringle Ⅳ type 10 and kringle Ⅴ) were expressed by Pichia pastoris.Both RHAKA and RHAKB,recombined into pPICZαA,were secreted by Pichia pastoris X-33.Recombinant proteins were concentrated and dialyzed before His · Tag affinity chromatography.Six amido terminal amino acids of RHAKB were analyzed through sequencing the purified protein from reverse-phase high performance liquid chromatography.We've also illustrated several important characters of recombinant proteins,such as glycosylation and disulfide bonds formation.Finally,recombinant proteins' influence on in vitro cellular proliferation and in vivo angiogenesis of chick embryo chorioallantoic membrane (CAM) were tested.Results Pichia pastoris as an expression host may not only express recombinant proteins at a high level but modify them well.Both RHAKA and RHAKB could inhibit angiogenesis in vitro or in vivo,but no such inhibitory effect was found in cultured carcinoma cells.Conclusions Recombinant Apo(a) carboxyl terminal kringles expressed by Pichia pastoris may inhibit angiogenesis significantly.%目的 利用毕赤酵母重组表达人载脂蛋白(a)[Apo(a)]羧基末端kringle结构域,明确其抑制新生血管和肿瘤细胞增殖的能力.方法 分别构建重组表达Apo(a)羧基末端kringle Ⅴ结构域(RHAKA)与kringleⅣ10型-krin-gle Ⅴ结构域(RHAKB)的pPICZαA质粒;转染毕赤酵母X-33分泌表达RHAKA与RHAKB,RHAKs利用His· Tag亲和层析纯化,以及反相高效液相色谱与氨基酸残基测序鉴定;明确RHAKs的糖基化及二硫键形成情况后,利用细胞增殖实验与鸡胚绒毛尿囊膜(C AM)实验检测RHAKs对新生血管和肿瘤细胞增殖的影响.结果 毕赤酵母可以大量表达RHAKs,并对RHAKs进行翻译后修饰

  11. Antibody-Mediated Inhibition of TNFR1 Attenuates Disease in a Mouse Model of Multiple Sclerosis

    OpenAIRE

    Williams, Sarah K.; Olaf Maier; Roman Fischer; Richard Fairless; Sonja Hochmeister; Aleksandar Stojic; Lara Pick; Doreen Haar; Sylvia Musiol; Maria K Storch; Klaus Pfizenmaier; Ricarda Diem

    2014-01-01

    Tumour necrosis factor (TNF) is a proinflammatory cytokine that is known to regulate inflammation in a number of autoimmune diseases, including multiple sclerosis (MS). Although targeting of TNF in models of MS has been successful, the pathological role of TNF in MS remains unclear due to clinical trials where the non-selective inhibition of TNF resulted in exacerbated disease. Subsequent experiments have indicated that this may have resulted from the divergent effects of the two TNF receptor...

  12. A therapeutic anti-CD4 monoclonal antibody inhibits T cell receptor signal transduction in mouse autoimmune cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-hui; LIAO Yu-hua; YUAN Jing; ZHANG Li; WANG Min; ZHANG Jing-hui; LIU Zhong-ping; DONG Ji-hua

    2007-01-01

    Background T cell immune abnormalities in patients with dilated cardiomyopathy (DCM) has been intensively studied over the past 10 years. Our previous study has suggested that immunization of mice with the peptides derived from human adenine nucleotide translocator (ANT) result in the production of autoantibodies against the ANT and histopathological changes similar to those in human DCM. The ANT peptides can induce autoimmune cardiomyopathy like DCM in Balb/c mice. In this study we aimed to focus on the molecular mechanism of T cells in the autoimmune cardiomyopathy mouse model by detecting the expression of the two T cell signaling molecules.Methods The ANT peptides were used to cause autoimmune cardiomyopathy in Balb/c mice. Anti-L3T4 or rat anti-mouse IgG was administered to the mice (n=6 in each group) simultaneously immunized with ANT. ELISA analysis was used to detect autoantibodies against the ANT peptides and the percentages of interferon-Y and interleukin-4 producing cells among splenic CD4+ lymphocytes was determined by using flow cytometry analysis. The expression of CD45 in spleen T cells was determined by immunohistochemistry and the mRNAs of T cell signaling molecules were detected by real-time PCR.Results Treatment of ANT immunized Balb/c mice with anti-CD4 mAb caused a reduction in the gene expression of P56lck and Zap-70 and a lower level of CD45 expression by spleen T cells. Aiso, a reverse of the Th1/Th2 ratio that results in the reduced production of antibodies against ANT was found in the anti-CD4 monoclonal antibodies (mAb)group. Whereas irrelevant antibody (rat anti-mouse IgG) did not suppress T cell signaling molecules nor inhibit CD45 expression, and control-antibody mice did not show any significant differences compared with the DCM group.Conclusion The results show that anti-CD4 mAb is a powerful inhibitor of the early initiating events of T cell receptor(TCR) signal transduction in mouse autoimmune dilated cardiomyopathy.

  13. ER Stress and Angiogenesis.

    Science.gov (United States)

    Binet, François; Sapieha, Przemyslaw

    2015-10-01

    Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.

  14. From angiogenesis to neuropathology

    Science.gov (United States)

    Greenberg, David A.; Jin, Kunlin

    2005-12-01

    Angiogenesis - the growth of new blood vessels - is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

  15. Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage.

    Science.gov (United States)

    Yougbaré, Issaka; Lang, Sean; Yang, Hong; Chen, Pingguo; Zhao, Xu; Tai, Wei-She; Zdravic, Darko; Vadasz, Brian; Li, Conglei; Piran, Siavash; Marshall, Alexandra; Zhu, Guangheng; Tiller, Heidi; Killie, Mette Kjaer; Boyd, Shelley; Leong-Poi, Howard; Wen, Xiao-Yan; Skogen, Bjorn; Adamson, S Lee; Freedman, John; Ni, Heyu

    2015-04-01

    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening disease in which intracranial hemorrhage (ICH) is the major risk. Although thrombocytopenia, which is caused by maternal antibodies against β3 integrin and occasionally by maternal antibodies against other platelet antigens, such as glycoprotein GPIbα, has long been assumed to be the cause of bleeding, the mechanism of ICH has not been adequately explored. Utilizing murine models of FNAIT and a high-frequency ultrasound imaging system, we found that ICH only occurred in fetuses and neonates with anti-β3 integrin-mediated, but not anti-GPIbα-mediated, FNAIT, despite similar thrombocytopenia in both groups. Only anti-β3 integrin-mediated FNAIT reduced brain and retina vessel density, impaired angiogenic signaling, and increased endothelial cell apoptosis, all of which were abrogated by maternal administration of intravenous immunoglobulin (IVIG). ICH and impairment of retinal angiogenesis were further reproduced in neonates by injection of anti-β3 integrin, but not anti-GPIbα antisera. Utilizing cultured human endothelial cells, we found that cell proliferation, network formation, and AKT phosphorylation were inhibited only by murine anti-β3 integrin antisera and human anti-HPA-1a IgG purified from mothers with FNAIT children. Our data suggest that fetal hemostasis is distinct and that impairment of angiogenesis rather than thrombocytopenia likely causes FNAIT-associated ICH. Additionally, our results indicate that maternal IVIG therapy can effectively prevent this devastating disorder.

  16. MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model.

    Science.gov (United States)

    Aplin, Alfred C; Fogel, Eric; Nicosia, Roberto F

    2010-09-01

    Rings of rat or mouse aorta embedded in collagen gels produce angiogenic outgrowths in response to the injury of the dissection procedure. Aortic outgrowths are composed of branching endothelial tubes and surrounding mural cells. Mural cells emerge following endothelial sprouting and gradually increase during the maturation of the neovessels. Treatment of aortic cultures with angiopoietin-1 (Ang-1), an angiogenic factor implicated in vascular maturation and remodeling, stimulates the mural cell recruitment process. Ang-1 induces expression of many cytokines and chemokines including monocyte chemotactic protein-1 (MCP-1). Inhibition of p38 MAP kinase, a signaling molecule required for mural cell recruitment, blocks Ang1-induced MCP-1 expression. Recombinant MCP-1 dose-dependently increases mural cell number while an anti-MCP-1 blocking antibody reduces it. In addition, antibody mediated neutralization of MCP-1 abrogates the stimulatory effect of Ang-1 on mural cell recruitment. Aortic rings from genetically modified mice deficient in MCP-1 or its receptor CCR2 have fewer mural cells than controls. MCP-1 deficiency also impairs the mural cell recruitment activity of Ang-1. Our studies indicate that spontaneous and Ang1-induced mural cell recruitment in the aortic ring of model of angiogenesis are in part mediated by MCP-1. These results implicate MCP-1 as one of the mediators of mural cell recruitment in the aortic ring model, and suggest that chemokine pathways may contribute to the assembly of the vessel wall during the angiogenesis response to injury.

  17. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo.

    Science.gov (United States)

    Lin, Hong; Zhang, Huiling; Wang, Jun; Lu, Meiping; Zheng, Feng; Wang, Changjun; Tang, Xiaojun; Xu, Ning; Chen, Renjie; Zhang, Dawei; Zhao, Ping; Zhu, Jin; Mao, Yuan; Feng, Zhenqing

    2014-03-01

    Human trophoblastic cell surface antigen 2 (Trop2) has been suggested as an oncogene, which is associated with the different types of tumors. In this study, a human Fab antibody against Trop2 extracellular domain was isolated from phage library by phage display technology, and characterized by ELISA, FACS, fluorescence staining and Western blotting analysis. MTT, apoptosis assay and wound healing assay were employed to evaluate the inhibitory effects of Trop2 Fab on breast cancer cell growth in vitro, while tumor-xenograft model was employed to evaluate the inhibitory effects on breast cancer growth in vivo. The results showed that Trop2 Fab inhibited the proliferation, induced the apoptosis and suspended the migration of MDA-MB-231 cells in a dose dependent manner. The expression caspase-3 was activated, and the expression of Bcl-2 was reduced while that of Bax was elevated in MDA-MB-231 cells by treating with Trop2 Fab. In addition, Trop2 Fab inhibited the growth of breast cancer xenografts and the expression of Bcl-2 was reduced while that of Bax was elevated in xenografts. Trop2 Fab, which was isolated successfully in this research, is a promising therapeutic agent for the treatment of Trop2 expressing breast cancer.

  18. Inhibition effects of all trans-retinoic acid on the growth and angiogenesis of esophageal squamous cell carcinoma in nude mice

    Institute of Scientific and Technical Information of China (English)

    LU Tai-ying; LI Wen-cai; CHEN Ren-yin; FAN Qing-xia; WANG Liu-xing; WANG Rui-lin; LU Shi-xin; MENG Hui

    2011-01-01

    Background The potential application of retinoic acid receptor activators,such as all trans-retinoic acid (ATRA),for treating various cancers have been studied both pre-clinically and clinically.Whether ATRA has an anticancer effect on human esophageal squamous cancer cell (ESCC) is still unknown.We have explored the anticancer effect of ATRA in ESCC,and in this study,the effects of ATRA on levels and patterns of expression of the vascular endothelial growth factor (VEGF) signal transduction pathway in transplantable tumor growth of the human ESCC cell line,EC9706,in nude mice.Methods The animal model of the ESCC xenograft was made by subcutaneous implantation of tumor cells into nude mice.Reverse transcription-polymerase chain reaction (RT-PCR),Western blotting and immunohistochemical assays were used to detect the expression of the VEGF signal transduction pathway in ESCC xenograft tissues.Results Compared to the control group,the tumor inhibition rates in the low dose ATRA,high dose ATRA,and 5-FU groups were 83.21%,88.32%,91.02%,respectively.The protein and mRNA levels of VEGF were down-regulated after being treated with ATRA and 5-FU compared to the control group (P <0.05).The study also revealed that ATRA specifically down-regulated VEGF and the component of the VEGF signal transduction pathway of CD31,CD34,and CD105 (component of the TGF-β receptor) in ESCC xenograft tissues (P <0.05).Conclusions ATRA can significantly inhibit tumor growth and has anticancer effects on transplantable tumor growth of human ESCC cell line EC9706 in nude mice.These findings indicate that ATRA specifically down regulated VEGF and the components of VEGF signal transduction,which may be an important mechanism responsible for the neoangiogenesis inhibition of ESCC cells.

  19. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  20. An inhibition enzyme immunoassay, using a human monoclonal antibody (K14) reactive with gp41 of HIV-1, for the serology of HIV-1 infections.

    NARCIS (Netherlands)

    V.J.P. Teeuwsen; J.J. Schalken; G. van der Groen (Guido); R. van den Akker (Ruud); J. Goudsmit (Jaap); A.D.M.E. Osterhaus (Ab)

    1991-01-01

    textabstractAn inhibition enzyme immunoassay (IEIA), using a human monoclonal antibody (K14) reactive with gp41 of HIV-1, was evaluated for its applicability to the serology of HIV-1 infections. Using panels of serum samples from seronegative and confirmed HIV-1-seropositive individuals, it was show

  1. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C;

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...

  2. Comparison of an enzyme-linked immunosorbent assay, an immunofluorescence assay and a hemagglutination inhibition assay for detection of antibodies to K-papovavirus in mice.

    NARCIS (Netherlands)

    J. Groen (Jan); A.D.M.E. Osterhaus (Ab); H.W.J. Broeders; H.E.M. Spijkers (Ine)

    1989-01-01

    textabstractThe sensitivity of a newly developed enzyme-linked immunosorbent assay (ELISA) for detection of antibody to K virus was compared with the sensitivities of an immunofluorescence assay (IFA) and a hemagglutination inhibition assay (HIA). Specific pathogen-free BALB/c RIVM mice, 5 weeks old

  3. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy.

    Science.gov (United States)

    Chaudhary, Kapil; Shinde, Rahul; Liu, Haiyun; Gnana-Prakasam, Jaya P; Veeranan-Karmegam, Rajalakshmi; Huang, Lei; Ravishankar, Buvana; Bradley, Jillian; Kvirkvelia, Nino; McMenamin, Malgorzata; Xiao, Wei; Kleven, Daniel; Mellor, Andrew L; Madaio, Michael P; McGaha, Tracy L

    2015-06-15

    Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.

  4. The Harvard angiogenesis story.

    Science.gov (United States)

    Miller, Joan W

    2014-01-01

    I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.

  5. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh;

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study t...

  6. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer.

    Science.gov (United States)

    Schanzer, Juergen M; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  7. Vasculogenesis and angiogenesis in diabetes mellitus: novel pathogenetic concepts for treatment of vascular complications

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-12-01

    Full Text Available Hyperglycemia along with other metabolic disorders may disrupt the balance of pro- and antiangiogenic regulators, thus leading to a maladaptive formation of new blood vessels in the state of diabetes mellitus (DM. In their turn, aberrant angiogenesis and vasculogenesis are important mechanisms of vascular complications in DM. Activation of retinal angiogenesis is a cornerstone of proliferative diabetic retinopathy, though in diabetic nephropathy excessive angiogenesis is only seen at early stages. Quite on the contrary, macrovascular complications are characterized by certain inhibition of both angiogenesis and vasculogenesis. Novel therapeutic approaches, based on correction of angiogenesis, have emerged recently. Clinical trials have shown efficacy of angiogenesis inhibitors (the «anti-VEGF» agents for management of diabetic macular edema and proliferative retinopathy. Experimental evidence also indicates that this treatment may hinder the progress of diabetic nephropathy. In addition, stimulation of angiogenesis and vasculogenesis with stem cells or growth factors promise an option for treatment of large vessels in DM.

  8. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems.

    Science.gov (United States)

    Qi, Xin; Liu, Ge; Qiu, Lin; Lin, Xiukun; Liu, Ming

    2015-10-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol compound derived from marine algae. Our previous reports have shown that BDDE possessed anticancer activity in vitro. However, its antiangiogenesis activity and possible mechanisms remain unclear. The present study demonstrated that BDDE displayed in vitro antiangiogenesis capabilities by significantly inhibiting HUVEC cells proliferation, migration, and tube formation, without any effect on the preformed vascular tube. Western blot analysis revealed that BDDE decreased the protein level of VEGF and VEGFR but not that of EGFR, FGFR, and IGFR. In addition, BDDE inactivated the VEGF downstream signaling molecules including mTOR and Src, whereas activated Akt and ERK. Moreover, BDDE blocked subintestinal vessel formation in zebrafish embryos in vivo and showed toxicity under high concentrations of BDDE. The results of this present study indicated that BDDE, which has unique chemical structure different from current antiangiogenesis agents, could be used as a potential drug candidate for cancer prevention and therapy. PMID:26463632

  9. 二甲双胍抗肿瘤血管及抑制胃癌细胞生长的实验研究%Experimental study of Metformin for inhibiting tumor angiogenesis and gastric cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    童陈琦; 王维; 梁斌鑫

    2015-01-01

    目的:探讨二甲双胍对肿瘤血管及胃癌细胞生长的抑制作用。方法利用人脐静脉血管内皮细胞(HU-VEC)细胞划痕试验、Transwell侵袭实验、Matrigel血管状结构形成实验,研究二甲双胍对血管内皮细胞侵袭、迁移及血管状结构形成的影响,且运用流式细胞仪检测二甲双胍对血管内皮生长因子(VEGF)表达的影响;利用胃癌细胞BGC823的MTT实验、苏木精凋亡染色、Annexin-吁细胞凋亡实验、定量PCR凋亡因子检测实验,研究二甲双胍对胃癌细胞增殖、凋亡的影响。结果二甲双胍能够明显抑制HUVEC的迁移、侵袭、血管状结构形成,并且明显减少细胞VEGF的表达;二甲双胍对胃癌BGC823细胞的增殖有明显的抑制作用,且具有浓度依赖性,其中最大抑制率为68.80%,半抑制浓度(IC50)为(11.97±1.84)mmol/L;二甲双胍可以诱导胃癌BGC823细胞凋亡,具有浓度依赖性,10 mmol/L二甲双胍组凋亡比例接近60%;二甲双胍组BGC823细胞的Bcl-2 mRNA减少,而AMP-Kα1、Bax、Bad mRNA的表达增加。结论二甲双胍能够抑制肿瘤血管形成和胃癌细胞增殖,并诱导胃癌细胞凋亡,发挥抗胃癌细胞生长作用。%Objective To investigate the inhibiting effect of Metformin on the tumor angiogenesis and gastric cancer cell growth. Methods The cell scratch test, Transwell invasion assay and Matrigel vascular structure formation experi-ment of human umbilical vein endothelial cells (HUVEC) were used to study the effect of Metformin on vascular en-dothelial cell migration, invasion and the vascular structure formation, and the influence of Metformin on VEGF ex-pression was illuminated by flow cytometry; then MTT assay, hematoxylin apoptosis of dyeing, Annexin-Ⅴ apoptosis and quantitative PCR detection for apoptosis factors of gastric cancer BGC823 cells were conducted to research the ef-fect of Metformin on gastric cancer cell proliferation and apoptosis

  10. A recombinant humanized anti-cocaine monoclonal antibody inhibits the distribution of cocaine to the brain in rats.

    Science.gov (United States)

    Norman, Andrew B; Gooden, Felicia C T; Tabet, Michael R; Ball, William J

    2014-07-01

    The monoclonal antibody (mAb), h2E2, is a humanized version of the chimeric human/murine anti-cocaine mAb 2E2. The recombinant h2E2 protein was produced in vitro from a transfected mammalian cell line and retained high affinity (4 nM Kd) and specificity for cocaine over its inactive metabolites benzoylecgonine (BE) and ecgonine methyl ester. In rats, pharmacokinetic studies of h2E2 (120 mg/kg i.v.) showed a long terminal elimination half-life of 9.0 days and a low volume of distribution at steady state (Vdss) of 0.3 l/kg. Pretreatment with h2E2 produced a dramatic 8.8-fold increase in the area under the plasma cocaine concentration-time curve (AUC) and in brain a concomitant decrease of 68% of cocaine's AUC following an i.v. injection of an equimolar cocaine dose. Sequestration of cocaine in plasma by h2E2, shown via reduction of cocaine's Vdss, indicates potential clinical efficacy. Although the binding of cocaine to h2E2 in plasma should inhibit distribution and metabolism, the elimination of cocaine remained multicompartmental and was still rapidly eliminated from plasma despite the presence of h2E2. BE was the major cocaine metabolite, and brain BE concentrations were sixfold higher than in plasma, indicating that cocaine is normally metabolized in the brain. In the presence of h2E2, brain BE concentrations were decreased and plasma BE was increased, consistent with the observed h2E2-induced changes in cocaine disposition. The inhibition of cocaine distribution to the brain confirms the humanized mAb, h2E2, as a lead candidate for development as an immunotherapy for cocaine abuse. PMID:24733787

  11. Role of angiogenesis in the pathogenesis of oral lichen planus

    Directory of Open Access Journals (Sweden)

    Nitasha Mittal

    2012-01-01

    Full Text Available Background: The etiology of oral lichen planus (OLP is not fully understood. It is generally considered to be a T-cell mediated chronic inflammatory oral mucosal disease. There is increasing evidence that chronic inflammation is linked to the diseases associated with endothelial dysfunction and is involved in the induction of aberrant angiogenesis. Aim: Our aim was to evaluate the role of angiogenesis in the pathogenesis of OLP by immunohistochemistry, using the CD34 antibody. Materials and Methods: Forty tissue sections (7 of erosive lichen planus, 18 of reticular oral lichen planus, and 15 of normal oral mucosa, were assessed for microvessel density (MVD in five selected areas of high inflammatory infiltrate by immunohistochemistry for the expression of CD34 antibody. Results and Conclusion: The mean MVD was 44.47 in the control group (normal oral mucosa and 97.24 in the OLP group, showing that there is increased angiogenesis in the latter. Reticular OLP had mean MVD of 84.61 and erosive OLP had mean MVD of 129.71, showing relatively greater angiogenesis in erosive OLP as compared to reticular OLP. Thus, angiogenesis can be considered to play a role in both the etiopathogenesis and the progression of OLP.

  12. Competitive-Inhibition Enzyme-Linked Immunosorbent Assay for Detection of Serum Antibodies to Caprine Arthritis-Encephalitis Virus: Diagnostic Tool for Successful Eradication

    OpenAIRE

    Herrmann, Lynn M.; Cheevers, William P.; McGuire, Travis C.; Adams, D. Scott; Hutton, Melinda M.; Gavin, William G.; Knowles, Donald P

    2003-01-01

    A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) was evaluated for the detection of serum antibodies to the surface envelope (SU) of caprine arthritis-encephalitis virus (CAEV) in goats. This assay utilized 96-well microtiter plates containing CAEV-63 SU captured by monoclonal antibody (MAb) F7-299 and measured the competitive displacement of horseradish peroxidase-conjugated MAb GPB 74A binding by undiluted goat sera (F. Özyörük, W. P. Cheevers, G. A. Hullinger, T. C. McGu...

  13. Detection of Serum Antibodies to Ovine Progressive Pneumonia Virus in Sheep by Using a Caprine Arthritis-Encephalitis Virus Competitive-Inhibition Enzyme-Linked Immunosorbent Assay

    OpenAIRE

    Herrmann, Lynn M.; Cheevers, William P.; Marshall, Katherine L.; McGuire, Travis C.; Hutton, Melinda M.; Lewis, Gregory S.; Knowles, Donald P

    2003-01-01

    A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) for detection of antibodies to the surface envelope (SU) of caprine arthritis-encephalitis virus (CAEV) was recently reported (L. M. Herrmann, W. P. Cheevers, T. C. McGuire, D. Scott Adams, M. M. Hutton, W. G. Gavin, and D. P. Knowles, Clin. Diagn. Lab. Immunol. 10:267-271, 2003). The cELISA utilizes CAEV-63 SU captured on microtiter plates using the monoclonal antibody (MAb) F7-299 and measures competitive displacement of bi...

  14. The effects of ethanol on angiogenesis after myocardial infarction, and preservation of angiogenesis with rosuvastatin after heavy drinking.

    Science.gov (United States)

    Zhang, Yuying; Yuan, Haitao; Sun, Yongle; Wang, Yong; Wang, Aihong

    2016-08-01

    The cardioprotective effects of moderate alcohol consumption and statins have been known for years. However, heavy or binge drinking confers a high risk of cardiovascular disease. This study aimed to investigate the effects of different levels of alcohol consumption on acute myocardial infarction that was induced experimentally in rats, with a focus on the potential mechanism of angiogenesis and the effects of statins on heavy drinking. The experimental rats were fed low-dose ethanol (0.5 g/kg/day), high-dose ethanol (5 g/kg/day), and high-dose ethanol with rosuvastatin (10 mg/kg/day) during the entire experiment. Acute myocardial infarctions were induced 4 weeks after the beginning of the experiment. We assessed the capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) and endostatin via enzyme-linked immunosorbent assay kits on the 4th day after myocardial infarction. The results revealed that low ethanol consumption promoted angiogenesis in association with higher VEGF and lower endostatin. High ethanol intake suppressed angiogenesis with unchanged VEGF and elevated endostatin. Treatment with rosuvastatin preserved angiogenesis following high ethanol intake, with an upregulation of VEGF. This study highlights that low ethanol consumption obviously promotes angiogenesis in myocardial-infarction rats while increasing the expression of VEGF, whereas high ethanol consumption inhibits ischemia-induced angiogenesis. This study also provides evidence that rosuvastatin alleviates the inhibitory effects of heavy drinking on angiogenesis. PMID:27565753

  15. Angiogenesis and Multiple Myeloma

    OpenAIRE

    Giuliani, Nicola; Storti, Paola; Bolzoni, Marina; Palma, Benedetta Dalla; Bonomini, Sabrina

    2011-01-01

    The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an “angiogenic switch”. Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data s...

  16. Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2.

    Science.gov (United States)

    Salvado, M Dolores; Alfranca, Arántzazu; Haeggström, Jesper Z; Redondo, Juan Miguel

    2012-04-01

    Prostanoids regulate angiogenesis in carcinoma and chronic inflammatory disease progression. Although prostanoid biosynthetic enzymes and signaling have been extensively analyzed in inflammation, little is known about how prostanoids mediate tumor-induced angiogenesis. Targeted cyclooxygenase (COX)-2 inhibition in tumor, stromal and endothelial cells is an attractive antiangiogenic strategy; however, the associated cardiovascular side effects have led to the development of a new generation of nonsteroidal anti-inflammatory drugs (NSAIDs) acting downstream of COX. These agents target terminal prostanoid synthases and prostanoid receptors, which may also include several peroxisome proliferator-activated receptors (PPARs). Here, we discuss the role of prostanoids as modulators of tumor angiogenesis and how prostanoid metabolism reflects complex cell-cell crosstalk that determines tumor growth. Finally, we discuss the potential of new NSAIDs for the treatment of angiogenesis-dependent tumor development.

  17. Endostatin derivative angiogenesis inhibitors

    Institute of Scientific and Technical Information of China (English)

    ZHENG Meng-jie

    2009-01-01

    Objective To throw light on the superiority of the anti-angiogenesis activity of endostatin (ES) derivatives by reviewing the recent progress in the field of ES molecular structure modification.Data sources The data used in this article were mainly from PubMed with relevant English articles published from 1971 to May 2008.The search terms were "endostatin" and "angiothesis".Study selection Articles involved in the ES molecular structure modification and the original milestone articles were selected.Results A number of ES derivatives were designed and studied to improve its clinical relevance.The modified ES with polyethylene glycol (PEG),low molecular weight heparin (LMWH) and IgG Fc domain extended the circulation half-life.Meanwhile the recombinant ESs showed more potent anti-tumor activity than native ES in mouse xenografts.Mutated ES also changed its anti-angiogenesis activity.Conclusions The anti-angiogenesis treatment remains a promising tumor therapeutic strategy.New ES derivatives would be a good choice to meet the future challenge on clinical application of ES.

  18. 牛蒡子苷元对肿瘤血管生成抑制作用的观察%Inhibition effect of arctigenin on the angiogenesis of hepatocarcinoma

    Institute of Scientific and Technical Information of China (English)

    郑国灿; 王兵; 黄聪华; 李国明; 李叔强; 袁家天

    2013-01-01

    . 82±0. 26. The luminance ratio of VEGF gene in the experimental group was lower than that in the control group (44. 16% vs 82. 13%). MVD in the experimental group (19. 29 + 2. 06) was lower than that in the blank control group (39. 43±3. 31) and 5-FU group (21. 57 + 2. 82,P<0. 01). CONCLUSION:Arctigenin can inhibit the expression of VEGF gene and protein in hepatocarcinoma cell and the angiogenesis of hepatocarcinoma in nude mice.

  19. The role of calcineurin/NFAT in SFRP2 induced angiogenesis--a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus.

    Directory of Open Access Journals (Sweden)

    Sharareh Siamakpour-Reihani

    Full Text Available Tacrolimus (FK506 is an immunosuppressive drug that binds to the immunophilin FKBPB12. The FK506-FKBP12 complex associates with calcineurin and inhibits its phosphatase activity, resulting in inhibition of nuclear translocation of nuclear factor of activated T-cells (NFAT. There is increasing data supporting a critical role of NFAT in mediating angiogenic responses stimulated by both vascular endothelial growth factor (VEGF and a novel angiogenesis factor, secreted frizzled-related protein 2 (SFRP2. Since both VEGF and SFRP2 are expressed in breast carcinomas, we hypothesized that tacrolimus would inhibit breast carcinoma growth. Using IHC (IHC with antibodies to FKBP12 on breast carcinomas we found that FKBP12 localizes to breast tumor vasculature. Treatment of MMTV-neu transgenic mice with tacrolimus (3 mg/kg i.p. daily (n = 19 resulted in a 73% reduction in the growth rate for tacrolimus treated mice compared to control (n = 15, p = 0.003; which was associated with an 82% reduction in tumor microvascular density (p<0.001 by IHC. Tacrolimus (1 µM inhibited SFRP2 induced endothelial tube formation by 71% (p = 0.005 and inhibited VEGF induced endothelial tube formation by 67% (p = 0.004. To show that NFATc3 is required for SFRP2 stimulated angiogenesis, NFATc3 was silenced with shRNA in endothelial cells. Sham transfected cells responded to SFRP2 stimulation in a tube formation assay with an increase in the number of branch points (p<0.003, however, cells transfected with shRNA to NFATc3 showed no increase in tube formation in response to SFRP2. This demonstrates that NFATc3 is required for SFRP2 induced tube formation, and tacrolimus inhibits angiogenesis in vitro and breast carcinoma growth in vivo. This provides a rationale for examining the therapeutic potential of tacrolimus at inhibiting breast carcinoma growth in humans.

  20. Platelets actively sequester angiogenesis regulators

    OpenAIRE

    Lakka Klement, Giannoula; Yip, Tai-Tung; Cassiola, Flavia; Kikuchi, Lena; Cervi, David; Podust, Vladimir; Italiano, Joseph E.; Wheatley, Erin; Abou-Slaybi, Abdo; Bender, Elise; Almog, Nava; Kieran, Mark W.; Folkman, Judah

    2009-01-01

    Clinical trials with antiangiogenic agents have not been able to validate plasma or serum levels of angiogenesis regulators as reliable markers of cancer presence or therapeutic response. We recently reported that platelets contain numerous proteins that regulate angiogenesis. We now show that accumulation of angiogenesis regulators in platelets of animals bearing malignant tumors exceeds significantly their concentration in plasma or serum, as well as their levels in platelets from non–tumor...

  1. Structural and Functional Analysis of a C3b-specific Antibody That Selectively Inhibits the Alternative Pathway of Complement*S⃞

    OpenAIRE

    Katschke, Kenneth J.; Stawicki, Scott; Yin, JianPing; Steffek, Micah; Xi, Hongkang; Sturgeon, Lizette; Hass, Philip E.; Loyet, Kelly M.; DeForge, Laura; Wu, Yan; van Lookeren Campagne, Menno; Wiesmann, Christian

    2009-01-01

    Amplification of the complement cascade through the alternative pathway can lead to excessive inflammation. Targeting C3b, a component central to the alternative pathway of complement, provides a powerful approach to inhibit complement-mediated immune responses and tissue injury. In the present study, phage display technology was employed to generate an antibody that selectively recognizes C3b but not the non-activated molecule C3. The crystal structure of C3b in compl...

  2. Intracytoplasmic stable expression of IgG1 antibody targeting NS3 helicase inhibits replication of highly efficient hepatitis C Virus 2a clone

    OpenAIRE

    Clementi Massimo; Burioni Roberto; Liu Gerald; Prabhu Ramesh; Gunduz Feyza; Poat Bret; Hazari Sidhartha; Chandra Partha K; Garry Robert F; Dash Srikanta

    2010-01-01

    Abstract Background Hepatitis C virus (HCV) infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of...

  3. Injection of an antibody against a p21 c-Ha-ras protein inhibits cleavage in axolotl eggs.

    OpenAIRE

    Baltus, E; Hanocq-Quertier, J; Hanocq, F.; Brachet, J.

    1988-01-01

    The presence of a ras protein was demonstrated in cleaving axolotl eggs by selective immunoprecipitation with a polyclonal antibody against a peptide encoded by the c-Ha-ras oncogene, cellular homolog of the v-Ha-ras oncogene of Harvey rat sarcoma virus. Injection of this antibody into axolotl oocytes subjected to progesterone treatment does not prevent meiotic maturation. Injection of the same antibody into a blastomere of axolotl eggs at the 2- or 4-cell stage causes cleavage arrest in the ...

  4. Increased angiogenesis in portal hypertensive rats: role of nitric oxide.

    Science.gov (United States)

    Sumanovski, L T; Battegay, E; Stumm, M; van der Kooij, M; Sieber, C C

    1999-04-01

    Systemic and especially splanchnic arterial vasodilation accompany chronic portal hypertension. Different soluble mediators causing this vasodilation have been proposed, the strongest evidence being for nitric oxide (NO). No data exist if structural vascular changes may partly account for this vasodilatory state. Here, we developed a new in vivo quantitative angiogenesis assay in the abdominal cavity and determined if: 1) portal hypertensive rats show increased angiogenesis; and 2) angiogenesis is altered by inhibiting NO formation. Portal hypertension was induced by partial portal vein ligation (PVL). Sham-operated rats served as controls (CON). During the index operation (day 0), a teflon ring filled with collagen I (Vitrogen 100) was sutured in the mesenteric cavity. After 16 days, rings were explanted, embedded in paraffin, and ingrown vessels counted using a morphometry system. The role of NO was tested by adding an antagonist of NO formation (Nomega-nitro-L-arginine [NNA], 3.3 mg/kg/d) into the drinking water. The mean number of ingrown vessels per implant was significantly higher in PVL rats compared with CON rats, i.e., 1,453 +/- 187 versus 888 +/- 116, respectively (P <.05; N = 5 per group). NNA significantly (P <.01) inhibited angiogenesis in PVL (202 +/- 124; N = 5) and in CON (174 +/- 25; N = 6) rats, respectively. In contrast, the beta-adrenergic blocker, propranolol, did not prevent angiogenesis either in PVL or CON rats in a separate set of experiments (data not shown). The conclusions drawn from this study are that: 1) rats with portal hypertension show increased angiogenesis; and 2) inhibition of NO formation significantly prevents angiogenesis in both PVL and CON rats. Therefore, splanchnic vasodilation in chronic portal hypertension may also be a result of structural changes.

  5. ARTEMIN promotes de novo angiogenesis in ER negative mammary carcinoma through activation of TWIST1-VEGF-A signalling.

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    Full Text Available The neurotrophic factor ARTEMIN (ARTN has been reported to possess a role in mammary carcinoma progression and metastasis. Herein, we report that ARTN modulates endothelial cell behaviour and promotes angiogenesis in ER-mammary carcinoma (ER-MC. Human microvascular endothelial cells (HMEC-1 do not express ARTN but respond to exogenously added, and paracrine ARTN secreted by ER-MC cells. ARTN promoted endothelial cell proliferation, migration, invasion and 3D matrigel tube formation. Angiogenic behaviour promoted by ARTN secreted by ER-MC cells was mediated by AKT with resultant increased TWIST1 and subsequently VEGF-A expression. In a patient cohort of ER-MC, ARTN positively correlated with VEGF-A expression as measured by Spearman's rank correlation analysis. In xenograft experiments, ER-MC cells with forced expression of ARTN produced tumors with increased VEGF-A expression and increased microvessel density (CD31 and CD34 compared to tumors formed by control cells. Functional inhibition of ARTN by siRNA decreased the angiogenic effects of ER-MC cells. Bevacizumab (a humanized monoclonal anti-VEGF-A antibody partially inhibited the ARTN mediated angiogenic effects of ER-MC cells and combined inhibition of ARTN and VEGF-A by the same resulted in further significant decrease in the angiogenic effects of ER-MC cells. Thus, ARTN stimulates de novo tumor angiogenesis mediated in part by VEGF-A. ARTN therefore co-ordinately regulates multiple aspects of tumor growth and metastasis.

  6. CCR3 monoclonal antibody inhibits airway eosinophilic inflammation and mucus overproduction in a mouse model of asthma

    Institute of Scientific and Technical Information of China (English)

    Hua-hao SHEN; Feng XU; Gen-sheng ZHANG; Shao-bin WANG; Wei-hua XU

    2006-01-01

    Aim: To explore the effect of a rat anti-mouse CC-chemokine receptor-3 (CCR3) monoclonal antibody (CCR3 mAb) on airway eosinophilia and mucus overproduction in asthmatic mice. Methods: An asthma model was sensitized and challenged by ovalbumin (OVA) in male C57BL/6 mice. Asthmatic mice were given dual administration (intraperitoneal injection and aerosol inhalation) of CCR3 mAb or nonspecific rat IgG (ns-IgG). The number of total and differential inflammatory cells in the bronchial alveolar lavage fluid (BALF) was counted. Eosinophils number, the goblet cell percentage (GCP) and airway mucus index (AMI) were measured in the lung tissues. Interleukin (IL)-5 levels in the BALF were examined. The expression of MUC5AC and the epidermal growth factor receptor (EGFR) mRNA in the lung tissues was detected by semi-quantitative RT-PCR. The results were compared among the groups. Results: CCR3 mAb significantly suppressed the increased eosinophils in the BALF and lung tissues in OVA-challenged mice compared with ns-IgG-treated mice. IL-5 levels in the BALF in CCR3 mAb and ns-IgG administration mice exhibited no obvious changes relative to OVA-challenged asthmatic mice. CCR3 mAb reduced the increased GCP and AMI after OVA challenge and decreased the enhanced expression of MUC5AC and EGFR mRNA in lung tissues in asthmatic animals. Conclusion: CCR3 mAb can significantly inhibit airway eosinophilia and mucus overproduction in asthmatic mice. Blockage of CCR3 may represent a new strategy to asthma therapy.

  7. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor.

    Science.gov (United States)

    Acevedo, Lisette M; Barillas, Samuel; Weis, Sara M; Göthert, Joachim R; Cheresh, David A

    2008-03-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP. PMID:18180379

  8. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins

    Directory of Open Access Journals (Sweden)

    Garza Treviño Elsa N

    2011-09-01

    Full Text Available Abstract Background HIV/AIDS pandemic is a worldwide public health issue. There is a need for new approaches to develop new antiviral compounds or other therapeutic strategies to limit viral transmission. The envelope glycoproteins gp120 and gp41 of HIV are the main targets for both silver nanoparticles (AgNPs and neutralizing antibodies. There is an urgency to optimize the efficiency of the neutralizing antibodies (NABs. In this study, we demonstrated that there is an additive effect between the four NABs and AgNPs when combined against cell-associated HIV-1 infection in vitro Results Four NABs (Monoclonal antibody to HIV-1 gp41 126-7, HIV-1 gp120 Antiserum PB1 Sub 2, HIV-1 gp120 Antiserum PB1, HIV-1 gp120 Monoclonal Antibody F425 B4e8 with or without AgNPs of 30-50 nm in size were tested against cell free and cell-associated HIVIIIB virus. All NABs inhibited HIV-1 cell free infection at a dose response manner, but with AgNPs an antiviral additive effect was not achieved Although there was no inhibition of infection with cell-associated virus by the NABs itself, AgNPs alone were able to inhibit cell associated virus infection and more importantly, when mixed together with NABs they inhibited the HIV-1 cell associated infection in an additive manner. Discussion The most attractive strategies to deal with the HIV problem are the development of a prophylactic vaccine and the development of effective topical vaginal microbicide. For two decades a potent vaccine that inhibits transmission of infection of HIV has been searched. There are vaccines that elicit NABs but none of them has the efficacy to stop transmission of HIV-1 infection. We propose that with the addition of AgNPs, NABs will have an additive effect and become more potent to inhibit cell-associated HIV-1 transmission/infection. Conclusions The addition of AgNPs to NABs has significantly increased the neutralizing potency of NABs in prevention of cell-associated HIV-1 transmission

  9. IgG anti-GalNAc-GD1a antibody inhibits the voltage-dependent calcium channel currents in PC12 pheochromocytoma cells.

    Science.gov (United States)

    Nakatani, Yoshihiko; Nagaoka, Takumi; Hotta, Sayako; Utsunomiya, Iku; Yoshino, Hiide; Miyatake, Tadashi; Hoshi, Keiko; Taguchi, Kyoji

    2007-03-01

    We investigated the effects of IgG anti-GalNAc-GD1a antibodies, produced by immunizing rabbits with GalNAc-GD1a, on the voltage-dependent calcium channel (VDCCs) currents in nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells. VDCCs currents in NGF-differentiated PC12 cells were recorded using the whole-cell patch-clamp technique. Immunized rabbit serum that had a high titer of anti-GalNAc-GD1a antibodies inhibited the VDCCs currents in the NGF-differentiated PC12 cells (36.0+/-9.6% reduction). The inhibitory effect of this serum was reversed to some degree within 3-4 min by washing with bath solution. Similarly, application of purified IgG from rabbit serum immunized with GalNAc-GD1a significantly inhibited the VDCCs currents in PC12 cells (30.6+/-2.5% reduction), and this inhibition was recovered by washing with bath solution. Furthermore, the inhibitory effect was also observed in the GalNAc-GD1a affinity column binding fraction (reduction of 31.1+/-9.85%), while the GalNAc-GD1a affinity column pass-through fraction attenuated the inhibitory effect on VDCCs currents. Normal rabbit serum and normal rabbit IgG did not affect the VDCCs currents in the PC12 cells. In an immunocytochemical study using fluorescence staining, the PC12 cells were stained using GalNAc-GD1a binding fraction. These results indicate that anti-GalNAc-GD1a antibodies inhibit the VDCCs currents in NGF-differentiated PC12 cells.

  10. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released

    OpenAIRE

    Italiano, Joseph E.; Richardson, Jennifer L.; Patel-Hett, Sunita; Battinelli, Elisabeth; Zaslavsky, Alexander; Short, Sarah; Ryeom, Sandra; Folkman, Judah; Klement, Giannoula L.

    2008-01-01

    Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron micro...

  11. Anomalous expression of Thy1 (CD90) in B-cell lymphoma cells and proliferation inhibition by anti-Thy1 antibody treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ishiura, Yoshihito [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kotani, Norihiro, E-mail: kotani@kochi-u.ac.jp [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); Yamashita, Ryusuke [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamamoto, Harumi [Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Kozutsumi, Yasunori [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Honke, Koichi [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan)

    2010-05-28

    The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt's lymphoma cell line, Akata. Using DNA array, flow cytometry and Western blotting, we found that Thy1 was highly expressed in EBV-positive Akata cells. Subsequently, Thy1 was found to be expressed in other B-cell lymphoma cell lines: BJAB, MutuI, and MutuIII, irrespective of EBV infection. Treatment of these cells with an anti-Thy1 monoclonal antibody inhibited proliferation more strongly than the therapeutic Ab rituximab. The B-cell lymphoma cell lines were classified based on the extent of the proliferation inhibition, which was not correlated with the expression level of Thy1. It is suggested that stable residence of receptor tyrosine kinases in lipid rafts sustains cell growth in B-cell lymphoma cells.

  12. Generation and Characterization of C305, a Murine Neutralizing scFv Antibody That Can Inhibit BLyS Binding to Its Receptor BCMA

    Institute of Scientific and Technical Information of China (English)

    Mei-Yun LIU; Wei HAN; Yan-Li DING; Tian-Hong ZHOU; Rui-Yang TIAN; Sheng-Li YANG; Hui LIU; Yi GONG

    2005-01-01

    B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) family and a key regulator of B cell response. Neutralizing single-chain fragment variable (scFv) antibody against BLyS binding to its receptor BCMA has the potential to play a prominent role in autoimmune disease therapy. A phage display scFv library constructed on pIII protein of M13 filamentous phage was screened using BLyS.After five rounds of panning, their binding activity was characterized by phage-ELISA. Nucleotide sequencing revealed that at least two different scFv gene fragments (C305 and D416) were obtained. The two different scFv gene fragments were expressed to obtain the soluble scFv antibodies, then the soluble scFv antibodies were characterized by means of competitive ELISA and in vitro neutralization assay. The results indicated that C305 is the neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA.

  13. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting.

    Science.gov (United States)

    Bikfalvi, Andreas; Bicknell, Roy

    2002-12-01

    Angiogenesis, the development of new blood vessels, has become a major focus of research. This has been stimulated by the therapeutic opportunities offered by the ability to manipulate the vasculature in pathologies such as cancer. Here, we present an overview of recent advances in angiogenesis. Especially noteworthy is the large volume of information from developmental studies, particularly those that involve transgenic and gene knockout mice. We also discuss the increasing repertoire of drugs with which to manipulate angiogenesis and new endothelial-specific genes with which to target the vasculature. PMID:12457776

  14. Inhibition of the Production of Anti-OspA Borreliacidal Antibody with T Cells from Hamsters Vaccinated against Borrelia burgdorferi

    OpenAIRE

    Jensen, Jani R.; Du Chateau, Brian K.; Munson, Erik L.; Callister, Steven M.; Schell, Ronald F.

    1998-01-01

    The serious morbidity associated with Lyme borreliosis has focused considerable effort on the development of a comprehensive vaccine for protection against infection with Borrelia burgdorferi. Induction of borreliacidal antibody by vaccination or infection has been shown to correlate with protection of humans and animals against infection with the Lyme spirochete. In this report, we showed that high levels of borreliacidal antibody (titer of 1,280) were produced in vitro when T and B cells fr...

  15. Modelling approaches for angiogenesis.

    Science.gov (United States)

    Taraboletti, G; Giavazzi, R

    2004-04-01

    The development of a functional vasculature within a tumour is a requisite for its growth and progression. This fact has led to the design of therapies directed toward the tumour vasculature, aiming either to prevent the formation of new vessels (anti-angiogenic) or to damage existing vessels (vascular targeting). The development of agents with different mechanisms of action requires powerful preclinical models for the analysis and optimization of these therapies. This review concerns 'classical' assays of angiogenesis in vitro and in vivo, recent approaches to target identification (analysis of gene and protein expression), and the study of morphological and functional changes in the vasculature in vivo (imaging techniques). It mainly describes assays designed for anti-angiogenic compounds, indicating, where possible, their application to the study of vascular-targeting agents. PMID:15120043

  16. Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry

    Science.gov (United States)

    Ku, Zhiqiang; Ye, Xiaohua; Shi, Jinping; Wang, Xiaoli

    2015-01-01

    ABSTRACT Antibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs. IMPORTANCE Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during

  17. Competitive-inhibition enzyme-linked immunosorbent assay for detection of serum antibodies to caprine arthritis-encephalitis virus: diagnostic tool for successful eradication.

    Science.gov (United States)

    Herrmann, Lynn M; Cheevers, William P; McGuire, Travis C; Adams, D Scott; Hutton, Melinda M; Gavin, William G; Knowles, Donald P

    2003-03-01

    A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) was evaluated for the detection of serum antibodies to the surface envelope (SU) of caprine arthritis-encephalitis virus (CAEV) in goats. This assay utilized 96-well microtiter plates containing CAEV-63 SU captured by monoclonal antibody (MAb) F7-299 and measured the competitive displacement of horseradish peroxidase-conjugated MAb GPB 74A binding by undiluted goat sera (F. Ozyörük, W. P. Cheevers, G. A. Hullinger, T. C. McGuire, M. Hutton, and D. P. Knowles, Clin. Diagn. Lab. Immunol. 8:44-51, 2001). Two hundred serum samples from goats in the United States were used to determine the sensitivity and specificity of cELISA based on the immunoprecipitation (IP) of [(35)S]methionine-labeled viral antigens as a standard of comparison. A positive cELISA was defined as >33.2% inhibition of MAb 74A binding based on 2 standard deviations above the mean percent inhibition of 140 IP-negative serum samples. At this cutoff value, there were 0 of 60 false-negative sera (100% sensitivity) and 5 of 140 false-positive sera (96.4% specificity). Additional studies utilized IP-monitored cELISA to establish a CAEV-free herd of 1,640 dairy goats. PMID:12626453

  18. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion.

    Science.gov (United States)

    Sim, B K; Orlandi, P A; Haynes, J D; Klotz, F W; Carter, J M; Camus, D; Zegans, M E; Chulay, J D

    1990-11-01

    The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts. PMID:2229177

  19. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo.

    Directory of Open Access Journals (Sweden)

    Qin Wang

    Full Text Available VEGF family factors are known to be the principal stimulators of abnormal angiogenesis, which play a fundamental role in tumor and various ocular diseases. Inhibition of VEGF is widely applied in antiangiogenic therapy. Conbercept is a novel decoy receptor protein constructed by fusing VEGF receptor 1 and VEGF receptor 2 extracellular domains with the Fc region of human immunoglobulin. In this study, we systematically evaluated the binding affinity of conbercept with VEGF isoforms and PlGF by using anti-VEGF antibody (Avastin as reference. BIACORE and ELISA assay results indicated that conbercept could bind different VEGF-A isoforms with higher affinity than reference. Furthermore, conbercept could also bind VEGF-B and PlGF, whereas Avastin showed no binding. Oxygen-induced retinopathy model showed that conbercept could inhibit the formation of neovasularizations. In tumor-bearing nude mice, conbercept could also suppress tumor growth very effectively in vivo. Overall, our study have demonstrated that conbercept could bind with high affinity to multiple VEGF isoforms and consequently provide remarkable anti-angiogenic effect, suggesting the possibility to treat angiogenesis-related diseases such as cancer and wet AMD etc.

  20. Integrated in silico and experimental methods revealed that Arctigenin inhibited angiogenesis and HCT116 cell migration and invasion through regulating the H1F4A and Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Shouyue; Li, Jie; Song, Sicheng; Li, Jing; Tong, Rongsheng; Zang, Zhihe; Jiang, Qinglin; Cai, Lulu

    2015-11-01

    Arctigenin (ARG) has been previously reported to exert diverse biological activities including anti-proliferation, anti-inflammatory, and antiviral, etc. In the current study, the anti-metastasis and anti-angiogenesis activities of ARG were investigated. To further understand how ARG played these bioactivities, proteomic approaches were used to profile the proteome changes in response to ARG treatment using 2DE-MS/MS. Using these approaches, a total of 50 differentially expressed proteins were identified and clustered. Bioinformatics analysis suggested that multiple signalling pathways were involved. Moreover, ARG induced anti-metastatic and anti-angiogenesis activities were mainly accompanied by a deactivation of the Wnt/β-catenin pathway in HCT116 cells. PMID:26267229

  1. Integrated in silico and experimental methods revealed that Arctigenin inhibited angiogenesis and HCT116 cell migration and invasion through regulating the H1F4A and Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Shouyue; Li, Jie; Song, Sicheng; Li, Jing; Tong, Rongsheng; Zang, Zhihe; Jiang, Qinglin; Cai, Lulu

    2015-11-01

    Arctigenin (ARG) has been previously reported to exert diverse biological activities including anti-proliferation, anti-inflammatory, and antiviral, etc. In the current study, the anti-metastasis and anti-angiogenesis activities of ARG were investigated. To further understand how ARG played these bioactivities, proteomic approaches were used to profile the proteome changes in response to ARG treatment using 2DE-MS/MS. Using these approaches, a total of 50 differentially expressed proteins were identified and clustered. Bioinformatics analysis suggested that multiple signalling pathways were involved. Moreover, ARG induced anti-metastatic and anti-angiogenesis activities were mainly accompanied by a deactivation of the Wnt/β-catenin pathway in HCT116 cells.

  2. Inhibition of Corneal Neovascularization with the Combination of Bevacizumab and Plasmid Pigment Epithelium-Derived Factor-Synthetic Amphiphile INTeraction-18 (p-PEDF-SAINT-18 Vector in a Rat Corneal Experimental Angiogenesis Model

    Directory of Open Access Journals (Sweden)

    Ching-Hsein Chen

    2013-04-01

    Full Text Available Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonal antibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeability properties. In this study, we demonstrated that the combination of bevacizumab and plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18 (p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups (Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and D: 10 μg + 10 μg of bevacizumab + p-PEDF-SAINT-18 were prepared and implanted into the rat subconjunctival substantia propria 1.5 mm from the limbus on the temporal side. Then, 1 μg of p-bFGF-SAINT-18 was prepared and implanted into the rat corneal stroma 1.5 mm from the limbus on the same side. The inhibition of NV was observed and quantified from days 1 to 60. Biomicroscopic examination, western blot analysis and immunohistochemistry were used to analyze the 18-kDa bFGF, 50-kDa PEDF and VEGF protein expression. No inhibition activity for normal limbal vessels was noted. Subconjunctival injection with the combination of bevacizumab and p-PEDF-SAINT-18 successfully inhibited corneal NV. The bFGF and PEDF genes were successfully expressed as shown by western blot analysis, and a mild immune response to HLA-DR was shown by immunohistochemistry. We concluded that the combination of bevacizumab and p-PEDF-SAINT-18 may have more potent and prolonged antiangiogenic effects, making it possible to reduce the frequency of subconjunctival.Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonalantibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeabilityproperties. In this study, we demonstrated that the combination of bevacizumaband plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18(p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups(Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and

  3. Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120

    Directory of Open Access Journals (Sweden)

    Wilson Ian A

    2006-07-01

    Full Text Available Abstract During natural HIV infection, an array of host receptors are thought to influence virus attachment and the kinetics of infection. In this study, to probe the interactions of HIV envelope (Env with various receptors, we assessed the inhibitory properties of various anti-Env monoclonal antibodies (mAbs in binding assays. To assist in detecting Env in attachment assays, we generated Fc fusions of full-length wild-type gp120 and several variable loop-deleted gp120s. Through investigation of the inhibition of Env binding to cell lines expressing CD4, CCR5, DC-SIGN, syndecans or combinations thereof, we found that the broadly neutralizing mAb, 2G12, directed to a unique carbohydrate epitope of gp120, inhibited Env-CCR5 binding, partially inhibited Env-DC-SIGN binding, but had no effect on Env-syndecan association. Furthermore, 2G12 inhibited Env attachment to primary monocyte-derived dendritic cells, that expressed CD4 and CCR5 primary HIV receptors, as well as DC-SIGN, and suggested that the dual activities of 2G12 could be valuable in vivo for inhibiting initial virus dissemination and propagation.

  4. Bidirectional regulation of angiogenesis by phytoestrogens through estrogen receptor-mediated signaling networks.

    Science.gov (United States)

    Liu, Hai-Xin; Wang, Yu; Lu, Qing; Yang, Ming-Zhu; Fan, Guan-Wei; Karas, Richard H; Gao, Xiu-Mei; Zhu, Yan

    2016-04-01

    Sex hormone estrogen is one of the most active intrinsic angiogenesis regulators; its therapeutic use has been limited due to its carcinogenic potential. Plant-derived phytoestrogens are attractive alternatives, but reports on their angiogenic activities often lack in-depth analysis and sometimes are controversial. Herein, we report a data-mining study with the existing literature, using IPA system to classify and characterize phytoestrogens based on their angiogenic properties and pharmacological consequences. We found that pro-angiogenic phytoestrogens functioned predominantly as cardiovascular protectors whereas anti-angiogenic phytoestrogens played a role in cancer prevention and therapy. This bidirectional regulation were shown to be target-selective and, for the most part, estrogen-receptor-dependent. The transactivation properties of ERα and ERβ by phytoestrogens were examined in the context of angiogenesis-related gene transcription. ERα and ERβ were shown to signal in opposite ways when complexed with the phytoestrogen for bidirectional regulation of angiogenesis. With ERα, phytoestrogen activated or inhibited transcription of some angiogenesis-related genes, resulting in the promotion of angiogenesis, whereas, with ERβ, phytoestrogen regulated transcription of angiogenesis-related genes, resulting in inhibition of angiogenesis. Therefore, the selectivity of phytoestrogen to ERα and ERβ may be critical in the balance of pro- or anti-angiogenesis process. PMID:27114311

  5. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  6. Copper and angiogenesis: unravelling a relationship key to cancer progression.

    Science.gov (United States)

    Finney, Lydia; Vogt, Stefan; Fukai, Tohru; Glesne, David

    2009-01-01

    1. Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. 2. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. 3. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of

  7. CANSTATIN, A ENDOGENOUS INHIBITOR OF ANGIOGENESIS AND TUMOR GROWTH

    Institute of Scientific and Technical Information of China (English)

    苏影; 朱建思

    2004-01-01

    Canstatin is a novel inhibitor of angiogenesis and tumor growth, derived from the C-terminal globular non-collageneous (NCl) domain of the (2 chain of type IV collagen. It inhibits endothelial cell proliferation and migration in a dose-dependent manner, and induces endothelial cell apoptosis. In vivo experiments show that canstatin significantly inhibits solid tumor growth. The canstatin mediated inhibition of tumor is related to apoptosis. Canstatin- induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependend upon signaling events transduced trough membrane death receptor.

  8. CXCRl/CXCR2受体拮抗剂-G31P抑制前列腺癌血管新生的体内实验%Inhibition of G31P : Chemokine Receptor CXCR1/CXCR2 Antagonist, in Angiogenesis of Human Prostate Cancer Cells in vivo

    Institute of Scientific and Technical Information of China (English)

    刘欣; 戴晓冬; 李星云; 王晓丽; 李芳

    2012-01-01

    Objective To investigate the inhibition of G31P on the angiogenesis of the prostate cancer PC-3 cell in vivo. Methods The effect of G31P on angiogenesis of human prostate tumor of nude mice were observed in nude mice by building a human androgen-independent prostate cancer PC-3 (GFP-labeled) or-thotopic transplantation tumor cells model. Results The tumor angiogenesis of G31P treated group (1. 26 ±0.46)was significantly reduced (0. 49±0. 12,P<0. 05) compared with the control group. VEGF(P< 0. 01) and NF-KB(P<0. 01) expression of G31P treated groupwas significantly reduced (immunohisto-chemistry) compared with the control group. Conclusion G31P could inhibit the angiogenesis of the prostate cancer PC-3 cell in vivo.%目的 探讨G31P(CXCR1/CXCR2受体拮抗剂)对人前列腺癌PC-3细胞的体内血管新生的抑制作用.方法 建立体内绿色荧光蛋白(GFP)标记的人雄激素非依赖性前列腺癌细胞PC-3的裸鼠原位移植瘤模型,观察G31P对裸鼠前列腺原位移植瘤血管新生的影响.结果 与对照组(1.26±0.46)相比,G31P处理组明显抑制前列腺肿瘤的血管新生(0.49±0.12,P<0.05),与对照组相比,G31P处理组VEGF(P<0.01)和NF-kB(P<0.01)的表达具有统计学意义(免疫组织化学法).结论 在裸鼠原位移植瘤模型中G31P对人雄激素非依赖性前列腺癌的血管新生有明显抑制作用.

  9. Positron emission tomography tracers for imaging angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Beer, Ambros J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Wang, Hui [Sichuan University, Department of Radiology, West China Hospital, Chengdu (China); Chen, Xiaoyuan [National Institutes of Health, Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States)

    2010-08-15

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or {alpha}{sub v}{beta}{sub 3} integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging {alpha}{sub v}{beta}{sub 3} expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  10. Angiogenesis in female reproductive system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Neovascularization, i.e. new blood vessels formation, can be divided into two different processes: vasculogenesis, whereby a primitive vascular network is established during embryogenesis from multipotential mesenchymal progenitors; and angiogenesis, which refers to the new blood vessels formation from pre-existing vessels[1,2]. Angiogenesis contributes to the most process throughout the whole life span from embryonic development to adult growth[2]. In this meaning, neovascularization is usually used to imply angiogenesis. Under physiological condi-tions, angiogenesis is a strictly regulated event and rarely happens in most adult tissues except for fracture or heal-ing of wounds[2,3]. However, a notable phenomenon is that the tissues of ovary and uterine endometrium are unique in the cycle-specific changes in vascularity that occur in each estrous/menstrual cycle. Active angiogenesis occurs in placenta to satisfy the needs of embryonic implantation and development. Defects in angiogenesis are associated with some gynecopathies including luteal phase defect, endometriosis, pregnancy loss and preeclampsia[4].

  11. Cyclosporine inhibits long-term survival in cardiac allografts treated with monoclonal antibody against CD45RB

    NARCIS (Netherlands)

    Parry, N; Lazarovits, AI; Wang, JJ; Garcia, B; Luke, P; Poppema, S; Zhong, R

    1999-01-01

    Background: We have previously reported that a monoclonal antibody to CD45RB is a novel immunosuppressive agent; however, the optimal regimen in cardiac allografts remains unknown. The present study was undertaken to determine the optimal protocol of this therapy and its interaction with cyclosporin

  12. IMMUNE INHIBITION OF VIRUS RELEASE FROM HUMAN AND NONHUMAN CELLS BY ANTIBODY TO VIRAL AND HOST-CELL DETERMINANTS

    NARCIS (Netherlands)

    SHARIFF, DM; DESPERBASQUES, M; BILLSTROM, M; GEERLIGS, HJ; WELLING, GW; WELLINGWESTER, S; BUCHAN, A; SKINNER, GRB

    1991-01-01

    Immune inhibition of release of the DNA virues, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and su

  13. Liposomes loaded with P. falciparum merozoite-derived proteins are highly immunogenic and produce invasion-inhibiting and anti-toxin antibodies.

    Science.gov (United States)

    Fotoran, Wesley L; Santangelo, Rachele M; Medeiros, Márcia M; Colhone, Marcelle; Ciancaglini, Pietro; Barboza, Renato; Marinho, Claudio Romero Farias; Stábeli, Rodrigo Guerino; Wunderlich, Gerhard

    2015-11-10

    The formulation of an effective vaccine against malaria is still a significant challenge and the induction of high anti-parasite antibody titers plus a sustained T cell response is mandatory for the success of such a vaccine. We have developed a nanoliposome-based structure which contains plasma membrane-associated proteins (PfMNP) of Plasmodium falciparum merozoites on its surface. Incorporation of parasite-derived proteins led to a significant increase in the size and dispersity of particles. Immunization of particles in BalbC and C57BL/6 mice led to high anti-MSP119 IgG titers (10(4)) after the first dose and reached a plateau (>10(6)) after the third dose. While very high titers were observed against the C-terminal domain of the vaccine candidate MSP1, only modest titers (≤10(3)) were detected against MSP2. The induced antibodies showed also a strong growth-inhibiting effect in reinvasion assays. In addition, PfMNP immunization generated antibodies which partially blocked the inflammatory response, probably by blocking TLR-induced activation of macrophages by malarial toxins such as GPI anchors. The results underline the potential of nanoliposome-based formulations as anti-malarial vaccines. PMID:26334481

  14. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells.

    Science.gov (United States)

    Ren, Weicheng; Grimsholm, Ola; Bernardi, Angelina I; Höök, Nina; Stern, Anna; Cavallini, Nicola; Mårtensson, Inga-Lill

    2015-04-01

    Selection of the primary antibody repertoire takes place in pro-/pre-B cells, and subsequently in immature and transitional B cells. At the first checkpoint, μ heavy (μH) chains assemble with surrogate light (SL) chain into a precursor B-cell receptor. In mice lacking SL chain, μH chain selection is impaired, and serum autoantibody levels are elevated. However, whether the development of autoantibody-producing cells is due to an inability of the resultant B-cell receptors to induce central and/or peripheral B-cell tolerance or other factors is unknown. Here, we show that receptor editing is defective, and that a higher proportion of BM immature B cells are prone to undergoing apoptosis. Furthermore, transitional B cells are also more prone to undergoing apoptosis, with a stronger selection pressure to enter the follicular B-cell pool. Those that enter the marginal zone (MZ) B-cell pool escape selection and survive, possibly due to the B-lymphopenia and elevated levels of B-cell activating factor. Moreover, the MZ B cells are responsible for the elevated IgM anti-dsDNA antibody levels detected in these mice. Thus, the SL chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by MZ B cells.

  15. Regulation of naturally occurring autoantibody-producing cells: detection of a suppressive substance which inhibits the secretion of antibodies directed against enzyme-treated isologous erythrocytes.

    Science.gov (United States)

    Moticka, E J

    1983-10-01

    Normal mice possess spleen cells capable of forming hemolytic plaques against bromelain-treated autologous red cells (Br MRBC). There is present in the serum of these same mice a substance which can inhibit the formation of these plaques. This substance is inhibitory to the secretion of these antibodies following incubation of spleen cells in 20% serum at 4 degrees C for 5 min. This substance is not inhibitory to the formation of anti-sheep erythrocyte plaques from mice either immunized or nonimmunized with sheep erythrocytes. Characterization of the substance indicates that it is neither soluble antigen nor specific antibody. However, inclusion of nanogram amounts of soluble antigen from bromelain-treated red cells in the assay mixture effectively neutralized the suppression. In addition, passage of serum through a mouse anti-Br MRBC antibody immunoadsorbent effectively removed the suppressive activity of the serum while suppression could be recovered in the acid eluate from such a column. This suggests that the mechanism of suppression brought about by incubation in serum is due to the action of a molecule possessing anti-idiotypic activity directed against the cell surface receptors of anti-Br MRBC B cells. Attempts to isolate the molecule based on the postulate that it is immunoglobulin in nature have been unsuccessful.

  16. In-vitro inhibition of IFNγ+ iTreg mediated by monoclonal antibodies against cell surface determinants essential for iTreg function

    Directory of Open Access Journals (Sweden)

    Daniel Volker

    2012-08-01

    Full Text Available Abstract Background IFNγ-producing CD4+CD25+Foxp3+ PBL represent a subtype of iTreg that are associated with good long-term graft outcome in renal transplant recipients and suppress alloresponses in-vitro. To study the mechanism of immunosuppression, we attempted to block cell surface receptors and thereby inhibited the function of this iTreg subset in-vitro using monoclonal antibodies and recombinant proteins. Methods PBL of healthy control individuals were stimulated polyclonally in-vitro in the presence of monoclonal antibodies or recombinant proteins against/of CD178, CD152, CD279, CD28, CD95, and HLA-DR. Induction of IFNγ+ iTreg and proliferation of effector cells was determined using four-color fluorescence flow cytometry. Blockade of iTreg function was analyzed using polyclonally stimulated co-cultures with separated CD4+CD25+CD127-IFNγ+ PBL. Results High monoclonal antibody concentrations inhibited the induction of CD4+CD25+Foxp3+IFNγ+ PBL (anti-CD152, anti-CD279, anti-CD95: p +CD25+CD127-IFNγ+ PBL (anti-CD178, anti-CD152, anti-CD279, anti-CD95: p +CD25+Foxp3+IFNγ+ PBL (rCD152 and rCD95: p +CD25+CD127-IFNγ+ PBL showed lower cell proliferation than co-cultures with CD4+CD25+CD127-IFNγ- PBL (p +CD25+CD127-IFNγ- PBL-containing co-cultures in the presence of monoclonal antibody (anti-CD28, anti-CD152, anti-CD279: p +CD25+CD127-IFNγ+ PBL (with the exception anti-CD28 monoclonal antibody: p +CD25+CD127-IFNγ- PBL but do not efficiently block suppressive iTreg function in co-cultures with CD4+CD25+CD127-IFNγ+ PBL. Conclusions CD178, CD152, CD279, CD28, CD95, and HLA-DR determinants are important for induction and suppressive function of IFNγ+ iTreg.

  17. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice

    Directory of Open Access Journals (Sweden)

    Holers V Michael

    2007-05-01

    Full Text Available Abstract Background The posttraumatic response to traumatic brain injury (TBI is characterized, in part, by activation of the innate immune response, including the complement system. We have recently shown that mice devoid of a functional alternative pathway of complement activation (factor B-/- mice are protected from complement-mediated neuroinflammation and neuropathology after TBI. In the present study, we extrapolated this knowledge from studies in genetically engineered mice to a pharmacological approach using a monoclonal anti-factor B antibody. This neutralizing antibody represents a specific and potent inhibitor of the alternative complement pathway in mice. Methods A focal trauma was applied to the left hemisphere of C57BL/6 mice (n = 89 using a standardized electric weight-drop model. Animals were randomly assigned to two treatment groups: (1 Systemic injection of 1 mg monoclonal anti-factor B antibody (mAb 1379 in 400 μl phosphate-buffered saline (PBS at 1 hour and 24 hours after trauma; (2 Systemic injection of vehicle only (400 μl PBS, as placebo control, at identical time-points after trauma. Sham-operated and untreated mice served as additional negative controls. Evaluation of neurological scores and analysis of brain tissue specimens and serum samples was performed at defined time-points for up to 1 week. Complement activation in serum was assessed by zymosan assay and by murine C5a ELISA. Brain samples were analyzed by immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL histochemistry, and real-time RT-PCR. Results The mAb 1379 leads to a significant inhibition of alternative pathway complement activity and to significantly attenuated C5a levels in serum, as compared to head-injured placebo-treated control mice. TBI induced histomorphological signs of neuroinflammation and neuronal apoptosis in the injured brain hemisphere of placebo-treated control mice for up to 7 days. In contrast, the

  18. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    Science.gov (United States)

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions. PMID:26944929

  19. Biomarkers for predicting the efficacy of anti-epidermal growth factor receptor antibody in the treatment of colorectal cancer.

    Science.gov (United States)

    Okada, Yasuyuki; Miyamoto, Hiroshi; Goji, Takahiro; Takayama, Tetsuji

    2014-01-01

    Anti-epidermal growth factor receptor (EGFR) antibodies have been widely utilized as a standard treatment for metastatic colorectal cancer (CRC). Anti-EGFR antibodies bind competitively to EGFRs to inhibit receptor activation and subsequent signal transduction of the RAS/RAF/MEK pathway and PI3K/AKT pathway. By inhibiting EGFR-mediated signal transduction, anti-EGFR antibodies inhibit cell growth, invasion, metastasis and angiogenesis, and they induce apoptosis. The IgG1-type antibody cetuximab is also capable of inducing antibody-dependent cellular cytotoxicity. Several studies have shown that KRAS mutation is a useful biomarker for predicting the efficacy of anti-EGFR agents, and the major guidelines for the treatment of CRC recommend the use of anti-EGFR antibody only for the cancers with wild-type KRAS. Alterations of other genes, including BRAF, NRAS, PTEN and AKT, and EGFR expression/gene copy number have also been reported to be candidate biomarkers for predicting the efficacy of anti-EGFR agents. The predictive values of these biomarkers are still controversial and further investigations are required.

  20. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yan-Da Lai

    2016-02-01

    Full Text Available Vascular endothelial growth factor (VEGF is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume on Day 21 vs. 435% with Avastin. This finding suggests a potential use of these three antibodies for VEGF-targeted therapy.

  1. Nuclear Factor κB is Required for Tumor Growth Inhibition Mediated by Enavatuzumab (PDL192), a Humanized Monoclonal Antibody to TweakR.

    Science.gov (United States)

    Purcell, James W; Kim, Han K; Tanlimco, Sonia G; Doan, Minhtam; Fox, Melvin; Lambert, Peter; Chao, Debra T; Sho, Mien; Wilson, Keith E; Starling, Gary C; Culp, Patricia A

    2014-01-01

    TweakR is a TNF receptor family member, whose natural ligand is the multifunctional cytokine TWEAK. The growth inhibitory activity observed following TweakR stimulation in certain cancer cell lines and the overexpression of TweakR in many solid tumor types led to the development of enavatuzumab (PDL192), a humanized IgG1 monoclonal antibody to TweakR. The purpose of this study was to determine the mechanism of action of enavatuzumab's tumor growth inhibition and to provide insight into the biology behind TweakR as a cancer therapeutic target. A panel of 105 cancer lines was treated with enavatuzumab in vitro; and 29 cell lines of varying solid tumor backgrounds had >25% growth inhibition in response to the antibody. Treatment of sensitive cell lines with enavatuzumab resulted in the in vitro and in vivo (xenograft) activation of both classical (p50, p65) and non-classical (p52, RelB) NFκB pathways. Using NFκB DNA binding functional ELISAs and microarray analysis, we observed increased activation of NFκB subunits and NFκB-regulated genes in sensitive cells over that observed in resistant cell lines. Inhibiting NFκB subunits (p50, p65, RelB, p52) and upstream kinases (IKK1, IKK2) with siRNA and chemical inhibitors consistently blocked enavatuzumab's activity. Furthermore, enavatuzumab treatment resulted in NFκB-dependent reduction in cell division as seen by the activation of the cell cycle inhibitor p21 both in vitro and in vivo. The finding that NFκB drives the growth inhibitory activity of enavatuzumab suggests that targeting TweakR with enavatuzumab may represent a novel cancer treatment strategy.

  2. Nuclear Factor κB is required for tumor growth inhibition mediated by enavatuzumab (PDL192, a humanized monoclonal antibody to TweakR

    Directory of Open Access Journals (Sweden)

    James W. Purcell

    2014-01-01

    Full Text Available TweakR is a TNF receptor family member, whose natural ligand is the multifunctional cytokine TWEAK. The growth inhibitory activity observed following TweakR stimulation in certain cancer cell lines and the overexpression of TweakR in many solid tumor types led to the development of enavatuzumab (PDL192, a humanized IgG1 monoclonal antibody to TweakR. The purpose of this study was to determine the mechanism of action of enavatuzumab’s tumor growth inhibition and to provide insight into the biology behind TweakR as a cancer therapeutic target. A panel of 105 cancer lines was treated with enavatuzumab in vitro; and 29 cell lines of varying solid tumor backgrounds had >25% growth inhibition in response to the antibody. Treatment of sensitive cell lines with enavatuzumab resulted in the in vitro and in vivo (xenograft activation of both classical (p50, p65 and non-classical (p52, RelB NFκB pathways. Using NFκB DNA binding functional ELISAs and microarray analysis, we observed increased activation of NFκB subunits and NFκB regulated genes in sensitive cells over that observed in resistant cell lines. Inhibiting NFκB subunits (p50, p65, RelB, p52 and upstream kinases (IKK1, IKK2 with siRNA and chemical inhibitors consistently blocked enavatuzumab’s activity. Furthermore, enavatuzumab treatment resulted in NFκB-dependent reduction in cell-division as seen by the activation of the cell cycle inhibitor p21 both in vitro and in vivo. The finding that NFκB drives the growth inhibitory activity of enavatuzumab suggests that targeting TweakR with enavatuzumab may represent a novel cancer treatment strategy.

  3. Detection of Anaplasma antibodies in wildlife and domestic species in wildlife-livestock interface areas of Kenya by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay

    OpenAIRE

    J.J.N. Ngeranwa; S.P. Shompole; E.H. Venter; Wambugu, A.; J.E. Crafford; Penzhorn, B.L.

    2008-01-01

    The seroprevalence of Anaplasma antibodies in wildlife (eland, blue wildebeest, kongoni, impala, Thomson's gazelle, Grant's gazelle, giraffe and plains zebra) and domestic animal (cattle, sheep and goat) populations was studied in wildlife / livestock interface areas of Kenya. Serum samples were analyzed by competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA), using a recombinant antigen (MSP-5) from Anaplasma marginale surface membrane. A monoclonal antibody, FC-16, was ...

  4. Detection of serum antibodies to ovine progressive pneumonia virus in sheep by using a caprine arthritis-encephalitis virus competitive-inhibition enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Herrmann, Lynn M; Cheevers, William P; Marshall, Katherine L; McGuire, Travis C; Hutton, Melinda M; Lewis, Gregory S; Knowles, Donald P

    2003-09-01

    A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) for detection of antibodies to the surface envelope (SU) of caprine arthritis-encephalitis virus (CAEV) was recently reported (L. M. Herrmann, W. P. Cheevers, T. C. McGuire, D. Scott Adams, M. M. Hutton, W. G. Gavin, and D. P. Knowles, Clin. Diagn. Lab. Immunol. 10:267-271, 2003). The cELISA utilizes CAEV-63 SU captured on microtiter plates using the monoclonal antibody (MAb) F7-299 and measures competitive displacement of binding of the anti-CAEV MAb GPB 74A by goat serum. The present study evaluated the CAEV cELISA for detection of antibodies to ovine progressive pneumonia virus (OPPV) in sheep. Three hundred thirty-two sera were randomly selected from 21,373 sheep sera collected throughout the United States to determine the sensitivity and specificity of cELISA and agar gel immunodiffusion (AGID) based on immunoprecipitation (IP) of [35S]methionine-labeled OPPV antigens as a standard of comparison. A positive cELISA test was defined as >20.9 percent inhibition (% I) of MAb 74A binding based on two standard deviations above the mean % I of 191 IP-negative sheep sera. At this cutoff, there were 2 of 141 false-negative sera (98.6% sensitivity) and 6 of 191 false-positive sera (96.9% specificity). Sensitivity and specificity values for IP-monitored AGID were comparable to those for cELISA for 314 of 332 sera with unambiguous AGID results. Concordant results by cELISA and IP resolved 16 of the 18 sera that were indeterminate by AGID. Additional studies evaluated cELISA by using 539 sera from a single OPPV-positive flock. Based on IP of 36 of these sera, there was one false-negative by cELISA among 21 IP-positive sera (95.5% sensitivity) and 0 of 15 false-positives (100% specificity). We conclude that the CAEV cELISA can be applied to detection of OPPV antibodies in sheep with high sensitivity and specificity. PMID:12965917

  5. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells.

    Science.gov (United States)

    Haegel, Hélène; Thioudellet, Christine; Hallet, Rémy; Geist, Michel; Menguy, Thierry; Le Pogam, Fabrice; Marchand, Jean-Baptiste; Toh, Myew-Ling; Duong, Vanessa; Calcei, Alexandre; Settelen, Nathalie; Preville, Xavier; Hennequi, Marie; Grellier, Benoit; Ancian, Philippe; Rissanen, Jukka; Clayette, Pascal; Guillen, Christine; Rooke, Ronald; Bonnefoy, Jean-Yves

    2013-01-01

    Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163(+)CD64(+) M2-polarized suppressor macrophages, skewing their differentiation toward CD14(-)CD1a(+) dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.

  6. Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Liu, Xianxiang; Peng, Jun

    2011-01-01

    Inhibition of tumor angiogenesis has become an attractive target of anticancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Traditional Chinese medicine (TCM) formulas, which have relatively fewer side effects and have been used clinically to treat various types of diseases, including cancer, for thousands of years, are considered to be multi-component and multi-target agents exerting their therapeutic function in a more holistic way. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer. Although recently we reported that EEHDW promotes cancer cell apoptosis via activation of the mitochondrial-dependent pathway, the precise mechanism of its tumoricidalactivity still remains to be clarified. In the present study, we investigated the angiogenic effects of the ethanol extract of EEHDW. Cell cycle analysis was perfomed using flow cytometry. Cell viability was analyzed using MTT assay. We found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, we observed that EEHDW dose- and time-dependently inhibited the prolife-ration of human umbilical vein endothelial cells (HUVEC) by blocking the cell cycle G1 to S progression. Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. Our findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy. PMID:21887465

  7. Monoclonal antibodies to conformational epitopes of the surface glycoprotein of caprine arthritis-encephalitis virus: potential application to competitive-inhibition enzyme-linked immunosorbent assay for detecting antibodies in goat sera.

    Science.gov (United States)

    Ozyörük, F; Cheevers, W P; Hullinger, G A; McGuire, T C; Hutton, M; Knowles, D P

    2001-01-01

    Four immunoglobulin G1 monoclonal antibodies (MAbs) to the gp135 surface envelope glycoprotein (SU) of the 79-63 isolate of caprine arthritis-encephalitis virus (CAEV), referred to as CAEV-63, were characterized and evaluated for their ability to compete with antibody from CAEV-infected goats. Three murine MAbs (MAbs GPB16A, 29A, and 74A) and one caprine MAb (MAb F7-299) were examined. All MAbs reacted in nitrocellulose dot blots with native CAEV-63 SU purified by MAb F7-299 affinity chromatography, whereas none reacted with denatured and reduced SU. All MAbs reacted in Western blots with purified CAEV-63 SU or the SU component of whole-virus lysate following denaturation in the absence of reducing agent, indicating that intramolecular disulfide bonding was essential for epitope integrity. Peptide-N-glycosidase F digestion of SU abolished the reactivities of MAbs 74A and F7-299, whereas treatment of SU with N-acetylneuraminate glycohydrolase (sialidase A) under nonreducing conditions enhanced the reactivities of all MAbs as well as polyclonal goat sera. MAbs 29A and F7-299 were cross-reactive with the SU of an independent strain of CAEV (CAEV-Co). By enzyme-linked immunosorbent assay (ELISA), the reactivities of horseradish peroxidase (HRP)-conjugated MAbs 16A and 29A with homologous CAEV-63 SU were MAb 74A. The reactivity of HRP-conjugated MAb 74A was blocked by sera from goats immunized with CAEV-63 SU or infected with CAEV-63. The reactivity of MAb 74A was also blocked by sera from goats infected with a CAEV-Co molecular clone, although MAb 74A did not react with CAEV-Co SU in Western blots. Thus, goats infected with either CAEV-63 or CAEV-Co make antibodies that inhibit binding of MAb 74A to CAEV-63 SU. A competitive-inhibition ELISA based on displacement of MAb 74A reactivity has potential applicability for the serologic diagnosis of CAEV infection. PMID:11139194

  8. AAMP Regulates Endothelial Cell Migration and Angiogenesis Through RhoA/Rho Kinase Signaling.

    Science.gov (United States)

    Hu, Jianjun; Qiu, Juhui; Zheng, Yiming; Zhang, Tao; Yin, Tieying; Xie, Xiang; Wang, Guixue

    2016-05-01

    Angiogenesis is a complicated process including endothelial cell proliferation, migration and tube formation. AAMP plays a role in regulating cell migration of multiple cell types. The purpose of this study was to investigate whether AAMP regulates angiogenesis, and to clarify the role of AAMP in the VEGF-induced angiogenesis. We found that AAMP expressed in multiple cell types and mainly localized in cytoplasm and membrane in vascular endothelial cells. Using tube formation assay in vitro and aortic ring assay, siRNA-mediated knockdown and antibody blockade of AAMP impaired VEGF-induced endothelial cell tube formation and aortic ring angiogenic sprouting. Mechanistic studies showed that AAMP expression was significantly upregulated by VEGF in a concentration and time-dependent manner. Moreover, VEGF recruited AAMP to the cell membrane protrusions. AAMP regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. AAMP knock-down reduced VEGF-induced actin stress fibers and collagen gel contraction. Furthermore, we identified RhoA/Rho kinase signaling as an important factor that contributes to the action of AAMP in regulating endothelial cell migration and angiogenesis. Altogether, these data demonstrated the critical role of AAMP in angiogenesis and suggested blocking AAMP could serve as a potential therapeutic strategy for angiogenesis-related diseases. PMID:26350504

  9. IL-32 promotes angiogenesis

    NARCIS (Netherlands)

    Nold-Petry, C.A.; Rudloff, I.; Baumer, Y.; Ruvo, M.; Marasco, D.; Botti, P.; Farkas, L.; Cho, S.X.; Zepp, J.A.; Azam, T.; Dinkel, H.; Palmer, B.E.; Boisvert, W.A.; Cool, C.D.; Taraseviciene-Stewart, L.; Heinhuis, B.; Joosten, L.A.; Dinarello, C.A.; Voelkel, N.F.; Nold, M.F.

    2014-01-01

    IL-32 is a multifaceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and we n

  10. Infection of macrophages and dendritic cells with primary R5-tropic human immunodeficiency virus type 1 inhibited by natural polyreactive anti-CCR5 antibodies purified from cervicovaginal secretions.

    Science.gov (United States)

    Eslahpazir, Jobin; Jenabian, Mohammad-Ali; Bouhlal, Hicham; Hocini, Hakim; Carbonneil, Cédric; Grésenguet, Gérard; Mbopi Kéou, François-Xavier; LeGoff, Jérôme; Saïdi, Héla; Requena, Mary; Nasreddine, Nadine; de Dieu Longo, Jean; Kaveri, Srinivas V; Bélec, Laurent

    2008-05-01

    Heterosexual contact is the primary mode of human immunodeficiency virus (HIV) type 1 (HIV-1) transmission worldwide. The chemokine receptor CCR5 is the major coreceptor that is associated with the mucosal transmission of R5-tropic HIV-1 during sexual intercourse. The CCR5 molecule is thus a target for antibody-based therapeutic strategies aimed at blocking HIV-1 entry into cells. We have previously demonstrated that polyreactive natural antibodies (NAbs) from therapeutic preparations of immunoglobulin G and from human breast milk contain NAbs directed against CCR5. Such antibodies inhibit the infection of human macrophages and T lymphocytes by R5-tropic isolates of HIV in vitro. In the present study, we demonstrate that human immunoglobulins from the cervicovaginal secretions of HIV-seronegative or HIV-seropositive women contain NAbs directed against the HIV-1 coreceptor CCR5. Natural affinity-purified anti-CCR5 antibodies bound to CCR5 expressed on macrophages and dendritic cells and further inhibited the infection of macrophages and dendritic cells with primary and laboratory-adapted R5-tropic HIV but not with X4-tropic HIV. Natural anti-CCR5 antibodies moderately inhibited R5-tropic HIV transfer from monocyte-derived dendritic cells to autologous T cells. Our results suggest that mucosal anti-CCR5 antibodies from healthy immunocompetent donors may hamper the penetration of HIV and may be suitable for use in the development of novel passive immunotherapy regimens in specific clinical settings of HIV infection. PMID:18353923

  11. A Recombinant Humanized Anti-Cocaine Monoclonal Antibody Inhibits the Distribution of Cocaine to the Brain in Rats

    OpenAIRE

    Norman, Andrew B.; Gooden, Felicia C. T.; Tabet, Michael R.; Ball, William J.

    2014-01-01

    The monoclonal antibody (mAb), h2E2, is a humanized version of the chimeric human/murine anti-cocaine mAb 2E2. The recombinant h2E2 protein was produced in vitro from a transfected mammalian cell line and retained high affinity (4 nM Kd) and specificity for cocaine over its inactive metabolites benzoylecgonine (BE) and ecgonine methyl ester. In rats, pharmacokinetic studies of h2E2 (120 mg/kg i.v.) showed a long terminal elimination half-life of 9.0 days and a low volume of distribution at st...

  12. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    Science.gov (United States)

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  13. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. PMID:26638864

  14. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis

    OpenAIRE

    Battinelli, Elisabeth M.; Markens, Beth A.; Italiano, Joseph E.

    2011-01-01

    An association between platelets, angiogenesis, and cancer has long been recognized, but the mechanisms linking them remains unclear. Platelets regulate new blood vessel growth through numerous stimulators and inhibitors of angiogenesis by several pathways, including differential exocytosis of angiogenesis regulators. Herein, we investigated the differential release of angiogenesis stimulators and inhibitors from platelets. Activation of human platelets with adenosine diphosphate (ADP) stimul...

  15. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Prentoe, Jannick;

    2011-01-01

    (MAbs) against E2 proteins from genotype 1a and 2a HCV strains. Using high-throughput focus-forming reduction or luciferase-based neutralization assays with chimeric infectious HCV containing structural proteins from both genotypes, we defined eight MAbs that significantly inhibited infection...

  16. Measurement of antibodies to avian influenza virus A(H7N7) in humans by hemagglutination inhibition test.

    NARCIS (Netherlands)

    Meijer, Adam; Bosman, Arnold; Kamp, Esther E H M van de; Wilbrink, Berry; Du Ry van Beest Holle, Mirna; Koopmans, Marion P G

    2006-01-01

    During the epizootic of highly pathogenic avian influenza A(H7N7) in 2003 in The Netherlands, RT-PCR and culture confirmed infection was detected in 89 persons who were ill. A modified hemagglutination inhibition (HI) test using horse erythrocytes and 2 hemagglutinating units of virus was applied to

  17. Role of anti-angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out

    Institute of Scientific and Technical Information of China (English)

    Hong; Sun; Man-Sheng; Zhu; Wen-Rui; Wu; Xiang-De; Shi; Lei-Bo; Xu

    2014-01-01

    As the leading cause of disease-related deaths,cancer is a major public health threat worldwide.Surgical resection is still the first-line therapy for patients with early-stage cancers.However,postoperative relapse and metastasis remain the cause of 90%of deaths of patients with solid organ malignancies,including hepatocellular carcinoma(HCC).With the rapid development of molecular biology techniques in recent years,molecularly targeted therapies using monoclonal antibodies,small molecules,and vaccines have become a milestone in cancer therapeutic by significantly improv-ing the survival of cancer patients,and have opened a window of hope for patients with advanced cancer.Hypervascularization is a major characteristic of HCC.It has been reported that anti-angiogenic treatments,which inhibit blood vessel formation,are highly effective for treating HCC.However,the efficacy and safety of anti-angiogenesis therapies remain controversial.Sorafenib is an oral multikinase inhibitor with antiproliferative and anti-angiogenic effects and is the first molecular target drug approved for the treatment of advanced HCC.While sorafenib has shown promising therapeutic effects,substantial evidence of primary and acquired resistance to sorafenib has been reported.Numerous clinical trials have been conducted to evaluate a large number of molecularly targeted drugs for treating HCC,but most drugs exhibited less efficacy and/or higher toxicity compared to sorafenib.Therefore,understanding the mechanism(s)underlying sorafenib resistance of cancer cells is highlighted for efficiently treating HCC.This concise review aims to provide an overview of anti-angiogenesis therapy in the management of HCC and to discuss the common mechanisms of resistance to anti-angiogenesis therapies.

  18. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration

    OpenAIRE

    Myra N Chávez; Aedo, Geraldine; Fierro, Fernando A.; Allende, Miguel L; Egaña, José T.

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogene...

  19. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis

    Directory of Open Access Journals (Sweden)

    Naz Humera

    2009-04-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with pathological processes, in particular tumour development, and is a target for the development of new therapies. We have investigated the anti-angiogenic potential of two naturally occurring stilbene glycosides (compounds 1 and 2 isolated from the medicinal plant Boswellia papyriferai using large and smallvessel-derived endothelial cells. Compound 1 (trans-4',5'-dihydroxy-3-methoxystilbene-5-O-{α-L-rhamnopyranosyl-(1→2-[α-L-rhamnopyranosyl-(1→6}-β-D-glucopyranoside was the more hydrophilic and inhibited FGF-2-induced proliferation, wound healing, invasion in Matrigel, tube formation and angiogenesis in large and small vessel-derived endothelial cells and also in the chick chorioallantoic membrane assay. Using a binding assay we were able to show compound 1 reduced binding of FGF-2 to fibroblast growth factor receptors-1 and -2. In all cases the concentration of compound 1 which caused 50% inhibition (IC50 was determined. The effect of compound 1 on EGF and VEGF-induced proliferation was also investigated. Results Compound 1 inhibited all stages of FGF-2 induced angiogenesis with IC50 values in the range 5.8 ± 0.18 – 48.90 ± 0.40 μM but did not inhibit EGF or VEGF-induced angiogenesis. It also inhibited FGF-2 binding to FGF receptor-1 and -2 with IC50 values of 5.37 ± 1.04 and 9.32 ± 0.082 μM respectively and with concommotant down-regulation of phosphorylated-ERK-1/-2 expression. Compound 2 was an ineffective inhibitor of angiogenesis despite its structural homology to compound 1. Conclusion Compound 1 inhibited FGF-2 induced angiogenesis by binding to its cognate receptors and is an addition to the small number of natural product inhibitors of angiogenesis

  20. A natural bacterial-derived product, the metalloprotease arazyme, inhibits metastatic murine melanoma by inducing MMP-8 cross-reactive antibodies.

    Directory of Open Access Journals (Sweden)

    Felipe V Pereira

    Full Text Available The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.

  1. A Natural Bacterial-Derived Product, the Metalloprotease Arazyme, Inhibits Metastatic Murine Melanoma by Inducing MMP-8 Cross-Reactive Antibodies

    Science.gov (United States)

    Pereira, Felipe V.; Ferreira-Guimarães, Carla A.; Paschoalin, Thaysa; Scutti, Jorge A. B.; Melo, Filipe M.; Silva, Luis S.; Melo, Amanda C. L.; Silva, Priscila; Tiago, Manoela; Matsuo, Alisson L.; Juliano, Luiz; Juliano, Maria A.; Carmona, Adriana K.; Travassos, Luiz R.; Rodrigues, Elaine G.

    2014-01-01

    The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent. PMID:24788523

  2. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Multhaupt, Hinke; Chan, En;

    2004-01-01

    antibodies, together with immunoelectron microscopy, showed that perlecan distributed around blood vessels was of both host and tumor cell origin. Tumor-derived perlecan was also distributed throughout the tumor matrix. Blood vessels stained with rat-specific PECAM-1 antibody showed their host origin. RT101...... factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis....

  3. Targeting angiogenesis with integrative cancer therapies.

    Science.gov (United States)

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  4. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion.

    Science.gov (United States)

    Mechaly, Adva; Levy, Haim; Epstein, Eyal; Rosenfeld, Ronit; Marcus, Hadar; Ben-Arie, Einat; Shafferman, Avigdor; Ordentlich, Arie; Mazor, Ohad

    2012-09-21

    Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA(63), oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α(1) loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process. PMID:22869370

  5. Mechanisms of resistance to HER family targeting antibodies

    International Nuclear Information System (INIS)

    The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.

  6. Mechanisms of resistance to HER family targeting antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Kruser, Tim J. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States); Wheeler, Deric L., E-mail: dlwheeler@wisc.edu [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States)

    2010-04-15

    The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.

  7. The enigmatic role of angiopoietin-1 in tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    LINDA J METHENY-BARLOW; LU YUAN LI

    2003-01-01

    A tumor vasculature is highly unstable and immature, characterized by a high proliferation rate of endothelial cells,hyper-permeability, and chaotic blood flow. The dysfunctional vasculature gives rise to continual plasma leakage and hypoxia in the tumor, resulting in constant on-sets of inflammation and angiogenesis. Tumors are thus likened to wounds that will not heal. The lack of functional mural cells, including pericytes and vascular smooth muscle cells,in tumor vascular structure contributes significantly to the abnormality of tumor vessels. Angiopoietin- 1 (Angl) is a physiological angiogenesis promoter during embryonic development. The function of Ang 1 is essential to endothelial cell survival, vascular branching, and pericyte recruitment. However, an increasing amount of experimental data suggest that Ang 1-stimulated association of mural cells with endothelial cells lead to stabilization of newly formed blood vessels. This in turn may limit the otherwise continuous angiogenesis in the tumor, and consequently give rise to inhibition of tumor growth. We discuss the enigmatic role of Ang1 in tumor angiogenesis in this review.

  8. Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC

    Science.gov (United States)

    Cai, Jia-Bin; Huang, Xiao-Yong; Wu, Chao; Zhang, Lu; Kang, Qiang; Liu, Li-Xin; Xie, Nan; Shen, Zao-Zhuo; Hu, Mei-Yu; Cao, Ya; Qiu, Shuang-Jian; Sun, Hui-Chuan; Zhou, Jian; Fan, Jia; Shi, Guo-Ming

    2016-01-01

    Our previous studies revealed that tetraspanin CD151 plays multiple roles in the progression of hepatocellular carcinoma (HCC) by forming a functional complex with integrin α6β1. Herein, we generated a monoclonal antibody (mAb) that dissociates the CD151/integrin α6β1 complex, and we evaluated its bioactivity in HCCs. A murine mAb, tetraspanin CD151 (IgG1, called CD151 mAb 9B), was successfully generated against the CD151-integrin α6β1 binding site of CD151 extracellular domains. Co-immunoprecipitation using CD151 mAb 9B followed by Western blotting detected a 28 kDa protein. Both immunofluorescent and immunohistochemical staining showed a good reactivity of CD151 mAb 9B in the plasma membrane and cytoplasm of HCC cells, as well as in liver cells. In vitro assays demonstrated that CD151 mAb 9B could inhibit neoangiogenesis and both the mobility and the invasiveness of HCC cells. An in vivo assay showed that CD151 mAb 9B inhibited tumor growth potential and HCC cells metastasis. We successfully produced a CD151 mAb 9B targeting the CD151/integrin α6β1-binding domain, which not only can displayed good reactivity to the CD151 antigen but also prevented tumor progression in HCC. PMID:26756217

  9. Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib.

    Science.gov (United States)

    Muz, Barbara; Azab, Feda; de la Puente, Pilar; Rollins, Scott; Alvarez, Richard; Kawar, Ziad; Azab, Abdel Kareem

    2015-01-01

    Multiple myeloma (MM) is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interaction in vivo led to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment.

  10. Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib

    Directory of Open Access Journals (Sweden)

    Barbara Muz

    2015-01-01

    Full Text Available Multiple myeloma (MM is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1 play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interaction in vivo led to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment.

  11. Angiogenic Factor AGGF1 Activates Autophagy with an Essential Role in Therapeutic Angiogenesis for Heart Disease

    Science.gov (United States)

    Hu, Zhenkun; Hu, Changqing; Song, Qixue; Ye, Jian; Xu, Chengqi; Wang, Annabel Z.; Wang, Qing Kenneth

    2016-01-01

    AGGF1 is an angiogenic factor with therapeutic potential to treat coronary artery disease (CAD) and myocardial infarction (MI). However, the underlying mechanism for AGGF1-mediated therapeutic angiogenesis is unknown. Here, we show for the first time that AGGF1 activates autophagy, a housekeeping catabolic cellular process, in endothelial cells (ECs), HL1, H9C2, and vascular smooth muscle cells. Studies with Atg5 small interfering RNA (siRNA) and the autophagy inhibitors bafilomycin A1 (Baf) and chloroquine demonstrate that autophagy is required for AGGF1-mediated EC proliferation, migration, capillary tube formation, and aortic ring-based angiogenesis. Aggf1+/- knockout (KO) mice show reduced autophagy, which was associated with inhibition of angiogenesis, larger infarct areas, and contractile dysfunction after MI. Protein therapy with AGGF1 leads to robust recovery of myocardial function and contraction with increased survival, increased ejection fraction, reduction of infarct areas, and inhibition of cardiac apoptosis and fibrosis by promoting therapeutic angiogenesis in mice with MI. Inhibition of autophagy in mice by bafilomycin A1 or in Becn1+/- and Atg5 KO mice eliminates AGGF1-mediated angiogenesis and therapeutic actions, indicating that autophagy acts upstream of and is essential for angiogenesis. Mechanistically, AGGF1 initiates autophagy by activating JNK, which leads to activation of Vps34 lipid kinase and the assembly of Becn1-Vps34-Atg14 complex involved in the initiation of autophagy. Our data demonstrate that (1) autophagy is essential for effective therapeutic angiogenesis to treat CAD and MI; (2) AGGF1 is critical to induction of autophagy; and (3) AGGF1 is a novel agent for treatment of CAD and MI. Our data suggest that maintaining or increasing autophagy is a highly innovative strategy to robustly boost the efficacy of therapeutic angiogenesis. PMID:27513923

  12. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  13. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  14. The use of homologous virus in the haemagglutination-inhibition assay after vaccination with Newcastle disease virus strain La Sota or clone30 leads to an over estimation of protective serum antibody titres

    NARCIS (Netherlands)

    Maas, R.A.; Oei, H.L.; Kemper, S.; Koch, G.; Visser, L.

    1998-01-01

    We evaluated the influence of the use of the Newcastle disease virus (NDV)-strains Ulster and La Sota in the haemagglutination inhibition (HI) assay for the measurement of antibody titres after NDV vaccination. The use of the homologous La Sota antigen in the HI assay after Clone30 and La Sota vacci

  15. High efficacy of anti DBL4e-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Minja, Daniel; Doritchamou, Justin;

    2011-01-01

    Malaria during pregnancy is a major cause of intra-uterine growth-retardation and infant death in sub-Saharan Africa. Ideally, this could be prevented by a vaccine delivered before the first pregnancy. Antibodies against domain DBL4¿ from VAR2CSA has been shown to inhibit adhesion of laboratory...

  16. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  17. Detection of Anaplasma antibodies in wildlife and domestic species in wildlife-livestock interface areas of Kenya by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    J.J.N. Ngeranwa

    2008-09-01

    Full Text Available The seroprevalence of Anaplasma antibodies in wildlife (eland, blue wildebeest, kongoni, impala, Thomson's gazelle, Grant's gazelle, giraffe and plains zebra and domestic animal (cattle, sheep and goat populations was studied in wildlife / livestock interface areas of Kenya. Serum samples were analyzed by competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA, using a recombinant antigen (MSP-5 from Anaplasma marginale surface membrane. A monoclonal antibody, FC-16, was used as the primary antibody, while anti-mouse conjugated to horseradish peroxidase was used as the secondary antibody. The results indicate a high seroprevalence in both wildlife and livestock populations, in contrast to earlier reports from Kenya, which indicated a low seroprevalence. The differences are attributed to the accurate analytical method used (CI-ELISA, as compared with agglutination techniques, clinical signs and microscopy employed by the earlier workers.

  18. Detection of Anaplasma antibodies in wildlife and domestic species in wildlife-livestock interface areas of Kenya by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Ngeranwa, J J N; Shompole, S P; Venter, E H; Wambugu, A; Crafford, J E; Penzhorn, B L

    2008-09-01

    The seroprevalence of Anaplasma antibodies in wildlife (eland, blue wildebeest, kongoni, impala, Thomson's gazelle, Grant's gazelle, giraffe and plains zebra) and domestic animal (cattle, sheep and goat) populations was studied in wildlife/livestock interface areas of Kenya. Serum samples were analyzed by competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA), using a recombinant antigen (MSP-5) from Anaplasma marginale surface membrane. A monoclonal antibody, FC-16, was used as the primary antibody, while anti-mouse conjugated to horseradish peroxidase was used as the secondary antibody. The results indicate a high seroprevalence in both wildlife and livestock populations, in contrast to earlier reports from Kenya, which indicated a low seroprevalence. The differences are attributed to the accurate analytical method used (CI-ELISA), as compared with agglutination techniques, clinical signs and microscopy employed by the earlier workers. PMID:19040134

  19. Antibody-Mediated Inhibition of the FGFR1c Isoform Induces a Catabolic Lean State in Siberian Hamsters.

    Science.gov (United States)

    Samms, Ricardo J; Lewis, Jo E; Lory, Alex; Fowler, Maxine J; Cooper, Scott; Warner, Amy; Emmerson, Paul; Adams, Andrew C; Luckett, Jeni C; Perkins, Alan C; Wilson, Dana; Barrett, Perry; Tsintzas, Kostas; Ebling, Francis J P

    2015-11-16

    Hypothalamic tanycytes are considered to function as sensors of peripheral metabolism. To facilitate this role, they express a wide range of receptors, including fibroblast growth factor receptor 1 (FGFR1). Using a monoclonal antibody (IMC-H7) that selectively antagonizes the FGFR1c isoform, we investigated possible actions of FGFR1c in a natural animal model of adiposity, the Siberian hamster. Infusion of IMC-H7 into the third ventricle suppressed appetite and increased energy expenditure. Likewise, peripheral treatment with IMC-H7 decreased appetite and body weight and increased energy expenditure and fat oxidation. A greater reduction in body weight and caloric intake was observed in response to IMC-H7 during the long-day fat state as compared to the short-day lean state. This enhanced response to IMC-H7 was also observed in calorically restricted hamsters maintained in long days, suggesting that it is the central photoperiodic state rather than the peripheral adiposity that determines the response to FGFR1c antagonism. Hypothalamic thyroid hormone availability is controlled by deiodinase enzymes (DIO2 and DIO3) expressed in tanycytes and is the key regulator of seasonal cycles of energy balance. Therefore, we determined the effect of IMC-H7 on hypothalamic expression of these deiodinase enzymes. The reductions in food intake and body weight were always associated with decreased expression of DIO2 in the hypothalamic ependymal cell layer containing tanycytes. These data provide further support for the notion the tanycytes are an important component of the mechanism by which the hypothalamus integrates central and peripheral signals to regulate energy intake and expenditure.

  20. Trefoil Factor-3 (TFF3 Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2.

    Directory of Open Access Journals (Sweden)

    Wai-Hoe Lau

    Full Text Available Mammary carcinoma cells produce pro-angiogenic factors to stimulate angiogenesis and tumor growth. Trefoil factor-3 (TFF3 is an oncogene secreted from mammary carcinoma cells and associated with poor prognosis. Herein, we demonstrate that TFF3 produced in mammary carcinoma cells functions as a promoter of tumor angiogenesis. Forced expression of TFF3 in mammary carcinoma cells promoted proliferation, survival, invasion and in vitro tubule formation of human umbilical vein endothelial cells (HUVEC. MCF7-TFF3 cells with forced expression of TFF3 generated tumors with enhanced microvessel density as compared to tumors formed by vector control cells. Depletion of TFF3 in mammary carcinoma cells by siRNA concordantly decreased the angiogenic behavior of HUVEC. Forced expression of TFF3 in mammary carcinoma cells stimulated IL-8 transcription and subsequently enhanced IL-8 expression in both mammary carcinoma cells and HUVEC. Depletion of IL-8 in mammary carcinoma cells with forced expression of TFF3, or antibody inhibition of IL-8, partially abrogated mammary carcinoma cell TFF3-stimulated HUVEC angiogenic behavior in vitro, as did inhibition of the IL-8 receptor, CXCR2. Depletion of STAT3 by siRNA in MCF-7 cells with forced expression of TFF3 partially diminished the angiogenic capability of TFF3 on stimulation of cellular processes of HUVEC. Exogenous recombinant hTFF3 also directly promoted the angiogenic behavior of HUVEC. Hence, TFF3 is a potent angiogenic factor and functions as a promoter of de novo angiogenesis in mammary carcinoma, which may co-coordinate with the growth promoting and metastatic actions of TFF3 in mammary carcinoma to enhance tumor progression.

  1. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2

    Science.gov (United States)

    Lau, Wai-Hoe; Pandey, Vijay; Kong, Xiangjun; Wang, Xiao-Nan; Wu, ZhengSheng; Zhu, Tao; Lobie, Peter E

    2015-01-01

    Mammary carcinoma cells produce pro-angiogenic factors to stimulate angiogenesis and tumor growth. Trefoil factor-3 (TFF3) is an oncogene secreted from mammary carcinoma cells and associated with poor prognosis. Herein, we demonstrate that TFF3 produced in mammary carcinoma cells functions as a promoter of tumor angiogenesis. Forced expression of TFF3 in mammary carcinoma cells promoted proliferation, survival, invasion and in vitro tubule formation of human umbilical vein endothelial cells (HUVEC). MCF7-TFF3 cells with forced expression of TFF3 generated tumors with enhanced microvessel density as compared to tumors formed by vector control cells. Depletion of TFF3 in mammary carcinoma cells by siRNA concordantly decreased the angiogenic behavior of HUVEC. Forced expression of TFF3 in mammary carcinoma cells stimulated IL-8 transcription and subsequently enhanced IL-8 expression in both mammary carcinoma cells and HUVEC. Depletion of IL-8 in mammary carcinoma cells with forced expression of TFF3, or antibody inhibition of IL-8, partially abrogated mammary carcinoma cell TFF3-stimulated HUVEC angiogenic behavior in vitro, as did inhibition of the IL-8 receptor, CXCR2. Depletion of STAT3 by siRNA in MCF-7 cells with forced expression of TFF3 partially diminished the angiogenic capability of TFF3 on stimulation of cellular processes of HUVEC. Exogenous recombinant hTFF3 also directly promoted the angiogenic behavior of HUVEC. Hence, TFF3 is a potent angiogenic factor and functions as a promoter of de novo angiogenesis in mammary carcinoma, which may co-coordinate with the growth promoting and metastatic actions of TFF3 in mammary carcinoma to enhance tumor progression. PMID:26559818

  2. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2.

    Science.gov (United States)

    Lau, Wai-Hoe; Pandey, Vijay; Kong, Xiangjun; Wang, Xiao-Nan; Wu, ZhengSheng; Zhu, Tao; Lobie, Peter E

    2015-01-01

    Mammary carcinoma cells produce pro-angiogenic factors to stimulate angiogenesis and tumor growth. Trefoil factor-3 (TFF3) is an oncogene secreted from mammary carcinoma cells and associated with poor prognosis. Herein, we demonstrate that TFF3 produced in mammary carcinoma cells functions as a promoter of tumor angiogenesis. Forced expression of TFF3 in mammary carcinoma cells promoted proliferation, survival, invasion and in vitro tubule formation of human umbilical vein endothelial cells (HUVEC). MCF7-TFF3 cells with forced expression of TFF3 generated tumors with enhanced microvessel density as compared to tumors formed by vector control cells. Depletion of TFF3 in mammary carcinoma cells by siRNA concordantly decreased the angiogenic behavior of HUVEC. Forced expression of TFF3 in mammary carcinoma cells stimulated IL-8 transcription and subsequently enhanced IL-8 expression in both mammary carcinoma cells and HUVEC. Depletion of IL-8 in mammary carcinoma cells with forced expression of TFF3, or antibody inhibition of IL-8, partially abrogated mammary carcinoma cell TFF3-stimulated HUVEC angiogenic behavior in vitro, as did inhibition of the IL-8 receptor, CXCR2. Depletion of STAT3 by siRNA in MCF-7 cells with forced expression of TFF3 partially diminished the angiogenic capability of TFF3 on stimulation of cellular processes of HUVEC. Exogenous recombinant hTFF3 also directly promoted the angiogenic behavior of HUVEC. Hence, TFF3 is a potent angiogenic factor and functions as a promoter of de novo angiogenesis in mammary carcinoma, which may co-coordinate with the growth promoting and metastatic actions of TFF3 in mammary carcinoma to enhance tumor progression.

  3. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    Science.gov (United States)

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  4. Angiogenesis in obesity and cancer

    OpenAIRE

    Bråkenhielm, Ebba

    2003-01-01

    Angiogenesis is the process of blood vessel growth from pre-existing vasculatures. In the adult, it is involved in certain physiological processes, such as in organ and tissue regeneration, wound healing, and in female reproductive cycles. Like during embryonic development, the growth and expansion of adult tissues is dependent on neovascularization. The adipose tissue has a unique capacity to substantially increase or decrease in size throughout adult life. This indicates t...

  5. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  6. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    Science.gov (United States)

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  7. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer

    Science.gov (United States)

    Chen, Xiaohong; Zhong, Qi; Huang, Junwei; Zhang, Yang; Guo, Wei; Yang, Zheng; Ding, Shuo; Chen, Ping

    2016-01-01

    Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor). Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4) derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM) model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group) and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4) was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN. PMID:27078157

  8. Newly discovered angiogenesis inhibitors and their mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Ze-hong MIAO; Jian-ming FENG; Jian DING

    2012-01-01

    In the past decade,the success of angiogenesis inhibitors in clinical contexts has established the antiangiogenic strategy as an important part of cancer therapy,During that time period,we have discovered and reported 17 compounds that exert potent inhibition on angiogenesis.These compounds exhibit tremendous diversity in their sources,structures,targets and mechanisms.These studies have generated new models for further modification and optimization of inhibitory compounds,new information for mechanistic studies and a new drug candidate for clinical development.In particular,through studies on the antiangiogenic mechanism of pseudolaric acid B,we discovered a novel mechanism by which the stability of hypoxia-irducible factor 1α is regulated by the transcription factor c-Jun.We also completed a preclinical study of AL3810,a compound with the potential to circumvent tumor drug resistance to a certain extent.All of these findings will be briefly reviewed in this article.

  9. Molecular and hormonal regulation of angiogenesis in proliferative endometrium

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-02-01

    Full Text Available Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro and anti-angiogenic molecules have already been identified. Vascular endothelial growth factor (VEGF is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration, and new vessel formation. In this article, the role of VEGF and other growth factors in the pathology of dysfunctional uterine bleeding is reviewed. We also discuss the role of VEGF expression and interaction with extracellular matrix that lead to possible inhibition or stimulation of Angiogenic factor on endometrium of dysfunctional uterine bleeding patients. [Int J Res Med Sci 2014; 2(1.000: 1-9

  10. Efficiency of Ocimum sanctum Linn. Leaf extract on Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shah Ujwala

    2014-09-01

    Full Text Available Ocimum sanctum, a holy plant is used by many traditional medical practitioners for various diseases in day to day life. This holy plant- Tulsi is used in the present investigation for study of its angiogenesis efficiency. The effect of acetone extract of O. sanctumleaves was studied by using chick chorioallantoic membrane (CAM assay in ovo. The angiogenesis was studied after 48 hrs, 72 hrs and 96 hrs treatment chick embryos after day 6. The morphometry and histology was studied during this investigation. There was notable reduction in number of secondary and tertiary blood vessels along with reduction in their diameter as comparedto that of in normal CAM. It is due to inhibition of angiogenic factors or due to cellular apoptosis. Angiostatic property of acetone extract of leaves support anti-cancerous ethnomedicinal property of this plant and paves the foundation to synthesize the drug againsttumor.

  11. Antibodies against the C-terminal peptide of rabbit oviductin inhibit mouse early embryo development to pass 2-cell stage

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A full-length rabbit oviductin cDNA(1909bp) was cloned. It consists of a 5'-UTR of 52bp, an open reading frame (ORF) of 1374bp and a 3'-UTR of 483bp and has more than 80% homology with that of other mammal oviductins. N-terminal peptide (NTP) (384 residues) and C-terminal peptide (CTP)(73 residues) of deduced protein precursor has about 80% and 50% identity with that of other mammals respectively. Fusion proteins GST-NTP 368(1R-368N)and GST-CTP73 (369F-441A) were expressed and purified. NH2-terminal of CTP sequencing reveals that the purified protein is consistent with the deduced one. In order to study the function of NTP and CTP the mouse anti-NTP and rabbit anti-CTP antisera were prepared. Tissue-specific (skeleton muscle, oviduct, uterus, ovary, liver, heart and brain) analysis indicated that rabbit oviductin was only found in oviduct. The conditioned medium derived from the rabbit oviduct mucosa epithelial cells has a function of overcoming the early embryonic development block of Kunming mouse cultured in vitro. Anti-CTP antiserum could totally inhibit the early embryo development at 2-cell stage cultured in the conditioned culture medium, but anti-NTP antiserum couldn't. There was a positive relationship between the ratio of early embryos at development block and the dosage of anti-CTP antiserum added in the conditioned culture medium. These results suggest that oviductin has a function not only on fertilization, but also on the release of early embryonic development block, and the later function domain of rabbit oviductin may be situate in its C-terminal.

  12. Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth.

    Science.gov (United States)

    Sim, B K

    1998-01-01

    Angiostatin and Endostatin are potent inhibitors of angiogenesis. These proteins are endogenously produced and specifically target endothelial cells resulting in angiogenesis inhibition. Recombinant preparations of these proteins inhibit the growth of metastases and regress primary tumors to dormant microscopic lesions. A variety of murine tumors as well as human breast, prostate and colon tumors in human xenograft models regress when treated with Angiostatin or Endostatin. Regression of tumors upon systemic treatment with these proteins is in part due to increased tumor cell apoptosis. Repeated cycles of Endostatin therapy lead to prolonged tumor dormancy without further treatment and are not associated with any apparent toxicity or acquired drug resistance. PMID:14517374

  13. Thyroid Antibodies

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Thyroid Antibodies Share this page: Was this page helpful? Also known as: Thyroid Autoantibodies; Antithyroid Antibodies; Antimicrosomal Antibody; Thyroid Microsomal Antibody; ...

  14. Chemokine Regulation of Angiogenesis During Wound Healing

    OpenAIRE

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  15. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model

    Directory of Open Access Journals (Sweden)

    Megas Françoise

    2010-03-01

    Full Text Available Abstract Background Antibodies directed against haemagglutinin, measured by the haemagglutination inhibition (HI assay are essential to protective immunity against influenza infection. An HI titre of 1:40 is generally accepted to correspond to a 50% reduction in the risk of contracting influenza in a susceptible population, but limited attempts have been made to further quantify the association between HI titre and protective efficacy. Methods We present a model, using a meta-analytical approach, that estimates the level of clinical protection against influenza at any HI titre level. Source data were derived from a systematic literature review that identified 15 studies, representing a total of 5899 adult subjects and 1304 influenza cases with interval-censored information on HI titre. The parameters of the relationship between HI titre and clinical protection were estimated using Bayesian inference with a consideration of random effects and censorship in the available information. Results A significant and positive relationship between HI titre and clinical protection against influenza was observed in all tested models. This relationship was found to be similar irrespective of the type of viral strain (A or B and the vaccination status of the individuals. Conclusion Although limitations in the data used should not be overlooked, the relationship derived in this analysis provides a means to predict the efficacy of inactivated influenza vaccines when only immunogenicity data are available. This relationship can also be useful for comparing the efficacy of different influenza vaccines based on their immunological profile.

  16. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration.

    Science.gov (United States)

    Chávez, Myra N; Aedo, Geraldine; Fierro, Fernando A; Allende, Miguel L; Egaña, José T

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism. PMID:27014075

  17. Zebrafish as an emerging model organism to study angiogenesis in development and regeneration

    Directory of Open Access Journals (Sweden)

    Myra Noemi Chavez

    2016-03-01

    Full Text Available Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.

  18. Suppressive Effect of Icaritin on Angiogenesis and Its Mechanisms

    Directory of Open Access Journals (Sweden)

    ZHANG Da

    2014-09-01

    Full Text Available Objective: To explore the suppressive effect of icaritin on angiogenesis and its mechanisms. Methods: After 48 or 24 h exposure to different concentrations of icaritin, cell proliferation was analyzed using tetrazolium blue (MTT assay, the migration ability of Human umbilical vein endothelial cells (HUVEC was tested in a Transwell Chamber and tube formation ability of HUVEC was determined by tube formation assay in vitro. Results: Icaritin inhibited the proliferation of HUVEC in dose-dependent manner; Tubes with high density formed in control group while treated with icaritin in 15~60 μg/mL range of concentrations, the number of tubes decreased and the lumen was incomplete. After treatment with icaritin, migration cells were significantly less than those in control group. Tube formation and migration ability was inhibited in dose-dependent manner with a correlation coefficient of -0.934 and -0.933, respectively. Conclusion: Icaritin can effectively inhibit the angiogenesis of HUVEC in vitro and its mechanism may be related to the inhibition of proliferation, migration and tube formation.

  19. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity.

    Science.gov (United States)

    Mudududdla, Ramesh; Guru, Santosh K; Wani, Abubakar; Sharma, Sadhana; Joshi, Prashant; Vishwakarma, Ram A; Kumar, Ajay; Bhushan, Shashi; Bharate, Sandip B

    2015-04-14

    3-((Quinolin-4-yl)methylamino)-N-(4-(trifluoromethoxy)phenyl)thiophene-2-carboxamide (OSI-930, 1) is a potent inhibitor of c-kit and VEGFR2, currently under phase I clinical trials in patients with advanced solid tumors. In order to understand the structure-activity relationship, a series of 3-arylamino N-aryl thiophene 2-carboxamides were synthesized by modifications at both quinoline and amide domains of the OSI-930 scaffold. All the synthesized compounds were screened for in vitro cytotoxicity in a panel of cancer cell lines and for VEGFR1 and VEGFR2 inhibition. Thiophene 2-carboxamides substituted with benzo[d][1,3]dioxol-5-yl and 2,3-dihydrobenzo[b][1,4]dioxin-6-yl groups 1l and 1m displayed inhibition of VEGFR1 with IC50 values of 2.5 and 1.9 μM, respectively. Compounds 1l and 1m also inhibited the VEGF-induced HUVEC cell migration, indicating its anti-angiogenic activity. OSI-930 along with compounds 1l and 1m showed inhibition of P-gp efflux pumps (MDR1, ABCB1) with EC50 values in the range of 35-74 μM. The combination of these compounds with doxorubicin led to significant enhancement of the anticancer activity of doxorubicin in human colorectal carcinoma LS180 cells, which was evident from the improved IC50 of doxorubicin, the increased activity of caspase-3 and the significant reduction in colony formation ability of LS180 cells after treatment with doxorubicin. Compound 1l showed a 13.8-fold improvement in the IC50 of doxorubicin in LS180 cells. The ability of these compounds to display dual inhibition of VEGFR and P-gp efflux pumps demonstrates the promise of this scaffold for its development as multi-drug resistance-reversal agents.

  20. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.

  1. Tpl2 Inhibitors Thwart Endothelial Cell Function in Angiogenesis and Peritoneal Dissemination

    Directory of Open Access Journals (Sweden)

    Wen-Jane Lee

    2013-09-01

    Full Text Available Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2 in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA in endothelial cells. Vascular endothelial growth factor (VEGF or chemokine (C-X-C motif ligand 1 (CXCL1 increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

  2. Evaluation of enzyme-linked immunosorbent assays and a haemagglutination inhibition tests for the detection of antibodies to Newcastle disease virus in village chickens using a Bayesian approach.

    Science.gov (United States)

    Chaka, H; Thompson, P N; Goutard, F; Grosbois, V

    2015-04-01

    Newcastle disease (ND) is an endemic disease in village chickens in Ethiopia with substantial economic importance. The sensitivity (Se) and specificity (Sp) of a blocking enzyme-linked immunosorbent assay (bELISA, Svanova Biotech), indirect ELISA (iELISA, Laboratoire Service International) and haemagglutination inhibition (HI) test for ND virus (NDV) antibody detection were evaluated in a Bayesian framework in the absence of a gold standard test, on sera collected from unvaccinated chickens kept under the village production system in household flocks and at markets in two woredas (i.e. districts) of the Eastern Shewa zone, Ethiopia. The outcomes of the iELISA test differed dramatically from those of the two other tests with 92% of the samples testing positive as compared with less than 15% for bELISA and HI. iELISA results were also inconsistent with previous estimations of Newcastle serological prevalence. The information provided by the iELISA test was thus considered as highly unreliable, probably due to an extremely low specificity, and thus not considered in the Bayesian models aiming at estimating serological prevalence and test performance parameters. Bayesian modelling of HI and bELISA test results suggested that bELISA had both the highest Se (86.6%; 95% posterior credible interval (PCI): 61.8%; 98.5%), and the highest Sp (98.3%; 95% PCI: 97.2%; 99.5%), while HI had a Se of 80.2% (95% PCI: 59.1%; 94.3%), and a Sp of 96.1% (95% PCI: 95.1%; 97.4%). Model selection and the range of the posterior distribution of the correlation between bELISA and HI test outcomes for truly seropositive animals (median at 0.461; PCI: -0.055; 0.894) suggested a tendency for bELISA and HI to detect the same truly positive animals and to fail to detect the same truly positive animals. The use of bELISA in screening and surveillance for NDV antibodies is indicated given its high Se and Sp, in addition to its ease of automation to handle large numbers of samples compared to HI. The

  3. Angiogenesis inhibitors under study for the treatment of lung cancer.

    Science.gov (United States)

    Shepherd, Frances A; Sridhar, Srikala S

    2003-08-01

    Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat. Trials of this class of agents have all been negative to date. Drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190 are all in earlier stages of clinical trial. Drugs that are similar to endogenous inhibitors of angiogenesis including interferons have also been evaluated without success. Endostatin has been shown to have an acceptable toxicity profile, but clinical evidence of activity has not yet been demonstrated. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:12867064

  4. [Angiogenesis and lymphangiogenesis in primary cutaneous T-cell lymphomas].

    Science.gov (United States)

    Jankowska-Konsur, Alina; Kobierzycki, Christopher; Dzięgiel, Piotr

    2015-01-01

    Primary cutaneous T-cell lymphomas are a group of rare hematologic malignancies, derived from mature T lymphocytes and initially developing only in the skin. The most common lymphomas representing this group are mycosis fungoides and Sezary syndrome. Mycosis fungoides is an indolent disease with a chronic course and characteristic evolution of the skin lesions from erythematous patches, through plaques to tumors. Sezary syndrome is characterized by an aggressive course and a triad of symptoms (erythroderma, generalized lymphadenopathy, and the presence of atypical cells in the skin, lymph nodes and peripheral blood). The etiopathogenesis of cutaneous lymphomas is not fully understood, but a few studies on angiogenesis and lymphangiogenesis in these malignancies indicate a significant role in their development and progression. Angiogenesis is a process of formation of new blood vessels from existing ones. Lymphangiogenesis is a similar process concerning lymphatic vasculature. Development of new vessels is a complex process composed of several successive stages: migration, proliferation, and differentiation of endothelial cells, extracellular matrix degradation and formation and stabilization of new vessels, regulated by growth factors, cytokines and other proteins. Both phenomena are essential in the development and progression of solid tumors and hematological malignancies. Therapeutic strategies involving the inhibition of tumor angiogenesis and lymphangiogenesis are a promising new direction of studies in antitumor therapy, requiring further experiments. PMID:26561847

  5. Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol).

    OpenAIRE

    Arnaout, M. A.; Todd, R F; Dana, N; Melamed, J; Schlossman, S F; Colten, H R

    1983-01-01

    Events that lead to phagocytosis of complement (C3)- or IgG-coated particles after their interaction with specific cell surface receptors are poorly understood. Two mouse monoclonal antibodies (an IgM and an IgG2a) to a human granulocyte-monocyte surface membrane differentiation antigen (Mol) inhibited ingestion by granulocytes both of oil Red O particles opsonized with normal human serum or with IgG and of sheep erythrocytes sensitized with IgG. In addition, they specifically inhibited roset...

  6. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  7. 蜂毒素(Mel)对裸鼠骨肉瘤的抑制作用与影响肿瘤血管生成、细胞增殖和凋亡的关系%The relation of inhibiting angiogenesis and inducing cell apoptosis of melittin ( Mel) on xenotransplanted models of nude mice

    Institute of Scientific and Technical Information of China (English)

    高启龙; 李寒冰; 姚亚民; 陈永强; 杨峰

    2012-01-01

    目的 探讨蜂毒素(melittin,Mel)抑制骨肉瘤裸鼠移植瘤的作用机制.方法 用SD大鼠成骨肉瘤UMR- 106细胞株建立骨肉瘤原位移植瘤裸鼠模型,将18只裸鼠随机等分为3组,生理盐水组、Mel组和顺铂组.观察各组裸鼠骨肉瘤的体积和体质量抑制率;应用免疫组织化学法检测各组裸鼠瘤体CD31、CD105、PCNA蛋白表达;应用TUNEL法检测肿瘤细胞凋亡;运用相关性分析法研究Mel抑制骨肉瘤血管生成与细胞增殖、凋亡的关系.结果 Mel组肿瘤体积和体质量抑制率分别为42.98%和39.03%,Mel能明显抑制CD31、CD105标记的血管生成密度,能明显抑制肿瘤细胞增殖,促进细胞凋亡,且Mel抑制肿瘤血管生成与细胞增殖呈正相关及与细胞凋亡呈负相关.结论 Mel具有抑制骨肉瘤裸鼠移植瘤生长的作用,其作用机制可能与其能够抑制肿瘤血管生成、诱导肿瘤细胞凋亡及抑制细胞增殖有关.%Objective To study the antitumor effects and mechanism of melittin (Mel) on xenotransplanted models of nude mice. Methods Xenotransplanted models of SD rat osteosarcoma (OS) cell UMR-106 in the laevo-hind tibia of nude mice were established. Eighteen inoculated mice were randomly divided into normal saline group, positive control group and Mel group. All the nude mice were sacrificed after treatment. The size and weight of tumor were measured and the tumor volumes, and the inhibition rates of tumor were calculated. The expressions of CD31.CD1D5 and PCNA were deteced by immunohistochemical method. TUNEL semi-quantitative assay was used to study the melittin-induced apoptosis in OS cell line. The relation of inhibiting angiogenesis and inducing cell apoptosis was analyzed by correlation test . Results The mice treated with Mel showed significantly smaller in tumor volume and weight than those of NS group after treatment. Microvessel densities and the protein expressions of CD31 ,CD1()5 and PCNA in Mel group were

  8. The NTS-DBL2X region of VAR2CSA Induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Bigey, Pascal; Gnidehou, Sédami; Doritchamou, Justin;

    2011-01-01

    -adapted parasite lines and field isolates expressing VAR2CSA. Competition enzyme-linked immunosorbent assay (ELISA) wa