WorldWideScience

Sample records for antibody fragments specific

  1. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  2. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    Science.gov (United States)

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  3. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries.

    Science.gov (United States)

    Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G

    2011-09-01

    Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur.

  4. PREPARATION OF IMMUNOGEN AND PURIFICA¬TION OF HIGH AFFINITY AND SPECIFICITY FAB FRAGMENT OF ANTI-DIGOXIN POLYCLONAL ANTIBODIES

    Directory of Open Access Journals (Sweden)

    M. Pour-Amir

    2000-01-01

    Full Text Available In this study we produced and purified a high titer of specific and high affin¬ity Fab fragments of anti-digoxin antibody. Immunization of rabbits with a conju¬gate of the cardiac glycoside digoxin, coupled by a periodate oxidation method to the amino group of lysine in bovine serum albumin resulted in the production of this type of high titer digoxin-specific antibodies with exceptionally high affinity (109 L/mol and specificity in immune response. Increase in titer was found in steps of purification ending up with the highest titer for Fab fragment to be at 1.75 ug of purified Fab (for 50% binding of I25I-digoxin. High specificity for antigenic determinants of the steroid nucleus of digoxin was observed such that much less cross-reaction with digoxin (2.3% and no cross-reaction with ouabaine, estradiol, Cortisol, progesterone and testosterone were detected.

  5. Development of an Immunoassay for Chloramphenicol Based on the Preparation of a Specific Single-Chain Variable Fragment Antibody.

    Science.gov (United States)

    Du, Xin-jun; Zhou, Xiao-nan; Li, Ping; Sheng, Wei; Ducancel, Frédéric; Wang, Shuo

    2016-04-13

    Specific antibodies are essential for the immune detection of small molecule contaminants. In the present study, the heavy and light variable regions (V(H )and V(L)) of the immunoglobulin genes from a hybridoma secreting a chloramphenicol (CAP)-specific monoclonal antibody (mAb) were cloned and sequenced. In addition, the light and heavy chains obtained from the monoclonal antibody were separated using SDS-PAGE and analyzed using Orbitrap mass spectrometry. The results of DNA sequencing and mass spectrometry analysis were compared, and the V(H) and V(L) chains specific for CAP were determined and used to construct a single-chain variable fragment (scFv). This fragment was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein and used to develop a direct competitive ELISA. Compared with the parent mAb, scFv exhibits lower sensitivity but better food matrix resistance. This work highlights the application of engineered antibodies for CAP detection.

  6. Digoxin-specific antibody fragments and a calcium antagonist for reversal of digoxin-induced mesenteric vasoconstriction.

    Science.gov (United States)

    Hess, T; Scholtysik, G; Salzmann, R; Riesen, W

    1983-10-01

    The effect of digoxin-specific antibody fragments on glycoside-induced mesenteric vasoconstriction were investigated. Digoxin caused a sustained contraction of strips of isolated feline mesenteric artery lasting for several hours, while in anaesthetized cats it produced a significant decrease in blood flow and increase in resistance in the mesenteric artery. In-vitro, digoxin's contractile effect was inhibited by 'prophylactic' addition of antibody to the organ bath, but the clinical use for prophylaxis is not a practical proposition. When the antibodies were added with the contraction of the arterial strip in response to digoxin already established, the tone of the preparation decreased significantly over 3 h, but the effect of the glycoside was not fully reversible. In-vivo, control animals not treated with antibodies developed arrhythmias, mesenteric blood flow fell by more than 50% and resistance increased by more than 80% relative to the initial values. These animals died of ventricular fibrillation before the end of the experiment. Animals treated with digoxin-specific antibody fragments after receiving digoxin injections showed no further decrease in mesenteric blood flow and 90 min after the last dose of digoxin, the flow was recovering and mesenteric resistance decreasing. Furthermore, all the animals that had received antibodies remained in sinus rhythm to the end of the experiment. In view of the latent period to onset of action of the antibodies, valuable time may be lost in impaired mesenteric blood flow. To bridge the gap or, indeed, as primary treatment, calcium antagonists merit consideration; in our experiments mesenteric vasoconstriction was abolished within a few minutes by application of the dihydropyridine calcium antagonist 4-(2,1,3-benzo-oxadiazol-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic aid, diethyl ester (PY 108-068).

  7. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  8. Engineered single chain antibody fragments for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huhalov, A.; Chester, K. A. [Cancer Research UK Imaging and Targeting Group Royal Free, London (United Kingdom). Department of Oncology; University College Medical School Royal Free Campus, London (United Kingdom)

    2004-12-01

    An ideal molecule to deliver radioimmunotherapy (RIT) would be target specific and have prolonged residence time at high concentrations in the tumour with rapid clearance from normal tissues. It would also be non-immunogenic. These features can be rationally introduced into recombinant antibody-based proteins using antibody engineering techniques. This reviews focuses on the use of antibody engineering in the design and development of RIT molecules which have single chain Fv (scFv) antibody fragments as building blocks.

  9. Crystal Structure of the Fab Fragment of an Anti-ofloxacin Antibody and Exploration of Its Specific Binding.

    Science.gov (United States)

    He, Kuo; Du, Xinjun; Sheng, Wei; Zhou, Xiaonan; Wang, Junping; Wang, Shuo

    2016-03-30

    The limited knowledge on the mechanism of interactions between small contaminants and the corresponding antibodies greatly inhibits the development of enzyme-linked immunosorbent assay methods. In this study, the crystal structure of a Fab fragment specific for ofloxacin was obtained. On the basis of the crystal characteristics, the modeling of the interactions between ofloxacin and the Fab revealed that TYR31 and HIS99 of the heavy chain and MET20 and GLN79 of the light chain formed a hydrophobic region and that SER52 and ALA97 of the heavy chain and TYR35 of the light chain formed a salt bridge and two hydrogen bonds for specific binding. The key roles of SER52 and ALA97 were further confirmed by site-directed mutation. A specificity analysis using 14 ofloxacin analogues indicates that the length of the bond formed between the piperazine ring and the antibody plays key roles in specific recognition. This work helps to clarify the mechanisms through which antibodies recognize small molecules and improve immune detection methods.

  10. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging.

    Science.gov (United States)

    Massa, Sam; Xavier, Catarina; De Vos, Jens; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Devoogdt, Nick

    2014-05-21

    Site-specific labeling of molecular imaging probes allows the development of a homogeneous tracer population. The resulting batch-to-batch reproducible pharmacokinetic and pharmacodynamic properties are of great importance for clinical translation. Camelid single-domain antibody-fragments (sdAbs)-the recombinantly produced antigen-binding domains of heavy-chain antibodies, also called Nanobodies-are proficient probes for molecular imaging. To safeguard their intrinsically high binding specificity and affinity and to ensure the tracer's homogeneity, we developed a generic strategy for the site-specific labeling of sdAbs via a thio-ether bond. The unpaired cysteine was introduced at the carboxyl-terminal end of the sdAb to eliminate the risk of antigen binding interference. The spontaneous dimerization and capping of the unpaired cysteine required a reduction step prior to conjugation. This was optimized with the mild reducing agent 2-mercaptoethylamine in order to preserve the domain's stability. As a proof-of-concept the reduced probe was subsequently conjugated to maleimide-DTPA, for labeling with indium-111. A single conjugated tracer was obtained and confirmed via mass spectrometry. The specificity and affinity of the new sdAb-based imaging probe was validated in a mouse xenograft tumor model using a modified clinical lead compound targeting the human epidermal growth factor receptor 2 (HER2) cancer biomarker. These data provide a versatile and standardized strategy for the site-specific labeling of sdAbs. The conjugation to the unpaired cysteine results in the production of a homogeneous group of tracers and is a multimodal alternative to the technetium-99m labeling of sdAbs.

  11. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments

    NARCIS (Netherlands)

    F. Aladin (Farah); A.W.C. Einerhand (Sandra); J. Bouma (Janneke); S. Bezemer (Sandra); P. Hermans (Pim); D. Wolvers (Danielle); K. Bellamy (Kate); L.G.J. Frenken (Leon); J. Gray (Jim); M. Iturriza-Gómara (Miren)

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (refe

  12. Effect of radiochemical modification on biodistribution of scFvD2B antibody fragment recognising prostate specific membrane antigen.

    Science.gov (United States)

    Frigerio, Barbara; Benigni, Fabio; Luison, Elena; Seregni, Ettore; Pascali, Claudio; Fracasso, Giulio; Morlino, Sara; Valdagni, Riccardo; Mezzanzanica, Delia; Canevari, Silvana; Figini, Mariangela

    2015-11-01

    Antibody-based reagents represent a promising strategy as clinical diagnostic tools. Prostate cancer (PCa) is the second-leading cause of death in males in the Western population. There is a presently unmet need for accurate diagnostic tool to localize and define the extent of both primary PCa and occult recurrent disease. One of the most suitable targets for PCa is the prostate-specific membrane antigen (PSMA) recognised by the monoclonal antibody D2B that we re-shaped into the single chain Fv (scFv format). Aim of this study was to evaluate in preclinical in vivo models the target specificity of scFvD2B after labelling with different radionuclides. (111)In radiolabelling was performed via the chelator Bz-NOTA, and (131)I radioiodination was performed using iodogen. The potential for molecular imaging and the biological behaviour of the radiolabelled scFvD2B were evaluated in mice bearing two subcutaneous PCa isogenic cell lines that differed only in PSMA expression. Biodistribution studies were performed at 3, 9, 15 and 24h after injection to determine the optimal imaging time point. A significant kidney accumulation, as percentage of injected dose of tissue (%ID/g), was observed for (111)In-scFvD2B at 3h after injection (45%ID/g) and it was maintained up to 24h (26%ID/g). By contrast, kidney accumulation of (131)I-scFvD2B was only marginally (0.3%ID/g at 24h). At the optimal time point defined between 15h and 24h, regardless of the radionuclide used, the scFvD2B was able to localize significantly better in the PSMA expressing tumours compared to the negative control; with (131)I-scFvD2B yielding a significantly better target/background ratio compared to (111)In-scFvD2B. These data suggest that, besides antigen specificity, chemical modification may affect antibody fragment biodistribution.

  13. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  14. Antibody Fragments as Probe in Biosensor Development

    Directory of Open Access Journals (Sweden)

    Serge Muyldermans

    2008-08-01

    Full Text Available Today’s proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.

  15. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    Science.gov (United States)

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection.

  16. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  17. Detection and quantification of affinity ligand leaching and specific antibody fragment concentration within chromatographic fractions using surface plasmon resonance.

    Science.gov (United States)

    Thillaivinayagalingam, Pranavan; Newcombe, Anthony R; O'Donovan, Kieran; Francis, Richard; Keshavarz-Moore, Eli

    2007-12-01

    Rapid analyses of chromatographic steps within a biopharmaceutical manufacturing process are often desirable to evaluate column performance, provide mass balance data and to permit accurate calculations of yields and recoveries. Using SPR (surface plasmon resonance) biosensor (Biacore) technology, we have developed a sandwich immunoassay to quantify polyclonal anti-digoxin Fab fragments used for the production of the FDA (Food and Drug Administration)-approved biotherapeutic DigiFab. The results show that specific Fab may be quantified in all affinity process streams and accurate yield and mass balance data calculated. Control experiments using sheep Fab and Fc indicate that the assay is specific to DigiFab. The quantification of potential leached ligand within chromatographic fractions may also be technically challenging, particularly when low-molecular-mass ligands are covalently coupled with an affinity absorbent. Typical methods to assess ligand leakage such as DDMA (digoxin-dicarboxymethoxylamine; digoxin analogue) often involve the use of labelled ligands and relatively complex and labour-intensive analytical techniques. Using the same analytical methodologies, an assay to detect leached or eluted ligand off the column was developed. The results indicate minimal levels of leached ligand in all chromatographic fractions, with total levels of leached DDMA calculated to be 1.52 microg. This is less than 0.01% of the total amount of DDMA coupled with the laboratory-scale affinity column. The SPR methods described in the present study may be applicable for the rapid in-process analysis of specific polyclonal Fab fragments (within a polyclonal mixture) and to rapidly assess leakage of small molecule ligands covalently attached to chromatographic supports.

  18. Generation of human single-chain variable fragment antibodies specific to dengue virus non-structural protein 1 that interfere with the virus infectious cycle.

    Science.gov (United States)

    Poungpair, Ornnuthchar; Bangphoomi, Kunan; Chaowalit, Prapaipit; Sawasdee, Nunghathai; Saokaew, Nichapatr; Choowongkomon, Kiattawee; Chaicumpa, Wanpen; Yenchitsomanus, Pa-thai

    2014-01-01

    Severe forms of dengue virus (DENV) infection frequently cause high case fatality rate. Currently, there is no effective vaccine against the infection. Clinical cases are given only palliative treatment as specific anti-DENV immunotherapy is not available and it is urgently required. In this study, human single-chain variable fragment (HuScFv) antibodies that bound specifically to the conserved non-structural protein-1 (NS1) of DENV and interfered with the virus replication cycle were produced by using phage display technology. Recombinant NS1 (rNS1) of DENV serotype 2 (DENV2) was used as antigen in phage bio-panning to select phage clones that displayed HuScFv from antibody phage display library. HuScFv from two phagemid transformed E. coli clones, i.e., clones 11 and 13, bound to the rNS1 as well as native NS1 in both secreted and intracellular forms. Culture fluids of the HuScFv11/HuScFv13 exposed DENV2 infected cells had significant reduction of the infectious viral particles, implying that the antibody fragments affected the virus morphogenesis or release. HuScFv epitope mapping by phage mimotope searching revealed that HuScFv11 bound to amino acids 1-14 of NS1, while the HuScFv13 bound to conformational epitope at the C-terminal portion of the NS1. Although the functions of the epitopes and the molecular mechanism of the HuScFv11 and HuScFv13 require further investigations, these small antibodies have high potential for development as anti-DENV biomolecules.

  19. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Aβ peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Miles, Luke A. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Crespi, Gabriela A. N. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Wycherley, Kaye [WEHI Biotechnology Centre, La Trobe R& D Park, Bundoora, Victoria 3086 (Australia); Ascher, David B. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Barnham, Kevin J.; Cappai, Roberto [Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Beyreuther, Konrad [ZMBH, University of Heidelberg, Heidelberg (Germany); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Parker, Michael W. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); McKinstry, William J., E-mail: wjmckinstry@hotmail.com [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Medicine (St Vincent’s Hospital), The University of Melbourne, 41 Victoria Parade, Fitzroy 3065 (Australia)

    2008-05-01

    Crystallization and X-ray diffraction data collection of the Fab fragment of the monoclonal antibody WO2 in the absence or presence of amyloid β peptides associated with Alzheimer’s disease are reported. The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid β peptide (Aβ) associated with Alzheimer’s disease. This region of Aβ has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Aβ peptides Aβ{sub 1–16} and Aβ{sub 1–28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 Å resolution. The complexes of WO2 Fab with either Aβ{sub 1–@}@{sub 16} or Aβ{sub 1–28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 Å resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble Aβ{sub 1–42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 Å resolution.

  20. Molecular characterization of a single-chain antibody variable fragment (scFv) specific for PspA from Streptococcus pneumoniae.

    Science.gov (United States)

    Jang, ShinA; Kim, Gyuhee; Oh, Jihye; Lee, Seungyeop; Kim, Dongho; Kim, Kook-Han; Kim, Yong Ho; Rhee, Dong-Kwon; Lee, Sangho

    2017-01-01

    Streptococcus pneumoniae is a major infectious agent responsible for pneumonia, otitis media, sepsis and meningitis. Pneumococcal surface protein A (PspA) is a well-characterized virulence factor localized on the surface and a target for vaccine development. In this study, we screened a single-chain antibody variable fragment (scFv) using phage display from a human synthetic library to select a clone 2B11. Affinity (Kd) of 2B11 was measured to be 5 nM using biolayer interferometry. 2B11 exhibited a dose-dependent recognition of recombinant PspA with no cross-reactivity towards pneumococcal antigens. The epitope on PspA was defined to residues 231-242 by mutational analysis. Molecular docking analysis supported the experimentally determined epitope, suggesting that the helix spanning residues 231-242 can bind to 2B11 with residues in the CDR-H3 (complementarity determining region 3 in the heavy chain) actively participating in the molecular contacts. Comparison of 2B11 with a commercial PspA antibody revealed that 2B11 exhibited a better specificity towards recombinant PspA antigen. 2B11 was capable of detecting endogenous PspA from pneumococcal lysates with affinity similar to that of the commercial antibody. Our study provides a molecular tool for biosensors detecting pneumococcal diseases.

  1. Allergen-specific regulation of allergic rhinitis in mice by intranasal exposure to IgG1 monoclonal antibody Fab fragments against pathogenic allergen.

    Science.gov (United States)

    Matsuoka, Daiko; Mizutani, Nobuaki; Sae-Wong, Chutha; Yoshino, Shin

    2014-09-01

    Fab fragments (Fabs) have the ability to bind to specific antigens but lack the Fc portion for binding to receptors on immune and inflammatory cells that play a critical role in allergic diseases. In the present study, we investigated whether Fabs of an allergen-specific IgG1 monoclonal antibody (mAb) inhibited allergic rhinitis in mice. BALB/c mice sensitized by intraperitoneal injections of ovalbumin (OVA) plus alum on days 0 and 14 were intranasally challenged with OVA on days 28-30, and 35. Fabs prepared by the digestion of an anti-OVA IgG1 mAb (O1-10) with papain were also intranasally administered 15min before each OVA challenge. The results showed that treatment with O1-10 Fabs significantly suppressed the sneezing frequency, associated with decrease of OVA-specific IgE in the serum and infiltration by mast cells in the nasal mucosa seen following the fourth antigenic challenge; additionally, the level of mouse mast cell protease-1, a marker of mast cell activation, in serum was decreased. Furthermore, infiltration of eosinophils and goblet cell hyperplasia in the nasal mucosa at the fourth challenge were inhibited by treatment with O1-10 Fabs. In conclusion, these results suggest that intranasal exposure to Fabs of a pathogenic antigen-specific IgG1 mAb may be effective in regulating allergic rhinitis through allergen capture by Fabs in the nasal mucosa before the interaction of the intact antibody and allergen.

  2. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    1999-01-01

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell kil

  3. A strategy for the generation of specific human antibodies by directed evolution and phage display. An example of a single-chain antibody fragment that neutralizes a major component of scorpion venom.

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Juárez-González, Victor Rivelino; Olamendi-Portugal, Timoteo; Ortíz-León, Mauricio; Possani, Lourival Domingos; Becerril, Baltazar

    2005-05-01

    This study describes the construction of a library of single-chain antibody fragments (scFvs) from a single human donor by individual amplification of all heavy and light variable domains (1.1 x 10(8) recombinants). The library was panned using the phage display technique, which allowed selection of specific scFvs (3F and C1) capable of recognizing Cn2, the major toxic component of Centruroides noxius scorpion venom. The scFv 3F was matured in vitro by three cycles of directed evolution. The use of stringent conditions in the third cycle allowed the selection of several improved clones. The best scFv obtained (6009F) was improved in terms of its affinity by 446-fold, from 183 nm (3F) to 410 pm. This scFv 6009F was able to neutralize 2 LD(50) of Cn2 toxin when a 1 : 10 molar ratio of toxin-to-antibody fragment was used. It was also able to neutralize 2 LD(50) of the whole venom. These results pave the way for the future generation of recombinant human antivenoms.

  4. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  5. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments.

    Directory of Open Access Journals (Sweden)

    Nidiane D R Prado

    Full Text Available Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II, two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs and immunoglobulin frameworks (FRs of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718 were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607 neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.

  6. Efficient Expression of Antibody Fragments with the Brevibacillus Expression System

    Directory of Open Access Journals (Sweden)

    Hiroshi Hanagata

    2014-05-01

    Full Text Available Antibodies, owing to their capability to bind specifically to a target molecule, have been and will continue to be applied in various areas, including research, diagnosis and therapy. In particular, antibody fragments, which are size-reduced antibodies comprising functional variable domains, are suited for production in bacteria. They also are useful in applications requiring intracellular delivery and for further engineering toward molecules possessing multiple custom functions. An expression system based on Brevibacillus is characterized by high efficiency and simple genetic recombination for secretory production. The Brevibacillus expression system has been successfully utilized for the efficient production of antibody fragments, e.g., scFvs (single-chain antibody fragments comprising heavy-chain and light-chain variable domains, linked by a spacer sequence. Expression in fusion with a Halobacterium-derived secretory protein was shown to confer enhanced productivity. In the case of Fabs, productivity as high as 100 mg/L was accomplished in a simple system, i.e., shake flask cultures. The Brevibacillus expression system offers several advantages, shared by other bacterial systems, such as E. coli, in particular, for the ease in genetic engineering and culture production.

  7. Cloning, bacterial expression and crystallization of Fv antibody fragments

    Science.gov (United States)

    E´, Jean-Luc; Boulot, Ginette; Chitarra, V´ronique; Riottot, Marie-Madeleine; Souchon, H´le`ne; Houdusse, Anne; Bentley, Graham A.; Narayana Bhat, T.; Spinelli, Silvia; Poljak, Roberto J.

    1992-08-01

    The variable Fv fragments of antibodies, cloned in recombinant plasmids, can be expressed in bacteria as functional proteins having immunochemical properties which are very similar or identical with those of the corresponding parts of the parent eukaryotic antibodies. They offer new possibilities for the study of antibody-antigen interactions since the crystals of Fv fragments and of their complexes with antigen reported here diffract X-rays to a higher resolution that those obtained with the cognate Fab fragments. The Fv approach should facilitate the structural study of the combining site of antibodies and the further characterization of antigen-antibody interactions by site-directed mutagenesis experiments.

  8. Considerations in producing preferentially reduced half-antibody fragments.

    Science.gov (United States)

    Makaraviciute, Asta; Jackson, Carolyn D; Millner, Paul A; Ramanaviciene, Almira

    2016-02-01

    Half-antibody fragments are a promising reagent for biosensing, drug-delivery and labeling applications, since exposure of the free thiol group in the Fc hinge region allows oriented reaction. Despite the structural variations among the molecules of different IgG subclasses and those obtained from different hosts, only generalized preferential antibody reduction protocols are currently available. Preferential reduction of polyclonal sheep anti-digoxin, rabbit anti-Escherichia coli and anti-myoglobin class IgG antibodies to half-antibody fragments has been investigated. A mild reductant 2-mercaptoethylamine (2-MEA) and a slightly stronger reductant tris(2-carboxyethyl)phosphine (TCEP) were used and the fragments obtained were quantitatively determined by SDS-PAGE analysis. It has been shown that the yields of half-antibody fragments could be increased by lowering the pH of the reduction mixtures. However, antibody susceptibility to the reductants varied. At pH4.5 the highest yield of sheep anti-digoxin IgG half-antibody fragments was obtained with 1M 2-MEA. Conversely, rabbit IgG half-antibody fragments could only be obtained with the stronger reductant TCEP. Preferential reduction of rabbit anti-myoglobin IgG antibodies was optimized and the highest half-antibody yield was obtained with 35 mM TCEP. Finally, it has been demonstrated that produced anti-myoglobin half-IgG fragments retained their binding activity.

  9. Specific single chain variable fragment (ScFv) antibodies to angiotensin II AT(2) receptor: evaluation of the angiotensin II receptor expression in normal and tumor-bearing mouse lung.

    Science.gov (United States)

    Tamura, Masaaki; Yan, Heping; Zegarra-Moro, Ofelia; Edl, Jennifer; Oursler, Stephanie; Chard-Bergstrom, Cindy; Andrews, Gordon; Kanehira, Tsutomu; Takekoshi, Susumu; Mernaugh, Ray

    2008-08-01

    To gain insight into the mechanism by which angiotensin II type 2 receptor (AT(2)) regulates carcinogen-induced lung tumorigenesis, we have newly developed anti-AT(2) single chain variable fragment (ScFv) antibodies using a rodent phage-displayed recombinant antibody library with various peptide fragments of the receptor protein, and investigated the expression of the AT(2) receptor protein. The specificity of the antibodies was verified using AT(2) over-expressing COS-7 cells and AT(2) naturally expressing PC12W cells. In control wild type mouse lung, a stronger immunoreactivity was observed in bronchial epithelial cells. A moderate immunoreactivity was detected in pulmonary vascular walls and vascular endothelial cells. In the lungs possessing tobacco-specific nitrosamine (NNK)-induced tumors, significantly increased AT(2) and AT(1 )immunostaining was observed in adenomatous lesions. These data suggest that the increase in both receptors' expression in the alveolar epithelial cells may be accompanied with the onset of NNK-induced tumorigenesis and hence play important roles in lung tumorigenesis.

  10. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  11. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  12. Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†

    Science.gov (United States)

    Blackler, Ryan J; Evans, Dylan W; Smith, David F; Cummings, Richard D; Brooks, Cory L; Braulke, Thomas; Liu, Xinyu; Evans, Stephen V; Müller-Loennies, Sven

    2016-01-01

    The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition. PMID:26503547

  13. Selective binding of anti-DNA antibodies to native dsDNA fragments of differing sequence.

    Science.gov (United States)

    Uccellini, Melissa B; Busto, Patricia; Debatis, Michelle; Marshak-Rothstein, Ann; Viglianti, Gregory A

    2012-03-30

    Systemic autoimmune diseases are characterized by the development of autoantibodies directed against a limited subset of nuclear antigens, including DNA. DNA-specific B cells take up mammalian DNA through their B cell receptor, and this DNA is subsequently transported to an endosomal compartment where it can potentially engage TLR9. We have previously shown that ssDNA-specific B cells preferentially bind to particular DNA sequences, and antibody specificity for short synthetic oligodeoxynucleotides (ODNs). Since CpG-rich DNA, the ligand for TLR9 is found in low abundance in mammalian DNA, we sought to determine whether antibodies derived from DNA-reactive B cells showed binding preference for CpG-rich native dsDNA, and thereby select immunostimulatory DNA for delivery to TLR9. We examined a panel of anti-DNA antibodies for binding to CpG-rich and CpG-poor DNA fragments. We show that a number of anti-DNA antibodies do show preference for binding to certain native dsDNA fragments of differing sequence, but this does not correlate directly with the presence of CpG dinucleotides. An antibody with preference for binding to a fragment containing optimal CpG motifs was able to promote B cell proliferation to this fragment at 10-fold lower antibody concentrations than an antibody that did not selectively bind to this fragment, indicating that antibody binding preference can influence autoreactive B cell responses.

  14. Improved production and function of llama heavy chain antibody fragments by molecular evolution

    NARCIS (Netherlands)

    Linden, van der R.H.; Geus, de B.; Frenken, G.J.; Peters, H.; Verrips, C.T.

    2000-01-01

    The aim of this study was to improve production level of llama heavy chain antibody fragments (V (HH)) in Saccharomyces cerevisiae while retaining functional characteristics. For this purpose, the DNA shuffling technique was used on llama V (HH) fragments specific for the azo-dye reactive red-6. In

  15. The Biochemical Properties of Antibodies and Their Fragments.

    Science.gov (United States)

    Hnasko, Robert M

    2015-01-01

    Immunoglobulins (Ig) or antibodies are powerful molecular recognition tools that can be used to identify minute quantities of a given target analyte. Their antigen-binding properties define both the sensitivity and selectivity of an immunoassay. Understanding the biochemical properties of this class of protein will provide users with the knowledge necessary to select the appropriate antibody composition to maximize immunoassay results. Here we define the general biochemical properties of antibodies and their similarities and differences, explain how these properties influence their functional relationship to an antigen target, and describe a method for the enzymatic fragmentation of antibodies into smaller functional parts.

  16. Use of a fragment of glycoprotein G-2 produced in the baculovirus expression system for detecting herpes simplex virus type 2-specific antibodies

    NARCIS (Netherlands)

    Ikoma, M; Liljeqvist, JA; Glazenburg, KL; The, TH; Welling-Wester, S; Groen, J.

    2002-01-01

    Fragments of glycoprotein G (gG-2(281-594His)), comprising residues 281 to 594 of herpes simplex virus type 2 (HSV-2), glycoprotein G of HSV-1 (gG-1(t26-189His)), and glycoprotein D of HSV-1 (gD-1(1-313)), were expressed in the baculovirus expression system to develop an assay for the detection of H

  17. HIV-2 neutralization by intact V3-specific Fab fragments

    Directory of Open Access Journals (Sweden)

    Sourial Samer

    2008-08-01

    Full Text Available Abstract The V3 region of both HIV-1 gp120 and HIV-2 gp125 surface glycoprotein has been described as a target for neutralizing antibodies. In this study a conformation-sensitive (3C4 and a linear site-specific (7C8 anti-HIV-2 V3 monoclonal antibody (mAb were characterized. The neutralization capacity of the purified mAbs and their respective papain-generated Fab fragments was analyzed. The Fabs were further characterized by sequence analysis. Our results demonstrate that neither purified mAbs were capable of neutralizing HIV-2, while intact Fab fragments from both mAbs blocked in vitro infection of HIV-2 isolates. Moreover, the conformation sensitive 3C4 Fab neutralized both subtype A and B HIV-2 isolates and SIVsm. Sequence analysis of the hypervariable regions of 3C4 Fab and 7C8 Fab revealed that the third CDR of the heavy chain (CDRH3 of the antibodies was not as long as many of the previously characterized neutralizing antibodies. Our findings suggest that whole 7C8 and 3C4 mAbs are sterically hindered from neutralizing HIV-2, whereas the smaller size of Fab fragments enables access to the V3 region on the virion surface.

  18. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the A[beta] peptides associated with Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S.; Miles, Luke A.; Crespi, Gabriela A.N.; Wycherley, Kaye; Ascher, David B.; Barnham, Kevin J.; Cappai, Roberto; Beyreuther, Konrad; Masters, Colin L.; Parker, Michael W.; McKinstry, William J. (SVIMR-A); (HeidelbergU); (WEHI); (Melbourne)

    2008-05-28

    The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. This region of A{beta} has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Az{beta} peptides A{beta}{sub 1-16} and A{beta}{sub 1-28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 {angstrom} resolution. The complexes of WO2 Fab with either A{beta}{sub 1-16} or A{beta}{sub 1-28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 {angstrom} resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble A{beta}{sub 1-42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 {angstrom} resolution.

  19. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM

    2012-01-01

    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  20. ANTITUMOR EFFECTS OF MONOCLONAL ANTIBODY FAB′ FRAGMENT CONTAINING IMMUNOCONJUGATES

    Institute of Scientific and Technical Information of China (English)

    刘小云; 甄永苏

    2002-01-01

    Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.

  1. GTP-specific fab fragment-based GTPase activity assay.

    Science.gov (United States)

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  2. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Larissa M. Alvarenga

    2014-08-01

    Full Text Available Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.

  3. Improved Detection of Domoic Acid Using Covalently Immobilised Antibody Fragments

    Directory of Open Access Journals (Sweden)

    J. Gerard Wall

    2013-03-01

    Full Text Available Antibody molecules, and antibody fragments in particular, have enormous potential in the development of biosensors for marine monitoring. Conventional immobilisation approaches used in immunoassays typically yield unstable and mostly incorrectly oriented antibodies, however, resulting in reduced detection sensitivities for already low concentration analytes. The 2H12 anti-domoic acid scFv antibody fragment was engineered with cysteine-containing linkers of two different lengths, distal to the antigen binding pocket, for covalent and correctly oriented immobilisation of the scFvs on functionalised solid supports. The Escherichia coli-produced, cysteine-engineered scFvs dimerised in solution and demonstrated similar efficiencies of covalent immobilisation on maleimide-activated plates and minimal non-covalent attachment. The covalently attached scFvs exhibited negligible leaching from the support under acidic conditions that removed almost 50% of the adsorbed wildtype fragment, and IC50s for domoic acid of 270 and 297 ng/mL compared with 1126 and 1482 ng/mL, respectively, for their non-covalently adsorbed counterparts. The expression and immobilisation approach will facilitate the development of stable, reusable biosensors with increased stability and detection sensitivity for marine neurotoxins.

  4. Thermodynamic stability and flexibility characteristics of antibody fragment complexes.

    Science.gov (United States)

    Li, Tong; Verma, Deeptak; Tracka, Malgorzata B; Casas-Finet, Jose; Livesay, Dennis R; Jacobs, Donald J

    2014-01-01

    Free energy landscapes, backbone flexibility and residue-residue couplings for being co-rigid or co-flexible are calculated from the minimal Distance Constraint Model (mDCM) on an exploratory dataset consisting of VL, scFv and Fab antibody fragments. Experimental heat capacity curves are reproduced markedly well, and an analysis of quantitative stability/flexibility relationships (QSFR) is applied to a representative VL domain and several complexes in the scFv and Fab forms. Global flexibility in the denatured ensemble typically decreases in the larger complexes due to domain-domain interfaces. Slight decreases in global flexibility also occur in the native state of the larger fragments, but with a concurrent large increase in correlated flexibility. Typically, a VL fragment has more co-rigid residue pairs when isolated compared to the scFv and Fab forms, where correlated flexibility appears upon complex formation. This context dependence on residue- residue couplings in the VL domain across length scales of a complex is consistent with the evolutionary hypothesis of antibody maturation. In comparing two scFv mutants with similar thermodynamic stability, local and long-ranged changes in backbone flexibility are observed. In the case of anti-p24 HIV-1 Fab, a variety of QSFR metrics were found to be atypical, which includes comparatively greater co-flexibility in the VH domain and less co-flexibility in the VL domain. Interestingly, this fragment is the only example of a polyspecific antibody in our dataset. Finally, the mDCM method is extended to cases where thermodynamic data is incomplete, enabling high throughput QSFR studies on large numbers of antibody fragments and their complexes.

  5. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  6. PEGylation of antibody fragments for half-life extension.

    Science.gov (United States)

    Jevševar, Simona; Kusterle, Mateja; Kenig, Maja

    2012-01-01

    Antibody fragments (Fab's) represent important structure for creating new therapeutics. Compared to full antibodies Fab' fragments possess certain advantages, including higher mobility and tissue penetration, ability to bind antigen monovalently and lack of fragment crystallizable (Fc) region-mediated functions such as antibody-dependent cell mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). The main drawback for the use of Fab's in clinical applications is associated with their short half-life in vivo, which is a consequence of no longer having the Fc region. To exert meaningful clinical effects, the half-life of Fab's need to be extended, which has been achieved by postproduction chemical attachment of polyethylene glycol (PEG) chain to protein using PEGylation technology. The most suitable approach employs PEG-maleimide attachment to cysteines, either to the free hinge cysteine or to C-terminal cysteines involved in interchain disulfide linkage of the heavy and light chain. Hence, protocols for mono-PEGylation of Fab via free cysteine in the hinge region and di-PEGylation of Fab via interchain disulfide bridge are provided in this chapter.

  7. Fluorescent labeling of antibody fragments using split GFP.

    Directory of Open Access Journals (Sweden)

    Fortunato Ferrara

    Full Text Available Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs using the split green fluorescent protein (GFP system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11, is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.

  8. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...... the 3F1H10 variable heavy (VH) chain and variable light (V kappa) chain domains but containing, either alone or in dual combination, each of the four different residues present in 3F1A2. The dissociation constants of Mabs 3F1H10 and 3F1A2 and their respective Fab and scAb fragments were measured...

  9. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    OpenAIRE

    Oliinyk O. S.; Kaberniuk A. A.; Kolibo D. V.; Komisarenko S. V.

    2014-01-01

    Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv) antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized) human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, an...

  10. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes.

    Science.gov (United States)

    Shukla, Arun K; Gupta, Charu; Srivastava, Ashish; Jaiman, Deepika

    2015-01-01

    G protein-coupled receptors (GPCRs) are one of the key players in extracellular signal recognition and their subsequent communications with cellular signaling machinery. Crystallization and high-resolution structure determination of GPCRs has been one of the major advances in the area of GPCR biology over the last 7-8 years. There have primarily been three approaches to GPCR crystallization till date. These are fusion protein strategy, thermostabilization, and antibody fragment-mediated crystallization. Of these, antibody fragment-mediated crystallization has not only provided the first breakthrough in structure determination of a non-rhodopsin GPCR but it has also assisted in obtaining structures of fully active conformations of GPCRs. Antibody fragment approach has also been crucial in obtaining structural information on GPCR signaling complexes. Here, we highlight the specific examples of GPCR crystal structures that have utilized antibody fragments for promoting crystallogenesis and structure solution. We also discuss emerging powerful technologies such as the nanobody technology and the synthetic phage display libraries in the context of GPCR crystallization and underline how these tools are likely to propel key GPCR structural studies in future.

  11. Generation of human antibody fragments against Streptococcus mutans using a phage display chain shuffling approach

    Directory of Open Access Journals (Sweden)

    Barth Stefan

    2005-01-01

    Full Text Available Abstract Background Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. Results The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. Conclusions Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.

  12. Generation and characterization of the human neutralizing antibody fragment Fab091 against rabies virus

    Institute of Scientific and Technical Information of China (English)

    Chen LI; Feng ZHANG; Hong LIN; Zhong-can WANG; Xin-jian LIU; Zhen-qing FENG; Jin ZHU; Xiao-hong GUAN

    2011-01-01

    Aim: To transform the human anti-rabies virus glycoprotein (anti-RABVG) single-chain variable fragment (scFv) into a Fab fragment and to analyze its immunological activity.Methods: The Fab gene was amplified using overlap PCR and inserted into the vector pComb3XSS. The recombinant vector was then transformed into E coli Top10F' for expression and purification. The purified Fab was characterized using SDS-PAGE, Western blotting,indirect ELISA, competitive ELISA, and the fluorescent antibody virus neutralization test (FAVN), respectively, and examined in a Kunming mouse challenge model in vivo.Results: A recombinant vector was constructed. The Fab was expressed in soluble form In E coll Top10F'. Specific binding of the Fab to rabies virus was confirmed by indirect ELISA and immunoprecipitation (IP). The neutralizing antibody titer of Fab was 10.26 IU/mL.The mouse group treated with both vaccine and human rabies immunoglobulin (HRIG)/Fab091 (32 IU/kg) showed protection against rabies, compared with the control group (P<0.05, Logrank test).Conclusion: The antibody fragment Fab was shown to be a neutralizing antibody against RABVG. It can be used together with other monoclonal antibodies for post-exposure prophylaxis of rabies virus in future studies.

  13. Purification of human monoclonal antibodies and their fragments.

    Science.gov (United States)

    Müller-Späth, Thomas; Morbidelli, Massimo

    2014-01-01

    This chapter summarizes the most common chromatographic mAb and mAb fragment purification methods, starting by elucidating the relevant properties of the compounds and introducing the various chromatography modes that are available and useful for this application. A focus is put on the capture step affinity and ion exchange chromatography. Aspects of scalability play an important role in judging the suitability of the methods. The chapter introduces also analytical chromatographic methods that can be utilized for quantification and purity control of the product. In the case of mAbs, for most purposes the purity obtained using an affinity capture step is sufficient. Polishing steps are required if material of particularly high purity needs to be generated. For mAb fragments, affinity chromatography is not yet fully established, and the capture step potentially may not provide material of high purity. Therefore, the available polishing techniques are touched upon briefly. In the case of mAb isoform and bispecific antibody purification, countercurrent chromatography techniques have been proven to be very useful and a part of this chapter has been dedicated to them, paying tribute to the rising interest in these antibody formats in research and industry.

  14. Cholestatic liver disease after rituximab and adalimumab and the possible role of cross-reacting antibodies to Fab 2 fragments.

    Directory of Open Access Journals (Sweden)

    Joerg Latus

    Full Text Available BACKGROUND: Millions of patients are treated with therapeutic monoclonal antibodies (Tmabs for miscellaneous diseases. We investigated sera from six patients who received immune globulin, from one patient with refractory anti-neutrophil-cytoplasmic antibody (ANCA-associated granulomatosis with polyangiitis (GPA who developed two episodes of acute cholestatic liver disease, one after treatment with rituximab and a second after adalimumab and a healthy control group. METHODS: Three sera from the patient and six sera from patients who received immune globulin were analyzed for antibodies to rituximab and adalimumab by ELISA. Additionally, sera from the patients and from nine healthy blood donors were coated with the Fab fragment of an unrelated humanized monoclonal antibody, with human Fc proteins as well as a mouse IgG globulin. RESULTS: Viral serology for hepatitis A, B, C and autoantibodies specific for autoimmune liver disorders were negative. In all three sera from the patient antibodies to rituximab could be detected, but also antibodies to adalimumab were present even at time points when the patient had not yet received adalimumab, indicating cross reactivity between both substances. Testing against an unrelated human Fab fragment revealed positive results, indicating that the patient had antibodies against human Fab fragments in general. The Fc proteins were negative, and patients' sera did also not react with mouse IgG globulins. Remarkably, 2 out of 5 patients which were treated with immune globulin had antibodies against human Fab fragments in general whereas in none of the samples from healthy controls antibodies to Fab fragment could be detected. CONCLUSION: This is the first study demonstrating cholestatic liver disease induced by two different Tmabs. Cross - reacting antibodies to Fab2 fragments in general are probably involved. Further studies must show if these Fab2 antibodies in general are related with drug-induced side effects

  15. Probing the soybean Bowman-Birk inhibitor using recombinant antibody fragments.

    Science.gov (United States)

    Muzard, Julien; Fields, Conor; O'Mahony, James John; Lee, Gil U

    2012-06-20

    The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing.

  16. Structure and specificity of lamprey monoclonal antibodies

    OpenAIRE

    Herrin, Brantley R.; Alder, Matthew N; Roux, Kenneth H.; Sina, Christina; Ehrhardt, Götz R. A.; Boydston, Jeremy A.; Turnbough, Charles L.; Cooper, Max D.

    2008-01-01

    Adaptive immunity in jawless vertebrates (lamprey and hagfish) is mediated by lymphocytes that undergo combinatorial assembly of leucine-rich repeat (LRR) gene segments to create a diverse repertoire of variable lymphocyte receptor (VLR) genes. Immunization with particulate antigens induces VLR-B-bearing lymphocytes to secrete antigen-specific VLR-B antibodies. Here, we describe the production of recombinant VLR-B antibodies specific for BclA, a major coat protein of Bacillus anthracis spores...

  17. Epsilon Haemoglobin Specific Antibodies with Applications in Noninvasive Prenatal Diagnosis

    Science.gov (United States)

    Sørensen, Morten Dræby; Gonzalez Dosal, Regina; Jensen, Kim Bak; Christensen, Britta; Kølvraa, Steen; Jensen, Uffe Birk; Kristensen, Peter

    2009-01-01

    Invasive procedures for prenatal diagnosis are associated with increased risk of abortion; thus, development of noninvasive procedures would be beneficial. Based on the observation that embryonic nucleated red blood cell (NRBC) crosses the placenta and enters the circulation of pregnant women, the ability to identify such cell would allow development of such procedures. Identification of NRBCs in blood samples would be possible provided that specific antibodies are available. Here we have isolated recombinant antibodies using phage display. From the panel of antibody fragments specifically recognising ε-Hb, one was chosen for further characterization, DAb1. DAb1 binds to ε-Hb both in Western blots and immunocytochemistry. Several ε-Hb positive cells were detected in a blood sample taken as postchorionic villus sampling (CVS). To evaluate the sensitivity of the method, K562 cells (which express ε-Hb) were spiked in a blood sample followed by staining in solution and FACS analysis. PMID:19636421

  18. Epsilon Haemoglobin Specific Antibodies with Applications in Noninvasive Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Morten Dræby Sørensen

    2009-01-01

    Full Text Available Invasive procedures for prenatal diagnosis are associated with increased risk of abortion; thus, development of noninvasive procedures would be beneficial. Based on the observation that embryonic nucleated red blood cell (NRBC crosses the placenta and enters the circulation of pregnant women, the ability to identify such cell would allow development of such procedures. Identification of NRBCs in blood samples would be possible provided that specific antibodies are available. Here we have isolated recombinant antibodies using phage display. From the panel of antibody fragments specifically recognising ε-Hb, one was chosen for further characterization, DAb1. DAb1 binds to ε-Hb both in Western blots and immunocytochemistry. Several ε-Hb positive cells were detected in a blood sample taken as postchorionic villus sampling (CVS. To evaluate the sensitivity of the method, K562 cells (which express ε-Hb were spiked in a blood sample followed by staining in solution and FACS analysis.

  19. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions.

    Science.gov (United States)

    Rodríguez-Rodríguez, Everardo Remi; Olamendi-Portugal, Timoteo; Serrano-Posada, Hugo; Arredondo-López, Jonathan Noé; Gómez-Ramírez, Ilse; Fernández-Taboada, Guillermo; Possani, Lourival D; Anguiano-Vega, Gerardo Alfonso; Riaño-Umbarila, Lidia; Becerril, Baltazar

    2016-09-01

    New approaches aimed at neutralizing the primary toxic components present in scorpion venoms, represent a promising alternative to the use of antivenoms of equine origin in humans. New potential therapeutics developed by these approaches correspond to neutralizing antibody fragments obtained by selection and maturation processes from libraries of human origin. The high sequence identity shared among scorpion toxins is associated with an important level of cross reactivity exhibited by these antibody fragments. We have exploited the cross reactivity showed by single chain variable antibody fragments (scFvs) of human origin to re-direct the neutralizing capacity toward various other scorpion toxins. As expected, during these evolving processes several variants derived from a parental scFv exhibited the capacity to simultaneously recognize and neutralize different toxins from Centruroides scorpion venoms. A sequence analyses of the cross reacting scFvs revealed that specific mutations are responsible for broadening their neutralizing capacity. In this work, we generated a set of new scFvs that resulted from the combinatorial insertion of these point mutations. These scFvs are potential candidates to be part of a novel recombinant antivenom of human origin that could confer protection against scorpion stings. A remarkable property of one of these new scFvs (ER-5) is its capacity to neutralize at least three different toxins and its complementary capacity to neutralize the whole venom from Centruroides suffusus in combination with a second scFv (LR), which binds to a different epitope shared by Centruroides scorpion toxins.

  20. Fab(nimotuzumab)-HYNIC-99mTc: Antibody Fragmentation for Molecular Imaging Agents.

    Science.gov (United States)

    Calzada, Victoria; García, María Fernanda; Alonso-Martínez, Luis Michel; Camachoc, Ximena; Goicochea, Enzo; Fernández, Marcelo; Castillo, Abmel Xiques; Díaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Montaña, René Leyva; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo

    2016-01-01

    Finally, fast blood clearance nimotuzumab is a humanized monoclonal antibody that recognise, with high specific affinity, the epidermal growth factor receptor (EGF-R) which play an important role in the growth process associated with many solid tumors. In this work, the whole antibody was digested with papain in order to generate a Fab fragment, derivatized with NHS-HYNIC-Tfa and radiolabel with technetium-99m (99mTc) as a potential agent of molecular imaging of cancer. Both, whole and fragment radiolabels were in-vivo and in-vitro characterized. Radiolabeling conditions with Tricine as coligand and quality controls were assessed to confirm the integrity of the labeled fragment. Biodistribution and imaging studies in normal and spontaneous adenocarcinoma mice were performed at different times to determine the in-vivo characteristics of the radiolabel fragment. Tumor localization was visualized by conventional gamma camera imaging studies, and the results were compared with the whole antibody. Also, an immunoreactivity assay was carried out for both. The results showed clearly the integrity of the nimotuzumab fragment and the affinity by the receptor was verified. Fab(nimotuzumab)-HYNIC was obtained with high purity and a simple strategy of radiolabeling was performed. Finally, a fast blood clearance was observed in the biodistribution studies increasing the tumor uptake of Fab(nimotuzumab)- HYNIC-99mTc over time, with tumor/muscle ratios of 3.81 ± 0.50, 5.16 ± 1.97 and 6.32 ± 1.98 at 1 h, 4 h and 24 h post injection. Urinary excretion resulted in 32.89 ± 3.91 %ID eliminated at 24 h. Scintigraphy images showed uptake in the tumor and the activity in non-target organs was consistent with the biodistribution data at the same time points. Hence, these preliminary results showed important further characteristic of Fab(nimotuzumab)-HYNIC-99mTc as a molecular imaging agent of cancer.

  1. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo

    NARCIS (Netherlands)

    Dolk, E.; Vaart, M. van der; Lutje Hulsik, D.; Vriend, G.; Haard, H. de; Spinelli, S.; Cambillau, C.; Frenken, L.; Verrips, T.

    2005-01-01

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain

  2. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    Science.gov (United States)

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  3. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum cv. Xanthi.

    Science.gov (United States)

    Dobhal, S; Chaudhary, V K; Singh, A; Pandey, D; Kumar, A; Agrawal, S

    2013-12-01

    Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.

  4. Raising an Antibody Specific to Breast Cancer Subpopulations Using Phage Display on Tissue Sections

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Meldgaard, Theresa; Fridriksdottir, Agla Jael Rubner

    2016-01-01

    BACKGROUND/AIM: Primary tumors display a great level of intra-tumor heterogeneity in breast cancer. The current lack of prognostic and predictive biomarkers limits accurate stratification and the ability to predict response to therapy. The aim of the present study was to select recombinant antibody...... fragments specific against breast cancer subpopulations, aiding the discovery of novel biomarkers. MATERIALS AND METHODS: Recombinant antibody fragments were selected by phage display. A novel shadowstick technology enabled the direct selection using tissue sections of antibody fragments specific against...... small subpopulations of breast cancer cells. Selections were performed against a subpopulation of breast cancer cells expressing CD271(+), as these previously have been indicated to be potential breast cancer stem cells. The selected antibody fragments were screened by phage ELISA on both breast cancer...

  5. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality

    DEFF Research Database (Denmark)

    Kibat, Janek; Schirrmann, Thomas; Knape, Matthias J

    2016-01-01

    Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform...... reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples...

  6. Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori

    NARCIS (Netherlands)

    Joosten, V.; Gouka, R.J.; Hondel, C.A.M.J.J. van den; Verrips, C.T.; Lokman, B.C.

    2005-01-01

    We report the expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Fragments encoding VHHs were cloned in a suitable Aspergillus expression vector and transformants secreting VHH fragments were analysed for integrated gene copy-numbers, mRNA level

  7. Induced refolding of a temperature denatured llama heavy-chain antibody fragment by its antigen

    NARCIS (Netherlands)

    Dolk, E.; Vliet, C. van; Perez, J.M.J.; Vriend, G.; Darbon, H.; Ferrat, G.; Cambillau, C.; Frenken, L.G.J.; Verrips, T.

    2005-01-01

    In a previous study we have shown that llama VHH antibody fragments are able to bind their antigen after a heat shock of 90°C, in contrast to the murine monoclonal antibodies. However, the molecular mechanism by which antibody:antigen interaction occurs under these extreme conditions remains unclear

  8. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  9. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment.

    Directory of Open Access Journals (Sweden)

    Keith R Miller

    Full Text Available A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2, with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.

  10. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  11. Functional improvement of antibody fragments using a novel phage coat protein III fusion system

    DEFF Research Database (Denmark)

    Jensen, Kim Bak; Larsen, Martin; Pedersen, Jesper Søndergaard;

    2002-01-01

    Functional expressions of proteins often depend on the presence of host specific factors. Frequently recombinant expression strategies of proteins in foreign hosts, such as bacteria, have been associated with poor yields or significant loss of functionality. Improvements in the performance...... of heterologous expression systems will benefit present-day quests in structural and functional genomics where high amounts of active protein are required. One example, which has been the subject of considerable interest, is recombinant antibodies or fragments thereof as expressions of these in bacteria......(s) of the filamentous phage coat protein III. Furthermore, it will be shown that the observed effect is neither due to improved stability nor increased avidity....

  12. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  13. Inhibiting angiogenesis with human single-chain variable fragment antibody targeting VEGF.

    Science.gov (United States)

    Hosseini, Hossien; Rajabibazl, Masoumeh; Ebrahimizadeh, Walead; Dehbidi, Gholamreza Rafiei

    2015-01-01

    Vascular endothelial growth factor (VEGF) is a highly specific angiogenesis factor which has crucial roles in the angiogenesis of tumors. Anti-angiogenesis agents can inhibit growth and metastasis of tumor cells. Single-chain variable fragments (scFv) have the same affinity as whole antibodies and smaller size, thus result in more tissue permeability and higher production yield. In this research we aim to isolate a human scFv antibody against VEGF that inhibits angiogenesis. For that, we have used human scFv phage library to isolate a specific scFv antibody against binding site of VEGF. The human scFv phage library was amplified according to the manufacture protocol and panned against recombinant VEGF. ScFv antibody was isolated after five rounds of panning. Phage ELISA was used for detection of the highest affinity binder (HR6). Soluble HR6 scFv was expressed in non-suppressor strain of Escherichia coli HB2151 and purified using Ni-NTA chromatography. In vivo and in vitro function of the HR6 scFv was analyzed by chorioallantoic membrane assay and endothelial cell proliferation assay on VEGF stimulated HUVECs. Result of the cross reactivity showed that HR6 scFv specifically bounds to VEGF. The affinity was calculated to be 1.8×10(-7)M. HR6 could stop HUVEC proliferation in a dose dependent manner and anti-angiogenesis activity was observed using 10μg of HR6 in chorioallantoic membrane assay. In this work, we demonstrate that a HR6 scFv selected from human library phage display specifically blocks VEGF signaling, furthermore, this scFv has an anti-angiogenesis effect and because of its small size has more tissue diffusion. The HR6 antibody was isolated form a human library thus, it is not immunogenic for humans and could serve as a potential therapeutic agent in cancer.

  14. Stability of llama heavy chain antibody fragments under extreme conditions

    NARCIS (Netherlands)

    Dolk, E.

    2004-01-01

    Camelids have next to their normal antibodies, a unique subset of antibodies lacking light chains. The resulting single binding domain, VHH, of these heavy chain antibodies consequently have unique properties. A high stability is one of these properties, which was investigated in this thesis. The a

  15. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.

    Directory of Open Access Journals (Sweden)

    Angel M Cuesta

    Full Text Available There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA, a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.

  16. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus

    Science.gov (United States)

    Marcobal, Angela; Liu, Xiaowen; Zhang, Wenlei; Dimitrov, Antony S.; Jia, Letong; Lee, Peter P.; Fouts, Timothy R.; Parks, Thomas P.

    2016-01-01

    Abstract Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission. PMID:26950606

  17. Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode.

    Science.gov (United States)

    Kim, Gang-Il; Kim, Kyung-Woo; Oh, Min-Kyu; Sung, Yun-Mo

    2010-03-15

    A new electrochemical technique for the detection of vascular endothelial growth factors (VEGFs) as a cancer-related biomarker is presented in this paper. Gold nanoparticles (Au NPs) were self-assembled onto an indium tin oxide (ITO) electrode to prepare a modified sandwich type electrochemical immunoassay platform. VEGF antibodies were cleaved into two half-fragments by 2-mercaptoethylamine-HCl (2-MEA) and the fragments were immobilized onto the Au NP substrates by their thiol groups. Through this strategy, randomly oriented attachment of antibodies was prevented which frequently occurs in a general use of whole antibody and reduces the number of available sites for the attachment of target molecules. VEGF target molecules were applied to the immunoelectrodes and they combined with the antibody fragments covering the Au NP electrode, forming antigen-antibody complexes. Then, ferrocene-tagged antibodies, which release electrons under a proper applied potential, were added to the system and they combined with the VEGF molecules pre-attached to the antibody fragments. The redox current of ferrocene measured by the differential pulse voltammetry (DPV) increased almost linearly from 1.27 x 10(-4) to 4.17 x 10(-4)A according to the increase in the concentration of the VEGF target molecules from 100 to 600 pg/ml. The measured current values represent the concentration of the VEGF since they are proportional to the number of ferrocene molecules which is in turn proportional to the concentration of VEGF target molecules. Using this modified sandwich immunoassay with the Au NP/ITO electrode, VEGFs as low as 100 pg/ml were detected with high specificity.

  18. Properties, production and applications of camelid single-domain antibody fragments

    NARCIS (Netherlands)

    Harmsen, M.M.; Haard, de H.J.

    2007-01-01

    Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms a

  19. Generation of recombinant alpaca VHH antibody fragments for the detection of the mycotoxin ochratoxin A

    NARCIS (Netherlands)

    Houwelingen, van A.M.M.L.; Saeger, de T.; Rusanova, T.; Waalwijk, C.; Beekwilder, M.J.

    2008-01-01

    To develop sensor technologies based on genetically engineered recognition elements, recombinant antibodies characterised by high stability are a prerequisite. Here we describe the first successful isolation of recombinant alpaca single-domain antibody fragments with high affinity to the mycotoxin o

  20. Modification of fibrin network ultrastructure by Fab fragments specific for different domain of fibrinogen.

    Science.gov (United States)

    Cierniewski, C S; Janiak, A; Wyroba, E

    1986-01-01

    Kinetics of inhibition of fibrin monomer polymerization produced by Fab fragments prepared from immunochemically purified monospecific antibodies to the surface epitopes of different domains of fibrinogen molecule has been correlated with electron microscopic observations of resulting specimens. Fab fragments prepared from anti FgD antisera were the most efficient inhibitors of thrombin-catalysed conversion of fibrinogen to fibrin; polymerization of fibrin monomers as detected spectrophotometrically was abolished at 2:1 molar ratio of anti FgD Fab fragments to fibra monomer. These Fab fragments acting as a steric hindrance of polymerization sites inhibited the first stage of fibrin monomer aggregation. Interaction of Fab fragments derived from antibodies specific for alpha 239-476 with corresponding segment of fibrinogen molecule resulted in a weak inhibition of fibrin monomer polymerization. However, fibrin obtained in the presence of these Fab fragments was significantly modified and showed no periodicity. This observation may suggest that anti alpha 239-476 Fab impaired the course of the second stage of fibrin monomer polymerization, i.e. lateral association of fibrin fibrils.

  1. Engineered single-chain variable fragment antibody for immunodiagnosis of groundnut bud necrosis virus infection.

    Science.gov (United States)

    Maheshwari, Yogita; Vijayanandraj, S; Jain, R K; Mandal, Bikash

    2015-05-01

    Few studies have been done on engineered antibodies for diagnosis of tospovirus infections. The present study was undertaken to develop a single-chain variable fragment (scFv) for specific diagnosis of infection by groundnut bud necrosis virus (GBNV), the most prevalent serogroup IV tospovirus in India. Heavy chain (372 nucleotide [nt]) and light chain (363 nt) variable region clones obtained from a hybridoma were used to make an scFv construct that expressed a ~29-kDa protein in E. coli. The scFv specifically detected GBNV in field samples of cowpea, groundnut, mung bean, and tomato, and it did not recognize watermelon bud necrosis virus, a close relative of GBNV belonging to tospovirus serogroup IV. This study for the first time demonstrated the application of a functional scFv against a serogroup-IV tospovirus.

  2. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity.

    Science.gov (United States)

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C

    2014-06-01

    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  3. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    Science.gov (United States)

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening.

  4. Shark Variable New Antigen Receptor (VNAR Single Domain Antibody Fragments: Stability and Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Stewart Nuttall

    2013-01-01

    Full Text Available The single variable new antigen receptor domain antibody fragments (VNARs derived from shark immunoglobulin new antigen receptor antibodies (IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds. As single domains, they demonstrate favorable size and cryptic epitope recognition properties, making them attractive in diagnosis and therapy of numerous disease states. Here, we examine the stability of VNAR domains with a focus on a family of VNARs specific for apical membrane antigen 1 (AMA-1 from Plasmodium falciparum. The VNARs are compared to traditional monoclonal antibodies (mAbs in liquid, lyophilized and immobilized nitrocellulose formats. When maintained in various formats at 45 °C, VNARs have improved stability compared to mAbs for periods of up to four weeks. Using circular dichroism spectroscopy we demonstrate that VNAR domains are able to refold following heating to 80 °C. We also demonstrate that VNAR domains are stable during incubation under potential in vivo conditions such as stomach acid, but not to the protease rich environment of murine stomach scrapings. Taken together, our results demonstrate the suitability of shark VNAR domains for various diagnostic platforms and related applications.

  5. Generation and characterization of a human single-chain fragment variable (scFv antibody against cytosine deaminase from Yeast

    Directory of Open Access Journals (Sweden)

    Tombesi Marina

    2008-09-01

    Full Text Available Abstract Background The ability of cytosine deaminase (CD to convert the antifungal agent 5-fluorocytosine (5-FC into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT aiming to improve the therapeutic ratio (benefit versus toxic side-effects of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.

  6. Screening of Human Antibody Fab Fragment against HBsAg and the Construction of its dsFv Form

    Directory of Open Access Journals (Sweden)

    Leili Jia, Jiyun Yu, Hongbin Song, Xuelin Liu, Weina Ma, Yuanyong Xu, Chuanfu Zhang, Shicun Dong, Qiao Li

    2008-01-01

    Full Text Available The objective of this study was to pursue the techniques involving the screening of the human antibody Fab fragment against hepatitis B virus surface antigen (HBsAg and the construction of its disulfide-stabilized Fv fragment (dsFv. The phage antibody Fab fragments against HBsAg were screened from the human combinatorial immunoglobulin library. Sequence analysis revealed that its heavy chain gene was complete, but the light chain gene was lost. To improve the affinity of the antibody by chain shuffling, a human antibody light chain gene repertoire was generated by reverse transcriptase-polymerase chain reaction (RT-PCR from the human peripheral blood lymphocytes. A phage antibody sub-library was then constructed by inserting the light chain gene repertoire into the phagmid that contained the Fd gene. Five clones with appreciably higher absorbance than that of the original clone were obtained, which indicated that the affinity of the light chain-shuffled phage antibodies was improved. Then, the mutated genes of dsFv against HBsAg were constructed by using PCR-based point mutagenesis method. Purified VH and VL proteins were folded into a 25-kDa protein, designated as anti-HBsAg dsFv. ELISA and competition ELISA revealed that the dsFv maintained the specificity of the Fab by binding to HBsAg, even through with a lower binding activity. These results have facilitated the undertaking of further functional analyses of the constructed dsFv, and may therefore provide an improved technique for the production and application of dsFvs against HBsAg.

  7. Stirred batch crystallization of a therapeutic antibody fragment.

    Science.gov (United States)

    Hebel, Dirk; Huber, Sabine; Stanislawski, Bernd; Hekmat, Dariusch

    2013-07-20

    Technical-scale crystallization of therapeutic proteins may not only allow for a significant cost-reduction in downstream processing, but also enable new applications, e.g., the use of crystal suspensions for subcutaneous drug delivery. In this work, the crystallization of the antigen-binding fragment FabC225 was studied. First, vapor diffusion crystallization conditions from the literature were transferred to 10μL-scale microbatch experiments. A phase diagram was developed in order to identify the crystallization window. The conditions obtained from the microbatch experiments were subsequently transferred to parallelized 5mL-scale stirred-tank crystallizers. This scalable and reproducible agitated crystallization system allowed for an optimization of the crystallization process based on quantitative measurements. The optimized crystallization process resulted in an excellent yield of 99% in less than 2h by increasing the concentration of the crystallization agent ammonium sulfate during the process. The successful scalability of the Fab fragment crystallization process to 100mL-scale crystallizers based on geometric similarity was demonstrated. A favorable crystal size distribution was obtained. Furthermore, a wash step was introduced in order to remove unfavorable low-molecular substances from the crystals.

  8. Selection of a breast cancer subpopulation-specific antibody using phage display on tissue sections

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Meldgaard, Theresa; Fridriksdottir, Agla J

    2015-01-01

    of breast cancer may provide crucial knowledge for the development of individualized therapy. However, this process is challenged by the availability of biomarkers able to identify subpopulations specifically. Here, we demonstrate an approach for phage display selection of recombinant antibody fragments...

  9. Site-Specific Photolabeling of the IgG Fab Fragment Using a Small Protein G Derived Domain.

    Science.gov (United States)

    Kanje, Sara; von Witting, Emma; Chiang, Samuel C C; Bryceson, Yenan T; Hober, Sophia

    2016-09-21

    Antibodies are widely used reagents for recognition in both clinic and research laboratories all over the world. For many applications, antibodies are labeled through conjugation to different reporter molecules or therapeutic agents. Traditionally, antibodies are covalently conjugated to reporter molecules via primary amines on lysines or thiols on cysteines. While efficient, such labeling is variable and nonstoichiometric and may affect an antibody's binding to its target. Moreover, an emerging field for therapeutics is antibody-drug conjugates, where a toxin or drug is conjugated to an antibody in order to increase or incorporate a therapeutic effect. It has been shown that homogeneity and controlled conjugation are crucial in these therapeutic applications. Here we present two novel protein domains developed from an IgG-binding domain of Streptococcal Protein G. These domains show obligate Fab binding and can be used for site-specific and covalent attachment exclusively to the constant part of the Fab fragment of an antibody. The two different domains can covalently label IgG of mouse and human descent. The labeled antibodies were shown to be functional in both an ELISA and in an NK-cell antibody-dependent cellular cytotoxicity assay. These engineered protein domains provide novel tools for controlled labeling of Fab fragments and full-length IgG.

  10. Phage-display libraries of murine and human antibody Fab fragments

    DEFF Research Database (Denmark)

    Engberg, J; Andersen, P S; Nielsen, L K

    1996-01-01

    We provide efficient and detailed procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. In addition, protocols for producing and using ultra-electrocompetent cells, for producing Fab...

  11. Utility of recombinant Fragment C for assessment of anti-tetanus antibodies in plasma

    Science.gov (United States)

    Ramakrishnan, Girija; Pedersen, Karl; Guenette, Denis; Sink, Joyce; Haque, Rashidul; Petri, William A.; Herbein, Joel; Gilchrist, Carol A.

    2016-01-01

    Anti-tetanus antibodies in biological samples are typically detected using an ELISA based on toxoided tetanus neurotoxin as antigen. We demonstrate that recombinantly produced Fragment C of the toxin heavy chain (rFragC) is an effective alternative antigen for assessment of tetanus- immune status in plasma samples. PMID:25749462

  12. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.

    2012-01-01

    We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to

  13. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  14. Yeast display of antibody fragments: a discovery and characterization platform

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, Michael; Siegel, Robert W.

    2004-07-01

    This review will focus on some of the novel attributes of the yeast surface display platform for the discovery and characterization of novel affinity reagents, optimization of those reagents, and novel uses of the platform. This is not intended to serve as an exhaustive review on the broader topic of general scFv technologies (see Winter et al., 1994; Smith and Petrenko, 1997; Bradbury et al., 2003) Furthermore, the scFv format of antibodies are easily manipulated through molecular cloning into a number of other formats such IgG, Fab, diabodies and such, for use in down steam applications and the reader is encouraged to read ?IgG?, ?Fab?, or your favorite format whenever scFv is seen in this review. This review is presented in 5 parts; (1) description of yeast display and its components, (2) library types and construction methods, (3) screening approaches for non-immune libraries and benefits, (4) screening approaches for directed evolution, kinetic on and off rates and (5) epitope complementation binning of clones.

  15. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    Science.gov (United States)

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency.

  16. Directed immobilization of reduced antibody fragments onto a novel SAM on gold for myoglobin impedance immunosensing.

    Science.gov (United States)

    Billah, Md Morsaline; Hodges, Christopher S; Hays, Henry C W; Millner, P A

    2010-11-01

    The successful construction of an immunosensor depends on having an effective procedure for immobilising the bio-recognition element to the transducer surface. In the present study, an amino-terminated 4-aminothiophenol (ATP) self-assembled monolayer (SAM) was modified with heterobifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl] cyclohexane-1-carboxylate to couple reduced anti-myoglobin half-antibody fragments. The disulphide groups present in the hinge region of IgG molecules were selectively cleaved by 2-mercaptoethylamine to produce reduced half-antibody fragments with free sulphydryl groups. The maleimide terminated 4-ATP SAM modified surface was coupled to these reduced antibody fragments to produce highly oriented immobilization of the half-antibody via its Fc domain and to allow free access to the Fv bindings sites. This represents an improvement by comparison with biotin/avidin mediated IgG attachment which is essentially randomly oriented. Functional immunosensors were able to detect myoglobin in both phosphate buffered saline and whole serum over the range of concentrations from 10(-13)M to 10(-6)M, and order of magnitude better than avidin/biotin linked immunosensors. In addition, atomic force microscopy (AFM) was carried out to elucidate the nanotopology of the immunosensor surface at different stages of fabrication; the images demonstrate that half antibodies bind as described and show structural changes on subsequent antigen binding.

  17. Assay for the specificity of monoclonal antibodies in crossed immunoelectrophoresis

    DEFF Research Database (Denmark)

    Skjødt, K; Schou, C; Koch, C

    1984-01-01

    A method is described based on crossed immunoelectrophoresis of a complex antigen mixture in agarose gel followed by incubation of the gel with the monoclonal antibody. The bound monoclonal antibody is detected by the use of a secondary enzyme-labelled antibody. Using this technique we have been...... I molecules. In other experiments using the same technique we demonstrated the reaction of a monoclonal antibody specific for chicken Ig light chains. Udgivelsesdato: 1984-Aug-3...

  18. Elicitation of structure-specific antibodies by epitope scaffolds

    OpenAIRE

    2010-01-01

    Elicitation of antibodies against targets that are immunorecessive, cryptic, or transient in their native context has been a challenge for vaccine design. Here we demonstrate the elicitation of structure-specific antibodies against the HIV-1 gp41 epitope of the broadly neutralizing antibody 2F5. This conformationally flexible region of gp41 assumes mostly helical conformations but adopts a kinked, extended structure when bound by antibody 2F5. Computational techniques were employed to transpl...

  19. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    Science.gov (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding.

  20. Development of Phage-Based Antibody Fragment Reagents for Affinity Enrichment of Bacterial Immunoglobulin G Binding Proteins.

    Science.gov (United States)

    Säll, Anna; Sjöholm, Kristoffer; Waldemarson, Sofia; Happonen, Lotta; Karlsson, Christofer; Persson, Helena; Malmström, Johan

    2015-11-06

    Disease and death caused by bacterial infections are global health problems. Effective bacterial strategies are required to promote survival and proliferation within a human host, and it is important to explore how this adaption occurs. However, the detection and quantification of bacterial virulence factors in complex biological samples are technically demanding challenges. These can be addressed by combining targeted affinity enrichment of antibodies with the sensitivity of liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS). However, many virulence factors have evolved properties that make specific detection by conventional antibodies difficult. We here present an antibody format that is particularly well suited for detection and analysis of immunoglobulin G (IgG)-binding virulence factors. As proof of concept, we have generated single chain fragment variable (scFv) antibodies that specifically target the IgG-binding surface proteins M1 and H of Streptococcus pyogenes. The binding ability of the developed scFv is demonstrated against both recombinant soluble protein M1 and H as well as the intact surface proteins on a wild-type S. pyogenes strain. Additionally, the capacity of the developed scFv antibodies to enrich their target proteins from both simple and complex backgrounds, thereby allowing for detection and quantification with LC-SRM MS, was demonstrated. We have established a workflow that allows for affinity enrichment of bacterial virulence factors.

  1. Development of a Recombinant Antibody with Specificity for Chelated Uranyl Ions

    Energy Technology Data Exchange (ETDEWEB)

    X. Li; A.M. Kriegel; T.C. Bishop; R.C. Blake; E. Figueiredo; H. Yu; D.A. Blake

    2005-04-18

    The goal of our project is to continue the development of new techniques for rapid, automated identification of radionuclides, metals, and chelators that may contaminant sur face and groundwater at DOE sites. One of the four specific aims of the present project is to develop new technologies in antibody engineering that will enhance our immunosensor program. Recombinant antibodies have potential advantages over monoclonal antibodies produced by standard hybridoma technology. The cloned genes represent a stable, recoverable source for antibody production. In addition, the recombinant format offers opportunities for protein engineering that enhances antibody performance and for studies that relate antibody sequence to binding activity. In this study, a hybridoma that synthesized an antibody (12F6) that recognized a 1:1 complex between 2,9-dicarboxyl-1,10- phenanthroline (DCP) and UO{sub 2}{sup 2+} was used as a source of RNA for the development of a recombinant (Fab){sub 2} fragment. RNA was isolated from the 12F6 hybridoma and the cDNA encoding the entire {kappa} light chain and the linked VH and C1 portions of the heavy chain were amplified from total RNA. cDNA sequences were verified by comparison with the N-terminal amino acid sequences of the light and heavy chains of the native 12F6 monoclonal antibody. A leader sequence and appropriate restriction sites were added to each chain, and the fragments were ligated into a commercial dicistronic vector (pBudCE4.1, Invitrogen, Inc.). COS-1 cells were transfected with this vector and the culture supernatant was assayed for activity and the (Fab){sub 2} protein. Cells transfected with vector containing 12F6 cDNA synthesized and secreted recombinant (Fab){sub 2} fragments that bound to the UO{sub 2}{sup 2+}-DCP complex with an affinity indistinguishable from that of a (Fab){sub 2} fragment prepared from the native antibody. Molecular models of the heavy and light chain variable domains were constructed according to the

  2. Characterization of methylsulfinylalkyl glucosinolate specific polyclonal antibodies

    DEFF Research Database (Denmark)

    Mirza, Nadia Muhammad Akram; Schulz, Alexander; Halkier, Barbara Ann

    2016-01-01

    Antibodies towards small molecules, like plant specialized metabolites, are valuable tools for developing quantitative and qualitative analytical techniques. Glucosinolates are the specialized metabolites characteristic of the Brassicales order. Here we describe the characterization of polyclonal...... rabbit antibodies raised against the 4-methylsulfinylbutyl glucosinolate, glucoraphanin that is one of the major glucosinolates in the model plant Arabidopsis thaliana (hereafter Arabidopsis). Analysis of the cross-reactivity of the antibodies against a number of glucosinolates demonstrated...... that it was highly selective for methionine-derived aliphatic glucosinolates with a methyl-sulfinyl group in the side chain. Use of crude plant extracts from Arabidopsis mutants with different glucosinolate profiles showed that the antibodies recognized aliphatic glucosinolates in a plant extract and did not cross...

  3. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    Science.gov (United States)

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  4. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    Directory of Open Access Journals (Sweden)

    Alison E Mahan

    2016-03-01

    Full Text Available Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  5. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    Science.gov (United States)

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  6. Dimerisation strategies for shark IgNAR single domain antibody fragments.

    Science.gov (United States)

    Simmons, David P; Abregu, Fiona A; Krishnan, Usha V; Proll, David F; Streltsov, Victor A; Doughty, Larissa; Hattarki, Meghan K; Nuttall, Stewart D

    2006-08-31

    Immunoglobulin new antigen receptors (IgNARs) are unique single domain antibodies found in the serum of sharks. The individual variable (VNAR) domains bind antigen independently and are candidates for the smallest antibody-based immune recognition units (approximately 13 kDa). Here, we first isolated and sequenced the cDNA of a mature IgNAR antibody from the spotted wobbegong shark (Orectolobus maculatus) and confirmed the independent nature of the VNAR domains by dynamic light scattering. Second, we asked which of the reported antibody fragment dimerisation strategies could be applied to VNAR domains to produce small bivalent proteins with high functional affinity (avidity). In contrast to single chain Fv (scFv) fragments, separate IgNARs could not be linked into a tandem single chain format, with the resulting proteins exhibited only monovalent binding due solely to interaction of the N-terminal domain with antigen. Similarly, incorporation of C-terminal helix-turn-helix (dhlx) motifs, while resulting in efficiently dimerised protein, resulted in only a modest enhancement of affinity, probably due to an insufficiently long hinge region linking the antibody to the dhlx motif. Finally, generation of mutants containing half-cystine residues at the VNAR C-terminus produced dimeric recombinant proteins exhibiting high functional affinity for the target antigens, but at the cost of 50-fold decreased protein expression levels. This study demonstrates the potential for construction of bivalent or bispecific IgNAR-based binding reagents of relatively small size (approximately 26 kDa), equivalent to a monovalent antibody Fv fragment, for formulation into future diagnostic and therapeutic formats.

  7. Preparation of Polyclonal Antibodies Against Testis-specific Protease 50 and Characterization of Antibody Specificity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Testis-specific protease 50 (TSP50) is a testis-specific oncogene, which is abnormally activated in most tested patients with breast cancer. This property makes it an attractive molecular marker and a promising target for the diagnosis and therapy of breast cancer. In order to obtain the protective and specific polyclonal antibodies for further research, TSP50 cDNA was amplified by RT-PCR from normal human testicular tissue, and inserted into eukaryotic expression vector pcDNA3.1. Rabbit anti-TSP50 polyclonal antibodies were prepared by means of intramuscular injection of pcDNA3.1-TSP50 into the rabbits. Titers of the anti-sera were measured by ELISA and Western blotting with the E. coli cell lysate containing the induced GST-TSP50 fusion protein as an antigen. In addition, we examined the expression of TSP50 in both breast cancer cell line MCF-7 and breast cancer tissue by immunofluorescent and immunohistochemistry analysis.

  8. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  9. Structural models of antibody variable fragments: A method for investigating binding mechanisms

    Science.gov (United States)

    Petit, Samuel; Brard, Frédéric; Coquerel, Gérard; Perez, Guy; Tron, François

    1998-03-01

    The value of comparative molecular modeling for elucidating structure-function relationships was demonstrated by analyzing six anti-nucleosome autoantibody variable fragments. Structural models were built using the automated procedure developed in the COMPOSER software, subsequently minimized with the AMBER force field, and validated according to several standard geometric and chemical criteria. Canonical class assignment from Chothia and Lesk's [Chottin and Lesk, J. Mol. Biol., 196 (1987) 901; Chothia et al., Nature, 342 (1989) 877] work was used as a supplementary validation tool for five of the six hypervariable loops. The analysis, based on the hypothesis that antigen binding could occur through electrostatic interactions, reveals a diversity of possible binding mechanisms of anti-nucleosome or anti-histone antibodies to their cognate antigen. These results lead us to postulate that anti-nucleosome autoantibodies could have different origins. Since both anti-DNA and anti-nculeosome autoantibodies are produced during the course of systemic lupus erythematosus, a non-organ specific autoimmune disease, a comparative structural and electrostatic analysis of the two populations of autoantibodies may constitute a way to elucidate their origin and the role of the antigen in tolerance breakdown. The present study illustrates some interests, advantages and limits of a methodology based on the use of comparative modeling and analysis of molecular surface properties.

  10. Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments.

    Directory of Open Access Journals (Sweden)

    Tong Li

    2015-07-01

    Full Text Available The effects of somatic mutations that transform polyspecific germline (GL antibodies to affinity mature (AM antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM. We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab, and subsequently, the DCM was combined with molecular dynamics (MD simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation.

  11. Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments.

    Science.gov (United States)

    Li, Tong; Tracka, Malgorzata B; Uddin, Shahid; Casas-Finet, Jose; Jacobs, Donald J; Livesay, Dennis R

    2015-07-01

    The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation.

  12. Proteoliposome-based selection of a recombinant antibody fragment against the human M2 muscarinic acetylcholine receptor.

    Science.gov (United States)

    Suharni; Nomura, Yayoi; Arakawa, Takatoshi; Hino, Tomoya; Abe, Hitomi; Nakada-Nakura, Yoshiko; Sato, Yumi; Iwanari, Hiroko; Shiroishi, Mitsunori; Asada, Hidetsugu; Shimamura, Tatsuro; Murata, Takeshi; Kobayashi, Takuya; Hamakubo, Takao; Iwata, So; Nomura, Norimichi

    2014-12-01

    The development of antibodies against human G-protein-coupled receptors (GPCRs) has achieved limited success, which has mainly been attributed to their low stability in a detergent-solubilized state. We herein describe a method that can generally be applied to the selection of phage display libraries with human GPCRs reconstituted in liposomes. A key feature of this approach is the production of biotinylated proteoliposomes that can be immobilized on the surface of streptavidin-coupled microplates or paramagnetic beads and used as a binding target for antibodies. As an example, we isolated a single chain Fv fragment from an immune phage library that specifically binds to the human M2 muscarinic acetylcholine receptor with nanomolar affinity. The selected antibody fragment recognized the GPCR in both detergent-solubilized and membrane-embedded forms, which suggests that it may be a potentially valuable tool for structural and functional studies of the GPCR. The use of proteoliposomes as immunogens and screening bait will facilitate the application of phage display to this difficult class of membrane proteins.

  13. Antibody specific epitope prediction-emergence of a new paradigm.

    Science.gov (United States)

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data.

  14. Dromedary immune response and specific Kv2.1 antibody generation using a specific immunization approach.

    Science.gov (United States)

    Hassiki, Rym; Labro, Alain J; Benlasfar, Zakaria; Vincke, Cécile; Somia, Mahmoud; El Ayeb, Mohamed; Muyldermans, Serge; Snyders, Dirk J; Bouhaouala-Zahar, Balkiss

    2016-12-01

    Voltage-gated potassium (Kv) channels form cells repolarizing power and are commonly expressed in excitable cells. In non-excitable cells, Kv channels such as Kv2.1 are involved in cell differentiation and growth. Due to the involvement of Kv2.1 in several physiological processes, these channels are promising therapeutic targets. To develop Kv2.1 specific antibody-based channel modulators, we applied a novel approach and immunized a dromedary with heterologous Ltk- cells that overexpress the mouse Kv2.1 channel instead of immunizing with channel protein fragments. The advantage of this approach is that the channel is presented in its native tetrameric configuration. Using a Cell-ELISA, we demonstrated the ability of the immune serum to detect Kv2.1 channels on the surface of cells that express the channel. Then, using a Patch Clamp electrophysiology assay we explored the capability of the dromedary serum in modulating Kv2.1 currents. Cells that were incubated for 3h with serum taken at Day 51 from the start of the immunization displayed a statistically significant 2-fold reduction in current density compared to control conditions as well as cells incubated with serum from Day 0. Here we show that an immunization approach with cells overexpressing the Kv2.1 channel yields immune serum with Kv2.1 specific antibodies.

  15. Bi-specific antibody therapy for the treatment of cancer

    NARCIS (Netherlands)

    Withoff, S; Helfrich, W; de Leij, LFMH; Molema, G

    2001-01-01

    Bi-specific antibodies (BsAbs) combine immune cell activation with tumor cell recognition as a result of which tumor cells are killed by pre-defined effector cells. In this review, a brief introduction to monoclonal antibodies will precede a more in-depth presentation of the current status of BsAb t

  16. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    Science.gov (United States)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; Montaño, Sherwin P.; Kurosawa, Kohei; Zheng, Yupeng; Akin, Louesa R.; Świst-Rosowska, Kalina M.; Grzybowski, Adrian T.; Koide, Akiko; Krajewski, Krzysztof; Strahl, Brian D.; Kelleher, Neil L.; Ruthenburg, Alexander J.; Koide, Shohei

    2016-01-01

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies. PMID:26862167

  17. Rational Design of CXCR4 Specific Antibodies with Elongated CDRs

    Science.gov (United States)

    2015-01-01

    The bovine antibody (BLV1H12) which has an ultralong heavy chain complementarity determining region 3 (CDRH3) provides a novel scaffold for antibody engineering. By substituting the extended CDRH3 of BLV1H12 with modified CXCR4 binding peptides that adopt a β-hairpin conformation, we generated antibodies specifically targeting the ligand binding pocket of CXCR4 receptor. These engineered antibodies selectively bind to CXCR4 expressing cells with binding affinities in the low nanomolar range. In addition, they inhibit SDF-1-dependent signal transduction and cell migration in a transwell assay. Finally, we also demonstrate that a similar strategy can be applied to other CDRs and show that a CDRH2-peptide fusion binds CXCR4 with a Kd of 0.9 nM. This work illustrates the versatility of scaffold-based antibody engineering and could greatly expand the antibody functional repertoire in the future. PMID:25041362

  18. Generation and characterization of novel stromal specific antibodies

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Rheumatoid synovial fibroblasts were used as an immunogen to produce monoclonal antibodies selected for their reactivity with stromal cell antigens. Mice were immunised with low passage whole cell preparations and the subsequent hybridomas were screened by immunohistochemistry on rheumatoid synovium and tonsil sections. The aim was to identify those antibodies that recognised antigens that were restricted to stromal cells and were not expressed on CD45 positive leucocytes. A significant number of antibodies detected antigen that identified endothelial cells. These antibodies were further characterised to determine whether the vessels identified by these antibodies were vascular or lymphatic.From five fusions clones were identified with predominant reactivity with: 1) fibroblasts and endothelial cells; or 2)broad stromal elements (fibroblast, endothelium, epithelium, follicular dendritic cells). A fibroblast-specific antibody that did not also identify vessels was not generated. Examples of each reactivity pattern are discussed.

  19. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3.

    Science.gov (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine

    2003-10-03

    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  20. Specification and development of choreography fragments for a choreography designer

    OpenAIRE

    Schilling, Joas

    2014-01-01

    This thesis specifies choreography fragments. Also the process of extracting them from an existing choreography as well as importing them into another choreography is defined. Then these choreography fragments are implemented for a choreography designer, that was written by Oliver Sonnauer. The implementation also connects the choreography designer with a repository for fragments called Fragmento, which can be used to version, share and reuse fragments easily.

  1. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Minenkova, Olga; Hartung, John

    2016-03-01

    'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications.

  2. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention.

    NARCIS (Netherlands)

    Vegt, E. de; Jong, M. de; Wetzels, J.F.M.; Masereeuw, R.; Melis, M.; Oyen, W.J.G.; Gotthardt, M.; Boerman, O.C.

    2010-01-01

    Peptide-receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs such as octreotide is an effective therapy against neuroendocrine tumors. Other radiolabeled peptides and antibody fragments are under investigation. Most of these compounds are cleared through the kidneys and reabso

  3. Renal toxicity of radiolabeled peptides and antibody fragments: Mechanisms, impact on radionuclide therapy, and strategies for prevention

    NARCIS (Netherlands)

    E. Vegt (Erik); M. de Jong (Marion); J.F.M. Wetzels (Jack); R. Masereeuw (Rosalinde); M.L. Melis (Marleen); W.J. Oyen (Wim); M. Gotthardt (Martin); O.C. Boerman (Otto)

    2010-01-01

    textabstractPeptide-receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs such as octreotide is an effective therapy against neuroendocrine tumors. Other radiolabeled peptides and antibody fragments are under investigation. Most of these compounds are cleared through the kidney

  4. Phospho-Specific Antibody Probes of Intermediate Filament Proteins.

    Science.gov (United States)

    Goto, Hidemasa; Tanaka, Hiroki; Kasahara, Kousuke; Inagaki, Masaki

    2016-01-01

    Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Accumulating data have suggested that IF protein phosphorylation dramatically changes IF structure/dynamics in cells. For the production of an antibody recognizing site-specific protein phosphorylation (a site- and phosphorylation state-specific antibody), we first employed a strategy to immunize animals with an in vitro-phosphorylated polypeptide or a phosphopeptide (corresponding to a phosphorylated residue and its surrounding sequence of amino acids), instead of a phosphorylated protein. Our established methodology not only improves the chance of obtaining a phospho-specific antibody but also has the advantage that one can predesign a targeted phosphorylation site. It is now applied to the production of an antibody recognizing other types of site-specific posttranslational modification, such as acetylation or methylation. The use of such an antibody in immunocytochemistry enables us to analyze spatiotemporal distribution of site-specific IF protein phosphorylation. The antibody is of great use to identify a protein kinase responsible for in vivo IF protein phosphorylation and to monitor intracellular kinase activities through IF protein phosphorylation. Here, we present an overview of our methodology and describe stepwise approaches for the antibody characterization. We also provide some examples of analyses for IF protein phosphorylation involved in mitosis and signal transduction.

  5. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fab fragment specific... Test Systems § 866.5520 Immunoglobulin G (Fab fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fab fragment specific) immunological test system is a device that...

  6. 21 CFR 866.5540 - Immunoglobulin G (Fd fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fd fragment specific... Test Systems § 866.5540 Immunoglobulin G (Fd fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fd fragment specific) immunological test system is a device that consists...

  7. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fc fragment specific... Test Systems § 866.5530 Immunoglobulin G (Fc fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fc fragment specific) immunological test system is a device that consists...

  8. The Intrinsic Dynamics and Unfolding Process of an Antibody Fab Fragment Revealed by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Ji-Guo Su

    2015-12-01

    Full Text Available Antibodies have been increasingly used as pharmaceuticals in clinical treatment. Thermal stability and unfolding process are important properties that must be considered in antibody design. In this paper, the structure-encoded dynamical properties and the unfolding process of the Fab fragment of the phosphocholine-binding antibody McPC603 are investigated by use of the normal mode analysis of Gaussian network model (GNM. Firstly, the temperature factors for the residues of the protein were calculated with GNM and then compared with the experimental measurements. A good result was obtained, which provides the validity for the use of GNM to study the dynamical properties of the protein. Then, with this approach, the mean-square fluctuation (MSF of the residues, as well as the MSF in the internal distance (MSFID between all pairwise residues, was calculated to investigate the mobility and flexibility of the protein, respectively. It is found that the mobility and flexibility of the constant regions are higher than those of the variable regions, and the six complementarity-determining regions (CDRs in the variable regions also exhibit relative large mobility and flexibility. The large amplitude motions of the CDRs are considered to be associated with the immune function of the antibody. In addition, the unfolding process of the protein was simulated by iterative use of the GNM. In our method, only the topology of protein native structure is taken into account, and the protein unfolding process is simulated through breaking the native contacts one by one according to the MSFID values between the residues. It is found that the flexible regions tend to unfold earlier. The sequence of the unfolding events obtained by our method is consistent with the hydrogen-deuterium exchange experimental results. Our studies imply that the unfolding behavior of the Fab fragment of antibody McPc603 is largely determined by the intrinsic dynamics of the protein.

  9. Construction of single-chain variable fragment antibodies against MCF-7 breast cancer cells.

    Science.gov (United States)

    Zuhaida, A A; Ali, A M; Tamilselvan, S; Alitheen, N B; Hamid, M; Noor, A M; Yeap, S K

    2013-11-18

    A phage display library of single chain variable fragment (scFv) against MCF-7 breast cancer cells was constructed from C3A8 hybridoma cells. RNA from the C3A8 was isolated, cDNA was constructed, and variable heavy and light immunoglobulin chain gene region were amplified using PCR. The variable heavy and light chain gene regions were combined with flexible linker, linked to a pCANTAB 5E phagemid vector and electrophoresed into supE strain of Escherichia coli TG1 cells. Forty-eight clones demonstrated positive binding activity to MCF-7 breast cancer cell membrane fragments and the strongest of 48 clones was selected for analysis. The anti-MCF-7 library evaluated by SfiI and NotI digests demonstrated that anti-MCF-7 scFv antibodies possess individual patterns that should be able to recognize distinct human breast cancer cells. The C3A8 scFv, with an apparent molecular weight of 32 kDa, showed high homology (99%) with single chain antibody against rice stripe virus protein P20. In summary, the anti MCF-7 scFv antibody can be used for pretargeting breast cancer for clinical diagnosis of patients; it also has potential for therapeutic applications.

  10. Redistribution of flexibility in stabilizing antibody fragment mutants follows Le Chatelier's principle.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Le Châtelier's principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc., La Châtelier's principle states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate that the effects of stabilizing mutations on the rigidity ⇔ flexibility equilibrium within the native state ensemble manifest themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-β receptor antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed. Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example, a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility within the VH β4/β5 loop is a noteworthy illustration of this long-range effect.

  11. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-01

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  12. Monoclonal antibody-based, selective isolation of DNA fragments containing an alkylated base to be quantified in defined gene sequences.

    Science.gov (United States)

    Hochleitner, K; Thomale, J; Nikitin AYu; Rajewsky, M F

    1991-08-25

    We have established a sensitive, monoclonal antibody (Mab)-based procedure permitting the selective enrichment of sequences containing the miscoding alkylation product O6-ethylguanine (O6-EtGua) from mammalian DNA. H5 rat hepatoma cells were reacted with the N-nitroso carcinogen N-ethyl-N-nitrosourea in vitro, to give overall levels of greater than or equal to 25 O6-EtGua residues per diploid genome (corresponding to O6-EtGua/guanine molar ratios of greater than or equal to 10(-8). For analysis, enzymatically restricted DNA from these cells is incubated with an antibody specific for O6-ethyl-2'-deoxyguanosine, the resulting Mab-DNA complexes are separated from (O6-EtGua)-free fragments by filtration through a nitrocellulose (NC) membrane, and the DNA is recovered from the filter-bound complexes quantitatively. The efficiency of Mab binding to DNA fragments containing O6-EtGua is constant over a range of O6-EtGua/guanine molar ratios between 10(-5) and 10(-8). (O6-EtGua)-containing restriction fragments encompassing known gene sequences (e.g., the immunoglobulin E heavy chain gene of H5 rat hepatoma cells used as a model in this study) are subsequently amplified by PCR and quantified by slot-blot hybridisation. The content and distribution of a specific carcinogen-DNA adduct in defined sequences of genomic DNA can thus be analyzed as well as the kinetics of intragenomic (toposelective) repair of any DNA lesion for which a suitable Mab is available.

  13. Generation and characterization of monoclonal antibodies specific to Coenzyme A

    Directory of Open Access Journals (Sweden)

    Malanchuk O. M.

    2015-06-01

    Full Text Available Aim. Generation of monoclonal antibodies specific to Coenzyme A. Methods. Hybridoma technique. KLH carrier protein conjugated with CoA was used for immunization. Screening of positive clones was performed with BSA conjugated to CoA. Results. Monoclonal antibody that specifically recognizes CoA and CoA derivatives, but not its precursors ATP and cysteine has been generated. Conclusion. In this study, we describe for the first time the production and characterization of monoclonal antibodies against CoA. The monoclonal antibody 1F10 was shown to recognize specifically CoA in Western blotting, ELISA and immunoprecipitation. These properties make this antiboby a particularly valuable reagent for elucidating CoA function in health and disease.

  14. The protective effects and underlying mechanism of an anti-oligomeric Aβ42 single-chain variable fragment antibody.

    Science.gov (United States)

    Zhang, Yuan; Chen, Xu; Liu, Jinyu; Zhang, Yingjiu

    2015-12-01

    Oligomeric Aβ42 aggregates have been identified as one of the major neurotoxic components of Alzheimer's disease (AD). Immunotherapy targeted against these Aβ42 aggregates has been proposed as an appropriate therapeutic approach for the treatment of AD. Here, we report an anti-oligomeric Aβ42 single-chain variable fragment (scFv) antibody, named MO6, obtained from the human antibody library of a healthy donor. ScFv MO6 specifically recognized and bound to the oligomeric Aβ42 (Aβ42 oligomers and immature protofibrils; 18-37 kDa), and reduced their levels mainly by blocking their formation, although scFv MO6 also induced disaggregation of Aβ42 aggregates. More importantly, scFv MO6 ameliorated or attenuated Aβ42-induced cytotoxicity and increased cell viability by up to 33%. Furthermore, scFv MO6 efficiently passed through an in vitro blood-brain barrier (BBB) model with a delivery efficiency of 66% after 60 min post-administration. ScFv MO6 is a monovalent antibody with an affinity constant (KD) of 5.2×10(-6) M for Aβ42 oligomers. Molecular docking simulations of Aβ42 to scFv MO6 revealed that the approach and specific binding of scFv MO6 to oligomeric Aβ42 aggregates was achieved by conformational recognition and directed induction, which resulted in a more dynamic adaptation of Aβ42 to scFv MO6, occurring mainly in the N-terminal (3-4), middle (12-19) and C-terminal (34-42) regions of Aβ42. This binding mode of scFv MO6 to Aβ42 explains its protective effects against oligomeric Aβ42. Our findings may be applied for the design of a smaller antibody specific for Aβ42 oligermers.

  15. Immunoscintigraphy in the detection of tuberculosis with radiolabelled antibody fragment against Mycobacterium bovis bacillus Calmette-Guerin. A preliminary study in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Park, C.Y.; Yoo, H.S.; Lee, J.T. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Diagnostic Radiology); Shin, K.H. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Orthopedic Surgery); Cho, S.N.; Shin, J.S. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Microbiology); Lee, M.G. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Dermatology); Yang, W.I. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Pathology); Awh, O.D. (Korea Atomic Energy Research Inst., Seoul (Korea, Republic of). Dept. of Reactor Isotopes)

    1992-12-01

    Immunoscintigraphy with radiolabelled monoclonal antibodies is widely used to detect solid tumours, but only a few trials have been carried out concerning the specific in vivo localization of an inflammatory process. The purpose of this study was to investigate the detectability of tuberculous foci utilizing this method with radiolabelled bacille Colmette-Guerin (BCG)-specific F(ab')[sub 2] in rabbits. All of the tuberculous lesions (n=8) were clearly visualized on serial scintigraphy for up to 48 h after injection of the antibody. Immunohistochemical and Ziel-Neelson staining of the tuberculous lesions confirmed the presence of the tuberculous antigens and bacilli. It failed to demonstrate any sustained retention of the BCG-specific antibody fragment in the control group with syphilitic orchitis (n=2). Therefore, the specific in vivo localization of tuberculosis is feasible by immunoscintigraphy. (orig.).

  16. Exploiting Cross-reactivity to Neutralize Two Different Scorpion Venoms with One Single Chain Antibody Fragment*

    OpenAIRE

    Riaño-Umbarila, Lidia; Contreras-Ferrat, Gabriel; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Corzo, Gerardo; Possani, Lourival D.; Becerril, Baltazar

    2010-01-01

    We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Bece...

  17. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells.

    Science.gov (United States)

    Kalaaji, Manar; Mortensen, Elin; Jørgensen, Leif; Olsen, Randi; Rekvig, Ole Petter

    2006-06-01

    Antibodies to dsDNA represent a classification criterion for systemic lupus erythematosus. Subpopulations of these antibodies are involved in lupus nephritis. No known marker separates nephritogenic from non-nephritogenic anti-dsDNA antibodies. It is not clear whether specificity for glomerular target antigens or intrinsic antibody-affinity for dsDNA or nucleosomes is a critical parameter. Furthermore, it is still controversial whether glomerular target antigen(s) is constituted by nucleosomes or by non-nucleosomal glomerular structures. Previously, we have demonstrated that antibodies eluted from murine nephritic kidneys recognize nucleosomes, but not other glomerular antigens. In this study, we determined the structures that bind nephritogenic autoantibodies in vivo by transmission electron microscopy, immune electron microscopy, and colocalization immune electron microscopy using experimental antibodies to dsDNA, to histones and transcription factors, or to laminin. The data obtained are consistent and point at glomerular basement membrane-associated nucleosomes as target structures for the nephritogenic autoantibodies. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling or caspase-3 assays demonstrate that lupus nephritis is linked to intraglomerular cell apoptosis. The data suggest that nucleosomes are released by apoptosis and associate with glomerulus basement membranes, which may then be targeted by pathogenic anti-nucleosome antibodies. Thus, apoptotic nucleosomes may represent both inducer and target structures for nephritogenic autoantibodies in systemic lupus erythematosus.

  18. Serrumab: a novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities.

    Science.gov (United States)

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Peigneur, Steve; Arantes, Eliane Candiani; Tytgat, Jan; Barbosa, José Elpidio

    2014-01-01

    In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tityus serrulatus (Ts), is considered the most dangerous species in the country, being responsible for the most severe clinical cases of envenomation. Currently, the administration of serum produced in horses is recognized and used as a treatment for accidents with scorpions. However, horse herds' maintenance is costly and the antibodies are heterologous, which can cause anaphylaxis and Serum Sickness. In the present work, a human monoclonal fragment antibody, Serrumab, has been analysed. Toxin neutralizing effects of Serrumab were evaluated using a two-electrode voltage-clamp technique. The results show that Serrumab presented a high neutralizing effect against Ts β-toxins (Ts1, 43.2% and Ts2, 68.8%) and none or low neutralizing effect against α-toxins (Ts3, 0% and Ts5, 10%). Additional experiments demonstrated that Serrumab was also able to neutralize the action of toxins from other scorpion genus (Css II, 45.96% and Lqh III, 100%/β- and α-toxins, respectively). This work indicated that Serrumab is able to neutralize many toxins in Ts venom, and could being considered as a neutralizing antibody for formulating a human anti-scorpion serum in Brazil. Additionally, this work demonstrated that Serrumab could neutralize different toxins from distinct scorpion genus. All these results reinforce the idea that Serrumab is a scFv antibody with multiple neutralizing capacities and a promising candidate for inclusion in scorpion anti-venoms against different genera.

  19. Cellulose antibody films for highly specific evanescent wave immunosensors

    Science.gov (United States)

    Hartmann, Andreas; Bock, Daniel; Jaworek, Thomas; Kaul, Sepp; Schulze, Matthais; Tebbe, H.; Wegner, Gerhard; Seeger, Stefan

    1996-01-01

    For the production of recognition elements for evanescent wave immunosensors optical waveguides have to be coated with ultrathin stable antibody films. In the present work non amphiphilic alkylated cellulose and copolyglutamate films are tested as monolayer matrices for the antibody immobilization using the Langmuir-Blodgett technique. These films are transferred onto optical waveguides and serve as excellent matrices for the immobilization of antibodies in high density and specificity. In addition to the multi-step immobilization of immunoglobulin G(IgG) on photochemically crosslinked and oxidized polymer films, the direct one-step transfer of mixed antibody-polymer films is performed. Both planar waveguides and optical fibers are suitable substrates for the immobilization. The activity and specificity of immobilized antibodies is controlled by the enzyme-linked immunosorbent assay (ELISA) technique. As a result reduced non-specific interactions between antigens and the substrate surface are observed if cinnamoylbutyether-cellulose is used as the film matrix for the antibody immobilization. Using the evanescent wave senor (EWS) technology immunosensor assays are performed in order to determine both the non-specific adsorption of different coated polymethylmethacrylat (PMMA) fibers and the long-term stability of the antibody films. Specificities of one-step transferred IgG-cellulose films are drastically enhanced compared to IgG-copolyglutamate films. Cellulose IgG films are used in enzymatic sandwich assays using mucine as a clinical relevant antigen that is recognized by the antibodies BM2 and BM7. A mucine calibration measurement is recorded. So far the observed detection limit for mucine is about 8 ng/ml.

  20. Detection of specific IgE antibodies in parasite diseases

    Directory of Open Access Journals (Sweden)

    Souza-Atta M.L.B.

    1999-01-01

    Full Text Available Activation of Th1 or Th2 cells is associated with production of specific immunoglobulin isotypes, offering the opportunity to use antibody measurement for evaluation of T cell function. Schistosomiasis and visceral leishmaniasis are diseases associated with Th2 activation. However, an IgE response is not always detected in these patients. In the present study we evaluated specific IgE antibodies to S. mansoni and L. chagasi antigens by ELISA after depletion of serum IgG with protein G immobilized on Sepharose beads or RF-absorbent (purified sheep IgG antibodies anti-human IgG. In schistosomiasis patients, specific IgE to SWAP antigen was demonstrable in only 10 of 21 patients (48% (mean absorbance ± SD = 0.102 ± 0.195 when unabsorbed serum was used. Depletion of IgG with protein G increased the number of specific IgE-positive tests to 13 (62% and the use of RF-absorbent increased the number of positive results to 20 (95% (mean absorbances ± SD = 0.303 ± 0.455 and 0.374 ± 0.477, respectively. Specific IgE anti-L. chagasi antibodies were not detected in unabsorbed serum from visceral leishmaniasis patients. When IgG was depleted with protein G, IgE antibodies were detected in only 3 (11% of 27 patients, and the use of RF-absorbent permitted the detection of this isotype in all 27 visceral leishmaniasis sera tested (mean absorbance ± SD = 0.104 ± 0.03. These data show that the presence of IgG antibodies may prevent the detection of a specific IgE response in these parasite diseases. RF-absorbent, a reagent that blocks IgG-binding sites and also removes rheumatoid factor, was more efficient than protein G for the demonstration of specific IgE antibodies.

  1. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...... of the serum antibodies of soy-consuming mice comprised glycinin and beta-conglycinin. Immunoblots with soy protein extract demonstrated antibody reactivity towards both the basic and the acidic chains of glycinin and the beta-conglycinin subunits with an individual response pattern among mice. Moreover......Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...

  2. Characterization of Antibodies for Grain-Specific Gluten Detection.

    Science.gov (United States)

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation.

  3. Microscale characterization of the binding specificity and affinity of a monoclonal antisulfotyrosyl IgG antibody

    DEFF Research Database (Denmark)

    Lassen, K.S.; Bradbury, A.R.; Heegaard, N.H.;

    2008-01-01

    peptides and proteins. The data show that the anti-Tyr(SO(3)H) antibody is completely specific for compounds containing sulfated tyrosyls. Affinity electrophoresis experiments allowed us to estimate dissociation constants for sulfated hirudin fragment (56-65), gastrin-17, and cholecystokinin octapeptide...... (CCK8) in the 1-3 microM range. The affinity of the antibody toward complement 4 protein that contains three sulfotyrosines was analyzed by surface plasmon resonance technology and modeled according to a bivalent-binding model which yielded a K(d1) of 20.1 microM for the monovalent complex. The same...... binding was studied by CE and found to be in the micromolar scale albeit with some uncertainty due to complex separation patterns. The work illustrates the amount of information on antibody-antigen interactions that may be obtained with microelectrophoretic methods consuming minute quantities of material...

  4. [Digitoxin poisoning: reversing ventricular fibrillation with Fab fragments of anti-digoxin antibody].

    Science.gov (United States)

    Domart, Y; Bismuth, C; Schermann, J M; Abuaf, N; Pontal, P G; Baud, F; Bolo, A; Gailliot, M; Fournier, P E

    1982-12-25

    Purified Fab fragments of ovine anti-digoxin antibodies (Wellcome Foundation) were used to treat a patient who attempted suicide by absorbing 10 mg of digitoxin (serum concentration 265 micrograms/l). The poor prognosis, as assessed clinically and from serum potassium levels (7.5 mEq/l), seemed to warrant such a treatment. The weak (6.85%) cross-reactivity elicited in vitro between the anti-digoxin antibodies and digitoxin was compensated by increasing the doses, but improvement was observed with 3.6 g, i.e. about half the effective dosage initially considered. The criteria of effectiveness were clinical, electrocardiographic (reversal of the ventricular fibrillation), biochemical (simultaneous and opposite changes in extra- and intracellular potassium levels, suggesting that ATPase inhibition by digitalis is a reversible process) and toxicological: there was an increase in digitoxin serum levels suggesting displacement of the drug from tissue sites to plasma and other extracellular compartments where the Fab fragments are distributed, and Fab-bound digitoxin appeared fairly rapidly in the urine, which suggested shunting of the normal hepatic metabolic pathway.

  5. Reactivity of anti-thyroid antibodies to thyroglobulin tryptic fragments: comparison of autoimmune and non-autoimmune thyroid diseases

    Directory of Open Access Journals (Sweden)

    Boechat L.H.B.

    1999-01-01

    Full Text Available Studies concerning the antigenicity of thyroglobulin fragments allow the characterization of the epitopes but do not consider the role of heavier antigenic fragments that could result in vivo from the action of endoproteases. Here we assess the relative importance of the fragments obtained from thyroglobulin by limited proteolysis with trypsin and compare by immunoblotting their reactivity to serum from patients with autoimmune (Graves' disease and Hashimoto's thyroiditis and non-autoimmune (subacute thyroiditis disease. The results showed no difference in frequency of recognition of any peptide by sera from patients with autoimmune thyroiditis. In contrast, sera from patients with subacute thyroiditis reacted more frequently with a peptide of 80 kDa. These results suggest the presence of antibody subpopulations directed at fragments produced in vivo by enzymatic cleavage of thyroglobulin. This fragment and antibodies to it may represent markers for subacute thyroiditis.

  6. Site-specific conjugation of bifunctional chelator BAT to mouse IgG1 Fab' fragment

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Xue-hao WANG; Xiao-ming WANG; Zhao-lai CHEN

    2006-01-01

    Aim: To perform a site-specific conjugation of Fab' fragments of a mouse monoclonal antibody(MoAb) B43(of IgG1 subtype) to a bifunctional chelator 6-[p-(bromoacetamido) benzyl]-l,4,8,11-tetraazacyclotetradecane-N,N',N",N'"-tetraacetic acid (BAT) via the thiol groups in the hinge distal to the antigenbinding site of the Fab'. Methods: B43 was cleaved using a simple 2-step method.First, stable F(ab')2 was produced by pepsin treatment. Fab' with free thiol in the hinge region was then obtained by cysteine reduction of F(ab')2. Second, a sitespecific conjugation of Fab' to thiol-specific BAT was performed in a one-step reaction. Results: The Fab' fragment had approximately 1.8 free thiol groups per molecule after cysteine reduction. The conjugation efficiency and the chemical yield were approximately 1.28 moles chelator/Fab' and 74% of the initial concentration of Fab', respectively. The F(ab')2, Fab' and Fab'-BAT all maintained reasonable antigen-binding properties. 67Cu labeling of the conjugate under standard conditions did not impair the immunoreactivity of Fab'-BAT. Conclusion: This is a simple and efficient method for producing immunoreactive conjugates of Fab'-BAT, which can be used to make radiometal-labeled conjugates for further diagnostic and therapeutic applications.

  7. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.

    Science.gov (United States)

    Karkov, Hanne Sophie; Woo, James; Krogh, Berit Olsen; Ahmadian, Haleh; Cramer, Steven M

    2015-12-24

    This study describes the in silico design, surface property analyses, production and chromatographic evaluations of a diverse set of antibody Fab fragment variants. Based on previous findings, we hypothesized that the complementarity-determining regions (CDRs) constitute important binding sites for multimodal chromatographic ligands. Given that antibodies are highly diversified molecules and in particular the CDRs, we set out to examine the generality of this result. For this purpose, four different Fab fragments with different CDRs and/or framework regions of the variable domains were identified and related variants were designed in silico. The four Fab variant libraries were subsequently generated by site-directed mutagenesis and produced by recombinant expression and affinity purification to enable examination of their chromatographic retention behavior. The effects of geometric re-arrangement of the functional moieties on the multimodal resin ligands were also investigated with respect to Fab variant retention profiles by comparing two commercially available multimodal cation-exchange ligands, Capto MMC and Nuvia cPrime, and two novel multimodal ligand prototypes. Interestingly, the chromatographic data demonstrated distinct selectivity trends between the four Fab variant libraries. For three of the Fab libraries, the CDR regions appeared as major binding sites for all multimodal ligands. In contrast, the fourth Fab library displayed a distinctly different chromatographic behavior, where Nuvia cPrime and related multimodal ligand prototypes provided markedly improved selectivity over Capto MMC. Clearly, the results illustrate that the discriminating power of multimodal ligands differs between different Fab fragments. The results are promising indications that multimodal chromatography using the appropriate multimodal ligands can be employed in downstream bioprocessing for challenging selective separation of product related variants.

  8. A novel affinity purification method to isolate peptide specific antibodies

    DEFF Research Database (Denmark)

    Karlsen, Alan E; Lernmark, A; Kofod, Hans

    1990-01-01

    Site-specific, high affinity polyclonal antisera are effectively and successfully produced by immunizing rabbits with synthetic peptides. The use of these antisera in subsequent immune analysis is often limited because of non-specific binding. We describe a new and simple method to effectively...... affinity-purify anti-peptide antibodies. To test our system, rabbits were immunized with model peptides representing sequences of the putative rabbit growth hormone receptor and several HLA-DQ beta-chain molecules. Polystyrene plastic beads were coated with peptides. Immune serum was incubated...... with the beads and after a wash step the bound antibodies were eluted in 1 M acetic acid. The eluted material was composed predominantly of intact immunoglobulin as evidenced by the presence of heavy and light chain bands in SDS-PAGE. The eluted antibodies were peptide specific in ELISA and bound only to intact...

  9. Crystal Structure of the Fab Fragment of an Anti-factor IX Antibody 10C12

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Li; ZENG Tu; HUANG Ming-Dong

    2008-01-01

    10C12 is an anticoagulant antibody identified from a phage display single-chain Fv human antibody library. It can be directed at the calcium-stabilized Gla domain of Factor-IX, an important coagulation factor in intrinsic pathway of blood coagulation cascade, and interfere with membrane anchoring of Factor IX, thus inhibiting blood coagulation function. 10C12 has been demonstrated as an effective anti-coagulant in attenuating thrombosis in several different animal models. Here, we report the crystal structure of the Fab fragment of 10C12. The crystal contains two Fab molecules in the asymmetric unit with identical conformation, forming a lattice with large cavities. In addition, comparison of this free Fab with the antigen-bound structure of 10C12 shows no change in CDR conformations and the relative disposition of the variable subunits of H and L chains, suggesting the rigid conformation of this 10C12 Fab and a lock-and-key mechanism of antibody-antigen recognition for 10C 12.

  10. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    Science.gov (United States)

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.

  11. Development of an EGFRvIII specific recombinant antibody

    Directory of Open Access Journals (Sweden)

    Li Gordon

    2010-10-01

    Full Text Available Abstract Background EGF receptor variant III (EGFRvIII is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM, breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community. Results In this study, we have developed a recombinant antibody that is specific for EGFRvIII, has little cross reactivity for the wild type receptor, and which can be easily produced. We initially designed a recombinant antibody with two anti-EGFRvIII single chain Fv's linked together and a human IgG1 Fc component. To enhance the specificity of this antibody for EGFRvIII, we mutated tyrosine H59 of the CDRH2 domain and tyrosine H105 of the CDRH3 domain to phenylalanine for both the anti-EGFRvIII sequence inserts. This mutated recombinant antibody, called RAbDMvIII, specifically detects EGFRvIII expression in EGFRvIII expressing cell lines as well as in EGFRvIII expressing GBM primary tissue by western blot, immunohistochemistry (IHC and immunofluorescence (IF and FACS analysis. It does not recognize wild type EGFR in any of these assays. The affinity of this antibody for EGFRvIII peptide is 1.7 × 107 M-1 as

  12. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments.

    Science.gov (United States)

    Niesen, Judith; Sack, Markus; Seidel, Melanie; Fendel, Rolf; Barth, Stefan; Fischer, Rainer; Stein, Christoph

    2016-08-17

    Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives.

  13. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses.

    Science.gov (United States)

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An; Chang, Ya-Chun

    2015-10-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli.

  14. Novel impedimetric immunosensor for the detection and quantitation of Adenovirus using reduced antibody fragments immobilized onto a conducting copolymer surface.

    Science.gov (United States)

    Caygill, Rebecca L; Hodges, Christopher S; Holmes, Joanne L; Higson, Séamus P J; Blair, G Eric; Millner, Paul A

    2012-02-15

    The number of Adenovirus (Ad) infections detected in immunocompromised people has increased due to the number of patients receiving transplants, as well as the HIV pandemic. Ads cause life-threatening diseases specific to the infected organs of immunocompromised hosts, with discontinuation of immunosuppressive agents necessary to prevent morbidity. The methodology in this paper has been employed to develop a novel impedimetric based assay platform to detect and quantify human Ads, which is comparable in performance to current methods, such as ELISA and PCR, but is also less expensive and faster. Novel immunosensors have been fabricated using polyclonal antibodies raised against a human Ad (Ad5) capsid protein, which were selectively cleaved into antibody fragments by 2-mercaptoethylamine. The fragments were immobilized onto a functionalized conducting copolymer matrix comprising polyaniline and 2-aminobenzylamine. Fully fabricated sensors were incubated with two immunologically distinct serotypes of Ad, Ad5 and Ad3, with between 10 and 10(12)virus particles/mL prior to sensor interrogation. Electrochemical impedance spectroscopy was used to measure the charge transfer resistance of the sensors over a range of frequencies from 25 kHz to 0.1 Hz. Our data demonstrate that the immunosensors specifically detect, and differentiate between, closely related human Ad serotypes with a limit of detection of 10(3)virus particles/mL. In addition, atomic force microscopy was applied to study the sensor surface nanostructure. Future work looks to test virus containing clinical samples but this could be a viable and valuable alternative for point-of-care virus detection and quantification.

  15. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases

    Science.gov (United States)

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-01-01

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases. PMID:27786270

  16. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases.

    Science.gov (United States)

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-10-27

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases.

  17. Pathogen-specific deep sequence-coupled biopanning: A method for surveying human antibody responses

    Science.gov (United States)

    Pascale, Juan M.; Moreno, Brechla; Chackerian, Bryce; Peabody, David S.

    2017-01-01

    Identifying the targets of antibody responses during infection is important for designing vaccines, developing diagnostic and prognostic tools, and understanding pathogenesis. We developed a novel deep sequence-coupled biopanning approach capable of identifying the protein epitopes of antibodies present in human polyclonal serum. Here, we report the adaptation of this approach for the identification of pathogen-specific epitopes recognized by antibodies elicited during acute infection. As a proof-of-principle, we applied this approach to assessing antibodies to Dengue virus (DENV). Using a panel of sera from patients with acute secondary DENV infection, we panned a DENV antigen fragment library displayed on the surface of bacteriophage MS2 virus-like particles and characterized the population of affinity-selected peptide epitopes by deep sequence analysis. Although there was considerable variation in the responses of individuals, we found several epitopes within the Envelope glycoprotein and Non-Structural Protein 1 that were commonly enriched. This report establishes a novel approach for characterizing pathogen-specific antibody responses in human sera, and has future utility in identifying novel diagnostic and vaccine targets. PMID:28152075

  18. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V(HH) against EGFR.

    Science.gov (United States)

    Okazaki, Fumiyoshi; Aoki, Jun-ichi; Tabuchi, Soichiro; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-10-01

    We have constructed a filamentous fungus Aspergillus oryzae that secretes a llama variable heavy-chain antibody fragment (V(HH)) that binds specifically to epidermal growth factor receptor (EGFR) in a culture medium. A major improvement in yield was achieved by fusing the V(HH) with a Taka-amylase A signal sequence (sTAA) and a segment of 28 amino acids from the N-terminal region of Rhizopus oryzae lipase (N28). The yields of secreted, immunologically active anti-EGFR V(HH) reached 73.8 mg/1 in a Sakaguchi flask. The V(HH) fragments were released from the sTAA or N28 proteins by an indigenous A. oryzae protease during cultivation. The purified recombinant V(HH) fragment was specifically recognized and could bind to the EGFR with a high affinity.

  19. Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin

    NARCIS (Netherlands)

    Vossenaar, E.R.; Despres, N.; Lapointe, E.; Heijden, A.G. van der; Lora, M.; Senshu, T.; Venrooij, W.J.W. van; Menard, H.A.

    2004-01-01

    Antibodies directed to the Sa antigen are highly specific for rheumatoid arthritis ( RA) and can be detected in approximately 40% of RA sera. The antigen, a doublet of protein bands of about 50 kDa, is present in placenta and in RA synovial tissue. Although it has been stated that the Sa antigen is

  20. ISOLATION OF ENDOTOXIN-SPECIFIC ANTIBODIES BY SELECTION OF AN SINGLE CHAIN PHAGE ANTIBODY LIBRARY

    Institute of Scientific and Technical Information of China (English)

    陈鸣; 俞丽丽; 张雪; 府伟灵

    2002-01-01

    Objective: To isolate murine anti endotoxin single chain phage antibody from a constructed library. Methods: Total RNA was firstly extracted from murine splenic cells and mRNA was reverse-transcribed into cDNA. Then the designed primers were used to amplify the variable region genes of the heavy and light chain (VH, VL) with polymerase chain reaction. The linker was used to assemble the VH and VL into ScFv, and the NotI and SfiI restriction enzymes were used to digest the ScFv in order to ligate into the pCANTAB5E phagemid vector that was already digested with the same restriction enzymes. The ligated vector was then introduced into competent E.coli TG1 cells to construct a single-chain phage antibody library. After rescued with M13KO7 helper phage, recombinant phages displaying ScFv fragments were harvested from the supernatant and selected with endotoxin. The enriched positive clones were reinfected into TG1 cells. Finally, 190 clones were randomly selected to detect the anti endotoxin antibody with indirect ELISA. Results: The titer of anti endotoxin in murine sera was 1:12,800. The concentration of total RNA was 12.38 μg/ml. 1.9×107 clones were obtained after transformed into TG1. 3×104 colonies were gotten after one round panning. Two positive colonies were confirmed with indirect ELISA among 190 randomly selected colonies. Conclusion: A 1.9×107 murine anti endotoxin single chain phage antibody library was successfully constructed. Two anti endotoxin antibodies were obtained from the library.

  1. Development and characterization of recombinant antibody fragments that recognize and neutralize in vitro Stx2 toxin from Shiga toxin-producing Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Daniela Luz

    Full Text Available Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB bind to globotria(tetraosylceramide receptors (Gb3/Gb4 on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes.In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA.In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro.

  2. Development and Characterization of Recombinant Antibody Fragments That Recognize and Neutralize In Vitro Stx2 Toxin from Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    Luz, Daniela; Chen, Gang; Maranhão, Andrea Q.; Rocha, Leticia B.; Sidhu, Sachdev; Piazza, Roxane M. F.

    2015-01-01

    Background Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes. Methods and Findings In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA. Conclusion In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro. PMID:25790467

  3. Neutralization Analysis of a Chicken Single-Chain Variable Fragment Derived from an Immune Antibody Library Against Infectious Bronchitis Virus.

    Science.gov (United States)

    Lin, Yuan; Li, Benqiang; Ye, Jiaxin; Wang, Man; Wang, Jianhua; Zhang, Ying; Zhu, Jianguo

    2015-09-01

    Avian infectious bronchitis virus (IBV), which is prevalent in many countries causing severe economic loss to the poultry industry, causes infectious bronchitis (IB) in birds. Recombinant single-chain variable fragments (scFvs) have been proven to effectively inhibit many viruses, both in vitro and in vivo, and they could be a potential diagnostic and therapeutic reagent to control IB. In this study, six anti-IBV chicken scFvs, ZL.10, ZL.64, ZL.78, ZL.80, ZL.138, and ZL.256, were obtained by screening random clones from an immune antibody library. An analysis of nucleotide sequences revealed that they represented distinctive genetic sequences and greatly varied in complementarity-determining region three of the heavy chain. Neutralization tests showed that ZL.10, which bound the S1 protein in western blots, inhibited the formation of syncytia in Vero cells 48 h post IBV infection and decreased the transcriptional level of nucleoprotein mRNA to 17.2%, while the other five scFvs, including ZL.78 and ZL.256, that bound the N protein did not. In conclusion, the results suggested that specific and neutralizing chicken scFvs against IBV, which can be safe and economical antibody reagents, can be produced in vitro through prokaryotic expression.

  4. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1.

    Science.gov (United States)

    Pasello, Michela; Zamboni, Silvia; Mallano, Alessandra; Flego, Michela; Picci, Piero; Cianfriglia, Maurizio; Scotlandi, Katia

    2016-04-20

    Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated.

  5. Anti-neuropilin 1 antibody Fab' fragment conjugated liposomal docetaxel for active targeting of tumours.

    Science.gov (United States)

    Manjappa, Arehalli S; Goel, Peeyush N; Gude, Rajiv P; Ramachandra Murthy, Rayasa S

    2014-09-01

    Neuropilin-1, a transmembrane receptor entailed in wide range of human tumour cell lines and diverse neoplasms, mediates the effects of VEGF and Semaphorins during the processes of cellular proliferation, survival and migration. In view of this, we had developed and evaluated in vitro and in vivo efficacy of anti-neuropilin-1 immunoliposomes against neuropilin-1 receptor expressing tumours. The PEGylated liposomes loaded with docetaxel were prepared using thin film hydration method. Functionalised PEGylated liposomes were prepared using post-insertion technique. Anti-neuropilin-1 immunoliposomes were prepared by covalently conjugating Fab' fragments of neuropilin-1 antibody to functionalised PEGylated liposomes via thioether linkage. In vivo evaluation of Taxotere and liposomal formulations was performed using intradermal tumour model to demonstrate anti-angiogenic and tumour regression ability. The modified Fab' fragments and immunoliposomes were found to be immunoreactive against A549 cells. Further, docetaxel loaded PEGylated liposomes and PEGylated immunoliposomes demonstrated higher in vitro cytotoxicity than Taxotere formulation at the same drug concentration and exposure time. The live imaging showed distinctive cellular uptake of functional immunoliposomes. Further, significant decrease in micro-blood vessel density and tumour volumes was observed using bio-engineered liposomes. The results clearly highlight the need to seek neuropilin-1 as one of the prime targets in developing an anti-angiogenic therapy.

  6. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    Science.gov (United States)

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies.

  7. Different levels of natural antibodies in chickens divergently selected for specific antibody responses

    NARCIS (Netherlands)

    Parmentier, H.K.; Lammers, A.; Hoekman, J.J.; Vries Reilingh, de G.; Zaanen, I.T.A.; Savelkoul, H.F.J.

    2004-01-01

    We studied the presence of Natural antibodies in plasma samples from individual birds from selected chicken lines at young and old age. Binding, specificity, and relative affinity to various antigens were determined in plasma from non-immunized female chickens at 5 weeks of age, and in plasma obtain

  8. Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display.

    Science.gov (United States)

    Pan, Yangbin; Mao, Weiping; Liu, Xuanxuan; Xu, Chong; He, Zhijuan; Wang, Wenqian; Yan, Hao

    2012-11-01

    We applied a ribosome display technique to a mouse single chain variable fragment (scFv) library to select scFvs specific for the inducible costimulator (ICOS). mRNA was isolated from the spleens of BALB/c mice immunized with ICOS protein. Heavy and κ chain genes (VH and κ) were amplified separately by reverse transcriptase polymerase chain reaction, and the anti-ICOS VH/κ chain ribosome display library was constructed with a special flexible linker by overlap extension PCR. The VH/κ chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. Then, antibody-ribosome-mRNA complexes were produced and panned against ICOS protein under appropriate conditions. However, in order to isolate specific scFvs for ICOS, negative selection using CD28 was carried out before three rounds of positive selection on ICOS. After three rounds of panning, the selected scFv DNAs were cloned into pET43.1a and detected by SDS-PAGE. Then, enzyme-linked immunosorbent assay showed that we successfully constructed a native ribosome display library, and among seven clones, clone 5 had the highest affinity for the ICOS and low for the CD28. Anti-ICOS scFvs are assessed for binding specificity and affinity and may provide the potential for development of the humanized and acute and chronic allograft rejection.

  9. Construction of a human functional single-chain variable fragment (scFv) antibody recognizing the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Wajanarogana, Sumet; Prasomrothanakul, Teerawat; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2006-04-01

    Falciparum malaria is one of the most deadly and profound human health problems around the tropical world. Antimalarial drugs are now considered to be a powerful treatment; however, there are drugs currently being used that are resistant to Plasmodium falciparum parasites spreading in different parts of the world. Although the protective immune response against intraerythrocytic stages of the falciparum malaria parasite is still not fully understood, immune antibodies have been shown to be associated with reduced parasite prevalence. Therefore antibodies of the right specificity present in adequate concentrations and affinity are reasonably effective in providing protection. In the present study, VH (variable domain of heavy chain) and VL (variable domain of light chain) were isolated from human blood lymphocytes of P. falciparum in one person who had high serum titre to RESA (ring-infected erythrocyte surface antigen). Equal amounts of VH and VL were assembled together with universal linker (G4S)3 to generate scFvs (single-chain variable fragments). The scFv antibodies were expressed with a phage system for the selection process. Exclusively, an expressed scFv against asynchronous culture of P. falciparum-infected erythrocytes was selected and characterized. Sequence analysis of selected scFv revealed that this clone could be classified into a VH family-derived germline gene (VH1) and Vkappa family segment (Vkappa1). Using an indirect immunofluorescence assay, we could show that soluble expressed scFv reacted with falciparum-infected erythrocytes. The results encourage the further study of scFvs for development as a potential immunotherapeutic agent.

  10. Expression, purification, and characterization of anti-plumbagin single-chain variable fragment antibody in Sf9 insect cell.

    Science.gov (United States)

    Sakamoto, Seiichi; Taura, Futoshi; Tsuchihashi, Ryota; Putalun, Waraporn; Kinjo, Junei; Tanaka, Hiroyuki; Morimoto, Satoshi

    2010-12-01

    Plumbagin (PL; 5-hydroxy-2-methyl-1, 4-naphthoquinone) is an important secondary metabolite, mainly produced in the Plumbago zeylanica L. (Plumbaginaceae). A single-chain variable fragment (scFv) antibody, fusion of the variable regions of the heavy chain and light chain of immunoglobulin against PL (PL-scFv) was expressed by Bac-to-Bac Baculovirus Expression System using Spodoptera frugiperda (Sf9) insect cells and characterized to investigate potential use of PL-scFv as a tool for plant immunomodulation. Functional PL-scFv expressed in the Sf9 insect cells were purified using cation exchange chromatography followed by immobilized metal ion affinity chromatography (IMAC). The yields of the purified PL-scFv in the culture supernatant and Sf9 insect cells were 2.0 mg and 5.2 mg per 1 liter of Sf9 culture medium, respectively. Recombinant purified PL-scFv was then characterized by the indirect competitive enzyme-linked immunosorbent assay (ELISA). The cross-reactivity and sensitivity of PL-scFv expressed in Sf9 insect cells were compared with PL-scFv expressed in Escherichia coli and its parental anti-plumbagin monoclonal antibody (MAb 3A3) secreted from hybridoma cells. Intriguingly, the specificity of the PL-scFv expressed in Sf9 insect cells was found to be different from that expressed in E. coli and parental MAb 3A3, although the detectable level (0.2-25 μg/mL) was the same in ELISA using each antibody. Even more interestingly, the characteristics of PL-scFv, which have wide cross-reactivity against 1,4-napththoquinone, suggest its potential use as a tool for plant immunomodulation not only for breeding Plumbaginacea family containing PL but also for breeding other medicinal plants containing bioactive naphthoquinones.

  11. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Setten, van M.C.

    2005-01-01

    The therapeutic parenteral application of llama single-domain antibody fragments (VHHs) is hampered by their small size, resulting in a fast elimination from the body. Here we describe a method to increase the serum half-life of VHHs in pigs by fusion to another VHH binding to porcine immunoglobulin

  12. COMPARATIVE DETECTION OF MEASLES SPECIFIC IGM ANTIBODY IN SERUM AND SALIVA BY AN ANTIBODY-CAPTURE IGM ENZYME IMMUNOASSAY (EIA)

    OpenAIRE

    Talat Mokhtari Azad; Anahid Ehteda; Parvin Yavari; R Hamkar; Zahra Safar Pour; M. Essalat Rakhsheh Nategh

    2003-01-01

    Laboratory diagnosis of acute measles is usually achieved by serology assays for measle-specific IgM antibody. For comparison of measle-specific IgM antibody in saliva and serum, 95 paired blood and saliva samples were collected 1-14 days after the onset of rash. The specimens were tested for specific IgM antibody by an IgM antibody-capture Enzyme Immunoassay (EIA). Measles IgM antibody was detected in 89 (93.7%) of serum samples and in 85(89.5%) of saliva specimens. Of the 6(6.3%) serum samp...

  13. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).

  14. Detection of specific antibodies in dogs infected with Angiostrongylus vasorum.

    Science.gov (United States)

    Schucan, A; Schnyder, M; Tanner, I; Barutzki, D; Traversa, D; Deplazes, P

    2012-04-30

    Canine angiostrongylosis, caused by the nematode Angiostrongylus vasorum, is an emerging cardiopulmonary disease in Europe which can be fatal if left untreated. We determined the diagnostic value of the specific detection of antibodies against A. vasorum adult somatic antigen, adult excretory/secretory (E/S) antigen and first stage larvae (L1) somatic antigen in ELISAs. Also, A. vasorum adult somatic antigen purified by monoclonal antibodies (mAb) was evaluated in a sandwich-ELISA. Among the crude antigens, the best sensitivities when testing 21 naturally infected dogs were obtained using adult E/S and somatic antigen (85.7% and 76.2%, respectively), which were comparable with the results of the sandwich-ELISA based on mAb-purified antigens (81%). The ELISA performed with L1 antigen had the lowest sensitivity (42.9%). In experimentally inoculated dogs, the sensitivities ranged from 97.7% to 100% with all test settings. The specificity was 98.8% (92.5-99.9%, 95% CI) with all ELISAs using sera of 82 randomly selected dogs. Cross-reactions using adult somatic, adult E/S and L1 somatic antigen were observed in sera of dogs infected with Crenosoma vulpis, Dirofilaria immitis, Dirofilaria repens, and Eucoleus aerophilus. In contrast, using the mAb-purified antigens, the cross-reactions were minimal. Depending on the antigens used, specific antibodies were detected starting between 13 and 21 days post experimental inoculation (dpi), and at latest between 35 and 48 dpi, thus before or around the onset of patency. The serological follow-up of four A. vasorum-infected dogs after anthelmintic treatment at 88 dpi showed a decrease of antibody levels after drug administration, and the animals became seronegative 2-9 weeks later. Two untreated dogs remained seropositive. In four dogs treated 4 dpi, virtually no antibody-reaction was detectable, with the exception of the ELISA performed with L1 antigen. The early detection of specific antibodies against A. vasorum by ELISA

  15. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins.

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Gurrola, Georgina B; Possani, Lourival D; Becerril, Baltazar

    2013-12-15

    Using phage display and directed evolution, our group has progressed in the construction of a second family of human single chain variable fragments (scFv) which bind to scorpion toxins dangerous to mammals. It was observed that scFv C1 only bound initially to toxin Cn2, which constitutes 6.8% of whole venom from the scorpion Centruroides noxius Hoffman. Only a few amino acid changes were necessary to extend its recognition to other similar toxins and without affecting the recognition for its primary antigen (Cn2 toxin). One variant of scFv C1 (scFv 202F) was selected after two cycles of directed evolution against Cll1 toxin, the second major toxic component from the venom of the Mexican scorpion Centruroides limpidus limpidus Karsh (0.5% of the whole venom). scFv 202F is also capable of recognizing Cn2 toxin. Despite not having the highest affinity for toxins Cll1 (KD = 25.1 × 10(-9) M) or Cn2 (KD = 8.1 × 10(-9) M), this antibody fragment neutralized one LD50 of each one of these toxins. Additionally, scFv 202F moderately recognized Cll2 toxin which constitutes 1.5% of the venom from C. limpidus. Based on our previous experience, we consider that these results are promising; consequently, we continue working on generating new optimized variants from scFv C1 that could be part of a recombinant scorpion anti-venom from human origin, that might reach the market in the near future.

  16. Production of a human single-chain variable fragment antibody against esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ming-Yan Xu; Xiao-Hu Xu; Geng-Zhen Chen; Xiao-Ling Deng; Jonathan Li; Xiao-Jun Yu; Mei-Zhen Chen

    2004-01-01

    AIM: To construct a phage display library of human singlechain variable fragment (scFv) antibodies associated with esophageal cancer and to preliminarily screen a scFv antibody against esophageal cancer.METHODS: Total RNA extracted from metastatic lymph nodes of esophageal cancer patients was used to construct a scFv gene library. Rescued by M13K07 helper phage, the scFv phage display library was constructed. esophageal cancer cell line Eca 109 and normal human esophageal epithelial cell line (NHEEC) were used for panning and subtractive panning of the scFv phage display library to obtain positive phage clones. Soluble scFv was expressed in E.coli HB2151 which was transfected with the positive phage clone, then purified by affinity chromatography.Relative molecular mass of soluble scFv was estimated by Western blotting, its bioactivity was detected by cell ELISA assay. Sequence of scFv was determined using the method of dideoxynucleotide sequencing.RESULTS: The size of scFv gene library was approximately 9×106 clones. After four rounds of panning with Eca109 and three rounds of subtractive panning with NHEEC cells, 25 positive phage clones were obtained. Soluble scFv was found to have a molecular mass of 31 ku and was able to bind to Eca109 cells, but not to HeLa and NHEEC cells. Variable heavy (VH) gene from one of the positive clones was shown to be derived from the γ chain subgroup Ⅳ of immunoglobulin, and variable light (VL) gene from the κchain subgroup I of immunoglobulin.CONCLUSION: A human scFv phage display library can be constructed from the metastatic lymph nodes of esophageal cancer patients. A whole human scFv against esophageal cancer shows some bioactivity.

  17. Exploiting Cross-reactivity to Neutralize Two Different Scorpion Venoms with One Single Chain Antibody Fragment*

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Contreras-Ferrat, Gabriel; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Corzo, Gerardo; Possani, Lourival D.; Becerril, Baltazar

    2011-01-01

    We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Becerril, B. (2005) FEBS J. 272, 2591–2601) and Css2 (this work). Each evolved variant showed strong cross-reactivity against several toxins, and was capable of neutralizing Cn2 and Css2. Furthermore, each variant neutralized the whole venoms of the above species. As far as we know, this is the first report of antibodies with such characteristics. Maturation processes revealed key residue changes to attain expression, stability, and affinity improvements as compared with the parental scFv. Combination of these changes resulted in the scFv LR, which is capable of rescuing mice from severe envenomation by 3 LD50 of freshly prepared whole venom of C. noxius (7.5 μg/20 g of mouse) and C. suffusus (26.25 μg/20 g of mouse), with surviving rates between 90 and 100%. Our research is leading to the formulation of an antivenom consisting of a discrete number of human scFvs endowed with strong cross-reactivity and low immunogenicity. PMID:21156801

  18. Exploiting cross-reactivity to neutralize two different scorpion venoms with one single chain antibody fragment.

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Contreras-Ferrat, Gabriel; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar

    2011-02-25

    We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Becerril, B. (2005) FEBS J. 272, 2591-2601) and Css2 (this work). Each evolved variant showed strong cross-reactivity against several toxins, and was capable of neutralizing Cn2 and Css2. Furthermore, each variant neutralized the whole venoms of the above species. As far as we know, this is the first report of antibodies with such characteristics. Maturation processes revealed key residue changes to attain expression, stability, and affinity improvements as compared with the parental scFv. Combination of these changes resulted in the scFv LR, which is capable of rescuing mice from severe envenomation by 3 LD(50) of freshly prepared whole venom of C. noxius (7.5 μg/20 g of mouse) and C. suffusus (26.25 μg/20 g of mouse), with surviving rates between 90 and 100%. Our research is leading to the formulation of an antivenom consisting of a discrete number of human scFvs endowed with strong cross-reactivity and low immunogenicity.

  19. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type

    Science.gov (United States)

    He, X. M.; Ruker, F.; Casale, E.; Carter, D. C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 degrees. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  20. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Directory of Open Access Journals (Sweden)

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  1. Preformed donor HLA-DP-specific antibodies mediate acute and chronic antibody-mediated rejection following renal transplantation.

    Science.gov (United States)

    Jolly, E C; Key, T; Rasheed, H; Morgan, H; Butler, A; Pritchard, N; Taylor, C J; Clatworthy, M R

    2012-10-01

    Donor-specific HLA alloantibodies may cause acute and chronic antibody-mediated rejection (AMR) and significantly compromise allograft survival. The clinical relevance of antibodies directed against some HLA class II antigens, particularly HLA-DP, is less clear with conflicting reports on their pathogenicity. We report two patients with high levels of pretransplant donor-specific HLA-DP antibodies who subsequently developed recurrent acute AMR and graft failure. In both cases, there were no other donor-specific HLA alloantibodies, suggesting that the HLA-DP-specific antibodies may be directly pathogenic.

  2. Donor-specific antibodies accelerate arteriosclerosis after kidney transplantation.

    Science.gov (United States)

    Hill, Gary S; Nochy, Dominique; Bruneval, Patrick; Duong van Huyen, J P; Glotz, Denis; Suberbielle, Caroline; Zuber, Julien; Anglicheau, Dany; Empana, Jean-Philippe; Legendre, Christophe; Loupy, Alexandre

    2011-05-01

    In biopsies of renal allografts, arteriosclerosis is often more severe than expected based on the age of the donor, even without a history of rejection vasculitis. To determine whether preformed donor-specific antibodies (DSAs) may contribute to the severity of arteriosclerosis, we examined protocol biopsies from patients with (n=40) or without (n=59) DSA after excluding those with any evidence of vasculitis. Among DSA-positive patients, arteriosclerosis significantly progressed between month 3 and month 12 after transplant (mean Banff cv score 0.65 ± 0.11 to 1.12 ± 0.10, P=0.014); in contrast, among DSA-negative patients, we did not detect a statistically significant progression during the same timeframe (mean Banff cv score 0.65 ± 0.11 to 0.81 ± 0.10, P=not significant). Available biopsies at later time points supported a rate of progression of arteriosclerosis in DSA-negative patients that was approximately one third that in DSA-positive patients. Accelerated arteriosclerosis was significantly associated with peritubular capillary leukocytic infiltration, glomerulitis, subclinical antibody-mediated rejection, and interstitial inflammation. In conclusion, these data support the hypothesis that donor-specific antibodies dramatically accelerate post-transplant progression of arteriosclerosis.

  3. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments.

    Science.gov (United States)

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C; Johnson, Jennifer L; Entzminger, Kevin; Jain, Avni; Heaner, David P; Morales, Ivan A; Truskett, Thomas M; Maynard, Jennifer A; Lieberman, Raquel L

    2014-09-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.

  4. A 10-RESIDUE FRAGMENT OF AN ANTIBODY (MINI-ANTIBODY) DIRECTED AGAINST LYSOZYME AS LIGAND IN IMMUNOAFFINITY CHROMATOGRAPHY

    NARCIS (Netherlands)

    WELLING, GW; VANGORKUM, J; DAMHOF, RA; DRIJFHOUT, JW; BLOEMHOFF, W; WELLINGWESTER, S

    1991-01-01

    The interaction between an antibody molecule and a protein antigen is an example of "natural" protein modelling. Amino acids of the antigen-binding site consisting of three hypervariable segments (L1, L2, L3) of the light (L) and three (H1, H2, H3) of the heavy (H) chain of an antibody molecule inte

  5. Rapid optimization of antibotulinum toxin antibody fragment production by an integral approach utilizing RC-SELDI mass spectrometry and statistical design.

    Science.gov (United States)

    Park, Jun T; Bradbury, Lisa; Kragl, Frank J; Lukens, Dennis C; Valdes, James J

    2006-01-01

    A process for the rapid development and optimization of the fermentation process for an antibotulinum neurotoxin antibody fragment (bt-Fab) production expressed in Escherichia coli was achieved via a high-throughput process proteomics and statistical experimental design. This process, using retentate chromatography-surface enhanced laser desorption/ionization mass spectrometry (RC-SELDI MS), was employed for identifying and quantifying bt-Fab antibody in complex biological samples for the optimization of microbial fermentation conditions. Five variables (type of culture media, glycerol concentration, post-induction temperature, IPTG concentration, and incubation time after induction) were statistically combined using an experimental 2(5)(-1) fractional factorial design and tested for their effects on maximal bt-Fab antibody production. When the effects of individual variables and their interactions were assessed, type of media and post-induction temperature showed statistically significant increase in yield of the fermentation process for the maximal bt-Fab antibody production. This study establishes an integral approach as a valuable tool for the rapid development of manufacturing processes for producing various biological materials. To verify the RC-SELDI MS method, a Fab-specific immuno-affinity HPLC assay developed here was also employed for the quantification of the bt-Fab antibody in crude lysate samples obtained during the fermentation optimization process. Similar results were obtained.

  6. Preformed Donor HLA-DP-Specific Antibodies Mediate Acute and Chronic Antibody-Mediated Rejection Following Renal Transplantation

    OpenAIRE

    Jolly, E. C.; Key, T; H. Rasheed; Morgan, H; Butler, A; Pritchard, N.; Taylor, C J; Clatworthy, M. R.

    2012-01-01

    Donor-specific HLA alloantibodies may cause acute and chronic antibody-mediated rejection (AMR) and significantly compromise allograft survival. The clinical relevance of antibodies directed against some HLA class II antigens, particularly HLA-DP, is less clear with conflicting reports on their pathogenicity. We report two patients with high levels of pretransplant donor-specific HLA-DP antibodies who subsequently developed recurrent acute AMR and graft failure. In both cases, there were no o...

  7. A new type of pseudothrombocytopenia: EDTA-mediated agglutination of platelets bearing Fab fragments of a chimaeric antibody.

    Science.gov (United States)

    Christopoulos, C G; Machin, S J

    1994-07-01

    In vitro agglutination of platelets leading to low automated platelet counts was observed in EDTA-anticoagulated blood from human volunteers receiving infusions of Fab fragments of a chimaeric monoclonal antibody to platelet glycoprotein IIb-IIIa. This pseudothrombocytopenia depended on the presence of chimaeric Fab on the platelet surface and was not seen when sodium citrate was used as anticoagulent. Preliminary evidence suggests that this phenomenon might be mediated by immunoglobulin G reactive with the human component of the chimaeric Fab. It is important to exclude pseudothrombocytopenia when low automated platelet counts are reported in association with the administration of chimaeric anti-platelet antibodies.

  8. Complete regression of a guinea pig hepatocarcinoma by immunotherapy with "tumor-immune" RNA or antibody to fibrin fragment E.

    Science.gov (United States)

    Schlager, S I; Dray, S

    1976-01-01

    Two novel immunotherapeutic regimens were developed for a uniformly lethal, intradermally growing transplantable ascites variant (line 10) of a diethylnitrosamine-induced hepatoma in strain 2 guinea pigs. In an apparently tumor-specific immunotherapy model, 32 guinea pigs were cured by the injection into the tumor area, five or seven days after tumor challenge, of syngeneic or xenogeneic RNA extracts obtained from lymphoid tissues of line 10-immune strain 2 guinea pigs or rhesus monkeys, as part of a total regimen which included syngeneic nonsensitive peritoneal exudate cells injected prior to, and tumor-specific antigen injected after, the RNA. In another immunotherapy model, not tumor-specific, 18 strain 2 guinea pigs were cured by the injection into the tumor area, 6 and 16 days after tumor challenge, of antibody specific for fibrin fragment E (FFE), an essential component in the formation of a fibrin matrix considered to be important in tumor development. When therapy was delayed to 12 days in the RNA test system, or to 16 days in the anti-FFE test system, complete abrogation of the tumors did not occur. The long-term survival of the 50 successfully treated animals and their immunity to further tumor challenge indicated that both immunotherapeutic procedures had systemic effects. To test this further, line 10 cells were injected intradermally simultaneously at two sites and only one site was treated. When the one tumor location was treated with anti-FFE, complete regression of the treated tumor and a 30% retardation in the development of the untreated tumor were observed. When this tumor location was treated with the RNA regimen, complete regression of the tumors occurred at both the treated and the untreated sites. Optimal conditions for both immunotherapeutic models and their combination have yet to be establshed. Nonetheless, both immunotherapeutic regimens were more effective than any other immunotherapy thus far reported for this tumor, including the use

  9. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))

    1983-07-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  10. Expression and characterization of single-chain variable fragment antibody against staphylococcal enterotoxin A in Escherichia coli.

    Science.gov (United States)

    Chen, Weifeng; Hu, Li; Liu, Aiping; Li, Jinquan; Chen, Fusheng; Wang, Xiaohong

    2014-11-01

    The staphylococcal enterotoxins (SEs) are potent gastrointestinal exotoxins synthesized by Staphylococcus aureus, which is responsible for various diseases including septicemia, food poisoning, and toxic shock syndrome, as well as bovine mastitis. Among them, staphylococcal enterotoxin A (SEA) is one of the most commonly present serotypes in staphylococcal food poisoning cases. In this study, the stable hybridoma 3C12 producing anti-SEA monoclonal antibody was established with an equilibrium dissociation constant (KD) of 1.48 × 10(-8) mol·L(-1), its ScFv-coding genes were obtained and then the anti-SEA single chain variable fragment (ScFv) protein was expressed in Escherichia coli. Characterization of the expressed target ScFv protein was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis, Western blot, and enzyme-linked immunosorbent assay. The results demonstrated that the recombinant anti-SEA ScFv protein retained a specific binding activity for SEA, and the KD value of the soluble ScFv was about 3.75 × 10(-7) mol·L(-1). The overall yield of bioactive anti-SEA ScFv in E. coli flask culture was more than 10 mg·L(-1).

  11. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').

    Science.gov (United States)

    Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando

    2015-02-01

    We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.

  12. Application of {sup 99m}Tc-labeled chimeric Fab fragments of monoclonal antibody A7 for radioimmunoscintigraphy of pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Hiroomi [Kyoto Prefectural Univ. of Medicine (Japan)

    1999-06-01

    Pancreatic cancer is one of the most lethal diseases and its prognosis is still poor. To improve the survival rate, it is essential to develop new technologies for early and definitive diagnosis. In this study, chimeric Fab fragments of monoclonal antibody A7 were successfully radio-labeled with {sup 99m}Tc, preventing depression of the antigen-binding activity. {sup 99m}Tc-labeled monoclonal antibody A7, {sup 99m}Tc-labeled chimeric Fab fragments of monoclonal antibody A7, {sup 99m}Tc-labeled normal mouse IgG and {sup 99m}Tc-labeled Fab fragments of normal mouse IgG were injected intravenously into nude mice bearing human pancreatic cancer xenografts and the radioactivity was subsequently measured. The tumor accumulation was significantly higher with labeled monoclonal antibody A7 than with normal mouse IgG, and higher with chimeric Fab fragments of monoclonal antibody A7 than with Fab fragments of normal mouse IgG. The tumor/blood ratio of radioactivity increased rapidly over time with chimeric Fab fragments of monoclonal antibody A7. These results suggest that chimeric Fab fragments of monoclonal antibody A7 may be useful for diagnosing pancreatic cancer by means of radioimmunoscintigraphy. (author)

  13. Isolation and characterization of anti ROR1 single chain fragment variable antibodies using phage display technique.

    Science.gov (United States)

    Aghebati-Maleki, Leili; Younesi, Vahid; Jadidi-Niaragh, Farhad; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi

    2017-01-01

    Receptor tyrosine kinase-like orphan receptor (ROR1) belongs to one of the families of receptor tyrosine kinases (RTKs). RTKs are involved in the various physiologic cellular functions including proliferation, migration, survival, signaling and differentiation. Several RTKs are deregulated in various cancers implying the targeting potential of these molecules in cancer therapy. ROR1 has recently been shown to be expressed in various types of cancer cells but not in normal adult cells. Hence a molecular inhibitor of extracellular domain of ROR1 that inhibits ROR1-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of ROR1, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I + J, against one specific synthetic oligopeptide from extracellular domain of ROR1 and selected scFvs were characterized using various immunological techniques. Several ROR1 specific scFvs were selected following five rounds of panning procedure. The scFvs showed specific binding to ROR1 using immunological techniques. Our results demonstrate successful isolation and characterization of specific ROR1 scFvs that may have great therapeutic potential in cancer immunotherapy.

  14. Rainbow trout surviving infections of viral haemorrhagic septicemia virus (VHSV) show lasting antibodies to recombinant G protein fragments

    DEFF Research Database (Denmark)

    Encinas, P.; Gomez-Casado, E.; Grandes, Fregeneda

    2011-01-01

    Rainbow trout antibodies (Abs) binding to recombinant fragments (frgs) derived from the protein G of the viral haemorrhagic septicemia virus (VHSV)-07.71 strain, could be detected by ELISA (frg-ELISA) in sera from trout surviving laboratory-controlled infections. Abs were detected not only by using...... infections. The viral frgs approach might also be used with other fish species and/or viruses....

  15. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications.

    Science.gov (United States)

    Foerster, A; Hołowacz, I; Sunil Kumar, G B; Anandakumar, S; Wall, J G; Wawrzyńska, M; Paprocka, M; Kantor, A; Kraskiewicz, H; Olsztyńska-Janus, S; Hinder, S J; Bialy, D; Podbielska, H; Kopaczyńska, M

    2016-04-01

    Stainless steel 316 L material is commonly used for the production of coronary and peripheral vessel stents. Effective biofunctionalization is a key to improving the performance and safety of the stents after implantation. This paper reports the method for the immobilization of recombinant antibody fragments (scFv) on stainless steel 316 L to facilitate human endothelial progenitor cell (EPC) growth and thus improve cell viability of the implanted stents for cardiovascular applications. The modification of stent surface was conducted in three steps. First the stent surface was coated with titania based coating to increase the density of hydroxyl groups for successful silanization. Then silanization with 3 aminopropyltriethoxysilane (APTS) was performed to provide the surface with amine groups which presence was verified using FTIR, XPS, and fluorescence microscopy. The maximum density of amine groups (4.8*10(-5) mol/cm(2)) on the surface was reached after reaction taking place in ethanol for 1 h at 60 °C and 0.04M APTS. On such prepared surface the glycosylated scFv were subsequently successfully immobilized. The influence of oxidation of scFv glycan moieties and the temperature on scFv coating were investigated. The fluorescence and confocal microscopy study indicated that the densest and most uniformly coated surface with scFv was obtained at 37 °C after oxidation of glycan chain. The results demonstrate that the scFv cannot be efficiently immobilized without prior aminosilanization of the surface. The effect of the chemical modification on the cell viability of EPC line 55.1 (HucPEC-55.1) was performed indicating that the modifications to the 316 L stainless steel are non-toxic to EPCs.

  16. Ubiquitin Chain Editing Revealed By Polyubiquitin Linkage-Specific Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K.; Matsumoto, M.L.; Wertz, I.E.; Kirkpatrick, D.S.; Lill, J.R.; Tan, J.; Dugger, D.; Gordon, N.; Sidhu, S.S.; Fellouse, F.A.; Komuves, L.; French, D.M.; Ferrando, R.E.; Lam, C.; Compaan, D.; Yu, C.; Bosanac, I.; Hymowitz, S.G.; Kelley, R.F.; Dixit, V.M.

    2009-05-22

    Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-{kappa}B activation, and IRAK1, which participates in signaling by interleukin-1{beta} and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.

  17. Assessment of Digoxin-Specific Fab Fragment Dosages in Digoxin Poisoning.

    Science.gov (United States)

    Nordt, Sean Patrick; Clark, Richard F; Machado, Carol; Cantrell, F Lee

    2016-01-01

    Digoxin poisoning still remains a common cause of morbidity and mortality. Fortunately, digoxin-specific Fab fragments are commercially available as an antidote. However, these Fab fragments are several thousand dollars per vial. There is a standardized formula to calculate appropriate Fab fragment dosage based on the serum digoxin concentration. This can greatly reduce the amount of Fab fragment administered. There is also an empiric dosing guideline recommending 6-10 vials be given; however, this may result in higher amounts of Fab fragments being administered than required. We performed this study to assess the amounts of digoxin-specific Fab fragments administered in the treatment of digoxin poisonings recorded in a poison control system database from January 1, 2000, to December 31, 2009, in which digoxin serum concentrations were available. This was a retrospective study of 278 patients, 107 with acute poisonings (group A) and 171 following chronic poisoning (group B). In group A, the calculated Fab dose was higher than the calculated dose based on available concentrations in 39 (36%) of group A and 15 (9%) of group B patients. The average wholesale price cost of the excessive dosages ranged from $4818 to as high as $50,589 per patient. Our data suggests that clinician education on digoxin poisoning and the use of the standardized formula to calculate the Fab dose may decrease over utilization and decrease costs associated with the administration of digoxin-specific Fab fragments in the treatment of digoxin poisonings.

  18. Peptides from the variable region of specific antibodies are shared among lung cancer patients.

    Directory of Open Access Journals (Sweden)

    Dominique de Costa

    Full Text Available Late diagnosis of lung cancer is still the main reason for high mortality rates in lung cancer. Lung cancer is a heterogeneous disease which induces an immune response to different tumor antigens. Several methods for searching autoantibodies have been described that are based on known purified antigen panels. The aim of our study is to find evidence that parts of the antigen-binding-domain of antibodies are shared among lung cancer patients. This was investigated by a novel approach based on sequencing antigen-binding-fragments (Fab of immunoglobulins using proteomic techniques without the need of previously known antigen panels. From serum of 93 participants of the NELSON trial IgG was isolated and subsequently digested into Fab and Fc. Fab was purified from the digested mixture by SDS-PAGE. The Fab containing gel-bands were excised, tryptic digested and measured on a nano-LC-Orbitrap-Mass-spectrometry system. Multivariate analysis of the mass spectrometry data by linear canonical discriminant analysis combined with stepwise logistic regression resulted in a 12-antibody-peptide model which was able to distinguish lung cancer patients from controls in a high risk population with a sensitivity of 84% and specificity of 90%. With our Fab-purification combined Orbitrap-mass-spectrometry approach, we found peptides from the variable-parts of antibodies which are shared among lung cancer patients.

  19. Lactobacillus helveticus MIMLh5-Specific Antibodies for Detection of S-Layer Protein in Grana Padano Protected-Designation-of-Origin Cheese

    OpenAIRE

    Stuknyte, M.; Brockmann, E.; Huovinen, T.; Guglielmetti, S.; De Mora, D; Taverniti, V.; Arioli, S.; De Noni, I.; Lamminmäki, U

    2014-01-01

    Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable...

  20. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  1. Generation and isolation of target-specific single-domain antibodies from shark immune repertoires.

    Science.gov (United States)

    Müller, Mischa Roland; O'Dwyer, Ronan; Kovaleva, Marina; Rudkin, Fiona; Dooley, Helen; Barelle, Caroline Jane

    2012-01-01

    The drive to exploit novel targets and biological pathways has lead to the expansion of classical antibody research into innovative fragment adaptations and novel scaffolds. The hope being that alternative or cryptic epitopes may be targeted, tissue inaccessibility may be overcome, and easier engineering options will facilitate multivalent, multi-targeting approaches. To this end, we have been isolating shark single domains to gain a greater understanding of their potential as therapeutic agents. Their unique shape, small size, inherent stability, and simple molecular architecture make them attractive candidates from a drug discovery perspective. Here we describe protocols to capture the immune repertoire of an immunized shark species and to build and select via phage-display target-specific IgNAR variable domains (VNARs).

  2. Broad-specificity immunoassays for sulfonamide detection: immunochemical strategy for generic antibodies and competitors.

    Science.gov (United States)

    Franek, Milan; Diblikova, Iva; Cernoch, Ivo; Vass, Maria; Hruska, Karel

    2006-03-01

    Development of antibodies with broad specificity recognition for sulfonamide drugs was found to be surprisingly difficult when conventional immunochemical strategies were applied to hapten design. To improve the cross-reactivity pattern of antibodies for the family of sulfonamide drugs, a novel strategy based on the single-ring (fragment-derived) hapten moieties with different spacer substituent lengths was employed for the preparation of immunogens, coating conjugates, and enzyme competitors. The rabbit antibodies raised against a common (one-ring) p-aminobenzenesulfonamide hapten moiety (attached to a carrier protein through the N-1 position) in combination with a homologous hapten-peroxidase tracer allowed the detection of 15 sulfonamide species at the maximum residue limit level using direct ELISA. The two-ring 6-(4-aminobenzensulfonylamino)hexanoic hapten mimics, previously reported in the literature as a weak generic antigen, generated surprisingly superior immune responses in rabbits. The antibodies raised against this two-ring hapten were capable of detecting at least 19 and 17 sulfonamides in a direct ELISA system at the regulatory level with sensitivities corresponding to 20 and 50% binding inhibition, respectively. A negligible cross-reaction with N4 metabolites makes it possible to measure responses of parent sulfonamides in the presence of their metabolized forms. In skimmed milk, the highest limit of detection (LOD) for sulfacetamide defined as 20% inhibition was 65.2 microg x L(-1) (IC20 value), whereas the additional 18 sulfonamides tested exhibited LODs in the range of 0.2-36.8 microg x L(-1). This sensitivity allows simple multisulfonamide tests to be established for use in the laboratory or on site.

  3. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    Full Text Available BACKGROUND: Botulinum neurotoxins (BoNT are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC, a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. METHODS AND FINDINGS: We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A. The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. CONCLUSIONS: An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.

  4. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Science.gov (United States)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  5. Selection of Ceratitis capitata (Diptera: Tephritidae) specific recombinant monoclonal phage display antibodies for prey detection analysis.

    Science.gov (United States)

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators.

  6. Rainbow trout surviving infections of viral haemorrhagic septicemia virus (VHSV) show lasting antibodies to recombinant G protein fragments.

    Science.gov (United States)

    Encinas, P; Gomez-Casado, E; Fregeneda-Grandes; Olesen, N J; Lorenzen, N; Estepa, A; Coll, J M

    2011-03-01

    Rainbow trout antibodies (Abs) binding to recombinant fragments (frgs) derived from the protein G of the viral haemorrhagic septicemia virus (VHSV)-07.71 strain, could be detected by ELISA (frg-ELISA) in sera from trout surviving laboratory-controlled infections. Abs were detected not only by using sera from trout infected with the homologous VHSV isolate but also with the VHSV-DK-201433 heterologous isolate, which had 13 amino acid changes. Sera from healthy trout and/or from trout surviving infectious haematopoietic necrosis virus (IHNV) infection, were used to calculate cut-off absorbances to differentiate negative from positive sera. Specific anti-VHSV Abs could then be detected by using any of the following frgs: frg11 (56-110), frg15 (65-250), frg16 (252-450) or G21-465. While high correlations were found among the ELISA values obtained with the different frgs, no correlations between any frg-ELISA and complement-dependent 50% plaque neutralization test (PNT) titres could be demonstrated. Between 4 and 10 weeks after VHSV infection, more trout sera were detected as positives by using heterologous frg-ELISA rather than homologous PNT. Furthermore, the percentage of positive sera detected by frg11-ELISA increased with time after infection to reach 100%, while those detected by complement-dependent PNT decreased to 29.4%, thus confirming that the lack of neutralizing Abs does not mean the lack of any anti-VHSV Abs in survivor trout sera. Preliminary results with sera from field samples suggest that further refinements of the frg-ELISA could allow detection of anti-VHSV trout Abs in natural outbreaks caused by different heterologous VHSV isolates. The homologous frg-ELISA method could be useful to follow G immunization attempts during vaccine development and/or to best understand the fish Ab response during VHSV infections. The viral frgs approach might also be used with other fish species and/or viruses.

  7. In vitro neutralization of prions with PrP(Sc)-specific antibodies.

    Science.gov (United States)

    Taschuk, Ryan; Van der Merwe, Jacques; Marciniuk, Kristen; Potter, Andrew; Cashman, Neil; Griebel, Philip; Napper, Scott

    2015-01-01

    Prion diseases reflect the misfolding of a self-protein (PrP(C)) into an infectious, pathological isomer (PrP(Sc)). By targeting epitopes uniquely exposed by misfolding, our group developed PrP(Sc)-specific vaccines to 3 disease specific epitopes (DSEs). Here, antibodies induced by individual DSE vaccines are evaluated for their capacity to neutralize prions in vitro. For both purified antibodies and immunoreactive sera, the PrP(Sc)-specific antibodies were equally effective in neutralizing prions. Further, there was no significant increase in neutralizing activity when multiple DSEs were targeted within an assay. At a low antibody concentration, the PrP(Sc)-specific antibodies matched the neutralization achieved by an antibody that may act via both PrP(C) and PrP(Sc). At higher doses, however, this pan-specific antibody was more effective, potentially due to a combined deactivation of PrP(Sc) and depletion of PrP(C).

  8. Phosphocholine-specific antibodies improve T-dependent antibody responses against OVA encapsulated into phosphatidylcholine-containing liposomes.

    Directory of Open Access Journals (Sweden)

    Yoelys Cruz-Leal

    2016-09-01

    Full Text Available Liposomes containing phosphatidylcholine have been widely used as adjuvants. Recently, we demonstrated that B-1 cells produce dipalmitoyl phosphatidylcholine (DPPC-specific IgM upon immunization of BALB/c mice with DPPC-liposomes encapsulating ovalbumin (OVA. Although this preparation enhanced the OVA-specific humoral response, the contribution of anti-DPPC antibodies to this effect was unclear. Here, we demonstrate that these antibodies are secreted by B-1 cells independently of the presence of OVA in the formulation. We also confirm that these antibodies are specific for phosphocholine. The anti-OVA humoral response was partially restored in B-1 cells-deficient BALB/xid mice by immunization with the liposomes opsonized with the serum total immunoglobulin (Ig fraction containing anti-phosphocholine antibodies, generated in wild type animals. This result could be related to the increased phagocytosis by peritoneal macrophages of the particles opsonized with the serum total Ig or IgM fractions, both containing anti-phosphocholine antibodies. In conclusion, in the present work it has been demonstrated that phosphocholine-specific antibodies improve T-dependent antibody responses against OVA carried by DPPC-liposomes.

  9. Generation and characterization of recombinant human antibodies specific for native laminin epitopes. Potential application in cancer therapy. Cancer Immunol. Immunother

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Russell, Stephen J.

    2001-01-01

    of human-derived antibody fragments able to modulate laminin-regulated biological functions would allow the development of new strategies to improve treatment of cancer patients. In this report, we explore the use of phage display technology to isolate human anti-laminin antibody fragments. A library...

  10. Diabetes-Specific Antibodies and Their use in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Serpil Salman

    2011-03-01

    Full Text Available AbstractType 1A diabetes results from the destruction of the insulin-secreting islet b-cells by an immune-mediated process. In the majority of patients, the clinical course is typical and there is no doubt about the diagnosis. However, the measurement of autoimmune diabetes markers is very useful in some situations such as differential diagnosis of type 1A diabetes and early-onset type 2 diabetes, as well as in the detection of latent autoimmune diabetes in adults (LADA cases. Moreover, in the type 1A diabetes prevention studies, autoimmune markers are needed for detection of individuals under risk and for their follow-up. The autoantibodies widely used in clinical course are: ICAs, IAA, GADA and IA-2 / IA-2b. Recently, a novel marker, ZnT8A, is described as a b-cell-specific antibody. In the present paper, the assay and clinical use of diabetes-specific autoantibodies are reviewed. Turk Jem 2011; 15: 8-12

  11. Characterization of Endotrypanum Parasites Using Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ramos Franco Antonia Maria

    1997-01-01

    Full Text Available A large number of Endotrypanum stocks (representing an heterogeneous population of strains have been screened against a panel of monoclonal antibodies (MAbs derived for selected species of Endotrypanum or Leishmania, to see whether this approach could be used to group/differentiate further among these parasites. Using different immunological assay systems, MAbs considered specific for the genus Endotrypanum (E-24, CXXX-3G5-F12 or strain M6159 of E. schaudinni (E-2, CXIV-3C7-F5 reacted variably according to the test used but in the ELISA or immunofluorescence assay both reacted with all the strains tested. Analyses using these MAbs showed antigenic diversity occurring among the Endotrypanum strains, but no qualitative or quantitative reactivity pattern could be consistently related to parasite origin (i.e., host species involved or geographic area of isolation. Western blot analyses of the parasites showed that these MAbs recognized multiple components. Differences existed either in the epitope density or molecular forms associated with the antigenic determinants and therefore allowed the assignment of the strains to specific antigenic groups. Using immunofluorescence or ELISA assay, clone E-24 produced reaction with L. equatorensis (which is a parasite of sloth and rodent, but not with other trypanosomatids examined. Interestingly, the latter parasite and the Endotrypanum strains cross-reacted with a number of MAbs that were produced against members of the L. major-L. tropica complex

  12. Terasaki-ELISA for murine IgE-antibodies.I.Quality of the detecting antibody: production and specificity testing of antisera specific for IgE

    NARCIS (Netherlands)

    Savelkoul, H.F.J.; Soeting, P.W.C.; Radl, J.; Linde-Preesman, van der A.A.

    1989-01-01

    In order to develop an ELISA for the quantitative determination of murine IgE, antisera specific for murine IgE were prepared in the goat and rabbit. As immunogen, monoclonal IgE antibody mixtures of several allotypically different hybridomas were used. Before use, these antibodies were purified emp

  13. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression

    DEFF Research Database (Denmark)

    Tsimikas, Sotirios; Miyanohara, Atsushi; Hartvigsen, Karsten

    2011-01-01

    We sought to assess the in vivo importance of scavenger receptor (SR)-mediated uptake of oxidized low-density lipoprotein (OxLDL) in atherogenesis and to test the efficacy of human antibody IK17-Fab or IK17 single-chain Fv fragment (IK17-scFv), which lacks immunologic properties of intact antibod...... antibodies other than the ability to inhibit uptake of OxLDL by macrophages, to inhibit atherosclerosis....

  14. A novel method for in Situ detection of hydrolyzable casein fragments in a cheese matrix by antibody phage display technique and CLSM

    DEFF Research Database (Denmark)

    Duan, Zhi; Brüggemann, Dagmar Adeline; Siegumfeldt, Henrik

    2009-01-01

    was successfully developed for the detection of scFvs binding to different alpha(s1)-casein fragments inside a cheese matrix by CLSM. To our knowledge, this is the first demonstrated immunofluorescent labeling method for in situ analysis of proteolysis phenomena in the cheese matrix. Additionally, this technique......A novel method to monitor in situ hydrolyzable casein fragments during cheese ripening by using immunofluorescent labeling and confocal laser scanning microscopy (CLSM) was developed. Monoclonal single chain variable fragments of antibody (scFvs) were generated by antibody phage display toward...

  15. Isolation and characterisation of a human-like antibody fragment (scFv that inactivates VEEV in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Torsten Rülker

    Full Text Available Venezuelan equine encephalitis virus (VEEV belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv, ToR67-3B4, from a non-human primate (NHP antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.

  16. Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells.

    Science.gov (United States)

    Toleikis, Lars; Frenzel, André

    2012-01-01

    Despite the rising impact of the generation of antibodies by phage display and other technologies, hybridoma technology still provides a valuable tool for the generation of high-affinity binders against different targets. But there exist several limitations of using hybridoma-derived antibodies. The source of the hybridoma clones are mostly rat or mouse B-lymphocytes. Therefore a human-anti-mouse or human-anti-rat antibody response may result in immunogenicity of these antibodies. This leads to the necessity of humanization of these antibodies where the knowledge of the amino acid sequence of the proteins is inalienable. Furthermore, additional in vitro modifications, e.g., affinity maturation or fusion to other proteins, are dependent on cloning of the antigen-binding domains.Here we describe the isolation of RNA from hybridoma cells and the primers that can be used for the amplification of VL and VH as well as the cloning of the antibody in scFv format and its expression in Escherichia coli.

  17. In-depth analysis of subclass-specific conformational preferences of IgG antibodies

    DEFF Research Database (Denmark)

    Tian, Xinsheng; Vestergaard, Bente; Thorolfsson, Matthias;

    2015-01-01

    /chemical stability and biological function of therapeutic antibodies. Importantly, the way that specific differences in the linker region correlate with the solution structure of intact antibodies is revealed, thereby visualizing future potential for the rational design of antibodies with designated physicochemical...

  18. Isolation of BNYVV coat protein-specific single chain Fv from a mouse phage library antibody.

    Science.gov (United States)

    Jahromi, Zahra Moghaddassi; Salmanian, Ali Hatef; Rastgoo, Nasrin; Arbabi, Mehdi

    2009-10-01

    Beet necrotic yellow vein virus (BNYVV) infects sugar beet plants worldwide and is responsible for the rhizomania disease and severe economic losses. Disease severity and lack of naturally occurring resistant plants make it very difficult to control the virus, both from epidemiological and economic standpoints. Therefore, early detection is vital to impose hygiene restrictions and prevent further spread of the virus in the field. Immunoassays are one of the most popular methodologies for the primary identification of plant pathogens including BNYVV since they are robust, sensitive, fast, and inexpensive. In this study, the major coat protein (CP21) of BNYVV was cloned and expressed in Escherichia coli. Thereafter, mice were immunized with purified CP21 and a phage antibody library was constructed from their PCR-amplified immunoglobulin repertoire. Following filamentous phage rescue of the library and four rounds of panning against recombinant CP21 antigen, several specific single chain Fv fragments were isolated and characterized. This approach may pave the way to develop novel immunoassays for a rapid detection of viral infection. Moreover, it will likely provide essential tools to establish antibody-mediated resistant transgenic technology in sugar beet plants.

  19. Specificity, pathogenicity, and clinical value of antiendothelial cell antibodies

    NARCIS (Netherlands)

    Belizna, C; Tervaert, JWC

    1997-01-01

    Objective: To characterize the putative target antigens for antiendothelial cell antibodies (AECA), the possible pathophysiological role of AECA, and the clinical value of these antibodies as markers of disease activity, Methods: A structured literature search was done using Medline in combination w

  20. Restriction fragment polymorphism (RFLP) of a "new" HLA-DP specificity, CDP-HEI

    DEFF Research Database (Denmark)

    Hyldig-Nielsen, J J; Ødum, Niels; Morling, Niels;

    1988-01-01

    Southern blotting with a DP beta cDNA probe of MspI digested DNA from 83 healthy unrelated individuals revealed a 1.8 kb fragment present in all four individuals (and no others) possessing the newly determined DP specificity, CDP-HEI....

  1. Characterization of the native and denatured herceptin by enzyme linked immunosorbent assay and quartz crystal microbalance using a high-affinity single chain fragment variable recombinant antibody.

    Science.gov (United States)

    Shang, Yuqin; Mernaugh, Ray; Zeng, Xiangqun

    2012-10-02

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain a single chain fragment variable (scFv, designated 2B4) to a linear synthetic peptide representing Herceptin's heavy chain CDR3. Enzyme linked immunosorbent assays (ELISAs) and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35-220.5 nM) dynamic range. Herceptin denatures and forms significant amounts of aggregates when heated. UV-vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 10(13) M(-2). The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize nonspecific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of the use of QCM to characterize human therapeutic antibodies in samples are also discussed.

  2. PRODUCTION OF PHAGE-DISPLAYED ANTI-IDIOTYPIC ANTIBODY SINGLE CHAIN VARIABLE FRAGMENTS TO MG7 MONOCLONAL ANTIBODY DIRECTED AGAINST GASTRIC CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    何凤田; 聂勇战; 陈宝军; 乔太东; 韩者艺; 樊代明

    2002-01-01

    Objective. To generate phage-displayed anti-idiotypic antibody single chain variable fragments (anti -Id ScFv) to MG7 monoclonal antibody (McAb) directed against gastric carcinoma so as to lay a foundation for developing anti-Id ScFv vaccine of the cancer.Methods. Balb/c mice were immunized i. p. with MG7 McAb conjugated with keyhole limpet hemocyanin (KLH), and mRNA was isolated from the spleens of the immunized mice. Heavy and light chain (VH and VL)genes of antibody were amplified separately and assembled into ScFv genes with a linker DNA by PCR. The ScFv genes were ligated into the phagemid vector pCANTAB5E and the ligated sample was transformed into competent E. coli TG1. The transformants were infected with M13KO7 helper phage to yield recombinant phages displaying ScFv on the tips of M13 phage. After 4 rounds of panning with MG7, the MG7-positive clones were selected by ELISA from the enriched phages. Thetypesoftheanti-IdScFvdisplayedontheselectedphagecloneswerepreliminarily identified by competition ELISA.Results. The VH, VL and ScFv DNAs were about 340 bp, 320 bp and 750 bp respectively. Twenty-four MG7-positive clones were selected from 60 enriched phage clones, among which 5 displayed β or γtype anti-Id ScFv.Conclsion. The anti-Id ScFv to MG7 McAb can be successfully selected by recombinant phage antibody technique, which paves a way for the study of prevention and cure of gastric carcinoma by using anti-Id ScFv.

  3. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle.

    Science.gov (United States)

    Zhang, Kathy; Geddie, Melissa L; Kohli, Neeraj; Kornaga, Tad; Kirpotin, Dmitri B; Jiao, Yang; Rennard, Rachel; Drummond, Daryl C; Nielsen, Ulrik B; Xu, Lihui; Lugovskoy, Alexey A

    2015-01-01

    Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.

  4. Crystal structure of human TWEAK in complex with the Fab fragment of a neutralizing antibody reveals insights into receptor binding.

    Directory of Open Access Journals (Sweden)

    Alfred Lammens

    Full Text Available The tumor necrosis factor-like weak inducer of apoptosis (TWEAK is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics. To gain insights into this important signaling pathway, we determined the structure of soluble human TWEAK in complex with the Fab fragment of an antibody selected for inhibition of receptor binding. In the crystallized complex TWEAK is bound by three Fab fragments of the neutralizing antibody. Homology modeling shows that Fab binding overlaps with the putative Fn14 binding site of TWEAK. Docking of the Fn14 cysteine rich domain (CRD to that site generates a highly complementary interface with perfectly opposing charged and hydrophobic residues. Taken together the presented structure provides new insights into the biology of TWEAK and the TWEAK/Fn14 pathway, which will help to optimize the therapeutic strategy for treatment of related cancer types and autoimmune diseases.

  5. Construction of a human recombinant polyclonal Fab fragment antibody library using peripheral blood lymphocytes of snake bitten victims

    Directory of Open Access Journals (Sweden)

    Motedayen, M.H.

    2015-12-01

    Full Text Available Human snake bitten poisoning is a serious threat in many tropical and subtropical countries such as Iran. The best acceptable treatment of envenomated humans is antivenoms; however they have a series of economic and medical problems and need more improvements. In this study a combinatorial human immunoglobulin gene library against some of Iranian snakes venoms was constructed. Total RNA prepared from peripheral blood lymphocytes of two recovered snake victims. RT-PCR was used for cDNA synthesis and amplification of the heavy (Fd segment and kappa light chains of IgG antibody. After digestion of the heavy chain with SpeI and XhoI and light chain with XbaI and SacI enzymes, inserted successively into the cloning vector pComb3x, and then recombinant vector transformed to TG1 bacteria to construct the Fab library. For determination insertion rate of Fab segment into cloning vector, plasmids of 12 clones of library were extracted and digested with SfiI. Length of amplified Fd and κ chains, were 650 - 750 bp. Primary library size was determined to contain 4.9×105 members out of which half of them contained the same size of Fab fragment. This result is comparable to some researchers and shows that this method could be appropriate tool for the production of human polyclonal Fab fragment antibodies for management of poisonous snake bitted victims.

  6. Factors affecting the production of a single-chain antibody fragment by Aspergillus awamori in a stirred tank reactor.

    Science.gov (United States)

    Sotiriadis, A; Keshavarz, T; Keshavarz-Moore, E

    2001-01-01

    A recombinant strain of Aspergillus awamori expressing anti-lysozyme single chain antibody fragments (scFv), under the control of a xylanase promoter, was studied in order to investigate the impact of medium, induction regime and protease production on the expression of the product. Experiments with the time of induction showed that the optimum results are achieved when induction is started in the late exponential phase (21 h after inoculation) improving the titer of the product from 14.5 mg L(-1), obtained in the early exponential phase (7 h after inoculation), to 16.2 mg L(-1). A 100% increase of the carbon (fructose) and nitrogen (ammonium sulfate) sources in the growth medium resulted in an increase in product concentration from 16.2 to 108.9 mg L(-1) and an increase in maximum dry cell weight from 7.5 to 11.5 g L(-1). A 50% reduction in the concentration of the inducer resulted in an increase in the product yield from 10 mg g(-1) dry cell weight to 12 mg g(-1). Proteolytic enzymes were produced during the fermentation up to concentrations equivalent to 1.4 g L(-1) trypsin, but they had no detrimental effect on the concentration of the antibody fragment.

  7. Prevalence and Gene Characteristics of Antibodies with Cofactor-induced HIV-1 Specificity*

    Science.gov (United States)

    Lecerf, Maxime; Scheel, Tobias; Pashov, Anastas D.; Jarossay, Annaelle; Ohayon, Delphine; Planchais, Cyril; Mesnage, Stephane; Berek, Claudia; Kaveri, Srinivas V.; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D.

    2015-01-01

    The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses. PMID:25564611

  8. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    Science.gov (United States)

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  9. Recent Progress toward Engineering HIV-1-Specific Neutralizing Monoclonal Antibodies

    OpenAIRE

    Ming Sun; Yue Li; Huiwen Zheng; Yiming Shao

    2016-01-01

    The recent discoveries of broadly potent neutralizing human monoclonal antibodies represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the ...

  10. Selection of Human Antibody Fragments Which Bind Novel Breast Tumor Antigens

    Science.gov (United States)

    1998-09-01

    6157-6162, 1998. 32-38 Appendix 2: Adams et al. Brit. J. Cancer 77: 1405-1412, 1998. 39-47 Appendix 3: Becerril et al. Biochem. Biophys. Res. Comm...James D. Marks M.D., Ph.D. Appendix 3 page (48) Towards selection of internalizing antibodies from phage libraries Baltazar Becerril , Marie-Alix Poul and

  11. Feasibility study of the Fab fragment of a monoclonal antibody against tissue factor as a diagnostic tool.

    Science.gov (United States)

    Tsumura, Ryo; Sato, Ryuta; Furuya, Fumiaki; Koga, Yoshikatsu; Yamamoto, Yoshiyuki; Fujiwara, Yuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2015-12-01

    Tissue factor (TF) is expressed strongly in various types of cancer, especially cancers that are often refractory to treatment, such as pancreatic cancer. In this study, we compared the differences in the biophysical and pharmacological properties of whole IgG and the Fab fragment of anti-human TF monoclonal antibody (1849 antibodies), in order to determine their suitability for application in the diagnosis and treatment of cancers. In the biophysical examination, we investigated the characteristics of 1849-whole IgG and 1849-Fab by SPR sensing and confocal fluorescence microscopy analysis using recombinant human TF antigen and TF-overexpressing human pancreatic cancer cell line, BxPC3, respectively. After conjugation with Alexa-Flour-647, in vivo imaging was conducted in mice bearing BxPC3 xenograft tumors. Furthermore, the distribution of the conjugates in tumors and major organs was evaluated by ex vivo study. The in vitro experiments showed that 1849 antibodies had high affinity against TF antigen. In addition, 1849-Fab showed a faster dissociation rate from the antigen than 1849-whole IgG. In mice, 1849-Fab-Alexa-Flour-647 showed rapid renal clearance and faster tumor accumulation, achieving a high contrast signal over nearby normal tissues in the early phase and enhanced tumor penetration after administration. On the other hand, 1849-whole IgG-Alexa-Flour-647 showed slow clearance from the blood and sustained high tumor accumulation. These results suggest that 1849-Fab may be a useful tool for pancreatic cancer diagnosis.

  12. Novel use of a radiolabelled antibody against stage specific embryonic antigen for the detection of occult abscesses in mammals

    Science.gov (United States)

    Thakur, Madhukar L.

    1990-01-01

    The invention discloses improved reagents containing antibodies against stage specific embryonic antigen-1 antibodies and improved methods for detection of occult abscess and inflammation using the improved reagents.

  13. Localization of Legionella pneumophila in Tissue Using FITC-Conjugated Specific Antibody and a Background Stain

    Science.gov (United States)

    1982-05-01

    Pathologits P6 i U. S. A. Localization of Legionella pneumophila in Tissue Using FITC- Conjuga ted Specific Antibody and a Background Stain BARBARA S. LOWRY...LOWRY ET AL. A J ( P • 1982 Table I. Procedure to Localize Legionella white light alone, illuminating the pale blue to violet pneumophila in Tissue...tagged antibodies) (T)-tagged specific antibody. In searching for L. pneumophila in tissue in the fluorescent mode, back- ground autofluorescence

  14. Radioimmunoassay for detection of VP1 specific neutralizing antibodies of foot and mouse disease virus

    Energy Technology Data Exchange (ETDEWEB)

    Patzer, E.J.; Jackson, M.L. (Genentech, Inc., South San Francisco CA (USA)); Moore, D.M. (U.S. Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY (USA))

    1985-01-01

    A solid-phase radioimmunoassay was developed for the detection of antibodies against a specific region of the VP1 protein of the A24 and O1 serotypes of foot and mouth disease virus. The antibody titers from the radioimmunoassay showed a positive correlation with neutralizing antibody titers determined by a mouse protection assay. The specificity of the assay resides in the peptide used as antigen. The assay is rapid, reproducible and does not require the use of whole virions.

  15. Relative contributions of measles virus hemagglutinin- and fusion protein- specific serum antibodies to virus neutralization.

    NARCIS (Netherlands)

    R.L. de Swart (Rik); S. Yüksel (Selma); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractThe relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by p

  16. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine.

  17. Construction and characterization of single-chain variable fragment antibody library derived from germline rearranged immunoglobulin variable genes.

    Directory of Open Access Journals (Sweden)

    Man Cheng

    Full Text Available Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR step was introduced to rescue stop codon and to enhance diversity of the complementarity-determining region 3 (CDR3. The germline scFv library was initially characterized against the hapten antigen phenyloxazolone (phOx. Sequence analysis of the phOx-selective scFvs indicated that the CDRs consisted of novel as well as conserved motifs. In order to illustrate that the diversity of CDR3 was increased by the fsPCR step, a second scFv library was constructed using a single scFv clone L3G7C as a template. Despite showing similar binding characteristics towards phOx, the scFv clones that were obtained from the L3G7C-derived antibody library gave a lower non-specific binding than that of the parental L3G7C clone. To determine whether germline library represented the endogenous immune status, specific scFv clones for nucleocapsid (N protein of SARS-associated coronavirus (SCoV were obtained both from naïve and immunized germline scFv libraries. Both libraries yielded specific anti-N scFvs that exhibited similar binding characteristics towards recombinant N protein, except the immunized library gave a larger number of specific anti-N scFv, and clones with identical nucleotide sequences were found. In conclusion, highly diversified antibody library can be efficiently constructed using germline rearranged immunoglobulin variable genes as source of antibody repertoires and fsPCR to diversify the CDR3.

  18. Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection.

    Science.gov (United States)

    Marangoni, Karina; Neves, Adriana F; Rocha, Rafael M; Faria, Paulo R; Alves, Patrícia T; Souza, Aline G; Fujimura, Patrícia T; Santos, Fabiana A A; Araújo, Thaise G; Ward, Laura S; Goulart, Luiz R

    2015-07-15

    We described the selection of a novel nucleic acid antibody-like prostate cancer (PCa) that specifically binds to the single-stranded DNA molecule from a 277-nt fragment that may have been partially paired and bound to the PCA3 RNA conformational structure. PCA3-277 aptamer ligands were obtained, and the best binding molecule, named CG3, was synthesized for validation. Aiming to prove its diagnostic utility, we used an apta-qPCR assay with CG3-aptamer conjugated to magnetic beads to capture PCA3 transcripts, which were amplified 97-fold and 7-fold higher than conventional qPCR in blood and tissue, respectively. Histopathologic analysis of 161 prostate biopsies arranged in a TMA and marked with biotin-labeled CG3-aptamer showed moderate staining in both cytoplasm and nucleus of PCa samples; in contrast, benign prostatic hyperplasia (BPH) samples presented strong nuclear staining (78% of the cases). No staining was observed in stromal cells. In addition, using an apta-qPCR, we demonstrated that CG3-aptamer specifically recognizes the conformational PCA3-277 molecule and at least three other transcript variants, indicating that long non-coding RNA (lncRNA) is processed after transcription. We suggest that CG3-aptamer may be a useful PCa diagnostic tool. In addition, this molecule may be used in drug design and drug delivery for PCa therapy.

  19. ELISPOT Assay for Measurement of Antigen-Specific and Polyclonal Antibody Responses.

    Science.gov (United States)

    Lycke, Nils; Coico, Richard

    2015-02-02

    The enzyme-linked immunospot (ELISPOT) assay for detection of antigen-specific and polyclonal antibody responses by single antibody-secreting cells has become the method of choice due to its cell-based quantitative value. Antigen stability and specificity and the diversity of antigens that can be used in the assay have contributed to the translational application of ELISPOT as demonstrated by many FDA-approved clinical tests that employ this technique. In addition, the ELISPOT assay can be used to detect two antigenically different secreted antibodies simultaneously by two-color analysis and offers the unique possibility of quantifying the number of antibody molecules secreted per cell.

  20. High-resolution mass-selective UV spectroscopy of pseudoephedrine: evidence for conformer-specific fragmentation.

    Science.gov (United States)

    Karaminkov, R; Chervenkov, S; Delchev, V; Neusser, H J

    2011-09-01

    Using resonance-enhanced two-photon ionization spectroscopy with mass resolution of jet-cooled molecules, a low-resolution S(1) ← S(0) vibronic spectrum of pseudoephedrine was recorded at the mass channels of three distinct fragments with m/z = 58, 71, and 85. Two of the fragments, with m/z = 71 and 85, are observed for the first time for this molecule. The vibronic spectra recorded at different mass channels feature different patterns, implying that they originate from different conformers in the cold molecular beam, following conformer-specific fragmentation pathways. Highly resolved spectra of all prominent vibronic features were measured, and from their analysis based on genetic algorithms, the molecular parameters of the conformers giving rise to the respective bands have been determined. Comparing the experimental results with those obtained from high-level ab initio quantum chemistry calculations, the observed prominent vibronic bands have been assigned to originate from four distinct conformers. The conformers are separated into two groups that have different fragmentation pathways determined by the different intramolecular interactions.

  1. Specific targeting of tumor cells by lyophilisomes functionalized with antibodies

    NARCIS (Netherlands)

    van Bracht, Etienne; Stolle, Sarah; Hafmans, Theo G.; Boerman, Otto C.; Oosterwijk, Egbert; van Kuppevelt, Toin H.; Daamen, Willeke F.

    2014-01-01

    Lyophilisomes are a novel class of proteinaceous biodegradable nano/micro drug delivery capsules prepared by freezing, annealing and Iyophilization. In the present study, lyophilisomes were functionalized for active targeting by antibody conjugation in order to obtain a selective drug-carrier system

  2. Monoclonal antibodies specific for the organophosphate pesticide azinphos-methyl

    NARCIS (Netherlands)

    Jones, WT; Harvey, D; Jones, SD; Ryan, GB; Wynberg, H; TenHoeve, W; Reynolds, PHS

    1995-01-01

    2-(2-Mercapto-5-methyl-1,3,2-dioxaphosphorinan-5-yl,2-sulphide) methoxyacetic acid has been synthesized and used to prepare an azinphos hapten and protein conjugates. Monoclonal antibodies of high affinity against the pesticide azinphos-methyl were prepared from mice immunized with the hapten-ovalbu

  3. Prion-Specific Antibodies Produced in Wild-Type Mice

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Bergström, Ann-Louise; Andersen, Heidi Gertz;

    2015-01-01

    method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well...

  4. Specificities of monoclonal antibodies to domain I of alpha-gliadins.

    Science.gov (United States)

    Ellis, H J; Doyle, A P; Wieser, H; Sturgess, R P; Ciclitira, P J

    1993-03-01

    Eight monoclonal antibodies were raised against a sequenced 54-amino-acid peptide of alpha-gliadin, which is thought to exacerbate coeliac disease. Five of the antibodies cross-reacted with coeliac non-toxic cereals. Two of eight of the antibodies bound specifically to coeliac toxic prolamins. These two antibodies cross-reacted with high molecular weight gliadins, which are closely related to alpha-gliadins and whose toxicity to patients with coeliac disease is unclear. The antibodies were screened by enzyme-linked immunosorbent assay against three amino-acid-sequenced peptides of alpha-gliadin with single amino-acid differences. Differential binding of antibody WC2 suggested that this antibody binds in the region of amino-acid residue 36, a proline residue, where there may be an antigenic beta-reverse turn. This proline residue forms part of a tetrapeptide motif, QQQP, which is thought to be present in all coeliac-active peptides.

  5. The Effect of CD3-Specific Monoclonal Antibody on Treating Experimental Autoimmune Myasthenia Gravis

    Institute of Scientific and Technical Information of China (English)

    Ruonan Xu; Jianan Wang; Guojiang Chen; Gencheng Han; Renxi Wang; Beffen Shen; Yan Li

    2005-01-01

    CD3-specific monoclonal antibody was the first one used for clinical practice in field of transplantation. Recently,renewed interests have elicited in its capacity to prevent autoimmune diabetes by inducing immune tolerance. In this study, we tested whether this antibody can also be used to treat another kind of autoimmune disease myasthenia gravis (MG) and explored the possible mechanisms. MG is caused by an autoimmune damage mediated by antibody- and complement-mediated destruction of AChR at the neuromuscular junction. We found that administration of CD3-specific antibody (Fab)2 to an animal model with experimental autoimmune myasthenia gravis (EAMG) (B6 mice received 3 times of AChR/CFA immunization) could not significantly improve the clinical signs and clinical score. When the possible mechanisms were tested, we found that CD3 antibody treatment slightly down-regulated the T-cell response to AChR, modestly up-regulation the muscle strength. And no significant difference in the titers of IgG2b was found between CD3 antibody treated and control groups. These data indicated that CD3-specific antibody was not suitable for treating MG, an antibody- and complementmediated autoimmune disease, after this disease has been established. The role of CD3-specific antibody in treating this kind of disease remains to be determined.

  6. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection.

    Science.gov (United States)

    Stettler, Karin; Beltramello, Martina; Espinosa, Diego A; Graham, Victoria; Cassotta, Antonino; Bianchi, Siro; Vanzetta, Fabrizia; Minola, Andrea; Jaconi, Stefano; Mele, Federico; Foglierini, Mathilde; Pedotti, Mattia; Simonelli, Luca; Dowall, Stuart; Atkinson, Barry; Percivalle, Elena; Simmons, Cameron P; Varani, Luca; Blum, Johannes; Baldanti, Fausto; Cameroni, Elisabetta; Hewson, Roger; Harris, Eva; Lanzavecchia, Antonio; Sallusto, Federica; Corti, Davide

    2016-08-19

    Zika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool. In contrast, antibodies against E protein domain I/II (EDI/II) were cross-reactive and, although poorly neutralizing, potently enhanced ZIKV and DENV infection in vitro and lethally enhanced DENV disease in mice. Memory T cells against NS1 or E proteins were poorly cross-reactive, even in donors preexposed to DENV. The most potent neutralizing antibodies were ZIKV-specific and targeted EDIII or quaternary epitopes on infectious virus. An EDIII-specific antibody protected mice from lethal ZIKV infection, illustrating the potential for antibody-based therapy.

  7. Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis.

    Science.gov (United States)

    Shigemori, Suguru; Ihara, Masaki; Sato, Takashi; Yamamoto, Yoshinari; Nigar, Shireen; Ogita, Tasuku; Shimosato, Takeshi

    2017-01-01

    Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.

  8. Uptake of /sup 99m/Tc labelled (Fab')/sub 2/ fragments of monoclonal antibody 225. 28S by a benign ocular naevus

    Energy Technology Data Exchange (ETDEWEB)

    Bomanji, J.; Granowska, M.; Britton, K.E.; Hungerford, J.L.

    1988-06-01

    Malignant melanoma is one of the most common primary intraocular neoplasms. Recently, /sup 99m/Tc radiolabelled (Fab')/sub 2/ fragments of monoclonal antibody 225.28S raised against cutaneous melanomas have been used for imaging uveal melanomas. We report here a case where uptake of radiolabelled antibody was observed in a choroidal melanoma of the right eye and a benign choroidal naevus of the left.

  9. Relative specificities of water and ammonia losses from backbone fragments in collision-activated dissociation

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Kjeldsen, Frank; Nielsen, Michael L

    2007-01-01

    Analysis of a database containing over 20,000 high-resolution collision-activation mass spectra of tryptic peptide dications was employed to study the relative specificity of neutral losses from backbone fragments. The high resolution of the FTMS instrument allowed for the first time the first...... isotope of the water loss and the monoisotope of the ammonia loss to be distinguished. Contrary to a popular belief, water losses from y' ions are not specific enough to rely upon for detecting the presence of amino acids with oxygen in the side chains. At the same time, ammonia loss from b ions...

  10. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  11. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro.

    Science.gov (United States)

    Wang, X; Tolstonog, G; Shoeman, R L; Traub, P

    1996-03-01

    Mouse vimentin intermediate filaments (IFs) reconstituted in vitro were analyzed for their capacity to select certain DNA sequences from a mixture of about 500-bp-long fragments of total mouse genomic DNA. The fragments preferentially bound by the IFs and enriched by several cycles of affinity binding and polymerase chain reaction (PCR) amplification were cloned and sequenced. In general, they were G-rich and highly repetitive in that they often contained Gn, (GT)n, and (GA)n repeat elements. Other, more complex repeat sequences were identified as well. Apart from the capacity to adopt a Z-DNA and triple helix configuration under superhelical tension, many fragments were potentially able to form cruciform structures and contained consensus binding sites for various transcription factors. All of these sequence elements are known to occur in introns and 5'/3'-flanking regions of genes and to play roles in DNA transcription, recombination and replication. A FASTA search of the EMBL data bank indeed revealed that sequences homologous to the mouse repetitive DNA fragments are commonly associated with gene-regulatory elements. Unexpectedly, vimentin IFs also bound a large number of apparently overlapping, AT-rich DNA fragments that could be aligned into a composite sequence highly homologous to the 234-bp consensus centromere repeat sequence of gamma-satellite DNA. Previous experiments have shown a high affinity of vimentin for G-rich, repetitive telomere DNA sequences, superhelical DNA, and core histones. Taken together, these data support the hypothesis that, after penetration of the double nuclear membrane via an as yet unidentified mechanism, vimentin IFs cooperatively fix repetitive DNA sequence elements in a differentiation-specific manner in the nuclear periphery subjacent to the nuclear lamina and thus participate in the organization of chromatin and in the control of transcription, replication, and recombination processes. This includes aspects of global

  12. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247.

    Science.gov (United States)

    Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G

    2015-01-01

    Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target.

  13. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2011-12-01

    Full Text Available Abstract Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY, the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the sc

  14. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment.

    Science.gov (United States)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-12-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies.

  15. Expression, production, and renaturation of a functional single-chain variable antibody fragment (scFv against human ICAM-1

    Directory of Open Access Journals (Sweden)

    H. Sun

    2014-07-01

    Full Text Available Intercellular adhesion molecule-1 (ICAM-1 is an important factor in the progression of inflammatory responses in vivo. To develop a new anti-inflammatory drug to block the biological activity of ICAM-1, we produced a monoclonal antibody (Ka=4.19×10−8 M against human ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv was expressed at a high level as inclusion bodies in Escherichia coli. We refolded the scFv (Ka=2.35×10−7 M by ion-exchange chromatography, dialysis, and dilution. The results showed that column chromatography refolding by high-performance Q Sepharose had remarkable advantages over conventional dilution and dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher with this method. The purity of the final product was greater than 90%, as shown by denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and animal experiments were used to assess the immunological properties and biological activities of the renatured scFv.

  16. Identification and specificity of broadly neutralizing antibodies against HIV

    OpenAIRE

    McCoy, Laura E.; Burton, Dennis R.

    2017-01-01

    Summary Beginning in 2009, studies of the humoral responses of HIV‐positive individuals have led to the identification of scores, if not hundreds, of antibodies that are both broadly reactive and potently neutralizing. This development has provided renewed impetus toward an HIV vaccine and led directly to the development of novel immunogens. Advances in identification of donors with the most potent and broad anti‐HIV serum neutralizing responses were crucial in this effort. Equally, developme...

  17. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control.

    Directory of Open Access Journals (Sweden)

    Margaret E Ackerman

    2016-01-01

    Full Text Available Elite controllers (ECs represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune-recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.

  18. Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library.

    Science.gov (United States)

    Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei

    2016-07-01

    Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.

  19. High-resolution characterization of antibody fragment/antigen interactions using Biacore T100.

    Science.gov (United States)

    Papalia, Giuseppe A; Baer, Mark; Luehrsen, Kenneth; Nordin, Helena; Flynn, Peter; Myszka, David G

    2006-12-01

    A Biacore T100 optical biosensor was used to characterize the binding kinetics of a panel of antigen binding fragments (Fabs) directed against the PcrV protein from Pseudomonas aeruginosa. PcrV protein forms part of the type III secretion system complex of this opportunistic pathogen. We demonstrate that the biosensor response data for each Fab collected from three different surface densities of the antigen could be fit globally to a simple 1:1 interaction model. Importantly, we found that the Fabs with the slowest dissociation rate provided the best protection in cell cytotoxicity studies. To further characterize the Fab interactions, binding data were automatically acquired at different temperatures and under different buffer conditions. The comprehensive characterization of these Fabs shows how Biacore T100 can be used to complement protein therapeutic discovery programs from basic research to the selection of therapeutic candidates.

  20. Specific serum antibody responses following a Toxoplasma gondii and Trichinella spiralis co-infection in swine

    NARCIS (Netherlands)

    Bokken, G.; Eerden, van E.; Opsteegh, M.; Augustijn, M.; Graat, E.A.M.; Franssen, F.; Görlich, K.; Buschtöns, S.; Tenter, A.M.; Giessen, van der J.W.B.; Bergwerff, A.A.; Knapen, van F.

    2012-01-01

    The aim of this study was to examine the dynamics of parasite specific antibody development in Trichinella spiralis and Toxoplasma gondii co-infections in pigs and to compare these with antibody dynamics in T. spiralis and T. gondii single infections. In this experiment, fiftyfour pigs were divided

  1. Specificity of monoclonal anti-nucleosome auto-antibodies derived from lupus mice

    NARCIS (Netherlands)

    Kramers, K; Stemmer, C; Monestier, M; vanBruggen, MCJ; RijkeSchilder, TPM; Hylkema, MN; Smeenk, RJT; Muller, S; Berden, JHM

    1996-01-01

    Recently, anti-nucleosome antibodies, which do not bind to DNA or to individual histones, have been identified in longitudinal studies in lupus mice. These anti-nucleosome antibodies occur early in spontaneous SLE and are formed prior to other anti-nuclear specificities. However, nucleosomal epitope

  2. Preparation of Europium Induced Conformation—specific anti—calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; ChaoQI; 等

    2002-01-01

    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  3. Epidemiology of myasthenia gravis with anti-muscle specific kinase antibodies in the Netherlands

    NARCIS (Netherlands)

    Niks, Erik H.; Kuks, Jan B. M.; Verschuuren, Jan J. G. M.

    2007-01-01

    The epidemiology of myasthenia gravis subtypes and the frequency of antibodies to muscle-specific kinase (MuSK) was studied in patients with generalised myasthenia gravis without anti-acetylcholine receptor antibodies who had an onset of symptoms between 1990 and 2004 in a well-defined region in the

  4. Preparation of Europium Induced Conformation-specific anti-calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  5. Determination of specific antibody responses to the six species of ebola and Marburg viruses by multiplexed protein microarrays.

    Science.gov (United States)

    Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M Javad; Ulrich, Robert G

    2014-12-01

    Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses.

  6. COMPARISON OF FOUR METHODS TO GENERATE IMMUNOREACTIVE FRAGMENTS OF A MURINE MONOCLONAL ANTIBODY OC859 AGAINST HUMAN OVARIAN EPITHELIAL CANCER ANTIGEN

    Institute of Scientific and Technical Information of China (English)

    邹颖; 卞美璐; 杨子义; 连利娟; 刘文淑; 许秀英

    1995-01-01

    In the present study,four different proteases (pepsin,papain,bromelain and ficin) were screened with a murine monoclonal antibody OC859,in order to verify whether different digestion procedures could improve yield and stability of the F(ab')2 or Fab fragments.The yields of F(ab')2 or Fab fragments from digestion with pepsin,papain,bromelain and ficin were respectively 20.3+/-2.0%,50.5%+/-5.0%,74.4+/-2.7% and 82.8+/-10.2% of the theoretical maximum.Immunoreactivity in a noncompetitive solid-phase radioimmunoassay (SPRIA) of the fragments generated by the four proteases were respectively 10+/-5%,36+/-5%,60+/-6% and 75+/-6% of the intact OC859 IgG.These results suggested that the fragmentation of OC859 with ficin gave a higher yield of superior immunoreactive fragments.

  7. Potential for novel MUC1 glycopeptide-specific antibody in passive cancer immunotherapy

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Wandall, Hans H; Pedersen, Anders Elm

    2013-01-01

    MUC1 is an important target for antibodies in passive cancer immunotherapy. Antibodies against mucin glycans or mucin peptide backbone alone may give rise to cross reactivity with normal tissues. Therefore, attempts to identify antibodies against cancer-specific MUC1 glycopeptide epitopes havebeen...... made. We recently demonstrated that a monoclonal antibody against the immunodominant Tn-MUC1 (GalNAc-α-MUC1) antigen induced ADCC in breast cancer cell lines, suggesting the feasibility of targeting combined glycopeptide epitopes in future passive cancer immunotherapy....

  8. Antibody networks and imaging: elicitation of anti-fluorescein antibodies in response to the metatypic state of fluorescein-specific monoclonal antibodies.

    Science.gov (United States)

    Cedergren, A M; Miklasz, S D; Voss, E W

    1996-01-01

    Studies are described regarding generation of anti-hapten antibodies starting with a monoclonal Ig immunogen in the ligand-induced conformation or metatypic state. Liganded monoclonal Ab1 antibodies represent the unique feature of the study since previous reports investigating internal imaging in the original Idiotype Network Hypothesis [Jerne, 1974 (Ann. Immun. 125C, 373-389)] were based on the non-liganded or idiotypic state [as reviewed in: Rodkey, 1980 (Microbiol. Rev. 44, 631-659); Kohler et al., 1979 (In: Methods in Enzymology: Antibodies, Antigens and Molecular Mimicry, pp. 3-35); Greenspan and Bona, 1993 (FASEB J. 7,437-444)]. Affinity-labeled liganded murine monoclonal anti-fluorescein antibodies served as immunogens administered both in the syngenic and xenogenic modes to determine if the metatypic state elicited anti-hapten antibodies through imaging-like mechanisms. Polyclonal and monoclonal anti-Ab1 reagents in various hosts were assayed for anti-fluorescein and/or anti-metatype specificity. Significant anti-fluorescein responses were measured indicating that the metatypic state directly or indirectly stimulates an anti-hapten antibody population.

  9. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    KAUST Repository

    Domina, Maria

    2014-12-04

    There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  10. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    Directory of Open Access Journals (Sweden)

    Maria Domina

    Full Text Available There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  11. A human Fab fragment specific for thyroid peroxidase generated by cloning thyroid lymphocyte-derived immunoglobulin genes in a bacteriophage lambda library.

    Science.gov (United States)

    Portolano, S; Seto, P; Chazenbalk, G D; Nagayama, Y; McLachlan, S M; Rapoport, B

    1991-08-30

    A human Fab fragment (SP2) which binds specifically to human thyroid peroxidase has been generated by expressing random combinations of heavy and light chain immunoglobulin genes (derived from Graves' thyroid cDNA) in a bacteriophage lambda library. In common with many serum TPO autoantibodies, the cloned Fab fragment is IgG1 kappa and has a high affinity for TPO (approximately 10(-9) M). On the basis of their nucleotide sequences, the heavy and light chain genes coding for SP2 belong to families VHI, (D), JH3 and VKI, JK2, respectively. These data provide the first characterization at a molecular level of a human thyroid peroxidase antibody associated with autoimmune thyroid disease.

  12. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (V-HH) R9 coupled to Arthromyces ramosus peroxidase (ARP)

    NARCIS (Netherlands)

    Joosten, V.; Roelofs, M.S.; Dries, van den N.; Goosen, T.; Verrips, C.T.; Hondel, van den C.A.M.J.J.; Lokman, B.C.

    2005-01-01

    The Arthromyces ramosus peroxidase gene (arp) was genetically fused to either the 5'- or 3'-terminal ends of the gene encoding llama variable heavy chain antibody fragment V-HH R9, resulting in the fusion expression cassettes ARP-R9 or R9-ARP. Aspergillus awamori transformants were obtained which pr

  13. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (VHH) R9 coupled to Arthromyces ramosus peroxidase (ARP)

    NARCIS (Netherlands)

    Joosten, V.; Roelofs, M.S.; Dries, N. van den; Goosen, T.; Verrips, C.T.; Hondel, C.A.M.J.J. van den; Lokman, B.C.

    2005-01-01

    The Arthromyces ramosus peroxidase gene (arp) was genetically fused to either the 5′- or 3′-terminal ends of the gene encoding llama variable heavy chain antibody fragment VHH R9, resulting in the fusion expression cassettes ARP-R9 or R9-ARP. Aspergillus awamori transformants were obtained which pro

  14. Characterization of a monoclonal antibody with specificity for holo-transcobalamin

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey N

    2006-01-01

    Full Text Available Abstract Background Holotranscobalamin, cobalamin-saturated transcobalamin, is the minor fraction of circulating cobalamin (vitamin B12, which is available for cellular uptake and hence is physiologically relevant. Currently, no method allows simple, direct quantification of holotranscobalamin. We now report on the identification and characterization of a monoclonal antibody with a unique specificity for holotranscobalamin. Methods The specificity and affinity of the monoclonal antibodies were determined using surface plasmon resonance and recombinant transcobalamin as well as by immobilizing the antibodies on magnetic microspheres and using native transcobalamin in serum. The epitope of the holotranscobalamin specific antibody was identified using phage display and comparison to a de novo generated three-dimensional model of transcobalamin using the program Rosetta. A direct assay for holotrnscobalamin in the ELISA format was developed using the specific antibody and compared to the commercial assay HoloTC RIA. Results An antibody exhibiting >100-fold specificity for holotranscobalamin over apotranscobalamin was identified. The affinity but not the specificity varied inversely with ionic strength and pH, indicating importance of electrostatic interactions. The epitope was discontinuous and epitope mapping of the antibody by phage display identified two similar motifs with no direct sequence similarity to transcobalamin. A comparison of the motifs with a de novo generated three-dimensional model of transcobalamin identified two structures in the N-terminal part of transcobalamin that resembled the motif. Using this antibody an ELISA based prototype assay was developed and compared to the only available commercial assay for measuring holotranscobalamin, HoloTC RIA. Conclusion The identified antibody possesses a unique specificity for holotranscobalamin and can be used to develop a direct assay for the quantification of holotranscobalamin.

  15. Longitudinal Analysis of Tetanus- and Influenza-Specific IgG Antibodies in Myeloma Patients

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2012-01-01

    Full Text Available Background. Multiple myeloma (MM and its therapies may induce a severely compromised humoral immunity. We have performed a longitudinal analysis of IgG-antibody responses against influenza virus (FLU and tetanus toxoid (TT as surrogate markers for the B cell-mediated immunity in MM patients. Methods. 1094 serum samples of 190 MM patients and samples from 100 healthy donors were analyzed by ELISA for FLU- and TT-specific antibodies. Results. MM patients evidenced lower levels of FLU- and TT-specific antibodies than healthy controls (P<0.001. Immunoreactivity decreased with progressing disease and worsening clinical status. Levels of FLU- and TT-specific antibodies increased shortly (0-6 months after alloSCT (P<0.001, a time-period during which intravenous immunoglobulin (IVIG is routinely applied. Thereafter, antibody concentrations declined and remained suppressed for 3 years in the case of FLU-specific and for more than 5 years in the case of TT-specific antibodies. Conclusions. We found that MM is associated with a profound disease- and therapy-related immunosuppression, which is compensated for a few months after alloSCT, most likely by application of IVIG. This and the differences regarding the recovery of anti-FLU and anti-TT antibody titers during the following years need to be taken into account for optimizing IVIG application and immunization after alloSCT.

  16. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins

    Science.gov (United States)

    Sormanni, Pietro; Aprile, Francesco A.; Vendruscolo, Michele

    2015-01-01

    Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions. PMID:26216991

  17. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins.

    Science.gov (United States)

    Sormanni, Pietro; Aprile, Francesco A; Vendruscolo, Michele

    2015-08-11

    Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions.

  18. In situ amplification of DNA fragments specific for human Y chromosome in cellular nuclei by PCR

    Institute of Scientific and Technical Information of China (English)

    张锡元; 姜海波; 李立家; 马琦; 杨建琪; 刘汀

    1996-01-01

    Using single primer pairs Y3 and Y4, in siru polymerase chain reaction (in situ PCR) was successfully performed on the specimen slides of peripheral leukocytes. By both of the direct digpxiginin-11-dUTP incorporation into PCR products with in situ PCR (direct in situ PCR) and in situ PCR followed by detection of in situ hybridization (indirect in siru PCR), DNA fragments specific for human Y chromosome were obviously amplified in cellular nuclei of specimens on the slides. The results were verified by Southern analysis. The methodology of in situ PCR and its application were discussed.

  19. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    R Rajkannan; E J Padma Malar

    2007-09-01

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the crystal structure of monoclonal antibody specific for the pres1 region of the hepatitis B virus. At the optimized docked conformation, the interactions between the amino acids of antigen and antibody were examined. It is found that the docked complex is stabilized by 59.3 kcal/mol. The stability of the docked antigen-antibody complex is due to hydrogen bonding and van der Waals interactions. The amino acids of the antigen and antibody responsible for the interaction were identified.

  20. Epitope-specific antibody levels in tuberculosis: biomarkers of protection, disease and response to treatment.

    Directory of Open Access Journals (Sweden)

    Graham H Bothamley

    2014-06-01

    Full Text Available Monoclonal antibodies restricted to Mycobacterium tuberculosis can measure epitope-specific antibody levels in a competition assay. Immunodominant epitopes were defined from clinical samples and related to the clinical spectrum of disease. Antibody to the immunodominant epitopes was associated with HLA-DR15. Occupational exposure showed a different response and was consistent with recognition of dormancy related proteins and protection despite exposure to tuberculosis. Studies in leprosy revealed the importance of immune deviation and the relationships between T and B cell epitopes. During treatment, antibody levels increased, epitope spreading occurred, but the affinity constants remained the same after further antigen exposure, suggesting constraints on the process of epitope selection. Epitope-specific antibody levels have a potential role as biomarkers for new vaccines which might prevent the progression of latent to active tuberculosis and as tools to measure treatment effects on subpopulations of tubercle bacilli.

  1. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  2. Preliminary characterisation of Toxoplasma gondii isolates from Zimbabwe, with stage-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Hove, T.; Lind, Peter; Mukaratirwa, S.

    2005-01-01

    Cell-culture-derived clones of eight Toxoplasma gondii isolates from Zimbabwe were characterised in IFAT with a panel of five monoclonal antibodies (mAb). Each clone had been established from a single murine brain cyst. The antibodies were bradyzoite-specific (4.3), tachyzoite-specific (4.25, 5...... in the IFAT in a similar way to the Danish reference strain of T. gondii, SSI-119....

  3. Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display.

    Science.gov (United States)

    Min, Won-Ki; Kim, Sung-Gun; Seo, Jin-Ho

    2015-12-01

    As aflatoxin B1 is one of the most toxic mycotoxins, it is important to detect and to quantify aflatoxin B1 accurately by immunological methods. To enhance aflatoxin B1-binding affinity of the single-chain variable fragment, yeast surface display technique combined with fluorescence-activated cell sorting was applied. A randomly mutated scFv library was subjected to 4 rounds of fluorescence-activated cell sorting, resulting in isolation of 5 scFv variants showing an affinity improvement compared to the parental wild type scFv. The best scFv with a 9-fold improvement in affinity for aflatoxin B1 exhibited similar specificity to the monoclonal antibody. Most of the mutations in scFv-M37 were located outside of the canonical antigen-contact loops, suggesting that its affinity improvement might be driven by an allosteric effect inducing scFv-M37 to form a more favorable binding pocket for aflatoxin B1 than the wild type scFv.

  4. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  5. Antigen nature and complexity influence human antibody light chain usage and specificity.

    Science.gov (United States)

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A

    2016-05-27

    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies.

  6. Selection of apoptotic cell specific human antibodies from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Caroline Grönwall

    Full Text Available Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.

  7. Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans.

    Science.gov (United States)

    Marchalonis, J J; Adelman, M K; Robey, I F; Schluter, S F; Edmundson, A B

    2001-01-01

    This review considers definitions of the specificity of antibodies including the development of recent concepts of recognition polyspecificity and epitope promiscuity. Using sets of homologous and unrelated peptides derived from the sequences of immunoglobulin and T cell receptor chains we offer operational definitions of cross-reactivity by investigating correlations of either identities in amino acid sequence, or in hydrophobicity/hydrophilicity profiles with degree of binding in enzyme-linked immunosorbent assays. Polyreactivity, or polyspecificity, are terms used to denote binding of a monoclonal antibody or purified antibody preparation to large complex molecules that are structurally unrelated, such as thyroglobulin and DNA. As a first approximation, there is a linear correlation between degree of sequence identity or hydrophobicity/hydrophilicity and antigenic cross-binding. However, catastrophic interchanges of amino acids can occur where changing of one amino acid out of 16 in a synthetic peptide essentially eliminates binding to certain antibodies. An operational definition of epitope promiscuity for peptides is the case where two peptides show little or no identity in amino acid sequence but bind strongly to the same antibody as shown by either direct binding or competitive inhibition. Analysis of antibodies of humans and sharks, the two most divergent species in evolution to express antibodies and the combinatorial immune response, indicates that the capacity for both exquisite specificity and epitope recognition promiscuity are essential conserved features of individual vertebrate antibodies.

  8. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1

    Science.gov (United States)

    He, Xiao M.; Rueker, Florian; Casale, Elena; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 deg. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  9. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    Science.gov (United States)

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  10. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    Science.gov (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  11. Single Chain Fragment Variable Recombinant Antibody Functionalized Gold Nanoparticles for a Highly Sensitive Colorimetric Immunoassay

    Science.gov (United States)

    Liu, Yang; Liu, Yi; Raymond, Raymond L.; Zeng, Xiangqun

    2009-01-01

    In this report, the peptide linker connecting scFv VH and VL domains were genetically modified to contain different amino acids (i.e. cysteine (scFv-cys) or histidines ( scFv-his)) to enable the scFv to adsorb or self-assemble onto the gold nanoparticles (NPs). The scFv-cys stabilized gold NPs were used to develop a highly sensitive colorimetric immunosensor. The scFv-cys stabilized gold NPs were characterized by UV-vis spectra, transmission electron microscope (TEM) and FT-IR. After adding the antigen rabbit IgG, the solution of scFv-cys stabilized gold NPs shows obvious visible color change from deep red to light purple due to the aggregation of the gold nanoparticles. Based on the colorimetric aggregation of scFv-cys stabilized gold NPs, the immunosensor exhibits high sensitivity with detection limit of 1.7 nM and good specificity. The good properties of the colorimetric aggregation immunosensor would be attributed to the small size of scFv and the covalent link between the scFv and gold NPs that improve the better orientation and enhance the probe density. With the advantages of speed, simplicity and specificity, the colorimetric immunoassay based on the functionalized scFv stabilized gold NPs represents a promising approach for protein analysis and clinical diagnostics. PMID:19327975

  12. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    Science.gov (United States)

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  13. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    Science.gov (United States)

    Samuelsen, Simone V.; Solov'Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-10-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.

  14. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.

    Science.gov (United States)

    Brar, Hargeet K; Bhattacharyya, Madan K

    2012-06-01

    Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.

  15. Leucocyte specific antinuclear antibodies. Preparation and fluorescence study.

    Science.gov (United States)

    Lampert, I A; Evans, D J; Chesterton, C J

    1975-09-11

    Tissue and species specific anti-nuclear sera detectable by immunofluorescence were produced by immunising rabbits with D.N.A.-non-histone protein extract from human leucocytes. This is a potentially valuable method for the morphological study of differentiation.

  16. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae.

    Science.gov (United States)

    Hisada, Hiromoto; Tsutsumi, Hiroko; Ishida, Hiroki; Hata, Yoji

    2013-01-01

    Llama variable heavy-chain antibody fragment (VHH) fused to four different reader proteins was produced and secreted in culture medium by Aspergillus oryzae. These fusion proteins consisted of N-terminal reader proteins, VHH, and a C-terminal his-tag sequence which facilitated purification using one-step his-tag affinity chromatography. SDS-PAGE analysis of the deglycosylated purified fusion proteins confirmed that the molecular weight of each corresponded to the expected sum of VHH and the respective reader proteins. The apparent high molecular weight reader protein glucoamylase (GlaB) was found to be suitable for efficient VHH production. The GlaB-VHH-His protein bound its antigen, human chorionic gonadotropin, and was detectable by a new ELISA-based method using a coupled assay with glucoamylase, glucose oxidase, peroxidase, maltose, and 3,3',5,5'-tetramethylbenzidine as substrates. Addition of potassium phosphate to the culture medium induced secretion of 0.61 mg GlaB-VHH-His protein/ml culture medium in 5 days.

  17. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  18. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies.

    Directory of Open Access Journals (Sweden)

    Richard T Frank

    Full Text Available BACKGROUND: Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS. Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors. METHODS AND FINDINGS: As proof-of-concept, we selected Herceptin (trastuzumab, a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice. CONCLUSIONS: Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically

  19. Induction of epitope-specific neutralizing antibodies against West Nile virus.

    Science.gov (United States)

    Oliphant, Theodore; Nybakken, Grant E; Austin, S Kyle; Xu, Qing; Bramson, Jonathan; Loeb, Mark; Throsby, Mark; Fremont, Daved H; Pierson, Theodore C; Diamond, Michael S

    2007-11-01

    Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.

  20. Induction of Epitope-Specific Neutralizing Antibodies against West Nile Virus▿

    Science.gov (United States)

    Oliphant, Theodore; Nybakken, Grant E.; Austin, S. Kyle; Xu, Qing; Bramson, Jonathan; Loeb, Mark; Throsby, Mark; Fremont, Daved H.; Pierson, Theodore C.; Diamond, Michael S.

    2007-01-01

    Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies. PMID:17715236

  1. Use of AN Eosinophil Specific Monoclonal Antibody in Assessing Eosinophil Function.

    Science.gov (United States)

    Minkoff, Marjorie Sue

    A monoclonal antibody to an eosinophil specific determinant is very important in assessing eosinophil function during helminthic infection. Eosinophils induced by Schistosoma mansoni infection in BALB/c mice were used to induce C57B1/6 immunocytes for production of hybridomas secreting eosinophil monoclonal antibodies. These antibodies were shown to react with an eosinophil surface epitope but not with neutrophils or macrophages as determined by ELISA, immunodiffusion, immunofluorescence, and immunoblot assay. Affinity chromatography with eosinophil chemotactic factor-sepharose consistently selected out a { rm M_ R} 67,000 protein from solubilized eosinophil membrane antigens but not from neutrophil and macrophage antigens. In vitro studies showed that the eosinophil-specific monoclonal antibodies abrogated antibody-dependent eosinophil -mediated killing of S. mansoni schistosomula using mouse, rat or human eosinophils. Neutrophil and macrophage killing activities were unaffected. The monoclonal antibodies effected complement-dependent lysis of mouse and rat eosinophils but not of human eosinophils. ECF-treated eosinophils showed enhanced killing of schistosomula which was blocked by the monoclonal antibody. Murine and human eosinophils preincubated with monoclonal antibody exhibited decreased chemotaxis to ECF at optimal chemotactic concentrations. The monoclonal antibody also blocked eosinophil binding to ECF- sepharose beads. In vivo induction of peripheral blood eosinophilia by injection of S. mansoni eggs was suppressed by injections of monoclonal antibodies 2CD13 and 2QD45 in mouse and rat experimental models. Eosinophilia induced by keyhole limpet hemocyanin- cyclophosphamide treatment was also suppressed by monoclonal antibody in both murine and rat systems. Pulmonary granulomas in mice given egg injection and monoclonal antibody were smaller and contained fewer eosinophils than those granulomas from mice given eggs only. In immuno-biochemical studies, the

  2. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna;

    2012-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP...... and the pathogenicity of mAbs was investigated by passive transfer experiments. RESULTS: B cell immunodominant epitopes were localized within 4 antigenic domains of the COMP but with preferential response to the epidermal growth factor (EGF)-like domain. Some of our anti-COMP mAbs showed interactions with the native...... form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis...

  3. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    Science.gov (United States)

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-01-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG – IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses. PMID:28157207

  4. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    Science.gov (United States)

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-02-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG – IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses.

  5. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions.

    Directory of Open Access Journals (Sweden)

    Franck R Petry

    Full Text Available Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3, type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5, and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46. For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409 while others did not (pS199, pT205, pS396, pS404, pS422, A0024. With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i using secondary antibodies designed to bind only non-denatured Igs, ii preparation of a heat-stable fraction, iii clearing Igs from the homogenates, and iv using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes

  6. Co-expression of anti-rotavirus proteins (llama VHH antibody fragments in Lactobacillus: development and functionality of vectors containing two expression cassettes in tandem.

    Directory of Open Access Journals (Sweden)

    Gökçe Günaydın

    Full Text Available Rotavirus is an important pediatric pathogen, causing severe diarrhea and being associated with a high mortality rate causing approximately 500 000 deaths annually worldwide. Even though some vaccines are currently available, their efficacy is lower in the developing world, as compared to developed countries. Therefore, alternative or complementary treatment options are needed in the developing countries where the disease burden is the largest. The effect of Lactobacillus in promoting health and its use as a vehicle for delivery of protein and antibody fragments was previously shown. In this study, we have developed co-expression vectors enabling Lactobacillus paracasei BL23 to produce two VHH fragments against rotavirus (referred to as anti-rotavirus proteins 1 and 3, ARP1 and ARP3 as secreted and/or surface displayed products. ARP1 and ARP3 fragments were successfully co-expressed as shown by Western blot and flow cytometry. In addition, engineered Lactobacillus produced VHH antibody fragments were shown to bind to a broad range of rotavirus serotypes (including the human rotavirus strains 69M, Va70, F45, DS1, Wa and ST3 and simian rotavirus strains including RRV and SA11, by flow cytometry and ELISA. Hereby, we have demonstrated for the first time that when RRV was captured by one VHH displayed on the surface of co-expressor Lactobacillus, targeting other epitope was possible with another VHH secreted from the same bacterium. Therefore, Lactobacillus producing two VHH antibody fragments may potentially serve as treatment against rotavirus with a reduced risk of development of escape mutants. This co-expression and delivery platform can also be used for delivery of VHH fragments against a variety of mucosal pathogens or production of other therapeutic molecules.

  7. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris.

    Science.gov (United States)

    Shah, Kartik A; Clark, John J; Goods, Brittany A; Politano, Timothy J; Mozdzierz, Nicholas J; Zimnisky, Ross M; Leeson, Rachel L; Love, J Christopher; Love, Kerry R

    2015-12-01

    Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).

  8. Redistribution and modulation of Gross murine leukemia virus antigens induced by specific antibodies.

    Science.gov (United States)

    Ioachim, H L; Sabbath, M

    1979-01-01

    Gross murine leukemia virus (G-MuLV)-induced rat leukemia cells in tissue culture replicate G-MuLV, express strong virus-associated membrane antigenicity, and are consistently killed by specific antibodies and complement in cytotoxicity tests. To explore the effect of specific antibodies, rat anti-G-MuLV antisera were added to the cultures of leukemia cells for variable periods of time. Redistribution of virus particles as well as of membrane virus antigens in the form of polar patches and caps was observed by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy. Substantial decreases in cytotoxicity indexes accompanied these changes. The antigen modulation induced by anti-G-MuLV antibodies in vitro paralleled similar changes obtained in vivo by transplanttion of leukemia cells in rats with high anti-G-MuLV antibody titers. The importance of antigen modulation in this system resides in its direct relationship with the malignant potential of the leukemia cells.

  9. [Renal histology in 44 patients with specific antibodies of soluble nuclear antigens].

    Science.gov (United States)

    Meyer, O; Gaudreau, A; Peltier, A P

    1980-10-01

    The authors studied the correlations between renal histology and specific antinuclear antibodies of soluble nuclear antigens (anti-Sm, anti-RNP, anti-protein) in 44 patients with such auto-antibodies. They were mostly patients with lupus erythematosus (35/44), more rarely mixed collagen disease or Sjögren's disease. The presence of any one of the specific antibodies of nuclear antigens is not associated with any special renal prognosis; thus the presence of anti-RNP does not mean that there are no histological renal lesions. The renal prognosis depends in fact on the presence of anti-ADN native antibodies. Among the other laboratory parameters (rheumatoid factors, complement levels, cryoglobulinemia) only hypocomplementemia seems to be associated with a poor renal prognosis, the presence of rheumatoid factor has perhaps a protective role.

  10. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  11. Specific peptides as alternative to antibody ligands for biomagnetic separation of Clostridium tyrobutyricum spores.

    Science.gov (United States)

    Lavilla, Maria; Moros, Maria; Puertas, Sara; Grazú, Valeria; Pérez, María Dolores; Calvo, Miguel; de la Fuente, Jesus M; Sánchez, Lourdes

    2012-04-01

    Nowadays, the reference method for the detection of Clostridium tyrobutyricum in milk is the most-probable-number method, a very time-consuming and non-specific method. In this work, the suitability of the use of superparamagnetic beads coated with specific antibodies and peptides for bioseparation and concentration of spores of C. tyrobutyricum has been assessed. Peptide or antibody functionalized nanoparticles were able to specifically bind C. tyrobutyricum spores and concentrate them up to detectable levels. Moreover, several factors, such as particle size (200 nm and 1 μm), particle derivatization (aminated and carboxylated beads), coating method, and type of ligand have been studied in order to establish the most appropriate conditions for spore separation. Results show that concentration of spore is favored by a smaller bead size due to the wider surface of interaction in relation to particle volume. Antibody orientation, related to the binding method, is also critical in spore recovery. However, specific peptides seem to be a better ligand than antibodies, not only due to the higher recovery ratio of spores obtained but also due to the prolonged stability over time, allowing an optimal recovery of spores up to 3 weeks after bead coating. These results demonstrate that specific peptides bound to magnetic nanoparticles can be used instead of traditional antibodies to specifically bind C. tyrobutyricum spores being a potential basis for a rapid method to detect this bacterial target.

  12. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna;

    2012-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP-speci...

  13. Application of histone modification-specific interaction domains as an alternative to antibodies

    Science.gov (United States)

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z.; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul

    2014-01-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. PMID:25301795

  14. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus.

    Science.gov (United States)

    He, Wenqian; Tan, Gene S; Mullarkey, Caitlin E; Lee, Amanda J; Lam, Mannie Man Wai; Krammer, Florian; Henry, Carole; Wilson, Patrick C; Ashkar, Ali A; Palese, Peter; Miller, Matthew S

    2016-10-18

    The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising "universal" influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.

  15. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication.

    Directory of Open Access Journals (Sweden)

    Swarmistha Devi Aribam

    Full Text Available Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.

  16. Screening a hybridoma producing a specific monoclonal antibody to HLA-A24+Bw4 antigen by cytotoxicity inhibition assay.

    Science.gov (United States)

    Hiroishi, S; Kaneko, T; Arita, J

    1987-02-01

    A hybridoma secreting a monoclonal antibody (Tsa-1, IgG3) reacting specifically to HLA-A24+Bw4 was screened by cytotoxicity inhibition assay and micrototoxicity test. The R value of the antibody was 0.843.

  17. Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Katarzyna Niespodziana

    2015-01-01

    Interpretation: Our results demonstrate that increases of antibodies towards the VP1 N-terminus are group-specific and associated with severity of respiratory symptoms and suggest that it may be possible to develop serological tests for identifying causative RV groups.

  18. Optimisation of sandwich ELISA based on monoclonal antibodies for the specific measurement of pregnancy-associated plasma protein (PAPP-A) in acute coronary syndrome

    DEFF Research Database (Denmark)

    Rossen, Marie; Iversen, Kasper; Teisner, Ane

    2007-01-01

    by introduction of F(ab')(2)-fragment of the indicator antibody. This modified ELISA revealed that serum PAPP-A levels in ACS were statistically significantly higher than in controls (p... with acute coronary syndrome (ACS). The aims of the present study were to demonstrate (i) the importance of antibody specificity, (ii) the potential pitfalls in changing assay technology, (iii) the importance of strict definition of technology, and (iv) the application of a well-defined assay technology...... on sera from patients with ACS. DESIGN AND METHODS: Candidate monoclonal antibodies (Mab) were identified by immunohistochemistry, Western blot and the absence of positive signals (ELISA) with normal, non-pregnant serum as antigen source. The ELISA technology was standardized against the original PAPP...

  19. Development of QCM Biosensor with Specific Cow Milk Protein Antibody for Candidate Milk Adulteration Detection

    Directory of Open Access Journals (Sweden)

    Setyawan P. Sakti

    2016-01-01

    Full Text Available Adulteration of goat milk is usually done using cow’s milk product. Cow milk is used as it is widely available and its price is cheaper compared to goat milk. This paper shows a development of candidate tools for milk adulteration using cow milk. A quartz crystal microbalance immunosensor was developed using commercial crystal resonator and polyclonal antibody specific to cow milk protein. A specific protein at 208 KDa is found only in cow milk and does not exist in goat milk. The existence of this protein can be used as an indicator of cow milk content in a target solution. To detect the PSS 208 kDa protein, antibody specific to the PSS 208 was developed. The purified antibody was immobilized on top of the sensor surface on a polystyrene layer. The fraction of the immobilized antibody on the sensor was found at 1.5% of the given antibody. Using a static reaction cell, the developed immunosensor could detect the specific cow milk protein in buffer solution. The detection limit is 1 ppm. A linear relationship between frequency change and specific protein of cow milk concentration is found from a concentration of 1 ppm to 120 ppm.

  20. HLA class I donor-specific triplet antibodies detected after renal transplantation.

    Science.gov (United States)

    Varnavidou-Nicolaidou, A; Doxiadis, I I N; Iniotaki-Theodoraki, A; Patargias, T; Stavropoulos-Giokas, C; Kyriakides, G K

    2004-01-01

    The purpose of this study was to investigate whether IgG, non-donor-specific anti-HLA class I antibodies (HLAabI) detected after renal transplantation recognize immunogenic amino acid triplets expressed on the foreign graft. In addition, we sought to evaluate the effect of these antibodies as well as other posttransplant HLAabI on graft outcome. Posttransplant sera from 264 renal recipients were tested for the presence of IgG HLAabI and HLA class II-specific alloantibodies (HLAabII) by ELISA. The HLAMatchmaker computer algorithm was used to define the HLA class I non-donor-specific antibodies, which seem to recognize immunogenic amino acid triplets. Donor-specific triplet antibodies (DSTRab) were detected in 16 of 22 (72.7%) recipients based on at least one HLA-A or -B mismatched antigen with the donor. DSTRab were found either without (n = 7) or with (n = 9) HLA donor-specific antibodies (HLA-DSA). The presence of DSTRab alone in the periphery was associated with acute rejection, whereas the presence of both DSTRab and HLA-DSA was associated with chronic rejection and graft failure.

  1. Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library.

    Science.gov (United States)

    Liu, Jinny L; Anderson, George P; Delehanty, James B; Baumann, Richard; Hayhurst, Andrew; Goldman, Ellen R

    2007-03-01

    Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.

  2. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings

    Science.gov (United States)

    Purpose of reviewThis review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transm...

  3. Complement-dependent pathogenicity of brain-specific antibodies in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Khorooshi, Reza; Lillevang, Søren T;

    2013-01-01

    The specificity and potential pathogenicity of autoantibodies vary between neurological diseases. It is often unclear whether their detection in cerebrospinal fluid (CSF) is a consequence or a cause of pathology. The goal was to test whether administration of brain-specific antibodies into CSF...

  4. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors

    Science.gov (United States)

    Sampson, John H.; Crotty, Laura E.; Lee, Samson; Archer, Gary E.; Ashley, David M.; Wikstrand, Carol J.; Hale, Laura P.; Small, Clayton; Dranoff, Glenn; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.

    2000-01-01

    The epidermal growth factor receptor (EGFR) is often amplified and rearranged structurally in tumors of the brain, breast, lung, and ovary. The most common mutation, EGFRvIII, is characterized by an in-frame deletion of 801 base pairs, resulting in the generation of a novel tumor-specific epitope at the fusion junction. A murine homologue of the human EGFRvIII mutation was created, and an IgG2a murine mAb, Y10, was generated that recognizes the human and murine equivalents of this tumor-specific antigen. In vitro, Y10 was found to inhibit DNA synthesis and cellular proliferation and to induce autonomous, complement-mediated, and antibodydependent cell-mediated cytotoxicity. Systemic treatment with i.p. Y10 of s.c. B16 melanomas transfected to express stably the murine EGFRvIII led to long-term survival in all mice treated (n = 20; P < 0.001). Similar therapy with i.p. Y10 failed to increase median survival of mice with EGFRvIII-expressing B16 melanomas in the brain; however, treatment with a single intratumoral injection of Y10 increased median survival by an average 286%, with 26% long-term survivors (n = 117; P < 0.001). The mechanism of action of Y10 in vivo was shown to be independent of complement, granulocytes, natural killer cells, and T lymphocytes through in vivo complement and cell subset depletions. Treatment with Y10 in Fc receptor knockout mice demonstrated the mechanism of Y10 to be Fc receptor-dependent. These data indicate that an unarmed, tumor-specific mAb may be an effective immunotherapy against human tumors and potentially other pathologic processes in the “immunologically privileged” central nervous system. PMID:10852962

  5. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation.

    Science.gov (United States)

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.

  6. Commercially available antibodies against human and murine histamine H₄-receptor lack specificity.

    Science.gov (United States)

    Beermann, Silke; Seifert, Roland; Neumann, Detlef

    2012-02-01

    Antibodies are important tools to detect expression and localization of proteins within the living cell. However, for a series of commercially available antibodies which are supposed to recognize G-protein-coupled receptors (GPCR), lack of specificity has been described. In recent publications, antisera against the histamine H₄-receptor (H₄R), which is a member of the GPCR family, have been used to demonstrate receptor expression. However, a comprehensive characterization of these antisera has not been performed yet. Therefore, the purpose of our study was to evaluate the specificity of three commercially available H₄R antibodies. Sf9 insect cells and HEK293 cells expressing recombinant murine and human H₄R, spleen cells obtained from H₄⁻/⁻ and from wild-type mice, and human CD20⁺ and CD20⁻ peripheral blood cells were analyzed by flow cytometry and Western blot using three commercially available H₄R antibodies. Our results show that all tested H₄R antibodies bind to virtually all cells, independently of the expression of H₄R, thus in an unspecific fashion. Also in Western blot, the H₄R antibodies do not bind to the specified protein. Our data underscore the importance of stringent evaluation of antibodies using valid controls, such as cells of H₄R⁻/⁻ mice, to show true receptor expression and antigen specificity. Improved validation of commercially available antibodies prior to release to the market would avoid time-consuming and expensive validation assays by the user.

  7. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Directory of Open Access Journals (Sweden)

    Maria Trott

    Full Text Available HIV neutralizing antibodies (nAbs represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP and elite controllers (EC, represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  8. Function of individual 30S subunit proteins of Escherichia coli. Effect of specific immunoglobulin fragments (Fab) on activities of ribosomal decoding sites.

    Science.gov (United States)

    Lelong, J C; Gros, D; Gros, F; Bollen, A; Maschler, R; Stöffler, G

    1974-02-01

    Specific anti-30S protein immunoglobulin G fragments (Fab) were used to determine the contribution of each of the 30S ribosomal proteins to: (1) polyphenylalanine synthesis, (2) initiation factor-dependent binding of fMet-tRNA, (3) T-factor-dependent binding of phenylalanyl-tRNA, and (4) fixation of radioactive dihydrostreptomycin. Twenty of the 21 possible antibodies (antibody against S17 excepted) were used. In conditions where all the 30S proteins were accessible to Fabs, all of these monovalent antibodies strongly inhibited polyphenylalanine synthesis in vitro. Antibodies against S4, S6, S7, S12, S15, and S16, however, showed a weaker effect.30S proteins can be classified into four categories by their contributions to the function of sites "A" and "P": class I appears nonessential for tRNA positioning at either site (S4, S7, S15, and S16); class II includes proteins whose role in initiation is critical (S2, S5, S6, S12, and S13); class III (S8, S9, S11, and S18) corresponds to proteins whose blockade prevents internal (elongation factor Tudependent) positioning; and class IV includes entities that are essential for activities of both "A" and "P" sites (S1, S3, S10, S14, S19, S20, and S21). Dihydrostreptomycin fixation to the 30S or 70S ribosomes was inhibited by antibodies against S1, S10, S11, S18, S19, S20, and S21, but only weakly by the anti-S12 (Str A protein) Fab. The significance of these results is discussed in relation to 30S protein function, heterogeneity, and topography.

  9. Expression characteristics and specific antibody reactivity of diverse cathepsin F members of Paragonimus westermani.

    Science.gov (United States)

    Ahn, Chun-Seob; Na, Byoung-Kuk; Chung, Dong-Ll; Kim, Jeong-Geun; Kim, Jin-Taek; Kong, Yoon

    2015-02-01

    Paragonimiasis, caused by the lung fluke Paragonimus, is a major food-borne helminthic disease. Differential diagnosis of paragonimiasis from tuberculosis and other infectious granulomas in the lung is a prerequisite to proper management of patients. Cysteine proteases of Paragonimus westermani (PwCPs) invoke specific antibody responses against patient sera, while antibody capturing activity of different PwCPs has not been comparatively analyzed. In this study, we observed the expressional regulation of 11 species of different PwCPs (PwCP1-11). We expressed recombinant PwCPs and assessed diagnostic reliability employing sera from patients with P. westermani (n=138), other trematodiases (n=80), cestodiases (n=60) and pulmonary tuberculosis (n=20), and those of normal controls (n=20). PwCPs formed a monophyletic clade into cathepsin F and showed differential expression patterns along with developmental stages of worm. Bacterially expressed recombinant PwCPs (rPwCPs) exhibited variable sensitivity of 38.4-84.5% and specificity of 87.2-100% in diagnosing homologous infection. rPwCPs recognized specific antibodies of experimental cat sera as early as 3 or 6weeks after infection. Patient sera of fascioliasis, Schistosomiasis japonicum and clonorchiasis demonstrated weak cross-reactions. Our results demonstrate that diverse PwCPs of the cathepsin F family participate in inducing specific antibody responses. Most P. westermani cathepsin F, except for PwCP2 (AAF21461), which showed negligible antibody responses, might be applicable for paragonimiasis serodiagnosis.

  10. Repeated epitope in the recombinant epitope-peptide could enhance ELDKWA-epitope-specific antibody response

    Institute of Scientific and Technical Information of China (English)

    LIU Zuqiang; WANG Zuguang; CHEN Yinghua

    2005-01-01

    Based on the hypothesis suggested by us that epitope-vaccine may be a new strategy against HIV mutation, we have studied several neutralizing epitopes on HIV envelope proteins. However we do not know whether a repeated epitope in a recombinant epitope-peptide can enhance epitope-specific antibody response or not. ELDKWA-epitope (aa669-674) on the C-domain of HIV-1 gp41 is a neutralizing epitope defined by the monoclonal antibody (mAb) 2F5 with broad neutralizing activity. In this study, we designed and prepared a series of the recombinant epitope-peptides bearing 1, 4 and 8 copies of ELDKWA-epitope respectively. In the comparison of the antisera induced by the three recombinant antigens, an obviously increased titre of ELDKWA-epitope-specific antibody was observed in the case of four and eight repeated epitopes. In flow cytometry analysis, the epitope-specific antibodies in both antisera showed stronger activity to bind the transfected CHO-WT cells that stably express HIV-1 envelope glycoprotein on the cell surfaces. These experimental results indicated that repeated epitope in the recombinant epitope-peptide could enhance ELDKWA-epitope-specific antibody response, which could contribute to designing an effective recombinant epitope-vaccine.

  11. Neobenedenia melleni-Specific Antibodies Are Associated with Protection after Continuous Exposure in Mozambique Tilapia

    Directory of Open Access Journals (Sweden)

    Jennifer M. Kishimori

    2015-01-01

    Full Text Available Neobenedenia melleni is a significant monogenean pathogen of fish in aquaculture facilities and public aquaria. Immunity after exposure to live N. melleni is well established, but the mechanisms of immunity remain unclear. In this study, tilapia (Oreochromis mossambicus were continuously exposed to N. melleni over a four-month period and assessed for immunity as determined by a reduction in the number of parasites dislodged from the experimental animals during freshwater immersion. Specific mucosal and systemic antibody levels were by determined via enzyme-linked immunosorbent assay. At 45 days postexposure (DPE, fish displayed high parasite loads and baseline levels of mucosal antibodies. At 102 and 120 DPE parasite loads were significantly decreased, and antibody levels were significantly increased for mucus and plasma samples. The correlation between immunity (reduction in parasite load and an increased humoral antibody response suggests a key role of antibody in the immune response. This is the first report of immunity against N. melleni that is associated with specific mucosal or systemic antibodies.

  12. Induction of multi-epitope specific antibodies against HIV-1 by multi-epitope vaccines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some neutralizing antibodies against HIV-1 envelope proteins were highly effective to inhibit the infection of different strains in vitro, and existed in the infected individuals with very low levels. We suggested multi-epitope-vaccine as a new strategy to increase levels of neutralizing antibodies and the abilities against HIV mutation in vivo. Two candidate multi-epitope-vaccines induced antibodies with predefined multi-epitope-specificity in rhesus macaque. These antibodies recognized corresponding neutralizing epitopes on epitope-peptides, gp41 peptides, V3 loop peptide, rsgp41 and rgp120. Besides, three candidate epitope-vaccines in combination (another kind of multi-epitopevaccines) showed similar potency to induce predefined multiple immune responses in rabbits. These results suggest that multi-epitope-vaccines may be a new strategy to induce multi-antiviral activities against HIV-1 infection and mutafions.

  13. Mechanism of dinitrochlorobenzene-induced dermatitis in mice: role of specific antibodies in pathogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth Yan Zhang

    Full Text Available BACKGROUND: Dinitrochlorobenzene-induced contact hypersensitivity is widely considered as a cell-mediated rather than antibody-mediated immune response. At present, very little is known about the role of antigen-specific antibodies and B cells in the development of dinitrochlorobenzene-induced hypersensitivity reactions, and this is the subject of the present investigation. METHODOLOGY/PRINCIPAL FINDINGS: Data obtained from multiple lines of experiments unequivocally showed that the formation of dinitrochlorobenzene-specific Abs played an important role in the development of dinitrochlorobenzene-induced contact hypersensitivity. The appearance of dinitrochlorobenzene-induced skin dermatitis matched in timing the appearance of the circulating dinitrochlorobenzene-specific antibodies. Adoptive transfer of sera containing dinitrochlorobenzene-specific antibodies from dinitrochlorobenzene-treated mice elicited a much stronger hypersensitivity reaction than the adoptive transfer of lymphocytes from the same donors. Moreover, dinitrochlorobenzene-induced contact hypersensitivity was strongly suppressed in B cell-deficient mice with no DNCB-specific antibodies. It was also observed that treatment of animals with dinitrochlorobenzene polarized Th cells into Th2 differentiation by increasing the production of Th2 cytokines while decreasing the production of Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: In striking contrast to the long-held belief that dinitrochlorobenzene-induced contact hypersensitivity is a cell-mediated immune response, the results of our present study demonstrated that the production of dinitrochlorobenzene-specific antibodies by activated B cells played an indispensible role in the pathogenesis of dinitrochlorobenzene-induced CHS. These findings may provide new possibilities in the treatment of human contact hypersensitivity conditions.

  14. Site-specific modification of ED-B-targeting antibody using intein-fusion technology

    Directory of Open Access Journals (Sweden)

    Greven Simone

    2011-07-01

    Full Text Available Abstract Background A promising new approach in cancer therapy is the use of tumor specific antibodies coupled to cytotoxic agents. Currently these immunoconjugates are prepared by rather unspecific coupling chemistries, resulting in heterogeneous products. As the drug load is a key parameter for the antitumor activity, site-specific strategies are desired. Expressed protein ligation (EPL and protein trans-splicing (PTS are methods for the specific C-terminal modification of a target protein. Both include the expression as an intein fusion protein, followed by the exchange of the intein for a functionalized moiety. Results A full-length IgG specific for fibronectin ED-B was expressed as fusion protein with an intein (Mxe GyrA or Npu DnaE attached to each heavy chain. In vitro protocols were established to site-specifically modify the antibodies in high yields by EPL or PTS, respectively. Although reducing conditions had to be employed during the process, the integrity or affinity of the antibody was not affected. The protocols were used to prepare immunoconjugates containing two biotin molecules per antibody, attached to the C-termini of the heavy chains. Conclusion Full-length antibodies can be efficiently and site-specifically modified at the C-termini of their heavy chains by intein-fusion technologies. The described protocols can be used to prepare immunoconjugates of high homogeneity and with a defined drug load of two. The attachment to the C-termini is expected to retain the affinity and effector functions of the antibodies.

  15. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity.

    Directory of Open Access Journals (Sweden)

    Cristina d'Abramo

    Full Text Available The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer's disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.

  16. Purification of mitochondrial proteins HSP60 and ATP synthase from ascidian eggs: implications for antibody specificity.

    Directory of Open Access Journals (Sweden)

    Janet Chenevert

    Full Text Available Use of antibodies is a cornerstone of biological studies and it is important to identify the recognized protein with certainty. Generally an antibody is considered specific if it labels a single band of the expected size in the tissue of interest, or has a strong affinity for the antigen produced in a heterologous system. The identity of the antibody target protein is rarely confirmed by purification and sequencing, however in many cases this may be necessary. In this study we sought to characterize the myoplasm, a mitochondria-rich domain present in eggs and segregated into tadpole muscle cells of ascidians (urochordates. The targeted proteins of two antibodies that label the myoplasm were purified using both classic immunoaffinity methods and a novel protein purification scheme based on sequential ion exchange chromatography followed by two-dimensional gel electrophoresis. Surprisingly, mass spectrometry sequencing revealed that in both cases the proteins recognized are unrelated to the original antigens. NN18, a monoclonal antibody which was raised against porcine spinal cord and recognizes the NF-M neurofilament subunit in vertebrates, in fact labels mitochondrial ATP synthase in the ascidian embryo. PMF-C13, an antibody we raised to and purified against PmMRF, which is the MyoD homolog of the ascidian Phallusia mammillata, in fact recognizes mitochondrial HSP60. High resolution immunolabeling on whole embryos and isolated cortices demonstrates localization to the inner mitochondrial membrane for both ATP synthase and HSP60. We discuss the general implications of our results for antibody specificity and the verification methods which can be used to determine unequivocally an antibody's target.

  17. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    Science.gov (United States)

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  18. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome.

    Directory of Open Access Journals (Sweden)

    Soraya S Pereira

    Full Text Available In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ₈₅ of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ₈₅. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB, surface plasmon resonance (SPR device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ₈₅ in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with

  19. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome.

    Science.gov (United States)

    Pereira, Soraya S; Moreira-Dill, Leandro S; Morais, Michelle S S; Prado, Nidiane D R; Barros, Marcos L; Koishi, Andrea C; Mazarrotto, Giovanny A C A; Gonçalves, Giselle M; Zuliani, Juliana P; Calderon, Leonardo A; Soares, Andreimar M; Pereira da Silva, Luiz H; Duarte dos Santos, Claudia N; Fernandes, Carla F C; Stabeli, Rodrigo G

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ₈₅) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ₈₅. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ₈₅ in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus

  20. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms.

  1. Muscle-specific kinase antibody associated myasthenia gravis after bone marrow transplantation.

    Science.gov (United States)

    Heidarzadeh, Zeinab; Mousavi, Seyyed-Asadollah; Ostovan, Vahid Reza; Nafissi, Shahriar

    2014-02-01

    Myasthenia gravis is a rare complication of bone marrow transplantation and graft versus host disease. We report a 30-year-old woman presented with oculobulbar and proximal limb weakness after allogeneic bone marrow transplantation for chronic myelogenous leukemia. Also, she developed graft versus host disease following bone marrow transplantation. Investigations led to the diagnosis of muscle specific kinase antibody related myasthenia gravis. There have been only two case reports of muscle specific kinase antibody positive myasthenia gravis after bone marrow transplantation in the literature, but none of the previously reported cases had graft versus host disease.

  2. Radioimmunoassay of serum antibodies with B-streptococcus specificity in pregnant women and infants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, C.W.

    1980-01-01

    In a specific competitive radioimmunoassay of purified rabbit antibodies, labeled with iodine 125 against group- and type-antigens of streptococcus agalactiae (streptococci type B), we investigated the amount of serum anti-bodies providing specificity of streptococci type B in not preselected pregnant women, newborn and babies with colonies of streptococci type B or with diseases due to streptococci type B and in some of their mothers. These antibodies could be detected in 26 of 45 pregnant women and in 3 of 7 children with colonies of streptococci type B. 5 of 18 newborn with the ''early-onset'' type of infection and 6 of 7 of their mothers provided antibodies with specificity of streptococci type B as did one of two newborn with the ''late onset'' type of infection. Contrary to the supposition of Baker and Kasper and in accordance with the findings of Wilkinson, the ''risk group'' cannot be determined only by detecting the antibodies against streptococci type B. The risk group comprises those persons in whom the colonisation of streptococci agalactiae leads to the frequently life-threatening infecton of neonatals with streptococci type B.

  3. Generation of Recombinant Monoclonal Antibodies from Immunised Mice and Rabbits via Flow Cytometry and Sorting of Antigen-Specific IgG+ Memory B Cells.

    Directory of Open Access Journals (Sweden)

    Dale O Starkie

    Full Text Available Single B cell screening strategies, which avoid both hybridoma fusion and combinatorial display, have emerged as important technologies for efficiently sampling the natural antibody repertoire of immunized animals and humans. Having access to a range of methods to interrogate different B cell subsets provides an attractive option to ensure large and diverse panels of high quality antibody are produced. The generation of multiple antibodies and having the ability to find rare B cell clones producing IgG with unique and desirable characteristics facilitates the identification of fit-for-purpose molecules that can be developed into therapeutic agents or research reagents. Here, we describe a multi-parameter flow cytometry single-cell sorting technique for the generation of antigen-specific recombinant monoclonal antibodies from single IgG+ memory B cells. Both mouse splenocytes and rabbit PBMC from immunised animals were used as a source of B cells. Reagents staining both B cells and other unwanted cell types enabled efficient identification of class-switched IgG+ memory B cells. Concurrent staining with antigen labelled separately with two spectrally-distinct fluorophores enabled antigen-specific B cells to be identified, i.e. those which bind to both antigen conjugates (double-positive. These cells were then typically sorted at one cell per well using FACS directly into a 96-well plate containing reverse transcriptase reaction mix. Following production of cDNA, PCR was performed to amplify cognate heavy and light chain variable region genes and generate transcriptionally-active PCR (TAP fragments. These linear expression cassettes were then used directly in a mammalian cell transfection to generate recombinant antibody for further testing. We were able to successfully generate antigen-specific recombinant antibodies from both the rabbit and mouse IgG+ memory B cell subset within one week. This included the generation of an anti-TNFR2 blocking

  4. Biodistribution and planar gamma camera imaging of {sup 123}I- and {sup 131}I-labeled F(ab'){sub 2} and Fab fragments of monoclonal antibody 14C5 in nude mice bearing an A549 lung tumor

    Energy Technology Data Exchange (ETDEWEB)

    Burvenich, Ingrid J.G. [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium)]. E-mail: ingrid.burvenich@ugent.be; Schoonooghe, Steve [Department of Biomedical Research, Flanders Institute of Biotechnology (VIB), University of Ghent, B-9000 Ghent (Belgium); Blanckaert, Peter [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Bacher, Klaus [Department of Medical Physics and Radiation Protection, Ghent University, B-9000 Ghent (Belgium); Vervoort, Liesbet [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Coene, Elisabeth [N. Goormaghtigh Institute of Pathology, Ghent University, B-9000 Ghent (Belgium); Mertens, Nico [Department of Biomedical Research, Flanders Institute of Biotechnology (VIB), University of Ghent, B-9000 Ghent (Belgium); Vos, Filip de [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Slegers, Guido [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium)

    2007-04-15

    Detection of antigen 14C5, involved in substrate adhesion and highly expressed on the membrane of many carcinomas, including lung cancer, provides important diagnostic information that can influence patient management. The aim of this study was to evaluate the biodistribution and planar gamma camera imaging characteristics of radioiodinated F(ab'){sub 2} and Fab fragments of monoclonal antibody (mAb) 14C5 in tumor-bearing mice. Methods: F(ab'){sub 2} and Fab 14C5 fragments were radioiodinated using the Iodo-Gen method. In vitro stability, binding specificity and affinity of {sup 125}I-labeled 14C5 fragments were studied in A549 lung carcinoma cells. Biodistribution, blood clearance and tumor-targeting characteristics of {sup 131}I-labeled 14C5 fragments and intact mAb 14C5 were studied in Swiss nu/nu mice bearing A549 lung carcinoma tumors. Planar gamma imaging illustrated the potential use of these {sup 123}I-labeled 14C5 fragments for radioimmunodetection (RID). Results: Saturation binding experiments showed highest affinity for {sup 125}I-labeled F(ab'){sub 2} fragments (K {sub d}=0.37{+-}0.10 nmol/L) and lowest affinity for {sup 125}I-labeled Fab fragments (K {sub d}=2.25{+-}0.44 nmol/L). Blood clearance studies showed that the alpha half-life (t1/2{alpha}) value for Fab, F(ab'){sub 2} and mAb 14C5 was 14.9, 21 and 118 min, respectively. The beta half-life t1/2{beta} value for Fab, F(ab'){sub 2} and mAb 14C5 was 439, 627 and 4067 min, respectively. {sup 131}I-Fab fragments showed highest tumor uptake 3 h after injection (2.4{+-}0.8 %ID/g), {sup 131}I-labeled F(ab'){sub 2} showed highest tumor uptake 6 h after injection (4.7{+-}0.7 %ID/g) and for {sup 131}I-labeled mAb highest tumor uptake was observed at 24 h (10.7{+-}2.3 %ID/g). In planar gamma imaging, both labeled fragments gave better tumor-to-background contrast than {sup 123}I-mAb 14C5. Conclusion: Fab and F(ab'){sub 2} fragments derived from intact mAb 14C5 have

  5. Computational screening of the human TF-glycome provides a structural definition for the specificity of anti-tumor antibody JAA-F11.

    Directory of Open Access Journals (Sweden)

    Matthew B Tessier

    Full Text Available Recombinant antibodies are of profound clinical significance; yet, anti-carbohydrate antibodies are prone to undesirable cross-reactivity with structurally related-glycans. Here we introduce a new technology called Computational Carbohydrate Grafting (CCG, which enables a virtual library of glycans to be assessed for protein binding specificity, and employ it to define the scope and structural origin of the binding specificity of antibody JAA-F11 for glycans containing the Thomsen-Friedenreich (TF human tumor antigen. A virtual library of the entire human glycome (GLibrary-3D was constructed, from which 1,182 TF-containing human glycans were identified and assessed for their ability to fit into the antibody combining site. The glycans were categorized into putative binders, or non-binders, on the basis of steric clashes with the antibody surface. The analysis employed a structure of the immune complex, generated by docking the TF-disaccharide (Galβ1-3GalNAcα into a crystal structure of the JAA-F11 antigen binding fragment, which was shown to be consistent with saturation transfer difference (STD NMR data. The specificities predicted by CCG were fully consistent with data from experimental glycan array screening, and confirmed that the antibody is selective for the TF-antigen and certain extended core-2 type mucins. Additionally, the CCG analysis identified a limited number of related putative binding motifs, and provided a structural basis for interpreting the specificity. CCG can be utilized to facilitate clinical applications through the determination of the three-dimensional interaction of glycans with proteins, thus augmenting drug and vaccine development techniques that seek to optimize the specificity and affinity of neutralizing proteins, which target glycans associated with diseases including cancer and HIV.

  6. Computational screening of the human TF-glycome provides a structural definition for the specificity of anti-tumor antibody JAA-F11.

    Science.gov (United States)

    Tessier, Matthew B; Grant, Oliver C; Heimburg-Molinaro, Jamie; Smith, David; Jadey, Snehal; Gulick, Andrew M; Glushka, John; Deutscher, Susan L; Rittenhouse-Olson, Kate; Woods, Robert J

    2013-01-01

    Recombinant antibodies are of profound clinical significance; yet, anti-carbohydrate antibodies are prone to undesirable cross-reactivity with structurally related-glycans. Here we introduce a new technology called Computational Carbohydrate Grafting (CCG), which enables a virtual library of glycans to be assessed for protein binding specificity, and employ it to define the scope and structural origin of the binding specificity of antibody JAA-F11 for glycans containing the Thomsen-Friedenreich (TF) human tumor antigen. A virtual library of the entire human glycome (GLibrary-3D) was constructed, from which 1,182 TF-containing human glycans were identified and assessed for their ability to fit into the antibody combining site. The glycans were categorized into putative binders, or non-binders, on the basis of steric clashes with the antibody surface. The analysis employed a structure of the immune complex, generated by docking the TF-disaccharide (Galβ1-3GalNAcα) into a crystal structure of the JAA-F11 antigen binding fragment, which was shown to be consistent with saturation transfer difference (STD) NMR data. The specificities predicted by CCG were fully consistent with data from experimental glycan array screening, and confirmed that the antibody is selective for the TF-antigen and certain extended core-2 type mucins. Additionally, the CCG analysis identified a limited number of related putative binding motifs, and provided a structural basis for interpreting the specificity. CCG can be utilized to facilitate clinical applications through the determination of the three-dimensional interaction of glycans with proteins, thus augmenting drug and vaccine development techniques that seek to optimize the specificity and affinity of neutralizing proteins, which target glycans associated with diseases including cancer and HIV.

  7. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures.

    Science.gov (United States)

    Pett, Christian; Cai, Hui; Liu, Jia; Palitzsch, Björn; Schorlemer, Manuel; Hartmann, Sebastian; Stergiou, Natascha; Lu, Mengji; Kunz, Horst; Schmitt, Edgar; Westerlind, Ulrika

    2017-03-17

    Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the

  8. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies.

    Science.gov (United States)

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M; Tsimikas, Sotirios; Fischer, Michael B; Witztum, Joseph L; Lang, Irene M; Binder, Christoph J

    2015-02-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA(+) MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE(+) MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD.

  9. Echinococcus granulosus: the potential use of specific radiolabelled antibodies in diagnosis by immunoscintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Rogan, M.T.; Morris, D.L.; Pritchard, D.I.; Perkins, A.C. (Nottingham Univ. (UK))

    1990-05-01

    Diagnosis of hydatid disease in man is frequently dependent on the imaging of cysts in situ by techniques such as ultrasonography and CAT scans. Such methods are useful but are not specific and can lead to errors in diagnosis. The present work reports preliminary experiments on the development of a specific imaging technique for hydatid cysts using radiolabelled antibodies. A purified preparation of antigen B of hydatid fluid was used to raise polyclonal antisera in rabbits and the resulting affinity-purified IgG labelled with {sup 131}I. Gerbils with an established Echinococcus granulosus infection were injected intraperitoneally with the labelled antibody and imaged 48 h later with a gamma camera. Hydatid cysts could be identified within the peritoneal cavity and post-mortem assessment of activity showed the cysts to contain approximately four times as much activity as the surrounding organs thereby indicating successful targeting of the antibody to the cysts. (author).

  10. Intranasal Administration of Antibody-Bound Respiratory Syncytial Virus Particles Efficiently Primes Virus-Specific Immune Responses in Mice

    NARCIS (Netherlands)

    Kruijsen, Debby; Einarsdottir, Helga K.; Schijf, Marcel A.; Coenjaerts, Frank E.; van der Schoot, Ellen C.; Vidarsson, Gestur; van Bleek, Grada M.

    2013-01-01

    Infants are protected from a severe respiratory syncytial virus (RSV) infection in the first months of life by maternal antibodies or by prophylactically administered neutralizing antibodies. Efforts are under way to produce RSV-specific antibodies with increased neutralizing capacity compared to th

  11. Significance of anti-HLA and donor-specific antibodies in long-term renal graft survival.

    Science.gov (United States)

    Saidman, S

    2007-04-01

    Numerous studies have demonstrated an association of posttransplant HLA antibodies with decreased long-term graft survival. The presence of C4d deposition in these cases supports the hypothesis that antibody and complement deposition are involved in the pathogenesis of graft failure. Development of HLA antibodies may predate the clinical manifestation of chronic rejection (CR). However, frequency of donor-specific antibody is low when all patients are screened regardless of their graft function, and it may be more valuable to look for antibody only in patients with mild dysfunction. Effective treatment for CR has not been identified, although increased immunosuppression has been shown to decrease antibody levels and stabilize graft function. Many patients have been identified with good graft function despite the presence of circulating donor-specific HLA antibody. Additional studies focusing on the mechanism behind the apparent protection from the detrimental effects of antibody in such patients are needed.

  12. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  13. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice.

    Science.gov (United States)

    Liu, Qiong; Pang, Hua; Hu, Xiaoli; Li, Wenbo; Xi, Jimei; Xu, Lu; Zhou, Jing

    2016-01-01

    Medullary thyroid carcinoma (MTC) is a rare tumor of the endocrine system with poor prognosis as it exhibits high resistance against conventional therapy. Recent studies have shown that monoclonal antibodies labeled with radionuclide have become important agents for diagnosing tumors. To elucidate whether single-chain fragment of variable (scFv) antibody labeled with 131I isotope is a potential imaging agent for diagnosing MTC. A human scFv antibody library of MTC using phage display technique was constructed with a capacity of 3x10(5). The library was panned with thyroid epithelial cell lines and MTC cell lines (TT). Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the biological characteristics of the panned scFv. Methyl thiazolyl tetrazolium (MTT) assay was also used to explore the optimal concentration of the TT cell proliferation inhibition rate. They were categorized into TT, SW480 and control groups using phosphate-buffered saline. Western blotting showed that molecular weight of scFv was 28 kDa, cell ELISA showed that the absorbance of TT cell group was significantly increased (P=0.000??) vs. the other three groups, and MTT assay showed that the inhibition rate between the two cell lines was statistically significantly different (Psingle photon emission computed tomography. scFv rapidly and specifically target MTC cells, suggesting the potential of this antibody as an imaging agent for diagnosing MTC.

  14. Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display.

    Science.gov (United States)

    Dooley, Helen; Flajnik, Martin F; Porter, Andrew J

    2003-09-01

    The novel immunoglobulin isotype novel antigen receptor (IgNAR) is found in cartilaginous fish and is composed of a heavy-chain homodimer that does not associate with light chains. The variable regions of IgNAR function as independent domains similar to those found in the heavy-chain immunoglobulins of Camelids. Here, we describe the successful cloning and generation of a phage-displayed, single-domain library based upon the variable domain of IgNAR. Selection of such a library generated from nurse sharks (Ginglymostoma cirratum) immunized with the model antigen hen egg-white lysozyme (HEL) enabled the successful isolation of intact antigen-specific binders matured in vivo. The selected variable domains were shown to be functionally expressed in Escherichia coli, extremely stable, and bind to antigen specifically with an affinity in the nanomolar range. This approach can therefore be considered as an alternative route for the isolation of minimal antigen-binding fragments with favorable characteristics.

  15. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.

    Science.gov (United States)

    Winkelmann, D A; Bourdieu, L; Kinose, F; Libchaber, A

    1995-04-01

    We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement.

  16. Generation and tumor recognition properties of two human monoclonal antibodies specific to cell surface anionic phospholipids.

    Science.gov (United States)

    Bujak, Emil; Pretto, Francesca; Neri, Dario

    2015-08-01

    Phosphatidylserine (PS) and other anionic phospholipids, which become exposed on the surface of proliferating endothelial cells, tumor cells and certain leukocytes, have been used as targets for the development of clinical-stage biopharmaceuticals. One of these products (bavituximab) is currently being investigated in Phase 3 clinical trials. There are conflicting reports on the ability of bavituximab and other antibodies to recognize PS directly or through beta-2 glycoprotein 1, a serum protein that is not highly conserved across species. Here, we report on the generation and characterization of two fully human antibodies directed against phosphatidylserine. One of these antibodies (PS72) bound specifically to phosphatidylserine and to phosphatidic acid, but did not recognize other closely related phospholipids, while the other antibody (PS41) also bound to cardiolipin. Both PS72 and PS41 stained 8/9 experimental tumor models in vitro, but both antibodies failed to exhibit a preferential tumor accumulation in vivo, as revealed by quantitative biodistribution analysis. Our findings indicate that anionic phospholipids are exposed and accessible in most tumor types, but cast doubts about the possibility of efficiently targeting tumors in vivo with PS-specific reagents.

  17. Passive Immunization in JNPL3 Transgenic Mice Using an Array of Phospho-Tau Specific Antibodies.

    Directory of Open Access Journals (Sweden)

    Cristina d'Abramo

    Full Text Available Recent work from our lab and few others have strongly suggested that immunotherapy could be an effective means of preventing the development of tau accumulation in JNPL3 transgenic mice, carrying the human P301L mutation. The aim of this study was to test the efficacy of a variety of specific tau monoclonal antibodies in JNPL3. Starting at 3 months of age, mice were treated for 4 months with weekly intraperitoneal injections of saline or purified tau monoclonal antibodies (10 mg/Kg different in specificity for pathological tau: CP13 (pSer202, RZ3 (pThr231 and PG5 (pSer409. As expected, not all the antibodies tested showed efficacy at preventing the development of tau pathology at the described dose, with some of them even worsening the pathological scenario. Only by targeting the pSer202 epitope with CP13 was a conspicuous reduction of insoluble or soluble tau in cortex and hindbrain obtained. Here we report about the importance of screening in vivo multiple tau antibodies in order to select the antibodies to direct into future clinical studies.

  18. Detoxified Haemophilus ducreyi cytolethal distending toxin and induction of toxin specific antibodies in the genital tract.

    Science.gov (United States)

    Lundqvist, Annika; Fernandez-Rodrigues, Julia; Ahlman, Karin; Lagergård, Teresa

    2010-08-16

    Haemophilus ducreyi causes genital ulceration (chancroid), a sexually transmitted infection and still an important factor which contributes to the spread of HIV in developing countries. The bacterium produces a cytolethal distending toxin (HdCDT) causing cell cycle arrest and apoptosis/necrosis of human cells and contributes to the aggravation of ulcers. The aim of the study was to induce toxin-neutralizing antibodies in the genital tract of mice. Repeated subcutaneous (sc) immunisations with 5-10microg active HdCDT induced low levels of serum anti-HdCDT IgG without neutralizing capacity. High levels of specific IgG1 antibodies in serum and genital tract were generated after sc immunisations with 10microg formaldehyde detoxified HdCDT toxoid alone and the addition of aluminium salts or RIBI (based on the lipid A moiety) as adjuvant further increased the level of serum antibodies. A high correlation was found between elevated levels of anti-HdCDT IgG in sera, the level of neutralizing activity and the antibody level in genital tract (r=0.8). Thus, induction of high antibody levels specific to HdCDT in the genital tissue can be achieved by parenteral immunisation with the toxoid. The HdCDT toxoid can be considered as a candidate component in vaccine against chancroid.

  19. Class specific antibody responses to newborn larva antigens during Trichinella spiralis human infection

    Directory of Open Access Journals (Sweden)

    Mendez-Loredo B.

    2001-06-01

    Full Text Available A follow-up study of the class antibody responses to newborn larva (NBL antigens in individuals involved in an outbreak of human trichinellosis was carried out by ELISA assays. The data showed that similar kinetics of antibody responses of different magnitude developed in trichinellosis patients; it was low by week 3, a peak raised by week 5 and decreased from week 7 up to the end of the study. The IgA-ELISA assay was the most sensitive and specific while the IgM was the least sensitive and specific. IgA antibodies to NBL antigens were detected in 80 % of patients while IgE, IgG and IgM responses were observed in 44, 31 and 19 % of the patients by week 3, respectively. From weeks 5 to 7, IgA antibodies were found in 89 to 100 % of the patients while lower percentages (0-82 % were found for the other isotypes. Reactivity of IgA, IgE, IgG and IgM to NBL antigens decreased from week 37 to 57 after infection (0-38 %. These results suggest that detection of IgA antibodies may be useful for early diagnosis and epidemiological studies in human trichinellosis.

  20. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D

    2010-12-01

    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  1. Tumour-targeting properties of antibodies specific to MMP-1A, MMP-2 and MMP-3

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffen, Stefanie; Frey, Katharina; Stutz, Irene; Roesli, Christoph; Neri, Dario [Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zuerich, Zuerich (Switzerland)

    2010-08-15

    Matrix metalloproteinases (MMPs), a group of more than 20 zinc-containing endopeptidases, are upregulated in many diseases, but several attempts to use radiolabelled MMP inhibitors for imaging tumours have proved unsuccessful in mouse models, possibly due to the limited specificity of these agents or their unfavourable pharmacokinetic profiles. In principle, radiolabelled monoclonal antibodies could be considered for the selective targeting and imaging of individual MMPs. We cloned, produced and characterized high-affinity monoclonal antibodies specific to murine MMP-1A, MMP-2 and MMP-3 in SIP (small immunoprotein) miniantibody format using biochemical and immunochemical methods. We also performed comparative biodistribution analysis of their tumour-targeting properties at three time points (3 h, 24 h, 48 h) in mice bearing subcutaneous F9 tumours using radioiodinated protein preparations. The clinical stage L19 antibody, specific to the alternatively spliced EDB domain of fibronectin, was used as reference tumour-targeting agent for in vivo studies. All anti-MMP antibodies and SIP(L19) strongly stained sections of F9 tumours when assessed by immunofluorescence methods. In biodistribution experiments, SIP(SP3), specific to MMP-3, selectively accumulated at the tumour site 24 and 48 h after intravenous injection, but was rapidly cleared from other organs. By contrast, SIP(SP1) and SIP(SP2), specific to MMP-1A and MMP-2, showed no preferential accumulation at the tumour site. Antibodies specific to MMP-3 may serve as vehicles for the efficient and selective delivery of imaging agents or therapeutic molecules to sites of disease. (orig.)

  2. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    Science.gov (United States)

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  3. Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies

    NARCIS (Netherlands)

    Rodriguez, ME; Hellwig, SMM; Vidakovics, MLAP; Berbers, GAM; van de Winkel, JGJ

    2006-01-01

    Bordetella pertussis attachment to host cells is a crucial step in colonization. In this study, we investigated the specificity of antibodies, induced either by vaccination or infection, capable of reducing bacterial adherence to respiratory epithelial cells. Both sera and purified anti-B. pertussis

  4. Generating Isoform-Specific Antibodies : Lessons from Nucleocytoplasmic Glycoprotein Skp1

    NARCIS (Netherlands)

    West, Christopher M.; Van Der Wel, Hanke; Chinoy, Zoiesha; Boons, Geert Jan; Gauthier, Ted J.; Taylor, Carol M.; Xu, Yuechi

    2015-01-01

    Antibodies that discriminate protein isoforms differing by modifications at specific amino acids have revolutionized studies of their functions. Skp1 is a novel nucleocytoplasmic glycoprotein that is hydroxylated at proline-143 and then O-glycosylated by a pentasaccharide attached via a GlcNAcα1, 4(

  5. Specific Antibodies to Staphylococcus aureus Biofilm Are Present in Serum from Pigs with Osteomyelitis

    DEFF Research Database (Denmark)

    Jensen, Louise Kruse; Jensen, Henrik Elvang; Koch, Janne

    2015-01-01

    (IL 6) levels was also seen. CONCLUSION: The observed biofilm-specific antibody response represents a T-helper cell 17 (Th17) response and potentially a T-helper cell 1 (Th1) response. This is in agreement with previous studies in mice and rabbits speculating that S. aureus induces a Th1- and Th17...

  6. Prevalence of latex-specific IgE antibodies in hospital personnel

    NARCIS (Netherlands)

    Kaczmarek, RG; Silverman, BG; Gross, TP; Hamilton, RG; Kessler, E; ArrowsmithLowe, JT; Moore, RM

    1996-01-01

    Background: Rubber latex hypersensitivity is an important concern for health care workers. Purpose: The Center for Devices and Radiological Health, in collaboration with the Consumer Product Safety Commission, conducted a multicenter study of the prevalence of latex-specific IgE antibodies among Uni

  7. Dengue virus antibody database: Systematically linking serotype-specificity with epitope mapping in dengue virus

    Science.gov (United States)

    Chaudhury, Sidhartha; Gromowski, Gregory D.; Ripoll, Daniel R.; Khavrutskii, Ilja V.; Desai, Valmik; Wallqvist, Anders

    2017-01-01

    Background A majority infections caused by dengue virus (DENV) are asymptomatic, but a higher incidence of severe illness, such as dengue hemorrhagic fever, is associated with secondary infections, suggesting that pre-existing immunity plays a central role in dengue pathogenesis. Primary infections are typically associated with a largely serotype-specific antibody response, while secondary infections show a shift to a broadly cross-reactive antibody response. Methods/Principal findings We hypothesized that the basis for the shift in serotype-specificity between primary and secondary infections can be found in a change in the antibody fine-specificity. To investigate the link between epitope- and serotype-specificity, we assembled the Dengue Virus Antibody Database, an online repository containing over 400 DENV-specific mAbs, each annotated with information on 1) its origin, including the immunogen, host immune history, and selection methods, 2) binding/neutralization data against all four DENV serotypes, and 3) epitope mapping at the domain or residue level to the DENV E protein. We combined epitope mapping and activity information to determine a residue-level index of epitope propensity and cross-reactivity and generated detailed composite epitope maps of primary and secondary antibody responses. We found differing patterns of epitope-specificity between primary and secondary infections, where secondary responses target a distinct subset of epitopes found in the primary response. We found that secondary infections were marked with an enhanced response to cross-reactive epitopes, such as the fusion-loop and E-dimer region, as well as increased cross-reactivity in what are typically more serotype-specific epitope regions, such as the domain I-II interface and domain III. Conclusions/Significance Our results support the theory that pre-existing cross-reactive memory B cells form the basis for the secondary antibody response, resulting in a broadening of the response

  8. Study of non-organ-specific antibodies in children with Genotype 4 chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Mohammed E Hamed

    2013-01-01

    Full Text Available Background/Aim: Adult studies established a relationship between hepatitis C virus (HCV infection and the presence of non-organ-specific antibodies (NOSAs. Most studies were carried out on genotypes 1 and 2. Only a few studies addressed that issue in pediatrics. No studies have been carried out on autoimmunity and genotype 4 in children. We aim to investigate NOSAs in 80 Egyptian children with chronic HCV infection along with studying the underlying genotype of HCV, and correlating autoimmunity with the epidemiological, clinical, biochemical, and virological features. Materials and Methods: HCV-RNA was assayed by the polymerase chain reaction and viral genotypes were determined. NOSAs were measured and liver biopsies were taken for histopathological examination. Results:Genotype 4 was the only detected genotype in the included 80 patients. Anti-smooth muscle antibodies (ASMA were the only detected antibodies in 32 (40% patients, always with V specificity (vessels only at titers ranging from 1:20 and 1:160. Anti-nuclear antibodies (ANA and liver-kidney microsomal antibodies-1 (LKMA-1 were not detected in any of our patients. Epidemiologic and clinical features did not significantly differ between autoantibody-positive and -negative patients. Among biochemical features, significantly high levels of total bilirubin, albumin, immunoglobulins, alkaline phosphatase, and gamma-glutamyl transpeptidase were found in the antibody-positive group. Conclusion: Genotype 4 HCV is the prevailing genotype in Egyptian children with chronic HCV infection. A consistent proportion of these children with chronic HCV infection circulate non-organ-specific autoantibodies. The prevalence of ASMA and the absence of ANA and LKMA-1 might be related to the unique situation in Egypt with unique prevalence of genotype 4. More studies are warranted on larger pediatric population to validate these findings.

  9. Specific fragments of phi X174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus aegyptius, endonuclease Z.

    Science.gov (United States)

    Middleton, J H; Edgell, M H; Hutchison, C A

    1972-07-01

    A restriction-like enzyme has been purified from Haemophilus aegyptius. This nuclease, endonuclease Z, produces a rapid decrease in the viscosity of native calf thymus and H. influenzae deoxyribonucleic acids (DNA), but does not degrade homologous DNA. The specificity of endonuclease Z is different from that of the similar endonuclease isolated from H. influenzae (endonuclease R). The purified enzyme cleaves the double-stranded replicative form DNA of bacteriophage phiX174 (phiX174 RF DNA) into at least 11 specific limit fragments whose molecular sizes have been estimated by gel electrophoresis. The position of these fragments with respect to the genetic map of phiX174 can be determined by using the genetic assay for small fragments of phiX174 DNA.

  10. Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers.

    Science.gov (United States)

    Hanania, Elie G; Fieck, Annabeth; Stevens, Janine; Bodzin, Leon J; Palsson, Bernhard Ø; Koller, Manfred R

    2005-09-30

    Cloning of highly-secreting recombinant cells is critical for biopharmaceutical manufacturing, but faces numerous challenges including the fact that secreted protein does not remain associated with the producing cell. A fundamentally new approach was developed combining in situ capture and measurement of individual cell protein secretion followed by laser-mediated elimination of all non- and poorly-secreting cells, leaving only the highest-secreting cell in a well. Recombinant cells producing humanized antibody were cultured serum-free on a capture matrix, followed by staining with fluorescently-labeled anti-human antibody fragment. A novel, automated, high-throughput instrument (called LEAP) was used to image and locate every cell, quantify the cell-associated and secreted antibody (surrounding each cell), eliminate all undesired cells from a well via targeted laser irradiation, and then track clone outgrowth and stability. Temporarily sparing an island of helper cells around the clone of interest improved cloning efficiency (particularly when using serum-free medium), and helper cells were easily eliminated with the laser after several days. The in situ nature of this process allowed several serial sub-cloning steps to be performed within days of one another, resulting in rapid generation of clonal populations with significantly increased and more stable, homogeneous antibody secretion. Cell lines with specific antibody secretion rates of > 50 pg/cell per day (in static batch culture) were routinely obtained as a result of this cloning approach, often times representing up to 20% of the clones screened.

  11. In-depth analysis of subclass-specific conformational preferences of IgG antibodies

    Directory of Open Access Journals (Sweden)

    Xinsheng Tian

    2015-01-01

    Full Text Available IgG subclass-specific differences in biological function and in vitro stability are often referred to variations in the conformational flexibility, while this flexibility has rarely been characterized. Here, small-angle X-ray scattering data from IgG1, IgG2 and IgG4 antibodies, which were designed with identical variable regions, were thoroughly analysed by the ensemble optimization method. The extended analysis of the optimized ensembles through shape clustering reveals distinct subclass-specific conformational preferences, which provide new insights for understanding the variations in physical/chemical stability and biological function of therapeutic antibodies. Importantly, the way that specific differences in the linker region correlate with the solution structure of intact antibodies is revealed, thereby visualizing future potential for the rational design of antibodies with designated physicochemical properties and tailored effector functions. In addition, this advanced computational approach is applicable to other flexible multi-domain systems and extends the potential for investigating flexibility in solutions of macromolecules by small-angle X-ray scattering.

  12. Preparation and Affinity-Purification of Supervillin Isoform 4 (SV4) Specific Polyclonal Antibodies.

    Science.gov (United States)

    Chen, Xueran; Li, Hao; Wang, Hongzhi; Yang, Haoran; Ye, Fang; Liang, Chaozhao; Fang, Zhiyou

    2016-04-01

    Human Supervillin isoform 4 (SV4), a bigger splicing isoform of Supervillin, contains extra coding exons 3, 4 and 5 (E345), compared to Supervillin isoform 1. Although previous studies have shown that SV4 associated with membrane and cytoskeleton, regulated cell migration and cell survival, its functions are still largely unknown. To broaden our understanding, SV4 specific antibody is important for further study in signaling pathway. The His-SV4 (E345) and GST-SV4 (E345) fusion proteins, which contained SV4 specific domain E345, were purified from bacteria. The His-SV4 (E345) proteins were injected in rabbits as immunogen to produce anti-SV4 serum, and SV4 antibodies were purified by GST-SV4 (E345) proteins cross-linked to affinity resins. SV4 antibodies exclusively recognized SV4 protein both in vitro and in vivo through multi-step testing by ELISA, western blot, immunoprecipitation, and immunofluorescence. Taken together, our data demonstrate a novel SV4-specific polyclonal antibody which will provide a useful tool for further characterization of SV4 function.

  13. Development of a Sensitive and Specific Polyclonal Antibody for Serological Detection of Clavibacter michiganensis subsp. sepedonicus

    Science.gov (United States)

    Przewodowska, Agnieszka

    2017-01-01

    The quarantine bacterium Clavibacter michiganensis subsp. sepedonicus (Cms) causes bacterial ring rot (BRR) in potato but is difficult to detect, hampering the diagnosis of this disease. ELISA immunoassays have not been widely used to detect Cms because commercially available anti-Cms antibodies detect mainly EPS-producing bacteria and can fail to detect strains that do not produce EPS. In the current study, we developed a new type of polyclonal antibody that specifically detects Clavibacter michiganensis subsp. sepedonicus bacteria irrespective of their EPS level. We first found that the presence of bacterial EPS precluded quantitative measurement of bacteria by currently available immunoenzymatic methods, but that washing Cms cells with acidic and basic buffers to remove EPS before analysis successfully standardized ELISA results. We used a mix of three strains of Cms with diverse EPS levels to generate antigen for production of antibodies recognizing Cms cells with and without an EPS layer (IgG-EPS and IgG-N-EPS, respectively). The resulting IgG-N-EPS recognized almost all Cms strains tested in this work regardless of their mucoidal level. The availability of this new antibody renders immunological diagnostics of Cms more sensitive and reliable, as our newly developed antibodies can be used in many type of immunoassays. This work represents an important step forward in efforts to diagnose and prevent the spread of BRR, and the methods and solutions developed in this work are covered by six Polish, one European and one US patents. PMID:28068400

  14. The schistosoma-specific antibody response after treatment in non-immune travellers.

    Science.gov (United States)

    Duus, Liv Marie; Christensen, Anders Vittrup; Navntoft, Dorte; Tarp, Britta; Nielsen, Henrik V; Petersen, Eskild

    2009-01-01

    Egg detection is the gold standard in diagnosing and controlling treatment in schistosomiasis, but sensitivity is poor in lightly infected individuals, whereas Schistosoma-specific antibodies are more sensitive. The purpose of the study was to evaluate use of Gut Associated Antigen (GAA) and Membrane Bound Antigen (MBA) assays in assessment of treatment efficacy and number of treated non-immune individuals with signs of treatment failure. In a retrospective study, residents in Denmark diagnosed with positive Schistosoma antibodies in the period 1987 - 2004 were offered follow-up including analyses for GAA, MBA, IgE and eosinophil count. Among 98 patients with positive antibody at time of diagnosis, 73 were examined for eggs and 27% had detectable eggs. 15% still had detectable living eggs after 1 course of treatment. At follow-up it was demonstrated that antibodies continued to increase for up to 6 months after treatment and average duration of positive GAA antibody was approximately 10 y. The study confirms that the GAA- and MBA-IFAT are not suitable in monitoring results of therapy. Treatment failure in 15% of non-immune patients indicates that studies are needed to define the correct dose of praziquantel in those individuals or to evaluate if resistance to praziquantel is a growing problem.

  15. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry.

    Science.gov (United States)

    Moor, Kathrin; Fadlallah, Jehane; Toska, Albulena; Sterlin, Delphine; Balmer, Maria L; Macpherson, Andrew J; Gorochov, Guy; Larsen, Martin; Slack, Emma

    2016-08-01

    Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 μg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.

  16. Construction of humanized carcinoembryonic antigen specific single chain variable fragment and mitomycin conjugate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To construct a new target-oriented conjugate of humanized carcinoembryonic antigen (CEA) specific single chain variable fragment (scFv) and mitomycin (MMC) against colorectal cancer, and to investigate its influence on the growth and apoptosis of colorectal cancer cells.METHODS: The primer was designed according to the gene sequence described in reference 16, which respectively contains restriction enzyme cleavage sites BamH Ⅰ and EcoR Ⅰ in its upstream and downstream.PCR was performed with the plasmid as template containing genes of humanized anti-CEA scFv. The product was digested by BamH Ⅰ and EcoR Ⅰ, and connected to an expression vector which also has the restriction enzyme cleavage sites BamH Ⅰ and EcoR.Expression of the reaction was induced by isopropy-β-D-thiogalactoside (IPTG). Then the expression product was covalently coupled with MMC by dextran T-40. The immunoreactivity of the conjugate against colorectal cancer cells as well as CEA was measured by enzyme linked immunosorbent assay (ELISA). The inhibiting ratio of conjugate on the growth of colorectal cancer cells was also measured by ELISA. The effect of conjugate on the apoptosis of colorectal cancer cells was determined by flow cytometry (FCM).RESULTS: Restriction endonuclease cleavage and gene sequencing confirmed that the expression vector was successfully constructed. Sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-VAGE) confirmed that this vector correctly expressed the fusion protein.ELISA confirmed that the conjugate had quite a strong immunoreactivity against colorectal cancer cells and CEA. The conjugate had inhibitory effects on colorectal cancer cells in a concentration-dependent manner and could induce apoptosis of colorectal cancer cells in a concentration-dependent manner.CONCLUSION: The CEA-scFv-MMC conjugate can be successfully constructed and is able to inhibit the growth and induce apoptosis of colorectal cancer cells.

  17. Specific recognition of influenza A/H1N1/2009 antibodies in human serum: a simple virus-free ELISA method.

    Directory of Open Access Journals (Sweden)

    Mario M Alvarez

    Full Text Available BACKGROUND: Although it has been estimated that pandemic Influenza A H1N1/2009 has infected millions of people from April to October 2009, a more precise figure requires a worldwide large-scale diagnosis of the presence of Influenza A/H1N1/2009 antibodies within the population. Assays typically used to estimate antibody titers (hemagglutination inhibition and microneutralization would require the use of the virus, which would seriously limit broad implementation. METHODOLOGY/PRINCIPAL FINDINGS: An ELISA method to evaluate the presence and relative concentration of specific Influenza A/H1N1/2009 antibodies in human serum samples is presented. The method is based on the use of a histidine-tagged recombinant fragment of the globular region of the hemagglutinin (HA of the Influenza A H1N1/2009 virus expressed in E. coli. CONCLUSIONS/SIGNIFICANCE: The ELISA method consistently discerns between Inf A H1N1 infected and non-infected subjects, particularly after the third week of infection/exposure. Since it does not require the use of viral particles, it can be easily and quickly implemented in any basic laboratory. In addition, in a scenario of insufficient vaccine availability, the use of this ELISA could be useful to determine if a person has some level of specific antibodies against the virus and presumably at least partial protection.

  18. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates.

    Directory of Open Access Journals (Sweden)

    Dowdy Jackson

    Full Text Available Antibody drug conjugates (ADCs are monoclonal antibodies designed to deliver a cytotoxic drug selectively to antigen expressing cells. Several components of an ADC including the selection of the antibody, the linker, the cytotoxic drug payload and the site of attachment used to attach the drug to the antibody are critical to the activity and development of the ADC. The cytotoxic drugs or payloads used to make ADCs are typically conjugated to the antibody through cysteine or lysine residues. This results in ADCs that have a heterogeneous number of drugs per antibody. The number of drugs per antibody commonly referred to as the drug to antibody ratio (DAR, can vary between 0 and 8 drugs for a IgG1 antibody. Antibodies with 0 drugs are ineffective and compete with the ADC for binding to the antigen expressing cells. Antibodies with 8 drugs per antibody have reduced in vivo stability, which may contribute to non target related toxicities. In these studies we incorporated a non-natural amino acid, para acetyl phenylalanine, at two unique sites within an antibody against Her2/neu. We covalently attached a cytotoxic drug to these sites to form an ADC which contains two drugs per antibody. We report the results from the first direct preclinical comparison of a site specific non-natural amino acid anti-Her2 ADC and a cysteine conjugated anti-Her2 ADC. We report that the site specific non-natural amino acid anti-Her2 ADCs have superior in vitro serum stability and preclinical toxicology profile in rats as compared to the cysteine conjugated anti-Her2 ADCs. We also demonstrate that the site specific non-natural amino acid anti-Her2 ADCs maintain their in vitro potency and in vivo efficacy against Her2 expressing human tumor cell lines. Our data suggests that site specific non-natural amino acid ADCs may have a superior therapeutic window than cysteine conjugated ADCs.

  19. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    Science.gov (United States)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  20. Immunohistochemical identification of mast cells in formaldehyde-fixed tissue using monoclonal antibodies specific for tryptase.

    Science.gov (United States)

    Walls, A F; Jones, D B; Williams, J H; Church, M K; Holgate, S T

    1990-10-01

    An avidin-biotin enhanced immunoperoxidase procedure using monoclonal antibodies (AA1, AA3, and AA5) prepared against human mast cell tryptase resulted in intense staining of mast cells in paraffin-embedded tissue. The distribution of mast cells observed was similar to that seen when adjacent serial sections were stained using a standard procedure with toluidine blue, though the immunoperoxidase technique permitted the identification of significantly more mast cells. With monoclonal antibody AA1, immunostaining was entirely specific for mast cell granules, and there was negligible background staining in a range of tissues including lung, tonsil, colon, gastric mucosa, skin, and pituitary. There was no staining of antibody on basophils or on any other normal blood leukocyte. The technique was effective with tissue fixed in either Carnoy's or neutral buffered formalin, though the internal mast cell structure was better preserved with formaldehyde fixation. The immunoperoxidase staining procedure with monoclonal antibody AA1 is a highly specific and sensitive means for the detection of mast cells in routinely processed tissues.

  1. Modulation of innate immune responses by influenza-specific ovine polyclonal antibodies used for prophylaxis.

    Directory of Open Access Journals (Sweden)

    Catherine Rinaldi

    Full Text Available In the event of a novel influenza A virus pandemic, prophylaxis mediated by antibodies provides an adjunct control option to vaccines and antivirals. This strategy is particularly pertinent to unvaccinated populations at risk during the lag time to produce and distribute an effective vaccine. Therefore, development of effective prophylactic therapies is of high importance. Although previous approaches have used systemic delivery of monoclonal antibodies or convalescent sera, available supply is a serious limitation. Here, we have investigated intranasal delivery of influenza-specific ovine polyclonal IgG antibodies for their efficacy against homologous influenza virus challenge in a mouse model. Both influenza-specific IgG and F(ab'2 reduced clinical scores, body weight loss and lung viral loads in mice treated 1 hour before virus exposure. Full protection from disease was also observed when antibody was delivered up to 3 days prior to virus infection. Furthermore, effective prophylaxis was independent of a strong innate immune response. This strategy presents a further option for prophylactic intervention against influenza A virus using ruminants to generate a bulk supply that could potentially be used in a pandemic setting, to slow virus transmission and reduce morbidity associated with a high cytokine phenotype.

  2. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    Science.gov (United States)

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  3. [Evaluation of allergen-specific IgE antibodies by a newly developed mast allergy system].

    Science.gov (United States)

    Nakagawa, T; Iwasaki, E; Baba, M; Matsushita, T; Baba, S; Ito, K; Miyamoto, T

    1989-06-01

    MAST, which stand for multiple antigen simultaneous test, uses enzyme-linked anti-human IgE and chemiluminogenic substate to determine IgE. This system is characterized by simultaneous analysis of multiple allergen items, up to 35, together with total IgE determination. We evaluated usefulness of this MAST system using 191 serum samples obtained from patients with bronchial asthma, allergic rhinitis and/or atopic dermatitis. It was found that there were statistically significant correlations between IgE antibody quantification by MAST and RAST in 24 out of 35 allergen items, with correlation coefficients more than r = 0.60. These included Dermatophagoides farinae and pteronyssinus, Japanese cedar pollen, orchard grass, Alternaria, Candida as inhalant allergens; egg white, milk, soybeans, wheat and rice as food allergens. It was also evaluated how many allergen-specific IgE antibodies could be detected in one serum sample. More than six allergen-specific IgE antibodies were simultaneously detected in 33% of 191 cases, indicating the importance of multiple-allergen analysis. These results indicate the clinical usefulness of the MAST allergy system in detecting IgE antibodies in allergic subjects.

  4. Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin*

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Ledezma-Candanoza, Luis M.; Serrano-Posada, Hugo; Fernández-Taboada, Guillermo; Olamendi-Portugal, Timoteo; Rojas-Trejo, Sonia; Gómez-Ramírez, Ilse V.; Rudiño-Piñera, Enrique; Possani, Lourival D.; Becerril, Baltazar

    2016-01-01

    The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom. PMID:26589800

  5. Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin.

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Ledezma-Candanoza, Luis M; Serrano-Posada, Hugo; Fernández-Taboada, Guillermo; Olamendi-Portugal, Timoteo; Rojas-Trejo, Sonia; Gómez-Ramírez, Ilse V; Rudiño-Piñera, Enrique; Possani, Lourival D; Becerril, Baltazar

    2016-01-22

    The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom.

  6. Expression of HSV-1 ICP0 Antigen Peptide in Prokaryotic Cells and Preparation of Specific Antibody

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As an immediate-early protein of herpes simplex virus, infected-cell polypeptide 0 (ICP0) exhibits complicated interactions with host cells, and its regulatory function on gene expression is of great importance. Since the ICP0 encoding sequence contains many rare codons which are absent in E.coli, and ICP0 is highly unstable in prokaryotic cells, expression of entire ICP0 in prokaryotic cells has never been reported. In order to further investigate the function of ICP0, a recombinant plasmid was constructed by subcloning a cDNA fragment encoding an amino-terminal of 105 residues of the ICP0 protein into pGEX-5x-1 vector. The resulting GST-105 fusion antigen peptide was expressed with high efficiency in E.coli. Antibodies prepared after the immunization of mice with purified fusion protein can recognize not only the denatured ICP0 protein, but also the native ICP0 protein with normal biological conformation.

  7. Diagnostic accuracy and comparison of two assays for Borrelia-specific IgG and IgM antibodies

    DEFF Research Database (Denmark)

    Dessau, Ram

    2013-01-01

    Two assays (Liaison, Diasorin; IDEIA, Oxoid) for detection of Borrelia-specific antibodies were compared. A case-control design using patients with neuroborreliosis (n = 48), laboratory defined by a positive Borrelia-specific antibody index in the spinal fluid, was available and was intended...

  8. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment*

    OpenAIRE

    Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique; Becerril, Baltazar; Possani, Lourival D.; Torres-Larios, Alfredo

    2011-01-01

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 Å resolution. A 15-residue span of the toxin is recognized by th...

  9. THE RELATION BETWEEN ANTIANAPHYLAXIS AND ANTIBODY BALANCE : II. THE EFFECT OF SPECIFIC DESENSITIZATION UPON RESISTANCE TO INFECTION AND UPON ANTIBODY BALANCE.

    Science.gov (United States)

    Morris, M C

    1936-09-30

    It has been shown that antianaphylaxis is not caused by a partial saturation of cellular or humoral antibodies by the following facts. 1. Guinea pigs passively sensitized with anti-horse or antipneumococcus serum and specifically desensitized do not manifest as great a reactivity upon resensitization with the same antiserum as upon the original sensitization. 2. Guinea pigs passively sensitized with anti-Friedländer Type B serum or antipneumococcus Type II serum and specifically desensitized do not attain the same degree of reactivity as normal animals when passively sensitized with anti-horse serum. 3. Guinea pigs passively sensitized with anti-Friedländer Type B serum and desensitized with the specific carbohydrate remain as resistant to infection with Friedlander's bacillus Type B as undesensitized guinea pigs. Since in this case, at least, it is agreed that type-specific immunity and type-specific hypersensitiveness are due to the same type-specific antibody, a change in anaphylactic response should be accompanied by a change in immune response, provided this change depends on antibody balance. 4. A determination of the antibody content of the serum of sensitized as well as of desensitized guinea pigs by mouse protection tests indicates that a loss of reactivity in desensitized animals cannot be adequately accounted for on the basis of depletion of circulating antibody. These experiments suggest that hypersensitiveness and resistance are different manifestations of the same antigen-antibody reaction while antianaphylaxis is a state of refractoriness which is due neither to excess of circulating antibody nor to antibody depletion, but is the result of secondary changes the true nature of which is still not definitely established.

  10. Chronic lymphocytic leukemia patients have a preserved cytomegalovirus-specific antibody response despite progressive hypogammaglobulinemia.

    Directory of Open Access Journals (Sweden)

    Katrina Vanura

    Full Text Available Chronic lymphocytic leukemia (CLL is characterized by progressive hypogammaglobulinemia predisposing affected patients to a variety of infectious diseases but paradoxically not to cytomegalovirus (CMV disease. Moreover, we found reactivity of a panel of CLL recombinant antibodies (CLL-rAbs encoded by a germ-line allele with a single CMV protein, pUL32, despite differing antibody binding motifs. To put these findings into perspective, we studied prospectively relative frequency of viremia, kinetics of total and virus-specific IgG over time, and UL32 genetic variation in a cohort of therapy-naive patients (n=200. CMV-DNA was detected in 3% (6/200 of patients. The decay of total IgG was uniform (mean, 0.03; SD, 0.03 and correlated with that of IgG subclasses 1-4 in the paired samples available (n=64; p<0.001. Total CMV-specific IgG kinetics were more variable (mean, 0,02; SD, 0,06 and mean decay values differed significantly from those of total IgG (p=0.034. Boosts of CMV-specific antibody levels were observed in 49% (22/45 of CMV-seropositive patients. In contrast, VZV- and EBV-specific IgG levels decayed in parallel with total IgG levels (p=0.003 and p=0.001, respectively. VZV-specific IgG even became undetectable in 18% (9/50 of patients whereas CMV-specific ones remained detectable in all seropositive patients. The observed CMV-specific IgG kinetics were predicated upon the highly divergent kinetics of IgG specific for individual antigens - glycoprotein B-specific IgG were boosted in 51% and pUL32-specific IgG in 32% of patients. In conclusion, CLL patients have a preserved CMV-specific antibody response despite progressive decay of total IgG and IgG subclasses. CMV-specific IgG levels are frequently boosted in contrast to that of other herpesviruses indicative of a higher rate of CMV reactivation and antigen-presentation. In contrast to the reactivity of multiple different CLL-rAbs with pUL32, boosts of humoral immunity are triggered

  11. Chronic lymphocytic leukemia patients have a preserved cytomegalovirus-specific antibody response despite progressive hypogammaglobulinemia.

    Science.gov (United States)

    Vanura, Katrina; Rieder, Franz; Kastner, Marie-Theres; Biebl, Julia; Sandhofer, Michael; Le, Trang; Strassl, Robert; Puchhammer-Stöckl, Elisabeth; Perkmann, Thomas; Steininger, Christoph F; Stamatopoulos, Kostas; Graninger, Wolfgang; Jäger, Ulrich; Steininger, Christoph

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by progressive hypogammaglobulinemia predisposing affected patients to a variety of infectious diseases but paradoxically not to cytomegalovirus (CMV) disease. Moreover, we found reactivity of a panel of CLL recombinant antibodies (CLL-rAbs) encoded by a germ-line allele with a single CMV protein, pUL32, despite differing antibody binding motifs. To put these findings into perspective, we studied prospectively relative frequency of viremia, kinetics of total and virus-specific IgG over time, and UL32 genetic variation in a cohort of therapy-naive patients (n=200). CMV-DNA was detected in 3% (6/200) of patients. The decay of total IgG was uniform (mean, 0.03; SD, 0.03) and correlated with that of IgG subclasses 1-4 in the paired samples available (n=64; p<0.001). Total CMV-specific IgG kinetics were more variable (mean, 0,02; SD, 0,06) and mean decay values differed significantly from those of total IgG (p=0.034). Boosts of CMV-specific antibody levels were observed in 49% (22/45) of CMV-seropositive patients. In contrast, VZV- and EBV-specific IgG levels decayed in parallel with total IgG levels (p=0.003 and p=0.001, respectively). VZV-specific IgG even became undetectable in 18% (9/50) of patients whereas CMV-specific ones remained detectable in all seropositive patients. The observed CMV-specific IgG kinetics were predicated upon the highly divergent kinetics of IgG specific for individual antigens - glycoprotein B-specific IgG were boosted in 51% and pUL32-specific IgG in 32% of patients. In conclusion, CLL patients have a preserved CMV-specific antibody response despite progressive decay of total IgG and IgG subclasses. CMV-specific IgG levels are frequently boosted in contrast to that of other herpesviruses indicative of a higher rate of CMV reactivation and antigen-presentation. In contrast to the reactivity of multiple different CLL-rAbs with pUL32, boosts of humoral immunity are triggered apparently by

  12. Negative effects of a disulfide bond mismatch in anti-rabies G protein single-chain antibody variable fragment FV57.

    Science.gov (United States)

    Duan, Ye; Gu, Tiejun; Zhang, Xizhen; Jiang, Chunlai; Yuan, Ruosen; Li, Zhuang; Wang, Dandan; Chen, Xiaoxu; Wu, Chunlai; Chen, Yan; Wu, Yongge; Kong, Wei

    2014-06-01

    Rabies virus (RV) causes a fatal infectious disease requiring efficient post-exposure prophylaxis (PEP), which includes a rabies vaccine and rabies immunoglobulin (RIG). The single-chain antibody variable fragment (scFv), a small engineered antibody fragment derived from an antibody variable heavy chain and light chain, has the potential to replace the current application of RIG. In previous studies, we constructed and evaluated an anti-rabies virus G protein scFv (FV57) based on the monoclonal antibody CR57. Of the five cysteines in FV57, four are linked in intra-chain disulfide bonds (Cys-VH28/Cys-VH98 and Cys-VL16/Cys-VL84), and one is free (Cys-VL85). However, the thiol in Cys-VL85 neighboring Cys-VL84 in the CDR3 of the light chain is likely to mismatch with the thiol in Cys-VL16 during the renaturing process. In order to study effects of the mismatched disulfide bond, Cys-VL85 and Cys-VL84 of FV57 were mutated to serine to construct mutants FV57(VL85S) and FV57(VL84S). Furthermore, the disulfide bonds in the light chain of FV57, FV57(VL85S) and FV57(VL84S) were deleted by mutating Cys-VL16 to serine. All mutants were prepared and evaluated along with the original FV57. The results indicated that the mismatched disulfide bond of FV57 linking the light chain FR1 and CDR3 would confer deleterious negative effects on its activity against RV, likely due to spatial hindrance in the light chain CDR3. Moreover, avoidance of the disulfide bond mismatch provided an additional 30% protective efficacy against RV infection in the mouse RV challenge model. Thus, modifications of FV57 to eliminate the disulfide bond mismatch may provide a candidate therapeutic agent for effective PEP against rabies.

  13. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs, named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2O(2 by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.

  14. Prevention of herpes simplex virus induced stromal keratitis by a glycoprotein B-specific monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Adalbert Krawczyk

    Full Text Available The increasing incidence of acyclovir (ACV and multidrug-resistant strains in patients with corneal HSV-1 infections leading to Herpetic Stromal Keratitis (HSK is a major health problem in industrialized countries and often results in blindness. To overcome this obstacle, we have previously developed an HSV-gB-specific monoclonal antibody (mAb 2c that proved to be highly protective in immunodeficient NOD/SCID-mice towards genital infections. In the present study, we examined the effectivity of mAb 2c in preventing the immunopathological disease HSK in the HSK BALB/c mouse model. Therefore, mice were inoculated with HSV-1 strain KOS on the scarified cornea to induce HSK and subsequently either systemically or topically treated with mAb 2c. Systemic treatment was performed by intravenous administration of mAb 2c 24 h prior to infection (pre-exposure prophylaxis or 24, 40, and 56 hours after infection (post-exposure immunotherapy. Topical treatment was performed by periodical inoculations (5 times per day of antibody-containing eye drops as control, starting at 24 h post infection. Systemic antibody treatment markedly reduced viral loads at the site of infection and completely protected mice from developing HSK. The administration of the antiviral antibody prior or post infection was equally effective. Topical treatment had no improving effect on the severity of HSK. In conclusion, our data demonstrate that mAb 2c proved to be an excellent drug for the treatment of corneal HSV-infections and for prevention of HSK and blindness. Moreover, the humanized counterpart (mAb hu2c was equally effective in protecting mice from HSV-induced HSK when compared to the parental mouse antibody. These results warrant the future development of this antibody as a novel approach for the treatment of corneal HSV-infections in humans.

  15. Analysis of two monoclonal antibodies reactive with envelope proteins of murine retroviruses: one pan specific antibody and one specific for Moloney leukemia virus.

    Science.gov (United States)

    Evans, Leonard H; Boi, Stefano; Malik, Frank; Wehrly, Kathy; Peterson, Karin E; Chesebro, Bruce

    2014-05-01

    Many monoclonal antibodies (MAbs) reactive with various proteins of murine leukemia viruses (MuLVs) have been developed. In this report two additional MAbs with differing and unusual specificities are described. MAb 573 is reactive with the envelope protein of all MuLVs tested including viruses in the ecotropic, xenotropic, polytropic and amphotropic classes. Notably, MAb 573 is one of only two reported MAbs that react with the envelope protein of amphotropic MuLVs. This MAb appears to recognize a conformational epitope within the envelope protein, as it reacts strongly with live virus and live infected cells, but does not react with formalin-fixed or alcohol-fixed infected cells or denatured viral envelope protein in immunoblots. In contrast, Mab 538 reacts only with an epitope unique to the envelope protein of the Moloney (Mo-) strain of MuLV, a prototypic ecotropic MuLV that is the basis for many retroviral tools used in molecular biology. MAb 538 can react with live cells and viruses, or detergent denatured or fixed envelope protein. The derivation of these antibodies as well as their characterization with regard to their isotype, range of reactivity with different MuLVs and utility in different immunological procedures are described in this study.

  16. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody*

    Directory of Open Access Journals (Sweden)

    Merkel George

    2006-06-01

    Full Text Available Abstract Background To further our understanding of the structure and function of HIV-1 integrase (IN we developed and characterized a library of monoclonal antibodies (mAbs directed against this protein. One of these antibodies, mAb33, which is specific for the C-terminal domain, was found to inhibit HIV-1 IN processing activity in vitro; a corresponding Fv fragment was able to inhibit HIV-1 integration in vivo. Our subsequent studies, using heteronuclear nuclear magnetic resonance spectroscopy, identified six solvent accessible residues on the surface of the C-terminal domain that were immobilized upon binding of the antibody, which were proposed to comprise the epitope. Here we test this hypothesis by measuring the affinity of mAb33 to HIV-1 proteins that contain Ala substitutions in each of these positions. To gain additional insight into the mode of inhibition we also measured the DNA binding capacity and enzymatic activities of the Ala substituted proteins. Results We found that Ala substitution of any one of five of the putative epitope residues, F223, R224, Y226, I267, and I268, caused a decrease in the affinity of the mAb33 for HIV-1 IN, confirming the prediction from NMR data. Although IN derivatives with Ala substitutions in or near the mAb33 epitope exhibited decreased enzymatic activity, none of the epitope substitutions compromised DNA binding to full length HIV-1 IN, as measured by surface plasmon resonance spectroscopy. Two of these derivatives, IN (I276A and IN (I267A/I268A, exhibited both increased DNA binding affinity and uncharacteristic dissociation kinetics; these proteins also exhibited non-specific nuclease activity. Results from these investigations are discussed in the context of current models for how the C-terminal domain interacts with substrate DNA. Conclusion It is unlikely that inhibition of HIV-1 IN activity by mAb33 is caused by direct interaction with residues that are essential for substrate binding. Rather

  17. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  18. Specific immunoradiometric assay of insulin-like growth factor I with use of monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.G.; Cuca, G.C.; Petersen, J.R.; Lyle, L.R.; Burleigh, B.D.; Daughaday, W.H.

    1987-11-01

    We identified two monoclonal antibodies that bind spatially distinct epitopes on insulin-like growth factor I (IGF-I). Using these two antibodies, we developed a simultaneous, two-site immunoradiometric assay (IRMA) specific for IGF-I. This IRMA has no detectable cross reactivity with insulin, proinsulin, prolactin, or somatotropin, and less than 2% crossreactivity with IGF-II. The assay response varies linearly with IGF-I concentrations of 0-800 micrograms/L in serum; the detection limit is about 10 micrograms/L. A comparison of 26 IGF-I serum values from the IRMA and from a previously reported IGF-I specific RIA gave a correlation coefficient of 0.96 with no substantial bias (slope = 1.10). IGF-I values for serum, as an aid in assessing growth abnormalities, are easily (only three pipetting steps) obtained in less than 4 h.

  19. Specific immunoradiometric assay of insulin-like growth factor I with use of monoclonal antibodies.

    Science.gov (United States)

    Scott, M G; Cuca, G C; Petersen, J R; Lyle, L R; Burleigh, B D; Daughaday, W H

    1987-11-01

    We identified two monoclonal antibodies that bind spatially distinct epitopes on insulin-like growth factor I (IGF-I). Using these two antibodies, we developed a simultaneous, two-site immunoradiometric assay (IRMA) specific for IGF-I. This IRMA has no detectable cross reactivity with insulin, proinsulin, prolactin, or somatotropin, and less than 2% crossreactivity with IGF-II. The assay response varies linearly with IGF-I concentrations of 0-800 micrograms/L in serum; the detection limit is about 10 micrograms/L. A comparison of 26 IGF-I serum values from the IRMA and from a previously reported IGF-I specific RIA gave a correlation coefficient of 0.96 with no substantial bias (slope = 1.10). IGF-I values for serum, as an aid in assessing growth abnormalities, are easily (only three pipetting steps) obtained in less than 4 h.

  20. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer

    OpenAIRE

    2004-01-01

    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF block...

  1. Dengue serotype cross-reactive, anti-E protein antibodies confound specific immune memory for one year after infection

    Directory of Open Access Journals (Sweden)

    Ying Xiu eToh

    2014-08-01

    Full Text Available Dengue virus has four serotypes and is endemic globally in tropical countries. Neither a specific treatment nor an approved vaccine is available, and correlates of protection are not established. The standard neutralization assay cannot differentiate between serotype-specific and serotype cross-reactive antibodies in patients early after infection, leading to an overestimation of the long-term serotype-specific protection of an antibody response. It is known that the cross-reactive response in patients is temporary but few studies have assessed kinetics and potential changes in serum antibody specificity over time. To better define the specificity of polyclonal antibodies during disease and after recovery, longitudinal samples from patients with primary or secondary DENV-2 infection were collected over a period of one year. We found that serotype cross-reactive antibodies peaked three weeks after infection and subsided within one year. Since secondary patients rapidly produced antibodies specific for the virus envelope (E protein, an E-specific ELISA was superior compared to a virus particle-specific ELISA to identify patients with secondary infections. Dengue infection triggered a massive activation and mobilization of both naïve and memory B cells possibly from lymphoid organs into the blood, providing an explanation for the surge of circulating plasmablasts and the increase in cross-reactive E protein-specific antibodies.

  2. Pathologic prion protein is specifically recognized in situ by a novel PrP conformational antibody.

    Science.gov (United States)

    Moroncini, Gianluca; Mangieri, Michela; Morbin, Michela; Mazzoleni, Giulia; Ghetti, Bernardino; Gabrielli, Armando; Williamson, Robert Anthony; Giaccone, Giorgio; Tagliavini, Fabrizio

    2006-09-01

    Prion diseases are characterized by the accumulation in the brain of abnormal conformers (PrP(Sc)) of the cellular prion protein (PrP(C)). PrP(Sc) immunohistochemistry, currently based on antibodies non-distinguishing between PrP(C) and PrP(Sc), requires pre-treatments of histological sections to eliminate PrP(C) and to denature PrP(Sc). We employed the PrP(Sc)-specific antibody 89-112 PrP motif-grafted IgG on mildly fixed, untreated brain sections from several cases of human prion diseases. The results confirmed specific binding of IgG 89-112 to a structural determinant found exclusively on native disease-associated PrP conformations and lost following tissue denaturation or cross-linking fixation. Importantly, IgG 89-112 demonstrated no reactivity with normal brain tissue or with amyloid deposits in Alzheimer disease brain sections. Thus, immunohistochemical detection of native PrP(Sc) deposits was obtained by means of a PrP(Sc)-specific antibody. Such unique reagent may have many applications in the study of prion biology and in the diagnosis and prevention of prion diseases.

  3. Value of serum TORCH-specific antibody detection in assessment of neonatal jaundice

    Institute of Scientific and Technical Information of China (English)

    Guang-Hua Dai

    2016-01-01

    Objective:To study the value of serum TORCH-specific antibody detection in assessment of neonatal jaundice.Methods:A total of 70 cases of children with neonatal jaundice were selected as jaundice group, 70 cases of healthy newborn were the control group, and serum serum TORCH-specific antibody content as well as heart function, liver function, kidney function and nerve function indicators were detected.Results: Serum TOX-IgM, RV-IgM, CMV-IgM and HSV-IgM positive rate and content of jaundice group were significantly higher than those of control group; serum CK-MB, cTnI, AST, ALT, Cys-C, RBP, MBP, S100β and NSE content of TORCH-positive children were significantly higher than those of TORCH-negative children, and BDNF, NT-3, NT-4 and NGF content were significantly lower than those of TORCH-negative children; T1WI signal of pallidum MRI of TORCH-positive children was significantly higher than that of TORCH-negative children.Conclusions:Serum TORCH-specific antibodies significantly increase in children with neonatal jaundice and can assess the degree of bilirubin metabolism disorder and the degree of target organ damage.

  4. Antibody dynamics in BRSV-infected Danish dairy herds as determined by isotype-specific immunoglobulins

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Larsen, Lars Erik; Philipsen, J.S.;

    2000-01-01

    Using specific ELISAs, antibody levels of four different isotypes to bovine respiratory syncytial virus (BRSV) were determined in calves, following experimental BRSV infection. Most calves experienced an increase in the specific IgM and IgG1 titres about 6-10 days after infection with BRSV. The Ig......M titre was transient showing positive titres for only 5-10 days, while specific IgG1 was present for a longer time. IgA was detected concomitantly with IgM but at a lower level. Production of IgG2 anti-BRSV antibodies was detected from 3 weeks after infection. In two closed herds, repeated blood...... samplings were performed on young stock to analyse maternal immunity. The passively transferred antibodies were mainly of the IgG1 isotype and the half-life of IgG1 to BRSV was estimated to be 26.6 days. One of the herds had an outbreak of enzootic pneumonia, diagnosed to be caused by BRSV. Furthermore...

  5. Production and characterization of monoclonal antibody specific to recombinant dengue multi-epitope protein.

    Science.gov (United States)

    Abhyankar, Ajay Vinayak; Bhargava, Rakesh; Jana, Asha Mukul; Sahni, Ajay Kumar; Rao, P V Lakshmana

    2008-06-01

    Monoclonal antibodies against novel dengue recombinant protein were produced following immunization of Balb/c mice with recombinant dengue multi-epitope protein (r-DMEP) expressed in Escherichia coli vector and purified in a single-step chromatography system. Antigenicity of r-DMEP was evaluated by dot enzyme immunoassay. Mice were immunized intraperitoneally with five doses each of 100 microg of this novel antigen at 1-week intervals and a final intravenous booster dose prior to the fusion. Hybridomas resulted from fusion of myeloma cells and splenocytes using PEG-1500 as an additive. Selection of the hybrids was done using HAT medium, and the hybrids thus selected were finally screened qualitatively and quantitatively by dot and plate immunoassays, respectively. Five antibody secretory hybrid clones exhibited specific reactivity against r-DMEP by dot-ELISA, whereas a lone clone was found to be cross-reactive with Japanese encephalitis virus (JEV). Monoclonal antibodies (MAbs) specific to r-DME protein recognized the envelope and non-structural epitopes by Western blot analysis. These MAbs were further checked for their diagnostic efficacy using dengue suspected clinical samples and found overall sensitivity and specificity for DRDE dipstick ELISA. MAb-based dipstick ELISA results were 85%, 75% and 85%, 90%, respectively.

  6. Studies on the immune response and preparation of antibodies against a large panel of conjugated neurotransmitters and biogenic amines: specific polyclonal antibody response and tolerance.

    Science.gov (United States)

    Huisman, Han; Wynveen, Paul; Setter, Peter W

    2010-02-01

    We described the production and characterization of antibodies against three important groups of neuro-active haptens, e.g., neurotransmitters and biogenic amines. First, from the tryptophane metabolic pathway: tryptamine, serotonin, 5-hydroxy-indole acetic acid, and melatonin. Secondly, the tyrosine metabolic pathway: tyramine, dopamine, dihydroxyphenyl acetic acid, and norepinephrine. Thirdly, antibodies against excitatory and inhibitory neurotransmitters: glycine, glutamate, glutamine, and GABA. Immunogenic conjugates were prepared after linking haptens to carrier proteins. Most antibodies displayed high specificity against corresponding neuro-active haptens conjugated in vitro and in situ in biological specimens, but not to closely related conjugated metabolites, precursors, pharmaceuticals, agonists, antagonists, or free neuro-active haptens. Conjugated norepinephrine was highly tolerant in different animal species and produced incidentally a short specific antibody response.

  7. Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies.

    Science.gov (United States)

    Jegerlehner, Andrea; Wiesel, Melanie; Dietmeier, Klaus; Zabel, Franziska; Gatto, Dominique; Saudan, Philippe; Bachmann, Martin F

    2010-07-26

    Pre-existing immunity against vaccine carrier proteins has been reported to inhibit the immune response against antigens conjugated to the same carrier by a process termed carrier induced epitopic suppression (CIES). Hence understanding the phenomenon of CIES is of major importance for the development of conjugate vaccines. Virus-like particles (VLPs) are a novel class of potent immunological carriers which have been successfully used to enhance the antibody response to virtually any conjugated antigen. In the present study we investigated the impact of a pre-existing VLP-specific immune response on the development of antibody responses against a conjugated model peptide after primary, secondary and tertiary immunization. Although VLP-specific immune responses led to reduced peptide-specific antibody titers, we showed that CIES against peptide-VLP conjugates could be overcome by high coupling densities, repeated injections and/or higher doses of conjugate vaccine. Furthermore we dissected VLP-specific immunity by adoptively transferring VLP-specific antibodies, B-cells or T(helper) cells separately into naïve mice and found that the observed CIES against peptide-VLP conjugates was mainly mediated by carrier-specific antibodies.

  8. Cloning and Characterization of a Hybridoma Secreting a 4-(Methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-Specific Monoclonal Antibody and Recombinant F(ab

    Directory of Open Access Journals (Sweden)

    Lawrence K. Silbart

    2013-03-01

    Full Text Available Smokeless tobacco products have been associated with increased risks of oro-pharyngeal cancers, due in part to the presence of tobacco-specific nitrosamines (TSNAs such as 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. These potent carcinogens are formed during tobacco curing and as a result of direct nitrosation reactions that occur in the oral cavity. In the current work we describe the isolation and characterization of a hybridoma secreting a high-affinity, NNK-specific monoclonal antibody. A structurally-related benzoyl derivative was synthesized to facilitate coupling to NNK-carrier proteins, which were characterized for the presence of the N-nitroso group using the Griess reaction, and used to immunize BALB/c mice. Splenocytes from mice bearing NNK-specific antibodies were used to create hybridomas. Out of four, one was selected for subcloning and characterization. Approximately 99% of the monoclonal antibodies from this clone were competitively displaced from plate-bound NNKB conjugates in the presence of free NNK. The affinity of the monoclonal antibody to the NNKB conjugates was Kd = 2.93 nM as determined by surface plasmon resonance. Free nicotine was a poor competitor for the NNKB binding site. The heavy and light chain antibody F(ab fragments were cloned, sequenced and inserted in tandem into an expression vector, with an FMDV Furin 2A cleavage site between them. Expression in HEK 293 cells revealed a functional F(ab with similar binding features to that of the parent hybridoma. This study lays the groundwork for synthesizing transgenic tobacco that expresses carcinogen-sequestration properties, thereby rendering it less harmful to consumers.

  9. Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays

    DEFF Research Database (Denmark)

    Holm, B. E.; Bergmann, Ann Christina; Hansen, Paul Robert

    2015-01-01

    In this study, polyclonal and monoclonal antibodies to native and denatured chicken ovalbumin (OVA) were produced to compare their dependency on continuous and three-dimensional epitopes. These antibodies were characterized with respect to reactivity to native and denatured OVA by enzyme......-linked immunosorbent assay (ELISA) employing surface-bound OVA and streptavidin-capture ELISA to determine whether effects of different coating influence antibody specificity and with respect to epitope specificity by peptide ELISA, using overlapping peptides, covering the complete OVA sequence. Polyclonal antibodies...... to native OVA reacted strongly with native and denatured OVA in both assays, but did not react with the overlapping peptides. Polyclonal antibodies to denatured OVA reacted strongly with both OVA forms and with several of the overlapping peptides. Monoclonal antibodies to native OVA reacted preferentially...

  10. Hepatitis C virus (HCV)-specific in vitro antibody secretion by peripheral blood lymphocytes: correlation with progression of disease and HCV RNA in HCV antibody-positive patients.

    OpenAIRE

    Ducos, J.; Bianchi-Mondain, A M; Francois, M.; Boisset, M; Vendrell, J P; Barin, F; Serre, A; Larrey, D

    1994-01-01

    Hepatitis C virus-specific in vitro antibody production (HCV IVAP) by peripheral blood lymphocytes in 53 HCV antibody-positive patients was investigated in comparison with alanine aminotransferase (ALT) levels and HCV RNA in serum samples. All 29 HCV IVAP-positive patients were HCV RNA positive; 26 had elevated ALT levels. Among the 24 HCV IVAP-negative patients, 16 were HCV RNA negative, with 12 presenting normal ALT values. These data indicate that HCV IVAP results are highly correlated (P ...

  11. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) - Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART)

    DEFF Research Database (Denmark)

    Jensen, Sanne Skov; Fomsgaard, Anders; Borggren, Marie

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated...... during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART....

  12. Use of antibody gene library for the isolation of specific single chain antibodies by ampicillin-antigen conjugates.

    Science.gov (United States)

    Neumann-Schaal, Meina; Messerschmidt, Katrin; Grenz, Nicole; Heilmann, Katja

    2013-03-01

    Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps.

  13. Rifampicin-dependent antibodies bind a similar or identical epitope to glycoprotein IX-specific quinine-dependent antibodies

    NARCIS (Netherlands)

    Burgess, J K; Lopez, J A; Gaudry, L E; Chong, B H

    2000-01-01

    The drug-dependent antibody of a patient with rifampicin-induced thrombocytopenia was characterized using the antigen-capture enzyme-linked immunosorbent assay (MAIPA assay), flow cytometry, and immunoprecipitation. The antibody was found to bind glycoprotein (GP) Ib-IX but not GPIIb-IIIa because (1

  14. ANTIBODIES DEFINING RAT ENDOTHELIAL-CELLS - RECA-1, A PAN-ENDOTHELIAL CELL-SPECIFIC MONOCLONAL-ANTIBODY

    NARCIS (Netherlands)

    DUIJVESTIJN, AM; VANGOOR, H; KLATTER, F; MAJOOR, GD; VANBUSSEL, E; VRIESMAN, PJCV

    1992-01-01

    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2, O

  15. Lactobacillus helveticus MIMLh5-specific antibodies for detection of S-layer protein in Grana Padano protected-designation-of-origin cheese.

    Science.gov (United States)

    Stuknyte, Milda; Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo

    2014-01-01

    Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods.

  16. An optimized assay of specific IgE antibodies to reactive dyes and studies of immunologic responses in exposed workers.

    Science.gov (United States)

    Wass, U; Nilsson, R; Nordlinder, R; Belin, L

    1990-03-01

    Methods of assaying reactive dye-specific IgE antibodies were investigated with a RAST. Sera from three patients, occupationally exposed to a reactive dye, Remazol black B (Chemical Abstract registry number 17095-24-8), were used. Directly dyed disks, that is, disks without any carrier protein, resulted in poor and unreliable measures of specific IgE. In contrast, optimized preparation of conjugates between the dye and human serum albumin resulted in efficient binding of specific IgE. The patients' RAST results were strongly positive, whereas sera from 36 exposed workers but without symptoms and sera from unexposed subjects with high levels of total IgE were negative. The hapten and carrier specificity of the IgE antibodies was studied by direct RAST and RAST inhibition. In one patient, the antibodies were principally hapten specific, whereas another patient was found to have antibodies with a high degree of specificity to the carrier. The third patient's antibodies were intermediate between the other two patients' antibodies in this respect, suggesting that antibody specificity is dependent not only on the nature of the hapten but also on individual immune response factors. The study demonstrates that it is important to use an optimized preparation of dye-protein conjugates to elicit reliable results and a high degree of specific IgE binding in the RAST.

  17. An Immunosensor Based on Antibody Binding Fragments Attached to Gold Nanoparticles for the Detection of Peptides Derived from Avian Influenza Hemagglutinin H5

    Directory of Open Access Journals (Sweden)

    Urszula Jarocka

    2014-08-01

    Full Text Available This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii immobilization of antibody-binding fragments (Fab’ of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab’ fragments and hemagglutinin (HA variants have been explored with electrochemical impedance spectroscopy (EIS in the presence of [Fe(CN6]3−/4− as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17–340 residues of A/swan/Poland/305-135V08/2006, the long HA (17–530 residues A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1–345 residues of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.

  18. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Bärbel; Vogt, Matthew R.; Goudsmit, Jaap; Holdaway, Heather A.; Aksyuk, Anastasia A.; Chipman, Paul R.; Kuhn, Richard J.; Diamond, Michael S.; Rossmann, Michael G. (Purdue); (WU-MED); (Crucell)

    2010-11-15

    Many flaviviruses are significant human pathogens, with the humoral immune response playing an essential role in restricting infection and disease. CR4354, a human monoclonal antibody isolated from a patient, neutralizes West Nile virus (WNV) infection at a postattachment stage in the viral life-cycle. Here, we determined the structure of WNV complexed with Fab fragments of CR4354 using cryoelectron microscopy. The outer glycoprotein shell of a mature WNV particle is formed by 30 rafts of three homodimers of the viral surface protein E. CR4354 binds to a discontinuous epitope formed by protein segments from two neighboring E molecules, but does not cause any detectable structural disturbance on the viral surface. The epitope occurs at two independent positions within an icosahedral asymmetric unit, resulting in 120 binding sites on the viral surface. The cross-linking of the six E monomers within one raft by four CR4354 Fab fragments suggests that the antibody neutralizes WNV by blocking the pH-induced rearrangement of the E protein required for virus fusion with the endosomal membrane.

  19. Generation and Characterization of Monoclonal Antibodies Specific to Avian Influenza H5N1 Hemagglutinin Protein.

    Science.gov (United States)

    Malik, Ankita; Mallajosyula, V Vamsee Aditya; Mishra, Nripendra Nath; Varadarajan, Raghavan; Gupta, Satish Kumar

    2015-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has in the past breached the species barrier from infected domestic poultry to humans in close contact. Although human-to-human transmission has previously not been reported, HPAI H5N1 virus has pandemic potential owing to gain of function mutation(s) and/or genetic reassortment with human influenza A viruses. Monoclonal antibodies (MAbs) have been used for diagnosis as well as specific therapeutic candidates in several disease conditions including viral infections in humans. In this study, we describe the preliminary characterization of four murine MAbs developed against recombinant hemagglutinin (rHA) protein of avian H5N1 A/turkey/Turkey/1/2005 virus that are either highly specific or broadly reactive against HA from other H5N1 subtype viruses, such as A/Hong Kong/213/03, A/Common magpie/Hong Kong/2256/2006, and A/Barheaded goose/Quinghai/14/2008. The antibody binding is specific to H5N1 HAs, as none of the antibodies bound H1N1, H2N2, H3N2, or B/Brisbane/60/2008 HAs. Out of the four MAbs, one of them (MA-7) also reacted weakly with the rHA protein of H7N9 A/Anhui/1/2013. All four MAbs bound H5 HA (A/turkey/Turkey/1/2005) with high affinity with an equilibrium dissociation constant (KD) ranging between 0.05 and 10.30 nM. One of the MAbs (MA-1) also showed hemagglutination inhibition activity (HI titer; 31.25 μg/mL) against the homologous A/turkey/Turkey/1/2005 H5N1 virus. These antibodies may be useful in developing diagnostic tools for detection of influenza H5N1 virus infection.

  20. Positron Emission Tomographic Imaging of Iodine 124 Anti–Prostate Stem Cell Antigen–Engineered Antibody Fragments in LAPC-9 Tumor–Bearing Severe Combined Immunodeficiency Mice

    Directory of Open Access Journals (Sweden)

    Jeffrey V. Leyton

    2013-05-01

    Full Text Available The humanized antibody (hu1G8 has been shown to localize to prostate stem cell antigen (PSCA and image PSCA-positive xenografts. We previously constructed hu1G8 anti-PSCA antibody fragments and tested them for tumor targeting and the ability to image prostate cancer at early and late time points postinjection by positron emission tomography (PET. We now then compare the PET imaging and the radioactivity accumulation properties in prostate cancer tumors and nontarget tissues to determine the superior 124I-labeled hu1G8 antibody format. 124I-labeled diabody, minibody, scFv-Fc, scFv-Fc double mutant (DM, and parental IgG were administered into severe combined immunodeficiency (SCID mice bearing LAPC-9 xenografts and followed by whole-body PET imaging of mice at preselected time points. Regions of interest were manually drawn around tumor and nontarget tissues and evaluated for radioactivity accumulation. The 124I-hu1G8 IgG has its best time point for tumor high-contrast imaging at 168 hours postinjection. The 124I-hu1G8 minibody at 44 hours postinjection results in superior tumor high-contrast imaging compared to the other antibody formats. The 124I-hu1G8 minibody at 44 hours postinjection also has comparable percent tumor radioactivity compared to 124I-hu1G8 IgG at 168 hours postinjection. The 124I-hu1G8 minibody is the best engineered hu1G8 antibody format for imaging prostate cancer.

  1. Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies

    Directory of Open Access Journals (Sweden)

    Receveur Marie-Catherine

    2009-12-01

    Full Text Available Abstract Background Chikungunya fever is an emerging arboviral disease characterized by an algo-eruptive syndrome, inflammatory polyarthralgias, or tenosynovitis that can last for months to years. Up to now, the pathophysiology of the chronic stage is poorly understood. Case presentation We report the first case of CHIKV infection with chronic associated rheumatism in a patient who developed progressive erosive arthritis with expression of inflammatory mediators and persistence of specific IgM antibodies over 24 months following infection. Conclusions Understanding the specific features of chikungunya virus as well as how the virus interacts with its host are essential for the prevention, treatment or cure of chikungunya disease.

  2. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation.

    Science.gov (United States)

    Grainger, Rhian K; James, David C

    2013-11-01

    Here we demonstrate that it is possible to predict and control N-glycan processing of a secreted recombinant monoclonal antibody during manufacturing process development using a combination of statistical modelling and comparative measurement of cell surface glycans using fluorescent lectins. Using design of experiments--response surface modelling (DoE-RSM) methodology to adjust the relative media concentrations of known metabolic effectors of galactosylation (manganese, galactose, and uridine) we have shown that β1,4-galactosylation of the same recombinant IgG4 monoclonal antibody produced by different CHO cell lines can be precisely controlled in a cell line specific manner. For two cell lines, monoclonal antibody galactosylation could be increased by over 100% compared to control, non-supplemented cultures without a reduction in product titre and with minimal effect on cell growth. Analysis of galactosylation effector interactions by DoE-RSM indicated that Mn²⁺ alone was necessary but not sufficient to improve galactosylation, and that synergistic combinations of Gal and Urd were necessary to maximize galactosylation, whilst minimizing the deleterious effect of Urd on cell growth. To facilitate rapid cell culture process development we also tested the hypothesis that substrate-level control of cellular galactosylation would similarly affect both cell surface and secreted monoclonal antibody glycans, enabling facile indirect prediction of product glycan processing. To support this hypothesis, comparative quantitation of CHO cell surface β1,4-galactosylation by flow cytometry using fluorescent derivatives of RCA and ConA lectins revealed that substrate-controlled variation in monoclonal antibody galactosylation and cell surface galactosylation were significantly correlated. Taken together, these data show that precision control of a complex, dynamic cellular process essential for the definition of protein product molecular heterogeneity and bioactivity is

  3. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Jr., Joseph J. (SAIC); (NCI)

    2012-10-16

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.

  4. Isolation by phage display and characterization of a singlechain antibody specific for O6-methyldeoxyguanosine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    New approaches of making single chain Fv antibodies against O6-methyl-2′-deoxyguanosine (O6MdG) have been demonstrated by using the phage antibody display system. Using O6MdG as an antigen, 21 positive clones were identified by ELISA from this library, one of which, desig-nated H3, specifically binds to O6MdG with high affinity. The H3 scFv antibody has an affinity constant (Kaff) of 5.94×1011(mol/L)-1. H3 scFv has been successfully used to detect O6MdG in DNA hydrolyses from yeast or E. coli cells treated with a DNA methylating agent. To our knowledge, this is the first report of the selection of a specific scFv against DNA adducts. The results demonstrate the potential applications of the phage display technology for the detection of DNA lesions caused by mutagens and carcinogens.

  5. Development of a Specific Latex Agglutination Test to Detect Antibodies of Enterovirus 71.

    Science.gov (United States)

    Qin, Bo; Zhang, Jianhua; Xie, Wenhao; Liu, Xuehong; He, Tingting; Chen, Jinkun; Dong, Xuejun

    2015-10-01

    A latex agglutination test (LAT) was developed for the rapid detection of antibodies against the VP1 or VP1 proteins of Enterovirus 71 (EV71). The proteins of interest including prokaryotically expressed VP1 and two strains of anti-VP1 monoclonal antibody (McAb) against EV71 were covalently linked to carboxylated latex using ethyl-dimethyl-amino-propyl carbodiimide (EDC) to prepare sensitized latex beads. LAT was evaluated by an enzyme-linked immunosorbent assay (ELISA) as a reference test. The VP1-LAT showed a sensitivity of 87.0%, specificity of 88.9%, and an agreement ratio of 90.0% in detecting VP1 in 100 serum samples from experimentally infected mice, whereas these values were 86.8, 96.7, and 93.3%, respectively, for 608 clinical human serum samples. The VP1-LAT has advantages over other assays in terms of low cost, rapidity, chemical stability, high sensitivity, repeatability, and specificity. The LAT established in the present study is a rapid and simple test suitable for field monitoring of antibodies against VP1-EV71.

  6. Immunodominant epitope and properties of pyroglutamate-modified Abeta-specific antibodies produced in rabbits.

    Science.gov (United States)

    Acero, G; Manoutcharian, K; Vasilevko, V; Munguia, M E; Govezensky, T; Coronas, G; Luz-Madrigal, A; Cribbs, D H; Gevorkian, G

    2009-08-18

    N-truncated and N-modified forms of amyloid beta (Abeta) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Abeta is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant N-truncated/modified Abeta peptide bearing amino-terminal pyroglutamate at position 3 (AbetaN3(pE)). We demonstrated that AbetaN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AbetaN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AbetaN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AbetaN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Abeta, which is absent in N-amino truncated peptides.

  7. IMMUNODOMINANT EPITOPE AND PROPERTIES OF PYROGLUTAMATE-MODIFIED Aβ-SPECIFIC ANTIBODIES PRODUCED IN RABBITS

    Science.gov (United States)

    Acero, G.; Manoutcharian, K.; Vasilevko, V.; Munguia, M.E.; Govezensky, T.; Coronas, G.; Luz-Madrigal, A.; Cribbs, DH.; Gevorkian, G.

    2009-01-01

    N-truncated and N-modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer’s disease (AD) and Down’s syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Aβ is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full-length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant Ntruncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 3 (AβN3(pE)). We demonstrated that AβN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AβN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AβN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AβN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides. PMID:19545911

  8. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.

    Science.gov (United States)

    Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L

    2015-04-01

    Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.

  9. Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support.

    Science.gov (United States)

    Hu, Xuejun; O'Hara, Liam; White, Simon; Magner, Edmond; Kane, Marian; Wall, J Gerard

    2007-03-01

    Domoic acid is a potent neurotoxin that can lead to amnesic shellfish poisoning in humans through ingestion of contaminated shellfish. We have produced and purified an anti-domoic acid single-chain Fragment variable (scFv) antibody fragment from the Escherichia coli periplasm. Yields of functional protein were increased by up to 100-fold upon co-production of E. coli DnaKJE molecular chaperones but co-overproduction of GroESL led to a reduction in solubility of the scFv. Co-production of the peptidyl-prolyl isomerase trigger factor resulted in accumulation of unprocessed scFv in the E. coli cytoplasm. This was due to an apparent bottleneck in translocation of the cytoplasmic membrane by the recombinant polypeptide. Co-expression of the E. coli disulfide bond isomerase dsbC increased scFv yields by delaying lysis of the host bacterial cells though this effect was not synergistic with molecular chaperone co-production. Meanwhile, use of a cold-shock promoter for protein production led to accumulation of greater amounts of scFv polypeptide which was predominantly in insoluble form and could not be rescued by chaperones. Purification of the scFv was achieved using an optimised metal affinity chromatography procedure and the purified protein bound domoic acid when immobilised on a mesoporous silicate support. The work outlines the potential benefit of applying a molecular chaperone/folding catalyst screening approach to improve antibody fragment production for applications such as sensor development.

  10. GD1b-specific antibodies may bind to complex of GQ1b and GM1, causing ataxia.

    Science.gov (United States)

    Yuki, Nobuhiro; Fukami, Yuki; Yanaka, Chiaki; Koike, Saiko; Hirata, Koichi

    2014-08-01

    Monospecific IgG antibodies to GD1b ganglioside (GD1b-specific antibodies) have been found in patients with acute ataxic neuropathy and Guillain-Barré syndrome, but the association of the GD1b-specific antibodies with specific neurological conditions has yet to be established. We tested sera from more than 10,000 patients with various neurological disorders, and found six sera, which contained IgG antibodies to GD1b, but not to LM1, GM1, GM1b, GD1a, GalNAc-GD1a, GT1a, GT1b and GQ1b. All six patients who carried GD1b-specific antibodies presented with acute onset of ataxia and monophasic course of the illness, of whom five demonstrated cerebellar-like ataxia. Four patients had antecedent symptoms of upper respiratory tract infection. The six patients demonstrated areflexia, and four complained of distal numbness. All the six patients who had the GD1b-specific antibodies carried IgG antibodies to complex of GQ1b/GM1 and GT1a/GM1. GD1b-specific antibodies were significantly absorbed by GQ1b/GM1 and GT1a/GM1 and anti-GQ1b/GM1 and -GT1a/GM1 antibodies were absorbed by GD1b. In conclusion, the GD1b-specific antibodies, which recognizes GQ1b/GM1 or GT1a/GM1 complex, are associated with acute ataxia.

  11. Biological effects and use of PrPSc- and PrP-specific antibodies generated by immunization with purified full-length native mouse prions.

    Science.gov (United States)

    Petsch, Benjamin; Müller-Schiffmann, Andreas; Lehle, Anna; Zirdum, Elizabeta; Prikulis, Ingrid; Kuhn, Franziska; Raeber, Alex J; Ironside, James W; Korth, Carsten; Stitz, Lothar

    2011-05-01

    The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.

  12. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity.

    KAUST Repository

    Chailyan, Anna

    2011-06-28

    The antigen-binding site of immunoglobulins is formed by six regions, three from the light and three from the heavy chain variable domains, which, on association of the two chains, form the conventional antigen-binding site of the antibody. The mode of interaction between the heavy and light chain variable domains affects the relative position of the antigen-binding loops and therefore has an effect on the overall conformation of the binding site. In this article, we analyze the structure of the interface between the heavy and light chain variable domains and show that there are essentially two different modes for their interaction that can be identified by the presence of key amino acids in specific positions of the antibody sequences. We also show that the different packing modes are related to the type of recognized antigen.

  13. Select human anthrax protective antigen (PA) epitope-specific antibodies provide protection from lethal toxin challenge

    Science.gov (United States)

    Crowe, Sherry R.; Ash, Linda L.; Engler, Renata J. M.; Ballard, Jimmy D.; Harley, John B.; Farris, A. Darise; James, Judith A.

    2010-01-01

    Bacillus anthracis remains a serious bioterrorism concern, and the currently licensed vaccine remains an incomplete solution for population protection from inhalation anthrax and has been associated with concerns regarding efficacy and safety. Thus, understanding how to generate long lasting protective immunity with reduced immunizations or providing protection through post exposure immunotherapeutics are long sought goals. Through evaluation of a large military cohort, we characterized the levels of antibodies against protective antigen and found that over half of anthrax vaccinees had low levels of in vitro toxin neutralization capacity in their sera. Using solid phase epitope mapping and confirmatory assays, we identified several neutralization-associated humoral epitopes and demonstrated that select anti-peptide responses mediated protection in vitro. Finally, passively transferred antibodies specific for select epitopes provided protection in an in vivo lethal toxin mouse model. Identification of these antigenic regions has important implications for vaccine design and the development of directed immunotherapeutics. PMID:20533877

  14. Rise and fall of an anti-MUC1 specific antibody.

    Directory of Open Access Journals (Sweden)

    Holger Thie

    Full Text Available BACKGROUND: So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate. RESULTS: A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10(-10 M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells. CONCLUSIONS: Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these "best in class" binding parameters, the therapeutic success of this antibody was prevented by the target biology.

  15. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, Thomas J.; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 {angstrom}, and diffracted to 2.0 {angstrom} resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  16. Crystallization and preliminary X-ray diffraction analysis of the complex between a human anti-alpha toxin antibody fragment and alpha toxin.

    Science.gov (United States)

    Oganesyan, Vaheh; Barnes, Arnita; Tkaczyk, Christine; Ferguson, Andrew; Wu, Herren; Dall'Acqua, William F

    2013-03-01

    Staphylococcus aureus alpha toxin (AT) has been crystallized in complex with the Fab fragment of a human antibody (MEDI4893). This constitutes the first reported crystals of AT bound to an antibody. The monoclinic crystals belonged to space group P2₁, with unit-cell parameters a=85.52, b=148.50, c=93.82 Å, β=99.82°. The diffraction of the crystals extended to 2.56 Å resolution. The asymmetric unit contained two MEDI4893 Fab-AT complexes. This corresponds to a crystal volume per protein weight (VM) of 2.3 Å3 Da(-1) and a solvent content of 47%. The three-dimensional structure of this complex will contribute to an understanding of the molecular basis of the interaction of MEDI4893 with AT. It will also shed light on the mechanism of action of this antibody, the current evaluation of which in the field of S. aureus-mediated diseases makes it a particularly interesting case study. Finally, this study will provide the three-dimensional structure of AT in a monomeric state for the first time.

  17. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment.

    Science.gov (United States)

    McKinstry, William J; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T; Martin, Thomas J; Parker, Michael W

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 A, and diffracted to 2.0 A resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  18. Determining vaccination frequency in farmed rainbow trout using Vibrio anguillarum O1 specific serum antibody measurements.

    Directory of Open Access Journals (Sweden)

    Lars Holten-Andersen

    Full Text Available BACKGROUND: Despite vaccination with a commercial vaccine with a documented protective effect against Vibrio anguillarum O1 disease outbreaks caused by this bacterium have been registered among rainbow trout at Danish fish farms. The present study examined specific serum antibody levels as a valid marker for assessing vaccination status in a fish population. For this purpose a highly sensitive enzyme-linked immunosorbent assay (ELISA was developed and used to evaluate sera from farmed rainbow trout vaccinated against V. anguillarum O1. STUDY DESIGN: Immune sera from rainbow trout immunised with an experimental vaccine based on inactivated V. anguillarum O1 bacterin in Freund's incomplete adjuvant were used for ELISA optimisation. Subsequently, sera from farmed rainbow trout vaccinated with a commercial vaccine against V. anguillarum were analysed with the ELISA. The measured serum antibody levels were compared with the vaccine status of the fish (vaccinated/unvaccinated as evaluated through visual examination. RESULTS: Repeated immunisation with the experimental vaccine lead to increasing levels of specific serum antibodies in the vaccinated rainbow trout. The farmed rainbow trout responded with high antibody levels to a single injection with the commercial vaccine. However, the diversity in responses was more pronounced in the farmed fish. Primary visual examinations for vaccine status in rainbow trout from the commercial farm revealed a large pool of unvaccinated specimens (vaccination failure rate=20% among the otherwise vaccinated fish. Through serum analyses using the ELISA in a blinded set-up it was possible to separate samples collected from the farmed rainbow trout into vaccinated and unvaccinated fish. CONCLUSIONS: Much attention has been devoted to development of new and more effective vaccines. Here we present a case from a Danish rainbow trout farm indicating that attention should also be directed to the vaccination procedure in

  19. Structurally distinct nicotine immunogens elicit antibodies with non-overlapping specificities

    Science.gov (United States)

    Pravetoni, M; Keyler, DE; Pidaparthi, RR; Carroll, FI; Runyon, SP; Murtaugh, MP; Earley, CA; Pentel, PR

    2011-01-01

    Nicotine conjugate vaccine efficacy is limited by the concentration of nicotine-specific antibodies that can be reliably generated in serum. Previous studies suggest that the concurrent use of 2 structurally distinct nicotine immunogens in rats can generate additive antibody responses by stimulating distinct B cell populations. In the current study we investigated whether it is possible to identify a third immunologically distinct nicotine immunogen. The new 1′-SNic immunogen (2S)-N,N′-(disulfanediyldiethane-2,1-diyl)bis[4-(2-pyridin-3-ylpyrrolidin-1-yl)butanamide] conjugated to keyhole limpet hemocyanin (KLH) differed from the existing immunogens 3′-AmNic-rEPA and 6-CMUNic-BSA in linker position, linker composition, conjugation chemistry, and carrier protein. Vaccination of rats with 1′-SNic-KLH elicited high concentrations of high affinity nicotine-specific antibodies. The antibodies produced in response to 1′-SNic-KLH did not appreciably cross-react in ELISA with either 3′-AmNic-rEPA or 6-CMUNic-BSA or vice-versa, showing that the B cell populations activated by each of these nicotine immunogens were non-overlapping and distinct. Nicotine retention in serum was increased and nicotine distribution to brain substantially reduced in rats vaccinated with 1′-SNic-KLH compared to controls. Effects of 1′-SNic-KLH on nicotine distribution were comparable to those of 3′-AmNic-rEPA which has progressed to late stage clinical trials as an adjunct to smoking cessation. These data show that it is possible to design multiple immunogens from a small molecule such as nicotine which elicit independent immune responses. This approach could be applicable to other addiction vaccines or small molecule targets as well. PMID:22100986

  20. Higher Plasma Concentration of Food-Specific Antibodies in Persons with Autistic Disorder in Comparison to Their Siblings

    Science.gov (United States)

    Trajkovski, Vladimir; Petlichkovski, Aleksandar; Efinska-Mladenovska, Olivija; Trajkov, Dejan; Arsov, Todor; Strezova, Ana; Ajdinski, Ljubomir; Spiroski, Mirko

    2008-01-01

    Specific IgA, IgG, and IgE antibodies to food antigens in 35 participants with autistic disorder and 21 of their siblings in the Republic of Macedonia were examined. Statistically significant higher plasma concentration of IgA antibodies against alpha-lactalbumin, beta-lactoglobulin, casein, and gliadin were found in the children with autistic…

  1. Altered immune response of immature dendritic cells upon dengue virus infection in the presence of specific antibodies

    NARCIS (Netherlands)

    Torres, Silvia; Flipse, Jacky; Upasani, Vinit C; van der Ende-Metselaar, Heidi; Urcuqui-Inchima, Silvio; Smit, Jolanda M; Rodenhuis-Zybert, Izabela A

    2016-01-01

    Dengue virus (DENV) replication is known to prevent maturation of infected DCs thereby impeding the development of adequate immunity. During secondary DENV infection, dengue-specific antibodies can suppress DENV replication in immature DCs (immDCs), however how dengue-antibody complexes (DENV-IC) in

  2. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs

    Science.gov (United States)

    Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.

    2016-01-01

    Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245

  3. A rice-based soluble form of a murine TNF-specific llama variable domain of heavy-chain antibody suppresses collagen-induced arthritis in mice.

    Science.gov (United States)

    Abe, Michiyo; Yuki, Yoshikazu; Kurokawa, Shiho; Mejima, Mio; Kuroda, Masaharu; Park, Eun Jeong; Scheller, Jürgen; Nakanishi, Ushio; Kiyono, Hiroshi

    2014-04-10

    Tumor necrosis factor alpha (TNF) plays a pivotal role in chronic inflammatory diseases such as rheumatoid arthritis and Crohn's disease. Although anti-TNF antibody therapy is now commonly used to treat patients suffering from these inflammatory conditions, the cost of treatment continues to be a concern. Here, we developed a rice transgenic system for the production of a llama variable domain of a heavy-chain antibody fragment (VHH) specific for mouse TNF in rice seeds (MucoRice-mTNF-VHH). MucoRice-mTNF-VHH was produced at high levels in the rice seeds when we used our most recent transgene-overexpression system with RNA interference technology that suppresses the production of major rice endogenous storage proteins while enhancing the expression of the transgene-derived protein. Production levels of mTNF-VHH in rice seeds reached an average of 1.45% (w/w). Further, approximately 91% of mTNF-VHH was released easily when the powder form of MucoRice-mTNF-VHH was mixed with PBS. mTNF-VHH purified by means of single-step gel filtration from rice PBS extract showed high neutralizing activity in an in vitro mTNF cytotoxicity assay using WEHI164 cells. In addition, purified mTNF-VHH suppressed progression of collagen-induced arthritis in mice. These results show that this rice-expression system is useful for the production of neutralizing VHH antibody specific for mTNF.

  4. Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.

    Science.gov (United States)

    Williams, Y J; Rea, S M; Popovski, S; Skillman, L C; Wright, A-D G

    2014-12-01

    Binding of IgG antibodies to Entodinium spp. in the rumen of sheep (Ovis aries) was investigated by adding IgG, purified from plasma, directly into the rumen. Plasma IgG was sourced from sheep that had or had not been immunized with a vaccine containing whole fixed Entodinium spp. cells. Ruminal fluid was sampled approximately 2 h after each antibody dosing. Binding of protozoa by a specific antibody was detected using an indirect fluorescent antibody test. An antibody titer in the ruminal fluid was determined by ELISA, and the concentration of ruminal fluid ammonia-N and ruminal pH were also determined. Entodinium spp. and total protozoa from IgG-infused sheep were enumerated by microscopic counts. Two-hourly additions of IgG maintained a low antibody titer in the rumen for 12 h and the binding of the antibody to the rumen protozoa was demonstrated. Increased ammonia-N concentrations and altered ruminal fluid pH patterns indicated that additional fermentation of protein was occurring in the rumen after addition of IgG. No reduction in numbers of Entodinium spp. was observed (P>0.05). Although binding of antibodies to protozoa has been demonstrated in the rumen, it is unclear how much cell death occurred. On the balance of probability, it would appear that the antibody was degraded or partially degraded, and the impact of this on protozoal populations and the measurement of a specific titer is also unclear.

  5. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4) Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage.

    Science.gov (United States)

    Cai, Binggang; Wang, Maorong; Zhu, Xuhui; Xu, Jing; Zheng, Wenkai; Zhang, Yiqing; Zheng, Feng; Feng, Zhenqing; Zhu, Jin

    2015-01-01

    Lipopolysaccharides (LPS) can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4) signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2) complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  6. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4 Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage

    Directory of Open Access Journals (Sweden)

    Binggang Cai

    2015-10-01

    Full Text Available Lipopolysaccharides (LPS can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4 signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2 complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  7. Thrombotic risk assessment in antiphospholipid syndrome: the role of new antibody specificities and thrombin generation assay.

    Science.gov (United States)

    Sciascia, Savino; Baldovino, Simone; Schreiber, Karen; Solfietti, Laura; Radin, Massimo; Cuadrado, Maria J; Menegatti, Elisa; Erkan, Doruk; Roccatello, Dario

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune condition characterized by the presence of antiphospholipid antibodies (aPL) in subjects presenting with thrombosis and/or pregnancy loss. The currently used classification criteria were updated in the international consensus held in Sidney in 2005. Vascular events seem to result of local procoagulative alterations upon triggers influence (the so called "second-hit theory"), while placental thrombosis and complement activation seem to lead to pregnancy morbidity. The laboratory tests suggested by the current classification criteria include lupus anticoagulant, a functional coagulation assay, and anticardiolipin and anti-β2-glycoprotein-I antibodies, generally detected by solid phase enzyme-linked immunosorbent assay. The real challenge for treating physicians is understanding what is the actual weight of aPL in provoking clinical manifestations in each case. As thrombosis has a multi-factorial cause, each patient needs a risk-stratified approach. In this review we discuss the role of thrombotic risk assessment in primary and secondary prevention of venous and arterial thromboembolic disease in patients with APS, focusing on new antibody specificities, available risk scoring models and new coagulation assays.

  8. Expression of rice dwarf phytoreovirus Pns6 and the specificity analysis of its monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    JI Xu; WEI ChunHong; LI Yi

    2009-01-01

    The genome of rice dwarf phytoreovirus (RDV) is composed of 12 double-stranded RNA segments, of which segment S6 encodes a non-structural protein Pns6 identified as the movement protein. In this report, Pns6 with a 6-histidine tag at the N-terminal was expressed in E. coli after induction under low temperature (18℃) and low concentration (0.4 mmol/L and 0.2 mmol/L) of IPTG, and then purified by Ni-chelated affinity chromatography. Stability analysis indicated that the expressed HisPns6 protein was stable at 37℃ after 24 h treatment. This recombinant protein was then used to make monoclonal antibody. Total 18 hybridoma clones were obtained. The specificity of antibodies was tested by Western blot using native Pns6 extracted from RDV-infected rice leaves, and 15 positive clones were confirmed.Mapping of the antigenic sites of Pns6 using antibodies showed that the most sensitive antigen determinant is located in the C-terminal region (the 296th-509th amino acids) of Pns6, which is confirms bioinformatics analysis.

  9. Expression of rice dwarf phytoreovirus Pns6 and the specificity analysis of its monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The genome of rice dwarf phytoreovirus (RDV) is composed of 12 double-stranded RNA segments, of which segment S6 encodes a non-structural protein Pns6 identified as the movement protein. In this report, Pns6 with a 6-histidine tag at the N-terminal was expressed in E. coli after induction under low temperature (18℃) and low concentration (0.4 mmol/L and 0.2 mmol/L) of IPTG, and then purified by Ni-chelated affinity chromatography. Stability analysis indicated that the expressed HisPns6 protein was stable at 37℃ after 24 h treatment. This recombinant protein was then used to make monoclonal antibody. Total 18 hybridoma clones were obtained. The specificity of antibodies was tested by Western blot using native Pns6 extracted from RDV-infected rice leaves, and 15 positive clones were confirmed. Mapping of the antigenic sites of Pns6 using antibodies showed that the most sensitive antigen determinant is located in the C-terminal region (the 296th-509th amino acids) of Pns6, which is confirms bioinformatics analysis.

  10. Wildtype p53-specific antibody and T-cell responses in cancer patients

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune

    2011-01-01

    Mutation in the p53 gene based on single amino acid substitutions is a frequent event in human cancer. Accumulated mutant p53 protein is released to antigen presenting cells of the immune system and anti-p53 immune responses even against wt p53 is induced and observed in a number of human cancer...... patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients......(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal...

  11. Effects of Monoclonal Antibody Against Adipocyte-Specific Membrane Protein on Lipid Metabolism in Pigs

    Institute of Scientific and Technical Information of China (English)

    GAO Shi-zheng; LIU Ling-yun; ZHAO Su-mei; HU Hong-mei; GE Chang-rong; LIU Yong-gang; ZHANG Xi

    2008-01-01

    This study was to investigate the regulation of monoclonal antibodies against adipocyte membrane proteins(McAb)on lipid metabolism in pigs.Forty Landrace x Saba pigs were randomly divided into eight groups;the control group was given 10 mL saline and the treat groups were given monoclonal antibody against adipocyte-specific membrane protein with 0.10 0.5,and 1.0 mg kg-1 body weight at 15 and 60 kg body weight,respectively,by intraperitoneal injection.The results showed that McAb could increase,significantly,serum lipoprotein lipase activity and reduce serum nonesterified fatty acid(NEFA)content.Meanwhile,McAb increased content of serum lipid,triglyceride(TG),cholesterol(CHO),high density lipoprotein(HDL),and low density lipoprotein(LDL) both at 15 and 60 kg body weight.However,McAb affected more significantly the lipid metabolism at 15 kg body weight than at 60 kg body weight.Moreover,this effect of McAb on lipid metabolism exhibited dose-dependent effect.These results suggested that this monoclonal antibody increased lipase activity,promoted lipolysis,and utilization of lipid so that McAb could be applied to restrain excessive fat deposition in porcine production through the regulation of fat metabolism.

  12. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure.

    Science.gov (United States)

    Loupy, Alexandre; Hill, Gary S; Jordan, Stanley C

    2012-04-17

    Despite improvements in outcomes of renal transplantation, kidney allograft loss remains substantial, and is associated with increased morbidity, mortality and costs. Identifying the pathologic pathways responsible for allograft loss, and the attendant development of therapeutic interventions, will be one of the guiding future objectives of transplant medicine. One of the most important advances of the past decade has been the demonstration of the destructive power of anti-HLA alloantibodies and their association with antibody-mediated rejection (ABMR). Compelling evidence exists to show that donor-specific anti-HLA antibodies (DSAs) are largely responsible for the chronic deterioration of allografts, a condition previously attributed to calcineurin inhibitor toxicity and chronic allograft nephropathy. The emergence of sensitive techniques to detect DSAs, together with advances in the assessment of graft pathology, have expanded the spectrum of what constitutes ABMR. Today, subtler forms of rejection--such as indolent ABMR, C4d-negative ABMR, and transplant arteriopathy--are seen in which DSAs exert a marked pathological effect. In addition, arteriosclerosis, previously thought to be a bystander lesion related to the vicissitudes of aging, is accelerated in ABMR. Advances in our understanding of the pathological significance of DSAs and ABMR show their primacy in the mediation of chronic allograft destruction. Therapies aimed at B cells, plasma cells and antibodies will be important therapeutic options to improve the length and quality of kidney allograft survival.

  13. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  14. Parasite-specific antibody profile in the aqueous humor of rabbits with ocular toxocariasis.

    Science.gov (United States)

    Akiyama, Takashi; Ohta, Nobuo

    2010-06-01

    Human ocular toxocariasis is diagnosed using ophthalmologic and immunologic examinations. Many researchers have suggested that intraocular parasite-specific antibody levels are indicative of ocular toxocariasis, but little is known about the time course of the changes in these levels. We therefore investigated the anti-Toxocara canis antibody profile in the aqueous humor in an animal model of ocular toxocariasis. We intravitreally injected T. canis larvae into the right eye of 4 rabbits; 2 rabbits were orally administered T. canis eggs. We collected serum, aqueous humor, and tear samples weekly and determined the serum and aqueous humor levels of anti-T. canis immunoglobulin (Ig)G, IgA, IgM, and IgE antibodies and the tear IgG antibody level by enzyme-linked immunosorbent assay (ELISA). The severity of vitreous opacity and the aqueous humor IgG levels (measured using optical density [OD]) changed concordantly in the larvae-injected eyes; the OD exceeded 0.1 from 2-4 weeks after infection and remained elevated during active intraocular inflammation. However, the aqueous humor IgG levels were also elevated in 6 out of 8 eyes without intraocular larvae in both groups, and were low in 1 eye with live intravitreal larvae. In contrast, the serum IgG and IgM levels and the tear IgG levels increased in all rabbits, regardless of the presence of intraocular inflammation. Vitreous opacity occurred in all intravitreally infected eyes, but significant histopathological evidence of retinal damage was not detected. Thus, besides the presence of intraocular larvae, some other factors in the host may be required for the development of retinal lesions.

  15. Determining the specificity of monoclonal antibody HPT-101 to tau-peptides with optical tweezers.

    Science.gov (United States)

    Stangner, Tim; Wagner, Carolin; Singer, David; Angioletti-Uberti, Stefano; Gutsche, Christof; Dzubiella, Joachim; Hoffmann, Ralf; Kremer, Friedrich

    2013-12-23

    Optical tweezers-assisted dynamic force spectroscopy is employed to investigate specific receptor-ligand interactions on the level of single binding events. In particular, we analyze binding of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to synthetic tau-peptides with two potential phosphorylation sites (Thr231 and Ser235), being the most probable markers for Alzheimer's disease. Whereas the typical interpretation of enzyme-linked immunosorbent assay (ELISA) suggests that this monoclonal antibody binds exclusively to the double-phosphorylated tau-peptide, we show here by DFS that the specificity of only mAb HPT-101 is apparent. In fact, binding occurs also to each sort of monophosphorylated peptide. Therefore, we characterize the unbinding process by analyzing the measured rupture force distributions, from which the lifetime of the bond without force τ0, its characteristic length xts, and the free energy of activation ΔG are extracted for the three mAb/peptide combinations. This information is used to build a simple theoretical model to predict features of the unbinding process for the double-phosphorylated peptide purely based on data on the monophosphorylated ones. Finally, we introduce a method to combine binding and unbinding measurements to estimate the relative affinity of the bonds. The values obtained for this quantity are in accordance with ELISA, showing how DFS can offer important insights about the dynamic binding process that are not accessible with this common and widespread assay.

  16. Dynamics of specific anti-Mycobacterium avium subsp. paratuberculosis antibody response through age

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Toft, Nils; Okura, Hisako

    2013-01-01

    G antibodies on their final test-record were used to estimate age-specific sensitivities (Se). These cows were the infected ones considered to develop disease in a population with a representative age-distribution and were defined as cases. The specificity (Sp) of the test was estimated based on test......-results from 166,905 cows, which had no MAP IgG antibodies in their final four test-records. The Sp, age-specific Se and maximum Se were used to estimate the probability of having HI at a given age resulting in the proportion of infected cows with HI at a given age. For cows 2 years of age, the proportion...... of detectable cases was 0.33, while it was 0.94 for cows 5 years of age. Thus, there was a significant shift in the tip of the iceberg with aging. This study provided a model for estimating the proportion of latent chronic infections that would progress to disease, and the results can be used to model infection...

  17. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer

    Science.gov (United States)

    Willett, Christopher G; Boucher, Yves; di Tomaso, Emmanuelle; Duda, Dan G; Munn, Lance L; Tong, Ricky T; Chung, Daniel C; Sahani, Dushyant V; Kalva, Sanjeeva P; Kozin, Sergey V; Mino, Mari; Cohen, Kenneth S; Scadden, David T; Hartford, Alan C; Fischman, Alan J; Clark, Jeffrey W; Ryan, David P; Zhu, Andrew X; Blaszkowsky, Lawrence S; Chen, Helen X; Shellito, Paul C; Lauwers, Gregory Y; Jain, Rakesh K

    2009-01-01

    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF blockade has a direct and rapid antivascular effect in human tumors. PMID:14745444

  18. Rapid, Quantitative Mapping of Anti-HIV Type 1 Envelope Serum Antibody Specificities

    OpenAIRE

    Powell, Rebecca L.R.; Lindsay, Ross W.B.; Wilson, Aaron; Carpov, Alexei; Rabinovich, Svetlana; Hoffenberg, Simon; Caulfield, Michael J.

    2013-01-01

    A new generation of extremely broad and potent neutralizing antibodies (bNAbs) has been isolated from HIV-infected subjects. This has refocused interest in the sites of vulnerability targeted by these bNAbs and in the potential for designing Envelope (Env) immunogens that display these sites. Standard methods for evaluating HIV-1 vaccine candidates do not enable epitope mapping on the HIV Env spike, the target for NAbs. To meet the need for rapid analysis of Ab specificity, we designed a mult...

  19. Radioimmunoimaging of subacute infective endocarditis using a technetium-99m monoclonal granulocyte-specific antibody

    Energy Technology Data Exchange (ETDEWEB)

    Munz, D.L.; Sandrock, D.; Emrich, D. (Goettingen Univ. (Germany). Abt. fuer Nuklearmedizin); Morguet, A.J.; Heim, A.; Sold, G.; Figulla, H.R.; Kreuzer, H. (Goettingen Univ. (Germany). Abt. fuer Kardiologie und Pulmonologie)

    1991-12-01

    Immunoscintigraphy with a technetium-99m murine monoclonal IgG{sub 1} antibody directed against non-specific cross-reacting antigen (NCA-95) and carcinoembryonic antigen was performed with 20 patients with suspected subacute infective endocarditis (SIE) and 6 controls with suspected inflammatory/infectious disease elsewhere in the body. Immunoscintigraphy and echocardiography localised SIE in 11 of 15 patients in whom the disease could be confirmed. In 4 patients with validated SIE, the immunoscan was abnormal, and the echocardiogram was normal. In another 4 patients, the result was exactly the opposite. These findings suggest that the combination of immunoscintigraphy and echocardiography improves diagnostic efficacy in patients with suspected SIE. (orig.).

  20. [The discovery of a specific DNA fragment associated with maize cytoplasmic male sterility and its differential display].

    Science.gov (United States)

    Cao, Mo-Ju; Rong, Ting-Zhao; Zhu, Ying-Guo

    2005-09-01

    Three pairs of PCR primers were designed according to the mitochondrial DNA sequence. PCR amplification was applied to 3 sets of isonuclear alloplasm materials and 3 sets of isoplasm allonuclear materials. Multiplex PCR and general PCR protocol were adopted with total genomic DNA. As for the primers having detected polymorphsim between male sterility and its maintainers, differential display was conducted with mRNA from different development stage of microspore. The results showed as follows: with total genomic DNA template, primer P1-P2 has amplified a specific fragment only in all the male sterile materials, primer P5-P6 has amplified a specific fragment only in maintainer Huangzaosi, primer P3-P4 has no amplification in all the experiment materials. So primer P1-P2 can be used to distinguish male sterile cytoplasm and normal cytoplasm. RT-PCR was conducted with primer P1-P2 in inbred line huangzaosi and 48-2 with male sterile cytoplasm and normal cytoplasm, mRNA was separately isolated from tetrad stage, uninucleate stage and binucleate stage of microspore development, cDNA was obtained with random hexanucleotide primers. With the cDNA template, specific amplified fragments were also detected by primer P1-P2 in the male sterile materials at different development stage of microspore, but there was no amplification by primer P1-P2 in the 2 maintainer lines. This result indicated that primer P1-P2 can be transcripted at 3 development stages of microspore in all male sterile materials, and same transcript was produced by primer P1-P2 among all male sterile materials include 3 sets of isonuclear alloplasm and 3 sets of isoplasm allonuclear. It was suggested from this experiment that the specific DNA sequence detected by primer P1-P2 in all male sterile material total genomic DNA might be related to the cytoplasmic male sterile character.

  1. Conformation-specific spectroscopy of peptide fragment ions in a low-temperature ion trap.

    Science.gov (United States)

    Wassermann, Tobias N; Boyarkin, Oleg V; Paizs, Béla; Rizzo, Thomas R

    2012-06-01

    We have applied conformer-selective infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy at low temperatures in an ion trap mass spectrometer for the spectroscopic characterization of peptide fragment ions. We investigate b- and a-type ions formed by collision-induced dissociation from protonated leucine-enkephalin. The vibrational analysis and assignment are supported by nitrogen-15 isotopic substitution of individual amino acid residues and assisted by density functional theory calculations. Under such conditions, b-type ions of different size are found to appear exclusively as linear oxazolone structures with protonation on the N-terminus, while a rearrangement reaction is confirmed for the a (4) ion in which the side chain of the C-terminal phenylalanine residue is transferred to the N-terminal side of the molecule. The vibrational spectra that we present here provide a particularly stringent test for theoretical approaches.

  2. Conformation-Specific Spectroscopy of Peptide Fragment Ions in a Low-Temperature Ion Trap

    Science.gov (United States)

    Wassermann, Tobias N.; Boyarkin, Oleg V.; Paizs, Béla; Rizzo, Thomas R.

    2012-06-01

    We have applied conformer-selective infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy at low temperatures in an ion trap mass spectrometer for the spectroscopic characterization of peptide fragment ions. We investigate b- and a-type ions formed by collision-induced dissociation from protonated leucine-enkephalin. The vibrational analysis and assignment are supported by nitrogen-15 isotopic substitution of individual amino acid residues and assisted by density functional theory calculations. Under such conditions, b-type ions of different size are found to appear exclusively as linear oxazolone structures with protonation on the N-terminus, while a rearrangement reaction is confirmed for the a 4 ion in which the side chain of the C-terminal phenylalanine residue is transferred to the N-terminal side of the molecule. The vibrational spectra that we present here provide a particularly stringent test for theoretical approaches.

  3. Generation of a C3c specific monoclonal antibody and assessment of C3c as a putative inflammatory marker derived from complement factor C3

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjodt, Karsten; Brandt, Jette;

    2010-01-01

    complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g. C3d). We have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C3c without interference from other products generated from the complement component C3. The C3c specific m......Ab was tested in different ELISA combinations with various types of in vitro activated sera and with plasma or serum samples from factor I deficient patients. The specificity of the mAb was evaluated in immunoprecipitation techniques and by analysis of eluted fragments of C3 after immunoaffinity chromatography...

  4. Purification and on-column refolding of a single-chain antibody fragment against rabies virus glycoprotein expressed in Escherichia coli.

    Science.gov (United States)

    Xi, Hualong; Yuan, Ruosen; Chen, Xiaoxu; Gu, Tiejun; Cheng, Yue; Li, Zhuang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2016-10-01

    An anti-rabies virus single-chain antibody fragment of an anti-glycoprotein with the VL-linker-VH orientation, designated scFv57RN, was successfully and conveniently prepared in this study. The scFv57RN protein was mainly expressed in inclusion bodies in Escherichia coli. After washing and purification, the inclusion bodies were finally obtained with an on-column refolding procedure. Further purification by gel exclusion chromatography was performed to remove inactive multimers. About 360 mg of final product was recovered from 1 L of bacterial culture. The final product showed a high neutralizing titer of 950 IU/mg to the CVS-11 strain as measured using the rapid fluorescent focus inhibition test. Our study demonstrated a highly efficient method to mass produce scFV57RN with activity from inclusion bodies, which may be applied in the purification of other insoluble proteins.

  5. Epitope Mapping of Antigenic MUC1 Peptides to Breast Cancer Antibody Fragment B27.29: A Heteronuclear NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Grinstead, Jeffrey S.; Schuman, Jason T.; Campbell, Ann P.

    2003-11-13

    MUC1 mucin is a breast cancer-associated transmembrane glycoprotein, of which the extracellular domain is formed by the repeating 20-amino acid sequence GVTSAPDTRPAPGSTAPPAH. In neoplastic breast tissue, the highly immunogenic sequence PDTRPAP (in bold above) is exposed. Antibodies raised directly against MUC1-expressing tumors offer unique access to this neoplastic state, as they represent immunologically relevant ''reverse templates'' of the tumor-associated mucin. In a previous study [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], 1H NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRPAP core epitope sequence on the recognition and binding of Mab B27.29, a monoclonal antibody raised against breast tumor cells. In the study presented here, isotope-edited NMR methods, including 15N and 13C relaxation measurements, were used to probe the recognition and binding of the PDTRPAP epitope sequence to Fab B27.29. Two peptides were studied: a one-repeat MUC1 16mer peptide of the sequence GVTSAPDTRPAPGSTA and a two-repeat MUC1 40mer peptide of the sequence (VTSAPDTRPAPGSTAPPAHG)2. 15N and 13C NMR relaxation parameters were measured for both peptides free in solution and bound to Fab B27.29. The 13CR T1 values best represent changes in the local correlation time of the peptide epitope upon binding antibody, and demonstrate that the PDTRPAP sequence is immobilized in the antibody-combining site. This result is also reflected in the appearance of the 15N- and 13C-edited HSQC spectra, where line broadening of the same peptide epitope resonances is observed. The PDTRPAP peptide epitope expands upon the peptide epitope identified previously in our group as PDTRP by homonuclear NMR experiments [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], and illustrates the usefulness of the heteronuclear NMR experiments. The implications of these results are discussed within the context of MUC1 breast

  6. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface.

    Science.gov (United States)

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-09-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.

  7. Identification of a 49-bp fragment of the HvLTP2 promoter directing aleurone cell specific expression.

    Science.gov (United States)

    Opsahl-Sorteberg, Hilde-Gunn; Divon, Hege Hvattum; Nielsen, Peter Stein; Kalla, Roger; Hammond-Kosack, Michael; Shimamoto, Ko; Kohli, Ajay

    2004-10-27

    Identification of regulatory elements directing definite and specific spatiotemporal expression patterns is a prerequisite to the next generation of transgenic plants with commercial and ethical feasibility for producing plantibodies or other pharmaceutically important compounds. Here we describe the functional dissection of the barley nonspecific lipid transfer protein gene promoter, HvLTP2. The gene is specifically expressed in aleurone cells of cereals and used as an aleurone marker in maize and rice. The transcript is uniformly localised in the barley aleurone cells from around 10 DAP. Patchy expression in aleurone cells of transgenic rice has been reported and explained by silencing of transgenes. We have performed deletion analyses of the 801-bp HvLTP2 promoter to gain insight into the molecular basis of its regulation and the presence of putative regulatory elements. From the deletion studies, a 49-bp promoter region directing aleurone-specific expression was identified. Simultaneously, in vivo footprinting was carried out to identify promoter elements bound by putative regulatory proteins. Within the 49-bp fragment, the most promising candidate for a minimal cis-acting regulatory region directing aleurone specificity is the ds-sequence. Based on our results, we hypothesise that the ds-sequence directs aleurone specificity, possibly through a concerted action with elements directing general expression in the seed. Moreover, we present an overview of LTP2 elements putatively involved in directing seed, endosperm, and aleurone expression. Additionally, we report HvLTP2 expression in the embryo, not previously detected. The regulatory element(s) directing expression in embryo is located downstream of the 49-bp fragment directing aleurone specificity, thus demonstrating independent control of aleurone and embryo-localised expression. Finally, we discuss the existence of several endosperm-specific boxes and whether alternative promoter elements and combinations

  8. Application of Current Hapten in the Production of Broad Specificity Antibodies Against Organophosphorus Pesticides

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-jin; YAN Chun-rong; LIU Yuan; YU Xiang-yang; ZHANG Cun-zheng

    2008-01-01

    Diethylphosphono acetic acid (DPA) was used as a current hapten to generate broad specificity polycolonal antibodies against a group of organophosphorus pesticides. Six New Zealand white rabbits were immunized with immunogens synthesized by the active ester method (AEM) or 1-ethyl-3-(3-dimethylaminopropyl)-carbodimide method (EDC). The titers of antisera reached 25 600 by AEM and 6 400 by EDC, respectively. Polyclonal antibodies raised against DPA were screened and selected for the competitive indirect enzyme-linked immunosorbent assay (CI-ELISA). A CI-ELISA for DPA was developed with a detection limit of 3.536 ng mL-1 and an I50 value of 0.182 ug mL-1. The assay specificity was evaluated by obtaining competitive curves for several structurally related compounds as competitors. The antiserum showed high affinities to chlorpyrifos, diazinon, omethoate, parathion-ethyl and profenofos with I50 of 0.12, 0.15, 0.21, 0.88, 0.97 and 2.5 ug mL-1, respectively. The results indicate that the assay could be a screening tool for quantitation and semi-quantitation determination of the above former five organophosphorus pesticides.

  9. Specific IgG and its subclass antibodies after immunotherapy with gynandropsis gynandra

    Directory of Open Access Journals (Sweden)

    Latha G

    2005-01-01

    Full Text Available Background : About 10 to 15 % of the Indian population is known to suffer from major allergic disorders such as Asthma, Rhinitis, Atopic Dermatitis and Urticaria. Aeroallergens play a major role in the pathogenesis of respiratory allergic diseases. Among the aeroallergens, pollens are major causative agents. The predominance of pollen allergens necessitate the need to assess the specific immunotherapy (SIT in allergic patients. Objective : To evaluate the effect of immunotherapy based on the presence of IgG and its subclass antibodies towards whole pollen antigen of Gynandropsis gynandra (G.gynandra and its fractions. Material and Methods : A study was conducted in 30 bronchial asthma patients on immunotherapy, by assessing the levels of IgG and its subclasses specific to G. gynandra pollen. Results : There was a significant increase in IgG and its subclass antibodies to whole pollen antigen and its fractions i.e.> 90kD, 46-37kD and 36-32kD after the course of IT. Conclusion : The use of peptide fractions may be more appropriate instead of the whole pollen antigen to test the effect of immunotherapy.

  10. Preparation and activity of conjugate of monoclonal antibody HAbl8 against hepatoma F(ab')2 fragment and staphylococcal enterotoxin A

    Institute of Scientific and Technical Information of China (English)

    Lian Jun Yang; Yan Fang Sui; Zhi Nan Chen

    2001-01-01

    AIM To prepare the conjugate of staphylococcal enterotoxin A (SEA) protein which is a bacterial SAg and the F(ab')2 fragment of mAb HAbl8 against human hepatocellular carcinoma (HCC), and identify its activity in order to use SAg in the targeting therapy of HCC.METHODS MAb HAbl8 was extracted from the abdominal dropsy of Balb/ c mice, and was purified through chromatography column SP-40HR with Fast protein liquid chromatography (FPLC) system. The F(ab')2 fragment of mAb HAb18 was prepared by papainic digestion method. The conjugate of mAb HAb18 F(ab')2fragment and SEA was prepared with chemical conjugating reagent N-succinimidyl-3-( 2-pyridyldithio) propionate (SPDP) and purified through chromatography column Superose 12with FPLC system. The molecular mass and purity of each collected peak were identified with SDS-PAGE assay. The protein content was assayed by Lowry's method. The antibody activity of HAb18 F (ab')2 against HCC in the conjugate was identified by indirect immunocytochemical ABC method, and the activity of SEA in the conjugate to activate peripheral blood mononuclear cells (PBMC) was identified with MTT assay.RESULTS The lgG mAb HAb18 was extracted,and purified successfully. Immunocytochemical staining demonstrated that it reacted with most of HHCC cells of human HCC cell line. There were two peaks in the process of purification of the prepared HAb18 F(ab)2-SEA conjugate. SDS-PAGE assay demonstrated that the molecular mass of the first peak was about 130 ku, and the second peak was the mixture of about 45 ku and a little 100 ku proteins. The immunocytochemical staining was similar in HAb18 F (ab ')2-SEAconjugate and HAb18 F (ab ')2, i.e., thecytoplasm and/or cell membranes of most HHCC cells were positively stained. The MTT assay showed that the optical absorbance (A) value at 490 nm of HAb18 F (ab')2-SEA conjugate was 0.182 ± 0.012, that of negative control was 0.033± 0.009, and there was significant difference between them ( P < 0.05).CONCLUSION

  11. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    Science.gov (United States)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  12. Plasma levels of plasminogen activator inhibitor type 1, factor VIII, prothrombin activation fragment 1+2, anticardiolipin, and antiprothrombin antibodies are risk factors for thrombosis in hemodialysis patients.

    Science.gov (United States)

    Molino, Daniela; De Santo, Natale G; Marotta, Rosa; Anastasio, Pietro; Mosavat, Mahrokh; De Lucia, Domenico

    2004-09-01

    Patients with end-stage renal disease are prone to hemorrhagic complications and simultaneously are at risk for a variety of thrombotic complications such as thrombosis of dialysis blood access, the subclavian vein, coronary arteries, cerebral vessel, and retinal veins, as well as priapism. The study was devised for the following purposes: (1) to identify the markers of thrombophilia in hemodialyzed patients, (2) to establish a role for antiphospholipid antibodies in thrombosis of the vascular access, (3) to characterize phospholipid antibodies in hemodialysis patients, and (4) to study the effects of dialysis on coagulation cascade. A group of 20 hemodialysis patients with no thrombotic complications (NTC) and 20 hemodialysis patients with thrombotic complications (TC) were studied along with 400 volunteer blood donors. Patients with systemic lupus erythematosus and those with nephrotic syndrome were excluded. All patients underwent a screening prothrombin time, activated partial thromboplastin time, fibrinogen (Fg), coagulation factors of the intrinsic and extrinsic pathways, antithrombin III (AT-III), protein C (PC), protein S (PS), resistance to activated protein C, prothrombin activation fragment 1+2 (F1+2), plasminogen, tissue type plasminogen activator (t-PA), plasminogen tissue activator inhibitor type-1 (PAI-1), anticardiolipin antibodies type M and G (ACA-IgM and ACA-IgG), lupus anticoagulant antibodies, and antiprothrombin antibodies type M and G (aPT-IgM and aPT-IgG). The study showed that PAI-1, F 1+2, factor VIII, ACA-IgM, and aPT-IgM levels were increased significantly over controls both in TC and NTC, however, they could distinguish patients with thrombotic complications from those without, being increased maximally in the former group. The novelty of the study is represented by the significant aPT increase that was observed in non-systemic lupus erythematosus hemodialysis patients, and particularly in those with thrombotic events. In addition

  13. Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping

    Science.gov (United States)

    Liu, Xiaofeng; Taylor, Richard D.; Griffin, Laura; Coker, Shu-Fen; Adams, Ralph; Ceska, Tom; Shi, Jiye; Lawson, Alastair D. G.; Baker, Terry

    2017-01-01

    Therapeutic and diagnostic applications of monoclonal antibodies often require careful selection of binders that recognize specific epitopes on the target molecule to exert a desired modulation of biological function. Here we present a proof-of-concept application for the rational design of an epitope-specific antibody binding with the target protein Keap1, by grafting pre-defined structural interaction patterns from the native binding partner protein, Nrf2, onto geometrically matched positions of a set of antibody scaffolds. The designed antibodies bind to Keap1 and block the Keap1-Nrf2 interaction in an epitope-specific way. One resulting antibody is further optimised to achieve low-nanomolar binding affinity by in silico redesign of the CDRH3 sequences. An X-ray co-crystal structure of one resulting design reveals that the actual binding orientation and interface with Keap1 is very close to the design model, despite an unexpected CDRH3 tilt and VH/VL interface deviation, which indicates that the modelling precision may be improved by taking into account simultaneous CDR loops conformation and VH/VL orientation optimisation upon antibody sequence change. Our study confirms that, given a pre-existing crystal structure of the target protein-protein interaction, hotspots grafting with CDR loop swapping is an attractive route to the rational design of an antibody targeting a pre-selected epitope. PMID:28128368

  14. Development of a sensitive and specific epitope-