WorldWideScience

Sample records for antibody fragment scfv

  1. Refolded scFv Antibody Fragment against Myoglobin Shows Rapid Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Hyung-Nam Song

    2014-12-01

    Full Text Available Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the VH–VL sequence with a (Gly4Ser3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10−4 M−1·s−1 and 6.29 × 10−3 s−1, respectively, with an affinity value exceeding 107 M−1 (kon/koff, maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor.

  2. Refolded scFv antibody fragment against myoglobin shows rapid reaction kinetics.

    Science.gov (United States)

    Song, Hyung-Nam; Jang, Jun-Hyuck; Kim, Young-Wan; Kim, Dong-Hyung; Park, Sung-Goo; Lee, Myung Kyu; Paek, Se-Hwan; Woo, Eui-Jeon

    2014-01-01

    Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the V(H)-V(L) sequence with a (Gly4Ser)3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10⁻⁴ M⁻¹·s⁻¹ and 6.29 × 10⁻³ s⁻¹, respectively, with an affinity value exceeding 10⁷ M⁻¹ (k(on)/k(off)), maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor. PMID:25530617

  3. Radioiodination and biodistribution of the monoclonal antibody TU-20 and its scFv fragment

    International Nuclear Information System (INIS)

    The ability of the monoclonal antibody TU-20 and its scFv fragment to bind specifically to the C-end of the class III β-tubulin makes these substances useful as potential diagnostics for neurodegenerative diseases-especially peripheral neuropathies. TU-20 and its scFv were labeled with 125I and 123I by chloramine-T (with radiochemical yield 75 and 50%, respectively). Radiochemical purity and stability was revealed by gel filtration (decrease to 80 and 50% in 2 months, respectively). Immunoreactivity of the labeled TU-20 was determined by ELISA - the range of the preserved immunoreactivity varies from 60 to 95% in accordance to the used radiolabeling process. RIA and affinity coupling analytic methods were specifically designed with focusing on specifics of the antibody and its fragment. The results of RIA differ in dependence on the type of the reaction vessel (glass or polystyrene) and the affinity coupling results depend on the experimental arrangement - in the batch or on the column. Fragmentation of the labeled antibody and its fragment was estimated by bis-tris gel electrophoresis followed by silver staining and autoradiography (over 95% of radioactivity bound in the substances). The antibody binding in tissue slices was studied in vitro by immunohistochemistry. The Purkinje cells were observed conjugated with the radiolabeled substances, either TU-20 or its ScFv fragment in the area of the cerebellum. In vivo biodistribution of 125I-TU-20, 125I-scFv TU-20, 123I-scFv TU-20 and Na125I was proceeded in normal mice (wild type C57B/6/J). Both biomolecules labeled by 123I were also proved in an imaging biodistribution study with use of the SPECT camera. Finally, a transgene population G93A1 Gur was used for comparative study to show the different behaviour of the substances in a normal mouse and in the modified organism with amyotrophic lateral sclerosis. The most part of differences is observed in the area of the muscles, rostal and caudal spinal cord. In summary

  4. Radioiodination and biodistribution of the monoclonal antibody TU-20 and its scFv fragment

    Czech Academy of Sciences Publication Activity Database

    Kleinová, Veronika; Chaloupková, H.; Švecová, Helena; Fišer, Miroslav

    2010-01-01

    Roč. 286, č. 3 (2010), s. 847-851. ISSN 0236-5731 R&D Projects: GA AV ČR IBS1048301 Institutional research plan: CEZ:AV0Z10480505 Keywords : Monoclonal antibody TU-20 * ScFv TU-20 * Radiolabeling Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 0.777, year: 2010

  5. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    Science.gov (United States)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  6. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. PMID:26232710

  7. Generation and characterization of a human single-chain fragment variable (scFv antibody against cytosine deaminase from Yeast

    Directory of Open Access Journals (Sweden)

    Tombesi Marina

    2008-09-01

    Full Text Available Abstract Background The ability of cytosine deaminase (CD to convert the antifungal agent 5-fluorocytosine (5-FC into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT aiming to improve the therapeutic ratio (benefit versus toxic side-effects of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.

  8. High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100.

    Science.gov (United States)

    Leonard, Paul; Säfsten, Pär; Hearty, Stephen; McDonnell, Barry; Finlay, William; O'Kennedy, Richard

    2007-06-30

    Advances in molecular evolution strategies have made it possible to identify antibodies with exquisite specificities and also to fine-tune their biophysical properties for practically any specified application. Depending on the desired function, antibody/antigen interactions can be long-lived or short-lived and, therefore, particular attention is needed when seeking to identify antibodies with specific reaction-rate and affinity properties. Surface plasmon resonance (SPR) biosensors routinely generate sensitive and reliable kinetic data from antibody/antigen interactions for both therapeutic and diagnostic applications. However, many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To ameliorate this problem, we developed a rapid and reliable assay for characterising recombinant scFv antibody fragments, directly from crude bacterial lysates. Ninety-six scFv antibodies derived from chickens immunised with C-reactive protein (CRP) were selected by phage display and evaluated using the Biacore A100 protein interaction array system. Antibodies were captured from crude bacterial extracts on the sensor chip surface and ranked based on the percentage of the complex left (% left) after dissociation in buffer. Kinetic rate constants (k(a) and k(d)) and affinity (K(D)) data were obtained for six clones that bound monomeric CRP across a broad affinity range (2.54 x 10(-8) to 3.53 x 10(-10) M). Using this assay format the A100 biosensor yielded high quality kinetic data, permitting the screening of nearly 400 antibody clones per day. PMID:17532001

  9. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    Science.gov (United States)

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  10. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability). PMID:27155114

  11. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Minenkova, Olga; Hartung, John

    2016-03-01

    'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications. PMID:26744234

  12. Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye

    International Nuclear Information System (INIS)

    Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FITC conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity

  13. Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Ho; Choi, Tae Hyun; Woo, Kwang Sun; Chung, Wee Sup; Kang, Joo Hyun; Jeong, Su Young; Choi, Chang Woon; Lim, Sang Moo; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-10-15

    Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FITC conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity

  14. Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv).

    Science.gov (United States)

    Ferreira, A R; Ataíde, F; von Stosch, M; Dias, J M L; Clemente, J J; Cunha, A E; Oliveira, R

    2012-11-01

    In this study, fed-batch cultures of a Pichia pastoris strain constitutively expressing a single chain antibody fragment (scFv) under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter were performed in a pilot 50 L bioreactor. Due to the very high cell density achieved within the first 75 h, typically between 140 and 160 g-DCW/L of dry cell weight (DCW), most of the scFv is produced under hard oxygen transfer limitation. To improve scFv productivity, a direct adaptive dissolved oxygen (DO)-stat feeding controller that maximizes glycerol feeding under the constraint of available oxygen transfer capacity was developed and applied to this process. The developed adaptive controller enabled to maximize glycerol feeding through the regulation of DO concentration between 3 and 5 % of saturation, thereby improving process productivity. Set-point convergence dynamics are characterized by a fast response upon large perturbations to DO, followed by a slower but very robust convergence in the vicinity of the boundary with almost imperceptible overshoot. Such control performance enabled operating closer to the 0 % boundary for longer periods of time when compared to a traditional proportional-integral-derivative algorithm, which tends to destabilize with increasing cell density. PMID:22610694

  15. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo.

    Science.gov (United States)

    Rülker, Torsten; Voß, Luzie; Thullier, Philippe; O' Brien, Lyn M; Pelat, Thibaut; Perkins, Stuart D; Langermann, Claudia; Schirrmann, Thomas; Dübel, Stefan; Marschall, Hans-Jürgen; Hust, Michael; Hülseweh, Birgit

    2012-01-01

    Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE. PMID:22666347

  16. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development.

    Directory of Open Access Journals (Sweden)

    Christopher G Hosking

    2015-12-01

    Full Text Available The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11-12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST. As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP relative to an irrelevant protein control (ovalbumin. Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test.

  17. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development.

    Science.gov (United States)

    Hosking, Christopher G; McWilliam, Hamish E G; Driguez, Patrick; Piedrafita, David; Li, Yuesheng; McManus, Donald P; Ilag, Leodevico L; Meeusen, Els N T; Veer, Michael J de

    2015-12-01

    The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11-12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. PMID:26684756

  18. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  19. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    Science.gov (United States)

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. PMID:26271437

  20. Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein

    International Nuclear Information System (INIS)

    CEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration. The human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein. Subsequently, by in vitro mutagenesis of a gene encoding for the scFv MA39, a new library was established, and new scFv antibodies with improved affinity towards the CEA cognate epitope were selected and characterized. The scFv MA39 antibody was affinity-maturated by in vitro mutagenesis and the new scFv clone, E8, was isolated, typed for CEA family member recognition and its CEACAM1, 3 and 5 shared epitope characterized for expression in a large panel of human normal and tumor tissues and cells. The binding affinity of the scFv E8 is in a range for efficient, in vivo, antigen capture in tumor cells expressing a shared epitope of the CEACAM1, 3 and 5 proteins. This new immunoreagent meets all criteria for a potential anticancer compound: it is human, hence poorly or not at all immunogenic, and it binds selectively and with good affinity to the CEA epitope expressed by metastatic melanoma and colon and lung carcinomas. Furthermore, its small molecular size should provide for efficient tissue penetration, yet give rapid plasma clearance

  1. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies.

    Science.gov (United States)

    Mohammadi, Mozafar; Nejatollahi, Foroogh; Sakhteman, Amirhossein; Zarei, Neda

    2016-08-01

    Single chain fragment variable (scFv) antibodies are composed of variable heavy (VH) and variable light (VL) domains that are joined by a polypeptide linker. Typically, [(Gly4Ser) n] sequence is used as a linker to retain the integrity of the antigen-binding domain. Due to its low immunogenicity, this sequence cannot be used as a tag for scFv detection and purification. Several evidences have shown that the addition of an N or C-terminal tag for scFv detection and purification will result in the decreased expression and binding capacity of this antibody fragment. In this study, we substituted the traditional linker (GGGGS) with His-tag, C-myc or E-tag sequences through molecular modeling. Stability and integrity of all models were assessed by molecular dynamic (MD) simulation. Based on MD simulation analysis, the model containing E-tag sequence as a linker indicated more stability compared to other molecules. The results suggest that E-tag not only can be substituted for the traditional linker, also eliminates the necessity of using additional tag for scFv detection and purification. PMID:27113782

  2. Radioimmunotherapy with engineered antibody fragments

    International Nuclear Information System (INIS)

    Authors have developed and begun evaluating radiometal-chelated (213Bi) engineered antibody fragments as radioimmunotherapy agents that target the HER2/neu (c-erbB-2) antigen. The diabody format was found to have 40-fold greater affinity for HER2/neu and to be associated with significantly greater tumor localization than is achieved with scFv molecule. It is shown that short-lived isotopes like 213Bi would be most effective when used in conjunction with antibodies that targeted diffuse malignancies (leukemia or lymphoma) or when used for very rapid pretargeted radioimmunotherapy application in which the radioisotope is conjugated to a very small ligand

  3. Generation and Characterization of C305, a Murine Neutralizing scFv Antibody That Can Inhibit BLyS Binding to Its Receptor BCMA

    Institute of Scientific and Technical Information of China (English)

    Mei-Yun LIU; Wei HAN; Yan-Li DING; Tian-Hong ZHOU; Rui-Yang TIAN; Sheng-Li YANG; Hui LIU; Yi GONG

    2005-01-01

    B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) family and a key regulator of B cell response. Neutralizing single-chain fragment variable (scFv) antibody against BLyS binding to its receptor BCMA has the potential to play a prominent role in autoimmune disease therapy. A phage display scFv library constructed on pIII protein of M13 filamentous phage was screened using BLyS.After five rounds of panning, their binding activity was characterized by phage-ELISA. Nucleotide sequencing revealed that at least two different scFv gene fragments (C305 and D416) were obtained. The two different scFv gene fragments were expressed to obtain the soluble scFv antibodies, then the soluble scFv antibodies were characterized by means of competitive ELISA and in vitro neutralization assay. The results indicated that C305 is the neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA.

  4. Primary structure and functional scFv antibody expression of an antibody against the human protooncogen c-myc.

    Science.gov (United States)

    Fuchs, P; Breitling, F; Little, M; Dübel, S

    1997-06-01

    The immunoglobulin heavy- and light-chain variable region (Vh and Vl) genes were isolated from Myc1-9E10 hybridoma cells, which secreted monoclonal antibody against human oncogen c-myc. The expression vector pOPE52-c-myc was constructed for the recombinant production in E. coli. A 30 kDa single chain fragment (scFv) expression product was found in the periplasmic space by SDS-PAGE and immunoblotting. A significant fraction was processed correctly as demonstrated with an antiserum recognizing the processed aminoterminus only. The specific binding of the scFv fragment to the peptide epitope of the maternal monoclonal antibody was demonstrated and the primary sequence of the variable regions was determined. Sequence comparison with previously published partial Vh and Vl sequences from this hybridoma cell line revealed a genetic heterogeneity for the light chain variable region. The potential use of this scFv as a new tool for detection and purification of tagged proteins, for adding costimulatory signals to the surface of cancer cells as well as for analyzing c-myc function in the living cell by cytoplasmic expression is discussed. PMID:9219032

  5. Functional Characteristics and Molecular Mechanism of a New scFv Antibody Against Aβ42 Oligomers and Immature Protofibrils.

    Science.gov (United States)

    Zhang, Yuan; Sun, Yuanhong; Huai, Yangyang; Zhang, Ying-Jiu

    2015-12-01

    Amyloid β peptide (Aβ42) is a major determinant of Alzheimer's disease (AD). In this study, we studied a novel single-chain variable fragment (scFv), AS, generated from an antibody library of AD patients, which recognized and bound specifically to medium-size amyloid β peptide (Aβ42) oligomers and immature protofibrils (25-55 kDa) and, more importantly, reduced their level by blocking their formation or inducing their disassembly. Consequently, scFv AS ameliorated or prevented their cytotoxicity and protected SH-SY5Y cells and primary cultured neurons in vitro from their damage in a concentration-dependent manner. Comparison of its cytotoxicity-inhibiting and cytotoxicity-neutralizing activities indicated that scFv AS displayed its protective effect on target cells mainly due to its cytotoxicity-inhibitory activity though it could also neutralize the cytotoxicity. We also found that scFv AS could efficiently cross the in vitro BBB model with a delivery efficiency of over 70% after a 60-min post-administration. The scFv AS was a monovalent antibody with an affinity constant (KD) of 5.5 × 10(-6) M and a binding threshold of 6.25 × 10(-4) μM for Aβ42 oligomers. The molecular docking simulations of Aβ42 to scFv AS revealed that scFv AS tends to approached Aβ42 oligomers and immature protofibrils mainly by their hydrophobic interaction and then drew Aβ42 molecule into the gap between VL and VH domains of scFv AS by hydrophilic interaction between scFv AS and the N-terminal region (residues 1-15) of Aβ42 and the hydrophobic interactions between scFv AS and the middle region (residues 20-33) of Aβ42. The combination of scFv AS with Aβ42 was realized likely through an induced-fit process. PMID:25330935

  6. Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Du Li

    2010-08-01

    Full Text Available Abstract Background Overexpression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs is commonly occurred in cancers and causes radioresistance and poor prognosis. In present study, the single-chain variable antibody fragments (scFv targeting DNA-PKcs was developed for the application of radiosensitization in vitro and in vivo. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody. Methods DNA-PKcs epitopes were predicted and cloned. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody. DNA damage repair was analyzed by comet assay and immunofluorescence detection of γH2AX foci. The radiosensitization in vivo was determined on Balb/c athymic mice transplanted tumours of HeLa cells. Results Four epitopes of DNA-PKcs have been predicted and expressed as the antigens, and a specific human anti-DNA-PKcs scFv antibody gene, anti-DPK3-scFv, was obtained by screening the phage antibody library using the DNA-PKcs peptide DPK3. The specificity of anti-DPK3-scFv was verified, in vitro. Transfection of HeLa cells with the anti-DPK3-scFv gene resulted in an increased sensitivity to IR, decreased repair capability of DNA double-strand breaks (DSB detected by comet assay and immunofluorescence detection of γH2AX foci. Moreover, the kinase activity of DNA-PKcs was inhibited by anti-DPK3-scFv, which was displayed by the decreased phosphorylation levels of its target Akt/S473 and the autophosphorylation of DNA-PKcs on S2056 induced by radiation. Measurement of the growth and apoptosis rates showed that anti-DPK3-scFv enhanced the sensitivity of tumours transplanted in Balb/c athymic mice to radiation therapy. Conclusion The antiproliferation and radiosensitizing effects of anti-DPK3-scFv via targeting DNA-PKcs make it very appealing for the development as a novel biological radiosensitizer for cancer

  7. Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo

    International Nuclear Information System (INIS)

    Overexpression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is commonly occurred in cancers and causes radioresistance and poor prognosis. In present study, the single-chain variable antibody fragments (scFv) targeting DNA-PKcs was developed for the application of radiosensitization in vitro and in vivo. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody. DNA-PKcs epitopes were predicted and cloned. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody. DNA damage repair was analyzed by comet assay and immunofluorescence detection of γH2AX foci. The radiosensitization in vivo was determined on Balb/c athymic mice transplanted tumours of HeLa cells. Four epitopes of DNA-PKcs have been predicted and expressed as the antigens, and a specific human anti-DNA-PKcs scFv antibody gene, anti-DPK3-scFv, was obtained by screening the phage antibody library using the DNA-PKcs peptide DPK3. The specificity of anti-DPK3-scFv was verified, in vitro. Transfection of HeLa cells with the anti-DPK3-scFv gene resulted in an increased sensitivity to IR, decreased repair capability of DNA double-strand breaks (DSB) detected by comet assay and immunofluorescence detection of γH2AX foci. Moreover, the kinase activity of DNA-PKcs was inhibited by anti-DPK3-scFv, which was displayed by the decreased phosphorylation levels of its target Akt/S473 and the autophosphorylation of DNA-PKcs on S2056 induced by radiation. Measurement of the growth and apoptosis rates showed that anti-DPK3-scFv enhanced the sensitivity of tumours transplanted in Balb/c athymic mice to radiation therapy. The antiproliferation and radiosensitizing effects of anti-DPK3-scFv via targeting DNA-PKcs make it very appealing for the development as a novel biological radiosensitizer for cancer therapeutic potential

  8. Cloning approach and functional analysis of anti-intimin single-chain variable fragment (scFv

    Directory of Open Access Journals (Sweden)

    Elias Waldir P

    2011-02-01

    Full Text Available Abstract Background Intimin is an important virulence factor involved in the pathogenesis of enteropathogenic Escherichia coli (EPEC and enterohemorrhagic Escherichia coli (EHEC. Both pathogens are still important causes of diarrhea in children and adults in many developing and industrialized countries. Considering the fact that antibodies are important tools in the detection of various pathogens, an anti-intimin IgG2b monoclonal antibody was previously raised in immunized mice with the conserved sequence of the intimin molecule (int388-667. In immunoblotting assays, this monoclonal antibody showed excellent specificity. Despite good performance, the monoclonal antibody failed to detect some EPEC and EHEC isolates harboring variant amino acids within the 338-667 regions of intimin molecules. Consequently, motivated by its use for diagnosis purposes, in this study we aimed to the cloning and expression of the single-chain variable fragment from this monoclonal antibody (scFv. Findings Anti-intimin hybridoma mRNA was extracted and reversely transcripted to cDNA, and the light and heavy chains of the variable fragment of the antibody were amplified using commercial primers. The amplified chains were cloned into pGEM-T Easy vector. Specific primers were designed and used in an amplification and chain linkage strategy, obtaining the scFv, which in turn was cloned into pAE vector. E. coli BL21(DE3pLys strain was transformed with pAE scFv-intimin plasmid and subjected to induction of protein expression. Anti-intimin scFv, expressed as inclusion bodies (insoluble fraction, was denatured, purified and submitted to refolding. The protein yield was 1 mg protein per 100 mL of bacterial culture. To test the functionality of the scFv, ELISA and immunofluorescence assays were performed, showing that 275 ng of scFv reacted with 2 mg of purified intimin, resulting in an absorbance of 0.75 at 492 nm. The immunofluorescence assay showed a strong reactivity with

  9. Development of single-chain variable fragments (scFv) against influenza virus targeting hemagglutinin subunit 2 (HA2).

    Science.gov (United States)

    Li, Tai-Wei; Cheng, Shu-Fang; Tseng, Yen-Tzu; Yang, Yu-Chih; Liu, Wen-Chun; Wang, Sheng-Cyuan; Chou, Mei-Ju; Lin, Yu-Jen; Wang, Yueh; Hsiao, Pei-Wen; Wu, Suh-Chin; Chang, Ding-Kwo

    2016-01-01

    Influenza A viruses (IAV) are widespread in birds and domestic poultry, occasionally causing severe epidemics in humans and posing health threats. Hence, the need to develop a strategy for prophylaxis or therapy, such as a broadly neutralizing antibody against IAV, is urgent. In this study, single-chain variable fragment (scFv) phage display technology was used to select scFv fragments recognizing influenza envelope proteins. The Tomlinson I and J scFv phage display libraries were screened against the recombinant HA2 protein (rHA2) for three rounds. Only the third-round elution sample of the Tomlinson J library showed high binding affinity to rHA2, from which three clones (3JA18, 3JA62, and 3JA78) were chosen for preparative-scale production as soluble antibody by E. coli. The clone 3JA18 was selected for further tests due to its broad affinity for influenza H1N1, H3N2 and H5N1. Simulations of the scFv 3JA18-HA trimer complex revealed that the complementarity-determining region of the variable heavy chain (VH-CDR2) bound the stem region of HA. Neutralization assays using a peptide derived from VH-CDR2 also supported the simulation model. Both the selected antibody and its derived peptide were shown to suppress infection with H5N1 and H1N1 viruses, but not H3N2 viruses. The results also suggested that the scFvs selected from rHA2 could have neutralizing activity by interfering with the function of the HA stem region during virus entry into target cells. PMID:26446888

  10. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do not...... scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  11. 从scFv噬菌体库分离特异性的人源化抗D-dimer抗体%Isolation of specific humanized anti-D-dimer scFv fragments from scFv phage libraries

    Institute of Scientific and Technical Information of China (English)

    夏红利; 谭最; 陈德杰; 乔建国; 邱仁峰

    2011-01-01

    目的 从scFv(单链Fv)噬菌体抗体库分离出对D-dimer有特异性的人源化单克隆scFv.方法 对Tomlinson scFv噬菌体文库进行3轮淘洗,富集特异性的抗D-dimer抗体并进行ELISA 验证.通过酶联免疫检测和双脱氧终止法基因测序,获取特异性的人源化单克隆抗体.结果 3轮淘洗选择出38个抗D-dimer噬菌体抗体,酶联免疫和基因测序分析后,20个不同的全长单克隆抗D-dimer scFv噬菌体抗体被筛选出来,3轮选择后阳性克隆获取率为100%;分泌性抗体ELISA结果显示单克隆anti-D-dimer噬菌体顺利表达了抗体蛋白;5个A450值较高的单克隆中,3个显示了对D-dimer的高特异性和亲和力.结论 抗体噬菌体展示技术是分离获取人源化特异性anti-D-dimer抗体的高效快速方法.%Objective To isolate specific humanized anti-D-dimer scFv(single chain Fv) antibody from scFv phage libraries. Methods Isolate anti-D-dimer positive clones from Tomlinson I + J phage libraries by three rounds of panuing, then sequence monoclonal genes by bideoxy-mediated chain termination and express soluble scFv antibody; Pick out anti-D-dimer antibodies with high specificity and affinity by ELISA.Results After three rounds of selection from human scFv phage libraries Tomlinson I and J, 38 monclonal specific anti-D-dimer scFv fragments were selected. By polyclonal and monoclonal phage ELISA and gene sequencing, 20 different full-length monoclonal scFv phages were identified, the result of soluble scFv ELISA showed that 20 full-length monoclonal scFv were expressed smoothly. According to the result of soluble scFv ELISA, in 5 scFv antibodies with high value of A450 selected, 3 scFv antibody fragments showed high specific and affinity. Conclusion Antibody phage display was an effective, rapid method to isolate anti-D-dimer antibodies with high specificity and affinity.

  12. Baculovirus display of single chain antibody (scFv using a novel signal peptide

    Directory of Open Access Journals (Sweden)

    Gonzalez Gaëlle

    2010-11-01

    Full Text Available Abstract Background Cells permissive to virus can become refractory to viral replication upon intracellular expression of single chain fragment variable (scFv antibodies directed towards viral structural or regulatory proteins, or virus-coded enzymes. For example, an intrabody derived from MH-SVM33, a monoclonal antibody against a conserved C-terminal epitope of the HIV-1 matrix protein (MAp17, was found to exert an inhibitory effect on HIV-1 replication. Results Two versions of MH-SVM33-derived scFv were constructed in recombinant baculoviruses (BVs and expressed in BV-infected Sf9 cells, N-myristoylation-competent scFvG2/p17 and N-myristoylation-incompetent scFvE2/p17 protein, both carrying a C-terminal HA tag. ScFvG2/p17 expression resulted in an insoluble, membrane-associated protein, whereas scFvE2/p17 was recovered in both soluble and membrane-incorporated forms. When coexpressed with the HIV-1 Pr55Gag precursor, scFvG2/p17 and scFvE2/p17 did not show any detectable negative effect on virus-like particle (VLP assembly and egress, and both failed to be encapsidated in VLP. However, soluble scFvE2/p17 isolated from Sf9 cell lysates was capable of binding to its specific antigen, in the form of a synthetic p17 peptide or as Gag polyprotein-embedded epitope. Significant amounts of scFvE2/p17 were released in the extracellular medium of BV-infected cells in high-molecular weight, pelletable form. This particulate form corresponded to BV particles displaying scFvE2/p17 molecules, inserted into the BV envelope via the scFv N-terminal region. The BV-displayed scFvE2/p17 molecules were found to be immunologically functional, as they reacted with the C-terminal epitope of MAp17. Fusion of the N-terminal 18 amino acid residues from the scFvE2/p17 sequence (N18E2 to another scFv recognizing CD147 (scFv-M6-1B9 conferred the property of BV-display to the resulting chimeric scFv-N18E2/M6. Conclusion Expression of scFvE2/p17 in insect cells using a BV

  13. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe.

    Science.gov (United States)

    Mazzocco, Claire; Fracasso, Giulio; Germain-Genevois, Coralie; Dugot-Senant, Nathalie; Figini, Mariangela; Colombatti, Marco; Grenier, Nicolas; Couillaud, Franck

    2016-01-01

    We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies. PMID:26996325

  14. Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Sriram [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States) and Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States) and Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States)]. E-mail: zalut001@duke.edu

    2006-01-15

    Introduction: MR1-1 is a single-chain Fv (scFv) fragment that binds with high affinity to epidermal growth factor receptor variant III, which is overexpressed on gliomas and other tumors but is not present on normal tissues. The objective of this study was to evaluate four different methods for labeling MR1-1 scFv that had been previously investigated for the radioiodinating of an intact anti-epidermal growth factor receptor variant III (anti-EGFRvIII) monoclonal antibody (mAb) L8A4. Methods: The MR1-1 scFv was labeled with {sup 125}I/{sup 131}I using the Iodogen method, and was also radiohalogenated with acylation agents bearing substituents that were positively charged-N-succinimidyl-3-[*I]iodo-5-pyridine carboxylate and N-succinimidyl-4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB)-and negatively charged-N-succinimidyl-3-[*I]iodo-4-phosphonomethylbenzoate ([*I]SIPMB). In vitro internalization assays were performed with the U87MG{delta}EGFR cell line, and the tissue distribution of the radioiodinated scFv fragments was evaluated in athymic mice bearing subcutaneous U87MG{delta}EGFR xenografts. Results and Conclusion: As seen previously with the anti-EGFRvIII IgG mAb, retention of radioiodine activity in U87MG{delta}EGFR cells in the internalization assay was labeling method dependent, with SGMIB and SIPMB yielding the most prolonged retention. However, unlike the case with the intact mAb, the results of the internalization assays were not predictive of in vivo tumor localization capacity of the labeled scFv. Renal activity was dependent on the nature of the labeling method. With MR1-1 labeled using SIPMB, kidney uptake was highest and most prolonged; catabolism studies indicated that this uptake primarily was in the form of {epsilon}-N-3-[*I]iodo-4-phosphonomethylbenzoyl lysine.

  15. Fluorescent labeling of antibody fragments using split GFP.

    Directory of Open Access Journals (Sweden)

    Fortunato Ferrara

    Full Text Available Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs using the split green fluorescent protein (GFP system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11, is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.

  16. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition.

    Science.gov (United States)

    Pessenda, Gabriela; Silva, Luciano C; Campos, Lucas B; Pacello, Elenice M; Pucca, Manuela B; Martinez, Edson Z; Barbosa, José E

    2016-03-15

    Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques. PMID:26829652

  17. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4.

    Science.gov (United States)

    Shaw, D M; Embleton, M J; Westwater, C; Ryan, M G; Myers, K A; Kingsman, S M; Carroll, M W; Stern, P L

    2000-12-15

    The oncofoetal antigen 5T4 is a 72 kDa glycoprotein expressed at the cell surface. It is defined by a monoclonal antibody, mAb5T4, that recognises a conformational extracellular epitope in the molecule. Overexpression of 5T4 antigen by tumours of several types has been linked with disease progression and poor clinical outcome. Its restricted expression in non-malignant tissue makes 5T4 antigen a suitable target for the development of antibody directed therapies. The use of murine monoclonal antibodies for targeted therapy allows the tumour specific delivery of therapeutic agents. However, their use has several drawbacks, including a strong human anti-mouse immune (HAMA) response and limited tumour penetration due to the size of the molecules. The use of antibody fragments leads to improved targeting, pharmacokinetics and a reduced HAMA. A single chain antibody (scFv) comprising the variable regions of the mAb5T4 heavy and light chains has been expressed in Escherichia coli. The addition of a eukaryotic leader sequence allowed production in mammalian cells. The two 5T4 single chain antibodies, scFv5T4WT19 and LscFv5T4, described the same pattern of 5T4 antigen expression as mAb5T4 in normal human placenta and by FACS. Construction of a 5T4 extracellular domain-IgGFc fusion protein and its expression in COS-7 cells allowed the relative affinities of the antibodies to be compared by ELISA and measured in real time using a biosensor based assay. MAb5T4 has a high affinity, K(D)=1.8x10(-11) M, as did both single chain antibodies, scFv5T4WT19 K(D)=2.3x10(-9) M and LscFv5T4 K(D)=7.9x10(-10) M. The small size of this 5T4 specific scFv should allow construction of fusion proteins with a range of biological response modifiers to be prepared whilst retaining the improved pharmacokinetic properties of scFvs. PMID:11113573

  18. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith D.; Feldhaus, Jane M.; Gray, Sean A.; Siegel, Robert W.; Feldhaus, Michael J.

    2005-08-01

    Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0-99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mg L-1 culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was also used to compare scFv production levels from the periplasm, inclusion bodies, and culture media. The E. coli production system was then used to produce variants of several scFv to determine structure function relationships.

  19. Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus

    Directory of Open Access Journals (Sweden)

    Roopali eRajput

    2015-09-01

    Full Text Available Human influenza A viruses have been the cause of enormous socio-economic losses worldwide. In order to combat such a notorious pathogen, hemagglutinin protein (HA has been a preferred target for generation of neutralizing-antibodies, as potent therapeutic/ diagnostic agents. In the present study, recombinant anti-HA single chain variable fragment (scFv antibodies were constructed using the phage display technology to aid in diagnosis and treatment of human influenza A virus infections. Spleen cells of mice hyper-immunized with A/New Caledonia/20/99 (H1N1 virus were used as the source for recombinant antibody (rAb production. The antigen-binding phages were quantified after 6 rounds of bio-panning against A/New Caledonia/20/99 (H1N1, A/California/07/2009 (H1N1-like, or A/Udorn/307/72(H3N2 viruses. The phage yield was maximum for the A/New Caledonia/20/99 (H1N1, however, considerable cross-reactivity was observed for the other virus strains as well. The HA-specific polyclonal rAb preparation was subjected to selection of single clones for identification of high reactive relatively conserved epitopes. The high affinity rAbs were tested against certain known conserved HA epitopes by peptide ELISA. Three recombinant mAbs showed reactivity with both the H1N1 strains and one (C5 showed binding with all the three viral strains. The C5 antibody was thus used for development of an ELISA test for diagnosis of influenza virus infection. Based on the sample size in the current analysis, the ELISA test demonstrated 83.9% sensitivity and 100% specificity. Thus, the ELISA, developed in our study, may prove as a cheaper alternative to the presently used real time RT-PCR test for detection of human influenza A viruses in clinical specimens, which will be beneficial, especially in the developing countries. Since, the two antibodies identified in this study are reactive to conserved HA epitopes; these may prove as potential therapeutic agents as well.

  20. The production of recombinant single chain antibody fragments for the detection of illicit drug residues

    OpenAIRE

    Brennan, Joanne

    2005-01-01

    Recombinant antibodies represent a more sensitive and specific detection tool for immunoanalysis. The research carried out for this thesis describes the production of genetically-derived single chain antibody fragments to detect illicit drugs. A variety of novel recombinant antibody fragments against morphine-3-glucuronide, a metabolite of heroin has been produced. A monomeric, dimeric and enzyme-labelled scFv were characterised with respect to their binding abilities and cross reactiviti...

  1. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose

    Directory of Open Access Journals (Sweden)

    Safar Farajnia

    2013-02-01

    Full Text Available Purpose: Recombinant tumor necrosis factor-alpha (TNF-α has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods: In this study, we examined the potential of our produced anti-TNF-scFv fragments for purification of TNF-α produced by Raji cells. he Raji cells were induced by lipopolysaccharides (LPS to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications.

  2. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens.

    Science.gov (United States)

    Balaji, Parthasarathy; Satheeshkumar, P K; Venkataraman, Krishnan; Vijayalakshmi, M A

    2016-05-01

    Therapeutic antibodies against tumor necrosis factor alpha (TNFα) have been considered effective for some of the autoimmune diseases such as rheumatoid arthritis, Crohn's diseases, and so on. But associated limitations of the current therapeutics in terms of cost, availability, and immunogenicity have necessitated the need for alternative candidates. Single-chain variable fragment (scFv) can negate the limitations tagged with the anti-TNFα therapeutics to a greater extent. In the present study, Spirodela punctata plants were transformed with anti-TNFα through in planta transformation using Agrobacterium tumefaciens strain, EHA105. Instead of cefotaxime, garlic extract (1 mg/mL) was used to remove the agrobacterial cells after cocultivation. To the best of our knowledge, this report shows for the first time the application of plant extracts in transgenic plant development. 95% of the plants survived screening under hygromycin. ScFv cDNA integration in the plant genomic DNA was confirmed at the molecular level by PCR. The transgenic protein expression was followed up to 10 months. Expression of scFv was confirmed by immunodot blot. Protein expression levels of up to 6.3% of total soluble protein were observed. β-Glucuronidase and green fluorescent protein expressions were also detected in the antibiotic resistant plants. The paper shows the generation of transgenic Spirodela punctuata plants through in planta transformation. PMID:25786575

  3. Refolding Technologies for Antibody Fragments

    OpenAIRE

    Tsutomu Arakawa; Daisuke Ejima

    2014-01-01

    Refolding is one of the production technologies for pharmaceutical grade antibody fragments. Detergents and denaturants are primarily used to solubilize the insoluble proteins. The solubilized and denatured proteins are refolded by reducing the concentration of the denaturants or detergents. Several refolding technologies have been used for antibody fragments, comprising dilution, dialysis, solid phase solvent exchange and size exclusion chromatography, as reviewed here. Aggregation suppresso...

  4. Antibody fragments: Hope and hype

    OpenAIRE

    Nelson, Aaron L

    2010-01-01

    The antibody molecule is modular and separate domains can be extracted through biochemical or genetic means. It is clear from review of the literature that a wave of novel, antigen-specific molecular forms may soon enter clinical evaluation. This report examines the developmental histories of therapeutics derived from antigen-specific fragments of antibodies produced by recombinant processes. Three general types of fragments were observed, antigen-binding fragments (Fab), single chain variabl...

  5. A bacterial signal peptidase enhances processing of a recombinant single chain antibody fragment in insect cells

    NARCIS (Netherlands)

    Ailor, E; Pathmanathan, J; Jongbloed, JDH; Betenbaugh, MJ

    1999-01-01

    The production of an antibody single chain fragment (scFv) in insect cells was accompanied by the formation of an insoluble intracellular precursor even with the inclusion of the bee melittin signal peptide. The presence of the precursor polypeptide suggests a limitation in the processing of the sig

  6. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    Science.gov (United States)

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  7. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine

    Science.gov (United States)

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A.; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R.

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  8. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens

    Directory of Open Access Journals (Sweden)

    Kristensen Peter

    2009-01-01

    Full Text Available Abstract Background Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide. Results Here we report the simplest and highly efficient method for the construction of a highly useful human single chain variable fragment (scFv library. The least number of oligonucleotide primers, electroporations and ligation reactions were used to generate a library of 1.5 × 108 individual clones, without generation of sub-libraries. All possible combinations of heavy and light chains, among all immunoglobulin isotypes, were included by using a mixture of primers and overlapping extension PCR. The key difference from other similar libraries was the highest diversity of variable gene repertoires, which was derived from 140 non-immunized human donors. A wide variety of antigens were successfully used to affinity select specific binders. These included pure recombinant proteins, a hapten and complex antigens such as viral coat proteins, crude snake venom and cancer cell surface antigens. In particular, we were able to use standard bio-panning method to isolate antibody that can bind to soluble Aflatoxin B1, when using BSA-conjugated toxin as a target, as demonstrated by inhibition ELISA. Conclusion These results suggested that by using an optimized protocol and very high repertoire diversity, a compact and efficient phage antibody library can be generated. This advanced method could be adopted by any molecular biology laboratory to generate both naïve or immunized libraries for particular targets as well as for high-throughput applications.

  9. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment

    International Nuclear Information System (INIS)

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies

  10. PRODUCTION OF PHAGE-DISPLAYED ANTI-IDIOTYPIC ANTIBODY SINGLE CHAIN VARIABLE FRAGMENTS TO MG7 MONOCLONAL ANTIBODY DIRECTED AGAINST GASTRIC CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    何凤田; 聂勇战; 陈宝军; 乔太东; 韩者艺; 樊代明

    2002-01-01

    Objective. To generate phage-displayed anti-idiotypic antibody single chain variable fragments (anti -Id ScFv) to MG7 monoclonal antibody (McAb) directed against gastric carcinoma so as to lay a foundation for developing anti-Id ScFv vaccine of the cancer.Methods. Balb/c mice were immunized i. p. with MG7 McAb conjugated with keyhole limpet hemocyanin (KLH), and mRNA was isolated from the spleens of the immunized mice. Heavy and light chain (VH and VL)genes of antibody were amplified separately and assembled into ScFv genes with a linker DNA by PCR. The ScFv genes were ligated into the phagemid vector pCANTAB5E and the ligated sample was transformed into competent E. coli TG1. The transformants were infected with M13KO7 helper phage to yield recombinant phages displaying ScFv on the tips of M13 phage. After 4 rounds of panning with MG7, the MG7-positive clones were selected by ELISA from the enriched phages. Thetypesoftheanti-IdScFvdisplayedontheselectedphagecloneswerepreliminarily identified by competition ELISA.Results. The VH, VL and ScFv DNAs were about 340 bp, 320 bp and 750 bp respectively. Twenty-four MG7-positive clones were selected from 60 enriched phage clones, among which 5 displayed β or γtype anti-Id ScFv.Conclsion. The anti-Id ScFv to MG7 McAb can be successfully selected by recombinant phage antibody technique, which paves a way for the study of prevention and cure of gastric carcinoma by using anti-Id ScFv.

  11. Generation of anti-idiotype scFv for pharmacokinetic measurement in lymphoma patients treated with chimera anti-CD22 antibody SM03.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.

  12. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    Science.gov (United States)

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  13. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  14. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications.

    Science.gov (United States)

    Foerster, A; Hołowacz, I; Sunil Kumar, G B; Anandakumar, S; Wall, J G; Wawrzyńska, M; Paprocka, M; Kantor, A; Kraskiewicz, H; Olsztyńska-Janus, S; Hinder, S J; Bialy, D; Podbielska, H; Kopaczyńska, M

    2016-04-01

    Stainless steel 316 L material is commonly used for the production of coronary and peripheral vessel stents. Effective biofunctionalization is a key to improving the performance and safety of the stents after implantation. This paper reports the method for the immobilization of recombinant antibody fragments (scFv) on stainless steel 316 L to facilitate human endothelial progenitor cell (EPC) growth and thus improve cell viability of the implanted stents for cardiovascular applications. The modification of stent surface was conducted in three steps. First the stent surface was coated with titania based coating to increase the density of hydroxyl groups for successful silanization. Then silanization with 3 aminopropyltriethoxysilane (APTS) was performed to provide the surface with amine groups which presence was verified using FTIR, XPS, and fluorescence microscopy. The maximum density of amine groups (4.8*10(-5) mol/cm(2) ) on the surface was reached after reaction taking place in ethanol for 1 h at 60° C and 0.04M APTS. On such prepared surface the glycosylated scFv were subsequently successfully immobilized. The influence of oxidation of scFv glycan moieties and the temperature on scFv coating were investigated. The fluorescence and confocal microscopy study indicated that the densest and most uniformly coated surface with scFv was obtained at 37°C after oxidation of glycan chain. The results demonstrate that the scFv cannot be efficiently immobilized without prior aminosilanization of the surface. The effect of the chemical modification on the cell viability of EPC line 55.1 (HucPEC-55.1) was performed indicating that the modifications to the 316 L stainless steel are non-toxic to EPCs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 821-832, 2016. PMID:26566715

  15. THE CONSTRUCTION AND EXPRESSION OF THE MURINE SCFV GENE IN E. COLI AGAINST HUMAN CERVICAL CANCER

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Chen Wei; Li Xu

    2006-01-01

    Objective To obtain the gene of murine Single chain Fv fragment (ScFv) against human cervical cancer and to express it in E. coli. Methods The variable region gene fragments of the heavy and light chains, which were amplified respectively using recombinant DNA techniques from CsA125 hybridoma cells, were spliced together through a flexible linker to ScFv against human cervical cancer. The ScFv genes were then cloned into expression vector pCANTAB 5E and expressed in E. coli HB2151 and TG1 respectively. The soluble ScFv were characterized by SDS PAGE and Western blot. The antigen-binding activities of the soluble and phage displayed ScFv were assayed by ELISA and cell immunohistochemical analysis. Results The expressed ScFv antibodies were soluble and phage displayed. The soluble ScFv secreted and expressed in E. coli HB2151 induced by IPTG were confirmed with SDS-PAGE, Western blot and ELISA. The specific binding capacity of the soluble and phage displayed ScFv to the surface associated antigen of human cervical cancer cell line was further confirmed with immunohistochemical studies. Conclusion The soluble and phage displayed ScFv expressed in E. coli against human cervical cancer showed high, specific affinity for the cervical cancer cell line surface associated antigen.

  16. Production and characterization of a biotinylated single-chain variable fragment antibody for detection of parathion-methyl.

    Science.gov (United States)

    Wang, Huimin; Zhao, Fengchun; Han, Xiao; Yang, Zhengyou

    2016-10-01

    In this article, we reported the development of a biotinylated single-chain variable fragment (scFv) antibody based indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for parathion-methyl (PM) detection. Firstly, a phage display library was generated using a pre-immunized BALB/C mouse against a specific hapten of PM. After four rounds of panning, the scFv gene fragments were transferred into a secreted expression vector. Then, the scFv antibodies were secreted expressed and screened by IC-ELISA against PM. The selected scFv antibody was fused with a biotin acceptor domain (BAD) and inserted into pET-28a(+) vector for high-level expression in Escherichia coli BL2 (DE3). After optimizing expression conditions, the scFv-BAD antibody was expressed as a soluble protein and biotinylated in vitro by the E. coli biotin ligase (BirA). Subsequently, the biotinylated scFv-BAD antibody was purified with a high yield of 59.2 ± 3.7 mg/L of culture, and was characterized by SDS-PAGE and western blotting. Finally, based on the biotinylated scFv-BAD, a sensitive IC-ELISA for detection of PM was developed, and the 50% inhibition value (IC50) of PM was determined as 14.5 ng/mL, with a limit of detection (LOD, IC10) of 0.9 ng/mL. Cross-reactivity (CR) studies revealed that the scFv antibody showed desirable specificity for PM. PMID:27181246

  17. Generation and characterization of the human neutralizing antibody fragment Fab091 against rabies virus

    OpenAIRE

    Li, Chen; Zhang, Feng; Lin, Hong; Wang, Zhong-can; Liu, Xin-jian; Feng, Zhen-qing; Zhu, Jin; Guan, Xiao-hong

    2011-01-01

    Aim: To transform the human anti-rabies virus glycoprotein (anti-RABVG) single-chain variable fragment (scFv) into a Fab fragment and to analyze its immunological activity. Methods: The Fab gene was amplified using overlap PCR and inserted into the vector pComb3XSS. The recombinant vector was then transformed into E coli Top10F' for expression and purification. The purified Fab was characterized using SDS-PAGE, Western blotting, indirect ELISA, competitive ELISA, and the fluorescent antibody ...

  18. [Construction and panning of scFv phage display library against recombinant interleukin 4 receptor].

    Science.gov (United States)

    Yang, Guangyong; Guo, Haitao; Liu, Ximing; He, Guangzhi; Tian, Weiyi; Cai, Kun; Wang, Ping; Wang, Wenjia

    2016-06-01

    Objective To construct the recombinant human interleukin 4 receptor (rhIL-4R) single-chain Fv (scFv) antibody library by phage display technique to obtain the anti-IL-4R scFv clones selected from the library. Methods Total RNA was extracted from splenocytes of the BALB/c mice immunized with rhIL-4R. Complementary DNA fragments of variable heavy (VH) and variable light (VL) chains of the antibodies were prepared by reverse transcription PCR and assembled into scFv by splice overlap extension PCR (SOE-PCR). Both scFv and the pCANTAB5E vector were respectively double-digested with restriction endonuclease Sfi I and Not I, connected with T4 ligase, and then transformed into the competent cells E.coli TG1; it was cultured in medium to obtain the phage scFv antibody library; after three rounds of enrichment and panning, the specific antigen scFv with high affinity was selected for the sequencing. Results After three rounds of panning, we obtained a diversity of approximately 2×10(8) anti-rhIL-4R scFv antibody library. Sequencing analysis of one positive clone showed that the anti-rhIL-4R scFv was 741 bp and coded 247 amino acids. The analysis of VBASE2 database indicated that VH and VL gene sequences of anti-rhIL-4R protein all had three complementarity determining regions and four backbone areas.Conclusion The anti-rhIL-4R scFv was obtained from the scFv antibody library. PMID:27371853

  19. Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin.

    Science.gov (United States)

    Riaño-Umbarila, Lidia; Ledezma-Candanoza, Luis M; Serrano-Posada, Hugo; Fernández-Taboada, Guillermo; Olamendi-Portugal, Timoteo; Rojas-Trejo, Sonia; Gómez-Ramírez, Ilse V; Rudiño-Piñera, Enrique; Possani, Lourival D; Becerril, Baltazar

    2016-01-22

    The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom. PMID:26589800

  20. Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library.

    Science.gov (United States)

    Rahumatullah, Anizah; Ahmad, Azimah; Noordin, Rahmah; Lim, Theam Soon

    2015-10-01

    Phage display technology is an important tool for antibody generation or selection. This study describes the development of a scFv library and the subsequent analysis of identified monoclonal antibodies against BmSXP, a recombinant antigen for lymphatic filariasis. The immune library was generated from blood of lymphatic filariasis infected individuals. A TA based intermediary cloning approach was used to increase cloning efficiency for the library construction process. A diverse immune scFv library of 10(8) was generated. Six unique monoclonal antibodies were identified from the 50 isolated clones against BmSXP. Analysis of the clones showed a bias for the IgHV3 and Vκ1 (45.5%) and IgHV2 and Vκ3 (27.3%) gene family. The most favored J segment for light chain is IgKJ1 (45.5%). The most favored D and J segment for heavy chain are IgHD6-13 (75%) and IgHJ3 (47.7%). The information may suggest a predisposition of certain V genes in antibody responses against lymphatic filariasis. PMID:26277276

  1. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-CH3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and

  2. Optimisation of recombinant protein production in Pichia pastoris:single-chain antibody fragment model protein

    OpenAIRE

    Khatri, N. K. (Narendar Kumar)

    2011-01-01

    Abstract Potential lethal diarrhoea caused by enterotoxigenic Escherichia coli strains is one of the most common diseases in young pigs. It can be cured by single-chain antibody fragments (scFv), which can be produced in recombinant microorganisms. Pichia pastoris, a methylotrophic yeast, is generally considered an interesting production system candidate, as it can secrete properly folded proteins. These proteins accumulate in high concentrations during fermentation, reducing the cost for...

  3. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Science.gov (United States)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  4. Antitumor effects of an engineered and energized fusion protein consisting of an anti-CD20 scFv fragment and lidamycin.

    Science.gov (United States)

    Fang, Hong; Miao, Qingfang; Zhang, Shenghua; Cheng, Xin; Xiong, Dongsheng; Zhen, Yongsu

    2011-03-01

    Antibody-based fusion proteins are the next generation of antibody therapies for cancer and other diseases. CD20 antigen, which is overexpressed on cell membranes in nearly 95% of cases of B-cell Non-Hodgkin's Lymphoma, is an attractive target for the therapy of B-lymphoid malignancies. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic that now has entered phase II clinical trials. In this study, we prepared an engineered fusion protein, scFv-LDP, consisting of an anti-CD20 scFv fragment and the apoprotein LDP of LDM using DNA recombination. After purification and refolding, scFv-LDP was found to bind specifically to CD20-positive lymphoma cells using ELISA and indirect immunofluorescent cytochemical staining assays. The energized fusion protein scFv-LDP-AE was obtained using molecular reconstitution of the active chromophore AE of LDM and scFv-LDP. MTT assay revealed potent cytotoxicity of scFv-LDP-AE to CD20-positive Raji and Daudi cells, with IC(50) values of 1.21×10(-11) and 6.24×10(-11) mol L(-1), respectively. An in vivo subcutaneous xenograft model of CD20-positive B cell lymphoma in BALB/c (nu/nu) mice was also utilized. Drugs were given intravenously on day 14 and 21 after tumor transplantation. In terms of maximal tolerated doses, scFv-LDP-AE at 0.3 mg kg(-1) suppressed tumor growth by 79.3%, and LDM at 0.05 mg kg(-1) by 68.6% (P<0.05). Results suggested scFv-LDP-AE could be a potential candidate for tumor-targeting therapy. PMID:21416325

  5. Production and characterization of a recombinant anti-MUC1 scFv reactive with human carcinomas.

    OpenAIRE

    Denton, G; Sekowski, M.; Spencer, D. I.; Hughes, O. D.; Murray, A; Denley, H; Tendler, S. J.; Price, M. R.

    1997-01-01

    Recombinant single-chain fragments (scFv) of the murine anti-MUC1 monoclonal antibody C595 have been produced using the original hybridoma cells as a source of variable heavy (V(H))- and variable light (V(L))-chain-encoding antibody genes. The use of the polymerase chain reaction (PCR), bacteriophage (phage) display technology and gene expression systems in E. coli has led to the production of soluble C595 scFv. The scFv has been purified from the bacterial supernatant by peptide epitope affi...

  6. Targeting Prostate Cancer Cells In Vivo Using a Rapidly Internalizing Novel Human Single-Chain Antibody Fragment

    Science.gov (United States)

    He, Jiang; Wang, Yong; Feng, Jinjin; Zhu, Xiaodong; Lan, Xiaoli; Iyer, Arun K.; Zhang, Niu; Seo, Youngho; VanBrocklin, Henry F.; Liu, Bin

    2010-01-01

    Human antibodies targeting prostate cancer cell surface epitopes may be useful for imaging and therapy. The objective of this study was to evaluate the tumor targeting of an internalizing human antibody fragment, a small-size platform, to provide high contrast in a mouse model of human prostate carcinoma. Methods A prostate tumor-targeting single-chain antibody fragment (scFv), UA20, along with a nonbinding control scFv, N3M2, were labeled with 99mTc and evaluated for binding and rapid internalization into human prostate tumor cells in vitro and tumor homing in vivo using xenograft models. For the in vitro studies, the labeled UA20 scFv was incubated at 37°C for 1 h with metastatic prostate cancer cells (DU145) to assess the total cellular uptake versus intracellular uptake. For the animal studies, labeled UA20 and N3M2 scFvs were administered to athymic mice implanted subcutaneously with DU145 cells. Mice were imaged with small-animal SPECT/CT with concomitant biodistribution at 1 and 3 h after injection. Results The UA20 scFv was labeled in 55%–65% yield and remained stable in phosphate buffer within 24 h. The labeled UA20 scFv was taken up specifically by prostate tumor cells. Internalization was rapid, because incubation at 37°C for less than 1 h resulted in 93% internalization of total cell-associated scFvs. In animal studies, SPECT/CT showed significant tumor uptake as early as 1 h after injection. At 3 h after injection, tumor uptake was 4.4 percentage injected dose per gram (%ID/g), significantly greater than all organs or tissues studied (liver, 2.7 %ID/g; other organs or tissues, <1 %ID/g), except the kidneys (81.4 %ID/g), giving tumor-to-blood and tumor-to-muscle ratios of 12:1 and 70:1, respectively. In contrast, the control antibody exhibited a tumor uptake of only 0.26 %ID/g, similar to that of muscle and fat. Tumor-specific targeting was evidenced by reduced tumor uptake of nearly 70% on administration of a 10-fold excess of unlabeled UA20 scFv

  7. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries.

    Science.gov (United States)

    Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G

    2011-09-01

    Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur. PMID:21752470

  8. Selection of affinity-improved neutralizing human scFv against HBV PreS1 from CDR3 VH/VL mutant library.

    Science.gov (United States)

    Chen, YanMin; Bai, Yin; Guo, XiaoChen; Wang, WenFei; Zheng, Qi; Wang, FuXiang; Sun, Dejun; Li, DeShan; Ren, GuiPing; Yin, JieChao

    2016-07-01

    A CDR3 mutant library was constructed from a previously isolated anti-HBV neutralizing Homo sapiens scFv-31 template by random mutant primers PCR. Then the library was displayed on the inner membrane surface in Escherichia coli periplasmic space. Seven scFv clones were isolated from the mutant library through three rounds of screening by flow cytometry. Competition ELISA assay indicates that isolated scFv fragments show more efficient binding ability to HBV PreS1 compared with parental scFv-31. HBV neutralization assay indicated that two clones (scFv-3 and 59) show higher neutralizing activity by blocking the HBV infection to Chang liver cells. Our method provides a new strategy for rapid screening of mutant antibody library for affinity-enhanced scFv clones and the neutralizing scFvs obtained from this study provide a potential alternative of Hepatitis B immune globulin. PMID:27255707

  9. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-06-01

    Full Text Available Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples.

  10. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites.

    Directory of Open Access Journals (Sweden)

    Eric C Peterson

    Full Text Available Vaccines and monoclonal antibodies (mAb for treatment of (+-methamphetamine (METH abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D = 10 nM in complex with METH and the (+ stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy". Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo form (2.60Å, as well as monomeric forms in complex with two active metabolites; (+-amphetamine (AMP, 2.38Å and (+-4-hydroxy methamphetamine (p-OH-METH, 2.33Å. The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+. Two of the histidine residues of each C-terminal His-tag interact with Ni(2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.

  11. Generation and characterization of the human neutralizing antibody fragment Fab091 against rabies virus

    Institute of Scientific and Technical Information of China (English)

    Chen LI; Feng ZHANG; Hong LIN; Zhong-can WANG; Xin-jian LIU; Zhen-qing FENG; Jin ZHU; Xiao-hong GUAN

    2011-01-01

    Aim: To transform the human anti-rabies virus glycoprotein (anti-RABVG) single-chain variable fragment (scFv) into a Fab fragment and to analyze its immunological activity.Methods: The Fab gene was amplified using overlap PCR and inserted into the vector pComb3XSS. The recombinant vector was then transformed into E coli Top10F' for expression and purification. The purified Fab was characterized using SDS-PAGE, Western blotting,indirect ELISA, competitive ELISA, and the fluorescent antibody virus neutralization test (FAVN), respectively, and examined in a Kunming mouse challenge model in vivo.Results: A recombinant vector was constructed. The Fab was expressed in soluble form In E coll Top10F'. Specific binding of the Fab to rabies virus was confirmed by indirect ELISA and immunoprecipitation (IP). The neutralizing antibody titer of Fab was 10.26 IU/mL.The mouse group treated with both vaccine and human rabies immunoglobulin (HRIG)/Fab091 (32 IU/kg) showed protection against rabies, compared with the control group (P<0.05, Logrank test).Conclusion: The antibody fragment Fab was shown to be a neutralizing antibody against RABVG. It can be used together with other monoclonal antibodies for post-exposure prophylaxis of rabies virus in future studies.

  12. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    Science.gov (United States)

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. PMID:26772159

  13. Production and characterization of a recombinant single-chain antibody (scFv) for tracing the σ54 factor of Pseudomonas putida.

    Science.gov (United States)

    Jurado, Paola; Fernández, Luis Angel; de Lorenzo, Víctor

    2012-07-31

    The number of alternative sigma factor molecules per bacterial cell determines either stochasticity or evenness of transcription of cognate promoters. An approach for examining the abundance of sigmas in any sample of bacterial origin is explained here which relies on the production of a recombinant highly specific, high-affinity single-chain variable Fv domain (scFv) targeted towards unique protein sites of the factor. Purposely, a super-binder scFv recognizing a distinct epitope of the less abundant sigma σ(54) of Pseudomonas putida (also known as σ(N)) was obtained and its properties examined in detail. To this end, an scFv library was generated from mRNA extracted from lymphocytes of mice immunized with the purified σ(54) protein of this bacterium. The library was displayed on a phage system and subjected to various rounds of panning with purified σ(54) for capturing extreme binders. The resulting high-affinity anti-σ(54) phage antibody (Phab) clone named C2 strongly attached a small region located between positions 172 and 183 of the primary amino acid sequence of σ(54) that overlaps its core RNA polymerase-binding region. The purified scFv-C2 detected minute amounts of σ(54) in whole cell protein extracts not only of P. putida but also Escherichia coli cells and putatively in other bacteria as well. The affinity constant of the purified antibody was measured by surface plasmon resonance (SPR) and found to have a K(D) (k(off)/k(on)) in the range of 2×10(-9)M. The considerable affinity and specificity of this recombinant antibody makes it a tool of choice for quantitative studies on gene expression of σ(54)-dependent promoters in P. putida and other Gram-negative bacteria. PMID:22206981

  14. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    Science.gov (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents. PMID:15518242

  15. Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol

    NARCIS (Netherlands)

    Schouten, A.; Roosien, J.; Bakker, J.; Schots, A.

    2002-01-01

    Disulfide bridge formation in the reducing environment of the cytosol is considered a rare event and is mostly linked to inactivation of protein activity. In this report the in vivo redox state of a single-chain Fv (scFv) antibody fragment in the plant cytosol was investigated. The scFv antibody fra

  16. Screening and immunological identification of the human ScFv antibody against PSMA%全人源抗PSMA单链抗体的筛选及免疫活性鉴定

    Institute of Scientific and Technical Information of China (English)

    张才田; 刘金霞

    2011-01-01

    Objective To screen and identify a human single-chain variable fragment(scFv) antibody against prostate specific membrane antigen(PSMA) from a human scFv antibody library.Methods Using a synthetic PSMA peptide as the coating antigen, the antibody library was screened by five rounds of combining-eluting-amplification.The phage antibody against PSMA with high specificity was screened out from the human scFv antibody library and its binding ability to the antigen was tested by ELISA.The soluble antibody was produced by plasmids extracted from highly specific clones, whose binding ability to PSMA was further identified by Western blot and immunohistochemistry.The affinity constant of the soluble antibody was measured by non-competitive ELISA.Results The screened phage antibody was specific for PSMA by ELISA.The soluble antibody was also specific for PSMA, its molecular weight was about 30 kD by SDS-PAGE and its affinity constant was about 5.077 × 106 L/mol.Conclusions The screened scFv antibody is specific and has low immunogenicity.It can be further used in the target treatment of malignant tumors.%目的 从全人源单链噬菌体抗体库中筛选出抗前列腺特异性膜抗原(PSMA)特异性单链抗体并进行免疫活性鉴定.方法 以合成的PSMA多肽为抗原,经过五轮吸附-洗脱-扩增,从单链噬菌体抗体库中筛选出特异性抗PSMA噬菌体抗体,ELISA检测其抗原结合能力,并对特异性较强的克隆提取质粒,表达可溶性抗体.Western Blotting和免疫组织化学检测其抗原结合性,非竞争ELSIA法检测其亲和常数.结果 从单链噬菌体抗体库中筛选出的噬菌体抗体,经ELISA鉴定为抗PSMA的特异性噬菌体抗体.抗PSMA可溶性抗体相对分子质量约为3.0×104,与PSMA特异性结合,其亲和常数约为5.077×106L/mol.结论 所得全人源抗PSMA单链抗体保留完整抗体分子结合抗原的特异性,免疫原性弱,是肿瘤导向治疗的理想栽体.

  17. Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments.

    Directory of Open Access Journals (Sweden)

    Tong Li

    2015-07-01

    Full Text Available The effects of somatic mutations that transform polyspecific germline (GL antibodies to affinity mature (AM antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM. We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab, and subsequently, the DCM was combined with molecular dynamics (MD simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation.

  18. Dimerisation strategies for shark IgNAR single domain antibody fragments.

    Science.gov (United States)

    Simmons, David P; Abregu, Fiona A; Krishnan, Usha V; Proll, David F; Streltsov, Victor A; Doughty, Larissa; Hattarki, Meghan K; Nuttall, Stewart D

    2006-08-31

    Immunoglobulin new antigen receptors (IgNARs) are unique single domain antibodies found in the serum of sharks. The individual variable (VNAR) domains bind antigen independently and are candidates for the smallest antibody-based immune recognition units (approximately 13 kDa). Here, we first isolated and sequenced the cDNA of a mature IgNAR antibody from the spotted wobbegong shark (Orectolobus maculatus) and confirmed the independent nature of the VNAR domains by dynamic light scattering. Second, we asked which of the reported antibody fragment dimerisation strategies could be applied to VNAR domains to produce small bivalent proteins with high functional affinity (avidity). In contrast to single chain Fv (scFv) fragments, separate IgNARs could not be linked into a tandem single chain format, with the resulting proteins exhibited only monovalent binding due solely to interaction of the N-terminal domain with antigen. Similarly, incorporation of C-terminal helix-turn-helix (dhlx) motifs, while resulting in efficiently dimerised protein, resulted in only a modest enhancement of affinity, probably due to an insufficiently long hinge region linking the antibody to the dhlx motif. Finally, generation of mutants containing half-cystine residues at the VNAR C-terminus produced dimeric recombinant proteins exhibiting high functional affinity for the target antigens, but at the cost of 50-fold decreased protein expression levels. This study demonstrates the potential for construction of bivalent or bispecific IgNAR-based binding reagents of relatively small size (approximately 26 kDa), equivalent to a monovalent antibody Fv fragment, for formulation into future diagnostic and therapeutic formats. PMID:16962608

  19. Preparation and Identification of a Single-chain Variable Fragment Antibody Against Canine Distemper Virus.

    Science.gov (United States)

    Yi, Li; Cheng, Shipeng

    2015-08-01

    The variable regions of the heavy chain (VH) and light chain (VL) were amplified by RT-PCR from the hybridoma 1N8, which secretes the monoclonal antibody against CDV N protein (aa 277-471). The VL and VH amplicons were combined using SOE-PCR by a 12 amino acid flexible linker (SSGGGGSGGGGS), which produced the scFv gene (named scFv/1N8). After sequence analysis, the scFv/1N8 gene was cloned into the prokaryotic expression vector PET32a with a His-tag. The recombinant scFv/1N8 protein was successfully expressed in recombinant Escherichia coli by IPTG induction. Moreover, the binding activity and specificity of the scFv were determined by indirect ELISA (His-tag) and competitive ELISA. The recombinant scFv/1N8 protein reported here will provide some basis for further antiviral drug research based on the scFv molecule. PMID:26301925

  20. Construction of Human ScFv Phage Display Library against Ovarian Tumor

    Institute of Scientific and Technical Information of China (English)

    XIA Jinsong; BI Hao; YAO Qin; QU Shen; ZONG Yiqiang

    2006-01-01

    In order to construct a single chain fragment variable (ScFv) phage display library against ovarian tumor, by using RT-PCR, the human heavy chain variable region genes (VH) and light chain variable region genes (VL) were amplified from lymphocytes of ovarian tumor patients and subsequently assembled into ScFv genes by SOE. The resulting ScFv genes were electrotransformed into E.coli TG1 and amplified with the co-infection of helper phage M13KO7 to obtain phage display library. The capacity and titer of the resulting library were detected. The phage antibody library with a capacity of approximately 3 × 109 cfu/μg was obtained. After amplification with helper phage, the titer of antibody library reached 5 × 1012 cfu/mL. Human ScFv library against ovarian tumor was constructed successfully, which laid a foundation for the screening of ovarian tumor specific ScFv for the radioimmunoimaging diagnosis of ovarian tumor.

  1. A chimera of green fluorescent protein with single chain variable fragment antibody against ginsenosides for fluorescence-linked immunosorbent assay.

    Science.gov (United States)

    Sakamoto, Seiichi; Tanizaki, Yusuke; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-05-01

    A chimera of green fluorescent protein extracted from Aequorea coerulescens (AcGFP), a mutant that has been codon optimized for mammalian expression, with single-chain variable fragment (scFv) antibody against ginsenoside Re (GRe-scFv), named fluobody, has been successfully expressed in Escherichia coli (E. coli) to develop simple, speedy, and sensitive fluorescence-linked immunosorbent assay (FLISA). Two chimera proteins were constructed to contain GRe-scFv at the C-terminus of AcGFP (C-fluobody) and at the N-terminus of AcGFP (N-fluobody). These fluobodies were then purified by ion metal affinity chromatography and refolded by stepwise dialysis. The characterization of both fluobodies revealed that C-fluobody was found to be appropriate probe for FLISA as compare with N-fluobody. Furthermore, improvement of limit of detection (LOD) was observed in FLISA using C-fluobody (10 ng/mL) due to its strong fluorescence intensity of AcGFP compared with conventional enzyme-linked immunosorbent assay (ELISA) using parental monoclonal antibody against ginsenoside Re (G-Re), MAb-4G10 (100 ng/mL). Since some steps required in ELISA can be avoided in this present FLISA, speedy and sensitive immunoassay also could be performed using fluobody instead of monoclonal antibody and scFv. PMID:21277981

  2. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice.

    Science.gov (United States)

    Liu, Qiong; Pang, Hua; Hu, Xiaoli; Li, Wenbo; Xi, Jimei; Xu, Lu; Zhou, Jing

    2016-01-01

    Medullary thyroid carcinoma (MTC) is a rare tumor of the endocrine system with poor prognosis as it exhibits high resistance against conventional therapy. Recent studies have shown that monoclonal antibodies labeled with radionuclide have become important agents for diagnosing tumors. To elucidate whether single-chain fragment of variable (scFv) antibody labeled with 131I isotope is a potential imaging agent for diagnosing MTC. A human scFv antibody library of MTC using phage display technique was constructed with a capacity of 3x10(5). The library was panned with thyroid epithelial cell lines and MTC cell lines (TT). Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the biological characteristics of the panned scFv. Methyl thiazolyl tetrazolium (MTT) assay was also used to explore the optimal concentration of the TT cell proliferation inhibition rate. They were categorized into TT, SW480 and control groups using phosphate-buffered saline. Western blotting showed that molecular weight of scFv was 28 kDa, cell ELISA showed that the absorbance of TT cell group was significantly increased (P=0.000??) vs. the other three groups, and MTT assay showed that the inhibition rate between the two cell lines was statistically significantly different (P<0.05) when the concentration of scFv was 0.1, 1 and 10 µmol/l. The tumor uptake of 131I-scFv was visible at 12 h and clear image was obtained at 48 h using the single photon emission computed tomography. scFv rapidly and specifically target MTC cells, suggesting the potential of this antibody as an imaging agent for diagnosing MTC. PMID:26498224

  3. Novel human single chain antibody fragments that are rapidly interalizing effectively target epithelioid and sarcomatoid mesotheliomas

    Science.gov (United States)

    Iyer, Arun K.; Lan, Xiaoli; Zhu, Xiaodong; Su, Yang; Feng, Jinjin; Zhang, Xiaoju; Gao, Dongwei; Seo, Youngho; VanBrocklin, Henry F.; Broaddus, V. Courtney; Liu, Bin; He, Jiang

    2011-01-01

    Human antibodies targeting all subtypes of mesothelioma could be useful to image and treat this deadly disease. Here we report tumor targeting of a novel internalizing human single chain antibody fragment (scFv) labeled with 99mTc (99mTc-M40) in murine models of mesothelioma of both epithelioid (M28) and sarcomatoid (VAMT-1) origins. 99mTc-M40 was taken up rapidly and specifically by both subtype tumor cells in vitro, with 68–92% internalized within 1h. The specificity of binding was evidenced by blocking (up to 95%) with 10-fold excess of unlabeled M40. In animal studies, tumors of both subtypes were clearly visualized by SPECT/CT as early as 1h post-injection of 99mTc-M40. Tumor uptake measured as percent of injected dose per gram tissue (%ID/g) at 3h was 4.38 and 5.84 for M28 and VAMT-1 tumors respectively, significantly greater than all organs or tissues studied (liver, 2.62%ID/g; other organs or tissues <1.7%ID/g), except the kidneys (130.7%ID/g), giving tumor-to-blood ratios of 5:1 and 7:1 and tumor-to-muscle ratios of 45:1 and 60:1, for M28 and VAMT-1 respectively. The target-mediated uptake was confirmed by a nearly 70% reduction in tumor activity following administration of 10-fold excess of unlabeled scFv. Taken together, these results indicate that M40 can rapidly and specifically target epithelioid and sarcomatoid tumor cells, demonstrating the potential of this agent as a versatile targeting ligand for imaging and therapy of all subtypes of mesothelioma. PMID:21447742

  4. Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv

    DEFF Research Database (Denmark)

    Manfield, I. W.; Bernal Giraldo, Adriana Jimena; Møller, I.; McCartney, L.; Riessa, L.; Knox, J. P.; Willats, W. G. T.

    2006-01-01

    Antibody phage display is an increasingly important alternative method for the production of monoclonal antibodies (mAbs) and involves the expression of antibody fragments (scFvs) at the surface of bacteriophage particles. We have previously used this technique to generate a phage mAb (PAM1phage)...

  5. Efficient construct of a large and functional scFv yeast display library derived from the ascites B cells of ovarian cancer patients by three-fragment transformation-associated recombination.

    Science.gov (United States)

    Yuan, Xiaopeng; Chen, Xiang; Yang, Mingjuan; Hu, Jia; Yang, Wei; Chen, Tingtao; Wang, Qirui; Zhang, Xuhua; Lin, Ruihe; Zhao, Aizhi

    2016-05-01

    Over the past decade, yeast display technology has emerged as a powerful tool for the isolation of high-affinity immunoglobulin fragments with potential utility as clinical diagnostic and therapeutic reagents. Despite significant refinement of the various methodologies underpinning library construction and selections, certain aspects remain challenging and process limiting. We have sought to significantly improve the robustness of the single-chain Fv (scFv) library construction step by overcoming the technical inefficiencies frequently encountered during the PCR-mediated assembly of scFvs from the discrete heavy and light V-domain repertoires. Using a novel primer set designed to provide maximum amplification coverage of the known germ-line V-domain repertoire, we have exploited the potential of the in vivo homologous gap-repair apparatus of Saccharomyces cerevisiae to assemble intact scFvs directly from co-transformed PBMC-derived VH, VL, and linearized vector component fragments. We have successfully applied this three-fragment assembly strategy to construct a large (>10(9)) scFv yeast display library from the ascites immune repertoire of ovarian cancer patients and validated the approach by applying FACS-based sorting to readily isolate scFvs that recognize various tumor marker antigens (TMAs). It is expected that this simplified construction method may find general utility, both for de novo scFv library construction and for subsequent combinatorial affinity maturation manipulations that require more than two fragments. PMID:26782745

  6. Production of recombinant antibodies using bacteriophages

    OpenAIRE

    Shukra, A. M.; Sridevi, N. V.; Dev Chandran,; Kapil Maithal,

    2014-01-01

    Recombinant antibody fragments such as Fab, scFv, diabodies, triabodies, single domain antibodies and minibodies have recently emerged as potential alternatives to monoclonal antibodies, which can be engineered using phage display technology. These antibodies match the strengths of conventionally produced monoclonal antibodies and offer advantages for the development of immunodiagnostic kits and assays. These fragments not only retain the specificity of the whole monoclonal ...

  7. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    Directory of Open Access Journals (Sweden)

    Kala Mrinalini

    2005-12-01

    . Conclusion The results demonstrate the biochemical modulation of scFv binding. Also, the scFvs bound to the active site and denied the access to the substrate. The selection strategy could generate specific anti-enzyme antibodies to PLAP that can potentially be used for targeting, for modulating enzyme activity in in vitro and in vivo and as probes for the active site. This strategy also has a general application in selecting antibodies from combinatorial libraries to closely related molecules and conformations.

  8. Production of recombinant single chain antibodies (scFv) in vegetatively reproductive Kalanchoe pinnata by in planta transformation.

    Science.gov (United States)

    Jung, Yuchul; Rhee, Yong; Auh, Chung-Kyoon; Shim, Hyekyung; Choi, Jung-Jin; Kwon, Suk-Tae; Yang, Joo-Sung; Kim, Donggiun; Kwon, Myung-Hee; Kim, Yong-Sung; Lee, Sukchan

    2009-10-01

    We developed an asexual reproductive plant, Kalanchoe pinnata, as a new bioreactor for plant-based molecular farming using a newly developed transformation method. Leaf crenate margins were pin-pricked to infect the plant with the Agrobacterium strain LBA4404 and vacuum infiltration was also applied to introduce the target gene into the plants. Subsequently, the young mother leaf produced new clones at the leaf crenate margins without the need for time- and labor-consuming tissue culture procedures. The average transformation rates were approximately 77 and 84% for pin-prickling and vacuum-infiltration methods, respectively. To functionally characterize an introduced target protein, a nucleic acid hydrolyzing recombinant 3D8 scFv was selected and the plant based 3D8 scFv proteins were purified and analyzed. Based on abzyme analysis, the purified protein expressed with this system had catalytic activity and exhibited all of properties of the protein produced in an E. coli system. This result suggested that vegetatively reproductive K. pinnata can be a novel and potent bioreactor for bio-pharmaceutical proteins. PMID:19688214

  9. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Grasielle Pereira Jannuzzi

    Full Text Available Paracoccidioidomycosis (PCM, caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv that mimics the main antigen of P. brasiliensis (gp43 confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.

  10. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies).

    Science.gov (United States)

    Olafsen, Tove; Sirk, Shannon J; Betting, David J; Kenanova, Vania E; Bauer, Karl B; Ladno, Waldemar; Raubitschek, Andrew A; Timmerman, John M; Wu, Anna M

    2010-04-01

    Rapid clearing engineered antibody fragments for immunoPET promise high sensitivity at early time points. Here, tumor targeting of anti-CD20 diabodies (scFv dimers) for detection of low-grade B-cell lymphomas were evaluated. In addition, the effect of linker length on oligomerization of the diabody was investigated. Four rituximab scFv variants in the V(L)-V(H) orientation with different linker lengths between the V domains (scFv-1, scFv-3, scFv-5, scFv-8), plus the scFv-5 with a C-terminal cysteine (Cys-Db) for site-specific modification were generated. The scFv-8 and Cys-Db were radioiodinated with (124)I for PET imaging, and biodistribution of (131)I-Cys-Db was carried out at 2, 4 10 and 20 h. The five anti-CD20 scFv variants were expressed as fully functional dimers. Shortening the linker to three or one residue did not produce higher order of multimers. Both (124)I-labeled scFv-8 and Cys-Db exhibited similar tumor targeting at 8 h post injection, with significantly higher uptakes than in control tumors (P < 0.05). At 20 h, less than 1% ID/g of (131)I-labeled Cys-Db was present in tumors and tissues. Specific tumor targeting and high contrast images were achieved with the anti-CD20 diabodies. These agents extend the repertoire of reagents that can potentially be used to improve detection of low-grade lymphomas. PMID:20053640

  11. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  12. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment

    Energy Technology Data Exchange (ETDEWEB)

    Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique; Becerril, Baltazar; Possani, Lourival D.; Torres-Larios, Alfredo (U. NAM)

    2011-08-09

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.

  13. Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy

    OpenAIRE

    Chen, Yunching; Zhu, Xiaodong; Zhang, Xiaoju; Liu, Bin; Huang, Leaf

    2010-01-01

    Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with tumor-targeting single-chain antibody fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and microRNA (miRNA) into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently downregulated the target genes (c-Myc/MDM2/VEGF) in t...

  14. Cell-Free Synthesis Meets Antibody Production: A Review

    OpenAIRE

    Marlitt Stech; Stefan Kubick

    2015-01-01

    Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG) molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv) and antigen binding fragments (Fab), have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufactu...

  15. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay

    Science.gov (United States)

    A single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein for detection of O, O-diethyl organophosphorus pesticides (OPs) was produced and characterized. The scFv gene was prepared by cloning VL and VH genes from a hybridoma cell secreting monoclonal antibody with broad-s...

  16. Soluble Expression and Characterization of a New scFv Directed to Human CD123.

    Science.gov (United States)

    Moradi-Kalbolandi, Shima; Davani, Dariush; Golkar, Majid; Habibi-Anbouhi, Mahdi; Abolhassani, Mohsen; Shokrgozar, Mohammad Ali

    2016-04-01

    Leukemic cancer stem cells (LSCs), as a unique cell population in acute myeloid leukemia (AML) marked by CD123 overexpression, are thought to play a key role in relapsed AML after chemotherapy. Thus, CD123 is considered as a particularly important target candidate for antibody-derived diagnosis and therapy. In the present work, we constructed an immunized murine antibody phage display library and isolated the functional anti-CD123 Single-chain fragment variable (scFv) clones. We also introduced fusing variable light (VL) and heavy (VH) chains with a new 18-amino acid residue linker as an alternative to conventional linkers. CD123-specific phage clones were progressively enriched through 4 rounds of biopanning, validated by phage ELISA, and anti-CD123 scFv clones with highest affinity were produced in Escherichia coli. The expression and purification of soluble scFv were verified by Western blot, and the results were indicative of the functionality of our proposed linker. The purified scFv specifically recognized CD123 by ELISA and flow cytometry, without any cross-reactivity with other related cell markers. Affinity of anti-CD123 scFv was measured to be 6.9 × 10(-7) M, using the competitive ELISA. Our work, therefore, provides a framework for future studies involving biological functions and applications of our anti-CD123 scFv. It also reveals the feasibility of high throughput methods to isolate biomarker-specific scFvs. PMID:26749295

  17. The antitumor efficacy of a novel adenovirus-mediated anti-p21Ras single chain fragment variable antibody on human cancers in vitro and in vivo.

    Science.gov (United States)

    Yang, Ju-Lun; Pan, Xin-Yan; Zhao, Wen-Xing; Hu, Qi-Chan; Ding, Feng; Feng, Qiang; Li, Gui-Yun; Luo, Ying

    2016-03-01

    Activated ras genes are found in a large number of human tumors, and therefore are one of important targets for cancer therapy. This study investigated the antitumor effects of a novel single chain fragment variable antibody (scFv) against ras protein, p21Ras. The anti-p21Ras scFv gene was constructed by phage display library from hybridoma KGHR1, and then subcloned into replication-defective adenovirus vector to obtain recombinant adenovirus KGHV100. Human tumor cell lines with high expression of p21Ras SW480, MDA-MB‑231, OVCAR-3, BEL-7402, as well as tumor cell line with low expression of p21Ras, SKOV3, were employed to investigate antitumor effects in vitro and in vivo. Fluorescence microscopy demonstrated that KGHV100 was able to express intracellularly anti-p21Ras scFv antibody in cultured tumor cells and in transplantation tumor cells. MTT, Transwell, colony formation, and flow cytometry analysis showed that KGHV100 led to significant growth arrest in tumor cells with high p21Ras expression, and induced G0/G1 cell cycle arrest in the studied tumor cell lines. In vivo, KGHV100 significantly inhibited tumor growth following intratumoral injection, and the survival rates of the mice were higher than the control group. These results indicate that the adenovirus-mediated intracellular expression of the novel anti-p21Ras scFv exerted strong antitumoral effects, and may be a potential method for therapy of cancers with p21Ras overexpression. PMID:26780944

  18. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Directory of Open Access Journals (Sweden)

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  19. Isolation of Balamuthia mandrillaris-specific antibody fragments from a bacteriophage antibody display library.

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Kulsoom, Huma; Lalani, Salima; Khan, Naveed Ahmed

    2016-07-01

    Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library. Individual clones were studied by enzyme-linked immunosorbent assay, and immunofluorescence. Four antibody clones showed specific binding to B. mandrillaris. The usefulness of phage antibody display technology as a diagnostic tool for isolating antibody fragments against B. mandrillaris antigens and studying their biological role(s) is discussed further. PMID:27055361

  20. The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing.

    Science.gov (United States)

    Qian, Liren; Li, Dan; Ma, Lie; He, Ting; Qi, Feifei; Shen, Jianliang; Lu, Xin-An

    2016-01-01

    The molecular design of CARs (Chimeric Antigen Receptors), especially the scFv, has been a major part to use of CAR-T cells for targeted adoptive immunotherapy. To address this issue, we chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR. Next, we generated a panel of humanized scFvs and tested in vitro for their ability to direct CAR-T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. Furthermore, in a xenograft model of lymphoma, human T cells expressing humanized scFvs exhibited the same anti-tumor efficacy as those expressing murine scFv and prolonged survival compared with cells expressing control CAR. Therefore, we uncovered CARs expressing humanized scFv domain that contribute the similar enhanced antileukemic efficacy and survival in tumor bearing mice. These results provide the basis for the future clinical studies of CAR-T cells transduced with humanized scFv directed to CD19. PMID:26996927

  1. Isolation of ScFv antibodies of rP27Kip1 from phage display libraries constructed from immunized and non-immunized repertoires

    Institute of Scientific and Technical Information of China (English)

    曹跃琼; 乔守怡; 袁有忠; 黄建生; 赵寿元

    1999-01-01

    Through mRNA extract, RT and a series of PCR, phage antibody libraries were constructed from rP27Kiplimmunized and non-immunized mice. After only one round of selection with rP27Kipl, clones from each library were chosen randomly and digested by Taq I and Hinf I. 11 of 64 clones from the immunized animal had consistent restriction pattern, while none of the 64 clones from the non-immunized animal had, except that one had the same fragments pattern as that of the 11 clones. The 12 fragments were expressed in E. coli BL21(DE3)/pET-28b(+) system. ELISA showed that some of the fragments could bind to rP27Kipl specifically. All these results implied that specific antibody can be obtained by genetic engineering without hybridoma or many rounds of growth and panning selection.

  2. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM

    2012-01-01

    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  3. Recombinant norovirus-specific scFv inhibit virus-like particle binding to cellular ligands

    Directory of Open Access Journals (Sweden)

    Hardy Michele E

    2008-01-01

    Full Text Available Abstract Background Noroviruses cause epidemic outbreaks of gastrointestinal illness in all age-groups. The rapid onset and ease of person-to-person transmission suggest that inhibitors of the initial steps of virus binding to susceptible cells have value in limiting spread and outbreak persistence. We previously generated a monoclonal antibody (mAb 54.6 that blocks binding of recombinant norovirus-like particles (VLP to Caco-2 intestinal cells and inhibits VLP-mediated hemagglutination. In this study, we engineered the antigen binding domains of mAb 54.6 into a single chain variable fragment (scFv and tested whether these scFv could function as cell binding inhibitors, similar to the parent mAb. Results The scFv54.6 construct was engineered to encode the light (VL and heavy (VH variable domains of mAb 54.6 separated by a flexible peptide linker, and this recombinant protein was expressed in Pichia pastoris. Purified scFv54.6 recognized native VLPs by immunoblot, inhibited VLP-mediated hemagglutination, and blocked VLP binding to H carbohydrate antigen expressed on the surface of a CHO cell line stably transfected to express α 1,2-fucosyltransferase. Conclusion scFv54.6 retained the functional properties of the parent mAb with respect to inhibiting norovirus particle interactions with cells. With further engineering into a form deliverable to the gut mucosa, norovirus neutralizing antibodies represent a prophylactic strategy that would be valuable in outbreak settings.

  4. ANTITUMOR EFFECTS OF MONOCLONAL ANTIBODY FAB′ FRAGMENT CONTAINING IMMUNOCONJUGATES

    Institute of Scientific and Technical Information of China (English)

    刘小云; 甄永苏

    2002-01-01

    Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.

  5. SPECT imaging of peripheral amyloid in mice by targeting hyper-sulfated heparan sulfate proteoglycans with specific scFv antibodies

    International Nuclear Information System (INIS)

    Introduction: Amyloid deposits are associated with a broad spectrum of disorders including monoclonal gammopathies, chronic inflammation, and Alzheimer's disease. In all cases, the amyloid pathology contains, in addition to protein fibrils, a plethora of associated molecules, including high concentrations of heparan sulfate proteoglycans (HSPGs). Methods: We have evaluated radioiodinated scFvs that bind HS for their ability to image amyloid deposits in vivo. scFv's with different binding characteristics were isolated by phage display using HS extracted from bovine kidney or mouse and human skeletal muscle glycosaminoglycans (GAGs). Following purification and radioiodination, the biodistribution of 125I-scFv's was assessed in mice with inflammation-associated AA amyloidosis or in amyloid-free mice by using SPECT imaging, biodistribution measurements and tissue autoradiography. Results: Four different scFv's all showed binding in vivo to amyloid in the spleen, liver and kidney of diseased mice; however, three of the scFv's also bound to sites within these organs in disease free mice. One scFv specific for hypersulfated HSPGs preferentially bound amyloid and did not accumulate in healthy tissues. Conclusions: These data indicate that HS expressed in amyloid deposits has unique qualities that can be distinguished from HS in normal tissues. A scFv specific for rare hypersulfated HS was used to selectively image AA amyloid in mice with minimal retention in normal tissue.

  6. Comparison of three microbial hosts for the expression of an active catalytic scFv.

    Science.gov (United States)

    Robin, Sylvain; Petrov, Kliment; Dintinger, Thierry; Kujumdzieva, Anna; Tellier, Charles; Dion, Michel

    2003-01-01

    Antibodies represent an interesting protein framework on which catalytic functions can be grafted. In previous studies, we have reported the characterization of the catalytic antibody 4B2 obtained on the basis of the "bait and switch" strategy which catalyzes two different chemical reactions: the allylic isomerization of beta,gamma-unsaturated ketones and the Kemp elimination. We have cloned the antibody 4B2 and expressed it as a single-chain Fv (scFv) fragment in different expression systems, Escherichia coli and two yeasts species, in order to elicit the most suitable system to study its catalytic activity. The scFv4B2 was secreted as an active form in the culture medium of Pichia pastoris and Kluyveromyces lactis, which led respectively to 4 and 1.3mg/l after purification. In E. coli, different strategies were investigated to increase the cytoplasmic soluble fraction, which resulted, in all cases, in the expression of a low amount of functional antibodies. By contrast, substantial amount of scFv4B2 could be purified when it was expressed as inclusion bodies (12mg/l) and submitted to an in vitro refolding process. Its catalytic activity was measured and proved to be comparable to that of the whole IgG. However, the instability of the scFv4B2 in solution prevented from an exhaustive characterization of its activity and stabilization of this protein appears to be essential before designing strategies to improve its catalytic activity. PMID:12531284

  7. Fast antibody fragment motion: flexible linkers act as entropic spring.

    Science.gov (United States)

    Stingaciu, Laura R; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter

    2016-01-01

    A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739

  8. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.; Kemp, G.J.L.; Secombes, C.J.; Cunningham, C.

    single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using the......We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...

  9. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells

    OpenAIRE

    Jäger, Volker; Büssow, Konrad; Wagner, Andreas; Weber, Susanne; Hust, Michael; Frenzel, André; Schirrmann, Thomas

    2013-01-01

    Background The demand of monospecific high affinity binding reagents, particularly monoclonal antibodies, has been steadily increasing over the last years. Enhanced throughput of antibody generation has been addressed by optimizing in vitro selection using phage display which moved the major bottleneck to the production and purification of recombinant antibodies in an end-user friendly format. Single chain (sc)Fv antibody fragments require additional tags for detection and are not as suitable...

  10. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides.

    Science.gov (United States)

    Zhao, Fengchun; Tian, Yuan; Wang, Huimin; Liu, Jiye; Han, Xiao; Yang, Zhengyou

    2016-09-01

    Organophosphorus pesticides (OPs) are the most widely used pesticides in agriculture, and OP residues have been broadly reported in food and environmental samples. The aim of this study is to develop a recombinant antibody-based broad-specificity immunoassay for OPs. A phage display library was prepared from a mouse pre-immunized with a generic immunogen of OPs, and a single-chain variable fragment (scFv) antibody was selected. The selected scFv antibody was fused with biotin acceptor domain (BAD) and overexpressed as an inclusion body in Escherichia coli BL21 (DE3). Then, the protein was refolded by stepwise urea gradient dialysis and biotinylated in vitro by E. coli biotin ligase (BirA). Subsequently, the scFv-BAD protein was purified from the biotinylated system with high yield (66.7 mg L(-1)) and confirmed by SDS-PAGE and Western blot. Based on the biotinylated scFv-BAD, a sensitive and broad-specificity competitive indirect enzyme-linked immunosorbent assay (ciELISA) for detection of OPs was developed. The cross-reactivity (CR) studies demonstrated that the ciELISA described here exhibited the broadest detection spectrum for OPs up to now, and 30 OPs could be determined with 50 % inhibition value (IC50) values ranging from 19.4 to 515.2 ng mL(-1). Moreover, the developed ciELISA was used for the recovery study of the spiked samples and showed satisfactory recoveries. Graphical Abstract Schematic diagram of the development of biotinylated broad-specificity single-chain variable fragment antibody-based immunoassay for organophosphorus pesticides. PMID:27411546

  11. Negative effects of a disulfide bond mismatch in anti-rabies G protein single-chain antibody variable fragment FV57.

    Science.gov (United States)

    Duan, Ye; Gu, Tiejun; Zhang, Xizhen; Jiang, Chunlai; Yuan, Ruosen; Li, Zhuang; Wang, Dandan; Chen, Xiaoxu; Wu, Chunlai; Chen, Yan; Wu, Yongge; Kong, Wei

    2014-06-01

    Rabies virus (RV) causes a fatal infectious disease requiring efficient post-exposure prophylaxis (PEP), which includes a rabies vaccine and rabies immunoglobulin (RIG). The single-chain antibody variable fragment (scFv), a small engineered antibody fragment derived from an antibody variable heavy chain and light chain, has the potential to replace the current application of RIG. In previous studies, we constructed and evaluated an anti-rabies virus G protein scFv (FV57) based on the monoclonal antibody CR57. Of the five cysteines in FV57, four are linked in intra-chain disulfide bonds (Cys-VH28/Cys-VH98 and Cys-VL16/Cys-VL84), and one is free (Cys-VL85). However, the thiol in Cys-VL85 neighboring Cys-VL84 in the CDR3 of the light chain is likely to mismatch with the thiol in Cys-VL16 during the renaturing process. In order to study effects of the mismatched disulfide bond, Cys-VL85 and Cys-VL84 of FV57 were mutated to serine to construct mutants FV57(VL85S) and FV57(VL84S). Furthermore, the disulfide bonds in the light chain of FV57, FV57(VL85S) and FV57(VL84S) were deleted by mutating Cys-VL16 to serine. All mutants were prepared and evaluated along with the original FV57. The results indicated that the mismatched disulfide bond of FV57 linking the light chain FR1 and CDR3 would confer deleterious negative effects on its activity against RV, likely due to spatial hindrance in the light chain CDR3. Moreover, avoidance of the disulfide bond mismatch provided an additional 30% protective efficacy against RV infection in the mouse RV challenge model. Thus, modifications of FV57 to eliminate the disulfide bond mismatch may provide a candidate therapeutic agent for effective PEP against rabies. PMID:24598312

  12. Recombinant fragment of an antibody tailored for direct radioiodination

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Juraj; Fábry, Milan; Sieglová, Irena; Král, Vlastimil; Uhnáková, Bronislava; Mudra, M.; Kronrád, L.; Sawicka, A.; Mikolajczak, R.; Řezáčová, Pavlína

    2012-01-01

    Roč. 55, č. 1 (2012), s. 52-56. ISSN 0362-4803 R&D Projects: GA MPO 2A-2TP1/076; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50520514 Keywords : I125 labelling * single-chain antibody variable fragment * tyrosine-rich polypeptide segment * fusion protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.240, year: 2012

  13. The study on the use of fragmented antibody for the development of therapeutic radiopharmaceutical

    International Nuclear Information System (INIS)

    This project was designed to develop the therapeutic radiopharmaceuticals for therapy and diagnosis of cancer using fragmented antibodies. The major activities to be carried out are as follows: - exploration of the key angiogenic factors involved in cancer, - development of radiolabeled-compounds using antibody fragments for minimal toxicity - In vitro/vivo investigation on the targeting ability of RI labeled antibody fragment

  14. Efficient silkworm expression of single-chain variable fragment antibody against ginsenoside Re using Bombyx mori nucleopolyhedrovirus bacmid DNA system and its application in enzyme-linked immunosorbent assay for quality control of total ginsenosides.

    Science.gov (United States)

    Sakamoto, Seiichi; Pongkitwitoon, Benyakan; Nakamura, Seiko; Maenaka, Katsumi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2010-09-01

    A single-chain variable fragment (scFv) antibody against ginsenoside Re (G-Re) have been successfully expressed in the silkworm larvae using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. The baculovirus donor vector for expression of scFv against G-Re (GRe-scFv) was constructed to contain honeybee melittin signal sequence to accelerate secretion of the recombinant GRe-scFv into the haemolymph of silkworm larvae. Functional recombinant GRe-scFv was purified by cation exchange chromatography followed by immobilized metal ion affinity chromatography. The yield of purified GRe-scFv was 6.5 mg per 13 silkworm larvae, which is equivalent to 650 mg/l of the haemolymph, exhibiting extremely higher yield than that expressed in Escherichia coli (1.7 mg/l of culture medium). It was revealed from characterization that GRe-scFv retained similar characteristic of the parental monoclonal antibody (MAb) against G-Re (MAb-4G10), making it possible to develop indirect competitive enzyme-linked immunosorbent assay (icELISA) for quality control of total ginsenosides in various ginsengs. The detectable range for calibration of G-Re by developed icELISA shows 0.05-10 microg/ml. These results clearly suggested that the silkworm expression system is quite useful for the expression of functional scFv that frequently required time- and cost-consuming re-folding when it expressed in E. coli. PMID:20592135

  15. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  16. Localization of melanoma with radiolabelled monoclonal antibody fragments and iodoamphetamine

    Energy Technology Data Exchange (ETDEWEB)

    Liewendahl, K.; Kairento, A.L.; Lindroth, L.; Pyroenen, S.; Franssila, K.; Virkkunen, P.; Asko-Seljavaara, S.; Launes, J.

    1986-10-01

    In two melanoma patients, metastases accumulated both /sup 99m/Tc-labelled monoclonal anti-tumor F(ab')/sub 2/ fragments and N-isopropyl-p-(/sup 123/I)-iodoamphetamine. Small metastatic deposits were localized only by labelled antibody, for which a higher target-to-nontarget ratio was observed than for radioiodoamphetamine, indicating that immunoscintigraphy may be the more sensitive method. In these two patients positive immunohistochemical staining for the antibody used was observed, whereas in a third patient, with no concentration of labelled antibody, the staining result was negative showing the specificity of the immunoscintigraphy findings. It is possible that the accumulation of radio-iodoamphetamine is due to binding to melanin but this is not certain as tissue samples from one of the two patients with positive scintigrams did not contain stainable melanin.

  17. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.; Kemp, G.J.L.; Secombes, C.J.; Cunningham, C.

    We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... BIAcore analysis and found to correlate with the capacity of each molecule to neutralise DK-F1. These investigations, together with computer assisted molecular analysis of the theoretical influence of each mutation on antigen binding, led to the identification of a single mutation at position 35a in the...

  18. An assay for the detection of grapevine leafroll-associated virus 3 using a single-chain fragment variable antibody.

    Science.gov (United States)

    Cogotzi, Laura; Giampetruzzi, Annalisa; Nölke, Greta; Orecchia, Martin; Elicio, Vito; Castellano, Maria Antonietta; Martelli, Giovanni P; Fischer, Rainer; Schillberg, Stefan; Saldarelli, Pasquale

    2009-01-01

    Grapevine leafroll-associated virus 3 (GLRaV-3) is a major pathogen of grapevine. A previously described single-chain fragment variable (scFv) antibody (scFvLR3), directed against the coat protein (CP) of GLRaV-3, was expressed in Escherichia coli and used to develop a diagnostic ELISA kit. The antibody was fused to the light chain constant domain of human immunoglobulin to create the bivalent reagent C(L)-LR3, which was purified from the periplasmic fraction, giving a yield of ~5 mg/l. The sensitivity of the reagent against recombinant GLRaV-3 CP was 0.1 ng. The sensitivity, specificity and durability of the reagent was similar to a commercial kit. The C(L)-LR3 showed a weak cross-reaction in immune electron microscopy assays to GLRaV-1 and -7, but not with the phylogenetically more distant GLRaV-2. A fully recombinant kit was developed with the inclusion of a recombinant GLRaV-3 CP expressed in bacteria, thus avoiding problems associated with virus propagation and purification. This system represents a rapid, simple, sensitive and standardized diagnostic protocol for GLRaV-3 detection. PMID:19082687

  19. Crystallization and preliminary crystallographic studies of the single-chain variable fragment of antibody chA21 in complex with an N-terminal fragment of ErbB2

    International Nuclear Information System (INIS)

    An antibody–antigen complex consisting of a single-chain variable fragment of the potential therapeutic antibody chA21 and an N-terminal fragment (residues 1–192) of the human ErbB2 extracellular domain was expressed, purified and crystallized. X-ray diffraction data were collected to 2.45 Å resolution. ErbB2 is a transmembrane tyrosine kinase, the overexpression of which causes abnormality and disorder in cell signalling and leads to cell transformation. Previously, an anti-ErbB2 single-chain chimeric antibody chA21 that specifically inhibits the growth of ErbB2-overexpressing cancer cells in vitro and in vivo was developed. Here, an antibody–antigen complex consisting of the single-chain variable fragment (scFv) of chA21 and an N-terminal fragment (residues 1–192, named EP I) of the ErbB2 extracellular domain was crystallized using the sitting-drop vapour-diffusion method. An X-ray diffraction data set was collected to 2.45 Å resolution from a single flash-cooled crystal; the crystal belonged to space group P212121

  20. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle.

    Directory of Open Access Journals (Sweden)

    Katrin Spiesberger

    Full Text Available 30 years ago, the potential of bispecific antibodies to engage cytotoxic T cells for the lysis of cancer cells was discovered. Today a variety of bispecific antibodies against diverse cell surface structures have been developed, the majority of them produced in mammalian cell culture systems. Beside the r28M, described here, no such bispecific antibody is known to be expressed by transgenic livestock, although various biologicals for medical needs are already harvested-mostly from the milk-of these transgenics. In this study we investigated the large-scale purification and biological activity of the bispecific antibody r28M, expressed in the blood of transgenic cattle. This tandem single-chain variable fragment antibody is designed to target human CD28 and the melanoma/glioblastoma-associated cell surface chondroitin sulfate proteoglycan 4 (CSPG4.With the described optimized purification protocol an average yield of 30 mg enriched r28M fraction out of 2 liters bovine plasma could be obtained. Separation of this enriched fraction by size exclusion chromatography into monomers, dimers and aggregates and further testing regarding the biological activity revealed the monomer fraction as being the most appropriate one to continue working with. The detailed characterization of the antibody's activity confirmed its high specificity to induce the killing of CSPG4 positive cells. In addition, first insights into tumor cell death pathways mediated by r28M-activated peripheral blood mononuclear cells were gained. In consideration of possible applications in vivo we also tested the effect of the addition of different excipients to r28M.Summing up, we managed to purify monomeric r28M from bovine plasma in a large-scale preparation and could prove that its biological activity is unaffected and still highly specific and thus, might be applicable for the treatment of melanoma.

  1. A polar ring endows improved specificity to an antibody fragment.

    Science.gov (United States)

    Schaefer, Zachary P; Bailey, Lucas J; Kossiakoff, Anthony A

    2016-07-01

    Engineering monovalent Fab fragments into bivalent formats like IgGs or F(ab')2 can lead to aggregation presumably because of nonspecific off-target interactions that induce aggregation. In an effort to further understand the molecular determinants of nonspecific interactions for engineered antibodies and natively folded proteins in general, we focused on a synthetic Fab with low nanomolar affinity to histone chaperone Anti-silencing factor 1 (Asf1) that demonstrates off-target binding through low solubility (∼5 mg/mL) in the multivalent F(ab') 2 state. Here, we generated phage display-based shotgun scanning libraries to introduce aspartate as a negative design element into the antibody paratope. The antibody-combining site was amenable to aspartate substitution at numerous positions within the antigen binding loops and one variant, Tyr(L93) Asp/His(L94) Asp/Thr(H100b) Asp, possessed high solubility (>100 mg/ml). Furthermore, the mutations decreased nonspecific interactions measured by column interaction chromatography and ELISA in the multivalent antibody format while maintaining high affinity to the antigen. Structural determination of the antibody-antigen complex revealed that the aspartate-permissive residues formed a polar ring around the structural and functional paratope, recapitulating the canonical feature of naturally occurring protein-protein interactions. This observation may inform future strategies for the design and engineering of molecular recognition. PMID:27334407

  2. Construction of scFv that bind both fibronectin-binding protein A and clumping factor A of Stapylococcus aureus.

    Science.gov (United States)

    Wang, Man; Zhang, Yan; Li, Benqiang; Zhu, Jianguo

    2015-06-01

    Bovine mastitis (BM) causes significant losses to the dairy industry. Vaccines against the causative agent of BM, Staphylococcus aureus, do not confer adequate protection. Because passive immunization with antibodies permits disease prevention, we constructed a recombinant single-chain antibody (scFv) against fibronectin-binding protein A (FnBPA) and clumping factor A (ClfA), two important virulence factors in S. aureus infection. The DNA coding sequences of the variable heavy (VH) and variable light (VL) domains of antibodies produced in the peripheral blood lymphocytes of cows with S. aureus-induced mastitis were obtained using reverse transcription and polymerase chain reaction, and the VH and VL cDNAs were assembled in-tandem using a DNA sequence encoding a (Gly4Ser)3 peptide linker. The scFv cDNAs were cloned into the pOPE101 plasmid for the expression of soluble scFv protein in Escherichia coli. The binding of the scFvs to both FnBPA and ClfA was confirmed using an indirect ELISA and Western blotting. The DNA sequences of the framework regions of the VH and VL domains were highly conserved, and the complementarity-determining regions displayed significant diversity, especially in CDR3 of the VH domain. These novel bovine antibody fragments may be useful as a therapeutic candidate for the prevention and treatment of S. aureus-induced bovine mastitis. PMID:25910693

  3. The inhibition of lung cancer cell growth by intracellular immunization with LC-1 ScFv

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A monoclonal antibody, LC-l, recognizing lung cancer associated common antigens was obtained in authors' laboratory. Its single chain Fv fragment (ScFv) named LC-1 ScFv was constructed based on recombinant phage displayed techniques. For expression on cell membrane, LC-1 ScFv was cloned into pDisplay vector, which directed the cloned gene to express as cell membrane bound protein. The resulting plasmid was sequenced and then introduced by the lipofectin method into a lung adenocarcinoma cell line SPC-A-1. G418 resistant cells were obtained by G418 selection. After transfection, LC-1 ScFv expression was observed by Western blot analysis and the expression of cognate antigens was down-regulated as shown in ELISA assay. SPC-A-1-pDisplay-ScFv cells grew in vitro at lower speed than the control intact cells and the cells transfected with vacant vector. Flow cytometry analysis detected a substantial increase in G1 phase and decrease in S phase in population of SPC-A-1-pDisplay-ScFv cells compared to SPC-A-1 and SPC-A1-pDisplay cells. Semi-quantitative RT-PCR analysis showed that c-myc expression was down-regulated in SPC-A-1-pDisplay-ScFv cells. It seems that the antigens recognized by LC-1 may be in some way involved in a growth stimulating pathway and the antibody blocking of the function of the antigens shut down the pathway and thus down-regulate the expression of c-myc and growth of the cells.

  4. Characterization of antibodies in single-chain format against the E7 oncoprotein of the Human papillomavirus type 16 and their improvement by mutagenesis

    International Nuclear Information System (INIS)

    Human papillomaviruses (HPV) are the etiological agents of cervical cancer. The viral E7 protein plays a crucial role in viral oncogenesis. Many strategies have been explored to block the E7 oncoprotein activity. The single-chain variable antibody fragments (scFvs) are valuable tools in cancer immunotherapy and can be used as 'intracellular antibodies' to knock out specific protein functions. For both in vivo and in vitro employment, the scFv intrinsic solubility and stability are important to achieve long-lasting effects. Here we report the characterization in terms of reactivity, solubility and thermal stability of three anti-HPV16 E7 scFvs. We have also analysed the scFv43 sequence with the aim of improving stability and then activity of the antibody, previously shown to have antiproliferative activity when expressed in HPV16-positive cells. The three anti-HPV16 E7 scFv 32, 43 51 were selected from the ETH-2 'phage-display' library. Thermal stability was evaluated with ELISA by determining the residual activity of each purified scFv against the recombinant HPV16 E7, after incubation in the presence of human seroalbumine for different time-intervals at different temperatures. Sequence analysis of the scFvs was performed with BLAST and CLUSTALL programs. The scFv43 aminoacid changes were reverted back to the consensus sequence from the immunoglobuline database by site-directed mutagenesis. ScFv solubility was evaluated with Western blotting by determining their relative amounts in the soluble and insoluble fractions of both prokaryotic and eukaryotic systems. ScFv51 was the most thermally stable scFv considered. Sequence analysis of the most reactive scFv43 has evidenced 2 amino acid changes possibly involved in molecule stability, in the VH and VL CDR3 regions respectively. By mutagenesis, two novel scFv43-derived scFvs were obtained, scFv43 M1 and M2. ScFv43 M2 showed to have improved thermal stability and solubility in comparison with the

  5. Characterization of antibodies in single-chain format against the E7 oncoprotein of the Human papillomavirus type 16 and their improvement by mutagenesis

    Directory of Open Access Journals (Sweden)

    Accardi Luisa

    2007-01-01

    Full Text Available Abstract Background Human papillomaviruses (HPV are the etiological agents of cervical cancer. The viral E7 protein plays a crucial role in viral oncogenesis. Many strategies have been explored to block the E7 oncoprotein activity. The single-chain variable antibody fragments (scFvs are valuable tools in cancer immunotherapy and can be used as "intracellular antibodies" to knock out specific protein functions. For both in vivo and in vitro employment, the scFv intrinsic solubility and stability are important to achieve long-lasting effects. Here we report the characterization in terms of reactivity, solubility and thermal stability of three anti-HPV16 E7 scFvs. We have also analysed the scFv43 sequence with the aim of improving stability and then activity of the antibody, previously shown to have antiproliferative activity when expressed in HPV16-positive cells. Methods The three anti-HPV16 E7 scFv 32, 43 51 were selected from the ETH-2 "phage-display" library. Thermal stability was evaluated with ELISA by determining the residual activity of each purified scFv against the recombinant HPV16 E7, after incubation in the presence of human seroalbumine for different time-intervals at different temperatures. Sequence analysis of the scFvs was performed with BLAST and CLUSTALL programs. The scFv43 aminoacid changes were reverted back to the consensus sequence from the immunoglobuline database by site-directed mutagenesis. ScFv solubility was evaluated with Western blotting by determining their relative amounts in the soluble and insoluble fractions of both prokaryotic and eukaryotic systems. Results ScFv51 was the most thermally stable scFv considered. Sequence analysis of the most reactive scFv43 has evidenced 2 amino acid changes possibly involved in molecule stability, in the VH and VL CDR3 regions respectively. By mutagenesis, two novel scFv43-derived scFvs were obtained, scFv43 M1 and M2. ScFv43 M2 showed to have improved thermal stability and

  6. Synthesis and pre-clinical evaluation of an (18)F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer.

    Science.gov (United States)

    Sharma, Sai Kiran; Wuest, Melinda; Way, Jenilee D; Bouvet, Vincent R; Wang, Monica; Wuest, Frank R

    2016-01-01

    Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an (18)F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of (18)F-labeled scFv-B43.13 ([(18)F]FBz-scFv-B43.13) was studied with PET. [(18)F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.). PMID:27508105

  7. Synthesis and pre-clinical evaluation of an 18F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer

    Science.gov (United States)

    Sharma, Sai Kiran; Wuest, Melinda; Way, Jenilee D; Bouvet, Vincent R; Wang, Monica; Wuest, Frank R

    2016-01-01

    Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an 18F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of 18F-labeled scFv-B43.13 ([18F]FBz-scFv-B43.13) was studied with PET. [18F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.). PMID:27508105

  8. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo

    OpenAIRE

    Dolk, E.; van der Vaart, M.; Lutje Hulsik, D; Vriend, G.; de Haard, H; Spinelli, S.; Cambillau, C.; Frenken, L.; Verrips, T.

    2005-01-01

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain antibody fragments (VHHs) can be extended to very harsh conditions, such as the presence of shampoo containing nonionic and anionic surfactants. We selected several VHHs that bind to the cell wall ...

  9. Isolation of Llama Antibody Fragments for Prevention of Dandruff by Phage Display in Shampoo

    OpenAIRE

    2005-01-01

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain antibody fragments (VHHs) can be extended to very harsh conditions, such as the presence of shampoo containing nonionic and anionic surfactants. We selected several VHHs that bind to the cell wall ...

  10. Charge-modified single chain antibody constructs of monoclonal antibody CC49: generation, characterization, pharmacokinetics, and biodistribution analysis

    International Nuclear Information System (INIS)

    A novel strategy was developed in which an antibody scFv fragment of the monoclonal antibody (MAb) CC49 was modified by engineering DNA coding sequences to lower its isoelectric point. Negatively charged amino acids were added to the carboxy terminus of the CC49 VH region by adding nucleotide sequences in a polymerase chain reaction (PCR) amplification of the coding sequence of CC49 scFv. Two new DNA constructs coding for CC49 scFv with lower isoelectric points of 5.8 and 5.2 were engineered. These novel strategy-generated, charge-modified antibody constructs were compared for their immunological, pharmacokinetic, and biodistribution properties in athymic mice bearing LS-174T human colon carcinoma xenografts

  11. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    Science.gov (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  12. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99mTc and 188Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  13. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  14. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2011-12-01

    Full Text Available Abstract Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY, the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the sc

  15. Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori

    NARCIS (Netherlands)

    Joosten, V.; Gouka, R.J.; Hondel, C.A.M.J.J. van den; Verrips, C.T.; Lokman, B.C.

    2005-01-01

    We report the expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Fragments encoding VHHs were cloned in a suitable Aspergillus expression vector and transformants secreting VHH fragments were analysed for integrated gene copy-numbers, mRNA level

  16. A Tat-grafted anti-nucleic acid antibody acquires nuclear-localization property and a preference for TAR RNA

    International Nuclear Information System (INIS)

    Highlights: → We generate 'H3Tat-3D8' by grafting Tat48-60 peptide to VH CDR of 3D8 scFv antibody. → H3Tat-3D8 antibody retains nucleic acid binding and hydrolyzing activities. → H3Tat-3D8 acquires a preference for TAR RNA structure. → Properties of Tat48-60 is transferred to an antibody via Tat-grafting into a CDR. -- Abstract: The 3D8 single chain variable fragment (3D8 scFv) is an anti-nucleic acid antibody that can hydrolyze nucleic acids and enter the cytosol of cells without reaching the nucleus. The Tat peptide, derived from the basic region of the HIV-1 Tat protein, translocates to cell nuclei and has TAR RNA binding activity. In this study, we generated a Tat-grafted antibody (H3Tat-3D8) by replacing complementarity-determining region 3 (CDR3) within the VH domain of the 3D8 scFv with a Tat48-60 peptide (GRKKRRQRRRPPQ). H3Tat-3D8 retained the DNA-binding and DNA-hydrolyzing activity of the scFv, and translocated to the nuclei of HeLa cells and preferentially recognized TAR RNA. Thus, the properties associated with the Tat peptide were transferred to the antibody via Tat-grafting without loss of the intrinsic DNA-binding and hydrolyzing activities of the 3D8 scFv antibody.

  17. Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells.

    Science.gov (United States)

    Lv, Xinxin; Zhang, Jian; Xu, Rui; Dong, Yuguo; Sun, Aiyou; Shen, Yaling; Wei, Dongzhi

    2016-07-01

    Immunotoxins are a new class of antibody-targeted therapy in clinical development. Traditional immunotoxins that are constructed from the toxins of plants or bacteria need to be internalized to the cytoplasm and thus have limited antitumor efficacy. In the present study, we combined a recently reported sea anemone cytolysin Gigantoxin-4 with an anti-HER2/neu single-chain variable fragment 4D5 scFv to construct a novel immunotoxin. We fused a SUMO tag to the N-terminus of Gigantoxin-4-4D5 scFv and it was successfully expressed in Escherichia coli strain BL21 (DE3) in a soluble form. After purification, the purity of Gigantoxin-4-4D5 scFv reached 96 % and the yield was 14.3 mg/L. Our results demonstrated that Gigantoxin-4-4D5 scFv exerted a highly cytotoxic effect on the HER2/neu-positive ovarian carcinoma SK-OV-3 cell line. And the hemolytic activity was weaker, making it safe for normal cells. The results of immunofluorescence analysis showed that this novel immunotoxin could specifically bind to SK-OV-3 cells with no recognition of human embryonic kidney 293 cells. Scanning electron microscope observations and extracellular lactate dehydrogenase activity indicated that it could induce necrosis in SK-OV-3 cells by disrupting the cell membrane. Moreover, it could also mediate apoptosis of SK-OV-3 cells. PMID:27063011

  18. Preparation of single chain variable fragment of MG7 mAb by phage display technology

    Institute of Scientific and Technical Information of China (English)

    Zhao-Cai Yu; Jie Ding; Yong-Zhan Nie; Dai-Ming Fan; Xue-Yong Zhang

    2001-01-01

    AIM To develop the single chain variable fragment of MG7 murine anti-human gastric cancer monoclonal antibody using the phage display technology for obtaining a tumor-targeting mediator. METHODS mRNA was isolated from MG7-producing murine hybridoma cell line and converted into cDNA. The variable fragments of heavy and light chain were amplified separately and assembled into ScFv with a specially constructed DNA linker by PCR. The ScFvs DNA was ligated into the phagmid vector pCANTAB5E and the ligated sample was transformed into competent E. Coli TG1. The transformed cells were infected with M13K07 helper phage to form MG7 recombinant phage antibody library. The volume and recombinant rate of the library were evaluated by means of bacterial colony count and restriction analysis. After two rounds of panning with gastric cancer cell line KATOⅢ of highly expressing MG7binding antigen, the phage clones displaying ScFv of the antibody were selected by ELISA from the enriched phage clones. The antigen-binding affinity of the positive clone was detected by competition ELISA. HB2151 E. Coli was transfected with the positive phage clone demonstrated by competition ELISA for production of a soluble form of the MG7 ScFv. ELISA assay was used to detect the antigenbinding affinity of the soluble MG7 ScFv. Finally, the relative molecular mass of soluble MG7 ScFv was measured by SDS-PAGE. RESULTS The VH, VL and ScFv DNAs were about 340bp,320bp and 750bp, respectively. The volume of the library was up to 2 × 106 and 8 of 11 random clones were recombinants. Two phage clones could strongly compete with the original MG7 antibody for binding to the antigen expressed on KATO Ⅲ cells. Within 2 strong positive phage clones, the soluble MG7 ScFv from one clone was found to have the binding activity with KATO Ⅲ cells.SDS-PAGE showed that the relative molecular weight of soluble MG7 ScFv was 32. CONCLUSION The MG7 ScFv was successfully produced by phage antibody technology, which may

  19. A simple vector system to improve performance and utilisation of recombinant antibodies

    Directory of Open Access Journals (Sweden)

    Vincent Karen J

    2006-12-01

    Full Text Available Abstract Background Isolation of recombinant antibody fragments from antibody libraries is well established using technologies such as phage display. Phage display vectors are ideal for efficient display of antibody fragments on the surface of bacteriophage particles. However, they are often inefficient for expression of soluble antibody fragments, and sub-cloning of selected antibody populations into dedicated soluble antibody fragment expression vectors can enhance expression. Results We have developed a simple vector system for expression, dimerisation and detection of recombinant antibody fragments in the form of single chain Fvs (scFvs. Expression is driven by the T7 RNA polymerase promoter in conjunction with the inducible lysogen strain BL21 (DE3. The system is compatible with a simple auto-induction culture system for scFv production. As an alternative to periplasmic expression, expression directly in the cytoplasm of a mutant strain with a more oxidising cytoplasmic environment (Origami 2™ (DE3 was investigated and found to be inferior to periplasmic expression in BL21 (DE3 cells. The effect on yield and binding activity of fusing scFvs to the N terminus of maltose binding protein (a solubility enhancing partner, bacterial alkaline phosphatase (a naturally dimeric enzymatic reporter molecule, or the addition of a free C-terminal cysteine was determined. Fusion of scFvs to the N-terminus of maltose binding protein increased scFv yield but binding activity of the scFv was compromised. In contrast, fusion to the N-terminus of bacterial alkaline phosphatase led to an improved performance. Alkaline phosphatase provides a convenient tag allowing direct enzymatic detection of scFv fusions within crude extracts without the need for secondary reagents. Alkaline phosphatase also drives dimerisation of the scFv leading to an improvement in performance compared to monovalent constructs. This is illustrated by ELISA, western blot and

  20. High-level production in Pichia pastoris of an anti-p185HER-2 single-chain antibody fragment using an alternative secretion expression vector.

    Science.gov (United States)

    Gurkan, Cemal; Symeonides, Stefan N; Ellar, David J

    2004-02-01

    The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the recombinant production of a wide variety of proteins. Initial success with this system was greatly facilitated by the development of versatile expression vectors that were almost exclusively based on the strong, tightly regulated promoter of the P. pastoris major alcohol oxidase gene ( AOX1 ). For example, pIB4 is an Escherichia coli - P. pastoris shuttle vector that also uses the AOX1 promoter to allow intracellular expression of endogenous and foreign genes in the latter organism. Since the eukaryotic advantages of P. pastoris would be best harnessed through the secretory targeting of the recombinant proteins, we modified the pIB4 vector by adding the Saccharomyces cerevisiae alpha-factor secretion signal immediately upstream of its multiple cloning site. Here we describe the construction of this modified vector, pIB4alpha, and its successful use for the high-level expression and secretion of a functional single-chain antibody fragment (scFv), C6.5, which targets p185(HER-2), a cell-surface glycoprotein overexpressed in about 30% of human breast and ovarian cancers. The PCR strategy used for the subcloning of the C6.5 construct into pIB4alpha also introduced a short DNA sequence coding for a C-terminal hexahistidine tag, which allowed subsequent purification of the secreted scFv, by immobilized-metal-affinity chromatography, to a yield of 70 mg x l(-1) of shake-flask culture. In conclusion, our results suggest that the secretion expression vector pIB4alpha not only complements the original pIB4 vector for intracellular expression in P. pastoris, but might also constitute an attractive alternative to the commercially available secretion expression vectors. PMID:12962542

  1. Targeting immune effector molecules to human tumor cells through genetic delivery of 5T4-specific scFv fusion proteins.

    Science.gov (United States)

    Myers, Kevin A; Ryan, Matthew G; Stern, Peter L; Shaw, David M; Embleton, M Jim; Kingsman, Susan M; Carroll, Miles W

    2002-11-01

    Although several clinical trials have shown beneficial effects by targeting tumor-associated antigens (TAAs) with monoclonal antibodies, a number of issues, including poor penetration of the tumor mass and human antimouse antibody responses, remain. The use of recombinant single-chain Fv (scFv) fragments has the potential to address these and other issues while allowing the addition of different effector functions. To develop therapeutic strategies that recruit both humoral and cellular arms of the immune response, we have constructed chimeric proteins linking either the human IgG1 Fc domain or the extracellular domain of murine B7.1 to a scFv specific for the oncofetal glycoprotein, 5T4. This TAA is expressed by a wide variety of carcinomas and is associated with metastasis and poorer clinical outcome. We have engineered retroviral constructs that produce fusion proteins able to interact simultaneously with both 5T4-positive cells and with the receptor/ligands of the immune effector moieties. Genetic delivery through a murine leukemia virus vector to 5T4-positive tumor cells results in the secreted scFv fusion protein binding to the cell surface. Furthermore, the scFv-HIgG1 fusion protein is able to direct lysis of 5T4-expressing human tumor cell lines through antibody-dependent cell cytotoxicity, indicating its potential as a gene therapy for human cancers. PMID:12386827

  2. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression

    DEFF Research Database (Denmark)

    Tsimikas, Sotirios; Miyanohara, Atsushi; Hartvigsen, Karsten; Merki, Esther; Shaw, Peter X; Chou, Meng-Yun; Pattison, Jennifer; Torzewski, Michael; Sollors, Janina; Friedmann, Theodore; Lai, N Chin; Hammond, H Kirk; Getz, Godfrey S; Reardon, Catherine A; Li, Andrew C; Banka, Carole L; Witztum, Joseph L

    2011-01-01

    We sought to assess the in vivo importance of scavenger receptor (SR)-mediated uptake of oxidized low-density lipoprotein (OxLDL) in atherogenesis and to test the efficacy of human antibody IK17-Fab or IK17 single-chain Fv fragment (IK17-scFv), which lacks immunologic properties of intact...

  3. Characterization of single chain antibody targets through yeast two hybrid

    Directory of Open Access Journals (Sweden)

    Vielemeyer Ole

    2010-08-01

    Full Text Available Abstract Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv, are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID, efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise

  4. pMINERVA: A donor-acceptor system for the in vivo recombineering of scFv into IgG molecules.

    Science.gov (United States)

    Batonick, M; Kiss, M M; Fuller, E P; Magadan, C M; Holland, E G; Zhao, Q; Wang, D; Kay, B K; Weiner, M P

    2016-04-01

    Phage display is the most widely used method for selecting binding molecules from recombinant antibody libraries. However, validation of the phage antibodies often requires early production of the cognate full-length immunoglobulin G (IgG). The conversion of phage library outputs to a full immunoglobulin via standard subcloning is time-consuming and limits the number of clones that can be evaluated. We have developed a novel system to convert scFvs from a phage display vector directly into IgGs without any in vitro subcloning steps. This new vector system, named pMINERVA, makes clever use of site-specific bacteriophage integrases that are expressed in Escherichia coli and intron splicing that occurs within mammalian cells. Using this system, a phage display vector contains both bacterial and mammalian regulatory regions that support antibody expression in E. coli and mammalian cells. A single-chain variable fragment (scFv) antibody is expressed on the surface of bacteriophage M13 as a genetic fusion to the gpIII coat protein. The scFv is converted to an IgG that can be expressed in mammalian cells by transducing a second E. coli strain. In that strain, the phiC31 recombinase fuses the heavy chain constant domain from an acceptor plasmid to the heavy chain variable domain and introduces controlling elements upstream of the light chain variable domain. Splicing in mammalian cells removes a synthetic intron containing the M13 gpIII gene to produce the fusion of the light chain variable domain to the constant domain. We show that phage displaying a scFv and recombinant IgGs generated using this system are expressed at wild-type levels and retain normal function. Use of the pMINERVA completely eliminates the labor-intensive subcloning and DNA sequence confirmation steps currently needed to convert a scFv into a functional IgG Ab. PMID:26851519

  5. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment.

    Science.gov (United States)

    Zhen, Le; Ford, Nicole; Gale, Debra K; Roesijadi, Guritno; Rorrer, Gregory L

    2016-05-15

    A selective and label-free biosensor for detection of the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solution was developed based on the principle of photoluminescence quenching of upon immunocomplex formation with antibody-functionalized diatom frustule biosilica. The diatom frustule is an intricately nanostructured, highly porous biogenic silica material derived from the shells of microscopic algae called diatoms. This material emits strong visible blue photoluminescence (PL) upon UV excitation. PL-active frustule biosilica was isolated from cultured cells of the marine diatom Pinnularia sp. and functionalized with a single chain variable fragment (scFv) derived from an anti-TNT monoclonal antibody. When TNT was bound to the anti-TNT scFv-functionalized diatom frustule biosilica, the PL emission from the biosilica was partially quenched due to the electrophilic nature of the nitro (-NO2) groups on the TNT molecule. The dose-response curve for immunocomplex formation of TNT on the scFv-functionalized diatom frustule biosilica had a half-saturation binding constant of 6.4 ± 2.4·10(-8)M and statistically-significant measured detection limit of 3.5·10(-8)M. The binding and detection were selective for TNT and TNB (trinitrobenzene) but not RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) or 2,6-DNT (2,6-dinitrotoluene). PMID:26774089

  6. The use of a cocktail of single chain Fv antibody fragments to improve the in vitro and in vivo targeting of melanoma

    International Nuclear Information System (INIS)

    Radio scintigraphy using single chain antibody fragments (scFvs) offers a potenti al means of early detection of melanoma metastases. However, previous studies have shown suboptimal levels of tumour localization and nonspecific background accumulation which may be due to antigen heterogeneity. We aimed to improve tumour localization by using a cocktail of different scFvs targeting different epitopes on melanoma cells. We have previously developed three scFvs against distinct and highly tumour-specific melanoma cell-surface antigens by chain shuffling and antibody phage selection on melanoma cells. Three scFvs, RAFT3, B3 and B4 were labeled with 125Iodine and tested both individually and as a cocktail in a nude mouse xenograft model far human melanoma. Results demonstrated improved tumour localization in vivo when compared to the individual scFvs. Tumour uptake of the cocktail at l hour was 24.220% ID/g (injected dose/gram) compared with 2.854%, 2.263% and 1.355% far B4, RAFT3 and B3, respectively, when injected individually. In addition, the cocktail exhibited significantly superior tumour to normal tissue ratios far muscle and spleen (p<0.05). A combination or cocktail of scFv clones may have an advantage aver individual scFvs far melanoma targeting in patients because of heterogeneity in the expression of different epitopes of antigens on melanoma cells

  7. Stability of llama heavy chain antibody fragments under extreme conditions

    OpenAIRE

    Dolk, E.

    2004-01-01

    Camelids have next to their normal antibodies, a unique subset of antibodies lacking light chains. The resulting single binding domain, VHH, of these heavy chain antibodies consequently have unique properties. A high stability is one of these properties, which was investigated in this thesis. The applications in which these VHHs are to be used, require functionality in non-physiological environments. High temperature, anionic and non-ionic surfactants in shampoo, and the low pH and digestive ...

  8. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  9. Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†.

    Science.gov (United States)

    Blackler, Ryan J; Evans, Dylan W; Smith, David F; Cummings, Richard D; Brooks, Cory L; Braulke, Thomas; Liu, Xinyu; Evans, Stephen V; Müller-Loennies, Sven

    2016-02-01

    The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition. PMID:26503547

  10. Production of recombinant antibody fragments in Bacillus megaterium

    OpenAIRE

    Jahn Dieter; Schirrmann Thomas; Biedendieck Rebekka; Roth Andreas; Hust Michael; Jordan Eva; Dübel Stefan

    2007-01-01

    Abstract Background Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. ...

  11. Antibody-based fluorescent and fluorescent ratiometric indicators for detection of phosphotyrosine.

    Science.gov (United States)

    Huynh Nhat, Kim Phuong; Watanabe, Takayoshi; Yoshikoshi, Kensuke; Hohsaka, Takahiro

    2016-08-01

    Fluorescent indicators for protein phosphorylation are very important in not only fundamental biology but also biomedical applications. In this study, we developed novel fluorescent and fluorescent ratiometric indicators for detection of phosphotyrosine (pTyr) derivatives. A single-chain antibody variable fragment (scFv) against phosphotyrosine was fluorescent-labeled by incorporation of tetramethylrhodamine (TAMRA)-linked nonnatural amino acid at the N- or C-terminus. The TAMRA-labeled scFv showed fluorescence enhancement upon addition of pTyr-containing peptides based on antigen-dependent fluorescence quenching effect on TAMRA. The TAMRA-labeled scFv was further fused with enhanced green fluorescent protein (EGFP) to generate a double-labeled scFv for pTyr. In the absence of antigen, fluorescence resonance energy transfer (FRET) occurred from EGFP to TAMRA but TAMRA was quenched. The antigen-binding removed the quenching of TAMRA while FRET occurred without altering its efficiency. As a result of the FRET and antigen-dependent fluorescence quenching effect, the double-labeled scFv exhibited fluorescence ratio enhancement upon the antigen-binding. The fluorescent and fluorescent ratiometric indicators obtained in this study will become a novel tool for analysis of protein phosphorylation. Moreover, this strategy utilizes antibody derivatives, and therefore, can be easily applied to other antigen-antibody pairs to generate fluorescent ratiometric indicators for various target molecules. PMID:26896314

  12. Characterization of monoclonal antibodies against MHC class II-associated p41 invariant chain fragment

    International Nuclear Information System (INIS)

    Mouse monoclonal antibodies directed against human MHC class II-associated p41 invariant chain fragment have been generated. Mice were immunized with human recombinant Ii-isoform p26. For hybridoma production mouse splenocytes and myeloma cells were fused. Hybridoma cells were screened using ELISA and immunoblotting. Three cell lines (42B10, 42G11 and 43C8) were used for production of specific antibodies, which reacted with p41 fragment and did not bind to cathepsins L or S or their proenyzmes. As primary antibody for immunofluorescence staining of lymph node tissue sections clone 2C12 MAb was selected. Specific localization of p41 fragment in certain cells in lymph nodes was observed. (author)

  13. Anti-sulfotyrosine antibodies

    Science.gov (United States)

    Bertozzi, Carolyn R.; Kehoe, John; Bradbury, Andrew M.

    2009-09-15

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  14. Construction and expression of D-dimer and GPIIb/IIIa single-chain bispecific antibody

    OpenAIRE

    DAN, ZHAOKUI; Tan, Zui; Xia, Hongli; WU, GAN

    2013-01-01

    The aim of this study was to construct a plasmid expressing glycoprotein IIb-IIIa (GPIIb/IIIa) and D-dimer single-chain bispecific antibody for the targeted therapy of thrombosis. The phosphorylated gene encoding the anti-GPIIb/IIIa single-chain variable fragment (scFv) and the gene encoding the anti-D-dimer scFv were amplified by PCR and linked in tandem by blunt-end ligation. The recombinant plasmid was transfected into the competent cell line HB2151 and identified by PCR and DNA sequencing...

  15. Functional improvement of antibody fragments using a novel phage coat protein III fusion system

    DEFF Research Database (Denmark)

    Jensen, Kim Bak; Larsen, Martin; Pedersen, Jesper Søndergaard; Christensen, Peter Astrup; Álvarez-Vallina, Luis; Goletz, Steffen; Clark, Brian F.C.; Kristensen, Peter

    2002-01-01

    constitute an easy and inexpensive method compared to hybridoma cultures. Such approaches have, however, often suffered from low yields and poor functionality. A general method is described here which enables expressions of functional antibody fragments when fused to the amino-terminal domain(s) of the...... heterologous expression systems will benefit present-day quests in structural and functional genomics where high amounts of active protein are required. One example, which has been the subject of considerable interest, is recombinant antibodies or fragments thereof as expressions of these in bacteria...

  16. Magnetosome Expression of Functional Camelid Antibody Fragments (Nanobodies) in Magnetospirillum gryphiswaldense▿†

    OpenAIRE

    Pollithy, Anna; Romer, Tina; Lang, Claus; Müller, Frank D.; Helma, Jonas; Leonhardt, Heinrich; Rothbauer, Ulrich; Schüler, Dirk

    2011-01-01

    Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surf...

  17. Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications

    OpenAIRE

    Stewart Nuttall; Perugini, Matthew A.; Iveth González; Casey, Joanne L.; Abdulmonem Sanalla; Miles Barraclough; Con Dogovski; Julie Angerosa; Kathy Parisi; Olan Dolezal; Katherine Griffiths; Michael Foley

    2013-01-01

    The single variable new antigen receptor domain antibody fragments (VNARs) derived from shark immunoglobulin new antigen receptor antibodies (IgNARs) represent some of the smallest known immunoglobulin-based protein scaffolds. As single domains, they demonstrate favorable size and cryptic epitope recognition properties, making them attractive in diagnosis and therapy of numerous disease states. Here, we examine the stability of VNAR domains with a focus on a family of VNARs specific for apica...

  18. Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form

    Directory of Open Access Journals (Sweden)

    Kaku Yoshihiro

    2012-09-01

    Full Text Available Abstract Background In 2009, a novel influenza A/H1N1 virus (H1N1pdm quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1. Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs. Findings Human single-fold scFv libraries (Tomlinson I + J underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA. After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity. Discussion Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display

  19. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Luis Mario Rodríguez-Martínez

    Full Text Available Current Ebola virus (EBOV detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV proteins. In particular, several monoclonal antibodies (mAbs have been described that bind the capsid glycoprotein (GP of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude and they are easily and economically produced in bacterial cultures.Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.

  20. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Larissa M. Alvarenga

    2014-08-01

    Full Text Available Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.

  1. Optimization of the crystallizability of a single-chain antibody fragment

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Král, Vlastimil; Fábry, Milan; Sedláček, Juraj; Veverka, Václav; Řezáčová, Pavlína

    2014-01-01

    Roč. 70, č. 12 (2014), s. 1701-1706. ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : single-chain antibody fragment * Thermofluor assay * differential scanning fluorimetry * crystallizability optimization * oligomerization * crystallization Subject RIV: CE - Biochemistry Impact factor: 0.527, year: 2014

  2. Association of selenocysteine transfer RNA fragments with serum antibody response to Mycoplasma spp. in beef cattle

    Science.gov (United States)

    The objective was to identify transfer RNA fragments (tRFs) associated with a serum antibody response to Mycoplasma spp. in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected...

  3. Towards crystal structures of antibodies and transcription factors

    Czech Academy of Sciences Publication Activity Database

    Písačková, Jana; Procházková, Kateřina; Král, Vlastimil; Fábry, Milan; Řezáčová, Pavlína

    2013-01-01

    Roč. 20, č. 2 (2013), s. 121-123. ISSN 1211-5894 R&D Projects: GA MŠk ME08016; GA MŠk 1M0505; GA ČR GA203/09/0820 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : scFv antibody fragment * DeoR repressor protein * thermofluor assay * protein crystallization Subject RIV: FR - Pharmacology ; Medidal Chemistry

  4. Crystallization of BMP receptor type IA bound to the antibody Fab fragment AbD1556

    International Nuclear Information System (INIS)

    The crystallization of BMP receptor type IA bound to the neutralizing antibody Fab fragment AbD1556 obtained by phage-display selection is reported. An antibody Fab fragment, AbD1556, was selected against the extracellular domain of BMP receptor type IA, which blocks the binding of BMP-2 to BMPR-IA and thereby neutralizes BMP-2 activity. To study the mechanism by which BMPR-IA is recognized and bound by the Fab fragment, the complex of AbD1556 bound to BMPR-IA was prepared and crystallized. Crystals of this binary complex belonged to the monoclinic space group P21, with unit-cell parameters a = 89.32, b = 129.25, c = 100.24 Å, β = 92.27°

  5. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    International Nuclear Information System (INIS)

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the 18F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4'-(18F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T1/2β = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of 18F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10-3% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of 18F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs

  6. Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones.

    Science.gov (United States)

    Wen, Kai; Nölke, Greta; Schillberg, Stefan; Wang, Zhanhui; Zhang, Suxia; Wu, Congming; Jiang, Haiyang; Meng, Hui; Shen, Jianzhong

    2012-07-01

    Fluoroquinolones (FQs) are a group of synthetic, broad-spectrum antibacterial agents. Due to its extensive use in animal industry and aquaculture, residues of these antibiotics and the emergence of bacteria resistant to FQs have become a major public health issue. To prepare a generic antibody capable of recognizing nearly all FQs, a single-chain variable fragment (scFv) was generated from the murine hybridoma cells C49H1 producing a FQ-specific monoclonal antibody. This scFv was characterized by indirect competitive enzyme-linked immunosorbent assay (ciELISA), and it showed identical binding properties to parental monoclonal antibody: it was capable of recognizing 17 of 20 targeted FQs below maximum residue limits, except for sarafloxacin (SAR), difloxacin (DIF), and trovafloxacin (TRO) which are highly concerned members in the FQs family. In order to broaden the specificity of this scFv to SAR and its analogues (DIF and TRO), protein homology modeling and antibody-ligands docking analysis were employed to identify the potential key amino acid residues involved in hapten antibody. A mutagenesis phage display library was generated by site directed mutagenesis randomizing five aminoacid residues in the third heavy-chain complementarity determining region. After one round of panning against biotinylated norfloxacin (NOR) and four rounds of panning against biotinylated SAR, scFv variants we screened showed up to 10-fold improved IC(50) against SAR, DIF, and TRO in ciELISA while the specificity against other FQs was fully retained. PMID:22549819

  7. Isolation of active site and antibody-binding fragments of human erythrocyte transglutaminase

    International Nuclear Information System (INIS)

    Catalytically active human erythrocyte transglutaminase (TGase) was purified using an immunoaffinity column prepared from a monoclonal antibody to guinea pig liver TGase. The enzyme activity was completely inhibited by incorporation of iodo[14C]acetamide to the level of 1 mole per 1 mole of TGase. The 14C-labeled TGase was digested with cyanogen bromide, subjected to HPLC, and four pure peptides were isolated with molecular weights ranging from 3-22 KDa. Only one of the peptides was radiolabeled and characterized as an active site peptide of 10 KDa. Another peptide of 18 KDa was identified as a monoclonal antibody-binding domain of TGase. Although the active site and the antibody-binding domain were present on different cyanogen bromide fragments, the mouse anti-TGase inhibited 100% of TGase activity. The results suggest that the antibody-binding site is not located on the enzyme active site sequence, but that the three dimensional space configuration of the antigen-antibody complex hinders substrate binding to the active site. The radiolabeled active site cysteine residue was not found in the N-terminal 21 amino acids of the 10 KDa peptide. Additional fragments of the active site peptide are currently being analyzed

  8. Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy

    Science.gov (United States)

    Chen, Yunching; Zhu, Xiaodong; Zhang, Xiaoju; Liu, Bin; Huang, Leaf

    2010-01-01

    Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with tumor-targeting single-chain antibody fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and microRNA (miRNA) into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently downregulated the target genes (c-Myc/MDM2/VEGF) in the lung metastasis. Two daily intravenous injections of the combined siRNAs in the GC4-targeted nanoparticles significantly reduced the tumor load in the lung. miRNA-34a (miR-34a) induced apoptosis, inhibited survivin expression, and downregulated MAPK pathway in B16F10 cells. miR-34a delivered by the GC4-targeted nanoparticles significantly downregulated the survivin expression in the metastatic tumor and reduced tumor load in the lung. When miR-34a and siRNAs were co-formulated in GC4-targeted nanoparticles, an enhanced anticancer effect was observed. PMID:20606648

  9. The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma

    Science.gov (United States)

    Iyer, Arun K.; Su, Yang; Feng, Jinjin; Lan, Xiaoli; Zhu, Xiaodong; Liu, Yue; Gao, Dongwei; Seo, Youngho; VanBrocklin, Henry F.; Broaddus, V. Courtney; Liu, Bin; He, Jiang

    2011-01-01

    Immunoliposomes (ILs) anchored with internalizing human antibodies capable of targeting all subtypes of mesothelioma can be useful for targeted imaging and therapy of this malignant disease. The objectives of this study were to evaluate both the in vitro and in vivo tumor targeted internalization of novel internalizing human single chain antibody (scFv) anchored ILs on both epithelioid (M28) and sarcomatoid (VAMT-1) subtypes of human mesothelioma. ILs were prepared by post-insertion of mesothelioma-targeting human scFv (M1) onto preformed liposomes and radiolabeled with 111In (111In-IL-M1), along with control non-targeted liposomes (111In-CL). Incubation of 111In-IL-M1 with M28, VAMT-1, and a control non-tumorigenic cell-line (BPH-1) at 37°C for 24 h revealed efficient binding and rapid internalization of ILs into both subtypes of tumor cells but not into the BPH-1 cells; internalization accounted for approximately 81-94% of total cell accumulation in mesothelioma cells compared to 37-55% in control cells. In tumor bearing mice intravenous (i.v.) injection of 111In-IL-M1 led to remarkable tumor accumulation: 4 % and 4.7% injected dose per gram (% ID/g) for M28 and VAMT-1 tumors, respectively, 48 h after injection. Furthermore, tumor uptake of 111In-IL-M1 in live xenograft animal models was verified by single photon emission computed tomography (SPECT/CT). In contrast, i.v. injection of 111In-CL in tumor-bearing mice revealed very low uptake in both subtypes of mesothelioma, 48 h after injection. In conclusion, M1 scFv-anchored ILs showed selective tumor targeting and rapid internalization into both epithelioid and sarcomatoid subtypes of human mesothelioma, demonstrating its potential as a promising vector for enhanced tumor drug targeting. PMID:21255833

  10. Nebulized Anti-IL-13 Monoclonal Antibody Fab' Fragment Reduces Allergen-Induced Asthma

    OpenAIRE

    Hacha, Jonathan; Tomlinson, K; Maertens, Ludovic; Paulissen, Geneviève; Rocks, Natacha; Foidart, Jean-Michel; Noël, Agnès; Palframan, R; Guéders, Maud; Cataldo, Didier

    2012-01-01

    Rationale: Interleukin-13 (IL-13) is a prototypic Th2 cytokine and a central mediator of the complex cascade of events leading to asthmatic phenotype. Indeed, IL-13 plays key roles in IgE synthesis, bronchial hyperresponsiveness, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration. Objectives: We assessed the potential efficacy of inhaled anti-IL-13 monoclonal antibody Fab' fragment on allergen-induced airway inflammation, hyperresponsiveness and remodeling in an experime...

  11. Positron Emission Tomography Imaging of Endometrial Cancer Using Engineered Anti-EMP2 Antibody Fragments

    OpenAIRE

    Fu, Maoyong; Brewer, Sarah; Olafsen, Tove; Wu, Anna M.; Gordon, Lynn K.; Said, Jonathan; Braun, Jonathan; Wadehra, Madhuri

    2012-01-01

    Purpose As imaging of the cell surface tetraspan protein epithelial membrane protein-2 (EMP2) expression in malignant tumors may provide important prognostic and predictive diagnostic information, the goal of this study is to determine if antibody fragments to EMP2 may be useful for imaging EMP2 positive tumors. Procedures The normal tissue distribution of EMP2 protein expression was evaluated by immunohistochemistry and found to be discretely expressed in both mouse and human tissues. To det...

  12. Characterization of neutralizing monoclonal antibodies directed against tetanus toxin fragment C.

    Science.gov (United States)

    Yousefi, Mehdi; Tahmasebi, Fathollah; Younesi, Vahid; Razavi, Alireza; Khoshnoodi, Jalal; Bayat, Ali Ahmad; Abbasi, Ebrahim; Rabbani, Hodjatallah; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2014-01-01

    Clostridium tetani causes a life-threatening infectious disease by production of tetanus neurotoxin (TeNT), a 150 kDa molecule composed of light (LC) and heavy chain (HC) polypeptides. The TeNT HC contains an N-terminal domain critical for LC translocation and a C-terminal toxin receptor-binding domain known as fragment C. Despite extensive investigations on epitope specificity of anti-TeNT antibodies, the immunodominant neutralizing epitopes of the toxin are poorly defined. This study describes the generation and characterization of four monoclonal antibodies (MAb) specific for TeNT. The characteristics of each MAb were explored in terms of isotype, specificity, affinity, and immuno-globulin heavy chain variable region (IGHV) gene usage using ELISA, Western blotting, and sequencing techniques. The toxin neutralizing activity of the MAbs was also investigated using the in vitro GT1b neutralizing assay. The data demonstrated that all MAbs bind to tetanus toxin and toxoid. Sub-fragments binding analysis showed that two MAbs react with fragment C, one with both fragment C and LC, and one with LC. Only the two fragment C-specific MAbs were able to neutralize the toxin. Sequencing of the expressed VH and VL genes revealed rearrangements of various VH and VL gene segments in all hybridoma clones. Clonality of the hybridomas was also confirmed by a competition assay that showed recognition of distinct epitopes by these MAbs. The results suggest the importance of TeNT fragment C in terms of immunogenicity and toxin neutralization activity. PMID:23369087

  13. Immunoscintigraphy of CEA-expressing cancers with complete and fragmented monoclonal antibodies: indications, chances and limits

    International Nuclear Information System (INIS)

    CEA-expressing cancers belong to the most frequent malignant diseases of the western world. The early recognition of tumor recurrence or metastasis, respectively, is probably the key to an improvement of the patient's prognosis. Conventional radiological procedures are characterized by their limited sensitivity and specificity; therefore, complementary methods, such as immunoscintigraphy, are warranted. In Europe, essentially three monoclonal anti-CEA antibodies, which can be directly labeled with technetium (complete IgG of the clone BW431/26, as well as the fragments F023C5 and IMMU-4), are in clinical use. Complete IgG is burdened by slow tumor targeting kinetics and a slow background clearance. This makes its diagnostic use with short-lived isotopes difficult. Fragments are able to targert more quickly but express some metabolic instability, as well as a high renal accretion. Fragments have shown higher sensitivities in the detection of liver metastases and local recurrences, two of the most important sites of tumor relapse. In contrast to IgG, diagnosis is usually possible as early as after 4-6 h p.i. Thus, different indications for the use of IgG or fragments result, and, in the individual case, also complementary studies with both may be indicated. Whereas 30% of patients develop HAMA after a single administration of IgG, the HAMA incidence of fragments is, with less than 1%, dramatically lower, even in the case of repeated administrations. Future studies with humanized antibodies, smaller 'molecular recognition units', or the development of stable bivalent fragment with technetium label will show whether further improvements of the diagnostic accuracy are possible. (orig.)

  14. Effect of chloramine-T labeling conditions on the stability of monoclonal antibodies and their fragments

    International Nuclear Information System (INIS)

    Rapid in vivo degradation of radioiodinated monoclonal antibodies (MAb) has been reported. Conditions for radioiodination have varied. The purposes of this study were to compare the stability of MAb and their fragments when iodinated with chloramine-T (CT) under different conditions, and to compare methods for quality assessment of the radioiodinated molecules. A B-cell lymphoma MAb (Lym-1, IgG2a) and its FAb fragment, and a mammary cancer MAb(B6.01, IgG1) and its F(Ab')/sub 2/ fragment were iodinated with I-125 at CT:AB and I:Ab ratios of 1:1 and 1:10. Molecular sieving (TSK-3000) high performance liquid chromatography (HPLC), cellulose acetate electrophoresis (CAE) at 11 and 45 minutes and solid phase immunoreactivity (IRA) were used to observe stability of the molecules when stored at 40C. Radiochemical yield was greater than 95% in all instances. Iodination at CT:Ab and I:Ab ratios of 1:1 induced progressive degradation in all species which was most marked for the fragments. Iodination at CT:Ab and I:Ab ratios of 1:10 resulted in no observable degradation over 21 days. There was no significant difference in degradation between the IgG2a and IgG1 antibody when iodinated under identical circumstances. HPLC, CAE for 11 minutes and IRA, but not CAE for 45 minutes, revealed comparable changes. The authors conclude that lesser amounts of chloramine-T can be used to iodinate MAb and their fragments without loss of radiochemical efficiency and with improved stability of the species. MAb fragments are more vulnerable to chloramine-T. These observations may explain, at least in part, rapid in vivo degradation of radioiodinated MAb

  15. Characterization of crystals of an antibody-recognition fragment of the cancer differentiation antigen mesothelin in complex with the therapeutic antibody MORAb-009

    OpenAIRE

    Ma, Jichun; Tang, Wai Kwan; Esser, Lothar; Pastan, Ira; Xia, Di

    2012-01-01

    The therapeutic antibody MORAb-009 disrupts the interaction of mesothelin and the ovarian cancer antigen CA-125. Crystals have been grown of the Fab fragment derived from MORAb-009 and of its complex with an N-terminal fragment of mesothelin.

  16. Increased streptavidin uptake in tumors pretargeted with biotinylated antibody using a conjugate of streptavidin-Fab fragment

    International Nuclear Information System (INIS)

    Radiolabeled streptavidin accumulated in tumors pretargeted with biotinylated antibody. However, the absolute delivery of radioactivity was limited. To increase the tumor uptake of radioactivity further, we conjugated streptavidin with a mouse monoclonal antibody (MAb) fragment, OST6Fab, which recognizes antigen on human osteosarcoma. Another mouse MAb, OST7, which also reacts with the same tumor but recognizes an epitope different from the OST6 epitope, was biotinylated. The radioiodinated streptavidin-OST6Fab conjugate was administered to tumor-bearing mice after the biotinylated OST7 pretargeting. The uptake of the conjugate in tumors pretargeted with the biotinylated antibody was significantly higher than that of streptavidin and that of the conjugate of streptavidin and irrelevant Fab fragment. Renal uptake of radioactivity was decreased markedly, and the blood clearance was retarded by the conjugation with Fab fragment. In conclusion, the conjugate of streptavidin with specific Fab fragment increased the accumulation of radioactivity in tumors pretargeted with biotinylated antibody

  17. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains

    Directory of Open Access Journals (Sweden)

    Phelps Amanda L

    2009-11-01

    Full Text Available Abstract Background There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV, as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. Results In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. Conclusion A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans. Crown Copyright © 2009

  18. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems

    Directory of Open Access Journals (Sweden)

    Benevolo Maria

    2006-09-01

    Full Text Available Abstract Background Aberrant signaling by ErbB-2 (HER 2, Neu, a member of the human Epidermal Growth Factor (EGF receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. Methods Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs to ErbB-2 that involves their functional expression in (a bacteria, (b transient as well as stable transgenic tobacco plants, and (c a newly developed cell-free transcription-translation system. Results An ScFv (ScFv800E6 was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T, displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 × 108 M-1 only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. Conclusion ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology

  19. A sensitive TSH assay in spot-coated microwells utilizing recombinant antibody fragments.

    Science.gov (United States)

    Ylikotila, J; Välimaa, L; Vehniäinen, M; Takalo, H; Lövgren, T; Pettersson, K

    2005-11-30

    We have developed a novel TSH immunoassay based on a simplified test protocol suitable for point-of-care testing yet providing 3rd generation TSH assay sensitivity. The antibody density and the functional solid phase capacity were improved up to six-fold by capturing the site-specifically biotinylated recombinant Fab fragment or single chain antibody fragment onto the surface of immobilized streptavidin. An important mechanism for obtaining a low limit of detection (0.003 mIU/l) was the reduction of the coated area to a size ("spot") more closely coinciding with the excitation beam. The reporter technology was based on time-resolved fluorometric detection of inherently fluorescent europium chelates of high quantum yield. The ready-to-use assay concept employed the all-in-one (Aio!) principle--holding all assay components in a dry form in the microtitration well--to provide a simple assay protocol. Direct signal measurement from the surface was done after the washing step without a separate development step. It is concluded that size reduction and site-specific labeling of the antibodies to create a surface with high functional capacity provides a rapid, highly sensitive immunoassay. PMID:16154584

  20. Proteomic differences in recombinant CHO cells producing two similar antibody fragments.

    Science.gov (United States)

    Sommeregger, Wolfgang; Mayrhofer, Patrick; Steinfellner, Willibald; Reinhart, David; Henry, Michael; Clynes, Martin; Meleady, Paula; Kunert, Renate

    2016-09-01

    Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. "Omics" studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label-free LC-MS proteomic analyses to investigate product-specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single-chain Fv-Fc homodimeric antibody fragments (scFv-Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase-mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label-free proteomic analysis. LC-MS-MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902-1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26913574

  1. Mutations in Antibody Fragments Modulate Allosteric Response Via Hydrogen-Bond Network Fluctuations.

    Science.gov (United States)

    Srivastava, Amit; Tracka, Malgorzata B; Uddin, Shahid; Casas-Finet, Jose; Livesay, Dennis R; Jacobs, Donald J

    2016-05-10

    A mechanical perturbation method that locally restricts conformational entropy along the protein backbone is used to identify putative allosteric sites in a series of antibody fragments. The method is based on a distance constraint model that integrates mechanical and thermodynamic viewpoints of protein structure wherein mechanical clamps that mimic substrate or cosolute binding are introduced. Across a set of six single chain-Fv fragments of the anti-lymphotoxin-β receptor antibody, statistically significant responses are obtained by averaging over 10 representative structures sampled from a molecular dynamics simulation. As expected, the introduced clamps locally rigidify the protein, but long-ranged increases in both rigidity and flexibility are also frequently observed. Expanding our analysis to every molecular dynamics frame demonstrates that the allosteric responses are modulated by fluctuations within the hydrogen-bond network where the native ensemble is comprised of conformations that both are, and are not, affected by the perturbation in question. Population shifts induced by the mutations alter the allosteric response by adjusting which hydrogen-bond networks are the most probable. These effects are compared using response maps that track changes across each single chain-Fv fragment, thus providing valuable insight into how sensitive allosteric mechanisms are to mutations. PMID:27166802

  2. Recombinant human antibodies: linkage of an Fab fragment from a combinatorial library to an Fc fragment for expression in mammalian cell culture.

    Science.gov (United States)

    Bender, E; Woof, J M; Atkin, J D; Barker, M D; Bebbington, C R; Burton, D R

    1993-04-01

    The combinatorial phage library approach to immunoglobulin repertoire cloning recently made it possible to isolate gene fragments encoding human immunoglobulin G1 Fabs binding with high affinity to specific antigens. Here we describe the construction of genes encoding whole human anti-tetanus toxoid antibodies based on one of these gene fragments and the efficient expression of these constructs by co-transfection of separate heavy and light chain vectors into a Chinese hamster ovary cell line constitutively expressing a viral transactivator protein. This system will be generally useful for the rapid analysis of recombinant antibodies derived from combinatorial libraries. PMID:8518367

  3. Conjugation of R-Phycoerythrin to a Polyclonal Antibody and F (ab')2 Fragment of a Polyclonal Antibody by Two Different Methods.

    Science.gov (United States)

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah; Mahmoudi, Ahmad Reza; Akhondi, Mohammad Mehdi; Zarnani, Amir Hassan; Goli, Leila Balaei; Babaei, Mahdokht; Ghods, Roya

    2010-04-01

    R-Phycoerythrin (R-PE), a fluorescent protein from phycobiliprotein family, is isolated from red algae. Conjugation of antibodies to R-PE facilitates multiple fluorescent staining methods. In the present study polyclonal antibodies and polyclonal F(ab')2 fragment antibodies were conjugated to R-PE by two different methods. The efficiency of the methods was evaluated using Immunocytochemistry (ICC) and Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). In the first conjugation method, PE was attached to SMCC linker followed by conjugation of antibody to PE-SMCC. In the second method, SH groups were added onto R-PE molecule, while the antibody was attached to SPDP linker. Then, the antibody-SPDP molecule was conjugated to R-PE. Our results showed that the two conjugation methods did not have any abrogative effects on the antibody binding activity. PMID:23407609

  4. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains

    International Nuclear Information System (INIS)

    Graphical abstract: A phage-displayed chicken scFv antibody, FvSG7, binds on the surface antigen of conidiospores and the mycelia of F. verticillioides. Its fusion with alkaline phosphatase (AP) through a 218 linker displayed a 4-fold higher affinity compared with the parent scFv antibody and efficiently detected toxigenic Fusarium pathogens in cereal grains. Highlights: ► Generation of a highly reactive scFv antibody against F. verticillioides. ► Localization of the antibody binding to the surface target of F. verticillioides. ► Expression of the antibody–alkaline phosphatase (AP) fusion linked by a 218 linker. ► The antibody–AP fusion has a higher affinity than the parental antibody. ► The antibody–AP fusion detects toxigenic Fusarium pathogens in cereal grains. -- Abstract: Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv–AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding capacity to

  5. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zu-Quan [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); Li, He-Ping [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zhang, Jing-Bo [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Huang, Tao [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Liu, Jin-Long; Xue, Sheng [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); Wu, Ai-Bo [Institute for Agri-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403 (China); Liao, Yu-Cai, E-mail: ycliao06@yahoo.com.cn [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); National Center of Plant Gene Research, Wuhan 430070 (China)

    2013-02-18

    Graphical abstract: A phage-displayed chicken scFv antibody, FvSG7, binds on the surface antigen of conidiospores and the mycelia of F. verticillioides. Its fusion with alkaline phosphatase (AP) through a 218 linker displayed a 4-fold higher affinity compared with the parent scFv antibody and efficiently detected toxigenic Fusarium pathogens in cereal grains. Highlights: ► Generation of a highly reactive scFv antibody against F. verticillioides. ► Localization of the antibody binding to the surface target of F. verticillioides. ► Expression of the antibody–alkaline phosphatase (AP) fusion linked by a 218 linker. ► The antibody–AP fusion has a higher affinity than the parental antibody. ► The antibody–AP fusion detects toxigenic Fusarium pathogens in cereal grains. -- Abstract: Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv–AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding

  6. Tumor targeting of humanized fragment antibody secreted from transgenic rice cell suspension culture

    DEFF Research Database (Denmark)

    Hong, Shin-Young; Lee, Tae-Sup; Kim, Ju; Jung, Jae-Ho; Choi, Chang-Woon; Kim, Tae-Geum; Kwon, Tae-Ho; Jang, Yong-Suk; Yang, Moon-Sik

    The tumor-associated glycoprotein 72 (TAG 72) has been shown to be expressed in the majority of human adenocarcinomas. In an effort to develop a technique for the safe and inexpensive production of large quantities of anti-TAG 72 humanized antibody fragments (hzAb) as a future source of clinical......-grade proteins, we developed a transgenic rice cell suspension culture system. The in vivo assembly and secretion of hzAb were achieved in a transgenic rice cell culture under the control of the rice alpha amylase 3D (RAmy 3D) expression system, and the biological activities of plant-derived hzAb were determined...

  7. Antibody phage display applications for nuclear medicine imaging and therapy

    International Nuclear Information System (INIS)

    Antibody-based constructs genetically engineered from genes of diverse origin provide a remarkable opportunity to develop functional molecular imaging techniques and specific molecular targeted radionuclide therapies. Phage display libraries of antibody fragment genes can be used to select antibody-based constructs that bind any chosen epitope. A large naive human antibody-based library was used to illustrate binding of antibody constructs to a variety of common and unique antigens. Antibody-based libraries from hybridoma cells, lymphocytes from immunized humans or from mice and human antibody repertoires produced in transgenic mice have also been described. Several orders of magnitude of affinity enhancement can be achieved by random or site specific mutations of the selected binding peptide domains of the scFv. Affinities (Kd) as high as 10-11 M (10 pM) for affinity-matured scFv have been documented. Such gene libraries thus offer an almost limitless variety of antibody-based molecular binding peptide modules that can be used in creative ways for the construction of new targeting agents for functional or molecular imaging and therapy

  8. Antibody phage display applications for nuclear medicine imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Winthrop, M.D.; Denardo, G.L.; Denardo, S.J. [Sacramento Univ. of California Davis Medical Center, Sacramento, CA (United States). Dept. of Internal Medicine, Div. of Radiodiagnosis and Terapy

    2000-09-01

    Antibody-based constructs genetically engineered from genes of diverse origin provide a remarkable opportunity to develop functional molecular imaging techniques and specific molecular targeted radionuclide therapies. Phage display libraries of antibody fragment genes can be used to select antibody-based constructs that bind any chosen epitope. A large naive human antibody-based library was used to illustrate binding of antibody constructs to a variety of common and unique antigens. Antibody-based libraries from hybridoma cells, lymphocytes from immunized humans or from mice and human antibody repertoires produced in transgenic mice have also been described. Several orders of magnitude of affinity enhancement can be achieved by random or site specific mutations of the selected binding peptide domains of the scFv. Affinities (K{sub d}) as high as 10{sup -}11 M (10 pM) for affinity-matured scFv have been documented. Such gene libraries thus offer an almost limitless variety of antibody-based molecular binding peptide modules that can be used in creative ways for the construction of new targeting agents for functional or molecular imaging and therapy.

  9. Localization of tumors in vivo by scintigraphic identification of Clostridium butyricum using 131I-labelled antibodies and F(ab')2-antibody fragments

    International Nuclear Information System (INIS)

    Tumor-bearing mice injected with clostridial spores show enrichment and germination of the spores within the tumor. 131I-labelled anti-Clostridium-antibodies and anti-Clostridium-F(ab')2-fragments were used for a possible localization of tumors in vivo by scintiscanning. The application of the antibody revealed increased radioactivity in the tumors of mice pretreated with spores as well as in animals without pretreatment. In using F(ab')2-fragments instead of total antibody neither the apparently unspecific increase of radioactivity in not pretreated mice nor the specific fixation of labelled F(ab')2-fragments to clostridial rods in the tumors of pretreated animals could be demonstrated. The results are discussed with respect to further investigation

  10. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  11. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    International Nuclear Information System (INIS)

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2±1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  12. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality

    DEFF Research Database (Denmark)

    Kibat, Janek; Schirrmann, Thomas; Knape, Matthias J;

    2016-01-01

    Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform...... well and interact specifically enough with analytes unless an elaborate characterisation is performed. Here, we present an approach to shorten this process by combining the selection of suitable antibodies with the identification of informative target molecules by means of antibody microarrays, thereby...... reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples...

  13. Shark Variable New Antigen Receptor (VNAR Single Domain Antibody Fragments: Stability and Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Stewart Nuttall

    2013-01-01

    Full Text Available The single variable new antigen receptor domain antibody fragments (VNARs derived from shark immunoglobulin new antigen receptor antibodies (IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds. As single domains, they demonstrate favorable size and cryptic epitope recognition properties, making them attractive in diagnosis and therapy of numerous disease states. Here, we examine the stability of VNAR domains with a focus on a family of VNARs specific for apical membrane antigen 1 (AMA-1 from Plasmodium falciparum. The VNARs are compared to traditional monoclonal antibodies (mAbs in liquid, lyophilized and immobilized nitrocellulose formats. When maintained in various formats at 45 °C, VNARs have improved stability compared to mAbs for periods of up to four weeks. Using circular dichroism spectroscopy we demonstrate that VNAR domains are able to refold following heating to 80 °C. We also demonstrate that VNAR domains are stable during incubation under potential in vivo conditions such as stomach acid, but not to the protease rich environment of murine stomach scrapings. Taken together, our results demonstrate the suitability of shark VNAR domains for various diagnostic platforms and related applications.

  14. Crystal Structure of the Fab Fragment of an Anti-factor IX Antibody 10C12

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Li; ZENG Tu; HUANG Ming-Dong

    2008-01-01

    10C12 is an anticoagulant antibody identified from a phage display single-chain Fv human antibody library. It can be directed at the calcium-stabilized Gla domain of Factor-IX, an important coagulation factor in intrinsic pathway of blood coagulation cascade, and interfere with membrane anchoring of Factor IX, thus inhibiting blood coagulation function. 10C12 has been demonstrated as an effective anti-coagulant in attenuating thrombosis in several different animal models. Here, we report the crystal structure of the Fab fragment of 10C12. The crystal contains two Fab molecules in the asymmetric unit with identical conformation, forming a lattice with large cavities. In addition, comparison of this free Fab with the antigen-bound structure of 10C12 shows no change in CDR conformations and the relative disposition of the variable subunits of H and L chains, suggesting the rigid conformation of this 10C12 Fab and a lock-and-key mechanism of antibody-antigen recognition for 10C 12.

  15. Single-Chain Fragment Variable Passive Immunotherapies for Neurodegenerative Diseases

    OpenAIRE

    Liang Huang; Federoff, Howard J.; Xiaomin Su

    2013-01-01

    Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). In the past decade, single-chain fragment variable (scFv) -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aβ, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and...

  16. Polynucleotides encoding anti-sulfotyrosine antibodies

    Science.gov (United States)

    Bertozzi, Carolyn R.; Kehoe, John; Bradbury, Andrew M.

    2011-01-11

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  17. Generation of a Highly Reactive Chicken-Derived Single-Chain Variable Fragment against Fusarium verticillioides by Phage Display

    Directory of Open Access Journals (Sweden)

    Zu-Quan Hu

    2012-06-01

    Full Text Available Fusarium verticillioides is the primary causal agent of Fusarium ear and kernel rot in maize, producing fumonisin mycotoxins that are toxic to humans and domestic animals. Rapid detection and monitoring of fumonisin-producing fungi are pivotally important for the prevention of mycotoxins from entering into food/feed products. Chicken-derived single-chain variable fragments (scFvs against cell wall-bound proteins from F. verticillioides were isolated from an immunocompetent phage display library. Comparative phage enzyme-linked immunosorbant assays (ELISAs and sequencing analyses identified four different scFv antibodies with high sensitivity. Soluble antibody ELISAs identified two highly sensitive scFv antibodies, FvCA3 and FvCA4, with the latter being slightly more sensitive. Three-dimensional modeling revealed that the FvCA4 may hold a better overall structure with CDRH3, CDRL1 and CDRL3 centered in the core region of antibody surface compared with that of other scFvs. Immunofluorescence labeling revealed that the binding of FvCA4 antibody was localized to the cell walls of conidiospores and hyphae of F. verticillioides, confirming the specificity of this antibody for a surface target. This scFv antibody was able to detect the fungal mycelium as low as 10−2 μg/mL and contaminating mycelium at a quantity of 10−2 mg/g maize. This is the first report that scFv antibodies derived from phage display have a wide application for rapid and accurate detection and monitoring of fumonisin-producing pathogens in agricultural samples.

  18. Screening, expression, and characterization of an anti-human oxidized low-density lipoprotein single-chain variable fragment.

    Science.gov (United States)

    Kumano-Kuramochi, Miyuki; Fujimura, Takashi; Komba, Shiro; Maeda-Yamamoto, Mari; Machida, Sachiko

    2016-09-01

    Increased levels of oxidized low-density lipoprotein (OxLDL) in the blood circulation are correlated with atherosclerosis. Monoclonal antibody-based detection systems have been reported for OxLDL. We identified novel single-chain variable fragments (scFvs) having affinity for human OxLDL and related ligands. We constructed an scFv library from nonimmunized human spleen mRNA. Two types (γ+κ and μ+λ) of scFv phage libraries were enriched by biopanning, and five scFv clones with affinity for OxLDL were identified. The γκ5 scFv, which showed the highest affinity for OxLDL, was cloned into pET-22b(+) and expressed in Escherichia coli BL21(DE3). γκ5, expressed as an inclusion body in BL21(DE3), was refolded and purified. The specificity and sensitivity of γκ5 were analyzed using enzyme-linked immunosorbent assays (ELISAs). The γκ5 scFv showed affinity for OxLDL and acetylated LDL. The sensitivity of γκ5 to low concentrations (1-2 μg/mL) of OxLDL was higher than that to AcLDL and LDL. Finally, we developed a sandwich ELISA using γκ5 and CTLD14 (a lectin-like OxLDL receptor-1 ligand recognition region), which allowed specific detection of OxLDL at a level below 0.1 μg/mL. Our results indicated that the γκ5 scFv was a promising molecule for the detection of modified LDL at very low concentrations. PMID:27038672

  19. In Vitro Neutralisation of Rotavirus Infection by Two Broadly Specific Recombinant Monovalent Llama-Derived Antibody Fragments

    OpenAIRE

    Farah Aladin; Einerhand, Alexandra W. C.; Janneke Bouma; Sandra Bezemer; Pim Hermans; Danielle Wolvers; Kate Bellamy; Frenken, Leon G J; Jim Gray; Miren Iturriza-Gómara

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the presen...

  20. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  1. Preparation and diagnostic use of a novel recombinant single-chain antibody against rabies virus glycoprotein.

    Science.gov (United States)

    Yuan, Ruosen; Chen, Xiaoxu; Chen, Yan; Gu, Tiejun; Xi, Hualong; Duan, Ye; Sun, Bo; Yu, Xianghui; Jiang, Chunlai; Liu, Xintao; Wu, Chunlai; Kong, Wei; Wu, Yongge

    2014-02-01

    Rabies virus (RABV) causes a fatal infectious disease, but effective protection may be achieved with the use of rabies immunoglobulin and a rabies vaccine. Virus-neutralizing antibodies (VNA), which play an important role in the prevention of rabies, are commonly evaluated by the RABV neutralizing test. For determining serum VNA levels or virus titers during the RABV vaccine manufacturing process, reliability of the assay method is highly important and mainly dependent on the diagnostic antibody. Most diagnostic antibodies are monoclonal antibodies (mAbs) made from hybridoma cell lines and are costly and time consuming to prepare. Thus, production of a cost-effective mAb for determining rabies VNA levels or RABV titers is needed. In this report, we describe the prokaryotic production of a RABV-specific single-chain variable fragment (scFv) protein with a His-tag (scFv98H) from a previously constructed plasmid in a bioreactor, including the purification and refolding process as well as the functional testing of the protein. The antigen-specific binding characteristics, affinity, and relative affinity of the purified protein were tested. The scFv98H antibody was compared with a commercial RABV nucleoprotein mAb for assaying the VNA level of anti-rabies serum samples from different sources or testing the growth kinetics of RABV strains for vaccine manufactured in China. The results indicated that scFv98H may be used as a novel diagnostic tool to assay VNA levels or virus titers and may be used as an alternative for the diagnostic antibody presently employed for these purposes. PMID:24241896

  2. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry.

    Science.gov (United States)

    Luo, Haiming; Hernandez, Reinier; Hong, Hao; Graves, Stephen A; Yang, Yunan; England, Christopher G; Theuer, Charles P; Nickles, Robert J; Cai, Weibo

    2015-10-13

    Early diagnosis remains a task of upmost importance for reducing cancer morbidity and mortality. Successful development of highly specific companion diagnostics targeting aberrant molecular pathways of cancer is needed for sensitive detection, accurate diagnosis, and opportune therapeutic intervention. Herein, we generated a bispecific immunoconjugate [denoted as Bs-F(ab)2] by linking two antibody Fab fragments, an anti-epidermal growth factor receptor (EGFR) Fab and an anti-CD105 Fab, via bioorthogonal "click" ligation of trans-cyclooctene and tetrazine. PET imaging of mice bearing U87MG (EGFR/CD105(+/+)) tumors with (64)Cu-labeled Bs-F(ab)2 revealed a significantly enhanced tumor uptake [42.9 ± 9.5 percentage injected dose per gram (%ID/g); n = 4] and tumor-to-background ratio (tumor/muscle ratio of 120.2 ± 44.4 at 36 h postinjection; n = 4) compared with each monospecific Fab tracer. Thus, we demonstrated that dual targeting of EGFR and CD105 provides a synergistic improvement on both affinity and specificity of (64)Cu-NOTA-Bs-F(ab)2. (64)Cu-NOTA-Bs-F(ab)2 was able to visualize small U87MG tumor nodules (<5 mm in diameter), owing to high tumor uptake (31.4 ± 10.8%ID/g at 36 h postinjection) and a tumor/muscle ratio of 76.4 ± 52.3, which provided excellent sensitivity for early detection. Finally, we successfully confirmed the feasibility of a ZW800-1-labeled Bs-F(ab)2 for near-infrared fluorescence imaging and image-guided surgical resection of U87MG tumors. More importantly, our rationale can be used in the construction of other disease-targeting bispecific antibody fragments for early detection and diagnosis of small malignant lesions. PMID:26417085

  3. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1.

    Science.gov (United States)

    Pasello, Michela; Zamboni, Silvia; Mallano, Alessandra; Flego, Michela; Picci, Piero; Cianfriglia, Maurizio; Scotlandi, Katia

    2016-04-20

    Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated. PMID:26945728

  4. Multiparameter optimization method and enhanced production of secreted recombinant single-chain variable fragment against the HIV-1 P17 protein from Escherichia coli by fed-batch fermentation.

    Science.gov (United States)

    Paopang, Porntip; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Seesuriyachan, Phisit; Butr-Indr, Bordin

    2016-04-01

    The single-chain fragment variable (scFv) was used to produce a completely functional antigen-binding fragment in bacterial systems. The advancements in antibody engineering have simplified the method of producing Fv fragments and made it more efficient and generally relevant. In a previous study, the scFv anti HIV-1 P17 protein was produced by a batch production system, optimized by the sequential simplex optimization method. This study continued that work in order to enhance secreted scFv production by fed-batch cultivation, which supported high volumetric productivity and provided a large amount of scFvs for diagnostic and therapeutic research. The developments in cell culture media and process parameter settings were required to realize the maximum production of cells. This study investigated the combined optimization methods, Plackett-Burman design (PBD) and sequential simplex optimization, with the aim of optimize feed medium. Fed-batch cultivation with an optimal feeding rate was determined. The result demonstrated that a 20-mL/hr feeding rate of the optimized medium can increase cell growth, total protein production, and scFv anti-p17 activity by 4.43, 1.48, and 6.5 times more than batch cultivation, respectively. The combined optimization method demonstrated novel power tools for the optimization strategy of multiparameter experiments. PMID:25831436

  5. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage λ immunoexpression library

    International Nuclear Information System (INIS)

    The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and κ light-chain variable and constant region domains, were inserted into modified bacteriophase λ expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2% in the library. These human antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen

  6. Antibody fragment recognition layers for surface plasmon resonance biosensing: a parametric study

    Science.gov (United States)

    Magalhães, André; Bordeira, Sandro; Almeida, Ana Cristina; Fontes, Vanessa; Costa, Maria João L.; Fonseca, Luís P.; da Fonseca, João Garcia

    2009-02-01

    A comparative study is reported regarding the use of two different surface plasmon resonance (SPR) biosensors, a homemade SPR grating biosensor and a reference prism coupled biosensor, to perform quantification of C-reactive protein (CRP) in human blood serum. Surface functionalization was conducted using anti-CRP fragments immobilized directly on gold. Adsorption time optimization for the antibody fragments monolayer, non-specific binding (NSB) resistance evaluation and CRP detection were conducted, with better results achieved by the grating biosensor on all topics, namely less functionalization time, higher resistance to NSB and wider CRP dynamic concentration range. A study regarding comparison between continuous flow and surface coating immobilization is also reported in this work. We have shown that surface coating immobilization achieves similar NSB resistance and CRP detection results, allowing a 75% assay cost reduction by lower solution volume requirement. Results suggest that the coating immobilization technique is the best suited to be used in further studies in order to obtain a viable immunosensor for CRP and other biomarkers detection in complex biological fluids.

  7. Construction of a rationally designed antibody platform for sequencing-assisted selection.

    Science.gov (United States)

    Larman, H Benjamin; Xu, George Jing; Pavlova, Natalya N; Elledge, Stephen J

    2012-11-01

    Antibody discovery platforms have become an important source of both therapeutic biomolecules and research reagents. Massively parallel DNA sequencing can be used to assist antibody selection by comprehensively monitoring libraries during selection, thus greatly expanding the power of these systems. We have therefore constructed a rationally designed, fully defined single-chain variable fragment (scFv) library and analysis platform optimized for analysis with short-read deep sequencing. Sequence-defined oligonucleotide libraries encoding three complementarity-determining regions (L3 from the light chain, H2 and H3 from the heavy chain) were synthesized on a programmable microarray and combinatorially cloned into a single scFv framework for molecular display. Our unique complementarity-determining region sequence design optimizes for protein binding by utilizing a hidden Markov model that was trained on all antibody-antigen cocrystal structures in the Protein Data Bank. The resultant ~10(12)-member library was produced in ribosome-display format, and comprehensively analyzed over four rounds of antigen selections by multiplex paired-end Illumina sequencing. The hidden Markov model scFv library generated multiple binders against an emerging cancer antigen and is the basis for a next-generation antibody production platform. PMID:23064642

  8. Cell-Free Synthesis Meets Antibody Production: A Review

    Directory of Open Access Journals (Sweden)

    Marlitt Stech

    2015-01-01

    Full Text Available Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv and antigen binding fragments (Fab, have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufacture highly specific molecular recognition tools. However, as these technologies are accompanied by the drawbacks of being rather time-consuming and cost-intensive, efficient and powerful cell-free protein synthesis systems have been developed over the last decade as alternatives. So far, prokaryotic cell-free systems have been the focus of interest. Recently, eukaryotic in vitro translation systems have enriched the antibody production pipeline, as these systems are able to mimic the natural pathway of antibody synthesis in eukaryotic cells. This review aims to overview and summarize the advances made in the production of antibodies and antibody fragments in cell-free systems.

  9. Humoral immune responses induced by anti-idiotypic antibody fusion protein of 6B11scFv/hGM-CSF in BALB/c mice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background We have previously developed and characterized a monoclonal anti-idiotype antibody, designated 6B11, which mimics an ovarian carcinoma associated antigen OC166-9 and whose corresponding monoclonal antibody is COC166-9 (Ab1). In this study, we evaluate the humoral immune responses induced by the fusion protein 6B11 single-chain variable fragment (scFv)/human granulocyte macrophage colony-stimulating factor (hGM-CSF) and 6B11scFv in BALB/c mice. Methods The fusion protein 6B11scFv/hGM-CSF was constructed by fusing a recombinant single-chain variable fragment of 6B11scFv to GM-CSF. BALB/c mice were administrated by 6B11scFv/hGM-CSF and 6B11scFv, respectively. Results The fusion protein 6B11scFv/hGM-CSF retained binding to the anti-mouse F(ab)2' and was also biologically active as measured by proliferation of human GM-CSF dependent cell TF1 in vitro. After immunization with the 6B11scFv/hGM-CSF and 6B11ScFv, BALB/c mice showed significantly enhanced Ab3 antibody responses to 6B11scFv/hGM-CSF compared with the 6B11scFv alone. The level of Ab3 was the highest after the first week and maintained for five weeks after the last immunization. Another booster was given when the Ab3 titer descended, and it would reach to the high level in a week. Conclusion The fusion protein 6B11scFv/hGM-CSF can induce humoral immunity against ovarian carcinoma in vivo. We also provide the theoretical foundation for the application of the fusion protein 6B11scFv/hGM-CSF for active immunotherapy of ovarian cancer.

  10. Quantitation of imaging with I-131-F(ab')/sub 2/ fragments of monoclonal antibody in patients

    International Nuclear Information System (INIS)

    Iodine-131 labeled F(ab')/sub 2/ fragments of monoclonal antibody (IgG/sub 2a/ immunoglobulin with specificity for a cell surface antigen of colon carcinoma) have been used for quantitative imaging of tumor in 27 patients. Activity of I-131 F(ab')/sub 2/ fragments localized in tumor and in liver was quantitated using a modification of the method of Thomas SR, employing computer-acquired conjugate views (i.e. 180 opposed) to eliminate need for tumor or organ depth and tissue attenuation. The method was validated with an abdominal imaging phantom showing accuracy of +/- 10%. Quantitation indicates that activity reaches a peak in tumor at 48-72 hours and the ratio of activity in hepatic metastases to activity in liver peaks at approximately 72 hours. Mean activity in tumor was less than 0.01% of the administered dose per gram of tumor at any imaging time from 24 to 168 hours, while mean activity in surrounding liver was less than .002% of administered dose per gram of liver at any imaging time. Liver activity decreased monotonically with time, showing no peak activity. This non-invasive method of quantitating the distribution of F(ab')/sub 2/ fragments of monoclonal antibody in patients has proven accurate by comparison with phantom simulation. This type of quantitation is necessary for evaluating optimal imaging time, comparing relative utility of various antibodies and has use for therapeutic applications of monoclonal antibody fragments

  11. Passive immunization with llama single-domain antibody fragments reduces foot-and-mouth disease transmission between pigs

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.; Engel, B.; Dekker, A.; Eble, P.L.

    2009-01-01

    We aim to develop a method that confers rapid protection against foot-and-mouth disease (FMD) by passive immunization with recombinant llama single-domain antibody fragments (VHHs). Previously constructed genetic fusions of two VHHs (VHH2s) that either neutralizes FMDV or binds to porcine immunoglob

  12. Method for preparation of single chain antibodies

    Science.gov (United States)

    Cheung, Nai-Kong V.; Guo, Hong-fen

    2012-04-03

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  13. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  14. Construction and Screening of Antigen Targeted Immune Yeast Surface Display Antibody Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith D.; Pefaur, Noah B.; Baird, Cheryl L.

    2008-07-01

    These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks resulting in a panel of scFvs specific for the target antigen.

  15. Construction and Screening of Antigen Targeted Immune Yeast Surface Display Antibody Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith D.; Pefaur, Noah B.; Baird, Cheryl L.

    2009-08-02

    These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magneticactivated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks, resulting in a panel of scFvs specific for the target antigen.

  16. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations

    International Nuclear Information System (INIS)

    Over recent years, one of the focuses of research has been to develop suitable methods to reduce renal uptake, and to evaluate whether the resulting methodology will benefit therapy with antibody fragments and peptides. In these studies it has been shown that the kidney uptake of antibody fragments in animals can be reduced in a dose-dependent manner by almost one order of magnitude by the systemic administration of cationic amino acids and their derivatives, whereas the uptake in all other organs, as well as the tumor, remains unaffected. A similar reduction in renal retention is achieved for all intracellularly retained radionuclides (e.g., radiometals) or radioiodinated immunoconjugates, as well as for smaller peptides. Lysine is usually the preferred agent, and its d- and l-isomers are equally effective whether given intraperitoneally or orally. Amino sugars are effective, but their N-acetyl derivatives, lacking the positive charge, are not. Basic polypeptides are also effective, and their potency increases with increasing molecular weight. Urine analysis of treated individuals shows the excretion of unmetabolized, intact fragments or peptides, in contrast to mostly low-molecular-weight metabolites in untreated controls. In therapy studies using radiometal-conjugated Fab fragments, the kidney is the first dose-limiting organ. Administration of cationic amino acids results in a substantial increase in the maximum tolerated dose of such Fab fragments. As was the case in animal studies, in pilot clinical trials the renal uptake in patients injected with Fab' fragments and given amino acids could be decreased significantly, whereas the uptake by all other organs remained unaffected. Thus, radiation nephrotoxicity of antibody fragments and peptides can be overcome successfully. (orig./MG) (orig.)

  17. Immunization with recombinant enterovirus 71 viral capsid protein 1 fragment stimulated antibody responses in hamsters

    Directory of Open Access Journals (Sweden)

    Ch’ng Wei-Choong

    2012-08-01

    Full Text Available Abstract Enterovirus 71 (EV71 causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100 protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.

  18. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jun [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Xiang, Jun-Jian, E-mail: txjj@jnu.edu.cn [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China); Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Li, Dan [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Deng, Ning; Wang, Hong; Gong, Yi-Ping [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China)

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  19. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    International Nuclear Information System (INIS)

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10-9 M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  20. Characterization of crystals of an antibody-recognition fragment of the cancer differentiation antigen mesothelin in complex with the therapeutic antibody MORAb-009

    International Nuclear Information System (INIS)

    The therapeutic antibody MORAb-009 disrupts the interaction of mesothelin and the ovarian cancer antigen CA-125. Crystals have been grown of the Fab fragment derived from MORAb-009 and of its complex with an N-terminal fragment of mesothelin. The mesothelin-specific monoclonal antibody MORAb-009 is capable of blocking the binding of mesothelin to CA-125 and displays promising anticancer potential. It is currently undergoing clinical trials. In order to understand the basis of the interaction between MORAb-009 and mesothelin at atomic resolution, both the Fab fragment of MORAb-009 and the complex between the Fab and an N-terminal fragment of mesothelin (residues 7–64) were crystallized. The crystals of the Fab diffracted X-rays to 1.75 Å resolution and had the symmetry of space group P41212, with unit-cell parameters a = b = 140.6, c = 282.0 Å. The crystals of the mesothelin–Fab complex diffracted to 2.6 Å resolution and belonged to the hexagonal space group P64, with unit-cell parameters a = b = 146.2, c = 80.9 Å. Structural analyses of these molecules are in progress

  1. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Dimiter S. Dimitrov

    2009-11-01

    Full Text Available Several human monoclonal antibodies (hmAbs and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i antibodies in HIV-1-infected patients (X5 is a CD4i antibody as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and

  2. Proteomic Profiling of Recombinant Escherichia coli in High-Cell- Density Fermentations for Improved Production of an Antibody Fragment Biopharmaceutical

    OpenAIRE

    Aldor, Ilana S.; Krawitz, Denise C.; Forrest, William; Chen, Christina; Nishihara, Julie C.; Joly, John C.; Champion, Kathleen M.

    2005-01-01

    By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein sp...

  3. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation

    OpenAIRE

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2014-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced...

  4. Injectable formulations for an intravitreal sustained-release application of a novel single-chain VEGF antibody fragment.

    Science.gov (United States)

    Asmus, Lutz R; Grimshaw, John P A; Richle, Philipp; Eicher, Barbara; Urech, David M; Gurny, Robert; Möller, Michael

    2015-09-01

    Sustained-release formulations of a single-chain anti-VEGF-A antibody fragment were investigated in vitro toward their potential use for intravitreal applications. The hydrophobic polyester hexylsubstituted poly(lactic acid) (hexPLA) was selected as the sustained-release excipient for its biodegradability and semi-solid aggregate state, allowing an easy and mild formulation procedure. The lyophilized antibody fragment ESBA903 was micronized and incorporated into the liquid polymer matrix by cryo-milling, forming homogeneous and injectable suspensions. The protein showed excellent compatibility with the hexPLA polymer and storage stability at 4°C for 10 weeks. Additionally, hexPLA shielded the incorporated active substance from the surrounding medium, resulting in a better stability of ESBA903 inside the polymer than after its release in the buffer solution. Formulations of ESBA903 with hexPLA having drug loadings between 1.25% and 5.0% and polymer molecular weights of 1500 g/mol, 2500 g/mol, 3500 g/mol and 5000 g/mol were investigated regarding their in vitro release. All formulations except with the highest molecular weight formed spherical depots in aqueous buffer solutions and released the antibody fragment for at least 6-14 weeks. The polymer viscosity derived from the molecular weight strongly influenced the release rate, while the drug loading had minor influence, allowing customization of the release profile and the daily drug release. Size exclusion chromatography and SDS-PAGE revealed that the antibody fragment structure was kept intact during incorporation and release from the liquid matrix. Furthermore, the released protein monomer maintained its high affinity to human VEGF-A, as measured by surface plasmon resonance analysis. Formulations of ESBA903 in hexPLA meet the basic needs to be used for intravitreal sustained-release applications in age-related macular degeneration treatment. PMID:25779352

  5. Prokaryotic Expression and Purification of Human TLE1 N-terminal Q Domain Fragment and Production of its Polyclonal Antibody

    Directory of Open Access Journals (Sweden)

    Su WANG

    2010-11-01

    Full Text Available Background and objective TLE1 is an important protein in regulating Wnt, Notch and EGFR signaling pathways. The TLE1 N-terminal Q domain regulates the pathways by mediating its oligomerization and interaction with LEF1. The aim of this study is to construct the human TLE1 N-terminal Q domain fragment in prokaryotic expression system, express and purify protein TLE1 N-terminal Q domain and prepare its polyclonal antibody. Methods The sequence of TLE1 N-terminal Q domain obtained by PCR from human lung adenocarcinoma cDNA, was cloned into the prokaryotic expression vector pGEX-4T-1 containing Glutathione S-transferase (GST. Vector pGEX-4T1-TLE1-Q was transformed into E.coli BL21 condon plus. The GST-TLE1-Q(1-136 fusion protein was induced by IPTG, digested by Thrombin, purified with glutathione-sepharose beads and FPLC, identified by SDS-PAGE. Then rabbits were immunized with the purified protein TLE1-Q(1-136 for obtaining the antiserum. The titers and specificity of antibodies were measured by ELISA and Western blot. Results The PCR identification and the sequencing of recombinant plasmid demonstrated that vector pGEX-4T1-TLE1-Q was successfully constructed. The SDS-PAGE shows target protein (14 000 Da is the interest protein TLE1-Q(1-136. The TLE1 N-terminal Q domain fragment TLE1-Q(1-136 and its polyclonal antibody have been acquired, with an antibody titer of 1:20 000. Conclusion Expression vector pGEX-4T1-TLE1-Q is correctly constructed. The TLE1 N-terminal Q domain fragment TLE1-Q(1-136 and its polyclonal antibody have been acquired. These work established the foundation for further biological study between TLE1 and lung cancers.

  6. Redistribution of flexibility in stabilizing antibody fragment mutants follows Le Chatelier's principle.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Le Châtelier's principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc., La Châtelier's principle states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate that the effects of stabilizing mutations on the rigidity ⇔ flexibility equilibrium within the native state ensemble manifest themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-β receptor antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed. Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example, a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility within the VH β4/β5 loop is a noteworthy illustration of this long-range effect.

  7. Preparation of a Chicken scFv to Analyze Gentamicin Residue in Animal Derived Food Products.

    Science.gov (United States)

    Li, Cui; He, Jinxin; Ren, Hao; Zhang, Xiaoying; Du, Enqi; Li, Xinping

    2016-04-01

    Chicken is an ideal model for simplified recombinant antibody library generation. It has been rarely been reported to apply chicken single-chain variable fragments (scFvs) in immunoassays for the detection of antibiotic and chemical contaminants in animal food products. In this study, the scFvs (S-1 and S-5) were isolated from a phage display library derived from a hyperimmunized chicken. The checker board titration revealed that the optimum concentrations of S-1 and S-5 were 0.78 μg/mL and 0.44 μg/mL respectively, to obtain OD450 around 1.0 at 5 μg/mL of Gent-OVA coating concentration. Both S-1 and S-5 exhibited negligible cross reactivity with kanamycin and amikacin. The 50% inhibitory concentration (IC50) of S-1 and S-5 were 12.418 ng/mL and 14.674 ng/mL respectively. In the indirect competitive ELISA (ic-ELISA), the limits of detection for S-1 and S-5 were 0.147 ng/mL and 0.219 ng/mL respectively. The mean recovery for Gent ranged from 60.91% to 118.09% with no more than 10.35% relative standard deviation (RSD) between the intra-assay and the inter-assay. These results indicate the chicken scFv based ic-ELISA method is suitable for the detection of Gent residue in animal derived edible tissues and milk. PMID:26980703

  8. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  9. Human IgG1 Cγ1 Domain Is Crucial for the Bioactivity of the Engineered Anti-CD20 Antibodies

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Jiannan Feng; Yan Li; Xianjiang Kang; Yingxun Sun; Xin Gu; Ying Huang; Hong Chang; Beifen Shen

    2007-01-01

    In this study, we discussed the necessity of human IgG1 Cγ1 domain for recombinant antibody using computeraided homology modeling method and experimental studies. The heavy (VH) and light (VL) chain variable regions of 1-28, a murine IgM-type anti-CD20 mAb, were ligated by linker peptide (Gly4Ser)3 to form the single-chain Fv fragment (scFv). Then, the engineered antibody (LH1-3) was generated by fusing scFv with the entire IgG1 heavy constant regions. The 3-D structure of LH1-3 was modeled using computer-aided homology modeling method and the binding activity of LH1-3 was evaluated theoretically. Compared to the 3-D structure of the Fv fragment of the parent antibody, the conformation of the active pocket of LH1-3 was remained because of the rigid support of Cγ1.Further experimental results of flow cytometry showed that the engineered anti-CD20 antibody possessed specifically binding activity to CD20-expressing target cells. The anti-CD20 antibody fragments could also mediate complement-dependent cytotoxicity (CDC) of human B-lymphoid cell lines. Our study highlights some interests and advantages of a methodology based on the homology modeling and analysis of molecular structural properties.

  10. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens

    Directory of Open Access Journals (Sweden)

    Macek Jeanette

    2009-09-01

    Full Text Available Abstract Background Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Results Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability. Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. Conclusion The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.

  11. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes.

    Science.gov (United States)

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø; de Souza, Gustavo A; Sollid, Ludvig M

    2016-01-01

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306

  12. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes

    Science.gov (United States)

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.

    2016-01-01

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306

  13. SPR Biosensor for the Detection of L. monocytogenes using Phage Displayed Antibody

    Science.gov (United States)

    Whole cells of Listeria monocytogenes were detected with a compact, surface plasmon resonance (SPR) sensor using a phage-displayed scFv antibody to the virulence factor ActA for biorecognition. Phage Lm P4:A8, expressing the scFv antibody fused to the pIII surface protein was immobilized to the se...

  14. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1.

    Science.gov (United States)

    Min, Won-Ki; Na, Kang-In; Yoon, Jung-Hyun; Heo, Yoon-Jee; Lee, Daesang; Kim, Sung-Gun; Seo, Jin-Ho

    2016-10-15

    Aflatoxin B1 (AFB1) produced in Aspergillus flavus is a major hepatocarcinogen found in foods and feed. For effective immunological detection of AFB1 at low concentrations, the development of high affinity antibody for AFB1 is required. Previously, an affinity-maturated single-chain variable fragment containing 6 mutations (scFv-M37) was isolated from an artificial mutagenic library, which showed a 9-fold higher affinity than its wild type scFv. In this study, the effect of the 6 mutated residues on the affinity improvement was characterized using surface plasmon resonance analysis, which identified a deleterious mutation (VH-A110T) located on a framework region of the scFv-M37. The back mutation of VH-A110T resulted in a 3.2-fold affinity improvement, which was attributed to decrease of dissociation rate constant (kd) in interaction between AFB1 and the back mutant scFv. The biophysical analyses using circular dichroism and gel filtration revealed that the back mutation of VH-A110T caused a subtle conformational change of the scFv toward tighter binding to AFB1. PMID:27173568

  15. Production of the recombinant single chain anti-B cell lymphoma antibody and evaluation of immunoreactivity

    International Nuclear Information System (INIS)

    Recombinant ScFv lym-1 was produced, using pET vector system for large scale production. ScFv lym-1 gene inserted pET-22b (+) vector, was expressed in E. coli BL-21 strain. ScFv lym-1 antibody extracted from periplasm, was purified with His-Taq column. To evaluated immunoreactivity with Raji cell, ScFv lym-1 was labeled with I-125 and I-125 ScFv lym-1 was purified with desalting column. Raji cell was injected into the C57BR/cdJ SCID mice. Gamma camera imaging were taken time point at 1, 8, 24 and 48 hr with 8 mm pinhole collimator. An active scFv lym-1 could be produced in E. coli with soluble from using pET vector system. Immunoreactivity and affinity constant of lgG lym-1 were 54% and 1.83 x 109 M-1, respectively, and those of scFv lym-1 were 53.7% and 1.46 x 109 M-1, respectively. Biodistribution of I-125 scFv lym-1 antibody showed faster clearance in blood, spleen, kidney and than I-125 lgG lym-1 antibody. Gamma camera image of I-125 scFv lym-1 antibody showed faster clearance and tumor targeting liver than I-125 lgG lym-1 antibody. In vitro properties of scFv lym-1 were similar to those of lgG lym-1. ScFv lym-1 showed faster blood clearance than lgG lym-1. These results suggest that scFv lym-1 antibody can be useful for tumor imaging agent

  16. Crystallization and preliminary diffraction studies of prostaglandin E2-specific monoclonal antibody Fab fragment in the ligand complex

    International Nuclear Information System (INIS)

    The Fab fragment of a monoclonal anti-prostaglandin E2 antibody was prepared and its complex with prostaglandin E2 was crystallized. Prostaglandin E2 is a major lipid mediator that regulates diverse biological processes. To elucidate how prostaglandin E2 is recognized specifically by its antibody, the Fab fragment of a monoclonal anti-prostaglandin E2 antibody was prepared and its complex with prostaglandin E2 was crystallized. The stable Fab–prostaglandin E2 complex was prepared by gel-filtration chromatography. Crystals were obtained by the microbatch method at 277 K using polyethylene glycol 4000 as a precipitant. A diffraction data set was collected to 2.2 Å resolution. The crystals belonged to space group P212121, with unit-cell parameters a = 70.3, b = 81.8, c = 82.2 Å. The asymmetric unit was suggested to contain one molecule of the Fab–prostaglandin E2 complex, with a corresponding crystal volume per protein weight of 2.75 Å3 Da−1

  17. Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation.

    Science.gov (United States)

    Pfeffer, Martin; Maurer, Michael; Stadlmann, Johannes; Grass, Josephine; Delic, Marizela; Altmann, Friedrich; Mattanovich, Diethard

    2012-03-01

    Protein translation, translocation, folding, processing, and secretion in eukaryotic cells are complex and not always straightforward processes, e.g., different routes of secretion and degradation exist. Formation of malfolded proteins in the endoplasmic reticulum (ER) can be one of the major bottlenecks for recombinant protein production. In this regard, an in-depth analysis of the interactions of a secreted protein during its pathway through the cell may be beneficial, as realized in this study for the methylotrophic yeast Pichia pastoris. The antibody fragment Fab3H6 used here is the anti-idiotype to the HIV neutralizing antibody 2F5 and is known to be intracellularly degraded in significant amounts when expressed in P. pastoris. The interactome of Fab3H6 was analyzed by using a pull-down mass spectrometry approach, and 23 proteins were found to bind specifically to the antibody fragment. Those allowed concluding that Fab3H6 is post-translationally translocated into the ER and degraded via the proteasome as well as the vacuole. In line with this, the expression of Fab3H6 increased the proteasomal activities by over 20%. Partial inhibition of the proteasome resulted in a significant increase of extracellular Fab3H6. Thus, it seems that ER quality control overshoots its requirements for the recombinant protein expressed and that more than just terminally malfolded protein is degraded by ER-associated degradation. This work will further facilitate our understanding how recombinant proteins behave in the secretory pathway. PMID:22350260

  18. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains.

    Science.gov (United States)

    Hu, Zu-Quan; Li, He-Ping; Zhang, Jing-Bo; Huang, Tao; Liu, Jin-Long; Xue, Sheng; Wu, Ai-Bo; Liao, Yu-Cai

    2013-02-18

    Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv-AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding capacity to the components from SCWPs of F. verticillioides, and enzyme-linked immunosorbent assays revealed that the detection limit of the fungus was below 10(-2) μg mL(-1), superior to the scFv antibody. The fusion protein was able to detect fungal concentrations as low as 10(-3) mg g(-1) of maize grains in both naturally and artificially contaminated samples. Thus, the fusion can be applied in rapid and simple diagnosis of Fusarium contamination in field and stored grain or in food. PMID:23374219

  19. Advancing the global proteome survey platform by using an oriented single chain antibody fragment immobilization approach.

    Science.gov (United States)

    Säll, Anna; Persson, Helena; Ohlin, Mats; Borrebaeck, Carl A K; Wingren, Christer

    2016-09-25

    Increasing the understanding of a proteome and how its protein composition is affected by for example different diseases, such as cancer, has the potential to improve strategies for early diagnosis and therapeutics. The Global Proteome Survey or GPS is a method that combines mass spectrometry and affinity enrichment with the use of antibodies. The technology enables profiling of complex proteomes in a species independent manner. The sensitivity of GPS, and other methods relying on affinity enrichment, is largely affected by the activity of the exploited affinity reagent. We here present an improvement of the GPS platform by utilizing an antibody immobilization approach which ensures a controlled immobilization process of the antibody to the magnetic bead support. More specifically, we make use of an antibody format that enables site-directed biotinylation and use this in combination with streptavidin coated magnetic beads. The performance of the expanded GPS platform was evaluated by profiling yeast proteome samples. We demonstrate that the oriented antibody immobilization strategy increases the ability of the GPS platform and results in larger fraction of functional antibodies. Additionally, we show that this new antibody format enabled in-solution capture, i.e. immobilization of the antibodies after sample incubation. A workflow has been established that permit the use of an oriented immobilization strategy for the GPS platform. PMID:26703809

  20. Cloning, expression, purification, and characterization of LC-1 ScFv with GFP tag

    Institute of Scientific and Technical Information of China (English)

    LU Min; GONG Xing-guo; YU Hong; LI Jian-yong

    2005-01-01

    Total RNA was isolated from the hybridoma cell line (LC-1), which secretes anti-lung adenocarcinoma monoclonal antibody, and was transferred into cDNA. Based on the FR1 (framework region 1) and FR4 conserved regions of LC-I gene, the variable regions of heavy chain (Vh) and light chain (Vl) were amplified, and the Vh and modified Vl were connected to single chain Fv (ScFv) by SOE-PCR (splice overlap extension PCR). The modified ScFv was fused with green fluorescent protein (GFP)and introduced into E. coli JMi09. The fusion protein induced by IPTG (Isopropylthiogalactoside) was about 57000 on a 10%SDS-PAGE gel (10% Sds Polyacrylamide Gel Electrophoresis), and primarily manifested as inclusion bodies. The renatured protein purified by Ni-NTA Superflow resins showed ability to bind to antigen on SPC-A-1 lung adenocarcinoma. In addition, the induced host cells fluoresced bright green under 395 nm wavelength, which indicated that the expected protein with dual activity was expressed in the prokaryotic system. The ScFv with GFP tag used in this research can be applied as a new reagent to detect immunological dye, and provide a feasible way to detect adenocarcinoma in a clinical setting.

  1. Codon-Precise, Synthetic, Antibody Fragment Libraries Built Using Automated Hexamer Codon Additions and Validated through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Laura Frigotto

    2015-05-01

    Full Text Available We have previously described ProxiMAX, a technology that enables the fabrication of precise, combinatorial gene libraries via codon-by-codon saturation mutagenesis. ProxiMAX was originally performed using manual, enzymatic transfer of codons via blunt-end ligation. Here we present Colibra™: an automated, proprietary version of ProxiMAX used specifically for antibody library generation, in which double-codon hexamers are transferred during the saturation cycling process. The reduction in process complexity, resulting library quality and an unprecedented saturation of up to 24 contiguous codons are described. Utility of the method is demonstrated via fabrication of complementarity determining regions (CDR in antibody fragment libraries and next generation sequencing (NGS analysis of their quality and diversity.

  2. Bivalent fragment of the ior-CEA1 antibody. A challenge to the positive CEA tumors radioimmunotherapy

    International Nuclear Information System (INIS)

    The directed radiotherapy of the solid tumors with fragments recombinants of radiolabelled antibodies is a topic of current investigation, so much at preclinical level as clinical. This work describes the preclinical characterization of a new fragment type diabody of the AcMo ior CEA1 that has been labelled with 131 I for their use in the diagnosis and the therapy of CEA positive tumors. The radiolabelling methodology used allows the incorporation of more than 90% of the radio iodine to the molecule without committing the capacity of recognition of its antigen significantly. The combination of the favourable properties pharmacy kinetic and high selective accumulation in the tumor, they make of the diabody anti CEA an appropriate candidate for the radioimmunodiagnosis and the radioimmunotherapy of tumors that expresses CEA (Author)

  3. Recombinant anti-CD20 antibody fragments for microPET imaging of B-cell lymphoma

    Science.gov (United States)

    Olafsen, Tove; Betting, David; Kenanova, Vania E.; Salazar, Felix B.; Clarke, Pat; Said, Jonathan; Raubitschek, Andrew A.; Timmerman, John M.; Wu, Anna M.

    2010-01-01

    The CD20 cell surface antigen is expressed at high levels by over 90% of B cell non-Hodgkin lymphomas (NHL), and is the target of the anti-CD20 monoclonal antibody rituximab. To provide more sensitive, tumor-specific positron emission tomography (PET) imaging of NHL, we sought to develop PET imaging agents targeting CD20. Methods Two recombinant anti-CD20 rituximab fragments, a minibody (scFv-CH3 dimer, 80 kDa) and a modified scFv-Fc fragment (105 kDa), designed to clear rapidly, were generated. Both fragments were radiolabeled with 124I, and the minibody was additionally radiometal labeled with 64Cu following conjugation to 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (DOTA). The radioiodinated fragments and the radiometal labeled minibody were evaluated in mice as microPET imaging agents for in vivo imaging of human CD20-expressing lymphomas. Results Rapid and specific localization to CD20-positive tumors was observed with the radioiodinated fragments. However, their tumor uptakes and blood activities differed, resulting in different levels of contrast in the images. The best candidate was the minibody, with superior uptake (2-fold higher than the scFv-Fc) in CD20-positive tumor and low uptake in CD20-negative tumor. Positive tumor to negative tumor ratios were 7.0(±3.1) and 3.9(±0.7) for the minibody and scFv-Fc, respectively at 21 hours. About a 5-fold lower ratio was achieved with the 64Cu-DOTA-minibody at 19 hours due to higher residual background activity in CD20 negative tumor. Conclusion Radioiodinated minibody and scFv-Fc fragment produced excellent, high-contrast images in vivo. These new immunoPET agents may prove useful for the imaging CD20 positive lymphomas in preclinical models and in humans with NHL. PMID:19690034

  4. Effects of an amyloid-beta 1-42 oligomers antibody screened from a phage display library in APP/PS1 transgenic mice

    Science.gov (United States)

    Wang, Jianping; Li, Nan; Ma, Jun; Gu, Zhiqiang; Yu, Lie; Fu, Xiaojie; Liu, Xi; Wang, Jian

    2016-01-01

    We screened anti-Aβ1-42 antibodies from a human Alzheimer’s disease (AD) specific single chain variable fragment (scFv) phage display library and assessed their effects in APP/PS1 transgenic mice. Reverse transcription-PCR was used to construct the scFv phage display library, and screening identified 11A5 as an anti-Aβ1-42 antibody. We mixed 11A5 and the monoclonal antibody 6E10 with Aβ1-42 and administered the mixture to Sprague-Dawley rats via intracerebroventricular injection. After 30 days, rats injected with the antibody/ Aβ1-42 mixture and those injected with Aβ1-42 alone were tested on the Morris water maze. We also injected 11A5 and 6E10 into APP/PS1 transgenic mice and assessed the concentrations of Aβ in brain and peripheral blood by ELISA at 1-month intervals for 3 months. Finally we evaluated behavior changes in the Morris water maze. Rats injected with Aβ1-42 and mixed antibodies showed better performance in the Morris water maze than did rats injected with Aβ1-42 alone. In APP/PS1 transgenic mice, Aβ concentration was lower in the brains of the antibody-treated group than in the control group, but higher in the peripheral blood. The antibody-treated mice also exhibited improved behavioral performance in the Morris water maze. In conclusion, anti-Aβ1-42 antibodies (11A5) screened from the human scFv antibody phage display library promoted the efflux or clearance of Aβ1-42 and effectively decreased the cerebral Aβ burden in an AD mouse model. PMID:26820640

  5. Dynamic force spectroscopy of parallel individual mucin1-antibody bonds

    Energy Technology Data Exchange (ETDEWEB)

    Sulchek, T A; Friddle, R W; Langry, K; Lau, E; Albrecht, H; Ratto, T; DeNardo, S; Colvin, M E; Noy, A

    2005-05-02

    We used atomic force microscopy (AFM) to measure the binding forces between Mucin1 (MUC1) peptide and a single chain antibody fragment (scFv) selected from a scFv library screened against MUC1. This binding interaction is central to the design of the molecules for targeted delivery of radioimmunotherapeutic agents for prostate and breast cancer treatment. Our experiments separated the specific binding interaction from non-specific interactions by tethering the antibody and MUC1 molecules to the AFM tip and sample surface with flexible polymer spacers. Rupture force magnitude and elastic characteristics of the spacers allowed identification of the bond rupture events corresponding to different number of interacting proteins. We used dynamic force spectroscopy to estimate the intermolecular potential widths and equivalent thermodynamic off rates for mono-, bi-, and tri-valent interactions. Measured interaction potential parameters agree with the results of molecular docking simulation. Our results demonstrate that an increase of the interaction valency leads to a precipitous decline in the dissociation rate. Binding forces measured for mono and multivalent interactions match the predictions of a Markovian model for the strength of multiple uncorrelated bonds in parallel configuration. Our approach is promising for comparison of the specific effects of molecular modifications as well as for determination of the best configuration of antibody-based multivalent targeting agents.

  6. EFFECT OF VL AND VH CONSENSUS SEQUENCE-SPECIFIC PRIMERS ON THE BINDING AND EXPRESSION OF A MINI- MOLECULE ANTIBODY DIRECTED TOWARDS HUMAN GASTRIC CANCER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To construct ScFv and Fab from murine anti-gastric cancer monoclonal antibody( mAb)3H11. Methods. At first,3H11 ScFv and Fab were constructed with V genes PCR amplified by degenerate primers for FRI. The bacterial expressed 3H11 Ab fragments showed no antigen binding activity. Then, phage antibody library andrandom mutated library were constructed from 3H1 1 hybridoma cells and panning selection was performed. Again the i-dentification of positive clone was failed. Finally the N-terminal sequences of V regions were resumed to 3H1 1 original sequences by site-directed mutagenesis via PCR. Results. Binding activity to gastric cancer cells was detected only from N-terminal sequence corrected 3H11 ScFv and Fab,though the expression of the Ab fiagments was not affected. Correction of either VL or VH N-terminal se-quences could partially resume the antigen binding activity. Conclusion. Sequence changes of V region N terminal introduced by PCR may seriously affect antigen binding without affecting the expression of antibody. Received for publication Oct. 26,1998.

  7. PRODUCTION OF A HUMAN RECOMBINANT ANTIBODY AGAINST SEROTYPE A CANDIDA ALBICANS

    Directory of Open Access Journals (Sweden)

    A A. Jafari

    2005-07-01

    Full Text Available After using 3 different generations of antibodies including human and non-human hyperimmune sera, monoclonal antibodies and chimeric antibodies, more recently a newer approach has been developed in which the antibody genes are cloned directly from a patient peripheral B-lymphocytes and expressed in a host like E. coli. In this study the Candida albicans serotype A (NCTC 3153 mannan was purified using a modified Fehling method and used for selection of human recombinant antibody from a C. albicans phage antibody library. After four rounds of affinity selecting (panning, 2 predominant clones were chosen by DNA fingerprinting and ELISA. A 248 amino acid DNA fragment coding for anti-C. albicans mannan scFv was sequenced and cloned in a pBAD-TOPO cloning vector to produce a soluble and phage free antibody. The analysis of antibody sequences by V base Index (DNAPLOT confirmed the human antibody origin with the VH4 family in V segment of heavy variable chain and VL3 (Lambda 3 in J segment of the light variable chain. This antibody fragment was purified using immobilized metal affinity chromatography and inmmunoblotted as a 31kDa recombinant protein.

  8. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    International Nuclear Information System (INIS)

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies

  9. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Science.gov (United States)

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  10. Serrumab: a human monoclonal antibody that counters the biochemical and immunological effects of Tityus serrulatus venom.

    Science.gov (United States)

    Pucca, Manuela Berto; Zoccal, Karina Furlan; Roncolato, Eduardo Crosara; Bertolini, Thaís Barboza; Campos, Lucas Benício; Cologna, Camila Takeno; Faccioli, Lúcia Helena; Arantes, Eliane Candiani; Barbosa, José Elpidio

    2012-01-01

    In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNFα, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom. PMID:22424317

  11. Pharmacokinetics of the monoclonal antibody B72.3 and its fragments labeled with either 125I or 111In

    International Nuclear Information System (INIS)

    A comparison of the pharmacokinetics of intact B72.3 (a murine monoclonal antibody specific for human breast and colon carcinoma) with F(ab')2 and Fab fragments labeled with 111In and 125I was done in athymic mice bearing target (LS174T) and non-target (HCT-15) tumors. IgG B72.3 labeled with either isotype imaged LS174T. Biodistributions of both labels were similar in all organs except liver. F(ab')2 also imaged the LS174T tumor, while Fab bearing either isotype did not. The blood clearance was Fab greater than F(ab')2 greater than immunoglobulin G B72.3 for both isotopes. 111In-labeled fragments yielded large accumulations in the kidneys which persisted for 2 days. The different patterns of biodistribution for the various forms of B72.3 labeled with the two isotopes suggest that the most desirable combination of fragment and isotope will depend on the intended use

  12. Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water.

    Science.gov (United States)

    Zhang, Xiuyuan; He, Kuo; Zhao, Ruiping; Wang, Lixia; Jin, Yandan

    2016-10-01

    Single chain variable fragment (scFv), containing of heavy and light chains (VH and VL) joined by a short peptide linker, has been used widely for immunodetection. Nevertheless, cloning functional variable genes is still a bottle neck for the scFv generation technology. Here, a rational strategy for cloning and selecting variable region genes from an anti-microcystin-LR hybridoma was devised, then the functional VH and VL genes were recloned and assembled to scFv using splicing overlap extension PCR. The resulting scFv gene was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein (scFv-AP) by vector PLIP6/GN. Then an indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for detection of microcystin-LR was developed. The half-maximum inhibition concentrations (IC50) and limits of detection (LODs, IC15) were 0.81 ± 0.04 μgL(-1) and 0.13 ± 0.03 μgL(-1), respectively. With the mean coefficient of variation lowing 8%, the mean recovery in intra-assay and inter-assay were 100.06% and 96.46%, The proposed strategy should be useful for generation scFv in a rapid and simple way. PMID:27380224

  13. A novel method for in Situ detection of hydrolyzable casein fragments in a cheese matrix by antibody phage display technique and CLSM

    DEFF Research Database (Denmark)

    Duan, Zhi; Brüggemann, Dagmar Adeline; Siegumfeldt, Henrik

    2009-01-01

    A novel method to monitor in situ hydrolyzable casein fragments during cheese ripening by using immunofluorescent labeling and confocal laser scanning microscopy (CLSM) was developed. Monoclonal single chain variable fragments of antibody (scFvs) were generated by antibody phage display toward...... three small synthetic peptides of the alpha(s1)-casein sequence. These peptides traverse enzymatic cleavage sites of casein during cheese ripening. The specificity of the generated anti-peptide antibodies was determined by ELISA and Western blot. Finally, an immunofluorescent labeling protocol was...... successfully developed for the detection of scFvs binding to different alpha(s1)-casein fragments inside a cheese matrix by CLSM. To our knowledge, this is the first demonstrated immunofluorescent labeling method for in situ analysis of proteolysis phenomena in the cheese matrix. Additionally, this technique...

  14. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism.

    Science.gov (United States)

    Karim-Silva, Sabrina; Moura, Juliana de; Noiray, Magali; Minozzo, Joao Carlos; Aubrey, Nicolas; Alvarenga, Larissa M; Billiald, Philippe

    2016-08-01

    Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms. PMID:27288291

  15. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry

    OpenAIRE

    Luo, Haiming; Hernandez, Reinier; Hong, Hao; Graves, Stephen A.; Yang, Yunan; England, Christopher G.; Theuer, Charles P.; Robert J. Nickles; Cai, Weibo

    2015-01-01

    Given the success of combination therapies for the treatment of cancer, the use of bispecific antibodies targeting multiple cancerous molecular pathways is an attractive strategy to enhance the efficacy of current therapeutic paradigms. However, parallel development of companion diagnostic tools is essential for patient identification, stratification, and the early assessment of treatment efficacies. Herein, we describe the generation of a bispecific construct for noninvasive PET imaging of g...

  16. Single-Chain Fragment Variable Passive Immunotherapies for Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2013-09-01

    Full Text Available Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer’s disease (AD, Parkinson’s disease (PD, and Huntington’s disease (HD. In the past decade, single-chain fragment variable (scFv -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aβ, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and light chains, creating a much smaller protein with unaltered specificity. Because of its small size and relative ease of production, scFvs are promising diagnostic and therapeutic reagents for protein misfolded diseases. Studies have demonstrated the efficacy and safety of scFvs in preventing amyloid protein aggregation in preclinical models. Herein, we discuss recent developments of these immunotherapeutics. We review efforts of our group and others using scFv in neurodegenerative disease models. We illustrate the advantages of scFvs, including engineering to enhance misfolded conformer specificity and subcellular targeting to optimize therapeutic action.

  17. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality.

    Science.gov (United States)

    Kibat, Janek; Schirrmann, Thomas; Knape, Matthias J; Helmsing, Saskia; Meier, Doris; Hust, Michael; Schröder, Christoph; Bertinetti, Daniela; Winter, Gerhard; Pardes, Khalid; Funk, Mia; Vala, Andrea; Giese, Nathalia; Herberg, Friedrich W; Dübel, Stefan; Hoheisel, Jörg D

    2016-09-25

    Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform well and interact specifically enough with analytes unless an elaborate characterisation is performed. Here, we present an approach to shorten this process by combining the selection of suitable antibodies with the identification of informative target molecules by means of antibody microarrays, thereby reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples isolated from pancreatic ductal adenocarcinoma and healthy pancreas, as well as recurrent and non-recurrent bladder tumours. We observed significant variation in the expression of the E3 ubiquitin-protein ligase (CHFR) as well as the glutamate receptor interacting protein 2 (GRIP2), for example, always with more than one of the scFvs binding to these targets. Only the relevant antibodies were then characterised further on antigen microarrays and by surface plasmon resonance experiments so as to select the most specific and highest affinity antibodies. These binders were in turn used to confirm a microarray result by immunohistochemistry analysis. PMID:26709003

  18. Rainbow trout surviving infections of viral haemorrhagic septicemia virus (VHSV) show lasting antibodies to recombinant G protein fragments

    DEFF Research Database (Denmark)

    Encinas, P.; Gomez-Casado, E.; Grandes, Fregeneda;

    2011-01-01

    Rainbow trout antibodies (Abs) binding to recombinant fragments (frgs) derived from the protein G of the viral haemorrhagic septicemia virus (VHSV)-07.71 strain, could be detected by ELISA (frg-ELISA) in sera from trout surviving laboratory-controlled infections. Abs were detected not only by using...... sera from trout infected with the homologous VHSV isolate but also with the VHSV-DK-201433 heterologous isolate, which had 13 amino acid changes. Sera from healthy trout and/or from trout surviving infectious haematopoietic necrosis virus (IHNV) infection, were used to calculate cut-off absorbances to...... differentiate negative from positive sera. Specific anti-VHSV Abs could then be detected by using any of the following frgs: frg11 (56–110), frg15 (65–250), frg16 (252–450) or G21-465. While high correlations were found among the ELISA values obtained with the different frgs, no correlations between any frg...

  19. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects. PMID:26700095

  20. Intranuclear Delivery of a Novel Antibody-Derived Radiosensitizer Targeting the DNA-Dependent Protein Kinase Catalytic Subunit

    International Nuclear Information System (INIS)

    Purpose: To inhibit DNA double-strand break repair in tumor cells by delivery of a single-chain antibody variable region fragment (ScFv 18-2) to the cell nucleus. ScFv 18-2 binds to a regulatory region of the DNA-dependent protein kinase (DNA-PK), an essential enzyme in the nonhomologous end-joining pathway, and inhibits DNA end-joining in a cell-free system and when microinjected into single cells. Development as a radiosensitizer has been limited by the lack of a method for intranuclear delivery to target cells. We investigated a delivery method based on folate receptor–mediated endocytosis. Methods and Materials: A recombinant ScFv 18-2 derivative was conjugated to folate via a scissile disulfide linker. Folate-ScFv 18-2 was characterized for its ability to be internalized by tumor cells and to influence the behavior of ionizing radiation–induced repair foci. Radiosensitization was measured in a clonogenic survival assay. Survival curves were fitted to a linear-quadratic model, and between-group differences were evaluated by an F test. Sensitization ratios were determined based on mean inhibitory dose. Results: Human KB and NCI-H292 lung cancer cells treated with folate-conjugated ScFv 18-2 showed significant radiosensitization (p < 0.001). Sensitization enhancement ratios were 1.92 ± 0.42 for KB cells and 1.63 ± 0.13 for NCI-H292 cells. Studies suggest that treatment inhibits repair of radiation-induced DSBs, as evidenced by the persistence of γ-H2AX-stained foci and by inhibition of staining with anti-DNA-PKcs phosphoserine 2056. Conclusions: Folate-mediated endocytosis is an effective method for intranuclear delivery of an antibody-derived DNA repair inhibitor.

  1. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  2. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation

    OpenAIRE

    Benjamin J Tillotson; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.

    2015-01-01

    The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a s...

  3. Methods of preparing and using single chain anti-tumor antibodies

    Science.gov (United States)

    Cheung, Nai-Kong; Guo, Hong-Fen

    2010-02-23

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  4. Study of the viability of technetium-99m labeling of whole antimyosin antibody and its fragment: development of radiopharmaceutical for cardiac survey

    International Nuclear Information System (INIS)

    In the acute myocardium infarction, the myocytes cell membrane loses its integrity, allowing the influx of extracellular macromolecules such as circulating antibody into the damaged cell. The use of the specific antibodies against cardiac myosin labeled with 99mTc allows to determine the localization and extension of myocardial infarction. The purpose of this work was to study the viability of labeling of the antimyosin monoclonal antibody and its fragment F(ab')2 with 99mTc. Because of the high cost of antimyosin antibody, others antibodies were used to optimize the methodology and the best condition was used for antimyosin antibody. The intact antibody was cleaved by pepsin to produce F(ab')2 fragment. The F(ab')2 and the intact antibody were reduced by treatment with Dithiothreitol (DTT) and 2-Mercaptoethanol (2-ME) and labeled with 99mTc by direct method. Different concentrations of reductant, mixing conditions and incubation times were studied. In the standard condition, incubation at molar ratio 1:1000 (antibody:reducing agent) at room temperature for 30 minutes with continuous rotation (850 rpm), 13.28 - SH groups were formed per molecule. It was studied the influence of p H, of the concentration of stannous chloride (Sn2+) and incubation time in the labeling condition. The better radiochemical yield (90.06 +- 1.53%) was obtained using 2.5 μg of Sn2+ in p H 4.5 for 60 minutes. The labeling of the fragment F(ab')2 did not present satisfactory results because of the low yield of the digestion. After purification by PD-10, the biodistribution study was performed and showed that the intact antimyosin antibody labeled with 99mTc presented fast kinetic compatible with the biodistribution of an intact antibody labeled with 99mTc. Scintigraphy image of the animal with myocardial infarction was obtained and compared with the image of a normal animal. The studies allow to conclude that the use of fragment F(ab')2 are not viable, but the use of the labeled antimyosin

  5. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  6. COMPARISON OF FOUR METHODS TO GENERATE IMMUNOREACTIVE FRAGMENTS OF A MURINE MONOCLONAL ANTIBODY OC859 AGAINST HUMAN OVARIAN EPITHELIAL CANCER ANTIGEN

    Institute of Scientific and Technical Information of China (English)

    邹颖; 卞美璐; 杨子义; 连利娟; 刘文淑; 许秀英

    1995-01-01

    In the present study,four different proteases (pepsin,papain,bromelain and ficin) were screened with a murine monoclonal antibody OC859,in order to verify whether different digestion procedures could improve yield and stability of the F(ab')2 or Fab fragments.The yields of F(ab')2 or Fab fragments from digestion with pepsin,papain,bromelain and ficin were respectively 20.3+/-2.0%,50.5%+/-5.0%,74.4+/-2.7% and 82.8+/-10.2% of the theoretical maximum.Immunoreactivity in a noncompetitive solid-phase radioimmunoassay (SPRIA) of the fragments generated by the four proteases were respectively 10+/-5%,36+/-5%,60+/-6% and 75+/-6% of the intact OC859 IgG.These results suggested that the fragmentation of OC859 with ficin gave a higher yield of superior immunoreactive fragments.

  7. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody

    Directory of Open Access Journals (Sweden)

    Saeed M

    2016-03-01

    Full Text Available Mesha Saeed,1 Mandy van Brakel,2 Sara Zalba,1 Erik Schooten,2 Joost AP Rens,1 Gerben A Koning,1,† Reno Debets,2 Timo LM ten Hagen1 1Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands †Dr Gerben A Koning passed away on December 29, 2015 Abstract: Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs directed against a tumor-selective cancer testis antigen (CTA NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1 presented by human leukocyte antigen A1 (HLA-A1, in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cytometry and confocal microscopy. Notably, the scFv with

  8. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody.

    Science.gov (United States)

    Saeed, Mesha; van Brakel, Mandy; Zalba, Sara; Schooten, Erik; Rens, Joost Ap; Koning, Gerben A; Debets, Reno; Ten Hagen, Timo Lm

    2016-01-01

    Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cytometry and confocal microscopy. Notably, the scFv with nonenhanced affinity of M1/A1, but not the one with enhanced affinity, was exclusively bound to and internalized by melanoma tumor cells expressing M1/A1. Taken together, antigen-mediated targeting of tumor cells as well as promoting internalization of nanoparticles by these tumor cells is mediated by TCR-like scFv and can contribute to melanoma-specific targeting. PMID:27022262

  9. Use of 2D NMR, protein engineering, and molecular modeling to study the hapten-binding site of an antibody Fv fragment against 2-phenyloxazolone

    International Nuclear Information System (INIS)

    Two-dimensional (2D) 1H NMR spectroscopy was used to study the hapten-binding site of a recombinant antibody Fv fragment expressed in Escherichia coli. Point mutations of residues in the CDR loops of the Fv fragment were designed in order to investigate their influence on hapten binding and to make site-specific assignments of aromatic NMR proton signals. Two tyrosines giving NOEs to the ligand 2-phenyloxazolone were identified, residue 33 in CDR1 of the heavy chain and residue 32 in CDR1 of the light chain. The benzyl portion of 2-phenyloxazolone is located between these two residues. The binding site is close to the surface of the Fv fragment. Comparison with a different anti-2-phenyloxazolone antibody, the crystal structure of which has recently been solved, shows that the general location of the hapten-binding site in both antibodies is similar. However, in the crystallographically solved antibody, the hapten is bound farther from the surface in a pocket created by a short CDR3 loop of the heavy chain. In the binding site identified in the Fv fragment studied in this report, this space is probably filled by the extra seven residues of the CDR3

  10. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK.

    Science.gov (United States)

    Halford, Michael M; Macheda, Maria L; Parish, Clare L; Takano, Elena A; Fox, Stephen; Layton, Daniel; Nice, Edouard; Stacker, Steven A

    2013-01-01

    RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain-specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies. PMID:24058687

  11. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK.

    Directory of Open Access Journals (Sweden)

    Michael M Halford

    Full Text Available RYK is an unusual member of the receptor tyrosine kinase (RTK family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv phage display library, we identified anti-RYK WIF domain-specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies.

  12. PET Imaging of CD105/Endoglin Expression with a 61/64Cu-Labeled Fab Antibody Fragment

    Science.gov (United States)

    Zhang, Yin; Hong, Hao; Orbay, Hakan; Valdovinos, Hector F.; Nayak, Tapas R.; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2013-01-01

    Purpose The goal of this study was to generate and characterize the Fab fragment of TRC105, a monoclonal antibody that binds with high affinity to human and murine CD105 (i.e. endoglin), and investigate its potential for positron emission tomography (PET) imaging of tumor angiogenesis in a small animal model after 61/64Cu-labeling. Methods TRC105-Fab was generated by enzymatic papain digestion. The integrity and CD105 binding affinity of TRC105-Fab was evaluated before NOTA (i.e., 1,4,7-triazacyclononane-1,4,7-triacetic acid) conjugation and 61/64Cu-labeling. Serial PET imaging and biodistribution studies were carried out in the syngeneic 4T1 murine breast cancer model to quantify tumor targeting efficacy and normal organ distribution of 61/64Cu-NOTA-TRC105-Fab. Blocking studies with unlabeled TRC105 were performed to confirm CD105 specificity of the tracer in vivo. Immunofluorescence staining was also conducted to correlate tracer uptake in the tumor and normal tissues with CD105 expression. Results TRC105-Fab was produced with high purity through papain digestion of TRC105, as confirmed by SDS-PAGE, HPLC analysis, and mass spectrometry. 61/64Cu-labeling of NOTA-TRC105-Fab was achieved with ~50% yield (specific activity: ~44 GBq/µmol). PET imaging revealed rapid uptake of 64Cu-NOTA-TRC105-Fab in the 4T1 tumor (3.6 ± 0.4, 4.2 ± 0.5, 4.9 ± 0.3, 4.4 ± 0.7, and 4.6 ± 0.8 %ID/g at 0.5, 2, 5, 16, and 24 h post-injection respectively; n = 4). Since tumor uptake peaked soon after tracer injection, 61Cu-labeled TRC105-Fab was also able to provide tumor contrast at 3 and 8 h post-injection. CD105 specificity of the tracer was confirmed with blocking studies and histological examination. Conclusion Herein we report PET imaging of CD105 expression with 61/64Cu-NOTA-TRC105-Fab, which exhibited prominent and target specific uptake in the 4T1 tumor. The use of a Fab fragment led to much faster tumor uptake (which peaked at a few hours after tracer injection) compared to

  13. Kinetics and dosimetry of iodine-131-labelled antibody fragments after local administration in patients with rectal cancer

    International Nuclear Information System (INIS)

    In 11 patients with rectal cancer, a mixture of F(ab')2 fragments of anti-carcinomembryonic antigen and anti-CA 19.9 labelled with a diagnostic dose of iodine-131 (3-10 MBq) was administered submucosally around the tumour. In this study, the local kinetics in and the dose to the rectal wall, the whole body kinetics and the effective dose equivalent are presented. Initially, about 50% of the plasma activity was due to free 131I. After 4 h, the plasma activity was almost completely protein bound (86%). Maximum plasma activity was observed after the 2nd day. In the first 24 h, 14% of the injected dose was excreted in the urine and within 4 days about half of the administered activity. The absorbed radiation dose to the rectal wall was estimated to be 0.2 Gy/MBq. The dose to the bone marrow was 0.2 mGy/MBq or 0.4 mGy/MBq, assuming a homogeneous tracer distribution or equal blood and bone marrow activity concentrations, respectively. The effective dose equivalent is 1.9 mSv/MBq. We conclude that the theoretical advantages of the local administration of 131I-labelled antibodies for diagnostic purposes in patients with rectal cancer are not limited by our dosimetric data. Nevertheless, we advocate the use of other radiolabels with more appropriate imaging qualities and probably a lower radiation burden. (orig./MG)

  14. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Sung Sun Yim

    Full Text Available Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS. First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6. These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.

  15. Development of Antibody-Coated Magnetite Nanoparticles for Biomarker Immobilization

    Directory of Open Access Journals (Sweden)

    Christian Chapa Gonzalez

    2014-01-01

    Full Text Available Magnetic nanoparticles (MNPs have great potential in biomedical applications because of their magnetic response offers the possibility to direct them to specific areas and target biological entities. Magnetic separation of biomolecules is one of the most important applications of MNPs because their versatility in detecting cancer biomarkers. However, the effectiveness of this method depends on many factors, including the type of functionalization onto MNPs. Therefore, in this study, magnetite nanoparticles have been developed in order to separate the 5′-nucleotidase enzyme (5eNT. The 5eNT is used as a bio-indicator for diagnosing diseases such as hepatic ischaemia, liver tumor, and hepatotoxic drugs damage. Magnetic nanoparticles were covered in a core/shell type with silica, aminosilane, and a double shell of silica-aminosilane. A ScFv (fragment antibody and anti-CD73 antibody were attached to the coated nanoparticles in order to separate the enzyme. The magnetic separation of this enzyme with fragment antibody was found to be 28% higher than anti-CD73 antibody and the enzyme adsorption was improved with the double shell due to the increased length of the polymeric chain. Magnetite nanoparticles with a double shell (silica-aminosilane were also found to be more sensitive than magnetite with a single shell in the detection of biomarkers.

  16. [One amino acid mutation in an anti-CD20 antibody fragment that affects the yield bacterial secretion and the affinity].

    Science.gov (United States)

    Liu, Yin-Xing; Xiong, Dong-Sheng; Fan, Dong-Mei; Shao, Xiao-Feng; Xu, Yuan-Fu; Zhu, Zhen-Ping; Yang, Chun-Zheng

    2003-05-01

    Monoclonal antibodies (mAb) directed against CD20, either unmodified or in radiolabeled forms, have been successfully exploited in clinic as effective therapeutic agents in the management of non-Hodgkin's B-cell lymphoma. The antibody fragment is a potential agent in image and therapy of tumor. To further improve the soluble expression of anti-CD20 antibody Fab' fragment, PCR was used to mutate the anti-CD20 VL and VH genes and its biological activity was identified. The expression vector of chimeric antibody Fab' was constructed and expressed in E. coli. The data of mutant clone DNA sequence showed that the amino acid of light chain gene of the parent anti-CD20 antibody (H47) was successful mutated as Ser (GAG)-Asn (CAG). The soluble expression of mutated anti-CD20 Fab' (CD20-7) was 3.8 mg/g dry cell weight, while the parent (CD20-2) was 1.3 mg/g dry cell weight. The affinity constant Ka of CD20-7 was 2.2 x 10(9) L/mol. The primary results of competitive assays by FACS showed that CD20-7 could partially block the sites through which parent antibody (HI47) bind to Raji cells. There was difference in the Raji cells (CD20+)-binding activity between the mutant CD20-7 and parent CD20-2. The site mutation of anti-CD20 Fab' gene make it possible that the anti-CD20 antibody fragment was succeeded to obtain higher expression. In this thesis, we succeeded in completing mutation and expression of anti-CD20 Fab' genes, distinguishing its biological activity, and obtaining its highly expression. These period results will lay a foundation for development of other kind of anti-CD20 engineering antibody (for instance: Fab' Diabody and miniantibody), and make it possible for anti-CD20 antibody to be applied to tumor therapy in civil in the future. PMID:15969005

  17. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation

    Science.gov (United States)

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions. PMID:25484039

  18. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface

    OpenAIRE

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M. Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-01-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effecti...

  19. Characterization of a Human Antibody Fragment Fab and Its Calcium Phosphate Nanoparticles that Inhibit Rabies Virus Infection with Vaccine

    OpenAIRE

    Liu, Xinjian; Lin, Hong; Tang, Qi; Li, Chen; Yang, Songtao; Wang, Zhongcan; Wang, Changjun; He, Qing; Cao, Brian; Feng, Zhenqing; Guan, Xiaohong; Zhu, Jin

    2011-01-01

    Recombinant antibody phage display technology has been used to mimic many aspects of the processes that govern the generation and selection of high-affinity natural human antibodies in the human immune system, especially for infectious disease prophylaxis. An anti-rabies virus immunized phage-display Fab library was constructed from peripheral blood lymphocytes from vaccinated volunteers. The immunized antibody library, with a diversity of 6.7×108, was used to select and produce antibodies th...

  20. Complete regression of a guinea pig hepatocarcinoma by immunotherapy with "tumor-immune" RNA or antibody to fibrin fragment E.

    Science.gov (United States)

    Schlager, S I; Dray, S

    1976-01-01

    Two novel immunotherapeutic regimens were developed for a uniformly lethal, intradermally growing transplantable ascites variant (line 10) of a diethylnitrosamine-induced hepatoma in strain 2 guinea pigs. In an apparently tumor-specific immunotherapy model, 32 guinea pigs were cured by the injection into the tumor area, five or seven days after tumor challenge, of syngeneic or xenogeneic RNA extracts obtained from lymphoid tissues of line 10-immune strain 2 guinea pigs or rhesus monkeys, as part of a total regimen which included syngeneic nonsensitive peritoneal exudate cells injected prior to, and tumor-specific antigen injected after, the RNA. In another immunotherapy model, not tumor-specific, 18 strain 2 guinea pigs were cured by the injection into the tumor area, 6 and 16 days after tumor challenge, of antibody specific for fibrin fragment E (FFE), an essential component in the formation of a fibrin matrix considered to be important in tumor development. When therapy was delayed to 12 days in the RNA test system, or to 16 days in the anti-FFE test system, complete abrogation of the tumors did not occur. The long-term survival of the 50 successfully treated animals and their immunity to further tumor challenge indicated that both immunotherapeutic procedures had systemic effects. To test this further, line 10 cells were injected intradermally simultaneously at two sites and only one site was treated. When the one tumor location was treated with anti-FFE, complete regression of the treated tumor and a 30% retardation in the development of the untreated tumor were observed. When this tumor location was treated with the RNA regimen, complete regression of the tumors occurred at both the treated and the untreated sites. Optimal conditions for both immunotherapeutic models and their combination have yet to be establshed. Nonetheless, both immunotherapeutic regimens were more effective than any other immunotherapy thus far reported for this tumor, including the use

  1. Crystallization and preliminary X-ray diffraction analysis of the complex between a human anti-alpha toxin antibody fragment and alpha toxin

    International Nuclear Information System (INIS)

    Crystals of the complex between the Fab fragment of a human anti-alpha toxin antibody and alpha toxin have been obtained. Diffraction data sets were collected to 2.56 Å resolution. Staphylococcus aureus alpha toxin (AT) has been crystallized in complex with the Fab fragment of a human antibody (MEDI4893). This constitutes the first reported crystals of AT bound to an antibody. The monoclinic crystals belonged to space group P21, with unit-cell parameters a = 85.52, b = 148.50, c = 93.82 Å, β = 99.82°. The diffraction of the crystals extended to 2.56 Å resolution. The asymmetric unit contained two MEDI4893 Fab–AT complexes. This corresponds to a crystal volume per protein weight (VM) of 2.3 Å3 Da−1 and a solvent content of 47%. The three-dimensional structure of this complex will contribute to an understanding of the molecular basis of the interaction of MEDI4893 with AT. It will also shed light on the mechanism of action of this antibody, the current evaluation of which in the field of S. aureus-mediated diseases makes it a particularly interesting case study. Finally, this study will provide the three-dimensional structure of AT in a monomeric state for the first time

  2. Using the local immune response from the natural buffalo host to generate an antibody fragment library that binds the early larval stages of Schistosoma japonicum.

    Science.gov (United States)

    Hosking, Christopher G; Driguez, Patrick; McWilliam, Hamish E G; Ilag, Leodevico L; Gladman, Simon; Li, Yuesheng; Piedrafita, David; McManus, Donald P; Meeusen, Els N T; de Veer, Michael J

    2015-09-01

    Antibodies isolated from the local draining inguinal lymph node of field exposed-water buffaloes following challenge with Schistosoma japonicum cercariae showed high reactivity towards S. japonicum antigen preparations and bound specifically to formaldehyde-fixed S. japonicum schistosomules. Using this specific local immune response we produced a series of single-chain antibody Fv domain libraries from the same lymph nodes. Removal of phage that cross reacted with epitopes on adult parasites yielded a single-chain antibody Fv domain-phage library that specifically bound to whole formaldehyde-fixed and live S. japonicum schistosomules. DNA sequencing indicated clear enrichment of the single-chain antibody Fv domain library for buffalo B-cell complementarity determining regions post-selection for schistosomule binding. This study also revealed that long heavy chain complementarity determining regions appear to be an important factor when selecting for antibody binding fragments against schistosomule proteins. The selected single-chain antibody Fv domain-phage were used to probe a schistosome-specific protein microarray, which resulted in the recognition of many proteins expressed across all schistosome life-cycle stages. Following absorption to adult worms, the single-chain antibody Fv domain-phage library showed significantly reduced binding to most proteins, whilst two proteins (NCBI GenBank accession numbers AY915878 and AY815196) showed increased binding. We have thus developed a unique set of host derived single-chain antibody Fv domains comprising buffalo B-cell variable regions that specifically bind to early S. japonicum life-stages. PMID:26116907

  3. Immunoreactivity and Radioimmunoscintigraphy of 4-Lysine Single Chain (Fv) Lym-1 Antibody for the Radiometal Chelation

    International Nuclear Information System (INIS)

    Small size of recombinant scFv, composed of VH and VL region of IgG, has many advantages such as faster blood clearance, improved tumor localization and reduced human anti-mouse antibody (HAMA) response. On the other hand, owing to small size, number of amino group, which was not involved in binding site, of ScFv lym-1 was insufficient in conjugation with CITC-DTPA chelator for radio metal labeling. The goal of this study is to introduce 4-lysine tag to the end of ScFv lym-1 sequence for radio metal conjugation and to evaluate the immunoreactivity and radioimmunoscintigraphy of chelator conjugated 4-lysine taq scFv lym-1 (4-lys scFv)

  4. Crystallization and preliminary X-ray diffraction analysis of the complex between a human anti-interferon antibody fragment and human interferon α-2A

    International Nuclear Information System (INIS)

    Crystals of the complex between the Fab fragment of a human anti-interferon α therapeutic antibody and human interferon α-2A have been obtained and diffracted to 3.0 Å resolution. Recombinant human interferon α-2A (rhIFN-α-2A) has been crystallized in complex with the recombinantly produced Fab fragment of a therapeutic monoclonal antibody (MEDI545; IgG1/κ) which targets several human interferon α subtypes. This constitutes the first reported crystals of a human type I interferon bound to an antibody. The orthorhombic crystals belonged to either space group I222 or I212121, with unit-cell parameters a = 134.82, b = 153.26, c = 163.49 Å. The diffraction of the crystals extended to 3.0 Å resolution. The asymmetric unit contained two Fab–rhIFN-α-2A complexes. This corresponded to a crystal volume per protein weight (VM) of 3.02 Å3 Da−1 and a solvent content of 59.3%. The corresponding three-dimensional structure is expected to shed light on the mechanism of action of MEDI545 and the molecular basis of its specificity

  5. Crystallization and preliminary X-ray diffraction analysis of two peptides from Alzheimer PHF in complex with the MN423 antibody Fab fragment

    International Nuclear Information System (INIS)

    Crystals of the paired helical filaments (PHF) specific monoclonal antibody MN423 grown in the presence of two synthetic peptides derived from the PHF tau protein were analysed by X-ray techniques and the structure was solved by molecular replacement. The major constituent of the Alzheimer’s disease paired helical filaments (PHF) core is the intrinsically disordered protein (IDP) tau. Globular binding partners, e.g. monoclonal antibodies, can stabilize the fold of disordered tau in complexes. A previously published structure of a proteolytically generated tau fragment in a complex with the PHF-specific monoclonal antibody MN423 revealed a turn-like structure of the PHF core C-terminus [Sevcik et al. (2007 ▶). FEBS Lett.581, 5872–5878]. To examine the structures of longer better-defined PHF segments, crystals of the MN423 Fab fragment were grown in the presence of two synthetic peptides derived from the PHF core C-terminus. For each, X-ray diffraction data were collected at 100 K at a synchrotron source and initial phases were obtained by molecular replacement

  6. Construction of human Alzheimer's disease specific single chain antibodies library%人源性阿尔茨海默病噬菌体单链抗体库的构建

    Institute of Scientific and Technical Information of China (English)

    李楠; 王建平

    2015-01-01

    Objective To construct the human Alzheimer's disease (AD) specific single chain anti‐bodies (scFv) library for sceening human AD scFv to Aβ1‐42 oligomers .Methods RNA was isola‐ted from 40 ml peripheral blood taken from 18 AD patients .Variable heavy (V H ) and variable light (VL ) genes were amplified by RT‐PCR and linked to the scFv fragments that were then cloned into the phage vector pCANTAB5E .The scFv library was constructed by electroporating E .coli TG1 cells into the pCANTAB5E and rescuing the assistant phage M13K07 .Results The total RNA was extracted .The VH and VL genes were amplified .Electropharesis showed that the length of VH and VL genes was 360bp and 300bp respectively and the length of linked scFv was 750bp .The 2 .4 × 109 scFv library was thus constructed and identified by BstN I digestion .Elec‐tropharesis showed that the length of BstN I‐digested scFv fragments varied ,indicating that the library is of a good diversity .Conclusion The human AD phage scFv library we constructed lays a foundation for screening the antibodies to Aβ1‐42 oligomers and the treatment of AD .%目的:构建人源性阿尔茨海默病(AD)噬菌体单链抗体(scFv)库,为筛选β淀粉样蛋白(Aβ1‐42)的人源性特异性抗体奠定基础。方法采集18例AD患者的外周血40 ml ,提取总RNA ,应用RT‐PCR法得到人抗体可变区重链(V H )和可变区轻链(V L )基因。将 V H 和 V L 由连接肽连接得到 scFv 片段,将所得片段双酶切后,克隆至pCANTAB5E噬菌体载体,大肠埃希菌TG1感受态细胞经电击转化,辅助噬菌体 M13K07拯救后构建scFv型噬菌体抗体库。结果总RNA经逆转录PCR扩增VH和VL可变区基因的凝胶电泳显示,PCR产物长度分别为360 bp和300 bp ,其连接形成的scFv片段长度为750 bp ,最终构建了库容为2.4×109的scFv库。BstNⅠ酶切鉴定构建的scFv库,经凝胶电泳可见,酶切片段长度差异性大,

  7. Development of sensitivity-improved fluorescence-linked immunosorbent assay using a fluorescent single-domain antibody against the bioactive naphthoquinone, plumbagin.

    Science.gov (United States)

    Sakamoto, Seiichi; Taura, Futoshi; Pongkitwitoon, Benyakan; Putalun, Waraporn; Tsuchihashi, Ryota; Kinjo, Junei; Tanaka, Hiroyuki; Morimoto, Satoshi

    2010-04-01

    A fluorescent single-domain antibody (fluobody), a fusion protein of a green fluorescent protein extracted from Aequorea coerulescens (AcGFP), a mutant that has been codon-optimized for mammalian expression, and a single-chain variable fragment antibody (scFv), against plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone; PL) was successfully constructed and expressed in Escherichia coli. The expressed fluobody was purified, refolded, and characterized to develop a speedy, simple, and sensitive fluorescence-linked immunosorbent assay (FLISA) for the determination of PL. In this study, two kinds of fluobody containing PL-scFv at the N-terminus of AcGFP (N fluobody) or the C-terminus of AcGFP (C fluobody) were constructed with flexible amino acid linker (Gly(4)Ser)(2) between PL-scFv and AcGFP for comparative purposes. Characterization of the fluobodies revealed that the C fluobody has better properties as a probe for FLISA than the N fluobody because the fluorescence intensity of C fluobody was 18-fold higher than that of N fluobody. Moreover, C fluobody exhibited a fourfold-higher binding affinity than the N fluobody. More interestingly, the limit of detection for PL measurement in FLISA (24 ng mL(-1)) was improved to eightfold higher than that in conventional ELISA (0.2 microg mL(-1)), indicating that a sensitive immunoassay could be developed by using fluobody instead of monoclonal antibody or scFv. PMID:20217398

  8. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli.

    Directory of Open Access Journals (Sweden)

    Christiane Y Ozaki

    Full Text Available Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv that were produced in E. coli against enterotoxins of ETEC strains.Recombinant scFv were developed against ETEC heat-labile toxin (LT and heat-stable toxin (ST, from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains.The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis.

  9. The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T cell clone blocks activation by either allogeneic Ia or antigen and self-Ia

    OpenAIRE

    1984-01-01

    We characterize a monoclonal antibody directed against the antigen/Ia receptor of a cloned helper T cell line that induced T cell clone proliferation and T cell clone-dependent B cell proliferation at antibody concentrations as low as 10(-11) M. A Fab fragment of this antibody was not stimulatory, implicating cross-linking of antigen receptors as the primary signal for T cell activation. The Fab fragment inhibited activation of this clone by both allogeneic Ia and antigen plus self-Ia, but no...

  10. Positron Emission Tomography Imaging of Tumor Angiogenesis with a 61/64Cu-Labeled F(ab')2 Antibody Fragment

    OpenAIRE

    Hong, Hao; Zhang, Yin; Orbay, Hakan; Valdovinos, Hector F.; Nayak, Tapas R.; Bean, Jero; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2013-01-01

    The objective of this study was to characterize the in vitro and in vivo properties of the F(ab')2 fragment of TRC105, a human/murine chimeric IgG1 monoclonal antibody that binds with high avidity to human and murine CD105 (i.e. endoglin), and investigate its potential for positron emission tomography (PET) imaging of tumor angiogenesis after 61/64Cu-labeling. TRC105-F(ab')2 of high purity was produced by pepsin digestion of TRC105, which was confirmed by SDS-PAGE, HPLC analysis, and mass spe...

  11. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Aβ peptides associated with Alzheimer’s disease

    International Nuclear Information System (INIS)

    Crystallization and X-ray diffraction data collection of the Fab fragment of the monoclonal antibody WO2 in the absence or presence of amyloid β peptides associated with Alzheimer’s disease are reported. The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid β peptide (Aβ) associated with Alzheimer’s disease. This region of Aβ has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Aβ peptides Aβ1–16 and Aβ1–28 are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO4; they belonged to the orthorhombic space group P212121 and diffracted to 1.6 Å resolution. The complexes of WO2 Fab with either Aβ1–@@16 or Aβ1–28 were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P212121, and diffracted to 1.6 Å resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble Aβ1–42 in PEG 550 MME. This second form belonged to space group P21 and diffracted to 1.9 Å resolution

  12. Crystallization and preliminary X-ray diffraction analysis of the complex of a human anti-ephrin type-A receptor 2 antibody fragment and its cognate antigen

    International Nuclear Information System (INIS)

    Crystals of the complex between the Fab fragment of a human anti-EphA2 antibody and the N-terminal domain of human EphA2 have been obtained. Diffraction data were collected to 2.55 Å resolution. The recombinant N-terminal domain of human ephrin type-A receptor 2 (rEphA2) has been crystallized in complex with the recombinantly produced Fab fragment of a fully human antibody (1C1; IgG1/κ). These are the first reported crystals of an ephrin receptor bound to an antibody. The orthorhombic crystals belonged to space group C2221 (the 00l reflections obey the l = 2n rule), with unit-cell parameters a = 78.93, b = 120.79, c = 286.20 Å. The diffraction of the crystals extended to 2.0 Å resolution. However, only data to 2.55 Å resolution were considered to be useful owing to spot overlap caused by the long unit-cell parameter. The asymmetric unit is most likely to contain two 1C1 Fab–rEphA2 complexes. This corresponds to a crystal volume per protein weight (VM) of 2.4 Å3 Da−1 and a solvent content of 49.5%. The three-dimensional structure of this complex will shed light on the molecular basis of 1C1 specificity. This will also contribute to a better understanding of the mechanism of action of this antibody, the current evaluation of which as an antibody–drug conjugate in cancer therapy makes it a particularly interesting case study

  13. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Aβ peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Miles, Luke A. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Crespi, Gabriela A. N. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Wycherley, Kaye [WEHI Biotechnology Centre, La Trobe R& D Park, Bundoora, Victoria 3086 (Australia); Ascher, David B. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Barnham, Kevin J.; Cappai, Roberto [Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Beyreuther, Konrad [ZMBH, University of Heidelberg, Heidelberg (Germany); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Parker, Michael W. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); McKinstry, William J., E-mail: wjmckinstry@hotmail.com [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Medicine (St Vincent’s Hospital), The University of Melbourne, 41 Victoria Parade, Fitzroy 3065 (Australia)

    2008-05-01

    Crystallization and X-ray diffraction data collection of the Fab fragment of the monoclonal antibody WO2 in the absence or presence of amyloid β peptides associated with Alzheimer’s disease are reported. The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid β peptide (Aβ) associated with Alzheimer’s disease. This region of Aβ has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Aβ peptides Aβ{sub 1–16} and Aβ{sub 1–28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 Å resolution. The complexes of WO2 Fab with either Aβ{sub 1–@}@{sub 16} or Aβ{sub 1–28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 Å resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble Aβ{sub 1–42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 Å resolution.

  14. An integrated top-down and bottom-up proteomic approach to characterize the antigen binding fragment of antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Leendert J.; Wu, Si; vanDuijn, Martijn M.; Tolic, Nikola; Stingl, Christoph; Zhao, Rui; Luider, Theo N.; Pasa-Tolic, Ljiljana

    2014-05-31

    We have previously shown that different individuals exposed to the same antigen produce antibodies with identical mutations in their complementarity determining regions (CDR), suggesting that CDR tryptic peptides can serve as biomarkers for disease diagnosis and prognosis. Complete Fabs derived from disease specific antibodies have even higher potential; they could potentially be used for disease treatment and are required to identify the antigens towards which the antibodies are directed. However, complete Fab sequence characterization via LC-MS analysis of tryptic peptides (i.e. bottom-up) has proven to be impractical for mixtures of antibodies. To tackle this challenge, we have developed an integrated bottom-up and top-down MS approach, employing 2D chromatography coupled with Fourier transform mass spectrometry (FTMS), and applied this approach for full characterization of the variable parts of two pharmaceutical monoclonal antibodies with sensitivity comparable to the bottom-up standard. These efforts represent an essential step towards the identification of disease specific antibodies in patient samples with potentially significant clinical impact.

  15. Retinoblastoma-independent antiproliferative activity of novel intracellular antibodies against the E7 oncoprotein in HPV 16-positive cells

    International Nuclear Information System (INIS)

    'High risk' Human Papillomavirus strains are the causative agents of the vast majority of carcinomas of the uterine cervix. In these tumors, the physical integration of the HPV genome is a frequent, though not invariable occurrence, but the constitutive expression of the E6 and E7 viral genes is always observed, suggesting key roles for the E6 and E7 oncoproteins in the process of malignant transformation. The 'intracellular antibody' technology using recombinant antibodies in single-chain format offers the possibility of targeting a protein in its intracellular environment even at the level of definite domains thus representing a valuable strategy to 'knock out' the function of specific proteins. In this study, we investigate the in vitro activity of two single-chain antibody fragments directed against the 'high-risk' HPV 16 E7 oncoprotein, scFv 43M2 and scFv 51. These scFvs were expressed by retroviral system in different cell compartments of the HPV16-positive SiHa cells, and cell proliferation was analyzed by Colony Formation Assay and EZ4U assay. The binding of these scFvs to E7, and their possible interference with the interaction between E7 and its main target, the tumor suppressor pRb protein, were then investigated by immunoassays, PepSet™technology and Surface Plasmon Resonance. The expression of the two scFvs in the nucleus and the endoplasmic reticulum of SiHa cells resulted in the selective growth inhibition of these cells. Analysis of binding showed that both scFvs bind E7 via distinct but overlapping epitopes not corresponding to the pRb binding site. Nevertheless, the binding of scFv 43M2 to E7 was inhibited by pRb in a non-competitive manner. Based on the overall results, the observed inhibition of HPV-positive SiHa cells proliferation could be ascribed to an interaction between scFv and E7, involving non-pRb targets. The study paves the way for the employment of specific scFvs in immunotherapeutic

  16. An Immunosensor Based on Antibody Binding Fragments Attached to Gold Nanoparticles for the Detection of Peptides Derived from Avian Influenza Hemagglutinin H5

    Directory of Open Access Journals (Sweden)

    Urszula Jarocka

    2014-08-01

    Full Text Available This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii immobilization of antibody-binding fragments (Fab’ of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab’ fragments and hemagglutinin (HA variants have been explored with electrochemical impedance spectroscopy (EIS in the presence of [Fe(CN6]3−/4− as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17–340 residues of A/swan/Poland/305-135V08/2006, the long HA (17–530 residues A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1–345 residues of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.

  17. Kinetic screening of antibody-Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors.

    Science.gov (United States)

    Hosse, Ralf J; Tay, Leigh; Hattarki, Meghan K; Pontes-Braz, Luisa; Pearce, Lesley A; Nuttall, Stewart D; Dolezal, Olan

    2009-02-15

    Antibody generation by phage display and related in vitro display technologies routinely yields large panels of clones detected in primary end-point screenings such as enzyme-linked immunosorbent assay (ELISA). However, for the development of clinical lead candidates, rapid determination of secondary characteristics such as kinetics and thermodynamics is of nearly equal importance. Surface plasmon resonance-based biosensors are ideal tools for carrying out such high-throughput secondary screenings, allowing preliminary but confident ranking and identification of lead clones. A key feature of these assays is the stable and reversible capture of antibody fragments from crude samples leading to high-resolution kinetic analysis of library outputs. Here we exploit the high-affinity interaction between the naturally occurring nuclease domain of E. coli colicin E7 (DNaseE7) and its cognate partner, the immunity protein 7 (Im7), to develop a ligand capture system suitable for accurate kinetic ranking of library clones. We demonstrate generic applicability for a range of antibody formats: scFv antibodies, diabodies, antigen binding fragments (Fabs), and shark V(NAR) single domain antibodies. The system is adaptable and reproducible, with comparable results achieved for both the Biacore T100 and ProteOn XPR36 array biosensors. PMID:19073134

  18. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  19. The effects of N-terminal insertion into VSV-G of an scFv peptide

    Directory of Open Access Journals (Sweden)

    Piechaczyk Marc

    2006-09-01

    Full Text Available Abstract Recombinant retroviruses, including lentiviruses, are the most widely used vectors for both in vitro and in vivo stable gene transfer. However, the inability to selectively deliver transgenes into cells of interest limits the use of this technology. Due to its wide tropism, stability and ability to pseudotype a range of viral vectors, vesicular stomatitis virus G protein (VSV-G is the most commonly used pseudotyping protein. Here, we attempted to engineer this protein for targeting purposes. Chimaeric VSV-G proteins were constructed by linking a cell-directing single-chain antibody (scFv to its N-terminal. We show that the chimaeric VSV-G molecules can integrate into retroviral and lentiviral particles. HIV-1 particles pseudotyped with VSV-G linked to an scFv against human Major Histocompatibility Complex class I (MHC-I bind strongly and specifically to human cells. Also, this novel molecule preferentially drives lentiviral transduction of human cells, although the titre is considerably lower that viruses pseudotyped with VSV-G. This is likely due to the inefficient fusion activity of the modified protein. To our knowledge, this is the first report where VSV-G was successfully engineered to include a large (253 amino acids exogenous peptide and where attempts were made to change the infection profile of VSV-G pseudotyped vectors.

  20. Differential analyses of major allergen proteins in wild-type rice and rice producing a fragment of anti-rotavirus antibody.

    Science.gov (United States)

    Yuki, Yoshikazu; Kurokawa, Shiho; Kozuka-Hata, Hiroko; Tokuhara, Daisuke; Mejima, Mio; Kuroda, Masaharu; Oyama, Masaaki; Nishimaki-Mogami, Tomoko; Teshima, Reiko; Kiyono, Hiroshi

    2016-04-01

    To develop oral antibody therapy against rotavirus infection, we previously produced a recombinant fragment of llama heavy-chain antibody to rotavirus (ARP1) in rice seeds (MucoRice-ARP1). We intend to use a purification-free rice powder for clinical application but needed to check whether MucoRice-ARP1 had increased levels of known allergen proteins. For this purpose, we used two-dimensional fluorescence difference gel electrophoresis to compare the allergen protein levels in MucoRice-ARP1 and wild-type rice. We detected no notable differences, except in the levels of α-amylase/trypsin inhibitor-like family proteins. Because by this approach we could not completely separate ARP1 from the proteins of this family, we confirmed the absence of changes in the levels of these allergens by using shotgun mass spectrometry as well as immunoblot. By using immunoelectron microscopy, we also showed that RAG2, a member of the α-amylase/trypsin inhibitor-like protein family, was relocated from protein bodies II to the plasma membrane or cell wall in MucoRice-ARP1 seed. The relocation did not affect the level of RAG2. We demonstrated that most of the known rice allergens were not considerably upregulated by the genetic modification in MucoRice-ARP1. Our data suggest that MucoRice-ARP1 is a potentially safe oral antibody for clinical application. PMID:26851506

  1. Passive immunization of guinea-pigs with llama single-domain antibody fragments against foot-and-mouth disease

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Keulen, van L.; Rosalia, R.A.; Weerdmeester, K.; Cornelissen, A.H.M.; Bruin, de M.G.M.; Eble, P.L.; Dekker, A.

    2007-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease that occasionally causes outbreaks in Europe. There is a need for therapies that provide rapid protection against FMD in outbreak situations. We aim to provide such rapid protection by passive immunization with llama single-domain antibody

  2. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior

    DEFF Research Database (Denmark)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu;

    2016-01-01

    -ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its CDR-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to...

  3. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma.

    Science.gov (United States)

    Lu, Chia-Yen; Chen, Gregory J; Tai, Pei-Han; Yang, Yu-Chen; Hsu, Yu-Shen; Chang, Mingi; Hsu, Chuan-Lung

    2016-05-13

    Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yields have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies. PMID:27040766

  4. Rational design and generation of recombinant control reagents for bispecific antibodies through CDR mutagenesis.

    Science.gov (United States)

    Choi, Bryan D; Gedeon, Patrick C; Kuan, Chien-Tsun; Sanchez-Perez, Luis; Archer, Gary E; Bigner, Darell D; Sampson, John H

    2013-09-30

    Developments in the field of bispecific antibodies have progressed rapidly in recent years, particularly in their potential role for the treatment of malignant disease. However, manufacturing stable molecules has proven to be costly and time-consuming, which in turn has hampered certain aspects of preclinical evaluation including the unavailability of appropriate "negative" controls. Bispecific molecules (e.g., bispecific tandem scFv) exhibit two specificities, often against a tumor antigen as well as an immune-activation ligand such as CD3. While for IgG antibodies, isotype-matched controls are well accepted, when considering smaller antibody fragments it is not possible to adequately control for their biological activity through the use of archetypal isotypes, which differ dramatically in affinity, size, structure, and design. Here, we demonstrate a method for the rapid production of negative control tandem scFvs through complementarity determining region (CDR) mutagenesis, using a recently described bispecific T-cell engager (BiTE) targeting a tumor-specific mutation of the epidermal growth factor receptor (EGFRvIII) as an example. Four independent control constructs were developed by this method through alteration of residues spanning individual CDR domains. Importantly, while target antigen affinity was completely impaired, CD3 binding affinity was conserved in each molecule. These results have a potential to enhance the sophistication by which bispecific antibodies can be evaluated in the preclinical setting and may have broader applications for an array of alternative antibody-derived therapeutic platforms. PMID:23806556

  5. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody.

    Science.gov (United States)

    Morales, Javier F; Yu, Bin; Perez, Gerardo; Mesa, Kathryn A; Alexander, David L; Berman, Phillip W

    2016-09-01

    The V1/V2 domain of the HIV-1 envelope protein gp120 possesses two important epitopes: a glycan-dependent epitope recognized by the prototypic broadly neutralizing monoclonal antibody (bN-mAb), PG9, as well as an epitope recognized by non-neutralizing antibodies that has been associated with protection from HIV infection in the RV144 HIV vaccine trial. Because both of these epitopes are poorly immunogenic in the context of full length envelope proteins, immunization with properly folded and glycosylated fragments (scaffolds) represents a potential way to enhance the immune response to these specific epitopes. Previous studies showed that V1/V2 domain scaffolds could be produced from a few selected isolates, but not from many of the isolates that would be advantageous in a multivalent vaccine. In this paper, we used a protein engineering approach to improve the conformational stability and antibody binding activity of V1/V2 domain scaffolds from multiple diverse isolates, including several that were initially unable to bind the prototypic PG9 bN-mAb. Significantly, this effort required replicating both the correct glycan structure as well as the β-sheet structure required for PG9 binding. Although scaffolds incorporating the glycans required for PG9 binding (e.g., mannose-5) can be produced using glycosylation inhibitors (e.g., swainsonine), or mutant cell lines (e.g. GnTI(-) 293 HEK), these are not practical for biopharmaceutical production of proteins intended for clinical trials. In this report, we describe engineered glycopeptide scaffolds from three different clades of HIV-1 that bind PG9 with high affinity when expressed in a wildtype cell line suitable for biopharmaceutical production. The mutations that improved PG9 binding to scaffolds produced in normal cells included amino acid positions outside of the antibody contact region designed to stabilize the β-sheet and turn structures. The scaffolds produced address three major problems in HIV vaccine

  6. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    International Nuclear Information System (INIS)

    increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  7. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Surinder Batra, Ph D

    2006-02-27

    its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  8. Positron Emission Tomography Imaging of Tumor Angiogenesis with a 61/64Cu-Labeled F(ab')2 Antibody Fragment

    Science.gov (United States)

    Hong, Hao; Zhang, Yin; Orbay, Hakan; Valdovinos, Hector F.; Nayak, Tapas R.; Bean, Jero; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2013-01-01

    The objective of this study was to characterize the in vitro and in vivo properties of the F(ab')2 fragment of TRC105, a human/murine chimeric IgG1 monoclonal antibody that binds with high avidity to human and murine CD105 (i.e. endoglin), and investigate its potential for positron emission tomography (PET) imaging of tumor angiogenesis after 61/64Cu-labeling. TRC105-F(ab')2 of high purity was produced by pepsin digestion of TRC105, which was confirmed by SDS-PAGE, HPLC analysis, and mass spectrometry. 61/64Cu-labeling of NOTA-TRC105-F(ab')2 (NOTA denotes 1,4,7-triazacyclononane-1,4,7-triacetic acid) was achieved with yields of > 75% (specific activity: ~115 GBq/μmol). PET imaging revealed rapid tumor uptake of 64Cu-NOTA TRC105-F(ab')2 in the 4T1 murine breast cancer model (5.8 ± 0.8, 7.6 ± 0.6, 5.6 ± 0.4, 5.0 ± 0.6, and 3.8 ± 0.7 %ID/g at 0.5, 3, 16, 24, and 48 h post-injection respectively; n = 4). Since tumor uptake peaked at 3 h post-injection, 61Cu-NOTA-TRC105-F(ab')2 also gave good tumor contrast at 3 and 8 h post-injection. CD105 specificity of the tracers was confirmed by blocking studies and histopathology. In conclusion, the use of a F(ab')2 fragment led to more rapid tumor uptake (which peaked at 3 h post-injection) than radiolabeled intact antibody (which often peaked after 24 h post-injection), which may allow for same day immunoPET imaging in future clinical studies. PMID:23316869

  9. Positron emission tomography imaging of tumor angiogenesis with a (61/64)Cu-labeled F(ab')(2) antibody fragment.

    Science.gov (United States)

    Hong, Hao; Zhang, Yin; Orbay, Hakan; Valdovinos, Hector F; Nayak, Tapas R; Bean, Jero; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-02-01

    The objective of this study was to characterize the in vitro and in vivo properties of the F(ab')(2) fragment of TRC105, a human/murine chimeric IgG1 monoclonal antibody that binds with high avidity to human and murine CD105 (i.e., endoglin), and investigate its potential for positron emission tomography (PET) imaging of tumor angiogenesis after (61/64)Cu-labeling. TRC105-F(ab')(2) of high purity was produced by pepsin digestion of TRC105, which was confirmed by SDS-PAGE, HPLC analysis, and mass spectrometry. (61/64)Cu-labeling of NOTA-TRC105-F(ab')(2) (NOTA denotes 1,4,7-triazacyclononane-1,4,7-triacetic acid) was achieved with yields of >75% (specific activity: ∼115 GBq/μmol). PET imaging revealed rapid tumor uptake of (64)Cu-NOTA-TRC105-F(ab')(2) in the 4T1 murine breast cancer model (5.8 ± 0.8, 7.6 ± 0.6, 5.6 ± 0.4, 5.0 ± 0.6, and 3.8 ± 0.7% ID/g at 0.5, 3, 16, 24, and 48 h postinjection respectively; n = 4). Since tumor uptake peaked at 3 h postinjection, (61)Cu-NOTA-TRC105-F(ab')(2) also gave good tumor contrast at 3 and 8 h postinjection. CD105 specificity of the tracers was confirmed by blocking studies and histopathology. In conclusion, the use of a F(ab')(2) fragment led to more rapid tumor uptake (which peaked at 3 h postinjection) than radiolabeled intact antibody (which often peaked after 24 h postinjection), which may allow for same day immunoPET imaging in future clinical studies. PMID:23316869

  10. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface.

    Science.gov (United States)

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-09-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  11. Breakdown of C3 after complement activation. Identification of a new fragment C3g, using monoclonal antibodies

    OpenAIRE

    1982-01-01

    The physiological breakdown of C3 has been studied using monoclonal anti-C3 antibodies, and it has been found that the later stages of this process--the breakdown of C3bi--is more complex than had previously been recognized. C3bi is the reaction product produced from C3b by the action of factor I which, in the presence of factor H, produces a double cleavage in the alpha chain of C3b. It is here reported that, both on cells and in the fluid phase, the breakdown of C3bi in serum gives rise to ...

  12. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment

    OpenAIRE

    Feese, Michael D; Tamada, Taro; Kato, Yoichi; Maeda, Yoshitake; Hirose, Masako; Matsukura, Yasuko; Shigematsu, Hideki; Muto, Takanori; Matsumoto, Atsushi; Watarai, Hiroshi; Ogami, Kinya; Tahara, Tomoyuki; Kato, Takashi; Miyazaki, Hiroshi; Kuroki, Ryota

    2004-01-01

    The cytokine thrombopoietin (TPO), the ligand for the hematopoietic receptor c-Mpl, acts as a primary regulator of megakaryocytopoiesis and platelet production. We have determined the crystal structure of the receptor-binding domain of human TPO (hTPO163) to a 2.5-Å resolution by complexation with a neutralizing Fab fragment. The backbone structure of hTPO163 has an antiparallel four-helix bundle fold. The neutralizing Fab mainly recognizes the C–D crossover loop containing the species invari...

  13. Preparation of human single chain Fv antibody against hepatitis C virus E2 protein and its identification in immunohistochemistry

    Institute of Scientific and Technical Information of China (English)

    Yan-Wei Zhong; Jun Cheng; Gang Wang; Shuang-Shuang Shi; Li Li; Ling-Xia Zhang; Ju-Mei Chen

    2002-01-01

    AIM: To screen human single chain Fv antibody (scFv)against hepatitis C virus E2 antigen and identify its applicationin immunohistochemistry.METHODS: The phage antibody library was panned by HCVE2 antigen, which was coated in microtiter plate. After fiverounds of biopanning,56 phage clones were identified specificto HCV E2 antigen. The selected scFv clones were digestedby SfiI/NotI and DNA was sequenced. Then it was subclonedinto the vector pCANTABSE for expression as E-taggedsoluble scFv. The liver tissue sections from normal personand patients with chronic hepatitis B and chronic hepatitis Cwere immunostained with HCV E2 scFv antibody.RESULTS: The data of scFv-E2 DNA digestion and DNAsequencing showed that the scFv gene is composed of 750bp. ELISA and immunohistochemistry demonstrated that thehuman single chain Fy antibody against hepatitis C E2 antigenhas a specific binding character with hepatitis virus E2 antigenand paraffin-embedded tissue, but did not react with liver tissuesfrom healthy persons or patients with chronic hepatitis B.CONCLUSION: We have successfully screened andidentified HCV E2 scFv and the scFv could be used in theimmunostaining of liver tissue sections from patients withchronic hepatitis C.

  14. Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody

    International Nuclear Information System (INIS)

    The complex of MoPrP(120–232) and Fab POM1 has been crystallized (space group C2, unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°). Diffraction data to 2.30 Å resolution have been collected using synchrotron radiation. Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein PrPc to the pathogenic isoform PrPsc. Several antibodies are known to interact with the cellular prion protein and to inhibit this transition. An antibody Fab fragment, Fab POM1, was produced that recognizes a structural motif of the C-terminal domain of mouse prion protein. To study the mechanism by which Fab POM1 recognizes and binds the prion molecule, the complex between Fab POM1 and the C-terminal domain of mouse prion (residues 120–232) was prepared and crystallized. Crystals of this binary complex belonged to the monoclinic space group C2, with unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°

  15. Radioimmunoimaging of experimental thrombi in dogs using Tc-99m labeled monoclonal antibody fragments [MAPab-F(ab')/sub 2/] reactive with human platelets

    International Nuclear Information System (INIS)

    Radioimmunoimaging of thrombi could have great clinical value in the management of coronary artery and thromboembolic disease. In-111-oxine-labeled platelets currently used require platelet isolation, delayed imaging, background subtraction and there is also potential for damaging or contaminating platelets during labeling. Murine monoclonal antibody (IgG/sub 2/a) fragments directed against human platelet membrane components (cross-reactive with dog platelets) were labeled with Tc-99m and repurified from ''kits''. After radiolabeling, 91.5-93.3% of the Tc-99m was antibody-associated. The preparations retained immunoreactivity, as determined by the ratio of cell to plasma-associated radioactivity (ratios 54.7-63.8). Tc-99m-MAPAb-F(ab')/sub 2/ were injected i.v. into dogs with thrombi produced in peripheral and pulmonary veins and arteries. About 50% of the radioactivity was cleared from the blood in 3-6 min. and 18-24% was excreted in the urine within 3 hrs. The thrombi were consistently and easily visible within 1-3 hrs. with no need for blood pool subtraction. In some cases, intimal damage along the path of catheters was seen. No adverse side effects were observed. The advantages of this method are: short and simple preparation, no need for blood pool subtraction and early visualization of thrombi. Human studies are warranted to determine its clinical efficacy

  16. A Nanoparticle Platform To Evaluate Bioconjugation and Receptor-Mediated Cell Uptake Using Cross-Linked Polyion Complex Micelles Bearing Antibody Fragments.

    Science.gov (United States)

    Florinas, Stelios; Liu, Marc; Fleming, Ryan; Van Vlerken-Ysla, Lilian; Ayriss, Joanne; Gilbreth, Ryan; Dimasi, Nazzareno; Gao, Changshou; Wu, Herren; Xu, Ze-Qi; Chen, Shaoyi; Dirisala, Anjaneyulu; Kataoka, Kazunori; Cabral, Horacio; Christie, R James

    2016-05-01

    Targeted nanomedicines are a promising technology for treatment of disease; however, preparation and characterization of well-defined protein-nanoparticle systems remain challenging. Here, we describe a platform technology to prepare antibody binding fragment (Fab)-bearing nanoparticles and an accompanying real-time cell-based assay to determine their cellular uptake compared to monoclonal antibodies (mAbs) and Fabs. The nanoparticle platform was composed of core-cross-linked polyion complex (PIC) micelles prepared from azide-functionalized PEG-b-poly(amino acids), that is, azido-PEG-b-poly(l-lysine) [N3-PEG-b-PLL] and azido-PEG-b-poly(aspartic acid) [N3-PEG-b-PAsp]. These PIC micelles were 30 nm in size and contained approximately 10 polymers per construct. Fabs were derived from an antibody binding the EphA2 receptor expressed on cancer cells and further engineered to contain a reactive cysteine for site-specific attachment and a cleavable His tag for purification from cell culture expression systems. Azide-functionalized micelles and thiol-containing Fab were linked using a heterobifunctional cross-linker (FPM-PEG4-DBCO) that contained a fluorophenyl-maleimide for stable conjugation to Fabs thiols and a strained alkyne (DBCO) group for coupling to micelle azide groups. Analysis of Fab-PIC micelle conjugates by fluorescence correlation spectroscopy, size exclusion chromatography, and UV-vis absorbance determined that each nanoparticle contained 2-3 Fabs. Evaluation of cellular uptake in receptor positive cancer cells by real-time fluorescence microscopy revealed that targeted Fab-PIC micelles achieved higher cell uptake than mAbs and Fabs, demonstrating the utility of this approach to identify targeted nanoparticle constructs with unique cellular internalization properties. PMID:27007881

  17. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); Li, Lin [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Shibo, E-mail: sjiang@nybloodcenter.org [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China)

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  18. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    International Nuclear Information System (INIS)

    Research highlights: → One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. → N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. → These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  19. Construction of a human antibody domain (VH) library

    OpenAIRE

    Chen, Weizao; Zhu, Zhongyu; Xiao, Xiaodong; Dimitrov, Dimiter S.

    2009-01-01

    Highly diverse antibody (Fab or scFv) libraries have become vital sources to select antibodies with high affinity and novel properties. Combinatorial strategies provide efficient ways of creating antibody libraries containing a large number of individual clones. These strategies include the reassembly of naturally occurring genes encoding the heavy and light chains from either immune or nonimmune B-cell sources, or introduction of synthetic diversity to either the framework regions (FRs) or t...

  20. Novel Camelid Antibody Fragments Targeting Recombinant Nucleoprotein of Araucaria hantavirus: A Prototype for an Early Diagnosis of Hantavirus Pulmonary Syndrome

    Science.gov (United States)

    Pereira, Soraya S.; Moreira-Dill, Leandro S.; Morais, Michelle S. S.; Prado, Nidiane D. R.; Barros, Marcos L.; Koishi, Andrea C.; Mazarrotto, Giovanny A. C. A.; Gonçalves, Giselle M.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Pereira da Silva, Luiz H.; Duarte dos Santos, Claudia N.; Fernandes, Carla F. C.; Stabeli, Rodrigo G.

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections. PMID

  1. Construction of an anti-IL-1β scfv and TNFRI fusion protein and its therapeutic effect on RA mice model.

    Science.gov (United States)

    Kan, Fangming; Ren, Guiping; Guo, Mo; Qi, Jianying; Zhang, Yu; Han, Yang; Zhang, Yakun; Li, Deshan

    2014-01-01

    IL-1β and TNF-α play key roles in the inflammatory response. Their abnormal expression may cause the occurrence of various diseases, such as RA. Recently, medicines of target TNF-α and IL-1β have become popular in the clinical practice. Although these biological agents can get mostly good results, they are not effective in all patients. The reason for this result may be that these biological agents could not fully inhibit a variety of inflammatory cytokines in the inflammatory response. In the present study, a fusion protein gene which encoded human interleukin-1β scfv and soluble TNF receptor I (sTNFRI) was cloned. A number of in vitro assays demonstrated that anti-IL-1β scfv/TNFRI simultaneously bound to both targets. The bioactivity assay showed that the fusion protein could inhibit both the cytotoxicity of hTNF-α on L929 cells and hIL-1β-induced proliferation of L929 cells, indicating that the fusion protein has the ability to neutralize both hTNF-α and hIL-1β. In this study, we established the chicken type II collagen-induced rheumatoid arthritis model in Kunming mice, and evaluated the pharmacological effect of the fusion protein in vivo. Model mice were randomly divided into 8 groups (n=8): CIA model control group, DEX treatment group (1 mg/kg), intraperitoneal treatment group (highdose: 5 mg/kg; medium-dose: 2 mg/kg; low-dose: 0.8 mg/kg), subcutaneous treatment group (high-dose: 5 mg/kg; medium- dose: 2 mg/kg; low-dose: 0.8 mg/kg), and healthy mice as control. The control group received the same volume of saline. The mice were administrated once every 2 days. Arthritis index, anti-CII antibody titers, cytokine levels, histopathological changes were examined. The results showed that anti-IL-1β scfv/TNFRI fusion protein could reduce the degree of joint swelling, inflammatory cell infiltration, synovial cell proliferation and the level of CII antibody in the sera. The Real-time PCR analysis showed that anti-IL-1β scfv/TNFRI had the ability to

  2. Uses of monoclonal antibody 8H9

    Science.gov (United States)

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  3. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  4. Anti-human CD138 monoclonal antibodies and their bispecific formats: generation and characterization.

    Science.gov (United States)

    Chen, Dan; Zou, Jianxuan; Zong, Yunhui; Meng, Huimin; An, Gangli; Yang, Lin

    2016-06-01

    Syndecan-1 (CD138), a heparan sulfate proteoglycan, acts as a co-receptor for growth factors and chemokines and is a molecular marker associated with the epithelial-mesenchymal transition during development and carcinogenesis. In this study, we generated two specific mouse anti-human CD138 monoclonal antibodies (mAbs, clone ID: 480CT5.4.3, 587CT7.3.6.5) using hybridoma technology and identified their immunological characteristics. After hybridoma sequencing, the single-chain variable fragments (ScFvs) cloned from two hybridoma cells were combined with anti-CD3 OKT-3 ScFv to generate two recombinant bispecific antibodies (h-STL002, m-STL002) against CD138 and CD3 molecules, respectively. The bispecific antibodies were able to specifically target CD138 + multiple myeloma (MM) cells and CD3 + T cells, and showed the potent cytotoxicity against MM RPMI-8226 cell line through T cell activation. However, these bispecific antibodies without T cells did not cause toxic side effect on MM cells. Overall, the two hybridoma clones and their bispecific formats have great potential to promote diagnosis and immunotherapy of plasma cell malignancy. PMID:26954291

  5. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  6. Optimization modeling of single-chain antibody against hepatoma based on similarity algorithm.

    Science.gov (United States)

    Zhao, Zhi-Jun; Chen, Jing-Tao; Yuan, Jia-Ying; Yin, Xiao-Xiang; Song, Hua-Yong; Wang, Xin-Chun

    2015-01-01

    The purposes was to establish optimal modeling of single-chain antibody molecules based on similarity algorithm and seek the connecting peptides that had the minimal effect on the structure and bioactivity of the variable region of heavy chain (VH) and that of light chain (VL) in a single-chain antibody against liver cancer. After the Linker with different lengths (n=0~7) had been added into single chain fragment variable (ScFv), modeling of the overall sequences of VH, VL and ScFv were conducted respectively. Meanwhile, the peptide chain structure of (Gly4Ser)n was adopted for the connecting peptide. Then the spatial spherical shell layer alignment algorithm based on spherical polar coordinates was utilized for comparing the structural similarity of VH and VL before and after adding connecting peptide. Equally, in order to determine the stability of VH and VL, MATLAB was applied for analysis of the fore and aft distances and the diffusion radius. Indirect ELISA method was used to detect single-chain antibody immunological activity of Linker with different lengths. The MTT assay was utilized for the examination of the inhibition rate of single-chain antibody with different lengths of Linker to liver cancer cell. When n=4, the structural similarity between VH together with VL and their original ones was the highest. When n=3, the influence of connecting peptide on the stability of VH and VL was minimum. When n>3, the fore and aft distances changed little due to the increase and fold of the length of peptide chain. The results of ELISA detection showed that when n=4, affinity of single chain antibody to liver cancer cells was much higher. The MTT test also indicated that when n=4, the inhibition rate of the connecting peptide on hepatoma carcinoma cell reached the highest, and that came second when n=3. When n=4, the structural stability and biological functions of anti-hepatoma single-chain antibody were both favorable. This study has provided a basis for the design

  7. Detection of pulmonary embolism with 99mTc-Labeled F(ab)2 fragment of anti-P-selectin monoclonal antibody in dogs

    International Nuclear Information System (INIS)

    Pulmonary embolism is a common and potentially life-threatening condition, and its correct diagnosis is highly desirable before anticoagulant therapy is initiated. However, the safe and accurate diagnosis of acute pulmonary embolism remains a challenge. Single photon emission computed tomography (SPECT) is a highly sensitive scintigraphic imaging technique. Pulmonary embolism can be detected by SPECT with 99mTc-labeled imaging agents that bind to components present predominantly on thromboemboli. P-selectin is an adhesion glycoprotein that is expressed in platelets and endothelial cells. P-selectin on activated platelets is a suitable biomarker of the active thrombus process. The objective of this study was to evaluate 99mTc-labeled F(ab)2 fragment of anti-P-selectin monoclonal antibody SZ51, 99mTc-SZ51-F(ab)2, for imaging pulmonary embolism in beagle canines. SZ51 was digested to F(ab)2 fragment, named SZ51-F(ab)2, and its specific binding to P-selectin on either human or canine platelets was verified by flow cytometry assay. In each dog, an 18-gauge catheter was inserted into left or right pulmonary artery, and a two-stranded spiral stainless-steel coil (20 mm) was inserted through catheter. At 30 min after coil placement, X-ray angiography was performed to document the pulmonary embolism and the locations of the coil. After intravenous injection of 99mTc-SZ51-F(ab)2, experimental thrombi in dogs could be consistently visualized for 2-3 hours by SPECT. Pulmonary embolism showed higher uptake of 99mTc-SZ51-F(ab)2. The present study suggests that 99mTc-SZ51-F(ab)2 may be a promising agent for detecting pulmonary embolism. (author)

  8. An ultra scale-down approach to study the interaction of fermentation, homogenization, and centrifugation for antibody fragment recovery from rec E. coli.

    Science.gov (United States)

    Li, Qiang; Mannall, Gareth J; Ali, Shaukat; Hoare, Mike

    2013-08-01

    Escherichia coli is frequently used as a microbial host to express recombinant proteins but it lacks the ability to secrete proteins into medium. One option for protein release is to use high-pressure homogenization followed by a centrifugation step to remove cell debris. While this does not give selective release of proteins in the periplasmic space, it does provide a robust process. An ultra scale-down (USD) approach based on focused acoustics is described to study rec E. coli cell disruption by high-pressure homogenization for recovery of an antibody fragment (Fab') and the impact of fermentation harvest time. This approach is followed by microwell-based USD centrifugation to study the removal of the resultant cell debris. Successful verification of this USD approach is achieved using pilot scale high-pressure homogenization and pilot scale, continuous flow, disc stack centrifugation comparing performance parameters such as the fraction of Fab' release, cell debris size distribution and the carryover of cell debris fine particles in the supernatant. The integration of fermentation and primary recovery stages is examined using USD monitoring of different phases of cell growth. Increasing susceptibility of the cells to disruption is observed with time following induction. For a given recovery process this results in a higher fraction of product release and a greater proportion of fine cell debris particles that are difficult to remove by centrifugation. Such observations are confirmed at pilot scale. PMID:23475508

  9. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    Science.gov (United States)

    Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf

    2016-06-01

    The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors

  10. Isolation of Potent CGRP Neutralizing Antibodies Using Four Simple Assays.

    Science.gov (United States)

    Neal, Frances; Arnold, Joanne; Rossant, Christine J; Podichetty, Sadhana; Lowne, David; Dobson, Claire; Wilkinson, Trevor; Colley, Caroline; Howes, Rob; Vaughan, Tristan J

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is a small neuropeptide and a potent vasodilator that is widely associated with chronic pain and migraine. An antibody that inhibits CGRP function would be a potential therapeutic for treatment of these disorders. Here we describe the isolation of highly potent antibodies to CGRP from phage and ribosome display libraries and characterization of their epitope, species cross-reactivity, kinetics, and functional activity. Homogenous time-resolved fluorescence (HTRF) binding assays identified antibodies with the desired species cross-reactivity from naïve libraries, and HTRF epitope competition assays were used to characterize and group scFv by epitope. The functional inhibition of CGRP and species cross-reactivity of purified scFv and antibodies were subsequently confirmed using cAMP assays. We show that epitope competition assays could be used as a surrogate for functional cell-based assays during affinity maturation, in combination with scFv off-rate ranking by biolayer interferometry (BLI). This is the first time it has been shown that off-rate ranking can be predictive of functional activity for anti-CGRP antibodies. Here we demonstrate how, by using just four simple assays, diverse panels of antibodies to CGRP can be identified. These assay formats have potential utility in the identification of antibodies to other therapeutic targets. PMID:26450103

  11. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins.

    Science.gov (United States)

    Kavanagh, Owen; Elliott, Christopher T; Campbell, Katrina

    2015-04-01

    Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins. PMID:25716465

  12. RA8, A human anti-CD25 antibody against human treg cells

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Robyn; Flanagan, Meg; Miller, Keith D.; Nien, Yu-Chih; Hu, Peisheng; Gray, Dixon; Khawli, Leslie A.; Epstein, Alan L.

    2007-06-01

    Although anti-CD25 antibodies exist for clinical use in patients, there is a need for the development of a human Treg antibody that will abrogate the immunosuppressive function of this small but critical T cell subtype. Based upon mounting evidence that the level of Treg cells in the tumor microenvironment correlates with clinical prognosis and stage in man, it appears that Treg cells play an important role in the tumor's ability to overcome host immune responses. In mice, the rat anti-mouse CD25 antibody PC61 causes depletion of CD25-bearing Treg cells both peripherally in lymphatic tissues and in the tumor microenvironment, without inducing symptoms of autoimmunity. A similar antibody, though with the ability to delete Treg cells specifically, would be an important new tool for reversing tumor escape associated with Treg immunosuppression in man. To begin to generate such a reagent, we now describe the development of a human anti-CD25 antibody using a novel yeast display library. The target antigen CD25-Fc was constructed and used for five rounds of selection using a non-immune yeast display library that contained as many as 109 single chain variable fragments (scFv). Two unique clones with low KD values (RA4 and RA8) were then selected to construct fully human anti-CD25 antibodies (IgG1/kappa) for stable expression. One antibody, RA8, showed excellent binding to human CD25+ cell lines and to human Treg cells and appears to be an excellent candidate for the generation of a human reagent that may be used in man for the immunotherapy of cancer.

  13. Isolation of scFv fragments specific to OmpD of Salmonella Typhimurium

    OpenAIRE

    2010-01-01

    Abstract Pork meat is one of the major sources for human infections with Salmonella enterica subspecies enterica serovars. Further, zoonoses caused by Salmonella enterica subspecies enterica serovars. are responsible for substantial economical losses in industrial countries. Quick and reliable detection of this infection is urgently needed to improve consumer security. Due to its capability to identify infections independent of the species, a competitive ELISA is the preferable met...

  14. Biodistribution in normal mice of an 111In-labelled prostatic acid phosphatase-specific antibody and its F(ab')2 fragments derivatized site-specifically or via bicyclic diethylenetriaminepentaacetic acid anhydride

    International Nuclear Information System (INIS)

    We examined the optimization of derivatization of monoclonal antibodies and their fragments intended for use as radiopharmaceutical in radioimaging and/or radioimmunotherapy of prostatic cancer. Two different principles were used to conjugate (DTPA) to a monoclonal antibody (Mab, subclass IgG1) raised against human prostatic acid phosphatase (PAP). In addition, the F(ab')2 fragments of this Mab were also derivatized. The biodistribution of the 111In-labelled derivatives was investigated in normal mice. All the derivatives of IgG1 demonstrated a slower blood clearance than the corresponding derivatives of the F(ab')2 fragments. This property was particularly pronounced in the site-specifically conjugated derivatives of IgG1. All the derivatives studied accumulated in the liver, kidney, and spleen. The CA-DTPA derivatives of F(ab')2 fragments showed the highest kidney-to-blood ratios of radioactivity. The derivatives of IgG1 showed a higher percentage of the injected dose in liver and spleen tissues than the derivatives of the F(ab')2 fragments. The F(ab')2 fragments studied also gave rise to site-specific derivatives, which demonstrated that carbohydrates were also present in this part of the molecule. They behaved similarly to the CA-DTPA F(ab')2 derivative in other respects, but the kidney accumulation was lower at 72 and 120 h. The F(ab')2 fragments studied would be better suited for radioimaging than the derivatives of the IgG1 studied. In contrast, the derivatives of IgG1, especially the p-NH2-Bz-DTPA conjugate, might be more suitable candidates for the development of therapeutic agents. (orig.)

  15. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition

    Directory of Open Access Journals (Sweden)

    Xiaocong Yu

    2016-01-01

    Full Text Available Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89 on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells.

  16. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition.

    Science.gov (United States)

    Yu, Xiaocong; Duval, Mark; Gawron, Melissa; Posner, Marshall R; Cavacini, Lisa A

    2016-01-01

    Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89) on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv) molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells. PMID:27419146

  17. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Directory of Open Access Journals (Sweden)

    Maria Trott

    Full Text Available HIV neutralizing antibodies (nAbs represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP and elite controllers (EC, represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  18. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments

    Science.gov (United States)

    Prado, Nidiane D. R.; Pereira, Soraya S.; da Silva, Michele P.; Morais, Michelle S. S.; Kayano, Anderson M.; Moreira-Dill, Leandro S.; Luiz, Marcos B.; Zanchi, Fernando B.; Fuly, André L.; E. F. Huacca, Maribel; Fernandes, Cleberson F.; Calderon, Leonardo A.; Zuliani, Juliana P.; Soares, Andreimar M.; Stabeli, Rodrigo G.; F. C. Fernandes, Carla

    2016-01-01

    Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem. PMID:27028872

  19. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments.

    Science.gov (United States)

    Prado, Nidiane D R; Pereira, Soraya S; da Silva, Michele P; Morais, Michelle S S; Kayano, Anderson M; Moreira-Dill, Leandro S; Luiz, Marcos B; Zanchi, Fernando B; Fuly, André L; E F Huacca, Maribel; Fernandes, Cleberson F; Calderon, Leonardo A; Zuliani, Juliana P; Pereira da Silva, Luiz H; Soares, Andreimar M; Stabeli, Rodrigo G; F C Fernandes, Carla

    2016-01-01

    Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem. PMID:27028872

  20. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments.

    Directory of Open Access Journals (Sweden)

    Nidiane D R Prado

    Full Text Available Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II, two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs and immunoglobulin frameworks (FRs of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718 were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607 neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.

  1. In vivo detection of amyloid-β deposits using heavy chain antibody fragments in a transgenic mouse model for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Rob J A Nabuurs

    Full Text Available This study investigated the in vivo properties of two heavy chain antibody fragments (V(HH, ni3A and pa2H, to differentially detect vascular or parenchymal amyloid-β deposits characteristic for Alzheimer's disease and cerebral amyloid angiopathy. Blood clearance and biodistribution including brain uptake were assessed by bolus injection of radiolabeled V(HH in APP/PS1 mice or wildtype littermates. In addition, in vivo specificity for Aβ was examined in more detail with fluorescently labeled V(HH by circumventing the blood-brain barrier via direct application or intracarotid co-injection with mannitol. All V(HH showed rapid renal clearance (10-20 min. Twenty-four hours post-injection (99mTc-pa2H resulted in a small yet significant higher cerebral uptake in the APP/PS1 animals. No difference in brain uptake were observed for (99mTc-ni3A or DTPA((111In-pa2H, which lacked additional peptide tags to investigate further clinical applicability. In vivo specificity for Aβ was confirmed for both fluorescently labeled V(HH, where pa2H remained readily detectable for 24 hours or more after injection. Furthermore, both V(HH showed affinity for parenchymal and vascular deposits, this in contrast to human tissue, where ni3A specifically targeted only vascular Aβ. Despite a brain uptake that is as yet too low for in vivo imaging, this study provides evidence that V(HH detect Aβ deposits in vivo, with high selectivity and favorable in vivo characteristics, making them promising tools for further development as diagnostic agents for the distinctive detection of different Aβ deposits.

  2. In vivo detection of amyloid-β deposits using heavy chain antibody fragments in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Nabuurs, Rob J A; Rutgers, Kim S; Welling, Mick M; Metaxas, Athanasios; de Backer, Maaike E; Rotman, Maarten; Bacskai, Brian J; van Buchem, Mark A; van der Maarel, Silvère M; van der Weerd, Louise

    2012-01-01

    This study investigated the in vivo properties of two heavy chain antibody fragments (V(H)H), ni3A and pa2H, to differentially detect vascular or parenchymal amyloid-β deposits characteristic for Alzheimer's disease and cerebral amyloid angiopathy. Blood clearance and biodistribution including brain uptake were assessed by bolus injection of radiolabeled V(H)H in APP/PS1 mice or wildtype littermates. In addition, in vivo specificity for Aβ was examined in more detail with fluorescently labeled V(H)H by circumventing the blood-brain barrier via direct application or intracarotid co-injection with mannitol. All V(H)H showed rapid renal clearance (10-20 min). Twenty-four hours post-injection (99m)Tc-pa2H resulted in a small yet significant higher cerebral uptake in the APP/PS1 animals. No difference in brain uptake were observed for (99m)Tc-ni3A or DTPA((111)In)-pa2H, which lacked additional peptide tags to investigate further clinical applicability. In vivo specificity for Aβ was confirmed for both fluorescently labeled V(H)H, where pa2H remained readily detectable for 24 hours or more after injection. Furthermore, both V(H)H showed affinity for parenchymal and vascular deposits, this in contrast to human tissue, where ni3A specifically targeted only vascular Aβ. Despite a brain uptake that is as yet too low for in vivo imaging, this study provides evidence that V(H)H detect Aβ deposits in vivo, with high selectivity and favorable in vivo characteristics, making them promising tools for further development as diagnostic agents for the distinctive detection of different Aβ deposits. PMID:22675537

  3. Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Fangfang Li; Fanping Meng; Quanxin Jin; Changyuan Sun; Yingxin Li; Honghua Li; Songzhu Jin

    2014-01-01

    Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion pro-tein was expressed in Pichia pastoris. The afifnity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunolfuorescence staining. The ability of the fusion protein to block myas-thenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speciifc immunosuppressive therapy of myasthenia gravis.

  4. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  5. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody

    Science.gov (United States)

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-01-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  6. PURE mRNA display for in vitro selection of single-chain antibodies.

    Science.gov (United States)

    Nagumo, Yu; Fujiwara, Kei; Horisawa, Kenichi; Yanagawa, Hiroshi; Doi, Nobuhide

    2016-05-01

    mRNA display is a method to form a covalent linkage between a cell-free synthesized protein (phenotype) and its encoding mRNA (genotype) through puromycin for in vitro selection of proteins. Although a wheat germ cell-free translation system has been previously used in our mRNA display system, a protein synthesis using recombinant elements (PURE) system is a more attractive approach because it contains no endogenous nucleases and proteases and is optimized for folding of antibodies with disulphide bonds. However, when we used the PURE system for mRNA display of single-chain Fv (scFv) antibodies, the formation efficiency of the mRNA-protein conjugates was quite low. To establish an efficient platform for the PURE mRNA display of scFv, we performed affinity selection of a library of scFv antibodies with a C-terminal random sequence and obtained C-terminal sequences that increased the formation of mRNA-protein conjugates. We also identified unexpected common substitution mutations around the start codon of scFv antibodies, which were inferred to destabilize the mRNA secondary structure. This destabilization causes an increase in protein expression and the efficiency of the formation of mRNA-protein conjugates. We believe these improvements should make the PURE mRNA display more efficient for selecting antibodies for diagnostic and therapeutic applications. PMID:26711234

  7. Preparation and identification of the fragment of rabbit's polyclonal antibodies against human ouabain%抗哇巴因多克隆抗体F(ab)2 片段的研制及鉴定

    Institute of Scientific and Technical Information of China (English)

    张明娟; 吕卓人; 袁育康; 贺浪冲; 王颢

    2000-01-01

    Objective Anti-ouabain polyclonal antibody was digested with pepsin to prepare F fragment in order to find the base of reshaped antibody. Methods Anti-ouabain polyclonal antibody was prepared by immunizing rabbits. Then anti-ouabain polyclonal antibody was digested under different conditions. The reactants were analyzed and purified by High Performance Size Ex-clude Chromatography (HPSEC). The immune activities were detected and identified by Enzyme Linked Immunosorbent Assay (ELISA). Results The proper reactive conditions for preparation of anti-ouabain polyclonal antibody F(ab)2 fragment with pepsin were established. The eligible dose of pepsin, by which 100mg anti-onabain polyclonal antibody was digested better, was 2mg. The eligible digesuve time was 18h. The value of pH of reactive system was 3.0. Conclusion The active F fragment of anti-ouabain polyclonal antibody can be obtained with pepsin. The method is simple and feasible.%目的用胃蛋白酶酶解抗哇巴因多克隆抗体,制备出片段,为改型抗体的研究提 供依据。方法免疫家兔制备出抗哇巴因多克隆抗体,并用胃蛋白酶分别在不同的酶解条件下消化抗体,继之用高效液相排阻色谱法(HPSEC)对其进行分析、纯化,采用酶联免疫吸附法(ELISA)检测、鉴定其活性。结果用胃蛋白酶2mg/100mg抗哇巴因多克隆抗体,消化18h,反应体系的pH3.0时,可获得片段。结论用胃蛋白酶酶解抗哇巴因多克隆抗体是研制出有活性的片段的有效方法。

  8. Generation of recombinant single-chain antibodies neutralizing the cytolytic activity of vaginolysin, the main virulence factor of Gardnerella vaginalis

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2011-11-01

    Full Text Available Abstract Background Gardnerella vaginalis is identified as the predominant colonist of the vaginal tract in women with bacterial vaginosis. Vaginolysin (VLY is a protein toxin released by G. vaginalis. VLY possesses cytolytic activity and is considered as a main virulence factor of G. vaginalis. Inhibition of VLY-mediated cell lysis by antibodies may have important physiological relevance. Results Single-chain variable fragments of immunoglobulins (scFvs were cloned from two hybridoma cell lines producing neutralizing antibodies against VLY and expressed as active proteins in E. coli. For each hybridoma, two variants of anti-VLY scFv consisting of either VL-VH or VH-VL linked with a 20 aa-long linker sequence (G4S4 were constructed. Recovery of scFvs from inclusion bodies with subsequent purification by metal-chelate chromatography resulted in VLY-binding proteins that were predominantly monomeric. The antigen-binding activity of purified scFvs was verified by an indirect ELISA. The neutralizing activity was investigated by in vitro hemolytic assay and cytolytic assay using HeLa cell line. Calculated apparent Kd values and neutralizing potency of scFvs were in agreement with those of parental full-length antibodies. VH-VL and VL-VH variants of scFvs showed similar affinity and neutralizing potency. The anti-VLY scFvs derived from hybridoma clone 9B4 exhibited high VLY-neutralizing activity both on human erythrocytes and cervical epithelial HeLa cells. Conclusions Hybridoma-derived scFvs with VLY-binding activity were expressed in E. coli. Recombinant anti-VLY scFvs inhibited VLY-mediated cell lysis. The monovalent scFvs showed reduced affinity and neutralizing potency as compared to the respective full-length antibodies. The loss of avidity could be restored by generating scFv constructs with multivalent binding properties. Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in

  9. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Mark Schütte

    Full Text Available BACKGROUND: Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. RESULTS: The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16 which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. CONCLUSION: Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.

  10. Comparison of IgG and F(ab'){sub 2} fragments of bispecific anti-RCC x anti-DTIn-1 antibody for pretargeting purposes

    Energy Technology Data Exchange (ETDEWEB)

    Schaijk, Frank G. van; Boerman, Otto C.; Soede, Annemieke C.; Corstens, Frans H.M. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); McBride, William J. [Immunomedics, Inc., Morris Plains, NJ (United States); Goldenberg, David M. [Immunomedics, Inc., Morris Plains, NJ (United States); Center for Molecular Medicine and Immunology, Garden State Cancer Center, Belleville, NJ (United States); Oosterwijk, Egbert [Radboud University Nijmegen Medical Center, Department of Urology, Nijmegen (Netherlands); Ludwig Institute for Cancer Research, New York, NY (United States)

    2005-09-01

    An effective pretargeting strategy was developed for renal cell carcinoma (RCC) based on a biologically produced bispecific monoclonal antibody: anti-RCC x anti-DTPA(In) (bsMAb: G250 x DTIn-1). Tumour uptake of a {sup 111}In-labelled bivalent peptide after pretargeting with bsMAb G250 x DTIn-1 was relatively high compared with that in other pretargeting systems using chemically coupled F(ab'){sub 2} fragments. Here, we investigated the effect of the bsMAb form in the pretargeting strategy. To determine the optimal interval between the administration of each of the bsMAb forms and the {sup 111}In-labelled bivalent peptide, the biodistribution of the radioiodinated bsMAb forms was studied in athymic mice with subcutaneous SK-RC-1 RCC tumours. Since tumour targeting of the radiolabelled peptide depends on the bsMAb form and dose, a bsMAb dose escalation study was carried out for both bsMAb forms. Under optimised conditions, the biodistribution of the {sup 111}In label in mice with pretargeted RCC was determined from 4 h up to 7 days p.i. The optimal interval between the two administrations was 72 h for the bsMAb IgG and 4 h for the bsMAb F(ab'){sub 2}. The optimal bsMAb dose for intact IgG was 67 pmol and the optimal bsMAb F(ab'){sub 2} dose was 200 pmol. Targeting of the pretargeted RCC with 4 pmol {sup 111}In-labelled bivalent peptide revealed high tumour uptake with both bsMAb forms. With the pretargeting strategy, using either bsMAb IgG or bsMAb F(ab'){sub 2}, very efficient peptide targeting of the tumour was obtained. Uptake and retention of the radiolabel in the tumour with the pretargeting approach are not affected by the bsMAb form used. (orig.)

  11. Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris.

    Science.gov (United States)

    de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa

    2016-06-10

    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products. PMID:27085890

  12. /sup 99m/Tc radiolabelling and quality control tests of anti-melanoma monoclonal antibodies and F(ab')/sub 2/ fragments for immunoscintigraphy

    International Nuclear Information System (INIS)

    Tumour radioimmunodetection was first developed by using radiolabelled polyclonal antibodies, raised in goats against tumour associated antigens (TAA). The availability of monoclonal antibodies to TAA has definitely contributed to more extensive in vivo use of radiolabelled antibodies. However, many factors are involved in tumour radioimmunolocalization, related either to the antibody and radioisotope features or to the natural history of the tumour itself. The experimental protocol developed by the authors allows a full evaluation of the properties of a particular MoAb.This paper illustrates the work done with on a particular set of monoclonal antibodies, raised against human melanoma associated antigens, with the aim of visualizing primary and metastatic lesions in melanoma patients

  13. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    Science.gov (United States)

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  14. Circulating levels of chromatin fragments are inversely correlated with anti-dsDNA antibody levels in human and murine systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Jørgensen, Mariann H; Rekvig, Ole Petter; Jacobsen, Rasmus S;

    2011-01-01

    Anti-dsDNA antibodies represent a central pathogenic factor in Lupus nephritis. Together with nucleosomes they deposit as immune complexes in the mesangial matrix and along basement membranes within the glomeruli. The origin of the nucleosomes and when they appear e.g. in circulation is not known...... inverse correlation between DNA concentration and anti-dsDNA antibodies may reflect antibody-dependent deposition of immune complexes during the development of lupus nephritis in autoimmune lupus prone mice. The measurement of circulating DNA in SLE sera by using qPCR may indicate and detect the...... development of lupus nephritis at an early stage....

  15. Anti-Staphylococcus aureus single-chain variable region fragments provide protection against mastitis in mice.

    Science.gov (United States)

    Wang, Man; Zhang, Yan; Zhu, Jianguo

    2016-03-01

    Staphylococcus aureus is a leading causative agent of bovine mastitis, which can result in significant economic losses to the dairy industry. However, available vaccines against bovine mastitis do not confer adequate protection, although passive immunization with antibodies may be useful to prevent disease. Hence, we constructed a bovine single-chain variable region fragment (scFv) phage display library using cDNAs from peripheral blood lymphocytes of cows with S. aureus-induced mastitis. After four rounds of selection, eight scFvs that bound S. aureus antigens with high affinity were obtained. The framework regions of the variable domains (VH and VL) of the eight scFvs were highly conserved, and the complementarity-determining regions (CDRs) displayed significant diversity, especially CDR3 of the VH domain. All eight scFvs inhibited S. aureus growth in culture medium. Lactating mice were challenged by injecting S. aureus into the fourth mammary gland. Histopathological analysis showed that treatment with these scFvs prior to bacterial challenge maintained the structure of the mammary acini, decreased infiltration of polymorphonuclear neutrophils, increased levels of interferon-gamma and interleukin-4, and reduced tumor necrosis factor-alpha levels in mammary tissues, as compared with mice treatment with physiological saline (P < 0.05). These novel bovine scFvs may be suitable candidates for therapeutic agents for the prevention of S. aureus-induced bovine mastitis. PMID:26512007

  16. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies.

    OpenAIRE

    Barel, M; Fiandino, A; Lyamani, F; Frade, R

    1989-01-01

    Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular ...

  17. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity

    OpenAIRE

    Graille, Marc; Stura, Enrico A; Corper, Adam L.; Sutton, Brian J.; Michael J. Taussig; Charbonnier, Jean-Baptiste; Silverman, Gregg J.

    2000-01-01

    Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-Å resolution. In the complex, helices II ...

  18. Anti-CD20 single chain variable antibody fragment–apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas

    Science.gov (United States)

    Crosby, Natasha M.; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A.; Kamei, Ayako; Simonsen, Jens B.; Luo, Bing; Gordon, Leo I.; Forte, Trudy M.; Ryan, Robert O.

    2015-01-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  19. The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen

    OpenAIRE

    Wojciak, Jonathan M.; Zhu, Norman; Schuerenberg, Karen T.; Moreno, Kelli; Shestowsky, William S.; Hiraiwa, Masao; Sabbadini, Roger; Huxford, Tom

    2009-01-01

    The pleiotropic signaling lipid sphingosine-1-phosphate (S1P) plays significant roles in angiogenesis, heart disease, and cancer. LT1009 (also known as sonepcizumab) is a humanized monoclonal antibody that binds S1P with high affinity and specificity. Because the antibody is currently in clinical trials, it is important to confirm by structural and biochemical analyses that it binds its target in a predictable manner. Therefore, we determined the structure of a complex between the LT1009 anti...

  20. Production and characterization of a single-chain antibody of anti-CD3%抗CD3单链抗体基因克隆表达及生物活性鉴定

    Institute of Scientific and Technical Information of China (English)

    陈秀芹; 阎锡蕴

    2003-01-01

    The genes encoding antibody heavy and light chain variable regions(VH and VL)were cloned by RT-PCR from OKT3 hybridoma cells,which produced anti-CD3 moleclonal antibody.The VH and VL genes were fused and become a single chain Fv(scFv).The scFv gene was cloned into pCANTAB5E vector and expressed on bacterial phage surface.By three panning rounds,we have obtained two single-chain antibodys that specific for CD3.The antiCD3 scFv wil be a reagent fox diagnosis and therapy of immuno-disorder.

  1. The radiosensitizing properties of an anti-epidermal growth factor receptor single-chain antibody isolated from a phage display library

    International Nuclear Information System (INIS)

    Full text: Anti-epidermal growth factor receptor (EGFr) agents have shown promise in the treatment of various malignancies when used as single agents or combined with conventional treatments. These agents include monoclonal antibodies that block the ligand binding site of EGFr. The studies reported herein were performed to isolate single-chain antibodies (scFvs) that target EGFr and to characterize the anti-cancer efficacy of these smaller antibody molecules. It is our hypothesis that therapeutically effective anti-EGFr scFvs could eventually be delivered in a gene-therapy approach that allows affected tumor cells to secrete the anti-EGFr scFvs thereby impacting multiple neighboring cells. Human scFv phage display libraries were screened for EGFr-binding scFvs. One positive EGFr-specific scFv (clone 45) was tested for its ability to sensitize tumor cells to radiation treatment. The EGFr-over expressing cell line, A431 cells (human squamous cell carcinoma), was used in standard cell proliferation and apoptosis (annexin V) assays. A431 cells were treated with EGFr-specific scFv clone 45 (50 μg/ml), 3 Gy or the combination of the two treatments. Cell proliferation was assessed daily and all treatments inhibited proliferation, however; greater inhibition of cell proliferation was noted for the combination treatment than either individual treatment. Inhibition at 4 days compared to controls: 26% (scFv), 32% (3 Gy), and 54% (combined). Cells treated in a similar fashion were studied for apoptosis 4 days after the initiation of treatment. Although the scFv did not induce apoptosis, it did cause a significant increase in radiation-induced apoptosis. An scFv was isolated from a human scFv phage display library and shown to sensitize human A431 cells to radiation treatment. Further studies to determine the mechanism of radiosensitization are being undertaken

  2. Modification and identification of a vector for making a large phage antibody library

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-min; CHEN Yü-ping; GUAN Yuan-zhi; WANG Yan; AN Yun-qing

    2007-01-01

    Background The large phage antibody library is used to obtain high-affinity human antibody, and the Loxp/cre site-specific recombination system is a potential method for constructing a large phage antibody library. In the present study, a phage antibody library vector pDF was reconstructed to construct diabody more quickly and conveniently without injury to homologous recombination and the expression function of the vector and thus to integrate construction of the large phage antibody library with the preparation of diabodies.Methods scFv was obtained by overlap polymerase chain reaction (PCR) amplification with the newly designed VL and VH extension primers. loxp511 was flanked by VL and VH and the endonuclease ACC Ⅲ encoding sequences were introduced on both sides of loxp511. scFv was cloned into the vector pDF to obtain the vector pDscFv. The vector expression function was identified and the feasibility of diabody preparation was evaluated. A large phage antibody library was constructed in pDscFv. Several antigens were used to screen the antibody library and the quality of the antibody library was evaluated.Results The phage antibody library expression vector pDscFv was successfully constructed and confirmed to express functional scFv. The large phage antibody library constructed using this vector was of high diversity. Screening of the library on 6 antigens confirmed the generation of specific antibodies to these antigens. Two antibodies were subjected to enzymatic digestion and were prepared into diabody with functional expression.Conclusions The reconstructed vector pDscFv retains its recombination capability and expression function and can be used to construct large phage antibody libraries. It can be used as a convenient and quick method for preparing diabodies after simple enzymatic digestion, which facilitates clinical trials and application of antibody therapy.

  3. Lactobacillus helveticus MIMLh5-specific antibodies for detection of S-layer protein in Grana Padano protected-designation-of-origin cheese.

    Science.gov (United States)

    Stuknyte, Milda; Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo

    2014-01-01

    Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods. PMID:24242242

  4. Effects of tumour mass and circulating antigen on the biodistribution of 111In-labelled F(ab')2 fragments of human prostatic acid phosphatase monoclonal antibody in nude mice bearing PC-82 human prostatic tumor xenografts

    International Nuclear Information System (INIS)

    We have evaluated the effects of tumour mass and circulating antigen (prostatic acid phosphatase, PAP) on the biodistribution and the incorporation of 111In-labelled F(ab')2 monoclonal antibody (MoAb) fragments directed against human PAP into human prostatic tumours (PC-82; 0.1-8.9 g) growing in nude mice. The radioactivities in the blood, liver, spleen, kidney and tumour were compared at 1, 3, 4 and 6 days after the intravenous administration of the antibody fragments. There was a significant correlation between the tumour size and the serum PAP concentration in the model employed. Even tissue of a small tumour (111In-labelled F(ab')2 fragments. This relationship had levelled off by 72 h and most likely reflected a better vascularisation of the smaller tumours. Our results show that the increase in tumour size and in the concentration of circulating antigen in the blood led to decreased tumour-to-blood ratios, since there was a tendency for higher blood activities in mice with larger tumours and higher serum PAP concentrations. There was no correlation between tumour size and label uptake by the liver during the follow-up over 144 h, although serum PAP concentrations ranged from 3.1 μg/l to 352 μg/l. On the other hand, when compared with our previous data obtained with non-tumour-bearing mice, there was a significant increase in the uptake by the liver and spleen. These results indicate that even a small concentration of circulating antigen was able to trigger an abnormal change in the biodistribution of MoAbs. (orig.)

  5. Platform for high-throughput antibody selection using synthetically-designed antibody libraries.

    Science.gov (United States)

    Batonick, Melissa; Holland, Erika G; Busygina, Valeria; Alderman, Dawn; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2016-09-25

    Synthetic humanized antibody libraries are frequently generated by random incorporation of changes at multiple positions in the antibody hypervariable regions. Although these libraries have very large theoretical diversities (>10(20)), the practical diversity that can be achieved by transformation of Escherichia coli is limited to about 10(10). To constrain the practical diversity to sequences that more closely mimic the diversity of natural human antibodies, we generated a scFv phage library using entirely pre-defined complementarity determining regions (CDR). We have used this library to select for novel antibodies against four human protein targets and demonstrate that identification of enriched sequences at each of the six CDRs in early selection rounds can be used to reconstruct a consensus antibody with selectivity for the target. PMID:26607994

  6. Radioimmunodetection of lymph node invasion in prostatic cancer. The use of iodine-123 (123I)-labeled monoclonal anti-prostatic acid phosphatase (PAP) 227 A F(ab')2 antibody fragments in vivo

    International Nuclear Information System (INIS)

    The therapeutic indications in prostatic cancer depend on the regional and distant extension of the cancer and are difficult to assess before lymphadenectomy. Radioimmunodetection of lymph node involvement with monoclonal anti-prostatic acid phosphatase (PAP) antibodies can be proposed as a noninvasive alternative to lymphadenectomy. Fifteen patients with various stages of histologically proven prostatic cancer were examined by immunolymphoscintigraphy (ILS) before treatment to detect lymph node metastases. These patients had Stage A (n = 7), Stage B (n = 3), Stage C (n = 2), and Stage D (n = 3) tumors. They received between 100 and 400 micrograms of monoclonal antibody 227 A in the form of F(ab')2 fragments labeled with iodine-123 (123I). The antibody was injected directly into the periprostatic area. ILS images were obtained after 1, 3, 6, and 24 hours. Three days later, each patient underwent a lymphadenectomy for histologic examination. The results of the histologic examination and ILS were compared. In ten patients, the examination did not show any images capable of being interpreted as lymphadenopathy and histologic examination confirmed the integrity of the nodes examined. In five cases, scintigraphy suggested the presence of lymph node invasion by prostatic cancer and this was confirmed by histologic examination in three of the five cases. Overall, in terms of lymphadenopathy, this examination had a sensitivity of 100% and a specificity of 83%. Therefore, ILS appears to be capable of detecting lymph node metastases in prostatic cancer

  7. Passive immunization of pigs with bispecific llama single-domain antibody fragments against foot-and-mouth disease and porcine immunoglobulin

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.; Dekker, A.; Eble, P.L.

    2008-01-01

    Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-hoofed animals that occasionally causes outbreaks in Europe. We aim to develop an immunotherapy that confers rapid protection against FMD in outbreak situations. For this purpose, we previously isolated llama single-domain antibody

  8. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis : The RAMSES Study

    NARCIS (Netherlands)

    Reinhart, K; Menges, T; Gardlund, B; Zwaveling, JH; Smithes, M; Vincent, JL; Tellado, JM; Salgado-Remigio, A; Zimlichman, R; Withington, S; Tschaikowsky, K; Brase, R; Damas, P; Kupper, H; Kempeni, J; Eiselstein, J; Kaul, M

    2001-01-01

    Objective: This study investigated whether treatment with the anti-tumor necrosis factor-or monoclonal antibody afelimomab would improve survival in septic patients with serum interleukin (IL)-6 concentrations of >1000 pg/ml, Design: Multicenter, double-blind, randomized, placebo-controlled study. S

  9. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Jimenez-Solem, Espen; Rasmussen, Mette H; Christensen, Mikkel;

    2010-01-01

    Dulaglutide (LY-2189265) is a novel, long-acting glucagon-like peptide 1 (GLP-1) analog being developed by Eli Lilly for the treatment of type 2 diabetes mellitus (T2DM). Dulaglutide consists of GLP-1(7-37) covalently linked to an Fc fragment of human IgG4, thereby protecting the GLP-1 moiety fro...

  10. Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Yazaki, Paul J. [Division of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States)], E-mail: pyazaki@coh.org; Kassa, Thewodros; Cheung, Chia-wei; Crow, Desiree M. [Division of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Sherman, Mark A. [Division of Information Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Bading, James R.; Anderson, Anne-Line J.; Colcher, David; Raubitschek, Andrew [Division of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States)

    2008-02-15

    Albumin fusion proteins have demonstrated the ability to prolong the in vivo half-life of small therapeutic proteins/peptides in the circulation and thereby potentially increase their therapeutic efficacy. To evaluate if this format can be employed for antibody-based imaging, an anticarcinoembryonic antigen (CEA) single-chain antibody(scFv)-albumin fusion protein was designed, expressed and radiolabeled for biodistribution and imaging studies in athymic mice bearing human colorectal carcinoma LS-174T xenografts. The [{sup 125}I]-T84.66 fusion protein demonstrated rapid tumor uptake of 12.3% injected dose per gram (ID/g) at 4 h that reached a plateau of 22.7% ID/g by 18 h. This was a dramatic increase in tumor uptake compared to 4.9% ID/g for the scFv alone. The radiometal [{sup 111}In]-labeled version resulted in higher tumor uptake, 37.2% ID/g at 18 h, which persisted at the tumor site with tumor: blood ratios reaching 18:1 and with normal tissues showing limited uptake. Based on these favorable imaging properties, a pilot [{sup 64}Cu]-positron emission tomography imaging study was performed with promising results. The anti-CEA T84.66 scFv-albumin fusion protein demonstrates highly specific tumor uptake that is comparable to cognate recombinant antibody fragments. The radiometal-labeled version, which shows lower normal tissue accumulation than these recombinant antibodies, provides a promising and novel platform for antibody-based imaging agents.

  11. Identification of the specificity of isolated phage display single-chain antibodies using yeast two-hybrid screens

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Ditzel, Henrik

    2009-01-01

    A method is described for the identification of the antigen recognised by an scFv isolated from an antibody phage display library using selection against a complex mixture of proteins (e.g. intact cells, purified cell surface membranes, and tissue sections). The method takes advantage of a yeast...

  12. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Science.gov (United States)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  13. Construction of prokaryotic expression system of 2 148-bp fragment from cagA gene and detection of cagA gene, CagA protein in Helicobacter pyloriisolates and its antibody in sera of patients

    Institute of Scientific and Technical Information of China (English)

    Jie Yan; Yuan Wang; Shi-He Shao; Ya-Fei Mao; Hua-Wen Li; Yi-Hui Luo

    2004-01-01

    AIM: To construct a prokaryotic expression system of a Helicobacter pylori ( H pylori) cagA gene fragment and establish enzyme-linked immunosorbent assays (ELISA) for detecting CagA and its antibody, so as to understand the manner in which the infection of CagA-expressing H pylori (CagA+ H pylori) isolates cause diseases.METHODS: H pylori strains in gastric biopsy specimens from 156 patients with positive results in rapid urease test were isolated. PCR was used to detect the frequency of cagA gene in the 109 H pylori isolates and to amplify a 2 148-bp fragment (cagA1) of cagA gene from a clinical strain Y06. A prokaryotic expression system of cagA1 gene was constructed,and the expression of the target recombinant protein (rCagA1) was examined by SDS-PAGE. Western blotting and immunodiffusion assay were employed to determine the immunoreactivity and antigenicity of rCagA1, respectively.Two ELISAs were established to detect CagA expression in 109 H pylori isolates and the presence of CagA antibody in the corresponding patients′ sera, and the correlations between infection with CagA+ H pylori and gastritis as well as peptic ulcer were analyzed.RESULTS: Of all the clinical specimens obtained, 80.8%(126/156) were found to have H pylori isolates and 97.2%of the isolates (106/109) were positive for caaA gene. In comparison with the reported data, the cloned cagA1fragment possessed 94.83% and 93.30% homologies with the nucleotide and putative amino acid sequences,respectively. The output of rCagA1 produced by the constructed recombinant prokaryotic expression system was approximately 30% of the total bacterial protein, rCagA1was able to bind to the commercial antibody against the whole-cells of H pylori and to induce the immunized rabbits to produce antibody with an immunodiffusion titer of 1:4. A proportion as high as 92.6% of the H pylori isolates (101/109)expressed CagA and 88.1% of the patients′ serum samples (96/109) were CagA antibody-positive. The percentage of

  14. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    Science.gov (United States)

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. PMID:22414558

  15. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification

    OpenAIRE

    Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; MOLINA, MARÍA CARMEN

    2012-01-01

    Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment...

  16. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake

    International Nuclear Information System (INIS)

    Introduction: Llama single domain antibody fragments (VHH), which can pass endothelial barriers, are being investigated for targeting amyloid plaque load in Alzheimer's disease (AD). Contrary to conventional human or murine antibodies consisting of IgG or F(ab′)2 antibody fragments, VHH are able to effectively pass the blood brain barrier (BBB) in vitro. However, in earlier in vivo studies, anti-amyloid VHH showed poor BBB passage due to their short serum half-lives. It would be of interest to develop a VHH based protein with elongated serum half-life to enhance BBB passage, allowing the VHH to more easily reach the cerebral amyloid deposits. Methods: To increase serum persistence, the Fc portion of the human IgG1 antibody (hinge plus CH2 and CH3 domains) was fused to the C-terminus of the VHH (VHH-pa2H-Fc). To determine the pharmacokinetics and biodistribution profile of the fusion protein, the chelator p-SCN-Bz-DTPA was linked to the protein and thereafter labeled with radioactive indium-111 (111In). Double transgenic APPswe/PS1dE9 and wild type littermates were injected with 20 μg VHH-pa2H-Fc-DTPA-111In (10-20 MBq). Pharmacokinetics of the tracer was determined in blood samples at 10 intervals after injection and imaging using microSPECT was performed. The biodistribution of the radioactivity in various excised tissues was measured at 48 h after injection. Results: We succeeded in the expression of the fusion protein VHH-pa2H-Fc in HEK293T cells with a yield of 50 mg/L growth medium. The fusion protein showed homodimerization – necessary for successful Fc neonatal receptor recycling. Compared to VHH-pa2H, the Fc tailed protein retained high affinity for amyloid beta on human AD patient brain tissue sections, and significantly improved serum retention of the VHH. However, at 48 h after systemic injection of the non-fused VHH-DTPA-111In and the VHH-Fc-DTPA-111In fusion protein in transgenic mice, the specific brain uptake of VHH-Fc-DTPA-111In was not

  17. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    International Nuclear Information System (INIS)

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers

  18. Tetanus Toxin Fragment C Expressed in Live Salmonella Vaccines Enhances Antibody Responses to Its Fusion Partner Schistosoma haematobium Glutathione S-Transferase

    OpenAIRE

    Lee, Jeong Jin; Sinha, Katharine A.; Harrison, Julia A.; de Hormaeche, Raquel Demarco; Riveau, Gilles; Pierce, Raymond J.; Capron, Andre; Wilson, R. Alan; Khan, C.M. Anjam

    2000-01-01

    Tetanus toxoid has been used widely as an adjuvant. The atoxic fragment C from tetanus toxin (TetC) is potently immunogenic when expressed in Salmonella vaccine strains and has been used as a fusion partner for antigens (Ag). However, there has been no formal comparison of the immunomodulatory impact of TetC on its fusion partners. In this study, we have addressed this important issue. The protective 28-kDa glutathione S-transferase (GST) from Schistosoma haematobium (Sh28GST) was expressed e...

  19. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Jimenez-Solem, Espen; Rasmussen, Mette H; Christensen, Mikkel; Knop, Filip Krag

    2010-01-01

    Dulaglutide (LY-2189265) is a novel, long-acting glucagon-like peptide 1 (GLP-1) analog being developed by Eli Lilly for the treatment of type 2 diabetes mellitus (T2DM). Dulaglutide consists of GLP-1(7-37) covalently linked to an Fc fragment of human IgG4, thereby protecting the GLP-1 moiety from...... dulaglutide reduces plasma glucose, and has an insulinotropic effect increasing insulin and C-peptide levels. Two phase II clinical trials demonstrated a dose-dependent reduction in glycated hemoglobin (HbA1c) of up to 1.52% compared with placebo. Side effects associated with dulaglutide administration were...

  20. Loop-sequence features and stability determinants in antibody variable domains by high-throughput experiments.

    Science.gov (United States)

    Chang, Hung-Ju; Jian, Jhih-Wei; Hsu, Hung-Ju; Lee, Yu-Ching; Chen, Hong-Sen; You, Jhong-Jhe; Hou, Shin-Chen; Shao, Chih-Yun; Chen, Yen-Ju; Chiu, Kuo-Ping; Peng, Hung-Pin; Lee, Kuo Hao; Yang, An-Suei

    2014-01-01

    Protein loops are frequently considered as critical determinants in protein structure and function. Recent advances in high-throughput methods for DNA sequencing and thermal stability measurement have enabled effective exploration of sequence-structure-function relationships in local protein regions. Using these data-intensive technologies, we investigated the sequence-structure-function relationships of six complementarity-determining regions (CDRs) and ten non-CDR loops in the variable domains of a model vascular endothelial growth factor (VEGF)-binding single-chain antibody variable fragment (scFv) whose sequence had been optimized via a consensus-sequence approach. The results show that only a handful of residues involving long-range tertiary interactions distant from the antigen-binding site are strongly coupled with antigen binding. This implies that the loops are passive regions in protein folding; the essential sequences of these regions are dictated by conserved tertiary interactions and the consensus local loop-sequence features contribute little to protein stability and function. PMID:24268648

  1. Jet fragmentation

    International Nuclear Information System (INIS)

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  2. Improved immunoscintigraphy by subcutaneous injection of sup(99m)Tc or 111In labelled F(ab')2 fragments of an anti-melanoma monoclonal antibody

    International Nuclear Information System (INIS)

    Technetium-99m and/or 111In labelled F(ab')2 fragments of a melanoma associated MoAb 225.28S were injected i.v. in 80 patients affected by stage I to IV malignant melanoma. 75% of metastatic lesions already documented by other methods were detected by immunoscintigraphy, which was also capable of detecting a certain number of unknown metastases. The authors observed a lower percentage of positive scans in liver, lung and skin because of the poor tumour to background ratio. In some patients, subcutaneous (s.c.) injection allowed visualization documented metastases undetected by i.v. administration. An equal amount on non-specific F(ab')2 fragments (MoAb 4C4) injected s.c. as a negative control showed no positive scans. Clinical studies and chromatographic patterns of patient serum samples suggest that the s.c. route of administration offers, with respect to the the i.v. route, the advantage of reducing vascular background and aspecific accumulation in liver, probably because of retention of possible contaminants by the lymphatic system. (author)

  3. Highly immunoreactive antibodies against the rHup-F2 fragment (aa 63-161) of the iron-regulated HupB protein of Mycobacterium tuberculosis and its potential for the serodiagnosis of extrapulmonary and recurrent tuberculosis.

    Science.gov (United States)

    Sritharan, N; Choudhury, M; Sivakolundu, S; Chaurasia, R; Chouhan, N; Rao, P P; Sritharan, M

    2015-01-01

    HupB is an iron-regulated protein in Mycobacterium tuberculosis that functions as a positive regulator of mycobactin biosynthesis. It is essential for the growth and survival of the pathogen inside macrophages. Previously, using the full-length rHupB of M. tuberculosis, we demonstrated high levels of anti-HupB antibodies in the serum of pulmonary tuberculosis (TB) and, interestingly, extrapulmonary TB patients with negligible levels in household contacts and healthy controls. Here, we used three antigenic fragments of HupB, namely the recombinant HupB-F1 (aa 1-71), HupB-F2 (aa 63-161) and HupB-F3 (aa 164-214), as antigens in enzyme-linked immunosorbent assay (ELISA) to screen serum from TB patients. HupB-F2 showed enhanced immunoreactivity with serum from patients with pulmonary TB (three groups consisting of new cases, defaulters and recurrent cases) and extrapulmonary TB, with negligible levels in normal healthy controls. The negative correlation of the anti-(HupB-F2) antibodies with serum iron was maximal, with a Pearson's correlation coefficient value of -0.415. The study, in addition to strengthening the diagnostic potential of HupB, reflected the superior performance of HupB-F2 as an antigen in screening pulmonary and extrapulmonary TB. PMID:25037869

  4. Study of the viability of technetium-{sup 99m} labeling of whole antimyosin antibody and its fragment: development of radiopharmaceutical for cardiac survey; Estudo da viabilidade da marcacao com tecnecio-99m do anticorpo antimiosina integro e seu fragmento: desenvolvimento de radiofarmaco para avaliacao cardiaca

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Guilherme Luiz de Castro

    2007-07-01

    In the acute myocardium infarction, the myocytes cell membrane loses its integrity, allowing the influx of extracellular macromolecules such as circulating antibody into the damaged cell. The use of the specific antibodies against cardiac myosin labeled with {sup 99m}Tc allows to determine the localization and extension of myocardial infarction. The purpose of this work was to study the viability of labeling of the antimyosin monoclonal antibody and its fragment F(ab')2 with {sup 99m}Tc. Because of the high cost of antimyosin antibody, others antibodies were used to optimize the methodology and the best condition was used for antimyosin antibody. The intact antibody was cleaved by pepsin to produce F(ab'){sub 2} fragment. The F(ab'){sub 2} and the intact antibody were reduced by treatment with Dithiothreitol (DTT) and 2-Mercaptoethanol (2-ME) and labeled with {sup 99m}Tc by direct method. Different concentrations of reductant, mixing conditions and incubation times were studied. In the standard condition, incubation at molar ratio 1:1000 (antibody:reducing agent) at room temperature for 30 minutes with continuous rotation (850 rpm), 13.28 - SH groups were formed per molecule. It was studied the influence of p H, of the concentration of stannous chloride (Sn{sup 2+}) and incubation time in the labeling condition. The better radiochemical yield (90.06 +- 1.53%) was obtained using 2.5 {mu}g of Sn{sup 2+} in p H 4.5 for 60 minutes. The labeling of the fragment F(ab'){sub 2} did not present satisfactory results because of the low yield of the digestion. After purification by PD-10, the biodistribution study was performed and showed that the intact antimyosin antibody labeled with {sup 99m}Tc presented fast kinetic compatible with the biodistribution of an intact antibody labeled with {sup 99m}Tc. Scintigraphy image of the animal with myocardial infarction was obtained and compared with the image of a normal animal. The studies allow to conclude that

  5. A simple vector system to improve performance and utilisation of recombinant antibodies

    OpenAIRE

    Vincent Karen J; Mitchell Joanne N; Rojas Gertrudis; Martin Cecile D; Wu Jiahua; McCafferty John; Schofield Darren J

    2006-01-01

    Abstract Background Isolation of recombinant antibody fragments from antibody libraries is well established using technologies such as phage display. Phage display vectors are ideal for efficient display of antibody fragments on the surface of bacteriophage particles. However, they are often inefficient for expression of soluble antibody fragments, and sub-cloning of selected antibody populations into dedicated soluble antibody fragment expression vectors can enhance expression. Results We ha...

  6. Crystallization and diffraction properties of the Fab fragment of 3B5H10, an antibody specific for disease-causing polyglutamine stretches

    International Nuclear Information System (INIS)

    Optimization of crystallization conditions and cryoprotectants decreased the anisotropy of the diffraction obtained from 3B5H10 Fab crystals. Dehydration improved the resolution of cryoprotected 3B5H10 crystals from 2.6 to 1.9 Å, but changed the space group of the crystals from P21212 to P21. Because it binds soluble forms of proteins with disease-associated polyglutamine expansions, the antibody 3B5H10 is a powerful tool for studying polyglutamine-related diseases. Crystals of the 3B5H10 Fab (47 kDa) were obtained by vapor diffusion at room temperature from PEG 3350. However, the initial crystals gave highly anisotropic diffraction patterns. After optimization of the crystallization conditions and cryoprotectants, a nearly isotropic diffraction pattern at 2.6 Å resolution was achieved for crystals with unit-cell parameters a = 133.26, b = 79.52, c = 41.49 Å and space group P21212. Dehydrated crystals diffracted isotropically to 1.9 Å with unit-cell parameters a = 123.65, b = 78.25, c = 42.26 Å, β = 90.3° and space group P21

  7. Nuclear fragmentation

    International Nuclear Information System (INIS)

    An introduction to nuclear fragmentation, with emphasis in percolation ideas, is presented. The main theoretical models are discussed and as an application, the uniform expansion approximation is presented and the statistical multifragmentation model is used to calculate the fragment energy spectra. (L.C.)

  8. Characterization of a single-chain variable fragment recognizing a linear epitope of aβ: a biotechnical tool for studies on Alzheimer's disease?

    Directory of Open Access Journals (Sweden)

    Silke Dornieden

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disorder with devastating effects. Currently, therapeutic options are limited to symptomatic treatment. For more than a decade, research focused on immunotherapy for the causal treatment of AD. However, clinical trials with active immunization using Aβ encountered severe complications, for example meningoencephalitis. Consequently, attention focused on passive immunization using antibodies. As an alternative to large immunoglobulins (IgGs, Aβ binding single-chain variable fragments (scFvs were used for diagnostic and therapeutic research approaches. scFvs can be expressed in E. coli and may provide improved pharmacokinetic properties like increased blood-brain barrier permeability or reduced side-effects in vivo. In this study, we constructed an scFv from an Aβ binding IgG, designated IC16, which binds the N-terminal region of Aβ (Aβ(1-8. scFv-IC16 was expressed in E. coli, purified and characterized with respect to its interaction with different Aβ species and its influence on Aβ fibril formation. We were able to show that scFv-IC16 strongly influenced the aggregation behavior of Aβ and could be applied as an Aβ detection probe for plaque staining in the brains of transgenic AD model mice. The results indicate potential for therapy and diagnosis of AD.

  9. An optimized Fermentation and Purification Process for a Recombinant Human Antibody ScFv-Fc Fragment Expressed in Pichia Pastoris%重组人小分子抗体ScFv-Fc发酵条件的优化及纯化

    Institute of Scientific and Technical Information of China (English)

    王丁丁; 苏曼曼; 胡丽莉; 袁丽颖; 颜炜群

    2011-01-01

    Objective: To obtain an optimized fermentation and purification process for high-level production of a recombinant human antibody ScFv-Fc fragment expression secreted in Pichia pastoris. Methods: The growth conditions of the transformant strain were optimized in 50 ml conical tubes including pH, methanol concentration and inducing time. The ScFv-Fc was purified using a two-step scheme: ammonium sulfate fractionation, protein A Sepharose. Results: ScFv-Fc production was found to increase with 0.5% (v/v) methanol concentration after 72 h induction. Protein production was also greatly affected by pH, resulting in higher yields at 5.2 pH value. The ScFv-Fc was purified more than 94% purity by using protein A Sepharose. Conclusions: The results provided a best process for expression and purification of functional recombinant human monoclonal antibody ScFv-Fc. It suggests a potential use of this antibody generating method by Pichia pastoris and indicates the potential of scFv-Fc fusion proteins as therapeutic candidates.%目的:研究重组人小分子抗体ScFv-Fc在毕赤酵母中分泌表达的最佳条件,以及ScFv-Fc的纯化方法.方法:分别从甲醇浓度、pH、诱导时间等方面对毕赤酵母重组菌株产生ScFv-Fc的发酵过程进行了优化;通过硫酸铵沉淀结合protein A亲和层析柱,对ScFv-Fc的纯化方法进行了研究.结果:确定ScFv-Fc在毕赤酵母中分泌表达的最佳条件为:在pH5.2的条件下,以0.5%甲醇诱导72 h.经过protein A亲和层析柱纯化后,ScFv-Fc纯度可达94%以上.结论:确定了ScFv-Fc在毕赤酵母中分泌表达的最佳条件以及纯化方法,为重组抗体分子诊断、治疗试剂的开发以及抗体的人源化奠定了物质基础.

  10. Recovery of active anti TNF-α ScFv through matrix-assisted refolding of bacterial inclusion bodies using CIM monolithic support.

    Science.gov (United States)

    Sushma, Krishnan; Bilgimol, Chuvappumkal Joseph; Vijayalakshmi, Mookambeswaran A; Satheeshkumar, Padikara Kutty

    2012-04-01

    Anti TNF-α molecules are important as therapeutic agents for many of the autoimmune diseases in chronic stage. Here we report the expression and purification of a recombinant single chain variable fragment (ScFv) specific to TNF-α from inclusion bodies. In contrast to the conventional on column refolding using the soft gel supports, an efficient methodology using monolithic matrix has been employed. Nickel (II) coupled to convective interaction media (CIM) support was utilized for this purpose with 6M guanidine hydrochloride (GuHCl) as the chaotropic agent. The protein purified after solubilization and refolding proved to be biologically active with an IC₅₀ value of 15 μg. To the best of our knowledge, this is the first report showing the application of methacrylate based chromatographic supports for matrix-assisted refolding and purification of Escherichia coli inclusion bodies. The results are promising to elaborate the methodology further to exploit the potential positive features of monoliths in protein refolding science. PMID:22386363

  11. scFv-based “grababody” as a general strategy to improve recruitment of immune effector cells to antibody-targeted tumors

    OpenAIRE

    Cai, Zheng; Fu, Ting; Nagai, Yasuhiro; Lam, Lian; Yee, Marla; Zhu, Zhiqiang; Zhang, Hongtao

    2013-01-01

    Recruitment of immune cells to tumor cells targeted by a therapeutic antibody can heighten the antitumor efficacy of the antibody. For example, p185her2/neu-targeting antibodies not only downregulate the p185her2/neu kinase (ERBB2) but also trigger complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) through the antibody Fc region. Here we describe a generalized strategy to improve immune cell recruitment to targeted cancer cells, using a modified scFv a...

  12. Construction of Large Human Single-chain Antibody Phage Display Library

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A large human naive single chain antibody (scFv) library is constructed from 60 healthy donors via phage display technique. During the period, some methods are employed to optimize the diversity, such as multi donors, different annealing temperature, half-nest PCR, and assembly by two-way fusion PCR. In this stud y, 78 electroporations resulted in 1010 library, diversity of which is assayed by enzyme fingerprint. The efficiency and diversity are all better than other rese arches.

  13. Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    2015-08-01

    Full Text Available Existing antibodies (Abs used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B contains a zinc endopeptidase light chain (LC domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS. The equilibrium dissociation constants (KD of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM. Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.

  14. Topical skin treatment with Fab fragments of an allergen-specific IgG1 monoclonal antibody suppresses allergen-induced atopic dermatitis-like skin lesions in mice.

    Science.gov (United States)

    Sae-Wong, Chutha; Mizutani, Nobuaki; Kangsanant, Sureeporn; Yoshino, Shin

    2016-05-15

    Fab fragments (Fabs), which lack effector functions due to the absence of the Fc portion, maintain the ability to bind to specific allergens. In the present study, we examined whether Fabs of an allergen-specific IgG1 monoclonal antibody (mAb) were able to regulate allergen-induced atopic dermatitis-like skin lesions in mice. BALB/c mice passively sensitized with ovalbumin (OVA)-specific IgE mAb were repeatedly challenged with OVA applied to the skin after sodium dodecyl sulfate treatment. Fabs prepared by the digestion of anti-OVA IgG1 mAb (O1-10) with papain were applied to the skin 30min before the OVA challenges followed by measurement of clinical symptoms including erythema/hemorrhage, edema, scarring/dryness, and excoriation/erosion of the skin. Treatment with O1-10 Fabs, but not intact O1-10, showed inhibition of clinical symptoms (Pskin of mice is effective in suppressing allergen-induced atopic dermatitis-like skin lesions, suggesting that allergen-specific mAb Fabs could be used as a tool to regulate allergen-induced atopic dermatitis. PMID:26970183

  15. Schistosoma japonicum:construction of phage display antibody library and its application in the immunodiagnosis of infection

    Institute of Scientific and Technical Information of China (English)

    陈代雄; 何蔼; 詹希美; 俞慕华; 雷智刚; 孟锦绣; 李卓雅; 梁瑜; 张瑞琳

    2004-01-01

    Background A monoclonal antibody would be an effective tool for the detection of circulating antigens in the serum of patients with schistosomiasis, but the traditional way of producing monoclonal antibodies is not cost-effective. The objective of this study was to find a new method for the large-scale production of monoclonal antibodies against Schistosoma japonicum (Sj).Methods A phage display antibody library for Sj was constructed. To obtain a single-chain variable fragment antibody (scFv) against Sj, the library was screened with metabolic antigens from adult Sj worms (Sj-MAg) using enzyme-linked immunosorbent assay. The soluble scFvs selected were used to detect Sj antigens in the serum of acute and chronic schistosomiasis patients.Results Six positive clones with good reactivity to Sj-MAg were obtained from the phage display antibody library of about 1.07×106 individual clones. Only two of these six clones bound specifically to Sj-MAg and were chosen for further analysis. Specific soluble anti-Sj-MAg scFvs were produced by inducing the 2 clones with isopropyl-D-thiogalactopyranoside. The characteristics of the scFvs were then determined. The results of Western blot showed that these scFvs could bind to Sj-MAg specifically and had a molecular weight of about 31 kD. When testing serum from schistosomiasis patients with one of the two specific scFvs, its sensitivity was found to be 60% and 37% in acute and chronic patients, respectively, with a specificity of 90%. When the two specific scFvs were combined, their sensitivity was found to be 75% and 57% in acute and chronic patients, respectively, with a specificity of 85%.Conclusions The results indicate that the scFvs are potentially useful for the diagnosis of schistosomiasis. The library construction also provides a useful tool for the further screening of other antibodies for both diagnostic and immunotherapeutic applications and for epitope analysis and vaccine design.

  16. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity.

    Science.gov (United States)

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A; Motamedi-Shad, Neda; Irving, James A; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J; Miranda, Elena; Lomas, David A

    2015-06-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin. PMID:25757566

  17. VH and VL Domains of Polyspecific IgM and Monospecific IgG Antibodies Contribute Differentially to Antigen Recognition and Virus Neutralization Functions.

    Science.gov (United States)

    Pasman, Y; Kaushik, A K

    2016-07-01

    We analysed contributions of variable heavy (FdVH ) and variable light (FdVL ) domains in comparison to scFv (FdVH +FdVL ) of naturally occurring polyspecific bovine IgM with an exceptionally long CDR3H and an induced monospecific bovine herpes virus-1 (BoHV-1) neutralizing IgG1 antibody in the context of to antigen-binding site and antibody function. Various recombinant FdVH , FdVL and scFv were constructed and expressed in Pichia pastoris from the bovine IgM and IgG1 antibody encoding cDNA. The scFv1H12 showed polyspecific antigen binding similar to parent IgM antibody, though subtle differences, for example, higher thyroglobulin recognition. Such differences reflect influence of the constant region on the antigen-binding site configuration. Unlike, variable light domain FdVL 1H12, the variable heavy domain FdVH 1H12 alone recognized multiple antigens that differed from the recognition pattern of scFv1H12 (FdVH +FdVL ) and the parent IgM antibody. Nonetheless, role of FdVL 1H12 in providing structural support to FdVH in antigen recognition is noted, apart from its intrinsic antigen recognition ability. Surface plasmon resonance analysis revealed low to moderate affinity of scFv1H12 to IgG antigen. By contrast, the individual FdVH 073 and FdVL 074, originating from induced BoHV-1 neutralizing IgG1 antibody, recognized target epitope on BoHV-1 weakly when compared to FdVH +FdVL (scFv3-18L). Interestingly, both the FdVH and FdVL domains of induced IgG antibody are required to achieve BoHV-1 neutralization. To conclude, there exist subtle functional differences in the contribution of FdVH and FdVL to antigen-binding site generation of polyspecific IgM and monospecific IgG antibodies relevant to antigen recognition and virus neutralization functions. PMID:27104652

  18. Thyroid Antibodies

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Thyroid Antibodies Share this page: Was this page helpful? Also known as: Thyroid Autoantibodies; Antithyroid Antibodies; Antimicrosomal Antibody; Thyroid Microsomal Antibody; ...

  19. Homology modelling and bivalent single-chain Fv construction of anti-HepG2 single-chain immunoglobulin Fv fragments from a phage display library

    Indian Academy of Sciences (India)

    Ming Ni; Bing Yu; Y U Huang; Zhenjie Tang; Ping Lei; Xin Shen; Wei Xin; Huifen Zhu; Guanxin Shen

    2008-12-01

    We prepared single-chain immunoglobulin Fv fragments (scFv) SLH10 specific for the HepG2 cell line after biopanning from a large human-naïve phage display library (Griffin. 1 Library). The three-dimensional (3D) structure of SLH10 was modelled by the Insight II molecule simulation software. The structure was refined using the molecular dynamics method. The structures with the least steric clashes and lowest energy were determined finally. The optimized structures of heavy (VH) and light (VL) variable chains of SLH10 scFv were obtained. Then SLH10 bivalent single-chain Fv (BsFv) was constructed that would be suitable for high-affinity targeting. SLH10 BsFv was generated by linking scFvs together and identified by sequencing. Its expression products were confirmed by western blot analysis. The relative molecular masses of scFv and BsFv were approximately 30 kDa and 60 kDa, respectively. Flow cytometry revealed that SLH10 BsFv bound the selected cell lines with greater signal intensity than the parental scFv. The improved antigen binding of SLH10 BsFv may be useful for immunodiagnostics or targeted gene therapy for liver cancer.

  20. Jet fragmentation

    International Nuclear Information System (INIS)

    Data on jet fragmentation, in particular recent results from e+e- and anti pp collisions, are presented in the framework of phenomenological models. The Lund string model and the Webber QCD cluster model turn out to describe the data quite well. Shortcomings of both models are discussed. (orig.)

  1. Recombinant shark natural antibodies to thyroglobulin.

    Science.gov (United States)

    Schluter, Samuel F; Jensen, Ingvill; Ramsland, Paul A; Marchalonis, John J

    2005-01-01

    As cartilaginous fish are the vertebrates most distal from man to produce antibodies, fundamental information regarding conservation and variation of the antigen binding site should be gained by comparing the properties of antibodies directed against the same antigen from the two species. Since monoclonal cell lines cannot be generated using shark B cells, we isolated antigen binding recombinant single chain Fv antibodies (scFv) comprising of the complete variable regions from shark light and heavy chains. Thyroglobulin was used as the selecting antigen as both sharks and humans express natural antibodies to mammalian thyroglobulin in the absence of purposeful immunization. We report that recombinant sandbar shark (Carcharhinus plumbeus) scFvs that bind bovine thyroglobulin consist of heavy chain variable regions (VH) homologous to those of the human VHIII subset and light chain variable regions (VL) homologous to those of the human Vlambda6 subgroup. The homology within the frameworks is sufficient to enable the building of three-dimensional models of the shark VH/VL structure using established human structures as templates. In natural antibodies of both species, the major variability lies in the third complementarity determining region (CDR3) of both VH and VL. PMID:15954089

  2. Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork

    Energy Technology Data Exchange (ETDEWEB)

    Dong Jiexian; Li Zhenfeng; Lei Hongtao; Sun Yuanming [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China); Ducancel, Frederic [CEA, iBiTec-S, Service de Pharmacologie et d' Immnoanalyse (SPI), CEA Saclay, F-91191 Gif sur Yvette (France); Xu Zhenlin [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China); Boulain, Jean-Claude [CEA, iBiTec-S, Service de Pharmacologie et d' Immnoanalyse (SPI), CEA Saclay, F-91191 Gif sur Yvette (France); Yang Jinyi; Shen Yudong [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China); Wang Hong, E-mail: gzwhongd@63.com [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China)

    2012-07-29

    Graphical abstract: Detection model of dc-CLEIA based on anti-RAC scFv-AP fusion protein. Highlights: Black-Right-Pointing-Pointer The scFv-AP fusion protein against ractopamine (RAC) was produced. Black-Right-Pointing-Pointer A dc-CLEIA for RAC was developed based on the purified scFv-AP fusion protein. Black-Right-Pointing-Pointer The sensitivity of dc-CLEIA was 10 times as sensitive as dc-ELISA for RAC. Black-Right-Pointing-Pointer Recovery tests from pork samples were studied. Black-Right-Pointing-Pointer Good accuracy was obtained. - Abstract: A rapid, sensitive chemiluminescent enzyme immunoassay (CLEIA) for ractopamine (RAC) based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein was developed. The scFv gene was prepared by cloning the heavy- and light-chain variable region genes (V{sub H} and V{sub L}) from hybridoma cell line AC2, which secretes antibodies against RAC, and assembling V{sub H} and V{sub L} genes with a linker by means of splicing overlap extension polymerase chain reaction. The resulting scFv gene was inserted into the expression vector pLIP6/GN containing AP to produce the fusion protein in Escherichia coli strain BL21. The purified scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) protocol for detection of RAC. The average concentration required for 50% inhibition of binding and the limit of detection of the assay were 0.25 {+-} 0.03 and 0.02 {+-} 0.004 ng mL{sup -1}, respectively, and the linear response range extended from 0.05 to 1.45 ng mL{sup -1}. The assay was 10 times as sensitive as the corresponding enzyme-linked immunosorbent assay based on the same fusion protein. Cross-reactivity studies showed that the fusion protein did not cross react with RAC analogs. DcCLEIA was used to analyze RAC spiked pork samples, and the validation was confirmed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). The results showed a good correlation between

  3. Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork

    International Nuclear Information System (INIS)

    Graphical abstract: Detection model of dc-CLEIA based on anti-RAC scFv-AP fusion protein. Highlights: ► The scFv-AP fusion protein against ractopamine (RAC) was produced. ► A dc-CLEIA for RAC was developed based on the purified scFv-AP fusion protein. ► The sensitivity of dc-CLEIA was 10 times as sensitive as dc-ELISA for RAC. ► Recovery tests from pork samples were studied. ► Good accuracy was obtained. - Abstract: A rapid, sensitive chemiluminescent enzyme immunoassay (CLEIA) for ractopamine (RAC) based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein was developed. The scFv gene was prepared by cloning the heavy- and light-chain variable region genes (VH and VL) from hybridoma cell line AC2, which secretes antibodies against RAC, and assembling VH and VL genes with a linker by means of splicing overlap extension polymerase chain reaction. The resulting scFv gene was inserted into the expression vector pLIP6/GN containing AP to produce the fusion protein in Escherichia coli strain BL21. The purified scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) protocol for detection of RAC. The average concentration required for 50% inhibition of binding and the limit of detection of the assay were 0.25 ± 0.03 and 0.02 ± 0.004 ng mL−1, respectively, and the linear response range extended from 0.05 to 1.45 ng mL−1. The assay was 10 times as sensitive as the corresponding enzyme-linked immunosorbent assay based on the same fusion protein. Cross-reactivity studies showed that the fusion protein did not cross react with RAC analogs. DcCLEIA was used to analyze RAC spiked pork samples, and the validation was confirmed by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS). The results showed a good correlation between the data of dc-CLEIA and HPLC–MS (R2 > 0.99), indicating that the assay was an efficient analytical method for monitoring food safety.

  4. A fluorescent single domain antibody against plumbagin expressed in silkworm larvae for fluorescence-linked immunosorbent assay (FLISA).

    Science.gov (United States)

    Sakamoto, Seiichi; Pongkitwitoon, Benyakan; Sasaki-Tabata, Kaori; Putalun, Waraporn; Maenaka, Katsumi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-05-21

    A fluorescent single-domain antibody (fluobody), a chimera of a green fluorescent protein (AcGFP) with a single chain variable fragment antibody (scFv), against plumbagin (5-hydorxy-2-methyl-1,4-naphthoquinone; PL) was successfully expressed in the hemolymph of silkworm larvae using a Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system to develop a rapid, simple, and sensitive fluorescence-linked immunosorbent assay (FLISA). In this study, two kinds of fluobody, in which the PL-scFv was fused at the N-terminus (N-fluobody) or C-terminus of AcGFP (C-fluobody), were expressed in silkworm larvae for comparative purposes. Interestingly, both fluobodies expressed in the BmNPV bacmid DNA system retained both of their original functions as an AcGFP and a PL-scFv, although the functions of the N-fluobody were found to be inferior to those of C-fluobody when they were expressed in Escherichia coli. Moreover, an improvement in the limit of quantification for PL measurement was observed in FLISA (24 ng mL(-1)) compared with conventional ELISA (0.2 µg mL(-1)). Since both the C-fluobody and N-fluobody are useful probes for FLISA and the time-, cost-consuming refolding step required in the conventional bacterial expression system can be avoided when they are expressed in the BmNPV bacmid DNA system, the silkworm expression system is useful for expressing fluobodies when developing FLISA. PMID:21442099

  5. Targeting membrane proteins for antibody discovery using phage display.

    Science.gov (United States)

    Jones, Martina L; Alfaleh, Mohamed A; Kumble, Sumukh; Zhang, Shuo; Osborne, Geoffrey W; Yeh, Michael; Arora, Neetika; Hou, Jeff Jia Cheng; Howard, Christopher B; Chin, David Y; Mahler, Stephen M

    2016-01-01

    A critical factor in the successful isolation of new antibodies by phage display is the presentation of a correctly folded antigen. While this is relatively simple for soluble proteins which can be purified and immobilized onto a plastic surface, membrane proteins offer significant challenges for antibody discovery. Whole cell panning allows presentation of the membrane protein in its native conformation, but is complicated by a low target antigen density, high background of irrelevant antigens and non-specific binding of phage particles to cell surfaces. The method described here uses transient transfection of alternating host cell lines and stringent washing steps to address each of these limitations. The successful isolation of antibodies from a naive scFv library is described for three membrane bound proteins; human CD83, canine CD117 and bat CD11b. PMID:27189586

  6. Dynamics of antibody domains studied by solution NMR.

    Science.gov (United States)

    Vu, Bang K; Walsh, Joseph D; Dimitrov, Dimiter S; Ishima, Rieko

    2009-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  7. Tumor cell-selective apoptosis induction through targeting of KV10.1 via bifunctional TRAIL antibody

    Directory of Open Access Journals (Sweden)

    Pardo Luis A

    2011-09-01

    Full Text Available Abstract Background The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel KV10.1 (Ether-á-go-go is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. Methods We designed a single-chain antibody against an extracellular region of KV10.1 (scFv62 and fused it to the human soluble TRAIL. The KV10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. Results Prostate cancer cells, either positive or negative for KV10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in KV10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking KV10.1 expression. In co-cultures with KV10.1-positive cancer cells the fusion protein also induced apoptosis in bystander KV10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. Conclusions KV10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a KV10.1-specific antibody.

  8. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity.

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    Full Text Available The paralytic disease botulism is caused by botulinum neurotoxins (BoNT, multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC of BoNT serotype A (BoNT/A was targeted for generation of monoclonal antibodies (mAbs that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS. Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10-11 M to 3.53×10-8 M (mean KD 5.38×10-9 M and median KD 1.53×10-9 M, as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10-9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.

  9. Monoclonal antibodies.

    Science.gov (United States)

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  10. Generation and characterization of heavy chain antibodies derived from Camelids

    OpenAIRE

    Schmidthals, Katrin

    2013-01-01

    Antibodies and antibody fragments are essential tools in basic research, diagnostics and therapy. Conventional antibodies consist of two heavy and two light chains with both chains contributing to the antigen-binding site. In addition to these conventional antibodies, camelids (llamas, alpacas, dromedaries and camels) possess so-called heavy chain antibodies (hcAbs) that lack the light chains. The antigen binding site of these unusual antibodies is formed by one single domain only, the so cal...

  11. Virus Strain Discrimination Using Recombinant Antibodies

    OpenAIRE

    Boonham, N.; Barker, I.

    2002-01-01

    Most routine testing for plant viruses is currently carried out using monoclonal and polyclonal antibodies. Traditional methods of antibody production however can be time consuming and require the use of expensive cell culture facilities. Recombinant antibody technology however is starting to make an impact in this area, enabling the selection of antibody fragments in a few weeks compared with the many months associated with traditional methods and requires only basic microbiological faciliti...

  12. Framing Fragmentation

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2009-01-01

    , contain distinctive architectural traits, not only based on rational repetition, but also supporting composition and montage as dynamic concepts. Prefab architecture is an architecture of fragmentation, individualization and changeability, and this sets up new challenges for the architect. This paper...... tries to develop a strategy for the architect dealing with industrially based architecture; a strategy which exploits architectural potentials in industrial building, which recognizes the rules of mass production and which redefines the architect’s position among the agents of building. If recent...... developments within the construction sector imply a marginalized role for the architect, this strategy suggests a strong repositioning. In Danish building practice the construction industry is increasingly organized within terms like ”systemized prefab delivery” and ”digital building”. The building is divided...

  13. Monoclonal antibodies

    International Nuclear Information System (INIS)

    kits available commercially. There must, however, be a realistic pricing structure and some identification of the needs of developing countries to balance the costs of the kits, which are generally far too expensive. There is extensive literature concerning the preparation, characterization and application of MAbs. Areas of their use as therapeutics, the prophylactic prevention of diseases, or the development of anti-idiotypic vaccines are not examined. There is also no mention of engineered MAbs, in which recombinant technologies are used to produce bispecific antibodies and antibody fragments. These areas are being exploited in the human fields where, in terms of process biotechnology, kilograms of MAbs are routinely produced. It is reasonable to consider such exploitation in the veterinary sphere, whereby animals are protected by designer antibodies against defined epitopes. The main danger in the use of MAbs is that the research base necessary to understand the biology of host/pathogen relationships and the epidemiology of disease is being constantly eroded. (author)

  14. Isolation and Evaluation of Specific Human Recombinant Antibodies from a Phage Display Library against HER3 Cancer Signaling Antigen

    Directory of Open Access Journals (Sweden)

    Foroogh Nejatollahi

    2014-07-01

    Full Text Available Background: The human epidermal growth factor receptor family comprises four homologous members: EGFR (ErbB1, ErbB2 (HER2, ErbB3 (HER3 and ErbB4 (HER4.This family plays an important role in the signaling pathway and cell proliferation. The heterodimerization of HER2 with HER3 leads to tumor cell proliferation. Monoclonal antibody to the human HER3 receptor blocks HER3 heterodimerization and inhibits the growth of breast cancer cells. Due to their human origin, small size, rapid penetration and high affinity properties, recombinant single chain antibodies (scFv have been introduced as the most desired agents for cancer immunotherapy. In this study, we use a phage display system to select specific scFvs against HER3 for their use in cancer targeted therapy. Methods: A phage antibody display library of scFv was panned against an immunodominant epitope of HER3. Phage rescue was performed on the library. The supernatant that contained the appropriate scFv (109 PFU/ml was added to an immunotube which was coated with the peptide. Elution was done using log phase E. coli TG1. The clones were amplified by PCR and DNA fingerprinted to select the specific clones against the epitope. The specificity of the selected antibodies was tested in ELISA. Results: The results represented two predominant patterns with the frequency of 25%. The other patterns showed the frequencies of 5%-10%. scFv1 and scFv2 demonstrated positive ELISA with absorbances of 0.63 and 0.46, respectively while the absorbances of wells without peptide were 0.19 and 0.11, respectively. Conclusion: In this study two specific scFvs were selected against HER3 antigen in a successful panning process. Phage ELISA represented the specific binding of scFvs against HER3.The selected scFvs reacted only with the corresponding peptides. However, no reaction with the other peptides was detected. The selected anti-HER3 scFvs have suggested that these human high affinity and small antibodies that bind

  15. Optimized Lentiviral Transduction Protocols by Use of a Poloxamer Enhancer, Spinoculation, and scFv-Antibody Fusions to VSV-G.

    Science.gov (United States)

    Anastasov, Nataša; Höfig, Ines; Mall, Sabine; Krackhardt, Angela M; Thirion, Christian

    2016-01-01

    Lentiviral vectors (LV) are widely used to successfully transduce cells for research and clinical applications. This optimized LV infection protocol includes a nontoxic poloxamer-based adjuvant combined with antibody-retargeted lentiviral particles. The novel poloxamer P338 demonstrates superior characteristics for enhancing lentiviral transduction over the best-in-class polybrene-assisted transduction. Poloxamer P338 exhibited dual benefits of low toxicity and high efficiency of lentiviral gene delivery into a range of different primary cell cultures. One of the major advantages of P338 is its availability in pharma grade and applicability as cell culture medium additive in clinical protocols. Lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) can be produced to high titers and mediate high transduction efficiencies in vitro. For clinical applications the need for optimized transduction protocols, especially for transduction of primary T and stem cells, is high. The successful use of retronectin, the second lentivirus enhancer available as GMP material, requires the application of specific coating protocols not applicable in all processes, and results in the need of a relatively high multiplicity of infection (MOI) to achieve effective transduction efficiencies for hematopoietic cells (e.g., CD34+ hematopoietic stem cells). Cell specificity of lentiviral vectors was successfully increased by displaying different ratios of scFv-fused VSV-G glycoproteins on the viral envelope. The system has been validated with human CD30+ lymphoma cells, resulting in preferential gene delivery to CD30+ cells, which was increased fourfold in mixed cell cultures, by presenting scFv antibody fragments binding to respective surface markers. A combination of spinoculation and poloxamer-based chemical adjuvant increases the transduction of primary T-cells by greater than twofold. The combination of poloxamer-based and scFv-retargeted LVs increased

  16. Monoclonal antibody as radiopharmaceutical

    International Nuclear Information System (INIS)

    The purification of anti-CEA monoclonal antibody 4C11 belonging to IgG sub(2a) subclass from mouse ascitis, donated by Ludwig Institute, Brazil was developed. The fragmentation of purified IgG sub(2a) by pepsin digestion and analytical studies by polyacrilamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) were done as preliminary assessment for their specific application in immunoscintigraphy. (author)

  17. Effects of interlinker sequences on the biological properties of bispecific single-chain antibodies

    Institute of Scientific and Technical Information of China (English)

    FANG Min; JIANG Xin; YANG Zhi; YIN Changcheng; LI Hua; ZHAO Rui; ZHANG Zhong; LIN Qing; HUANG Hualiang

    2003-01-01

    Single-chain bispecific antibody (scBsAb) is one of the promising genetic engineering antibody formats for clinical application. But the effects of interlinker sequences on the biological properties of bispecific single-chain antibodies have not been studied in detail. Three interlinker sequences were designed and synthesized, and denominated as Fc, HSA, 205C′, respectively. Universal vectors with these different interlinker sequences for scBsAb expression in E. coli were constructed. A model scBsAb based on a reshaped single-chain antibody (scFv) against human CD3 and a scFv directed against human ovarian carcinoma were generated and expressed in E. coli. The results of SDS-PAGE and Western blot showed that the different interlinker sequences did not affect the expression levelof scBsAb. However, as demonstrated by ELISA and pharmacokinetics studies performed in mice, scBsAbs with different interlinker sequences had difference in the antigen-binding activities and terminal half-life time (T1/2β) in vivo, the interlinker HSA could remarkably prolong the retention time of scBsAb in blood. These results indicated that the peptide sequence of interlinker could affect important biological properties of scBsAb, such as antigen-binding properties and stability in vivo. So, selection of an appropriate interlinker sequence is very important for scBsAb construction. Optimal interlinker can bring scBsAb biologicalproperties more suitable for clinical application.

  18. Antibody Response to Pneumocystis jirovecii

    OpenAIRE

    Daly, Kieran R.; Huang, Laurence; Morris, Alison; Koch, Judy; Crothers, Kristina; Levin, Linda; Eiser, Shary; Satwah, Supriya; Zucchi, Patrizia; Walzer, Peter D.

    2006-01-01

    We conducted a prospective pilot study of the serologic responses to overlapping recombinant fragments of the Pneumocystis jirovecii major surface glycoprotein (Msg) in HIV-infected patients with pneumonia due to P. jirovecii and other causes. Similar baseline geometric mean antibody levels to the fragments measured by an ELISA were found in both groups. Serum antibodies to MsgC in P. jirovecii patients rose to a peak level 3–4 weeks (p50 cells/μL and first episode of pneumocystosis were the ...

  19. Antibodies to human fetal erythroid cells from a nonimmune phage antibody library

    OpenAIRE

    Huie, Michael A.; Cheung, Mei-Chi; Muench, Marcus O.; Becerril, Baltazar; Kan, Yuet W.; Marks, James D.

    2001-01-01

    The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each pha...

  20. Antithyroid microsomal antibody

    Science.gov (United States)

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... Granulomatous thyroiditis Hashimoto thyroiditis High levels of these antibodies have also been linked to an increased risk ...

  1. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    International Nuclear Information System (INIS)

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody–colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus. (paper)

  2. Pharmacological selection of antibodies for immunoscintigraphy

    International Nuclear Information System (INIS)

    The recent development of hybridoma technology has resulted in the production of monoclonal antibodies that recognize a variety of tumor antigens. Many antibodies have been developed and some of them are used with different success in clinical practice. A list of criteria is proposed for the selection of antibodies suitable for imaging studies illustrated with the example of two monoclonal antibodies anti-CEA and 19.9 used in colorectal carcinoma imaging. Monoclonal antibodies obtained today are not truly tumor-specific, they are tumor-associated; this suggests that some cross-reactions with normal tissues exist. For immunoscintigraphical use it is important to select antibodies which procedure high tumor cell staining with limited reactivity against normal tissues. Antibodies can be separated into F(ab')2 and Fab fragments which diffuse more easily into the tumor with a rapid clearance from the circulation giving higher tumor to normal tissues ratio at an early time. Antibodies with both high affinity and avidity towards tumor cell receptors produce better imaging results. Antibodies can be labelled directly with iodine or technetium and with indium using chelating agents. In vivo kinetics of radiolabelled antibodies are very different considering the nuclide and the labelling method used. Pharmacokinetics on nude mice grated with human tumors are very useful for selecting the most appropriate nuclide antibody fragment and the most efficient labelling technique for a given application. (author)

  3. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  4. Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers

    CERN Document Server

    Lerner, Mitchell B; Pazina, Tatiana; Dailey, Jennifer; Goldsmith, Brett R; Robinson, Matthew K; Johnson, A T Charlie

    2013-01-01

    We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. Based on these observations, the d...

  5. Parton Fragmentation Functions

    CERN Document Server

    Metz, Andreas

    2016-01-01

    The field of fragmentation functions of light quarks and gluons is reviewed. In addition to integrated fragmentation functions, attention is paid to the dependence of fragmentation functions on transverse momenta and on polarization degrees of freedom. Higher-twist and di-hadron fragmentation functions are considered as well. Moreover, the review covers both theoretical and experimental developments in single-inclusive hadron production in electron-positron annihilation, deep-inelastic lepton-nucleon scattering, and proton-proton collisions.

  6. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants

    OpenAIRE

    Hehle, Verena K; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.

    2015-01-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody...

  7. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  8. Molecular Evolution of Antibody Cross-Reactivity for Two Subtypes of Type a Botulinum Neurotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rodriguez, C.; Levy, R.; Arndt, J.W.; Forsyth, C.M.; Razai, A.; Lou, J.; Geren, I.; Stevens, R.C.; Marks, J.D.; /UC, San Francisco /Scripps Res. Inst.

    2007-07-09

    Broadening antibody specificity without compromising affinity should facilitate detection and neutralization of toxin and viral subtypes. We used yeast display and a co-selection strategy to increase cross-reactivity of a single chain (sc) Fv antibody to botulinum neurotoxin type A (BoNT/A). Starting with a scFv that binds the BoNT/A1 subtype with high affinity (136 pM) and the BoNT/A2 subtype with low affinity (109 nM), we increased its affinity for BoNT/A2 1,250-fold, to 87 pM, while maintaining high-affinity binding to BoNT/A1 (115 pM). To find the molecular basis for improved cross-reactivity, we determined the X-ray co-crystal structures of wild-type and cross-reactive antibodies complexed to BoNT/A1 at resolutions up to 2.6 A, and measured the thermodynamic contribution of BoNT/A1 and A2 amino acids to wild-type and cross-reactive antibody binding. The results show how an antibody can be engineered to bind two different antigens despite structural differences in the antigen-antibody interface and may provide a general strategy for tuning antibody specificity and cross-reactivity.

  9. Antikörperfragmente und synthetische Antigene für die Diagnose von Viruserkrankungen der Pflanzen

    OpenAIRE

    Uhde, Kerstin

    2002-01-01

    The detection of Beet necrotic yellow vein virus (BNYVV) in stored sugar beets by means of monoclonal antibodies or antibody single chain fragments (scFv) often poses problems, because the immunodominant C-terminal epitope of the viral coat protein is readily lost due to proteolysis. Recombinant bacteria which produce scFv specific for protease-stable BNYVV epitopes were selected from two naïve phage display libraries. Fusion proteins of the scFv with a human IgG kappa chain (CL) or with a mo...

  10. Bispecific antibodies.

    Science.gov (United States)

    Kontermann, Roland E; Brinkmann, Ulrich

    2015-07-01

    Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development. PMID:25728220

  11. Radioimmunotherapy with Tenarad, a {sup 131}I-labelled antibody fragment targeting the extra-domain A1 of tenascin-C, in patients with refractory Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Aloj, Luigi [Istituto Nazionale Tumori ' ' Fondazione G. Pascale' ' - IRCCS, Struttura Complessa di Medicina Nucleare, Napoli (Italy); D' Ambrosio, Laura; Aurilio, Michela; Morisco, Anna; Caraco' , Corradina; Di Gennaro, Francesca; Lastoria, Secondo [Istituto Nazionale Tumori ' ' Fondazione G. Pascale' ' - IRCCS, Struttura Complessa Medicina Nucleare, Napoli (Italy); Frigeri, Ferdinando; Capobianco, Gaetana; Pinto, Antonio [Istituto Nazionale Tumori ' ' Fondazione G. Pascale' ' - IRCCS, Struttura Complessa di Ematologia Oncologica, Napoli (Italy); Giovannoni, Leonardo; Menssen, Hans D. [Philogen, SpA, Siena (Italy); Neri, Dario [Institute of Pharmaceutical Sciences, ETH, Zurich (Switzerland)

    2014-05-15

    The extra-domain A1 of tenascin-C (TC-A1) is highly expressed in the extracellular matrix of tumours and on newly formed blood vessels and is thus a valuable target for radionuclide therapy. Tenarad is a fully human miniantibody or small immunoprotein (SIP, molecular weight 80 kDa) labelled with {sup 131}I that is derived from a TC-A1-binding antibody. Previous phase I/II studies with a similar compound ({sup 131}I-L19SIP) used for radioimmunotherapy (RIT) have shown preliminary efficacy in a variety of cancer types. In this ongoing phase I/II trial, Tenarad was administered to patients with recurrent Hodgkin's lymphoma (HL) refractory to conventional treatments. Eight patients (four men, four women; age range 19 - 41) were enrolled between April 2010 and March 2011. All patients had received a median of three previous lines of chemotherapy (range three to six) and seven had also undergone autologous stem cell transplantation (ASCT) or bone marrow transplantation. In addition, seven patients received external beam radiation. All patients had nodal disease, constitutional B symptoms and some showed extranodal disease in skeletal bone (four patients), lung (three), liver (two) and spleen (one). Baseline assessments included whole-body FDG PET with contrast-enhanced CT and diagnostic Tenarad planar and SPECT studies. Patients were considered eligible to receive a therapeutic dose of Tenarad (2.05 GBq/m{sup 2}) if tumour uptake was more than four times higher than that of muscle. All patients were eligible and received the therapeutic dose of Tenarad. Only one patient developed grade 4 thrombocytopenia and leucocytopenia, requiring hospitalization and therapeutic intervention. All other patients had haematological toxicity of grade 3 or lower, which resolved spontaneously. At the first response assessment (4 - 6 weeks after therapy), one patient showed a complete response, one showed a partial response (PR) and five had disease stabilization (SD). Five patients

  12. Single-domain antibodies for brain targeting

    OpenAIRE

    Lalatsa, Katerina; Moreira Leite, Diana

    2014-01-01

    Smaller recombinant antibody fragments as single-domain antibodies (sdAbs) are emerging as credible alternatives because of their target specificity, high affinity, and cost-effective recombinant production. sdAbs have been forged into multivalent and multispecif ic therapeutics, or targeting moieties, that are able to shuttle their linked therapeutic cargo (i.e., drugs, nanoparticles, toxins, enzymes, and radionuclides) to the receptor of interest. Their ability to permeate across the blood ...

  13. Radioimmunoimaging of experimental gliomas using radiolabelled monoclonal antibodies

    International Nuclear Information System (INIS)

    The biodistribution and tumour uptake of radiolabelled (131 I) glioma-seeking monoclonal antibodies (14 AC1) and their F(ab')2 fragments were investigated in nude mice having received glioma transplants. Radioimmunoimaging by external scintigraphy at 48 and 96 hours pointed to a superior tumour localisation by the fragments that was clearly related to the dose. Wholebody determinations of the biokinetic behaviour led to the following results: Faster clearance anc more ready elimination from the blood pool for the fragments, preferential uptake in the tumour; intact antibodies; binding in the liver, spleen and lungs. The study confirmed the value of fragments of monoclonal antibodies in the diagnosis of tumours and pointed to the possibility of using intact monoclonal antibodies as carriers of radioisotopes and cytotoxic drugs within the scope of therapeutic programmes. (TRV)

  14. DNA fragmentation in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.

  15. Clinical experience in humans with radiolabeled antibody for tumor detection

    International Nuclear Information System (INIS)

    I-131 and Tc-99m labeled polyclonal or monoclonal antibody and fragments of antibody, specific to human chorionic gonadotropin (hCG) or to a melanoma cell surface antigen (MCSA) were injected into proven cancer patients. Using standard homeostasis parameters, and scanning techniques, the safety and efficacy of each antibody was evaluated. Antibody fragments were expected to clear faster from the circulation allowing for earlier imaging and a better target-to-non-target ratio. The technetium label may perturb the antiboby's kinetics so that clearance is more rapid for both whole antibody and fragments. After a statistical evaluation of all parameters measured pre and post injection it was concluded that no acute toxicity reactions were present in any patient studied. Scan results were not acceptable for a tumor detecting procedure used in routine practice. Tumor upake was seen in less than 10% of scans

  16. Fragments of Time

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    breaks down as the characters visit and re-visit the same episodes over and over, and we as spectators are never sure whether we are watching a narrative fragment in its "original" version, or one that has been altered. My paper will focus on the spectator's relation to the fragmented narrative that is...

  17. Fragmented Work Stories

    DEFF Research Database (Denmark)

    Humle, Didde Maria; Reff Pedersen, Anne

    2015-01-01

    Following a strand of narrative studies pointing to the living conditions of storytelling and the micro-level implications of working within fragmented narrative perspectives, this article contributes to narrative research on work stories by focusing on how meaning is created from fragmented stor...... of antenarrative practice approach that offers a contemporary method for exploring meaning creation in work stories.......Following a strand of narrative studies pointing to the living conditions of storytelling and the micro-level implications of working within fragmented narrative perspectives, this article contributes to narrative research on work stories by focusing on how meaning is created from fragmented...... stories. We argue that meaning by story making is not always created by coherence and causality; meaning is created by different types of fragmentation: discontinuities, tensions and editing. The objective of this article is to develop and advance antenarrative practice analysis of work stories...

  18. Characterization of a Single Chain Fv Antibody that Reacts with Free Morphine

    Directory of Open Access Journals (Sweden)

    Kazuhisa Sugimura

    2013-02-01

    Full Text Available An immune phage library derived from mice, hyperimmunized with morphine-conjugated BSA, was used to isolate a single-chain Fv (scFv clone, M86, with binding activity to morphine-conjugated thyroglobulin (morphine-C-Tg but not to codeine-, cocaine-, or ketamine-conjugated Tg. Surface plasmon resonance analysis using a morphine-C-Tg-coupled CM5 sensor chip showed that the Kd value was 1.26 × 10−8 M. To analyze its binding activity to free morphine and related compounds, we performed a competitive ELISA with M86 and morphine-C-Tg in the absence or presence of varying doses of free morphine and related compounds. IC50 values for opium, morphine, codeine, and heroin were 257 ng/mL, 36.4, 7.3, and 7.4 nM, respectively. Ketamine and cocaine exhibited no competitive binding activity to M86. Thus, we established a phage library-derived scFv, M86, which recognized not only free morphine and codeine as opium components but also heroin. This characteristic of M86 may be useful for developing therapeutic reagents for opiate addiction and as a free morphine-specific antibody probe.

  19. Engineered antibodies for monitoring of polynuclear aromatic hydrocarbons

    International Nuclear Information System (INIS)

    'The long-term goal of this project is to develop antibodies and antibody-based methods for detection and recovery of polynuclear aromatic hydrocarbons (PAHs) and PAH adducts that are potential biomarkers in environmental and biological samples. The inherent cross-reactivity will be exploited by pattern recognition methods. Dr. Karu''s laboratory uses new haptens representing key PAHs to derive recombinant Fab (rFab) and single-chain Fv (scFv) antibodies from hybridoma lines and combinatorial phage display libraries. Computational models of the haptens and combining sites made by Dr. Roberts''s group are used to guide antibody engineering by mutagenesis. Dr. Li''s laboratory develops enzyme immunoassays (EIAs), sensors, and immunoaffinity methods that make use of the novel haptens and antibodies for practical analytical applications in support of DOE''s mission. This report summarizes work completed in one and one-half years of a 3-year project, with close collaboration between the three research groups. Dr. Alexander Karu''s laboratory: the authors proceeded with the two strategies described in the original proposal. Site-directed mutagenesis was used to correct differences in the rFab N-terminal amino acids that were introduced by the degenerate PCR primers used for gene amplification. The binding constants of the rFabs with the corrected sequences will be compared with those of the parent MAbs, and should be very similar. The 4D5 and 10C10 heavy and light chain sequences are being moved to the pCOMB3H phagemid vector to facilitate selection of new engineered mutants.'

  20. Stratification of gallstone fragments: the key to more effective fragmentation.

    Science.gov (United States)

    Alderfer, J T; Laufer, I; Wisniewski, F; Malet, P F

    1992-04-01

    During previous experiments with in vitro fragmentation in a simulated gallbladder, we noticed that stone fragments tended to stratify with the dust and smaller fragments settled to the dependent portion, while the larger fragments settled on top. We reviewed the oral cholecystogram (OCG) of 10 patients examined 6 months following gallstone lithotripsy. In all cases with adequate visualization of stone fragments, the stratification phenomenon was observed. We hypothesized that adjusting the shock wave focus to target on these large fragments would improve the efficiency of fragmentation. To test this hypothesis, we fragmented three matched pairs of gallstones in vitro. For each pair, the stones were removed from the same gallbladder and the stone weights of the two stones were within 10%. The smaller member of each pair was fragmented using the "old method" with the focus on the fragment line. The larger stone was fragmented with the "new method" with the focus in the acoustic shadow deep to the echogenic line caused by the dust and small fragments in the dependent portion. The distribution of fragments was analyzed by passing the fragments through a series of filters. With the new method of targeting, the proportion of fragments less than 1.5 mm was doubled while the fragments greater than 5 mm were eliminated. The new method of targeting, taking into account the stratification of stone fragments, produces more effective fragmentation and should lead to more rapid clearance of fragments from the gallbladder. PMID:10149180

  1. SPECT imaging of peripheral amyloid in mice by targeting hyper-sulfated heparan sulfate proteoglycans with specific scFv antibodies.

    NARCIS (Netherlands)

    Wall, J.S.; Richey, T.; Stuckey, A.; Donnell, R.; Oosterhof, A.; Kuppevelt, T. van; Smits, N.C.; Kennel, S.J.

    2012-01-01

    INTRODUCTION: Amyloid deposits are associated with a broad spectrum of disorders including monoclonal gammopathies, chronic inflammation, and Alzheimer's disease. In all cases, the amyloid pathology contains, in addition to protein fibrils, a plethora of associated molecules, including high concentr

  2. The nonlinear fragmentation equation

    International Nuclear Information System (INIS)

    We study the kinetics of nonlinear irreversible fragmentation. Here, fragmentation is induced by interactions/collisions between pairs of particles and modelled by general classes of interaction kernels, for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the 'non-vanishing mass flux' criterion for the occurrence of shattering transitions. These properties enable us to determine the phase diagram for the occurrence of shattering states and of scaling states in the phase space of model parameters. (fast track communication)

  3. Antibody-Directed Phototherapy (ADP

    Directory of Open Access Journals (Sweden)

    M. Adil Butt

    2013-04-01

    Full Text Available Photodynamic therapy (PDT is a clinically-approved but rather under-exploited treatment modality for cancer and pre-cancerous superficial lesions. It utilises a cold laser or LED to activate a photochemical reaction between a light activated drug (photosensitiser-drug and oxygen to generate cytotoxic oxygen species. These free radical species damage cellular components leading to cell death. Despite its benefits, the complexity, limited potency and side effects of PDT have led to poor general usage. However, the research area is very active with an increasing understanding of PDT-related cell biology, photophysics and significant progress in molecular targeting of disease. Monoclonal antibody therapy is maturing and the next wave of antibody therapies includes antibody-drug conjugates (ADCs, which promise to be more potent and curable. These developments could lift antibody-directed phototherapy (ADP to success. ADP promises to increase specificity and potency and improve drug pharmacokinetics, thus delivering better PDT drugs whilst retaining its other benefits. Whole antibody conjugates with first generation ADP-drugs displayed problems with aggregation, poor pharmacokinetics and loss of immuno-reactivity. However, these early ADP-drugs still showed improved selectivity and potency. Improved PS-drug chemistry and a variety of conjugation strategies have led to improved ADP-drugs with retained antibody and PS-drug function. More recently, recombinant antibody fragments have been used to deliver ADP-drugs with superior drug loading, more favourable pharmacokinetics, enhanced potency and target cell selectivity. These improvements offer a promise of better quality PDT drugs.

  4. Identification of internalizing human single chain antibodies targeting brain tumor sphere cells

    Science.gov (United States)

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C. David; Berger, Mitchel S.; Liu, Bin

    2010-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor and there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive media, and exhibit enhanced tumor initiating ability and resistance to therapy. We report here the identification of internalizing human single chain antibodies (scFvs) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133 positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular non-selective media. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. PMID:20587664

  5. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment.

    Science.gov (United States)

    Tao, Xiaoqi; Chen, Min; Jiang, Haiyang; Shen, Jianzhong; Wang, Zhanhui; Wang, Xia; Wu, Xiaoping; Wen, Kai

    2013-09-01

    A chemiluminescent competitive indirect enzyme-linked immunosorbent assay, based on a mutant single-chain variable fragment (scFv), was developed to detect a broad range of fluoroquinolones (FQs) in fish and shrimp matrices. In this study, the best scFvC4A9H1_mut2 was adopted, which showed 10-fold improved affinity to sarafloxacin (SAR), difloxacin (DIF), and trovafloxacin (TRO), while the affinity to other FQs was fully inherited from wild-type scFvC4A9H1. In the optimized generic test, scFvC4A9H1_mut2 in combination with norfloxacin-ovalbumin conjugate and horseradish peroxidase-labeled anti-c-myc 9E10 antibody showed 50 % binding inhibition (IC50) at 0.12 μg kg(-1) for norfloxacin in buffer. Screening for the class of FQ antibiotics is accomplished using a simple, rapid extraction carried out with ethanol/acetic acid (99:1, v/v). This common extraction was able to detect 20 FQ residues such as s ciprofloxacin (CIP), danofloxacin, DIF, enoxacin, enrofloxacin (ENR), fleroxacin, amifloxacin, flumequine, levofloxacin, lomefloxacin hydrochloride, marbofloxacin, norfloxacin (NOR), ofloxacin, orbifloxacin, pazufloxacin, pefloxacin-d5 (PEF), prulifloxacin, SAR, sparfloxacin, and TRO in fish and shrimp. The limit of detection (LOD) for NOR was 0.2 μg kg(-1) and the LODs for CIP and ENR were all <0.2 μg kg(-1). Values of LODs inferred from the cross-reactivity data will range from approximately 0.23 μg kg(-1) for PEF to 2.1 μg kg(-1) for TRO. Field fish and shrimp samples were analyzed and compared to the results obtained from liquid chromatography tandem mass spectrometric method. All five instances (from 0.25 to 15.6 μg kg(-1)) in which FQs were present at concentrations near or above the assay LOD were identified as positive by the newly developed assay, demonstrating the usefulness of this assay as a screening tool. PMID:23842902

  6. Antibody elicited against the gp41 N-heptad repeat (NHR) coiled-coil can neutralize HIV-1 with modest potency but non-neutralizing antibodies also bind to NHR mimetics

    International Nuclear Information System (INIS)

    Following CD4 receptor binding to the HIV-1 envelope spike (Env), the conserved N-heptad repeat (NHR) region of gp41 forms a coiled-coil that is a precursor to the fusion reaction. Although it has been a target of drug and vaccine design, there are few monoclonal antibody (mAb) tools with which to probe the antigenicity and immunogenicity specifically of the NHR coiled-coil. Here, we have rescued HIV-1-neutralizing anti-NHR mAbs from immune phage display libraries that were prepared (i) from b9 rabbits immunized with a previously described mimetic of the NHR coiled-coil, N35CCG-N13, and (ii) from an HIV-1 infected individual. We describe a rabbit single-chain Fv fragment (scFv), 8K8, and a human Fab, DN9, which specifically recognize NHR coiled-coils that are unoccupied by peptide corresponding to the C-heptad repeat or CHR region of gp41 (e.g. C34). The epitopes of 8K8 and DN9 were found to partially overlap with that of a previously described anti-NHR mAb, IgG D5; however, 8K8 and DN9 were much more specific than D5 for unoccupied NHR trimers. The mAbs, including a whole IgG 8K8 molecule, neutralized primary HIV-1 of clades B and C in a pseudotyped virus assay with comparable, albeit relatively modest potency. Finally, a human Fab T3 and a rabbit serum (both non-neutralizing) were able to block binding of D5 and 8K8 to a gp41 NHR mimetic, respectively, but not the neutralizing activity of these mAbs. We conclude from these results that NHR coiled-coil analogs of HIV-1 gp41 elicit many Abs during natural infection and through immunization, but that due to limited accessibility to the corresponding region on fusogenic gp41 few can neutralize. Caution is therefore required in targeting the NHR for vaccine design. Nevertheless, the mAb panel may be useful as tools for elucidating access restrictions to the NHR of gp41 and in designing potential improvements to mimetics of receptor-activated Env

  7. Isospin in nuclear fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Baran, V. [Bucharest Univ., IFIN-HH (Romania); Baran, V.; Colonna, M.; Di Toro, M. [Catania Univ., Laboratori Nazionali del Sud, INFN (Italy)

    2003-07-01

    The isospin dynamics when we explore various reaction mechanisms at intermediate energies is discussed. We are concerned with its peculiarities in the nuclear liquid-gas phase transition, in mid-rapidity fragment formation for semi-central collisions as well as in the diffusion process in binary, peripheral reactions. The connection of these effects to the density dependence of symmetry energy is analyzed in detail. In this work we showed how various reaction mechanism at Fermi energies can provide complementary information about the density dependence of symmetry term of the nuclear equation of state. In these reactions several observables are sensitive to the isovector channel: i) isospin distillation in multifragmentation, ii) isospin content of neck fragments, iii) iso-scaling parameters, and iv) isospin content of PLF (projectile-like fragments) and TLF (target-like fragments) in peripheral reaction.

  8. Fission fragment rocket concept

    International Nuclear Information System (INIS)

    A new propulsion scheme is outlined which may permit interstellar missions for spacecraft. This scheme is based on the idea of allowing fission fragments to escape from the core of a nuclear reactor. (orig.)

  9. Physics of projectile fragments

    International Nuclear Information System (INIS)

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  10. Fragmentation Main Model

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The fragmentation model combines patch size and patch continuity with diversity of vegetation types per patch and rarity of vegetation types per patch. A patch was...

  11. Electroeluting DNA Fragments

    OpenAIRE

    Zarzosa-Álvarez, Ana L.; Sandoval-Cabrera, Antonio; Torres-Huerta, Ana L.; Ma. Bermudez-Cruz, Rosa

    2010-01-01

    Purified DNA fragments are used for different purposes in Molecular Biology and they can be prepared by several procedures. Most of them require a previous electrophoresis of the DNA fragments in order to separate the band of interest. Then, this band is excised out from an agarose or acrylamide gel and purified by using either: binding and elution from glass or silica particles, DEAE-cellulose membranes, "crush and soak method", electroelution or very often expensive commercial purification ...

  12. Landscape Fragmentation in Iceland

    OpenAIRE

    Einar Hjörleifsson 1988

    2014-01-01

    Landscape fragmentation measurements provide baseline data of direct human influence on landscape and habitat systems through land use. In 2011, the European Environment Agency, the EEA and the Swiss Federal Office for the Environment or FOEN created a comprehensive report on the status of landscape fragmentation in 28 European countries, excluding Iceland. This thesis builds on EEA and FOEN methodology in order to create comparable data for Iceland. The Icelandic data set had to be adjusted ...

  13. Isolation of Acanthamoeba-Specific Antibodies from a Bacteriophage Display Library

    OpenAIRE

    Khan, Naveed A.; Greenman, John; Topping, Katherine P.; Victoria C. Hough; Temple, Graham S.; Paget, Timothy A.

    2000-01-01

    Acanthamoeba causes opportunistic eye infections in humans, which can lead to severe keratitis and may ultimately result in blindness. Current methods for identifying this organism rely on culture and microscopy. In this paper, we describe the isolation of antibody fragments that can be used for the unequivocal identification of Acanthamoeba. A bacteriophage antibody display library was used to isolate antibody fragments that bind specifically to Acanthamoeba. Individual clones were studied b...

  14. Bacterial expression and purification of recombinant bovine Fab fragments.

    Science.gov (United States)

    O'Brien, Philippa M; Maxwell, Gavin; Campo, M Saveria

    2002-02-01

    We have previously described a recombinant phagemid expression vector, pComBov, designed for the production of native sequence bovine monoclonal antibodies (mAb) generated by antibody phage display. Bovine mAb Fab fragments isolated from libraries constructed using pComBov in Escherichia coli strain XL1-Blue, which is routinely used for antibodies expressed on the surface of phage, were expressed at very low yields. Therefore, a study was undertaken to determine optimal growth conditions for maximal expression of bovine Fab fragments in E. coli. By varying the E. coli strain, and the temperature and length of the culture growth, we were able to substantially increase the yield of soluble Fab fragments. A high yield of Fab fragments was found in the culture growth medium, which enabled us to devise a rapid and simple single-step method for the purification of native (nondenatured) Fabs based on immobilized metal affinity chromatography against a six-histidine amino acid carboxyl-terminal extension of the heavy-chain constant region. Using these methods we were able to express and purify antigen-specific bovine Fab fragments from E. coli. PMID:11812221

  15. Monoclonal antibodies to cell surface antigens of human melanoma

    International Nuclear Information System (INIS)

    The authors have worked with three human melanoma antigens which have been defined by monoclonal mouse antibodies: p97, a glycoprotein that is structurally related to transferrin, a proteoglycan, and a GD3 ganglioside that is slightly different from the GD3 of normal brain. All three antigens can be detected in frozen sections of melanoma, using immunohistological techniques. Antibodies and Fab fragments, specific for either p97 or the proteoglycan antigen, have been radiolabelled with 131I and successfully used for tumor imaging, and Phase I therapeutic trails are underway, using 131I-labelled Fab fragments, specific for p97 or the proteoglycan antigen, to localize a potentially therapeutic dose of radiation into tumors. It may be feasible to use the same monoclonal antibodies, or antibody fragments, as carriers of neutron capturers, such as boron, for possible use in tumor therapy. The initial experiments on this are best carried out by using nude mice (or rats) carrying human melanoma xenografts

  16. Fragment screening: an introduction.

    Science.gov (United States)

    Leach, Andrew R; Hann, Michael M; Burrows, Jeremy N; Griffen, Ed J

    2006-09-01

    There are clearly many different philosophies associated with adapting fragment screening into mainstream Drug Discovery Lead Generation strategies. Scientists at Astex, for instance, focus entirely on strategies involving use of X-ray crystallography and NMR. However, AstraZeneca uses a number of different fragment screening strategies. One approach is to screen a 2000 compound fragment set (with close to "lead-like" complexity) at 100 microM in parallel with every HTS such that the data are obtained on the entire screening collection at 10 microM plus the extra samples at 100 microM; this provides valuable compound potency data in a concentration range that is usually unexplored. The fragments are then screen-specific "privileged structures" that can be searched for in the rest of the HTS output and other databases as well as having synthesis follow-up. A typical workflow for a fragment screen within AstraZeneca is shown below (Figure 24) and highlights the desirability (particularly when screening >100 microM) for NMR and X-ray information to validate weak hits and give information on how to optimise them. In this chapter, we have provided an introduction to the theoretical and practical issues associated with the use of fragment methods and lead-likeness. Fragment-based approaches are still in an early stage of development and are just one of many interrelated techniques that are now used to identify novel lead compounds for drug development. Fragment based screening has some advantages, but like every other drug hunting strategy will not be universally applicable. There are in particular some practical challenges associated with fragment screening that relate to the generally lower level of potency that such compounds initially possess. Considerable synthetic effort has to be applied for post-fragment screening to build the sort of potency that would be expected to be found from a traditional HTS. However, if there are no low-hanging fruit in a screening

  17. Structural Comparison of Different Antibodies Interacting with Parvovirus Capsids

    Energy Technology Data Exchange (ETDEWEB)

    Hafenstein, Susan; Bowman, Valorie D.; Sun, Tao; Nelson, Christian D.S.; Palermo, Laura M.; Chipman, Paul R.; Battisti, Anthony J.; Parrish, Colin R.; Rossmann, Michael G.; Cornell; Purdue

    2009-05-13

    The structures of canine parvovirus (CPV) and feline parvovirus (FPV) complexed with antibody fragments from eight different neutralizing monoclonal antibodies were determined by cryo-electron microscopy (cryoEM) reconstruction to resolutions varying from 8.5 to 18 {angstrom}. The crystal structure of one of the Fab molecules and the sequence of the variable domain for each of the Fab molecules have been determined. The structures of Fab fragments not determined crystallographically were predicted by homology modeling according to the amino acid sequence. Fitting of the Fab and virus structures into the cryoEM densities identified the footprints of each antibody on the viral surface. As anticipated from earlier analyses, the Fab binding sites are directed to two epitopes, A and B. The A site is on an exposed part of the surface near an icosahedral threefold axis, whereas the B site is about equidistant from the surrounding five-, three-, and twofold axes. One antibody directed to the A site binds CPV but not FPV. Two of the antibodies directed to the B site neutralize the virus as Fab fragments. The differences in antibody properties have been linked to the amino acids within the antibody footprints, the position of the binding site relative to the icosahedral symmetry elements, and the orientation of the Fab structure relative to the surface of the virus. Most of the exposed surface area was antigenic, although each of the antibodies had a common area of overlap that coincided with the positions of the previously mapped escape mutations.

  18. Fragmentation and lethality

    Directory of Open Access Journals (Sweden)

    V. R. Thiruvenkatachar

    1958-04-01

    Full Text Available "The lethality of a H.E. shell or bomb depends on its ability to produce high velocity fragments and blast. The relative importance of these two damaging agents depends on the nature of the targets it is proposed to destroy. Small, high-velocity fragments are effective for the attack of personnel in the open, but aircraft targets require larger fragments. The blast effect from shell-burst inside aircraft wings does considerable damage, but blast is of relatively little importance against heavily armoured targets such as tanks. Fragment effect ceases to be of primary importance here and if the HE shell is to be lethal to such targets it must carry a very large charge of explosive, which will either ""scab"" the armour or do extensive structural damage by blast and shock. For assessing the effectiveness of a fragmenting shell or bomb against a given type of target, we have to take into account different characteristics of ammunition and target. The solution of the problem of lethality of ammunition will involve a determination of fragmentation in regard to total number of a design with a specific level of lethality in a given situation, it will be necessary to predict the performance for given design data, a process which demands a theoretical treatment if possible, or at least a sufficient quantity of experimental data which can yield reliable empirical formulae. In this paper an account is given of the various theoretical and empirical aspects and a discussion of these with reference to certain special cases. "

  19. IMPACT fragmentation model developments

    Science.gov (United States)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  20. Fission Fragments Discriminator

    International Nuclear Information System (INIS)

    Nuclear fission reaction between Uranium-235 nucleus and thermal neutron caused the high energy fission fragments with uncertainly direction. The particle direction discrimination was determined. The 2.5 x 3.0 mm2 polyethylene gratings with 1-6 mm thickness were used. The grating was placed between uranium screen that fabricated from ammonium-diurinate compound and polycarbonate nuclear track film recorder irradiated by neutron from Thai Research Reactor (TRR-1/M1) facility. The nuclear track density was inversely with grating thickness. It's only fission fragments normal to uranium screen pass through film recorder when grating thickness was 4-6 mm

  1. Fragmentation of kidney stones

    International Nuclear Information System (INIS)

    Complete text of publication follows. Fragmentation, i.e. the breaking of particulate materials into smaller pieces is abundant in nature and underlies several industrial processes, which attracted a continuous interest in scientific and engineering research over the past decades. In industrial applications, fragmentation processes are mostly used for the comminution of ores in various types of mills. Kidney stone is a well known human dis- ease which embitters the life of many people (in a country like the USA about 106 cases are registered yearly). In order to extract large kidney stones (diameter ≥ 1 cm) from the human body without operation, one of the most efficient treatment is the fragmentation of kidney stones by the so-called extracorporal shock wave lithography method: a shock wave penetrating the human body is generated by an electric pulse. The repeated application of the shock wave gradually fragments the stones into pieces of size ≤ 2 mm which then leave the body through the urine system. Recently, a novel type of lithographic method has been suggested by using widely focused shock waves which fragment the stones by a squeezing mechanism. Laboratory experiments showed that the widely focused squeezing waves achieve a higher fragmentation efficiency than the frequently used shock waves of sharp focus. Based on this method a novel medical treatment can be introduced which is less demanding for the patients. Before the application of the method in the clinical practice a detailed understanding of the fragmentation mechanism of kidney stones due to shock waves is required. Since analytic theoretical methods have serious limitations in this field, we develop a realistic model of the mechanical behavior of kidney stones and a simulation code which makes possible to study the mechanism of breakup under various external conditions. Computer simulations in two dimensions have revealed a peculiar way of crack formation, i.e. the crack which finally breaks

  2. Monoclonal antibodies for radioimmunoimaging: Current perspectives

    International Nuclear Information System (INIS)

    The ability to image tumor using radiolabeled monoclonal antibody products has been widely demonstrated. The questions of safety and efficacy remain open and require further experience, but in some clinical situations, radioimmunoimaging has provided clinically useful information. This paper deals with a set of current problems in imaging with radiolabeled monoclonal antibodies and current perspectives on the possible solutions to these problems. The major areas discussed here are the following: (a) The selection process. How might we choose the ''best'' antibody for imaging from among the multitude now available and what form (i.e., which fragments) may be useful? (b) The imaging procedure: What are the basic optimal imaging parameters and how does the data produced by this modality interface with information obtained by more standard methods of imaging? (c) Quantitative techniques: How can noninvasive quantitative techniques provide information useful to the antibody selection process and to the diagnostic and therapeutic applications

  3. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy

    Science.gov (United States)

    Lai, Yan-Da; Wu, Yen-Yu; Tsai, Yi-Jiue; Tsai, Yi-San; Lin, Yu-Ying; Lai, Szu-Liang; Huang, Chao-Yang; Lok, Ying-Yung; Hu, Chih-Yung; Lai, Jiann-Shiun

    2016-01-01

    Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv) or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume) on Day 21 vs. 435% with Avastin). This finding suggests a potential use of these three antibodies for VEGF-targeted therapy. PMID:26861297

  4. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy.

    Science.gov (United States)

    Lai, Yan-Da; Wu, Yen-Yu; Tsai, Yi-Jiue; Tsai, Yi-San; Lin, Yu-Ying; Lai, Szu-Liang; Huang, Chao-Yang; Lok, Ying-Yung; Hu, Chih-Yung; Lai, Jiann-Shiun

    2016-01-01

    Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv) or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%-347% tumor growth ratio (% of Day 0 tumor volume) on Day 21 vs. 435% with Avastin). This finding suggests a potential use of these three antibodies for VEGF-targeted therapy. PMID:26861297

  5. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yan-Da Lai

    2016-02-01

    Full Text Available Vascular endothelial growth factor (VEGF is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume on Day 21 vs. 435% with Avastin. This finding suggests a potential use of these three antibodies for VEGF-targeted therapy.

  6. Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae

    OpenAIRE

    Jørgensen, Mathias Lindh; Friis, Niels Anton; Just, Jesper; Madsen, Peder; Petersen, Steen Vang; Kristensen, Peter

    2014-01-01

    Background In recent years the generation of antibodies by recombinant methods, such as phage display technology, has increased the speed by which antibodies can be obtained. However, in some cases when recombinant antibodies have to be validated, expression in E. coli can be problematic. This primarily occurs when codon usage or protein folding of specific antibody fragments is incompatible with the E. coli translation and folding machinery, for instance when recombinant antibody formats tha...

  7. Design of Fragment Selector

    Directory of Open Access Journals (Sweden)

    Harbir Singh

    1981-10-01

    Full Text Available The existing manual process of weight categorization of Service shells into various standard weight groups is lengthy as well as time consuming. A method has been suggested for designing an apparatus 'Fragment Selector' which will save much labour and time in categorisation of shells.

  8. Detection of complement activation using monoclonal antibodies against C3d

    OpenAIRE

    Thurman, Joshua M.; Kulik, Liudmila; Orth, Heather; Wong, Maria; Renner, Brandon; Sargsyan, Siranush A.; Mitchell, Lynne M.; Hourcade, Dennis E.; Hannan, Jonathan P.; Kovacs, James M.; Coughlin, Beth; Woodell, Alex S.; Pickering, Matthew C.; Rohrer, Bärbel; Holers, V. Michael

    2013-01-01

    During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monocl...

  9. Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1

    International Nuclear Information System (INIS)

    We examined the properties of 17 monoclonal antibodies to glycoprotein gD of herpes simplex type 1 (HSV-1) (gD-1) and HSV-2 (gD-2). The antibodies recognized eight separate determinants of gD, based on differences in radioimmuno-precipitation and neutralization assays. The determinants were distributed as follows: three were gD-1 specific, one was gD-2 specific, and four were type common. Several type-specific and type-common determinants appeared to be involved in neutralization. We developed a procedure for examining the effect that binding of monoclonal antibody has on proteolysis of native gD-1 by Staphylococcus aureus protease V8. We showed that several different patterns of protease V8 cleavage were obtained, depending on the monoclonal antibody used. The proteolysis patterns were generally consistent with the immunological groupings. With four groups of antibodies, we found that fragments of gD-1 remained bound to antibody after V8 treatment. A 38,000-dalton fragment remained bound to antibodies in three different groups of monoclonal antibodies. This fragment appeared to contain one type-common and two type-specific determinants. A 12,000-dalton fragment remained bound to antibodies belonging to one type-common group of monoclonal antibodies. Tryptic peptide analysis revealed that the 12,000-dalton fragment represented a portion of the 38,000-dalton fragment and was enriched in a type-common arginine tryptic peptide

  10. Detection of thrombi using a Tc-99m labelled antifibrin monoclonal antibody (MoAb)

    International Nuclear Information System (INIS)

    This thesis presents an investigation into the possibility of immunoscintigraphic detection of thrombi using an antifibrin monoclonal antibody, and fragments of the latter. The antifibrin antibody and tis fragments were labelled with Ec-99m, which has excellent characteristics for imaging with a gamma camera. The characterization of the antifibrin antibody and its fragments, the assessment of quality of labelling with Tc-99m, and results of experiments in vitro and in animals, which show the potential of immunoscintigraphic detection, are described. (author). 142 refs.; 44 figs.; 5 tabs

  11. Development of single-chain Fv against the nucleoprotein of type A influenza virus and its use in ELISA.

    Science.gov (United States)

    Sengupta, Devyani; Shaikh, Asma; Bhatia, S; Pateriya, A K; Khandia, R; Sood, R; Prakash, A; Pattnaik, B; Pradhan, H K

    2014-11-01

    Single chain fragment variable (ScFv) antibodies specific to the nucleoprotein (NP) of avian influenza virus (AIV) were developed using a phage display system. The variable heavy (VH) and the variable light (VL) chain gene fragments were derived from spleen cells of Balb/c mouse immunized with a recombinant NP (rNP) antigen (∼63 kDa) of H5N1 influenza virus. The VH and the VL DNA fragments were assembled through a flexible linker DNA to generate ScFv DNA that was cloned subsequently in a phagemid to express ScFv protein in Escherichia coli cells. The specific reactivity of the ScFv with the rNP antigen and viral antigen (H5N1) was confirmed by Western blot and ELISA. A competitive inhibition ELISA (CI-ELISA) was developed using the rNP and the anti-NP ScFv for detection of type-specific antibodies to AIV in chicken sera. The ScFv based CI-ELISA was compared with hemagglutination inhibition (HI) test and agar gel immunodiffusion (AGID) test over 850 sera. Sensitivity of the CI-ELISA was 100% with HI and AGID and specificity was 98.7% with HI and 100% with AGID. PMID:25152529

  12. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  13. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  14. Excited nuclei fragmentation

    International Nuclear Information System (INIS)

    Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description

  15. Electroeluting DNA fragments.

    Science.gov (United States)

    Zarzosa-Alvarez, Ana L; Sandoval-Cabrera, Antonio; Torres-Huerta, Ana L; Bermudez-Cruz, Rosa M

    2010-01-01

    Purified DNA fragments are used for different purposes in Molecular Biology and they can be prepared by several procedures. Most of them require a previous electrophoresis of the DNA fragments in order to separate the band of interest. Then, this band is excised out from an agarose or acrylamide gel and purified by using either: binding and elution from glass or silica particles, DEAE-cellulose membranes, "crush and soak method", electroelution or very often expensive commercial purification kits. Thus, selecting a method will depend mostly of what is available in the laboratory. The electroelution procedure allows one to purify very clean DNA to be used in a large number of applications (sequencing, radiolabeling, enzymatic restriction, enzymatic modification, cloning etc). This procedure consists in placing DNA band-containing agarose or acrylamide slices into sample wells of the electroeluter, then applying current will make the DNA fragment to leave the agarose and thus be trapped in a cushion salt to be recovered later by ethanol precipitation. PMID:20834225

  16. Isolation of Acanthamoeba-Specific Antibodies from a Bacteriophage Display Library

    Science.gov (United States)

    Khan, Naveed A.; Greenman, John; Topping, Katherine P.; Hough, Victoria C.; Temple, Graham S.; Paget, Timothy A.

    2000-01-01

    Acanthamoeba causes opportunistic eye infections in humans, which can lead to severe keratitis and may ultimately result in blindness. Current methods for identifying this organism rely on culture and microscopy. In this paper, we describe the isolation of antibody fragments that can be used for the unequivocal identification of Acanthamoeba. A bacteriophage antibody display library was used to isolate antibody fragments that bind specifically to Acanthamoeba. Individual clones were studied by enzyme-linked immunosorbent assay, flow cytometry, and immunofluorescence. Four antibody clones that specifically bind to Acanthamoeba spp. were identified. PMID:10835006

  17. Fragment-based lead design

    Science.gov (United States)

    Filz, O. A.; Poroikov, Vladimir V.

    2012-02-01

    State-of-the-art approaches to the fragment-based design of organic compounds with desired properties are considered. The review covers methods, which are used in different steps of the design, such as computational methods for fragment library design, experimental and computational methods for fragment discovery and methods for the generation of structures of organic compounds. Examples are given of drug candidates, which were constructed using the fragment-based approach. The bibliography includes 156 references.

  18. CONTROL OF FRAGMENTATION BY BLASTING

    OpenAIRE

    1998-01-01

    The degree of fragmentation influences the economy of the excavation operations. Characteristics of blasted rock such as fragment size, volume and mass are fundamental variables effecting the economics of a mining operation and are in effect the basis for evaluating the quality of a blast. The properties of fragmentation, such as size and shape, are very important information for the optimization of production. Three factors control the fragment size distribution: the rock structure, the q...

  19. RECOMBINANT ANTI-TENASCIN ANTIBODY CONTRUCTS

    International Nuclear Information System (INIS)

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr ?-particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  20. Recombinant anti-tenascin antibody constructs

    Energy Technology Data Exchange (ETDEWEB)

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  1. Generation and functional characterization of the anti-transferrin receptor single-chain antibody-GAL4 (TfRscFv-GAL4 fusion protein

    Directory of Open Access Journals (Sweden)

    Ye Qing

    2012-11-01

    Full Text Available Abstract Background The development of vectors for cell-specific gene delivery is a major goal of gene therapeutic strategies. Transferrin receptor (TfR is an endocytic receptor and identified as tumor relative specific due to its overexpression on most tumor cells or tissues, and TfR binds and intakes of transferrin-iron complex. We have previously generated an anti-TfR single-chain variable fragments of immunoglobulin (scFv which were cloned from hybridoma cell line producing antibody against TfR linked with a 20 aa-long linker sequence (G4S4. In the present study, the anti-TfR single-chain antibody (TfRscFv was fused to DNA-binding domain of the yeast transcription factor GAL4. The recombinant fusion protein, designated as TfRscFv-GAL4, is expected to mediate the entry of DNA-protein complex into targeted tumor cells. Results Fusion protein TfRscFv-GAL4 was expressed in an E. coli bacterial expression system and was recovered from inclusion bodies with subsequent purification by metal-chelate chromatography. The resulting proteins were predominantly monomeric and, upon refolding, became a soluble biologically active bifunctional protein. In biological assays, the antigen-binding activity of the re-natured protein, TfRscFv-GAL4, was confirmed by specific binding to different cancer cells and tumor tissues. The cell binding rates, as indicated by flow cytometry (FCM analysis, ranged from 54.11% to 8.23% in seven different human carcinoma cell lines. It showed similar affinity and binding potency as those of parent full-length mouse anti-TfR antibody. The positive binding rates to tumor tissues by tissue microarrays (TMA assays were 75.32% and 63.25%, but it showed weakly binding with hepatic tissue in 5 cases, and normal tissues such as heart, spleen, adrenal cortex blood vessel and stomach. In addition, the re-natured fusion protein TfRscFv-GAL4 was used in an ELISA with rabbit anti-GAL4 antibody. The GAL4-DNA functional assay through the GAL4

  2. Heavy meson fragmentation at LHC

    Directory of Open Access Journals (Sweden)

    M. A. Gomshi Nobary

    2003-06-01

    Full Text Available   Large Hadron Collider (LHC at CERN will provide excellent opportunity to study the production and decay of heavy mesons and baryons with high statistics. We aim at the heavy mesons in this work and calculate their fragmentation functions consistent with this machine and present their total fragmentation probabilities and average fragmentation parameters.

  3. Antibody-Catalyzed Degradation of Cocaine

    Science.gov (United States)

    Landry, Donald W.; Zhao, Kang; Yang, Ginger X.-Q.; Glickman, Michael; Georgiadis, Taxiarchis M.

    1993-03-01

    Immunization with a phosphonate monoester transition-state analog of cocaine provided monoclonal antibodies capable of catalyzing the hydrolysis of the co