WorldWideScience

Sample records for antibody forming cell

  1. A comparison of the recruitment of antibody forming cells in the nose and lung: Preliminary findings

    International Nuclear Information System (INIS)

    King-Herbert, A.P.; Bice, D.E.; Harkema, J.R.

    1988-01-01

    Instillation of a particulate antigen into a selected lung lobe leads to an accumulation of antibody forming cells in the exposed lung lobe. Our goal in this preliminary study was to determine if an immune response could be elicited in the nasal mucosa of Beagle dogs exposed to a particulate antigen, and if so, to compare this immune response with that of the lungs when the nasal mucosa and the lungs are each immunized with a different particulate antigen. An Immune response was observed when the nasal mucosa was exposed to particulate antigen, but numbers of antibody-forming cells and levels of antibody in the nose were much lower than observed in an immunized lung lobe. (author)

  2. The effect of X-rays on the precursors of antibody forming cells (B cells) as measured with the in vitro limiting dilution assay

    NARCIS (Netherlands)

    Lubbe, F.H.; Hooijkaas, H.; Preesman, A.A.

    1982-01-01

    The effect of X-irradiation upon murine antibody-forming cell precursors (B cells) was established in cultures of spleen cells stimulated with the B cell mitogen lipopolysaccharide (LPS). At day 5 and 7 the numbers of IgM- and IgG2-secreting cells were determined in cultures of irradiated and

  3. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies].

    Science.gov (United States)

    Aydın, Cevahir; Ataoğlu, Haluk

    2015-01-01

    Candida albicans is a polymorphic fungus that may be observed as both commensal and opportunistic pathogen in humans. As one of the major components of Candida cell wall structure, mannan plays an important role in the fungus-host cell interaction and in virulence. The ability to switch from yeast to hypha form of microorganism is crutial in the development of C.albicans infections. Hyphal form has different antigenic properties compared to yeast form and structural changes occur in the yeast cell wall during transition from yeast to hypha form. Although there are several factors associated with this transition process, sufficient information is not available. The aim of this study was to investigate the change of configuration in mannan structure found in C.albicans cell wall by using monoclonal antibodies. C.albicans (NIHA 207) serotype A strains were used as test strains throughout the study, together with Salmonella choleraesuis 211 and Salmonella infantis as controls with similar cell wall structures to that of C.albicans. Cultures were maintained on YPD-agar medium by incubating at 28°C for yeast forms, and on YPD-broth medium in a shaking incubator at 37°C for 3-4 hours for the growth of hyphal forms. Cells were harvested in the exponential phase, and after being washed, the mannan content from C.albicans were extracted from pellet by heating in 20 mM sodium citrate buffer for 90 minutes at 125°C. Hybridoma technique was used for the production of monoclonal antibodies. After immunizing the Balb/C mice with antigen, the splenocytes were harvested and fusion was performed between spleen cells and F0 myeloma cells. The clones grown in HAT medium were screened for the presence of antibody producing hybrid cells by ELISA method. The antibody isotypes were determined by using a commercial kit (Pierce Biotechnology, ABD). The culture supernatants which contained monoclonal antibodies were collected and purified according to the ammonium sulphate method

  4. Genetic control of the radiosensitivity of lymphoid cells for antibody-forming ability in CXS series of recombinant inbred mouse strains

    International Nuclear Information System (INIS)

    Okumoto, M.; Mori, N.; Nishikawa, R.; Imai, S.; Hilgers, J.; Takamori, Y.; Yagasaki, O.

    1992-01-01

    Incidence of radiation-induced lymphomas differs remarkably among various mouse strains. BALB/cHeA (C) mice are highly susceptible to radiation induction of lymphomas, while STS/A (S) mice are resistant. Thus, the induction of the disease is controlled by some genetic factors. To examine an involvement of radiosensitivity of lymphoid cells in lymphomagenesis, we have compared genetic control of the radiosensitivity for antibody-forming ability with that of lymphoma development in BALB/cHeA, STS/A, (CXS)F 1 hybrids and CXS series of recombinant inbred strains. Decrease of number of splenic plaque-forming cell (PFC) in Jerne's method by 3 Gy of X-irradiation for BALB/cHeA mice was larger than that for STS/A mice by more than one order of magnitude. (CXS)F 1 hybrid mice showed small number of decrease of PFC similar to STS/A mice suggesting that phenotype of radioresistance was dominant over sensitivity. The best concordance between genetic markers and radiosensitivities of antibody-forming ability in recombinant inbred strains was observed in a region containing Igh locus on chromosome 12. The results show that one locus controlling the radioresistance of lymphoid cells for antibody-forming ability might exist in the region containing Igh locus, and that this region clearly differ from a region with Ifa locus on chromosome 4 which regulate the susceptibility to radiation-induced lymphomagenesis. (author)

  5. Presence of keratin-specific antibody-forming cells in palatine tonsils of patients with pustulosis palmaris et plantaris (PPP) and its correlation with prognosis after tonsillectomy.

    Science.gov (United States)

    Tanimoto, Yoichiro; Fukuyama, Satoshi; Tanaka, Norimitsu; Ohori, Jun-Ichiro; Tanimoto, Yukari; Kurono, Yuichi

    2014-01-01

    Keratin-specific immune responses in tonsils may be associated with the pathogenesis of pustulosis palmaris et plantaris (PPP). Evaluation of keratin-specific immune responses in tonsils might be useful to predict the effectiveness of tonsillectomy for patients with PPP. The aim of the present study was to clarify the role of keratin-specific immune responses in the pathogenesis of PPP in tonsils. It has been reported that anti-keratin antibodies in serum were higher in patients with PPP and decreased after tonsillectomy, indicating that anti-keratin antibodies might be generated in tonsils. In order to demonstrate the presence of keratin-specific immune responses in tonsils, the numbers of keratin-specific antibody-forming cells (AFCs) in tonsillar and peripheral blood lymphocytes were examined by enzyme-linked immunospot assay. The prognosis of PPP was compared after tonsillectomy. The numbers of keratin-specific IgM and IgG AFCs in tonsils and of IgG AFCs in peripheral blood were significantly increased in patients with PPP. The numbers of keratin-specific IgG AFCs in peripheral blood correlated positively with tonsil and serum IgG antibodies specific to keratin. Our data show that a good prognosis in patients with PPP depended on the numbers of keratin-specific IgG and IgM AFCs in peripheral blood and the levels of keratin-specific IgG antibodies in serum being significantly decreased 6 months after tonsillectomy.

  6. Unexpected Potency Differences between B-Cell-Activating Factor (BAFF) Antagonist Antibodies against Various Forms of BAFF: Trimer, 60-Mer, and Membrane-Bound.

    Science.gov (United States)

    Nicoletti, Amy M; Kenny, Cynthia Hess; Khalil, Ashraf M; Pan, Qi; Ralph, Kerry L M; Ritchie, Julie; Venkataramani, Sathyadevi; Presky, David H; DeWire, Scott M; Brodeur, Scott R

    2016-10-01

    Therapeutic agents antagonizing B-cell-activating factor/B-lymphocyte stimulator (BAFF/BLyS) are currently in clinical development for autoimmune diseases; belimumab is the first Food and Drug Administration-approved drug in more than 50 years for the treatment of lupus. As a member of the tumor necrosis factor superfamily, BAFF promotes B-cell survival and homeostasis and is overexpressed in patients with systemic lupus erythematosus and other autoimmune diseases. BAFF exists in three recognized forms: membrane-bound and two secreted, soluble forms of either trimeric or 60-mer oligomeric states. To date, most in vitro pharmacology studies of BAFF neglect one or more of these forms. Here, we report a comprehensive in vitro cell-based analysis of BAFF in assay systems that measure all forms of BAFF-mediated activation. We demonstrate the effects of these BAFF forms in both a primary human B-cell proliferation assay and in nuclear factor κB reporter assay systems in Chinese hamster ovary cells expressing BAFF receptors and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI). In contrast to the mouse system, we find that BAFF trimer activates the human TACI receptor. Further, we profiled the activities of two clinically advanced BAFF antagonist antibodies, belimumab and tabalumab. Unexpectedly, we revealed differences in inhibitory potencies against the various BAFF forms, in particular that belimumab does not potently inhibit BAFF 60-mer. Through this increased understanding of the activity of BAFF antagonists against different forms of BAFF, we hope to influence the discovery of BAFF antagonist antibodies with distinct therapeutic mechanisms for improvement in the treatment of lupus or other related autoimmune pathologies. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Antibody formation in mouse bone marrow. IV. The influence of splenectomy on the bone marrow plaque-forming cell response to sheep red blood cells

    International Nuclear Information System (INIS)

    Benner, R.; Oudenaren, A. van

    1975-01-01

    Mouse bone marrow is barely capable of plaque-forming cell (PFC) activity during the primary response to sheep red blood cells (SRBC). However, during the secondary response, it becomes the major center of activity containing IgM-, IgG- and IgA-PFC. In the present paper the influence of splenectomy was studied on primary and secondary PFC activity in the bone marrow. Differences in primary and secondary bone marrow PFC responses are probably related to the presence of B and T memory cells in situ. Therefore the effect of splenectomy on the appearance of B and T memory cells in the bone marrow was also investigated. iv.plenectomy before intravenous (iv) immunization with 4 x 10 8 SRBC prevented any primary PFC activity in the bone marrow. The influence of splenectomy before priming on secondary PFC activity in the bone marrow depended on the priming dose of SRBC. Splenectomy before priming with 10 7 SRBC iv completely prevented IgM-, IgG-, and IgA-PFC activity in the bone marrow upon subsequent boosting with 4 x 10 8 SRBC iv. By means of cell transfer experiments it was shown that after splenectomy no B or T memory cells appeared in the bone marrow after priming with 10 7 SRBC iv. Cell transfer experiments showed that splenectomy before priming with 10 7 SRBC iv not only interfered with the appearance of B and T memory cells in the bone marrow, but also with the appearance of B memory cells in peripheral lymph nodes, mesenteric lymph node, Peyer's patches, thymus, and blood. Immunization of spenectomized mice with 4 x 10 8 SRBC iv induced the appearance of B memory cells in peripheral lymph nodes, mesenteric lymph node, Peyer's patches, thymus, and blood

  8. Evaluation of the potential immunotoxicity of 3-monochloro-1,2-propanediol in Balb/c mice I. Effect on antibody forming cell, mitogen-stimulated lymphocyte proliferation, splenic subset, and natural killer cell activity

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Byun, Jung A.; Park, Seung Hee; Kim, Hyung Soo; Park, Jae Hyun; Eom, Juno H.; Oh, Hye Young

    2004-01-01

    3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. However, no previous studies have investigated MCPD-induced alterations in the immune system. In the present study, MCPD was administered by gavage for 14 days at 0, 25, 50, and 100 mg/kg per day to female Balb/c mice. The antibody-mediated immune response to sheep red blood cells (SRBC) was assessed using the antibody-forming cell (AFC) assay, and splenic cell phenotypes were quantified by flow cytometry. Hematological and histopathological changes were assessed. Mitogen-stimulated spleen lymphocyte proliferation and natural killer (NK) cell activity were evaluated. The T-lymphocyte blastogenesis by concanavalin A (Con A) or anti-CD3 and B-lymphocyte blastogenesis by lipopolysaccharide (LPS) were not significantly changed. There were no significant changes in the hematological and histopathological findings of MCPD-treated mice. However, the significant decrease in thymus weight was observed in 100 mg dose group, even though that did not change body weight gain. The cellularities of spleen and thymus were significantly reduced in high-dose group. Exposure to high dose of MCPD decreased the AFC response to SRBC in mice. There was a significant decrease in NK cell activity of mice treated with high dose of MCPD. These results indicate that MCPD could modulate the immune function in Balb/c mice

  9. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia.

  10. Phenotypes and functions of persistent Sendai virus-induced antibody forming cells and CD8+ T cells in diffuse nasal-associated lymphoid tissue typify lymphocyte responses of the gut.

    Science.gov (United States)

    Rudraraju, Rajeev; Surman, Sherri; Jones, Bart; Sealy, Robert; Woodland, David L; Hurwitz, Julia L

    2011-02-20

    Lymphocytes of the diffuse nasal-associated lymphoid tissue (d-NALT) are uniquely positioned to tackle respiratory pathogens at their point-of-entry, yet are rarely examined after intranasal (i.n.) vaccinations or infections. Here we evaluate an i.n. inoculation with Sendai virus (SeV) for elicitation of virus-specific antibody forming cells (AFCs) and CD8(+) T cells in the d-NALT. Virus-specific AFCs and CD8(+) T cells each appeared by day 7 after SeV inoculation and persisted for 8 months, explaining the long-sustained protection against respiratory virus challenge conferred by this vaccine. AFCs produced IgM, IgG1, IgG2a, IgG2b and IgA, while CD8+ T cells were cytolytic and produced low levels of cytokines. Phenotypic analyses of virus-specific T cells revealed striking similarities with pathogen-specific immune responses in the intestine, highlighting some key features of adaptive immunity at a mucosal site. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection.

    Science.gov (United States)

    Cuburu, Nicolas; Kweon, Mi-Na; Hervouet, Catherine; Cha, Hye-Ran; Pang, Yuk-Ying S; Holmgren, Jan; Stadler, Konrad; Schiller, John T; Anjuère, Fabienne; Czerkinsky, Cecil

    2009-12-15

    We have recently reported that the sublingual (s.l.) mucosa is an efficient site for inducing systemic and mucosal immune responses. In this study, the potential of s.l. immunization to induce remote Ab responses and CD8(+) cytotoxic responses in the female genital tract was examined in mice by using a nonreplicating Ag, OVA, and cholera toxin (CT) as an adjuvant. Sublingual administration of OVA and CT induced Ag-specific IgA and IgG Abs in blood and in cervicovaginal secretions. These responses were associated with large numbers of IgA Ab-secreting cells (ASCs) in the genital mucosa. Genital ASC responses were similar in magnitude and isotype distribution after s.l., intranasal, or vaginal immunization and were superior to those seen after intragastric immunization. Genital, but not blood or spleen, IgA ASC responses were inhibited by treatment with anti-CCL28 Abs, suggesting that the chemokine CCL28 plays a major role in the migration of IgA ASC progenitors to the reproductive tract mucosa. Furthermore, s.l. immunization with OVA induced OVA-specific effector CD8(+) cytolytic T cells in the genital mucosa, and these responses required coadministration of the CT adjuvant. Furthermore, s.l. administration of human papillomavirus virus-like particles with or without the CT adjuvant conferred protection against genital challenge with human papillomavirus pseudovirions. Taken together, these findings underscore the potential of s.l. immunization as an efficient vaccination strategy for inducing genital immune responses and should impact on the development of vaccines against sexually transmitted diseases.

  12. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  13. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  14. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  15. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  16. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated

  17. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1992-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated

  18. Detection of antibodies to co-trimoxazole (preservative drug interfering with routine red cell antibody screening

    Directory of Open Access Journals (Sweden)

    Deepti Sachan

    2018-01-01

    Full Text Available Drug-dependent antibodies can rarely cause interference in pretransfusion antibody screening. The diluents for commercial reagent red blood cells contain different antibiotics, such as chloramphenicol, neomycin sulfate, and gentamycin as a preservative. The presence of antibodies to a given drug in patient may lead to positive results when performing antibody identification. We present a rare case of detection of anti-co-trimoxazole antibody during routine antibody screening in a female patient undergoing neurosurgery. These antibodies mimicked as antibody against high-frequency red cell antigens reacting in both saline phase as well as antiglobulin phase. Anti-co-trimoxazole antibody was confirmed by repeating antibody screen using reagent red cells of different manufacturers with and without co-trimoxazole drug as preservative as well as using washed red cell panels. There were no associated clinical or laboratory evidence of hemolysis.

  19. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    Science.gov (United States)

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  20. Cell lines for the production of monoclonal antibodies to human glycophorin A

    Science.gov (United States)

    Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  1. Cells, walls, and endless forms.

    Science.gov (United States)

    Monniaux, Marie; Hay, Angela

    2016-12-01

    A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A rational approach to enhancing antibody Fc homodimer formation for robust production of antibody mixture in a single cell line.

    Science.gov (United States)

    Yu, Jie; Wang, Xiaoxiao; Xu, Tao; Jin, Qiuheng; Duan, Jinyuan; Wu, Jie; Wu, Haiyan; Xu, Ting; Ye, Sheng

    2017-10-27

    Combinations of different antibodies have been shown to be more effective for managing certain diseases than monotherapy. Co-expression of the antibody mixture in a single cell line is key to reducing complexity during antibody development and manufacturing. However, co-transfection of multiple light and heavy chains into cells often leads to production of mismatched, heterodimeric by-products that are inactive, making the development of co-expression systems that robustly and efficiently produce highly active antibody mixtures a high priority. In this study, we modified the CH3 domain interface of the antibody fragment crystallizable (Fc) region by changing several charge pairs to create electrostatic interactions favoring Fc homodimer formation and disfavoring Fc heterodimer formation. When co-expressed, these modified antibodies with altered charge polarity across the Fc dimer interface preferentially formed homodimers that fully preserved the functions of each component, rather than inactive heterodimers whose formation was reduced because of rationally designed repulsive interactions. We designed eight different combinations and experimentally screened the best one, which enabled us to produce a binary antibody mixture against the EGF receptor with a minimal heterodimer contaminant. We further determined the crystal structure of a triple-mutated Fc variant in the best combination, and we elucidated the molecular interactions favoring Fc homodimer over heterodimer formation, which provided a structural basis for further optimization. The approach presented here demonstrates the feasibility of rational antibody modification for efficient and consistent production of monoclonal antibody mixtures in a single cell line and thus broadens our options for manufacturing more effective antibody-based therapeutic agents. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Anti-B cell antibody therapies for inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Jayne, David R W

    2014-01-01

    Several monoclonal antibodies targeting B cells have been tested as therapeutics for inflammatory rheumatic diseases. We review important observations from randomized clinical trials regarding the efficacy and safety of anti-B cell antibody-based therapies for rheumatoid arthritis, systemic lupus...... and functions in rheumatic disorders. Future studies should also evaluate how to maintain disease control by means of conventional and/or biologic immunosuppressants after remission-induction with anti-B cell antibodies....

  4. Monoclonal antibodies against plant cell wall polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. (Univ. of Georgia, Athens (USA))

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  5. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Kliem, Anette; Schrøder, Henrik Daa

    2011-01-01

    Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining...... is only recognized (1) by a negative muscle tissue control that does not harbor the protein to be examined (fx. from knockout mouse) or (2) by use of a nonsense rabbit antibody that has been prepared in the same way as the antibody of interest. However, many muscle immuno(cyto/histo)chemical studies only...... rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit...

  6. Paraneoplastic cerebellar syndromes associated with antibodies against Purkinje cells.

    Science.gov (United States)

    Schwenkenbecher, Philipp; Chacko, Lisa; Pul, Refik; Sühs, Kurt-Wolfram; Wegner, Florian; Wurster, Ulrich; Stangel, Martin; Skripuletz, Thomas

    2017-12-18

    The paraneoplastic cerebellar syndrome presents as severe neuroimmunological disease associated with malignancies. Antibodies against antigens expressed by tumor cells cross-react with proteins of cerebellar Purkinje cells leading to neuroinflammation and neuronal loss. These antineuronal antibodies are preferentially investigated by serological analyses while examination of the cerebrospinal fluid is only performed infrequently. We retrospectively investigated 12 patients with antineuronal antibodies against Purkinje cells with a special focus on cerebrospinal fluid. Our results confirm a subacute disease with a severe cerebellar syndrome in 10 female patients due to anti-Yo antibodies associated mostly with gynecological malignancies. While standard cerebrospinal fluid parameters infrequently revealed pathological results, all patients presented oligoclonal bands indicating intrathecal IgG synthesis. Analyses of anti-Yo antibodies in cerebrospinal fluid by calculating the antibody specific index revealed intrathecal synthesis of anti-Yo antibodies in these patients. In analogy to anti-Yo syndrome, an intrathecal production of anti-Tr antibodies in one patient who presented with a paraneoplastic cerebellar syndrome was detected. In an additional patient, anti-Purkinje cell antibodies of unknown origin in the cerebrospinal fluid but not in serum were determined suggesting an isolated immune reaction within the central nervous system (CNS) and underlining the importance of investigating the cerebrospinal fluid. In conclusion, patients with a cerebellar syndrome display a distinct immune reaction within the cerebrospinal fluid including intrathecal synthesis of disease-specific antibodies. We emphasize the importance of a thorough immunological work up including investigations of both serum and cerebrospinal fluid.

  7. Cell-Free Synthesis Meets Antibody Production: A Review

    Directory of Open Access Journals (Sweden)

    Marlitt Stech

    2015-01-01

    Full Text Available Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv and antigen binding fragments (Fab, have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufacture highly specific molecular recognition tools. However, as these technologies are accompanied by the drawbacks of being rather time-consuming and cost-intensive, efficient and powerful cell-free protein synthesis systems have been developed over the last decade as alternatives. So far, prokaryotic cell-free systems have been the focus of interest. Recently, eukaryotic in vitro translation systems have enriched the antibody production pipeline, as these systems are able to mimic the natural pathway of antibody synthesis in eukaryotic cells. This review aims to overview and summarize the advances made in the production of antibodies and antibody fragments in cell-free systems.

  8. Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies.

    Science.gov (United States)

    Schiffner, Torben; Sattentau, Quentin J; Duncan, Christopher J A

    2013-12-02

    Cell-to-cell spread of human immunodeficiency virus (HIV-1) between immune cells was first observed over 20 years ago. During this time, the question of whether this infection route favours viral evasion of neutralizing antibodies (NAbs) targeting the virus envelope glycoprotein (Env) has been repeatedly investigated, but with conflicting results. A clearer picture has formed in the last few years as more broadly neutralizing antibodies have been isolated and we gain further insight into the mechanisms of HIV-1 transmission at virological and infectious synapses. Nevertheless consensus is still lacking, a situation which may be at least partly explained by variability in the experimental approaches used to study the activity of NAbs in the cell-to-cell context. In this review we focus on the most critical question concerning the activity of NAbs against cell-to-cell transmission: is NAb inhibition of cell-to-cell HIV-1 quantitatively or qualitatively different from cell-free infection? Overall, data consistently show that NAbs are capable of blocking HIV-1 infection at synapses, supporting the concept that cell-to-cell infection occurs through directed transfer of virions accessible to the external environment. However, more recent findings suggest that higher concentrations of certain NAbs might be needed to inhibit synaptic infection, with important potential implications for prophylactic vaccine development. We discuss several mechanistic explanations for this relative and selective loss of activity, and highlight gaps in knowledge that are still to be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells

    Directory of Open Access Journals (Sweden)

    Xavier eCharest-Morin

    2013-09-01

    Full Text Available The C-C chemokine receptor-7 (CCR7 is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503 labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination. CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry. The immune complexes were apparent in endosomal structures, colocalized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.

  10. Boosting antibody responses by targeting antigens to dendritic cells.

    Science.gov (United States)

    Caminschi, Irina; Shortman, Ken

    2012-02-01

    Delivering antigens directly to dendritic cells (DCs) in situ, by injecting antigens coupled to antibodies specific for DC surface molecules, is a promising strategy for enhancing vaccine efficacy. Enhanced cytotoxic T cell responses are obtained if an adjuvant is co-administered to activate the DC. Such DC targeting is also effective at enhancing humoral immunity, via the generation of T follicular helper cells. Depending on the DC surface molecule targeted, antibody production can be enhanced even in the absence of adjuvants. In the case of Clec9A as the DC surface target, enhanced antibody production is a consequence of the DC-restricted expression of the target molecule. Few other cells absorb the antigen-antibody construct, therefore, it persists in the bloodstream, allowing sustained antigen presentation, even by non-activated DCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  12. Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells.

    Science.gov (United States)

    Canton, Irene; Massignani, Marzia; Patikarnmonthon, Nisa; Chierico, Luca; Robertson, James; Renshaw, Stephen A; Warren, Nicholas J; Madsen, Jeppe P; Armes, Steven P; Lewis, Andrew L; Battaglia, Giuseppe

    2013-01-01

    There is an emerging need both in pharmacology and within the biomedical industry to develop new tools to target intracellular mechanisms. The efficient delivery of functionally active proteins within cells is potentially a powerful research strategy, especially through the use of antibodies. In this work, we report on a nanovector for the efficient encapsulation and delivery of antibodies into live cells with no significant loss of cell viability or any deleterious effect on cell metabolic activity. This delivery system is based on poly[2-(methacryloyloxy)ethyl phosphorylcholine]-block-[2-(diisopropylamino)ethyl methacrylate] (PMPC-PDPA), a pH-sensitive diblock copolymer that self-assembles to form nanometer-sized vesicles, also known as polymersomes, at physiological pH. Polymersomes can successfully deliver relatively high antibody payloads within different types of live cells. We demonstrate that these antibodies can target their respective epitope showing immunolabeling of γ-tubulin, actin, Golgi protein, and the transcription factor NF-κB in live cells. Finally, we demonstrate that intracellular delivery of antibodies can control specific subcellular events, as well as modulate cell activity and proinflammatory processes.

  13. Antibody and B cell responses to Plasmodium sporozoites

    Directory of Open Access Journals (Sweden)

    Johanna N Dups

    2014-11-01

    Full Text Available Antibodies are capable of blocking infection of the liver by Plasmodium sporozoites. Accordingly the induction of anti-sporozoite antibodies is a major aim of various vaccine approaches to malaria. In recent years our knowledge of the specificity and quantities of antibodies required for protection has been greatly expanded by clinical trials of various whole sporozoite and subunit vaccines. Moreover, the development of humanized mouse models and transgenic parasites have also aided our ability to assess the specificity of antibodies and their ability to block infection. Nonetheless, considerable gaps remain in our knowledge - in particular in understanding what antigens are recognized by infection blocking antibodies and in knowing how we can induce robust, long-lived antibody responses. Maintaining high levels of circulating antibodies is likely to be of primary importance, as antibodies must block infection in the short time it takes for sporozoites to reach the liver from the skin. It is clear that a better understanding of the development of protective B cell-mediated immunity will aid the development and refinement of malaria vaccines.

  14. Impact of cell culture on recombinant monoclonal antibody product heterogeneity.

    Science.gov (United States)

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2016-09-01

    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  15. Multifactorial aspects of antibody-mediated blood cell destruction

    NARCIS (Netherlands)

    Kapur, R.

    2014-01-01

    The research described in this thesis focuses on diseases of antibody-mediated blood cell destruction via FcγRs on phagocytes, in particular regarding platelets in fetal or neonatal alloimmune thrombocytopenia (FNAIT) and red blood cells (RBC) in hemolytic disease of the fetus and newborn (HDFN).

  16. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy

    NARCIS (Netherlands)

    Gül, Nuray; Babes, Liane; Siegmund, Kerstin; Korthouwer, Rianne; Bögels, Marijn; Braster, Rens; Vidarsson, Gestur; ten Hagen, Timo L. M.; Kubes, Paul; van Egmond, Marjolein

    2014-01-01

    The use of monoclonal antibodies (mAbs) as therapeutic tools has increased dramatically in the last decade and is now one of the mainstream strategies to treat cancer. Nonetheless, it is still not completely understood how mAbs mediate tumor cell elimination or the effector cells that are involved.

  17. Delayed and acute hemolytic transfusion reactions resulting from red cell antibodies and red cell-reactive HLA antibodies.

    Science.gov (United States)

    Takeuchi, Chikako; Ohto, Hitoshi; Miura, Saori; Yasuda, Hiroyasu; Ono, Satoshi; Ogata, Takashi

    2005-12-01

    It has been controversial whether HLA antibodies cause hemolytic transfusion reactions (HTR) or shortened red blood cell (RBC) survival. A patient is reported who had two episodes of HTR, the latter of which was likely due to RBC-reactive HLA antibodies. A 77-year-old woman, admitted for gastric varix rupture, had no RBC-irregular antibodies detected before transfusion. On Hospital Day 12, after transfusion of 2 units of RBCs and 2 units of fresh-frozen plasma, the first delayed hemolytic episode occurred and anti-E, anti-c, anti-Jk(a), and unidentified RBC-reactive antibodies were detected in a serum sample from Day 14. Two additional units of matched RBCs were transfused with a leukoreduction filter on Days 19 and 22. After 4 hours of starting a transfusion on Day 22, the patient had fever, and a second hemolytic episode was recorded. Multireactive HLA antibodies (reactive against 20 of 20 donor panel lymphocytes) were detected in serum samples from Day 15 to Day 21. These HLA antibodies reacted strongly with HLA-A2 and HLA-B7 antigens, corresponding to Bg(c) and Bg(a) antigens on RBCs, respectively. RBCs transfused on Day 22 were found to be HLA-A2 by genotyping. Strong HLA alloantibodies in this recipient appear to have caused a HTR. It is suggested that HLA antibodies be considered in patients with unexplained HTRs.

  18. A monoclonal antibody recognizes undifferentiation-specific carbohydrate moieties expressed on cell surface of the human dental pulp cells.

    Science.gov (United States)

    Kang, Kyung-Jung; Ko, Seon-Yle; Ryu, Chun-Jeih; Jang, Young-Joo

    2017-05-01

    Human dental pulp cells are obtained from dental pulp tissue, and have the ability to form dentin and a pulp-like complex. Although adult stem cells have been identified from the primary culture by using specific cell surface markers, the identity of surface markers for the purification of stem cells within the dental pulp population are still unclear. Previously, we had constructed monoclonal antibodies against the undifferentiated cell-specific surface markers of human dental pulp cells (hDPCs) by performing decoy immunization. Among them, a monoclonal antibody against the cell surface antigen of the undifferentiated hDPCs (named UPSA-1) was purified and its heavy and light chain consensus regions were analyzed. The cell surface binding affinity of UPSA-1 mAb on the undifferentiated hDPCs was stronger than that on the differentiated cells. When tunicamycin was applied to hDPSCs during culture, the cell surface binding affinity of the antibody was dramatically decreased, and dentinogenic differentiation was reduced. The purified UPSA-1 antigen band resulting from immunoprecipitation disappeared or shifted down on the SDS-PAGE by deglycosylation. These data suggested that glycosylation on the cell surface might be a marker of an undifferentiated state, and that UPSA-1 mAb might be useful for identifying the carbohydrate moiety on the cell surface of undifferentiated pulp cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Radioimmunotherapy of Non-Hodgkin's Lymphoma. The interaction of radiation and antibody with lymphoma cells

    International Nuclear Information System (INIS)

    Illidge, T.M.

    1999-06-01

    Whilst many patients with indolent Non-Hodgkin's Lymphoma (NHL) can achieve clinical remissions to first-line chemotherapy and/or radiotherapy, most will relapse. Current treatment options for relapsing patients are limited since most patients become resistant to repeated chemotherapy. Death usually occurs within 10 years of diagnosis. Overall, these disappointing results have not changed significantly in a quarter of a century and clearly advocate the urgent priority to research into potential new therapeutic approaches into this diverse and increasingly prevalent group of human tumours. Radioimmunotherapy (RIT) is currently under investigation as a new approach for the treatment of this disease. In this form of treatment, radionuclide-labeled monoclonal antibodies are able to deliver selective systemic irradiation by recognising tumour-associated antigens. The use of RIT with radiolabeled anti-CD20 antibodies in patients with recurrent B-cell lymphoma has resulted in extremely high rates of durable complete remissions. The optimal approach and mechanisms of action of successful RIT remain however largely unknown. The work described in this thesis has focused on clarifying some of the important determinants and mechanisms of effective RIT of syngeneic B-cell lymphoma, both in vivo and in vitro. A successful animal model of RIT in B cell lymphomas was established by initially generating a panel of antibodies against mouse B cell antigens. The in vitro characteristics of these antibodies have been compared with their subsequent performance, in biodistribution studies and RIT in vivo. For the first time in an in vivo model the relative contributions of antibody and irradiation are described. Some antibodies including anti-MHC Class II were shown to be effective delivery vehicles of low doses of Iodine-131. These antibodies, which appear to be inactive delivery vehicles can cure animals with low burdens of tumour. However antibodies such as anti-idiotype and anti-CD40

  20. Renal disease, epidermal necrosis, and epithelial cell antibodies.

    OpenAIRE

    Deal, J E; Groves, R W; Harmer, A W; Welsh, K I; MacDonald, D M; Rigden, S P

    1991-01-01

    OBJECTIVE--To describe the association between epithelial cell IgM, which has previously been associated with an increased incidence of loss of renal graft in children, with a novel cutaneous eruption and unexplained native renal disease. DESIGN--Observational study on children with epithelial cell antibody presenting with unexplained renal or skin disease. SETTING--General paediatric department and regional paediatric nephrology unit. PATIENTS--Six children (five girls, one boy), who present...

  1. A stable reagent system for screening and identifying red blood cell irregular antibodies: application to commercial antibodies.

    Science.gov (United States)

    Million, L; Pellerin, C; Marchand-Arvier, M; Vigneron, C

    1998-01-01

    Development of a new solid-phase system for screening and identifying irregular red cell antibodies. Red blood cell membranes were prepared by a semi-automated procedure in which the hemolysate solution was passed through a hollow-fiber system. The membranes were fixed to the solid phase (microtiter plates) by centrifugation and incubated with 8% fat-free milk. Antibodies added to the microtiter plate were detected by anti-human antibodies adsorbed onto yellow latex particles. The system had good sensitivity (titer antibodies that are important in transfusion.

  2. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies.

    Science.gov (United States)

    von Bredow, Benjamin; Arias, Juan F; Heyer, Lisa N; Moldt, Brian; Le, Khoa; Robinson, James E; Zolla-Pazner, Susan; Burton, Dennis R; Evans, David T

    2016-07-01

    Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  4. Immunoglobulins, antibody repertoire and B cell development

    Czech Academy of Sciences Publication Activity Database

    Butler, J. E.; Zhao, Y.; Šinkora, Marek; Wertz, N.; Kacskovics, I.

    2009-01-01

    Roč. 33, č. 3 (2009), s. 321-333 ISSN 0145-305X R&D Projects: GA ČR GA523/07/0088 Institutional research plan: CEZ:AV0Z50200510 Keywords : swine * immunoglobulin * b cell Subject RIV: EC - Immunology Impact factor: 3.290, year: 2009

  5. Separation of hemopoietic cells from adult mouse marrow by use of monoclonal antibodies.

    Science.gov (United States)

    Hoang, T; Gilmore, D; Metcalf, D; Cobbold, S; Watt, S; Clark, M; Furth, M; Waldmann, H

    1983-03-01

    Primitive hemopoietic progenitor cells from adult mouse marrow have been substantially enriched by virtue of a negative selection procedure with monoclonal antibodies. It has been possible to segregate erythroid progenitor cells at distinct stages of differentiation on the basis of their cell surface antigens. This has been achieved with two monoclonal antibodies reactive with the mature elements of bone marrow. YBM 34.3 binds to a heat-stable antigen expressed on B lymphocytes, neutrophils, and cells of the erythroid lineage. YBM 6.1 reacts with cells of the neutrophil, eosinophil, and monocyte series but does not bind to colony-forming cells. Separation is achieved by indirect immunoadsorption (panning) with YBM 34.3 on Protein-A-coated plastic plates followed by FACS II cell sorting with YBM 6.1. The combined procedures yield a marrow population containing 58% immature cells (blasts, promyelocytes, and myelocytes) and 9.5% clonogenic cells. In addition, differential binding of YBM 34.3 can be used to segregate erythroid progenitor cells at distinct stages of differentiation (day 7 BFU-E, day 5 BFU-E and CFU-E) either by cell sorting or panning. It is shown that both techniques give a comparable degree of resolution of the different cell types with, however, an appreciable advantage of panning over cell sorting in allowing the rapid handling of large numbers of cells.

  6. Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays

    DEFF Research Database (Denmark)

    Holm, B.E.; Bergmann, A.C.; Hansen, Paul Robert

    2015-01-01

    constituting amino acids 130–135 and 136–141, respectively. Moreover, comparison of antibody reactivity to N OVA revealed that in the streptavidin-capture ELISA, antibody reactivity was notably reduced compared to ELISA employing surface-bound OVA. Collectively, immunization with native OVA preferentially...... to native OVA reacted strongly with native and denatured OVA in both assays, but did not react with the overlapping peptides. Polyclonal antibodies to denatured OVA reacted strongly with both OVA forms and with several of the overlapping peptides. Monoclonal antibodies to native OVA reacted preferentially...... with three-dimensional epitopes on native OVA and not with denatured OVA. Monoclonal antibodies to denatured OVA showed reactivity to both OVA forms. Two of these monoclonal antibodies, HYB 94-06 and 94-07, showed reactivity to overlapping peptides and their epitopes were identified as flexible structures...

  7. Antibody B cell responses in HIV-1 infection.

    Science.gov (United States)

    Mouquet, Hugo

    2014-11-01

    In rare cases, B cells can supply HIV-1-infected individuals with unconventional antibodies equipped to neutralize the wide diversity of viral variants. Innovations in single-cell cloning, high-throughput sequencing, and structural biology methods have enabled the capture and thorough characterization of these exceptionally potent broadly neutralizing antibodies (bNAbs). Here, I review the recent findings in humoral responses to HIV-1, focusing on the interplay between naturally occurring bNAbs and the virus both at systemic and mucosal levels. In this context, I discuss how an improved understanding of bNAb generation may provide invaluable insight into the fundamental mechanisms governing adaptive B cell responses to viruses, and how this knowledge is currently contributing to the development of vaccine and therapeutic strategies against HIV-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Correlation between cell aggregation and antibody production in IgE-producing plasma cells.

    Science.gov (United States)

    Hikosaka, Mari; Murata, Akihiko; Yoshino, Miya; Hayashi, Shin-Ichi

    2017-07-01

    Allergic conditions result in the increase of immunoglobulin (Ig)E-producing plasma cells (IgE-PCs); however, it is unclear how IgE production is qualitatively controlled. In this study, we found that IgE-PCs in spleen of immunized mice formed homotypic cell aggregates. By employing IgE-producing hybridomas (IgE-hybridomas) as a model of IgE-PCs, we showed that these cells formed aggregates in the presence of specific antigens (Ags). The formation of the Ag-induced cell aggregation involved secreted IgE and Fcγ receptor (FcγR)II/FcγRIII, but not FcεRs. Ag-induced cell aggregation plus lipopolysaccharide signaling resulted in an enhancement of IgE production in aggregated IgE-hybridomas. Furthermore, the administration of anti-FcγRII/FcγRIII antagonistic monoclonal antibody to immunized mice tended to reduce the splenic IgE-PC aggregation as well as the serum IgE levels. Taken together, our results suggested that Ag-IgE complexes induced IgE-PCs aggregation via FcγRII/FcγRIII, leading to the enhancement of IgE production. These findings suggest the presence of a novel mechanism for regulation of IgE production.

  9. Effects of sublethal gamma radiation on T and B cell activity in the antibody response of mice

    International Nuclear Information System (INIS)

    Carlson, D.E.; Lubet, R.A.

    1976-01-01

    The relative radiosensitivity of T and B cells was followed in sublethally irradiated mice reconstituted with bone marrow cells, thymus cells, or both, and simultaneously challenged with sheep erythrocytes. Numbers of antibody-forming cells in recipient spleens were determined on days 4 to 8. In this assay the response of mice given bone marrow cells was limited by the amount of residual T cell activity, while the response of mice given thymus cells was limited by the residual B cell activity. Although residual activity of both T and B cells was suppressed in mice given 300 to 700 rad at 80 rad/min, residual B cell activity was consistently lower in these animals. When antibody responses were initiated at intervals after irradiation, B cell activity was clearly limiting by 48 hr after 500 or 600 rad. The activity of both T and B cells was sensitive to differences in dose rate between 8 and 80 rad/min. The 4 to 7 fold dose-rate sensitivity of T cells paralleled that of differentially irradiated nonreconstituted mice. In contrast, dose-rate dependence of B cell activity varied from 10- to 20-fold between 8 and 80 rad/min. These results suggest that radiation suppression of antibody responses in mice is highly dependent upon B cell sensitivity, and that dose-rate dependence of the antibody response may be explained in large part by differential sensitivity of B cells

  10. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  11. Probing the structure-function relationship of alpha-latrotoxin-formed channels with antibodies and pronase.

    Science.gov (United States)

    Chanturiya, A N; Nikolaenko, A N; Shatursky OYa; Lishko, V K

    1996-10-01

    The major toxic component of black widow spider (Latrodectus mactans tredecimguttatus) venom, alpha-latrotoxin, is known to form ionic channels in different membranes. In order to probe the extramembrane domains of alpha-latrotoxin molecule, alpha-latrotoxin channels in planar lipid membrane were treated with antibodies to latrotoxin or with pronase added to different sides of the membrane. It was found that antibody addition to the same side as the toxin (cis) decreased channel conductance only at positive potentials across the membrane. In contrast, trans side addition of antibodies changed the channel conductance at both positive and negative potentials: at positive potential conductance first slightly increased then decreased by more then 50%; at negative potential it decreased much more quickly, to only about 20% of the initial value. No dependence on membrane potential was found for pronase treatment of incorporated channels. For both cis and trans application of pronase, channel selectivity for Ca2+, Mg2+, Ba2+ and K+, Na+, Li+ ions did not change significantly but Cd2+ block was decreased. Trans pronase treatment also resulted in some rectification of I/V curves and an increase in channel conductance. We interpret these findings as evidence that alpha-latrotoxin channel has protruding parts on both sides of the membrane and that its conformation in the membrane depends on membrane potential.

  12. Memory in the B-cell compartment: antibody affinity maturation.

    OpenAIRE

    Neuberger, M S; Ehrenstein, M R; Rada, C; Sale, J; Batista, F D; Williams, G; Milstein, C

    2000-01-01

    In the humoral arm of the immune system, the memory response is not only more quickly elicited and of greater magnitude than the primary response, but it is also different in quality. In the recall response to antigen, the antibodies produced are of higher affinity and of different isotype (typically immunoglobulin G rather than immunoglobulin M). This maturation rests on the antigen dependence of B-cell maturation and is effected by programmed genetic modifications of the immunoglobulin gene...

  13. Pre-existing neutralizing antibody mitigates B cell dysregulation and enhances the Env-specific antibody response in SHIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Jaworski

    Full Text Available Our central hypothesis is that protection against HIV infection will be powerfully influenced by the magnitude and quality of the B cell response. Although sterilizing immunity, mediated by pre-formed abundant and potent antibodies is the ultimate goal for B cell-targeted HIV vaccine strategies, scenarios that fall short of this may still confer beneficial defenses against viremia and disease progression. We evaluated the impact of sub-sterilizing pre-existing neutralizing antibody on the B cell response to SHIV infection. Adult male rhesus macaques received passive transfer of a sub-sterilizing amount of polyclonal neutralizing immunoglobulin (Ig purified from previously infected animals (SHIVIG or control Ig prior to intra-rectal challenge with SHIVSF162P4 and extensive longitudinal sampling was performed. SHIVIG treated animals exhibited significantly reduced viral load and increased de novo Env-specific plasma antibody. Dysregulation of the B cell profile was grossly apparent soon after infection in untreated animals; exemplified by a ≈50% decrease in total B cells in the blood evident 2-3 weeks post-infection which was not apparent in SHIVIG treated animals. IgD+CD5+CD21+ B cells phenotypically similar to marginal zone-like B cells were highly sensitive to SHIV infection, becoming significantly decreased as early as 3 days post-infection in control animals, while being maintained in SHIVIG treated animals, and were highly correlated with the induction of Env-specific plasma antibody. These results suggest that B cell dysregulation during the early stages of infection likely contributes to suboptimal Env-specific B cell and antibody responses, and strategies that limit this dysregulation may enhance the host's ability to eliminate HIV.

  14. Detection of antibodies to Helicobacter pylori cell surface antigens.

    Science.gov (United States)

    Guruge, J L; Schalén, C; Nilsson, I; Ljungh, A; Tyszkiewicz, T; Wikander, M; Wadström, T

    1990-01-01

    Serum IgG antibodies of Helicobacter pylori were detected in single-dilution ELISA using glycine extracted material. Among 148 endoscopy patients 59% displayed antibodies; as expected, a higher occurrence (90%) was found in patients with positive gastric culture for H. pylori than in culture negative patients (37%). Among 68 blood donors the frequency of H. pylori antibodies was 28%. In 73 children less than 15 years of age examined for unrelated disorders the occurrence was 4%. By immunoblotting using the same extract, 3 prominent bands, 29K, 54K and 60K and several weak bands were identified. These were formed by 57%, 92%, and 65%, respectively, of the ELISA positive patient sera. Comparing culture positive and negative patients, the 3 bands occurred more often among the culture positive subjects though between 18 and 61% of the sera from culture negative patients gave either of the bands. When comparing the glycine extracts of 4 different H. pylori strains with separate haemagglutinating patterns no differences in the position of the major bands emerged. By absorption experiments no immunological cross-reactivity with components of Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni or C. fetus was found. Thus, the glycine extract seemed specific for the detection of antibodies to H. pylori.

  15. Human Cytomegalovirus Infection Increases Both Antibody- and Non–Antibody-Dependent Cellular Reactivity by Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Clive M. Michelo, PhD

    2017-12-01

    Conclusions. With regard to organ transplantation, these data suggest that CMV infection enhances NK cell alloreactivity, which may pose an additional adverse effect on graft survival, especially in the presence of donor specific antibodies.

  16. Embryo forming cells in carrot suspension cultures

    NARCIS (Netherlands)

    Toonen, M.A.J.

    1997-01-01


    Somatic cells of many plant species can be cultured in vitro and induced to form embryos that are able to develop into mature plants. This process, termed somatic embryogenesis, was originally described in carrot (Daucus carota L.). Somatic embryos develop through the same characteristic

  17. Monoclonal antibody studies in B(non-T)-cell malignancies.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Hirose, M

    1983-09-01

    Tumor cells suspensions prepared from 129 B- or non-T cell malignancies were investigated with a panel of 10 monoclonal antibodies and conventional surface marker techniques. Surface immunoglobulin (sIg) and B1 antigen proved to be the most useful markers for B-cell lineage. Six major subtypes of acute lymphoblastic leukemia (ALL) of non-T cell nature are now recognized by these immunological techniques, including null-ALL, Ia-ALL, lymphoid stem cell ALL, pre-pre-B ALL, pre-B ALL and B-ALL. In cases of chronic leukemias and lymphomas of non-T cell nature, 80% of the tumor was defined by sIg and 88% by B1 antigen as definitely of B-cell lineage. The clonal character was also defined in 68% of the tumor on the basis of the detection of predominant single light chain in sIg. Ia-like antigen was detected in almost all cases (96%). Leukemic cells from all cases of chronic lymphocytic leukemia (CLL), chronic lymphosarcoma cell leukemia (CLsCL) and hairy cell leukemia (HCL) reacted with OKIa1 and anti-B1, and leukemic cells from most of them with anti-pan T monoclonal antibody (10.2). In more than half of CLL and CLsCL, leukemic cells were reactive with J5, OKM1, 9.6 and OKT8, but not with OKT3, OKT4 and OKT6. HCL cells had almost the same reactivity with these monoclonal antibodies as CLL and CLsCL cells except that J5 remained unreactive. These results indicated that Japanese CLL, CLsCL and HCL were different from Western ones at least with respect to surface marker characteristics. In cases of lymphomas, heavy chains of sIg were expressed in polyclonal fashion, especially in follicular lymphoma and diffuse lymphomas of medium sized cell type and large cell type, indicating that lymphomas of these types may originate from follicular center cells of the heavy chain switching stage. Anti-T monoclonals were also reactive with lymphoma cells. In about half of follicular lymphomas and diffuse lymphomas of the medium sized cell type, lymphoma cells reacted with 10.2, and less

  18. Anti-HLA antibodies in regenerative medicine stem cell therapy.

    Science.gov (United States)

    Charron, Dominique; Suberbielle-Boissel, Caroline; Tamouza, Ryad; Al-Daccak, Reem

    2012-12-01

    Research on stem cell therapies for regenerative medicine is progressing rapidly. Although the use of autologous stem cells is a tempting choice, there are several instances in which they are either defective or not available in due time. Allogenic stem cells derived from healthy donors presents a promising alternative. Whether autologous or allogenic, recent advances have proven that stem cells are not as immune privileged as they were thought. Therefore understanding the interactions of these cells with the recipient immune system is paramount to their clinical application. Transplantation of stem cells induces humoral as well as cellular immune response. This review focuses on the humoral response elicited by stem cells upon their administration and consequences on the survival and maintenance of the graft. Current transplantation identifies pre- and post-transplantation anti-HLA antibodies as immune rejection and cell signaling effectors. These two mechanisms are likely to operate similarly in the context of SC therapeutics. Ultimately this knowledge will help to propose novel strategies to mitigate the allogenic barriers. Immunogenetics selection of the donor cell and immunomonitoring are key factors to allow the implementation of regenerative stem cell in the clinics. Copyright © 2012. Published by Elsevier Inc.

  19. Males without apparent alloimmunization could have HLA antibodies that recognize target HLA specificities expressed on cells.

    Science.gov (United States)

    Nakamura, J; Nakajima, F; Kamada, H; Tadokoro, K; Nagai, T; Satake, M

    2017-05-01

    Human leukocyte antigen (HLA) antibodies, which are involved in the development of transfusion-related side effects such as transfusion-related lung injury, are sometimes found in males without a history of alloimmunization (eg, transplantation and transfusion). Whether HLA antibodies in male donors can interact with their target HLA specificities expressed on cells have not been completely investigated. The HLA antibodies detected in 7 male donors were characterized. Flow cytometry and immunocomplex capture fluorescence analysis were performed to evaluate the ability of these antibodies to bind with target HLA specificities expressed on cells. The association of these antibodies with complement was examined using anti-C1q antibody. Sustainability of HLA antibodies over time was compared in 26 male vs 57 female donors. The antibodies from all 7 donors recognized intact HLA molecules coated onto microbeads. The antibodies in 2 of 7 donors also recognized their target HLA specificities expressed on cells. Furthermore, the antibodies in one of these 2 donors showed HLA specificities that involved complement binding. Twenty-one of 26 initially positive male donors had turned negative for HLA antibody at least 1 year after their initial positive screening, whereas HLA antibody positivity was maintained for a long time in most female donors. Males without apparent alloimmunization could have HLA antibodies that recognize their target HLA specificities on cells and that could potentially modify molecular events in affected cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A significant proportion of normal resting B cells are induced to secrete immunoglobulin through contact with anti-receptor antibody-activated helper T cells in clonal cultures

    DEFF Research Database (Denmark)

    Riedel, C; Owens, T; Nossal, G J

    1988-01-01

    cell line E9.D4 was stimulated with the anti-V beta 8 antibody F23.1 bound to the plastic of Terasaki 10-ul culture wells. When an excess of T helper lymphocytes was used (1,000 X-irradiated or 600 unirradiated, stimulated E9.D4 cells), 10-25% of B cells responded by antibody formation as judged...... by an enzyme-linked immunosorbent assay performed after 5 days of culture. When one of a very small number of B cells were present, the rate-limiting step to antibody-forming cell formation was the number of T cells present. Far fewer T cells sufficed for stimulation when culture trays were tilted to force T...... and B cells into proximity at the sulcus formed at the bottom edge of the culture wells. When T cell numbers were limiting, unirradiated T cells out-performed irradiated T cells. Some cell clones held for 7 days switched to IgG antibody production. E9.D4 supernatants were virtually ineffective...

  1. Cell-Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2015-10-01

    either antibody occurred rapidly, and was maximum between 1 and 3hrs after antibody addition. When antibody was removed from the culture medium a...substantial quantity of the cell associated antibody was lost, appearing into the fresh medium rapidly. However between 25-50% of the initial cell...plasmid pTCON2 encodes the Saccharomyces aga2 gene, with Myc tag. When transfected into yeast, the aga2 protein is secreted and then binds to aga1

  2. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    Science.gov (United States)

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  3. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Jorge Moraes

    2012-10-01

    Full Text Available In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38 and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus microplus (RmTIM. These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26 was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  4. Specific forms of BAFF favor BAFF receptor-mediated epithelial cell survival.

    Science.gov (United States)

    Lahiri, Ayan; Varin, Marie-Michèle; Le Pottier, Laëtitia; Pochard, Pierre; Bendaoud, Boutahar; Youinou, Pierre; Pers, Jacques-Olivier

    2014-06-01

    Although B cell activating factor (BAFF) and its receptor BR3 are produced and expressed by many cells, their role has been restricted to the lymphocyte lineage. Using various techniques (RT-PCR, indirect immunofluorescence, flow cytometry analysis), we observed the expression of BR3 and the production of BAFF by the human salivary gland cell line, by epithelial cells from biopsies of Sjögren's syndrome patients and their controls, but also by salivary gland epithelial cells in culture. To decipher the role of BAFF and BR3 on epithelial cells, BAFF and BR3 were neutralized by blocking antibodies or RNA specific inhibitor (siBR3) and epithelial cell survival was analyzed. Blocking BR3 promotes epithelial cell apoptosis in vitro. This apoptosis resulted in the nuclear translocation of PKCδ. BAFF neutralization by various anti-BAFF antibodies leads to different effects depending on the antibody used suggesting that only some forms of BAFF are required for epithelial cell survival. Our study demonstrates that BR3 is involved in the survival of cultured epithelial cells due to an autocrine effect of BAFF. It also suggests that epithelial cells produce different forms of BAFF and that only some of them are responsible for this effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A significant proportion of normal resting B cells are induced to secrete immunoglobulin through contact with anti-receptor antibody-activated helper T cells in clonal cultures

    DEFF Research Database (Denmark)

    Riedel, C; Owens, T; Nossal, G J

    1988-01-01

    This report describes single-cell techniques to address the nature of a cellular interaction in which activated T lymphocytes stimulate small resting B cells to develop into antibody-forming cell clones in the absence of any surface immunoglobulin ligand or an antigen bridge. The cloned T helper...... cell line E9.D4 was stimulated with the anti-V beta 8 antibody F23.1 bound to the plastic of Terasaki 10-ul culture wells. When an excess of T helper lymphocytes was used (1,000 X-irradiated or 600 unirradiated, stimulated E9.D4 cells), 10-25% of B cells responded by antibody formation as judged...... and B cells into proximity at the sulcus formed at the bottom edge of the culture wells. When T cell numbers were limiting, unirradiated T cells out-performed irradiated T cells. Some cell clones held for 7 days switched to IgG antibody production. E9.D4 supernatants were virtually ineffective...

  6. Identification of antibody-interacting proteins that contribute to the production of recombinant antibody in mammalian cells.

    Science.gov (United States)

    Nishimiya, Daisuke; Ogura, Yuji; Sakurai, Hidetaka; Takahashi, Tohru

    2012-11-01

    Protein folding and assembly processes are essential for antibody secretion; however, the endogenous proteins involved in these processes remain largely unknown. Therefore, except for some well-known endoplasmic reticulum (ER) chaperones such as GRP78/Bip and protein disulfide isomerase, enhancement of recombinant antibody expression by co-expression of interacting proteins has been largely elusive. Here, in addition to known ER chaperones, we identified additional endogenous proteins that interact with recombinant antibody in mammalian cells by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry. Most of our identified proteins enhanced antibody production, and furthermore, some of their combinations resulted in greater enhancement. In particular, eukaryotic initiation factor 4A combined with other proteins had approximately fourfold higher effect on antibody production. Identified proteins that could improve antibody expression contain not only ER-resident proteins like GRP78/Bip but also non-ER-resident proteins. These results suggest that this method could be effective in the investigation of novel proteins that are involved in enhancing recombinant antibody production because immunoprecipitation coupled with mass spectroscopy could identify proteins which directly interact with the antibody.

  7. Protection against Pertussis in Humans Correlates to Elevated Serum Antibodies and Memory B Cells

    Directory of Open Access Journals (Sweden)

    Valentina Marcellini

    2017-09-01

    Full Text Available Pertussis is a respiratory infection caused by Bordetella pertussis that may be particularly severe and even lethal in the first months of life when infants are still too young to be vaccinated. Adults and adolescents experience mild symptoms and are the source of infection for neonates. Adoptive maternal immunity does not prevent pertussis in the neonate. We compared the specific immune response of mothers of neonates diagnosed with pertussis and mothers of control children. We show that women have pre-existing pertussis-specific antibodies and memory B cells and react against the infection with a recall response increasing the levels specific serum IgG, milk IgA, and the frequency of memory B cells of all isotypes. Thus, the maternal immune system is activated in response to pertussis and effectively prevents the disease indicating that the low levels of pre-formed serum antibodies are insufficient for protection. For this reason, memory B cells play a major role in the adult defense. The results of this study suggest that new strategies for vaccine design should aim at increasing long-lived plasma cells and their antibodies.

  8. Microfluidic single-cell technology in immunology and antibody screening.

    Science.gov (United States)

    Seah, Yu Fen Samantha; Hu, Hongxing; Merten, Christoph A

    2018-02-01

    Single-cell technology has a major impact on the field of immunology. It enables the kinetics and logic of immune signaling and immune cell migration to be elucidated, facilitates antibody screening and allows massively parallelized analysis of B- and T-cell repertoires. Impressive progress has been made over the last decade, strongly boosted by microfluidic approaches. In this review, we summarize the most powerful microfluidic systems based on continuous flow, nanowells, valves and droplets and we analyze their benefits for phenotypic characterization, drug discovery and next generation sequencing experiments. We describe current limitations and provide an outlook on important future applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Natural killer (NK cell mediated antibody-dependent cellular cytotoxicity (ADCC in tumour immunotherapy with therapeutic antibodies

    Directory of Open Access Journals (Sweden)

    Ursula Jördis Eva Seidel

    2013-03-01

    Full Text Available In the last decade several therapeutic antibodies have been FDA and EMEA approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC mediated by natural killer (NK cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumour models. However, a direct in vivo effect of ADCC in tumour reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic haematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of KIR-receptor-ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function.

  10. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.

    Science.gov (United States)

    Sisodiya, Vikram N; Lequieu, Joshua; Rodriguez, Maricel; McDonald, Paul; Lazzareschi, Kathlyn P

    2012-10-01

    Protein A chromatography is typically used as the initial capture step in the purification of monoclonal antibodies produced in Chinese hamster ovary (CHO) cells. Although exploiting an affinity interaction for purification, the level of host cell proteins in the protein A eluent varies significantly with different feedstocks. Using a batch binding chromatography method, we performed a controlled study to assess host cell protein clearance across both MabSelect Sure and Prosep vA resins. We individually spiked 21 purified antibodies into null cell culture fluid generated with a non-producing cell line, creating mock cell culture fluids for each antibody with an identical composition of host cell proteins and antibody concentration. We demonstrated that antibody-host cell protein interactions are primarily responsible for the variable levels of host cell proteins in the protein A eluent for both resins when antibody is present. Using the additives guanidine HCl and sodium chloride, we demonstrated that antibody-host cell protein interactions may be disrupted, reducing the level of host cell proteins present after purification on both resins. The reduction in the level of host cell proteins differed between antibodies suggesting that the interaction likely varies between individual antibodies but encompasses both an electrostatic and hydrophobic component. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  12. Immune inhibition of virus release from human and nonhuman cells by antibody to viral and host cell determinants.

    Science.gov (United States)

    Shariff, D M; Davies, J; Desperbasques, M; Billstrom, M; Geerligs, H J; Welling, G W; Welling-Wester, S; Buchan, A; Skinner, G R

    1991-01-01

    Immune inhibition of release of the DNA viruses, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and surprisingly two herpes viruses, bovine mamillitis and equine abortion, were not inhibited by either anti-viral or anti-host sera. Using the herpes simplex virus model, inhibition of virus release was detected in different cells of human and nonhuman origin with cross-inhibition between cell lines of different origin; thus, this form of immunotherapy may not require antibody to be tissue or organ specific. Evidence of inhibition of virus release from neoplastic and leukemic cell lines suggests possible application of this approach to control of virus-mediated leukoproliferative pathology (e.g. Burkitt's lymphoma or adult T cell leukemia).

  13. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2011-03-01

    Full Text Available Botulinum neurotoxin (BoNT potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP to link biotinylated molecules to glycophorin A (GPA on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.

  14. Defining process design space for monoclonal antibody cell culture.

    Science.gov (United States)

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  15. Cell Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer Michael Lilly, MD Richard Weisbart, MD Medical...0534, entitled Cell- penetrating bispecific antibodies for targeting oncogenic transcription factors in advanced prostate cancer . The research is a... Prostate cancer , antibody, bispecific, androgen receptor, castration-resistant 3

  16. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  17. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis.

    Science.gov (United States)

    Vincent, Angela; Buckley, Camilla; Schott, Jonathan M; Baker, Ian; Dewar, Bonnie-Kate; Detert, Niels; Clover, Linda; Parkinson, Abigail; Bien, Christian G; Omer, Salah; Lang, Bethan; Rossor, Martin N; Palace, Jackie

    2004-03-01

    Patients presenting with subacute amnesia are frequently seen in acute neurological practice. Amongst the differential diagnoses, herpes simplex encephalitis, Korsakoff's syndrome and limbic encephalitis should be considered. Limbic encephalitis is typically a paraneoplastic syndrome with a poor prognosis; thus, identifying those patients with potentially reversible symptoms is important. Voltage-gated potassium channel antibodies (VGKC-Ab) have recently been reported in three cases of reversible limbic encephalitis. Here we review the clinical, immunological and neuropsychological features of 10 patients (nine male, one female; age range 44-79 years), eight of whom were identified in two centres over a period of 15 months. The patients presented with 1-52 week histories of memory loss, confusion and seizures. Low plasma sodium concentrations, initially resistant to treatment, were present in eight out of 10. Brain MRI at onset showed signal change in the medial temporal lobes in eight out of 10 cases. Paraneoplastic antibodies were negative, but VGKC-Ab ranged from 450 to 5128 pM (neurological and healthy controls memory, with sparing of general intellect in all but two patients, and of nominal functions in all but one. Variable regimes of steroids, plasma exchange and intravenous immunoglobulin were associated with variable falls in serum VGKC-Abs, to values between 2 and 88% of the initial values, together with marked improvement of neuropsychological functioning in six patients, slight improvement in three and none in one. The improvement in neuropsychological functioning in seven patients correlated broadly with the fall in antibodies. However, varying degrees of cerebral atrophy and residual cognitive impairment were common. Over the same period, only one paraneoplastic case of limbic encephalitis was identified between the two main centres. Thus, VGKC-Ab-associated encephalopathy is a relatively common form of autoimmune, non-paraneoplastic, potentially

  18. Method of rapid production of hybridomas expressing monoclonal antibodies on the cell surface

    Science.gov (United States)

    Meagher, Richard B.; Laterza, Vince

    2006-12-12

    The present invention relates to genetically altered hybridomas, myelomas and B cells. The invention also relates to utilizing genetically altered hybridomas, myelomas and B cells in methods of making monoclonal antibodies. The present invention also provides populations of hybridomas and B cells that can be utilized to make a monoclonal antibody of interest.

  19. Impact of Antibodies and Strain Polymorphisms on Cytomegalovirus Entry and Spread in Fibroblasts and Epithelial Cells.

    Science.gov (United States)

    Cui, Xiaohong; Freed, Daniel C; Wang, Dai; Qiu, Ping; Li, Fengsheng; Fu, Tong-Ming; Kauvar, Lawrence M; McVoy, Michael A

    2017-07-01

    Cytomegalovirus (CMV) entry into fibroblasts differs from entry into epithelial cells. CMV also spreads cell to cell and can induce syncytia. To gain insights into these processes, 27 antibodies targeting epitopes in CMV virion glycoprotein complexes, including glycoprotein B (gB), gH/gL, and the pentamer, were evaluated for their effects on viral entry and spread. No antibodies inhibited CMV spread in fibroblasts, including those with potent neutralizing activity against fibroblast entry, while all antibodies that neutralized epithelial cell entry also inhibited spread in epithelial cells and a correlation existed between the potencies of these two activities. This suggests that exposure of virions to the cell culture medium is obligatory during spread in epithelial cells but not in fibroblasts. In fibroblasts, the formation of syncytiumlike structures was impaired not only by antibodies to gB or gH/gL but also by antibodies to the pentamer, suggesting a potential role for the pentamer in promoting fibroblast fusion. Four antibodies reacted with linear epitopes near the N terminus of gH, exhibited strain specificity, and neutralized both epithelial cell and fibroblast entry. Five other antibodies recognized conformational epitopes in gH/gL and neutralized both fibroblast and epithelial cell entry. That these antibodies were strain specific for neutralizing fibroblast but not epithelial cell entry suggests that polymorphisms external to certain gH/gL epitopes may influence antibody neutralization during fibroblast but not epithelial cell entry. These findings may have implications for elucidating the mechanisms of CMV entry, spread, and antibody evasion and may assist in determining which antibodies may be most efficacious following active immunization or passive administration. IMPORTANCE Cytomegalovirus (CMV) is a significant cause of birth defects among newborns infected in utero and morbidity and mortality in transplant and AIDS patients. Monoclonal antibodies

  20. A Novel VHH Antibody Targeting the B Cell-Activating Factor for B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Wen Wu

    2014-05-01

    Full Text Available Objective: To construct an immune alpaca phage display library, in order to obtain a single domain anti-BAFF (B cell-activating factor antibody. Methods: Using phage display technology, we constructed an immune alpaca phage display library, selected anti-BAFF single domain antibodies (sdAbs, cloned three anti-BAFF single-domain antibody genes into expression vector pSJF2, and expressed them efficiently in Escherichia coli. The affinity of different anti-BAFF sdAbs were measured by Bio layer interferometry. The in vitro biological function of three sdAbs was investigated by cell counting kit-8 (CCK-8 assay and a competitive enzyme-linked immunosorbent assay (ELISA. Results: We obtained three anti-BAFF single domain antibodies (anti-BAFF64, anti-BAFF52 and anti-BAFFG3, which were produced in high yield in Escherichia coli and inhibited tumor cell proliferation in vitro. Conclusion: The selected anti-BAFF antibodies could be candidates for B-cell lymphoma therapies.

  1. Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity

    DEFF Research Database (Denmark)

    Engelmann, H; Holtmann, H; Brakebusch, C

    1990-01-01

    Immunological cross-reactivity between tumor necrosis factor (TNF) binding proteins which are present in human urine (designated TBPI and TBPII) and two molecular species of the cell surface receptors for TNF is demonstrated. The two TNF receptors are shown to be immunologically distinct, to differ...... in molecular weight (58,000 and 73,000), and to be expressed differentially in different cells. It is further shown that polyclonal antibodies against one of the TNF binding proteins (TBPI) display, by virtue of their ability to bind the TNF receptor, activities which are very similar to those of TNF....... These antibodies are cytotoxic to cells which are sensitive to TNF toxicity, induce resistance to TNF toxicity, enhance the incorporation of thymidine into normal fibroblasts, inhibit the growth of chlamydiae, and induce the synthesis of prostaglandin E2. Monovalent F(ab) fragments of the polyclonal antibodies...

  2. Characterization of rat basophilic leukemia cell surface proteins using monoclonal antibodies

    International Nuclear Information System (INIS)

    Buonocore-Buzzelli, L.M.

    1988-01-01

    Rat basophilic leukemia (RBL) cells express both immunoglobulin E (IgE) and immunoglobulin G (IgG) receptors. In this study, mouse monoclonal antibodies were produced against the RBL cell and screened for their ability to precipitate specific bands from 125 I surface labeled cells. Fourteen hybridomas were selected and divided into five groups since many of the hybridomas precipitated bands of identical molecular weight. One or more of the hybridomas from each group, and the cell surface antigens they identified, were further characterized. Binding of all the monoclonal antibodies to the RBL-2H3 cell surface was saturable and of high affinity. In cross inhibition studies, two of the antibodies were found to bind to identical or neighboring epitopes, presumably on the same cell surface molecule. Binding studies using other cell populations demonstrated that the monoclonal antibodies react not only with commonly expressed rat cell surface molecules but also with molecules specifically expressed on rat mast cells and basophils. None of the antibodies were found to induce or inhibit serotonin release from the RBL cells. Western blotting showed most of the antibodies to react with bands whose molecular weights resembled those seen by immuno-precipitation. Antibodies number sign 8 and number sign 12, although from the same group, were found to react with different subunits of the same cell surface protein. Sequential immunoprecipitation and peptide mapping confirmed that the antigens defined by these antibodies were structurally related

  3. Antibody development in pediatric sickle cell patients undergoing erythrocytapheresis.

    Science.gov (United States)

    Godfrey, Gwendolyn J; Lockwood, William; Kong, Maiying; Bertolone, Salvatore; Raj, Ashok

    2010-12-01

    Erythrocytapheresis, or red blood cell exchange transfusion (RBCX), with donor red blood cell (RBC) units is now increasingly used in the treatment of acute and chronic complications of sickle cell disease (SCD). As in all transfusions, RCBX carries a risk of immunization against foreign antigen on transfused cells. However, by selecting donor units with RBC phenotypes similar to the patient, the risk of allo- and autoimmunization can be reduced. The formation of RBC alloantibodies and/or autoantibodies in 32 multitransfused pediatric SCD patients undergoing monthly RBCX over a 11-year period (12/1998 to 12/2009) was evaluated utilizing a retrospective patient chart review at Kosair Children's Hospital, Louisville, Kentucky. After starting C, E, K antigen-matched RBCX, the rate of clinically significant allo-immunization decreased from 0.189/100 to 0.053/100 U, with a relative risk of 27.9%. Likewise, the rate of autoimmunization decreased from 0.063/100 to 0.035/100 U, with a relative risk of 55.9%. After controlling for clinically insignificant antibodies, our auto- and alloimmunization rate was much less than previously reported values. In addition, the incidence of clinically significant allo- and autoimmunization decreased in our patient population after starting minor antigen-matched RBCX. These results suggest that by matching selected RBC phenotypes, there may be an association in the risk of allo- and autoimmunization of multi-transfused SCD patients.

  4. Genetic control of the radiosensitivity of lymphoid cells for antibody formation ability in mice

    International Nuclear Information System (INIS)

    Okumoto, Masaaki; Mori, Nobuko; Esaki, Kozaburo; Imai, Shunsuke; Haga, Satomi; Hilgers, Jo; Takamori, Yasuhiko.

    1994-01-01

    To analyze the genetic basis of the relationship between the radiosensitivity of the immune response and radiation lymphomagenesis, we examined the radiosensitivity of lymphoid cells for antibody formation in BALB/cHeA, STS/A, F 1 hybrids, and their recombinant inbred mouse strains. The decrease in the number of plaque-forming spleen cells in BALB/cHeA mice exposed to 3 Gy X-irradiation was more than tenfold that in STS/A mice. The phenotype of radioresistance was dominant over sensitivity. The coincidence between the strain distribution patterns of the genetic markers and radiosensitivities of antibody formation in the various recombinant inbred strains was in the region with the lgh locus on chromosome 12. There was obvious difference between the patterns in the region containing the lfa locus on chromosome 4 which has been shown to be related to the incidence of radiation-induced lymphomas. These results indicate that the region on chromosome 12 may contain major gene(s) related to radiosensitivity for antibody formation. (author)

  5. Microselection - Affinity Selecting Antibodies against a Single Rare Cell in a Heterogeneous Population

    DEFF Research Database (Denmark)

    Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta

    2009-01-01

    antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass-slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX......). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies...

  6. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  7. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells.

  8. Development of novel monoclonal antibodies that define differentiation stages of human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kortesidis, Angela; Zannettino, Andrew C W

    2011-01-01

    Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing...

  9. A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies

    DEFF Research Database (Denmark)

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah

    2017-01-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories world-wide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, ...

  10. Development of the nanotiter plate for use in antibody and cell array technologies

    Science.gov (United States)

    Ramdutt, Devin; Lui, Rodney; Davies, Kerrie; Boswell, Rod W.; dos Remedios, Cristobal G.; Charles, Christine; Bilek, Marcela M.; McKenzie, David R.

    2005-02-01

    The design and fabrication of biomedical tools using techniques common in microelectronics is becoming established procedure. In our research, we use gaseous plasma dry etching to form microstructures on silicon wafers. These are intended for use in capturing and binding antibodies and live cells in an array to be used in High Throughput Screening (HTS) and High Content Screening (HCS) of new pharmaceuticals. We call this new arraying plate the "Nanotiter" plate. The benefit of our design (100 x 100 wells in a 25 x 25 mm array) over current 96-, 384- and 1056-well microtiter plates are that the number of samples (wells) that can be tested in one plate scan can be substantially increased, the wells can be rapidly and effectively washed, and the well surfaces can be modified to modulate ligand binding. Simple crowding of wells on a plate can result in cross contamination of samples in adjacent wells during the washing. Furthermore, motile cells may migrate between the wells. 1056 microtiter plates currently cannot be washed, and washing 384 plates is problematic. Our design incorporates plasma-deposited polymers that functionally bind antibodies (or other proteins) in but not between wells. Furthermore, the wells can be shaped to minimize cell migration. Inverting the plate on a wash solution allows unbound cells to simply fall away under gravity thus minimising the contamination of adjacent wells. Thus, our Nanotiter plate represents a substantial improvement over existing technology.

  11. Antigenic specificity of antibody-dependent cell-mediated cytotoxicity directed against human immunodeficiency virus in antibody-positive sera.

    OpenAIRE

    Koup, R A; Sullivan, J L; Levine, P H; Brewster, F; Mahr, A; Mazzara, G; McKenzie, S; Panicali, D

    1989-01-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope g...

  12. Intracellular antibody-caspase-mediated cell killing: An approach for application in cancer therapy

    Science.gov (United States)

    Tse, Eric; Rabbitts, Terence H.

    2000-10-01

    Antibodies have been expressed inside cells in an attempt to ablate the function of oncogene products. To make intracellular antibodies more generally applicable and effective in cancer therapy, we have devised a method in which programmed cell death or apoptosis can be triggered by specific antibody-antigen interaction. When intracellular antibodies are linked to caspase 3, the "executioner" in the apoptosis pathway, and bind to the target antigen, the caspase 3 moieties are self-activated and thereby induce cell killing. We have used this strategy in a model system with two pairs of intracellular antibodies and antigens. In vivo coexpression of an antibody-caspase 3 fusion with its antigenic target induced apoptosis that was specific for antibody, antigen, and active caspase 3. Moreover, the antibody-caspase 3 fusion protein was not toxic to cells in the absence of antigen. Therefore, intracellular antibody-mediated apoptosis should be useful as a specific therapeutic approach for the treatment of cancers, a situation where target cell killing is required.

  13. Lytic antibodies elicited by Trypanosoma cruzi infection recognize epitopes present on both bloodstream trypomastigote and epimastigote forms of parasite

    Directory of Open Access Journals (Sweden)

    Harumi A. Takehara

    1988-10-01

    Full Text Available Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.

  14. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice

    Science.gov (United States)

    McGuire, Andrew T.; Gray, Matthew D.; Dosenovic, Pia; Gitlin, Alexander D.; Freund, Natalia T.; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B.; Glenn, Jolene; Seaman, Michael S.; Schief, William R.; Strong, Roland K.; Nussenzweig, Michel C.; Stamatatos, Leonidas

    2016-01-01

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. PMID:26907590

  15. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice.

    Science.gov (United States)

    McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia; Gitlin, Alexander D; Freund, Natalia T; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B; Glenn, Jolene; Seaman, Michael S; Schief, William R; Strong, Roland K; Nussenzweig, Michel C; Stamatatos, Leonidas

    2016-02-24

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype.

  16. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    International Nuclear Information System (INIS)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of 125 I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka[Ag total]/1 + Ka[Ag total]. Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10 8 M -1 are not likely to be useful for drug targeting or tumor imaging

  17. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. We have studied the binding of 125I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind (formula; see text). Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10(8) M-1 are not likely to be useful for drug targeting or tumor imaging.

  18. CRMP5 antibodies in patients with small-cell lung cancer or thymoma.

    Science.gov (United States)

    Monstad, Sissel E; Drivsholm, Lars; Skeie, Geir Olve; Aarseth, Jan H; Vedeler, Christian A

    2008-02-01

    The collapsin response mediator protein 5 (CRMP5) antibody is usually associated with paraneoplastic neurological syndrome (PNS) and small-cell lung cancer (SCLC) or thymoma. The objective of this study was to assess the frequency of CRMP5 antibodies in patients with such tumours and to see if the presence of antibodies was associated with prognosis in these cancers. A multi-well adapted immunoprecipitation assay using radiolabelled recombinant CRMP5 protein, produced by coupled in vitro transcription/translation, was used for the detection of CRMP5 antibodies. Sera from 200 patients with SCLC, 73 patients with thymoma and myasthenia gravis (MG) and from 300 healthy blood donors were examined for CRMP5 antibodies. Positive sera were also examined by immunofluorescence and immune blots. The serological results were compared with disease severity of the patients with thymoma or SCLC. CRMP5 antibodies were detected in 10/200 (5%) of the SCLC, 9/73 (12%) of the thymomas and in 2/300 (0.6%) of the healthy controls by immunoprecipitation. The antibodies were less frequently detected by immunofluorescence or immune blots. There was no significant correlation between CRMP5 antibodies and disease severity. CRMP5 antibodies are more than twice as frequent, and the antibody levels are higher in patients with thymoma and MG than in patients with SCLC. The antibodies are correlated to these tumours, but not to disease severity.

  19. Flow cytometry and monoclonal antibodies identify normal liver cell populations antigenically related to oval cells.

    Science.gov (United States)

    Agelli, M; Halay, E D

    1995-01-01

    Oval cells, a non-parenchymal cell population induced to rapidly proliferate in animals treated with carcinogens, are thought to be related to the hypothesized liver stem cells. In normal liver there are poorly defined cells antigenically related to oval cells. These oval cell antigen positive (OCAP) cells present in normal animals are thought to include hepatocyte and bile duct cell precursors. To isolate them, we modified the existing protocols designed for oval cells and used it on normal neonatal rat livers. Using flow cytometry, the percentage of normal liver OCAP-cells varied with the monoclonal antibody (MoAb) to the different oval cell membrane markers used: 12% (MoAb 18.2), 23% (MoAb 270.38), 27% (MoAb 18.11), 31% (MoAb 18.13), and 37% (MoAb 374.3). Macrophages consisted 10% of the cells (MoAb MCA 275); hepatocytes were essentially absent ( < 1%, MoAb 236.4). Our results demonstrate that is possible to obtain significant numbers of normal cells antigenically related to oval cells and that using different MoAbs, different cell populations can be sorted for use in experimental studies testing liver progenitor cell hypothesis.

  20. Selection of apoptotic cell specific human antibodies from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Caroline Grönwall

    Full Text Available Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.

  1. CD47 limits antibody dependent phagocytosis against non-malignant B cells.

    Science.gov (United States)

    Gallagher, Sandra; Turman, Sean; Lekstrom, Kristen; Wilson, Susan; Herbst, Ronald; Wang, Yue

    2017-05-01

    Recent studies have demonstrated the importance of CD47 in protecting malignant B cells from antibody dependent cellular phagocytosis (ADCP). Combined treatment of anti-CD47 and -CD20 antibodies synergistically augment elimination of tumor B cells in xenograft mouse models. This has led to the development of novel reagents that can potentially enhance killing of malignant B cells in patients. B cell depleting therapy is also a promising treatment for autoimmune patients. In the current study, we aimed to investigate whether or not CD47 protects non-malignant B cells from ADCP. We show that CD47 is expressed on all B cells in mice, with the highest level on plasma cells in bone marrow and spleen. Although its expression is dispensable for B cell development in mice, CD47 on B cells limits antibody mediated phagocytosis. B cell depletion following in vivo anti-CD19 treatment is more efficient in CD47-/- mice than in wild type mice. In vitro, both naïve and activated B cells from CD47-/- mice are more sensitive to ADCP than wild type B cells. Lastly, we show in an ADCP assay that blocking CD47 can enhance anti-CD19 antibody mediated phagocytosis of wild type B cells. These results suggest that in addition to its already demonstrated benefit in cancer, targeting CD47 may be used as an adjunct in combination with B cell depletion antibodies for treatment of autoimmune diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations

    KAUST Repository

    Perozziello, Gerardo

    2013-07-01

    In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro-fluidic protocols. Many available processes either require expensive and time-consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi-valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin-biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC-I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC-I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC-I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC-I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. B cells and functional antibody responses to combat influenza

    Directory of Open Access Journals (Sweden)

    Giuseppe eLofano

    2015-06-01

    Full Text Available Vaccination against influenza (Flu is the most effective way to protect the population. Current vaccines provide protection by stimulating functional B- and T-cell responses, however, they are poorly immunogenic in particular segments of the population and need to be reformulated almost every year due to the genetic instability of the virus. Next generation Flu vaccines should be designed to induce cross-reactivity, confer protection against pandemic outbreaks, and promote long-lasting immune responses among individuals at higher risk of infection. Multiple strategies are being developed for the induction of broad functional humoral immunity, including the use of adjuvants, heterologous prime-boost strategies, and epitope-based antigen design. The basic approach is to mimic natural responses to influenza virus infection by promoting cross-reactive neutralizing antibodies that directly prevent the infection. This review provides an overview of the mechanisms underlying humoral responses to influenza vaccination or natural infection, and discusses promising strategies to control influenza virus.

  4. Monoclonal Antibodies against Differentiating Mesenchyme Cells in Larvae of the Ascidian Halocynthia roretzi

    OpenAIRE

    Gil Jung, Kim; Hiroki, Nishida; Department of Life Science, Tokyo Institute of Technology, Nagatsuta; Department of Life Science, Tokyo Institute of Technology, Nagatsuta

    1998-01-01

    Mechanisms of cell specification of mesenchyme during ascidian embryogenesis are poorly understood. This is because no good molecular markers have been available to evaluate differentiation of the mesenchyme cells. To obtain molecular markers of mesenchyme differentiation, we established monoclonal antibodies, Mch-1 and Mch-3, that recognize antigens present in the mesenchyme cells of the larva of Halocynthia roretzi. The antigens recognized by both antibodies start to be detectable in the me...

  5. Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies.

    Science.gov (United States)

    Tipton, Thomas R W; Roghanian, Ali; Oldham, Robert J; Carter, Matthew J; Cox, Kerry L; Mockridge, C Ian; French, Ruth R; Dahal, Lekh N; Duriez, Patrick J; Hargreaves, Philip G; Cragg, Mark S; Beers, Stephen A

    2015-03-19

    Following the success of rituximab, 2 other anti-CD20 monoclonal antibodies (mAbs), ofatumumab and obinutuzumab, have entered clinical use. Ofatumumab has enhanced capacity for complement-dependent cytotoxicity, whereas obinutuzumab, a type II mAb, lacks the ability to redistribute into lipid rafts and is glycoengineered for augmented antibody-dependent cellular cytotoxicity (ADCC). We previously showed that type I mAbs such as rituximab have a propensity to undergo enhanced antigenic modulation compared with type II. Here we assessed the key effector mechanisms affected, comparing type I and II antibodies of various isotypes in ADCC and antibody-dependent cellular-phagocytosis (ADCP) assays. Rituximab and ofatumumab depleted both normal and leukemic human CD20-expressing B cells in the mouse less effectively than glycoengineered and wild-type forms of obinutuzumab, particularly when human immunoglobulin G1 (hIgG1) mAbs were compared. In contrast to mouse IgG2a, hIgG1 mAbs were ineffective in ADCC assays with murine natural killer cells as effectors, whereas ADCP was equivalent for mouse IgG2a and hIgG1. However, rituximab's ability to elicit both ADCC and ADCP was reduced by antigenic modulation, whereas type II antibodies remained unaffected. These data demonstrate that ADCP and ADCC are impaired by antigenic modulation and that ADCP is the main effector function employed in vivo. © 2015 by The American Society of Hematology.

  6. Effect of anti-carbohydrate antibodies on HIV infection in a monocytic cell line (U937)

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Clausen, H

    1991-01-01

    Monoclonal antibodies (mAbs) against carbohydrate epitopes of gp120 have recently been found to inhibit HIV infection of lymphocytes in vitro thereby opening new possibilities for vaccine considerations. Antibody-dependent enhancement of infection has however come increasingly into focus....... This study therefore investigated the neutralization of HIV in a monocytic cell line (U937) using mAbs against these carbohydrate gp120-epitopes. While antibodies against one of the epitopes (AI) neutralized infection of U937 cells despite binding to the Fc-receptor, one mAb against the sialosyl-Tn epitope...... enhanced infection. This enhancement was independent of complement and could be blocked by mAb Leu3a against the CD4-receptor. The study indicated that enhancement of infection in monocytic cells can occur by the same anti-carbohydrate antibodies that neutralize infection in lymphocytes, and that antibody...

  7. A radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    International Nuclear Information System (INIS)

    Tax, A.; Manson, L.A.

    1976-01-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit 125 I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface

  8. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells

    Czech Academy of Sciences Publication Activity Database

    Ohradanova-Repic, A.; Nogueira, E.; Hartl, I.; Gomes, A.C.; Preto, A.; Steinhuber, E.; Muehlgrabner, V.; Repic, M.; Kuttke, M.; Zwirzitz, A.; Prouza, M.; Suchánek, M.; Wozniak-Knopp, G.; Hořejší, Václav; Schabbauer, G.; Cavaco-Paulo, A.; Stockinger, H.

    2018-01-01

    Roč. 14, č. 1 (2018), s. 123-130 ISSN 1549-9634 Institutional support: RVO:68378050 Keywords : Active targeting * Liposome functionalization * Immunoliposome * Antibody engineering * Recombinant Fab antibody fragment Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.720, year: 2016

  9. Screening microarrays of novel monoclonal antibodies for binding to T-, B- and myeloid leukaemia cells.

    Science.gov (United States)

    Belov, Larissa; Huang, Pauline; Chrisp, Jeremy S; Mulligan, Stephen P; Christopherson, Richard I

    2005-10-20

    We have developed a microarray (DotScan) that enables rapid immunophenotyping and classification of leukaemias and lymphomas by measuring the capture of cells by immobilized dots of 82 CD antibodies [Belov, L., de la Vega, O., dos Remedios, C.G., Mulligan, S.P., 2001. Immunophenotyping of leukemia using a cluster of differentiation antibody microarray. Cancer Res. 61, 4483; Belov, L., Huang, P., Barber, N., Mulligan, S.P., Christopherson, R.I., 2003. Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics 3, 2147]. The DotScan technology has been used to investigate the properties of 498 new antibodies submitted to the HLDA8 Workshop. These antibodies have been applied as 10 nl dots to a film of nitrocellulose on a microscope slide to make an HLDA8 microarray. After blocking the remaining nitrocellulose surface, individual arrays were incubated with each of 7 cell types from a human leukaemia cell panel consisting of three cell lines, CCRF-CEM (a T-cell acute lymphocytic leukaemia), MEC-1 (derived from B-cell chronic lymphocytic leukaemia) and HL-60 (a promyelocytic leukaemia), and four leukaemias from patients: a T-cell prolymphocytic leukaemia, a B-cell chronic lymphocytic leukaemia, and two acute myeloid leukaemias. Leukaemia cells were captured by those immobilized antibodies for which they expressed the corresponding surface molecule. Unbound cells were gently washed off, bound cells were fixed to the arrays and dot patterns were recorded using a DotScan array reader and quantified using DotScan data analysis software. The data obtained show the unique expression profiles of the 7 cell types in the leukaemia cell panel obtained with the DotScan microarray, and the differential capture patterns for these 7 cell types screened against the 498 antibodies in the HLDA8 microarray constructed for this study.

  10. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies

    DEFF Research Database (Denmark)

    Muellenbeck, Matthias F; Ueberheide, Beatrix; Amulic, Borko

    2013-01-01

    Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired....... We show at the single cell level that natural Pf infection induces the development of classical memory B cells (CM) and atypical memory B cells (AtM) that produce broadly neutralizing antibodies against blood stage Pf parasites. CM and AtM contribute to anti-Pf serum IgG production, but only AtM show...... signs of active antibody secretion. AtM and CM were also different in their IgG gene repertoire, suggesting that they develop from different precursors. The findings provide direct evidence that natural Pf infection leads to the development of protective memory B cell antibody responses and suggest...

  11. Issues associated with the use of phosphospecific antibodies to localise active and inactive pools of GSK-3 in cells

    Directory of Open Access Journals (Sweden)

    Kypta Robert M

    2011-01-01

    Full Text Available Abstract Background Glycogen synthase kinase-3 (GSK-3 is a ubiquitously expressed serine/threonine (Ser/Thr kinase comprising two isoforms, GSK-3α and GSK-3β. Both enzymes are similarly inactivated by serine phosphorylation (GSK-3α at Ser21 and GSK-3β at Ser9 and activated by tyrosine phosphorylation (GSK-3α at Tyr279 and GSK-3β at Tyr216. Antibodies raised to phosphopeptides containing the sequences around these phosphorylation sites are frequently used to provide an indication of the activation state of GSK-3 in cell and tissue extracts. These antibodies have further been used to determine the subcellular localisation of active and inactive forms of GSK-3, and the results of those studies support roles for GSK-3 phosphorylation in diverse cellular processes. However, the specificity of these antibodies in immunocytochemistry has not been addressed in any detail. Results Taking advantage of gene silencing technology, we examined the specificity of several commercially available anti-phosphorylated GSK-3 antibodies. We show that antibodies raised to peptides containing the phosphorylated Ser21/9 epitope crossreact with unidentified antigens that are highly expressed by mitotic cells and that mainly localise to spindle poles. In addition, two antibodies raised to peptides containing the phosphorylated Tyr279/216 epitope recognise an unidentified protein at focal contacts, and a third antibody recognises a protein found in Ki-67-positive cell nuclei. While the phosphorylated Ser9/21 GSK-3 antibodies also recognise other proteins whose levels increase in mitotic cells in western blots, the phosphorylated Tyr279/216 antibodies appear to be specific in western blotting. However, we cannot rule out the posssibility that they recognise very large or very small proteins that might not be detected using a standard western blotting approach. Conclusions Our findings indicate that care should be taken when examining the subcellular localisation of

  12. Detection of irregular red cell antibodies: more than 3 years of experience with a gel technique and pooled screening cells.

    Science.gov (United States)

    Titlestad, K; Georgsen, J; Andersen, H; Kristensen, T

    1997-01-01

    The purpose of this study was to evaluate more than 3 years of experience with a gel technique in combination with pooled screening cells for the detection of irregular red cell antibodies. Conventional serologic methods were used for blood typing, antibody screening and cross-matching until the end of 1992. We introduced the gel technique as a routine assay for antibody detection and identification in 1993. After the tube technique had been abandoned, the number of false-positive antibody screening tests was reduced by 71%, positive antibody screening tests by 33%, enzyme agglutination by 100% and rouleaux reactions and cold-reacting antibodies by more than 50%. There was a 40% increase in first-time detection of clinically relevant antibodies. We saw no increase in delayed haemolytic transfusion reactions. For the detection of irregular red cell antibodies, pooled screening cells in combination with a gel technique are at least as efficient and safe as a conventional tube technique with unpooled test cells.

  13. Effect of anti-carbohydrate antibodies on HIV infection in a monocytic cell line (U937)

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Clausen, H

    1991-01-01

    Monoclonal antibodies (mAbs) against carbohydrate epitopes of gp120 have recently been found to inhibit HIV infection of lymphocytes in vitro thereby opening new possibilities for vaccine considerations. Antibody-dependent enhancement of infection has however come increasingly into focus. This st......Monoclonal antibodies (mAbs) against carbohydrate epitopes of gp120 have recently been found to inhibit HIV infection of lymphocytes in vitro thereby opening new possibilities for vaccine considerations. Antibody-dependent enhancement of infection has however come increasingly into focus...... enhanced infection. This enhancement was independent of complement and could be blocked by mAb Leu3a against the CD4-receptor. The study indicated that enhancement of infection in monocytic cells can occur by the same anti-carbohydrate antibodies that neutralize infection in lymphocytes, and that antibody...

  14. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Aura Muntasell

    2017-11-01

    Full Text Available Overexpression of the human epidermal growth factor receptor 2 (HER2 defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i the configuration of the patient NK cell repertoire; (ii tumor molecular features (i.e., estrogen receptor expression; (iii concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors; and (iv evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through

  15. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  16. Bispecific antibodies, nanoparticles and cells: bringing the right cells to get the job done.

    Science.gov (United States)

    Tang, Junnan; Shen, Deliang; Zhang, Jinying; Ligler, Frances S; Cheng, Ke

    2015-01-01

    Pre-arming therapeutic cells with bispecific antibodies (BiAbs) before infusion can home the cells to specific tissue antigens in the body. With the development of nanotechnology, we developed a novel strategy, namely magnetic bispecific cell engager (MagBICE), that combines BiAbs with biodegradable iron nanoparticles. Compared to conventional BiAbs, the latter enables magnetic targeting and imaging. This editorial discusses current knowledge of BiAbs and their applications in targeting activated T cells to cancerous tissues or targeting bone marrow-derived stem cells to myocardial infarction. We will also discuss the fabrication of MagBICE and its application in treating rodents with myocardial infarction.

  17. Antiproliferative and Apoptotic Effects of a Specific Antiprostate Stem Cell Single Chain Antibody on Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Foroogh Nejatollahi

    2013-01-01

    Full Text Available Prostate stem cell antigen (PSCA is a highly glycosylated cell surface protein which is overexpressed in several malignancies including prostate, pancreas, and urinary bladder cancers. Tumor suppression has been reported by anti-PSCA antibody. Small and high affinity single chain antibodies (scFv have been introduced as effective agents for cancer immunotargeting approaches. In the present study, we used a phage antibody display library of scFv and selected two antibodies against two immunodominant epitopes of PSCA by panning process. The reactivity of the scFvs for the corresponding epitopes was determined by phage ELISA. The binding specificity of antibodies to PSCA-expressing prostate cancer cell line, DU-145, was analyzed by flow cytometry. The antiproliferative and apoptotic induction effects were evaluated by MTT and Annexin-V assays, respectively. Results represented functional scFv C5-II which could bind specifically to DU-145 cells and significantly inhibited the proliferation of these cells (61% with no effect on PSCA-negative cells. The antibody also induced apoptosis in the PSCA expressing cells. The percentage of the apoptotic cells after 24 hrs of exposure to 500 scFv/cell was 33.80%. These results demonstrate that the functional anti-PSCA scFv C5-II has the potential to be considered as a new agent for targeted therapy of prostate cancer.

  18. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships.

    Science.gov (United States)

    Walker, Karen M; Okitsu, Shinji; Porter, David W; Duncan, Christopher; Amacker, Mario; Pluschke, Gerd; Cavanagh, David R; Hill, Adrian V S; Todryk, Stephen M

    2015-05-01

    This study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with parasite load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. Malaria-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with parasite load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-parasite responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against malaria, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related. © 2014 John Wiley & Sons Ltd.

  19. Novel exons and splice variants in the human antibody heavy chain identified by single cell and single molecule sequencing.

    Directory of Open Access Journals (Sweden)

    Christopher Vollmers

    Full Text Available Antibody heavy chains contain a variable and a constant region. The constant region of the antibody heavy chain is encoded by multiple groups of exons which define the isotype and therefore many functional characteristics of the antibody. We performed both single B cell RNAseq and long read single molecule sequencing of antibody heavy chain transcripts and were able to identify novel exons for IGHA1 and IGHA2 as well as novel isoforms for IGHM antibody heavy chain.

  20. Follicular Helper T (Tfh) Cells Mediate IgE Antibody Response to Airborne Allergens

    Science.gov (United States)

    Kobayashi, Takao; Iijima, Koji; Dent, Alexander L.; Kita, Hirohito

    2016-01-01

    Background Type 2 helper T (Th2) cells have long been believed to play a pivotal role in allergic immune responses, including IgE antibody production and type 2 cytokine-mediated inflammation and pathology. A new T cell subset, T follicular helper cells (Tfh) cells, is specialized in supporting B cell maturation and antibody production. Objective To investigate the roles of Tfh cells in allergic immune responses. Methods Naïve mice were exposed to cytokines or natural allergens through the airways. Development of allergic immune responses was analyzed by collecting draining lymph nodes (LNs) and sera and by challenging the animals. Cytokine reporter mice and gene-deficient mice were used to dissect the immunologic mechanisms. Results We observed the development of IL-4-producing Tfh cells and Th2 cells in draining LNs following airway exposure to IL-1 family cytokines or natural allergens. Tfh cells and Th2 cells demonstrated unique phenotypes, tissue localization, and cytokine responses. Tfh cells supported the sustained production of IgE antibody in vivo in the absence of other T cell subsets or even when Th2 cell functions were severely compromised. Conversely, conditional deficiency of the master regulator Bcl6 in CD4+ T cells resulted in a marked reduction in Tfh cells and IgE antibody levels, but type 2 cytokine responses and eosinophilic inflammation in the airways remained unaffected. Conclusion Tfh cells play critical roles in the regulation of IgE antibody production. Allergic immune responses to airborne allergens likely involve two distinct subsets of IL-4-producing CD4+ T cells, namely Tfh cells and Th2 cells. PMID:27325434

  1. Increased susceptibility of tumor cells and chicken erythrocytes to lysis by antibody and complement after treatment with aminoethylisothiouronium bromide hydrobromide (AET)

    Energy Technology Data Exchange (ETDEWEB)

    Langone, J.J.; Borsos, T. (National Cancer Institute, Bethesda, MD (USA))

    1979-01-01

    After treatment with aminoethylisothiouronium bromide hydrobromide (AET), the ascites forms of the diethylnitrosamine-induced guinea pig hepatomas, line-1 and line-10, were susceptible or more susceptible to killing in vitro by certain combinations of tumor-specific or IgM anti-Forssman antibody and either human or guinea pig complement. Since AET could be toxic to either cell line, conditions of pH, concentration of AET, and duration of exposure of the cells to the reagent were determined that resulted in enhanced susceptibility without significantly affecting cell viability. Chicken erythrocytes (CE) also were tested and AET-treated cells found to be more susceptible to lysis by IgM anti-Forssman antibody and guinea pig complement. The enhancement apparently was not due to increased ability of AET-treated CE to fix antibody. In contrast to CE, the lytic susceptibility of sheep cells was not affected by AET treatment. In addition to AET, several drugs and enzymes that also can affect the susceptibility of the tumor cells to antibody and complement were tested and found to be ineffective against CE. Since AET reputedly acts directly on the cell surface, it seems reasonable to assume that the increased susceptibility of the tumor cells and CE to antibody and complement may result from a modification of the cell surface.

  2. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  3. Cell death induced by a 131I-labeled monoclonal antibody in ovarian cancer multicell spheroids

    International Nuclear Information System (INIS)

    Filippovich, I.V.; Sorokina, N.; Robillard, N.; Faivre-Chauvet, A.; Bardies, M.; Chatal, J.F.

    1996-01-01

    Treatment of OVCAR-3 spheroids with 131 I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor

  4. Cell death induced by a 131I-labeled monoclonal antibody in ovarian cancer multicell spheroids.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N; Robillard, N; Faivre-Chauvet, A; Bardies, M; Chatal, J F

    1996-07-01

    Treatment of OVCAR-3 spheroids with 131I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor.

  5. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... and suppresses the patient’s immune system to prevent rejection of the transplant. Unlike traditional BMT or PBSCT, ... be given an injection of the donor’s white blood cells. This procedure is called a “ donor ... “tandem transplant” is a type of autologous transplant. This method is being studied ...

  6. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  7. How immunoglobulin G antibodies kill target cells: revisiting an old paradigm.

    Science.gov (United States)

    Biburger, Markus; Lux, Anja; Nimmerjahn, Falk

    2014-01-01

    The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo. © 2014 Elsevier Inc. All rights reserved.

  8. Anti-double strand (ds) DNA antibody formation by NZB/W (F1) spleen cells in a microculture system detected by solid phase radioimmunoassay.

    Science.gov (United States)

    Okudaira, H; Terada, E; Ogita, T; Aotsuka, S; Yokohari, R

    1981-01-01

    A solid-phase radioimmunoassay method was devised to detect mouse anti-double strand (ds) DNA antibody. This method could easily detect the anti-dsDNA antibody in 1 : 10,000 dilutions (1 unit) of pooled 9-10-month-old female NZB/W F1 sera. The sensitivity was about 10(3)- and 10(2)-fold higher than that of the modified Farr method and of the double antibody technique respectively. NZB/W mice developed high titer anti-dsDNA antibody as they grew older. Spleen cells brought to a microculture system using flat-bottomed polystyrene plates produced anti-dsDNA antibody clearly detectable by solid-phase radioimmunoassay. Anti-dsDNA antibody produced in vitro (y units) was in close correlation with the anti-dsDNA antibody titer of the spleen donor (x units) (y = 4.8 X 10(-2) x -65, gamma = 0.94, P less than 0.001). A combination of the microculture system and solid-phase radioimmunoassay was recommended for the characterization of anti-dsDNA antibody-forming cells.

  9. Anti-double strand (ds) DNA antibody formation by NZB/W (F1) spleen cells in a microculture system detected by solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Okudaira, H.; Terada, E.; Ogita, T.; Aotsuka, S.; Yokohari, R.

    1981-01-01

    A solid-phase radioimmunoassay method was devised to detect mouse anti-double strand (ds) DNA antibody. This method could easily detect the anti-ds DNA antibody in 1 : 10,000 dilutions (1 unit) of pooled 9-10 month-old female NZB/W F1 sera. The sensitivity was about 10 3 and 10 2 -fold higher than that of the modified Farr method and of the double antibody technique respectively. NZB/W mice developed high titer anti-dsDNA antibody as they grew older. Spleen cells brought to a microculture system using flat-bottomed polystyrene plates produced anti-dsDNA antibody clearly detectable by solid-phase radioimmunoassay. Anti-dsDNA antibody produced in vitro (y units) was in close correlation with the anti-dsDNA antibody titer of the spleen donor (x units) (y = 4.8 X 10 -2 x-65, γ = 0.94, P < 0.001). A combination of the microculture system and solid-phase radioimmunoassay was recommended for the characterization of anti-dsDNA antibody-forming cells. (Auth.)

  10. A mimotope peptide of Aβ42 fibril-specific antibodies with Aβ42 fibrillation inhibitory activity induces anti-Aβ42 conformer antibody response by a displayed form on an M13 phage in mice.

    Science.gov (United States)

    Tanaka, Koichi; Nishimura, Masaaki; Yamaguchi, Yuya; Hashiguchi, Shuhei; Takiguchi, Sho; Yamaguchi, Makoto; Tahara, Haruna; Gotanda, Takuma; Abe, Risa; Ito, Yuji; Sugimura, Kazuhisa

    2011-07-01

    In Alzheimer's disease (AD), amyloid-β (Aβ) peptides accumulate in the brain in different forms, including fibrils and oligomers. Recently, we established three distinct conformation-dependent human single-chain Fv (scFv) antibodies, including B6 scFv, which bound to Aβ42 fibril but not to soluble-form Aβ, inhibiting Aβ42 fibril formation. In this study, we determined the mimotopes of these antibodies and found a common mimotope sequence, B6-C15, using the Ph.D.-C7C phage library. The B6-C15 showed weak homology to the C-terminus of Aβ42 containing GXXXG dimerization motifs. We synthesized the peptide of B6-C15 fused with biotinylated TAT at the N-terminus (TAT-B6-C15) and characterized its biochemical features on an Aβ42-fibrillation reaction in vitro. We demonstrated that, first, TAT-B6-C15 inhibited Aβ42 fibril formation; secondly, TAT-B6-C15 bound to prefibril Aβ42 oligomers but not to monomers, trimers, tetramers, fibrils, or ultrasonicated fragments; thirdly, TAT-B6-C15 inhibited Aβ42-induced cytotoxicity against human SH-SY5Y neuroblastoma cells; and, fourthly, when mice were administered B6-C15-phages dissolved in phosphate-buffered saline, the anti-Aβ42 conformer IgG antibody response was induced. These results suggested that the B6-C15 peptide might provide unique opportunities to analyze the Aβ42 fibrillation pathway and develop a vaccine vehicle for Alzheimer's disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Contribution of NK cell education to both direct and anti-HIV-1 antibody-dependent NK cell functions.

    Science.gov (United States)

    Kristensen, Anne B; Kent, Stephen J; Parsons, Matthew S

    2018-03-07

    Antibody Fc-dependent functions are linked to prevention and control of HIV-1 infection. Basic NK cell biology is likely key to understanding the contributions anti-HIV-1 antibody-dependent NK cell activation and cytolysis make to HIV-1 susceptibility and disease progression. The importance of NK cell education through inhibitory receptors specific for self-HLA-I in determining the potency of anti-HIV-1 antibody mediated NK cell activation and cytolysis is controversial. To address this issue more definitively we utilized HLA-I genotyping, flow cytometry staining panels and cytolysis assays to assess the functionality of educated and non-educated peripheral blood NK cells. We now demonstrate that educated NK cells are superior in terms of their capacity to become activated and/or mediate cytolysis following anti-HIV-1 antibody-dependent stimulation. The profiles of activation observed were similar to those observed upon direct stimulation of NK cells with HLA-I devoid target cells. Non-educated NK cells make significantly lower contributions to total NK cell activation than would be expected from their frequency within the total NK cell population (i.e., are hypofunctional) and educated NK cells make similar or higher contributions as their frequency in the total NK cell population. Finally, NK cells educated through at least one killer immunoglobulin-like receptor and NKG2A exhibited the most significant difference between actual and expected contribution to the total NK cell response, based on their frequency within the total NK cell population, suggesting summation of NK cell education through inhibitory receptors determines overall NK cell functionality. These observations have potential implications for understanding HIV-1 vaccine efficacy and disease progression. IMPORTANCE NK cells are major mediators of anti-HIV-1 antibody-dependent functions, including cytokine production and cytolysis. The mechanisms controlling the capacity of individual NK cells to

  12. Efficient method to optimize antibodies using avian leukosis virus display and eukaryotic cells.

    Science.gov (United States)

    Yu, Changming; Pike, Gennett M; Rinkoski, Tommy A; Correia, Cristina; Kaufmann, Scott H; Federspiel, Mark J

    2015-08-11

    Antibody-based therapeutics have now had success in the clinic. The affinity and specificity of the antibody for the target ligand determines the specificity of therapeutic delivery and off-target side effects. The discovery and optimization of high-affinity antibodies to important therapeutic targets could be significantly improved by the availability of a robust, eukaryotic display technology comparable to phage display that would overcome the protein translation limitations of microorganisms. The use of eukaryotic cells would improve the diversity of the displayed antibodies that can be screened and optimized as well as more seamlessly transition into a large-scale mammalian expression system for clinical production. In this study, we demonstrate that the replication and polypeptide display characteristics of a eukaryotic retrovirus, avian leukosis virus (ALV), offers a robust, eukaryotic version of bacteriophage display. The binding affinity of a model single-chain Fv antibody was optimized by using ALV display, improving affinity >2,000-fold, from micromolar to picomolar levels. We believe ALV display provides an extension to antibody display on microorganisms and offers virus and cell display platforms in a eukaryotic expression system. ALV display should enable an improvement in the diversity of properly processed and functional antibody variants that can be screened and affinity-optimized to improve promising antibody candidates.

  13. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    International Nuclear Information System (INIS)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-01-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of 125 I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of 125 I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies

  14. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    Energy Technology Data Exchange (ETDEWEB)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-03-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of /sup 125/I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of /sup 125/I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies.

  15. Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms.

    Science.gov (United States)

    Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop

    2017-01-01

    A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.

  16. Severe hemolytic disease of fetus and newborn caused by red blood cell antibodies undetected at first-trimester screening (CME).

    Science.gov (United States)

    Dajak, Slavica; Stefanović, Vedran; Capkun, Vesna

    2011-07-01

    The objective was to determine clinical consequences of anti-D and non-D antibodies undetected at first-trimester screening for infant or fetus. This retrospective cohort study included all pregnant women with red blood cell (RBC) antibodies who were tested between 1993 and 2008. Data were obtained from the forms for tracking immunization at the transfusion department. Each form was analyzed for three data sets: the order of screening at which the antibodies were detected (initial or repeated screening), the order of pregnancy (first pregnancy or higher), and whether the antibodies caused severe hemolytic disease of fetus and newborn (HDFN). In D- women, anti-D was detected in 1.3% of cases. The anti-D was undetected in 72 (37%) cases on the first-trimester screening, of which eight cases were complicated by severe HDFN. In this group, three patients were primigravidae. An overall non-D incidence of 0.2% was observed. In 16 cases, non-D were undetected on the first-trimester screening (10 anti-c, two anti-E, two anti-C, one anti-S, and one case of anti-Rh17). Non-D antibodies undetected on initial screening caused 11 cases of severe HDFN (27% of all severe non-D HDFN). Ten of them were in multiparous women. Seven of 11 cases with severe HDFN that were missed were caused by anti-c. The third-trimester screening may detect RBC antibodies that were not present or detected on the first-trimester screening. Such screening may be especially relevant in D+ multiparous women due to the risk of HDFN. © 2010 American Association of Blood Banks.

  17. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    Science.gov (United States)

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2017-04-01

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1 + but not STRO-1 - cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1 BRIGHT /HSP70 - fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2017;35:940-951. © 2016 AlphaMed Press.

  18. Follicular helper T cells mediate IgE antibody response to airborne allergens.

    Science.gov (United States)

    Kobayashi, Takao; Iijima, Koji; Dent, Alexander L; Kita, Hirohito

    2017-01-01

    T H 2 cells have long been believed to play a pivotal role in allergic immune responses, including IgE antibody production and type 2 cytokine-mediated inflammation and pathology. A new T-cell subset, follicular helper T (T FH ) cells, is specialized in supporting B-cell maturation and antibody production. We sought to investigate the roles of T FH cells in allergic immune responses. Naive mice were exposed to cytokines or natural allergens through the airways. Development of allergic immune responses was analyzed by collecting draining lymph nodes and sera and by challenging the animals. Cytokine reporter mice and gene-deficient mice were used to dissect the immunologic mechanisms. We observed the development of IL-4-producing T FH cells and T H 2 cells in draining lymph nodes after airway exposure to IL-1 family cytokines or natural allergens. T FH and T H 2 cells demonstrated unique phenotypes, tissue localization, and cytokine responses. T FH cells supported the sustained production of IgE antibody in vivo in the absence of other T-cell subsets or even when T H 2 cell functions were severely compromised. Conversely, conditional deficiency of the master regulator Bcl6 in CD4 + T cells resulted in a marked reduction in T FH cell numbers and IgE antibody levels, but type 2 cytokine responses and eosinophilic inflammation in the airways remained unaffected. T FH cells play critical roles in the regulation of IgE antibody production. Allergic immune responses to airborne allergens likely involve 2 distinct subsets of IL-4-producing CD4 + T cells, namely T FH and Th2 cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Anemia and hematinic deficiencies in gastric parietal cell antibody-positive and antibody-negative erosive oral lichen planus patients with thyroid antibody positivity.

    Science.gov (United States)

    Chang, Julia Y-F; Chen, I-Chang; Wang, Yi-Ping; Wu, Yu-Hsueh; Chen, Hsin-Ming; Sun, Andy

    2016-11-01

    Serum gastric parietal cell antibody (GPCA), thyroglobulin antibody (TGA), and thyroid microsomal antibody (TMA) are found in some erosive oral lichen planus (EOLP) patients. This study assessed whether serum GPCA, TGA and TMA and EOLP itself played significant roles in causing anemia and hematinic deficiencies in TGA/TMA-positive EOLP patients with GPCA positivity (GPCA + /TGA/TMA/EOLP patients) or negativity (GPCA - /TGA/TMA/EOLP patients). The mean corpuscular volume (MCV) and mean blood hemoglobin (Hb), iron, vitamin B12, and folic acid levels were measured and compared between any two of the four groups of 29 GPCA + /TGA/TMA/EOLP patients, 80 GPCA - /TGA/TMA/EOLP patients, 198 all antibodies-negative EOLP patients (Abs - /EOLP patients), and 218 healthy control individuals. GPCA + /TGA/TMA/EOLP patients had significantly lower mean Hb and vitamin B12 levels as well as significantly greater frequencies of Hb, iron, and vitamin B12 deficiencies than healthy controls. GPCA + /TGA/TMA/EOLP patients had significantly lower serum vitamin B12 level and higher MCV as well as a significantly greater frequency of vitamin B12 deficiency than GPCA - /TGA/TMA/EOLP patients. Furthermore, both GPCA - /TGA/TMA/EOLP and Abs - /EOLP patients did have significantly lower mean Hb, MCV, and iron (for women only) levels, as well as significantly greater frequencies of Hb and iron deficiencies than healthy controls. However, there were no significant differences in measured blood data between GPCA - /TGA/TMA/EOLP and Abs - /EOLP patients. We conclude that serum GPCA is the major factor causing vitamin B12 deficiency, macrocytosis and pernicious anemia in GPCA + /TGA/TMA/EOLP patients. ELOP itself but not TGA/TMA positivity plays a significant role in causing anemia and hematinic deficiencies in GPCA - /TGA/TMA/EOLP patients. Copyright © 2016. Published by Elsevier B.V.

  20. B7h-expressing dendritic cells and plasma B cells mediate distinct outcomes of ICOS costimulation in T cell-dependent antibody responses

    Directory of Open Access Journals (Sweden)

    Larimore Kevin

    2012-06-01

    Full Text Available Abstract Background The ICOS-B7h costimulatory receptor-ligand pair is required for germinal center formation, the production of isotype-switched antibodies, and antibody affinity maturation in response to T cell-dependent antigens. However, the potentially distinct roles of regulated B7h expression on B cells and dendritic cells in T cell-dependent antibody responses have not been defined. Results We generated transgenic mice with lineage-restricted B7h expression to assess the cell-type specific roles of B7h expression on B cells and dendritic cells in regulating T cell-dependent antibody responses. Our results show that endogenous B7h expression is reduced on B cells after activation in vitro and is also reduced in vivo on antibody-secreting plasma B cells in comparison to both naïve and germinal center B cells from which they are derived. Increasing the level of B7h expression on activated and plasma B cells in B-B7hTg mice led to an increase in the number of antibody-secreting plasma cells generated after immunization and a corresponding increase in the concentration of antigen-specific high affinity serum IgG antibodies of all isotypes, without affecting the number of responding germinal center B cells. In contrast, ICOS costimulation mediated by dendritic cells in DC-B7hTg mice contributed to germinal center formation and selectively increased IgG2a production without affecting the overall magnitude of antibody responses. Conclusions Using transgenic mice with lineage-restricted B7h expression, we have revealed distinct roles of ICOS costimulation mediated by dendritic cells and B cells in the regulation of T cell-dependent antibody responses.

  1. Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells

    Science.gov (United States)

    Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji

    2008-11-01

    Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times

  2. Separation of cell-dependent antibody (CDA) and inhibitory antibody by protein-A affinity chromatography and the effect of fractions on antibody-dependent cellular cytotoxicity (ADCC).

    Science.gov (United States)

    Sato, N; Yabuki, Y; Toh, K; Ishii, Y; Kikuchi, K

    1979-01-01

    The nature of cell-dependent antibody (CDA) and the mechanism of inhibition of antibody-dependent cellular cytotoxicity (ADCC) were studied in the ADCC assay system in which culture cells of methylcholanthrene-induced rat fibrosarcoma (KMT-50) were used as target cells, xenogeneic antiserum (rabbit anti-KMT-50) as the CDA, and human peripheral blood leucocytes (PBL) as effector cells, respectively. By using protein-A Sepharose CL-4B affinity column chromatography of rabbit anti-KMT-50 serum, CDA was shown to bind protein A. Complement dependent-cytotoxicity (CDC), however, was demonstrated in both the adsorbed fraction (eluate) and the non-adsorbed fraction (effluent) to protein A from the same affinity column chromatography. These data confirmed that CDA was IgG with an intact Fc portion. Inhibition of ADCC occurred by pretreatment of effector cells with rabbit anti-effector (human PBL) serum even with extremely small amounts of antiserum. Such inhibition was demonstrated with the eluate but not with the effluent from protein-A Sepharose CL-4B affinity column chromatography of rabbit anti-effector serum. F(ab')2 fragments of the same eluate (IgG) did not inhibit the ADCC activity. These data showed that the inhibition of ADCC was induced by the blocking of Fc receptors of effector cells with the Fc portions of IgG in anti-effector serum. The data obtained indicate the usefulness of protein A in separation and analysis of CDA and in investigation of the inhibitory mechanisms of ADCC. Images Figure 2 PMID:437836

  3. Specific targeting of tumor cells by lyophilisomes functionalized with antibodies

    NARCIS (Netherlands)

    van Bracht, Etienne; Stolle, Sarah; Hafmans, Theo G.; Boerman, Otto C.; Oosterwijk, Egbert; van Kuppevelt, Toin H.; Daamen, Willeke F.

    Lyophilisomes are a novel class of proteinaceous biodegradable nano/micro drug delivery capsules prepared by freezing, annealing and Iyophilization. In the present study, lyophilisomes were functionalized for active targeting by antibody conjugation in order to obtain a selective drug-carrier

  4. Antibodies That Block or Activate Mouse B Cell Activating Factor of the Tumor Necrosis Factor (TNF) Family (BAFF), Respectively, Induce B Cell Depletion or B Cell Hyperplasia*

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Schuepbach-Mallepell, Sonia; Vigolo, Michele; Willen, Laure; Tardivel, Aubry; Smulski, Cristian R.; Zheng, Timothy S.; Gommerman, Jennifer; Hess, Henry; Gottenberg, Jacques-Eric; Mackay, Fabienne; Donzé, Olivier

    2016-01-01

    B cell activating factor of the TNF family (BAFF), also known as B lymphocyte stimulator, is a ligand required for the generation and maintenance of B lymphocytes. In this study, the ability of different monoclonal antibodies to recognize, inhibit, or activate mouse BAFF was investigated. One of them, a mouse IgG1 named Sandy-2, prevented the binding of BAFF to all of its receptors, BAFF receptor, transmembrane activator and calcium modulating ligand interactor, and B cell maturation antigen, at a stoichiometric ratio; blocked the activity of mouse BAFF on a variety of cell-based reporter assays; and antagonized the prosurvival action of BAFF on primary mouse B cells in vitro. A single administration of Sandy-2 in mice induced B cell depletion within 2 weeks, down to levels close to those observed in BAFF-deficient mice. This depletion could then be maintained with a chronic treatment. Sandy-2 and a previously described rat IgG1 antibody, 5A8, also formed a pair suitable for the sensitive detection of endogenous circulating BAFF by ELISA or using a homogenous assay. Interestingly, 5A8 and Sandy-5 displayed activities opposite to that of Sandy-2 by stimulating recombinant BAFF in vitro and endogenous BAFF in vivo. These tools will prove useful for the detection and functional manipulation of endogenous mouse BAFF and provide an alternative to the widely used BAFF receptor-Fc decoy receptor for the specific depletion of BAFF in mice. PMID:27451394

  5. Surface Antigen Profiling of Helicobacter pylori-Infected and -Uninfected Gastric Cancer Cells Using Antibody Microarray.

    Science.gov (United States)

    Sukri, Asif; Hanafiah, Alfizah; Kosai, Nik Ritza; Mohamed Taher, Mustafa; Mohamed Rose, Isa

    2016-10-01

    Comprehensive immunophenotyping cluster of differentiation (CD) antigens in gastric adenocarcinoma, specifically between Helicobacter pylori-infected and -uninfected gastric cancer patients by using DotScan(™) antibody microarray has not been conducted. Current immunophenotyping techniques include flow cytometry and immunohistochemistry are limited to the use of few antibodies for parallel examination. We used DotScan(™) antibody microarray consisting 144 CD antibodies to determine the distribution of CD antigens in gastric adenocarcinoma cells and to elucidate the effect of H. pylori infection toward CD antigen expression in gastric cancer. Mixed leukocytes population derived from gastric adenocarcinoma patients were immunophenotyped using DotScan(™) antibody microarray. AGS cells were infected with H. pylori strains and cells were captured on DotScan(™) slides. Cluster of differentiation antigens involved in perpetuating the tolerance of immune cells to tumor cells was upregulated in gastric adenocarcinoma cells compared to normal cells. CD279 which is essential in T cells apoptosis was found to be upregulated in normal cells. Remarkably, H. pylori-infected gastric cancer patients exhibited upregulated expression of CD27 that important in maintenance of T cells. Infection of cagA+ H. pylori with AGS cells increased CD antigens expression which involved in cancer stem cell while cagA- H. pylori polarized AGS cells to express immune-regulatory CD antigens. Increased CD antigens expression in AGS cells infected with cagA+ H. pylori were also detected in H. pylori-infected gastric cancer patients. This study suggests the tolerance of immune system toward tumor cells in gastric cancer and distinct mechanisms of immune responses exploited by different H. pylori strains. © 2016 John Wiley & Sons Ltd.

  6. VNAR single-domain antibodies specific for BAFF inhibit B cell development by molecular mimicry.

    Science.gov (United States)

    Häsler, Julien; Flajnik, Martin F; Williams, Gareth; Walsh, Frank S; Rutkowski, J Lynn

    2016-07-01

    B cell-activating factor (BAFF) plays a dominant role in the B cell homeostasis. However, excessive BAFF promotes the development of autoreactive B-cells and several antibodies have been developed to block its activity. Bispecific antibodies with added functionality represent the next wave of biologics that may be more effective in the treatment of complex autoimmune disease. The single variable domain from the immunoglobulin new antigen receptor (VNAR) is one of the smallest antibody recognition units that could be combined with monospecific antibodies to develop bispecific agents. We isolated a panel of BAFF-binding VNARs with low nM potency from a semi-synthetic phage display library and examined their functional activity. The anti-BAFF VNARs blocked the binding of BAFF to all three of its receptors (BR3, TACI and BCMA) and the presence of the conserved DXL receptor motif found in the CDR3 regions suggests molecular mimicry as the mechanism of antagonism. One clone was formatted as an Fc fusion for functional testing and it was found to inhibit both mouse and human BAFF with equal potency ex vivo in a splenocyte proliferation assay. In mice, subchronic administration reduced the number of immature and transitional intermediates B cells and mature B cell subsets. These results indicate that VNAR single domain antibodies function as selective B-cell inhibitors and offer an alternative molecular format for targeting B-cell disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule.

    Science.gov (United States)

    Nollet, Marie; Stalin, Jimmy; Moyon, Anaïs; Traboulsi, Waël; Essaadi, Amel; Robert, Stéphane; Malissen, Nausicaa; Bachelier, Richard; Daniel, Laurent; Foucault-Bertaud, Alexandrine; Gaudy-Marqueste, Caroline; Lacroix, Romaric; Leroyer, Aurélie S; Guillet, Benjamin; Bardin, Nathalie; Dignat-George, Françoise; Blot-Chabaud, Marcel

    2017-12-22

    CD146 is an adhesion molecule present on many tumors (melanoma, kidney, pancreas, breast, ...). In addition, it has been shown to be expressed on vascular endothelial and smooth muscle cells. Generating an antibody able to specifically recognize CD146 in cancer cells (designated as tumor CD146), but not in normal cells, would thus be of major interest for targeting tumor CD146 without affecting the vascular system. We thus generated antibodies against the extracellular domain of the molecule produced in cancer cells and selected an antibody that specifically recognizes tumor CD146. This antibody (TsCD146 mAb) was able to detect CD146-positive tumors in human biopsies and in vivo , by PET imaging, in a murine xenograft model. In addition, TsCD146 mAb antibody was able to specifically detect CD146-positive cancer microparticles in the plasma of patients. TsCD146 mAb displayed also therapeutic effects since it was able to reduce the growth of human CD146-positive cancer cells xenografted in nude mice. This effect was due to a decrease in the proliferation and an increase in the apoptosis of CD146-positive cancer cells after TsCD146-mediated internalization of the cell surface CD146. Thus, TsCD146 mAb could be of major interest for diagnostic and therapeutic strategies against CD146-positive tumors in a context of personalized medicine.

  8. Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Cheney, Carolyn M; Stephens, Deborah M; Mo, Xiaokui; Rafiq, Sarwish; Butchar, Jonathan; Flynn, Joseph M; Jones, Jeffrey A; Maddocks, Kami; O'Reilly, Adrienne; Ramachandran, Abhijit; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab's potency against CLL cells. In vitro assessment of ocaratuzumab's direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P<0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1-10 ug/ml; P<0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P<0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing

  9. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy

    Directory of Open Access Journals (Sweden)

    Muhamad Alif Che Nordin

    2018-02-01

    Full Text Available The discovery of highly active antiretroviral therapy (HAART in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS. However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.

  11. Alloimmunization due to red cell antibodies in Rhesus positive Omani Pregnant Women: Maternal and Perinatal outcome

    Directory of Open Access Journals (Sweden)

    Tamima Al-Dughaishi

    2015-01-01

    Full Text Available Objective: This study is aimed to determine the prevalence of alloimmunization due to antibodies to red blood cell (RBC antigens (other than rhesus [Rh] antigen and report the maternal, perinatal, and neonatal outcomes. Materials and Methods: A retrospective review of medical records of all patients with minor RBCs antibodies alloimmunization who were followed and delivered at Sultan Qaboos University Hospital, Oman from June 2011 to June 2013. Maternal characteristics, antibody type, antibody titer in addition to perinatal and neonatal outcomes were reviewed. Results: There were 1160 patients with Rh positive status in the study. The most common ABO blood group was O, followed by A, B, and AB. We found 33 out of 1160 Rh positive women alloimmunized with minor RBCs antibodies that gave a prevalence of minor RBCs alloimmunization of 2.7%. The most frequent antibody was anti-E 38%, followed by anti-c 17% and anti-kell 17%. 6 of these 33 patients were identified to have significant antibody titer, and two cases showed evidence of fetal anemia. Only one case required an intrauterine blood transfusion. The most common neonatal complication was jaundice in 53%, followed by respiratory distress syndrome in 28%. Two cases complicated by neonatal anemia required a postnatal blood transfusion. Conclusion: Alloimmunization with anti-E, anti-c, and anti-kell were the most common antibodies among the study group. Minor RBCs alloimmunization was an important cause of neonatal morbidity.

  12. Prevalence of irregular red blood cell antibodies among healthy blood donors in Delhi population.

    Science.gov (United States)

    Garg, Neeraj; Sharma, Tanya; Singh, Bharat

    2014-06-01

    To evaluate the prevalence of the anti-red blood cell antibodies among healthy blood donors. Antibody screening of all voluntary blood donor serum was performed as routine immunohematological procedure. Positive sera were further investigated to identify the specificity of irregular erythrocyte antibody by commercially available red cell panel (ID-Dia Panel, Diamed-ID Microtyping System). A total of 47,450 donors were screened for the presence of irregular erythrocyte antibodies. A total of forty-six donors showed presence of alloantibodies in their serum (46/47,450%, 0.09%), yielding a prevalence of 0.09%. Most frequent alloantibodies identified were of MNS blood group system. The results showed statistically a higher prevalence of RBC alloantibodies in females than in males. Screening for presence of alloantibodies in donor blood is important to provide compatible blood products and to avoid transfusion reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Grum-Schwensen, Birgitte; Beck, Mette K

    2012-01-01

    microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment......The small Ca-binding protein, S100A4, has a well-established metastasis-promoting activity. Moreover, its expression is tightly correlated with poor prognosis in patients with numerous types of cancer. Mechanistically, the extracellular S100A4 drives metastasis by affecting the tumor...... of T cells to the site of the primary tumor. In vitro studies demonstrated that this antibody efficiently reduced the invasion of T cells in a fibroblast monolayer. Moreover, it was capable of suppressing the invasive growth of human and mouse fibroblasts. We presume therefore that the antibody exerts...

  14. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  15. Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells into Antibody Secreting Cells.

    Directory of Open Access Journals (Sweden)

    Michael C Rahe

    Full Text Available Immunological prevention of infectious disease, especially viral, is based on antigen-specific long-lived memory B cells. To test for cellular proliferation and differentiation factors in swine, an outbred model for humans, CD21+ B cells were activated in vitro with CD40L and stimulated with purported stimulatory cytokines to characterize functional responses. IL-21 induced a 3-fold expansion in total cell numbers with roughly 15% of all B cells differentiating to IgM or IgG antibody secreting cells (ASCs. However, even with robust proliferation, cellular viability rapidly deteriorated. Therefore, a proliferation inducing ligand (APRIL and B cell activating factor (BAFF were evaluated as survival and maintenance factors. BAFF was effective at enhancing the viability of mature B cells as well as ASCs, while APRIL was only effective for ASCs. Both cytokines increased approximately two-fold the amount of IgM and IgG which was secreted by IL-21 differentiated ASCs. Mature B cells from porcine reproductive and respiratory virus (PRRSV immune and naïve age-matched pigs were activated and treated with IL-21 and then tested for memory cell differentiation using a PRRSV non-structural protein 7 ELISPOT and ELISA. PRRSV immune pigs were positive on both ELISPOT and ELISA while naïve animals were negative on both assays. These results highlight the IL-21-driven expansion and differentiation of memory B cells in vitro without stimulation of the surface immunoglobulin receptor complex, as well as the establishment of a defined memory B cell culture system for characterization of vaccine responses in outbred animals.

  16. A novel monoclonal antibody of human stem cell factor inhibits umbilical cord blood stem cell ex vivo expansion

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2012-12-01

    Full Text Available Abstract Stem cell factor (SCF activates hematopoietic stem cell (HSC self-renewal and is being used to stimulate the ex vivo expansion of HSCs. The mechanism by which SCF supports expansion of HSCs remains poorly understood. In cord blood ex vivo expansion assays, a newly produced anti-SCF monoclonal antibody (clone 23C8 was found to significantly inhibit the expansion of CD34+ cells. This antibody appears to bind directly to a part of SCF that is critical for biological activity toward expansion of CD34+ cells, which is located in the first 104 amino acids from the NH2-terminus.

  17. Influences of Pre-formed Donor-Specific Anti-Human Leukocyte Antigen Antibodies in Living-Donor Renal Transplantation: Results With Graft Immunocomplex Capture Fluorescence Analysis.

    Science.gov (United States)

    Nakamura, T; Ushigome, H; Watabe, K; Imanishi, Y; Masuda, K; Matsuyama, T; Harada, S; Koshino, K; Iida, T; Nobori, S; Yoshimura, N

    2017-06-01

    Advances in immunosuppressants enable organ transplantation for sensitized patients. However, influences of pre-formed donor-specific anti-human leukocyte antigen (HLA) antibodies (DSA) have not been fully understood in renal transplantation (RT). On the other hand, immunocomplex capture fluorescence analysis (ICFA) is a reliable method to detect donor-specific anti-HLA antibodies and HLA antigen complexes. Graft ICFA can detect DSA in an allograft (g-DSA). To elucidate the consequences of pre-formed DSA, 198 patients who underwent living-donor RT were enrolled for this study (observation period: 57.8 ± 34.9 months); 187 patients in the DSA- group (excluding ABO-incompatible cases) and 11 patients in the DSA+ group. Before RT, all DSA+ patients had undergone rituximab administration and plasmapheresis. For a graft ICFA, the biopsy specimen (1 × 10 5 cells) was dissolved, and HLA antigens were captured by anti-HLA beads. Finally, DSA-HLA complexes were detected by means of PE-conjugated anti-human IgG antibodies and analyzed by use of a Luminex system. A ratio (sample/blank beads, mean of fluorescence intensity) was calculated: ≥1.0 was determined as positive g-DSA. There were no significant differences in 5-year graft survival (87.9%/100% in the DSA-/DSA+ groups, respectively). In terms of antibody-mediated rejection (AMR), within 1 month after RT, pathologically determined AMR occurred 3.2% and 63.4% in the DSA- and DSA+ groups, respectively (P < .0001). However, interestingly, more than half of them (57.1%) indicated only subclinical AMR, that is, no fluctuation of S-Cr. As representative of 2 cases of subclinical AMR, g-DSA deposition could be confirmed (1.15 ± 0.04) at 1 hour after reperfusion by graft ICFA. Furthermore, g-DSA shifted to 2.20 ± 0.98 at 3 weeks after transplantation, along with a decline in s-DSA mean of fluorescence intensity (1718-506.5). Although pathologically determined AMR occurred more frequently in pre-formed DSA+ recipients, it

  18. Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding.

    Directory of Open Access Journals (Sweden)

    Gopal Sapparapu

    2016-06-01

    Full Text Available Noroviruses (NoV are the most common cause of non-bacterial acute gastroenteritis and cause local outbreaks of illness, especially in confined situations. Despite being identified four decades ago, the correlates of protection against norovirus gastroenteritis are still being elucidated. Recent studies have shown an association of protection with NoV-specific serum histo-blood group antigen-blocking antibody and with serum IgA in patients vaccinated with NoV VLPs. Here, we describe the isolation and characterization of human monoclonal IgG and IgA antibodies against a GI.I NoV, Norwalk virus (NV. A higher proportion of the IgA antibodies blocked NV VLP binding to glycans than did IgG antibodies. We generated isotype-switched variants of IgG and IgA antibodies to study the effects of the constant domain on blocking and binding activities. The IgA form of antibodies appears to be more potent than the IgG form in blocking norovirus binding to histo-blood group antigens. These studies suggest a unique role for IgA antibodies in protection from NoV infections by blocking attachment to cell receptors.

  19. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells.

    Science.gov (United States)

    Gantke, Thorsten; Weichel, Michael; Herbrecht, Carmen; Reusch, Uwe; Ellwanger, Kristina; Fucek, Ivica; Eser, Markus; Müller, Thomas; Griep, Remko; Molkenthin, Vera; Zhukovsky, Eugene A; Treder, Martin

    2017-09-01

    Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Generation and functional characterization of anti-clonotype antibodies to human T-cell receptors

    NARCIS (Netherlands)

    Steenbakkers, PGA; Boots, AMH; Rijnders, AWM

    1997-01-01

    Monoclonal antibodies (mAb) directed against the clonotypic structure of the T-cell receptor (TCR) may be useful reagents in the study and therapy of T-cell-mediated diseases. In contrast to several reports concerning the generation of anti-clonotype mAb to mouse TCR, only very limited numbers of

  1. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the ...

  2. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepa- titis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology model- ling and ...

  3. Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma

    NARCIS (Netherlands)

    Luiten, R. M.; Coney, L. R.; Fleuren, G. J.; Warnaar, S. O.; Litvinov, S. V.

    1996-01-01

    The monoclonal antibody (MAb) G250 binds to a tumour-associated antigen, expressed in renal cell carcinoma (RCC), which has been demonstrated to be a suitable target for antibody-mediated immunotherapy. A bispecific antibody having both G250 and anti-CD3 specificity can cross-link G250

  4. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  5. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chia-Yen; Chen, Gregory J.; Tai, Pei-Han; Yang, Yu-Chen [Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan (China); Hsu, Yu-Shen, E-mail: yshsu@advagene.com.tw [Laboratory of Biopharmaceutical Research, Advagene Biopharma, Taipei, Taiwan (China); Chang, Mingi, E-mail: mingi.chang@advagene.com.tw [Laboratory of Biopharmaceutical Research, Advagene Biopharma, Taipei, Taiwan (China); Hsu, Chuan-Lung, E-mail: fabio@dcb.org.tw [Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan (China)

    2016-05-13

    Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yields have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies. - Highlights: • A bispecific antibody (bsAb) can increase immunotherapeutic efficacy. • A tetravalent bsAb with binding specificity for the CD20 and CD3 antigens is proposed. • A linker-hinge domain (LHD) within the bsAb results in improved antibody properties.

  6. An unstable Th epitope of P. falciparum fosters central memory T cells and anti-CS antibody responses.

    Directory of Open Access Journals (Sweden)

    Carlos A Parra-López

    Full Text Available Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite. A major target of the antibody response to sporozoites are the repeat epitopes of the circumsporozoite (CS protein, which span almost one half of the protein. Antibodies to these repeats can neutralize sporozoite infectivity. Generation of protective antibody responses to the CS protein (anti-CS Ab requires help by CD4 T cells. A CD4 T cell epitope from the CS protein designated T* was previously identified by screening T cells from volunteers immunized with irradiated P. falciparum sporozoites. The T* sequence spans twenty amino acids that contains multiple T cell epitopes restricted by various HLA alleles. Subunit malaria vaccines including T* are highly immunogenic in rodents, non-human primates and humans. In this study we characterized a highly conserved HLA-DRβ1*04:01 (DR4 restricted T cell epitope (QNT-5 located at the C-terminus of T*. We found that a peptide containing QNT-5 was able to elicit long-term anti-CS Ab responses and prime CD4 T cells in HLA-DR4 transgenic mice despite forming relatively unstable MHC-peptide complexes highly susceptible to HLA-DM editing. We attempted to improve the immunogenicity of QNT-5 by replacing the P1 anchor position with an optimal tyrosine residue. The modified peptide QNT-Y formed stable MHC-peptide complexes highly resistant to HLA-DM editing. Contrary to expectations, a linear peptide containing QNT-Y elicited almost 10-fold lower long-term antibody and IFN-γ responses compared to the linear peptide containing the wild type QNT-5 sequence. Some possibilities regarding why QNT-5 is more effective than QNT-Y in inducing long-term T cell and anti-CS Ab when used as vaccine are discussed.

  7. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  8. Affinity isolation of antigen-specific circulating B cells for generation of phage display-derived human monoclonal antibodies

    DEFF Research Database (Denmark)

    Ditzel, Henrik

    2009-01-01

    A method is described for affinity isolation of antigen-specific circulating B cells of interest for subsequent generation of immune antibody phage display libraries. This approach should overcome the problem of low yields of monoclonal antibodies of interest in the libraries generated from...... the frequency of antibody phage particles of interest in the library and allow for efficient isolation monoclonal antibodies with the predefined specificity....

  9. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    Science.gov (United States)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  10. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.

    Science.gov (United States)

    Watanabe, M; Wallace, P K; Keler, T; Deo, Y M; Akewanlop, C; Hayes, D F

    1999-02-01

    MDX-210 is a bispecific antibody (BsAb) with specificity for both the proto-oncogene product of HER-2/neu (c-erbB-2) and FcgammaRI (CD64). HER-2/neu is overexpressed in malignant tissue of approximately 30% of patients with breast cancer, and FcgammaRI is expressed on human monocytes, macrophages, and IFN-gamma activated granulocytes. We investigated phagocytosis and cytolysis of cultured human breast cancer cells by human monocyte-derived macrophages (MDM) mediated by BsAb MDX-210, its partially humanized derivative (MDX-H210), and its parent MoAb 520C9 (anti-HER-2/neu) under various conditions. Purified monocytes were cultured with GM-CSF, M-CSF, or no cytokine for five or six days. Antibody dependent cellular phagocytosis (ADCP) and cytolysis (ADCC) assays were performed with the MDM and HER-2/neu positive target cells (SK-BR-3). ADCP was measured by two-color fluorescence flow cytometry using PKH2 (green fluorescent dye) and phycoerythrin-conjugated (red) monoclonal antibodies (MoAb) against human CD14 and CD11b. ADCC was measured with a non-radioactive LDH detection kit. Both BsAb MDX-210 (via FcgammaRI) and MoAb 520C9 (mouse IgG1, via FcgammaRII) mediated similar levels of ADCP and ADCC. ADCP mediated by BsAb MDX-H210 was identical to that mediated by BsAb MDX-210. Confocal microscopy demonstrated that dual-labeled cells represented true phagocytosis. Both ADCP and ADCC were higher when MDM were pre-incubated with GM-CSF than when incubated with M-CSF. BsAb MDX-210 is as active in vitro as the parent MoAb 520C9 in inducing both phagocytosis and cytolysis of MDM. MDX-210 and its partially humanized derivative, MDX-H210, mediated similar levels of ADCP. GM-CSF appears to superior to M-CSF in inducing MDM-mediated ADCC and ADCP. These studies support the ongoing clinical investigations of BsAb MDX-210 and its partially humanized derivative.

  11. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  12. Persistence of recipient human leucocyte antigen (HLA) antibodies and production of donor HLA antibodies following reduced intensity allogeneic haematopoietic stem cell transplantation.

    Science.gov (United States)

    Fasano, Ross M; Mamcarz, Ewelina; Adams, Sharon; Donohue Jerussi, Theresa; Sugimoto, Kyoko; Tian, Xin; Flegel, Willy A; Childs, Richard W

    2014-08-01

    The effects of reduced intensity conditioning (RIC) on human leucocyte antigen (HLA)-alloimmunization and platelet transfusion refractoriness (PTR) following allogeneic haematopoietic stem cell transplantation (Allo-HSCT) are unknown. We studied HLA-alloantibodies in a cohort of 16 patients (eight HLA-alloimmunized with pre-transplant histories of PTR and eight non-alloimmunized controls) undergoing Allo-HSCT using fludarabine/cyclophosphamide-based RIC. Pre- and post-transplant serum samples were analysed for HLA-antibodies and compared to myeloid, T-cell and bone marrow plasma cell chimaerism. Among alloimmunized patients, the duration that HLA-antibodies persisted post-transplant correlated strongly with pre-transplant HLA-antibody mean fluorescence intensity (MFI) and PRA levels (Spearman's rank correlation = 0·954 (P = 0·0048) and 0·865 (P = 0·0083) respectively). Pre-transplant MFI >10,000 was associated with post-transplant HLA antibody persistence >100 d (P = 0·029). HLA-antibodies persisted ≥100 d in 3/8 patients despite recipient chimaerism being undetectable in all lympho-haematopoietic lineages including plasma cells. Post-transplant de-novo HLA-antibodies developed in three control patients with two developing PTR; the donors for two of these patients demonstrated pre-existing HLA-antibodies of equivalent specificity to those in the patient, confirming donor origin. These data show HLA-antibodies may persist for prolonged periods following RIC. Further study is needed to determine the incidence of post-transplant PTR as a consequence of donor-derived HLA alloimmunization before recommendations on donor HLA-antibody screening can be made. © 2014 John Wiley & Sons Ltd.

  13. Transfer plate radioassay using cell monolayers to detect anti-cell surface antibodies synthesized by lymphocyte hybridomas

    International Nuclear Information System (INIS)

    Schneider, M.D.; Eisenbarth, G.S.

    1979-01-01

    A solid phase [ 125 I] Protein A radioassay for anti-cell surface antibodies is described, which employs target cell monolayers cultured on fenestrated polyvinyl chloride 96-well plates ('transfer plates'). The calibrated aperture in the bottom of each well is small enough to retain fluid contents by surface tension during monolayer growth, but also permits fluid to enter the wells when transfer plate are lowered into receptacles containing washing buffer on test sera. To assay for antibodies directed against target cell surface antigens, transfer plates bearing monolayers are inserted into microculture plates with corresponding 96-well geometry, thereby simultaneously sampling 96 wells. This assay allows rapid screening of hundreds of hybrid cell colonies for production of antibodies with desired tissue specificity. (Auth.)

  14. Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Gaetana Paolella

    Full Text Available BACKGROUND: Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2 activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. METHODS AND PRINCIPAL FINDINGS: We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins, three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. CONCLUSIONS: Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here

  15. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  17. Cellular response of ovarian carcinoma cells to antibody-photosensitizer-mediated injury

    Science.gov (United States)

    Hasan, Tayyaba; Sherwood, M. E.; Anderson, T.; Bamberg, Mike; Flotte, Thomas J.; Zurawski, Vince R., Jr.

    1990-07-01

    An anti-ovarian carcinoma antibody OC125 was conjugated to a derivative of the photosensitizer (PS) chiorin e6 yj polyglutamic acid. Target cells from a human ovarian cancer cell line were treated with this conjugate and laser irradiation at 656 rim (absorption maximum of PS) and fixed 24 h later for electron microscopy. Electron niicrographs showed a high degree of vacoulization, generalized cell necrosis, and extrusion of organelles. No specific damage to the plasma membrane was noted. Untreated control cells, or cells treated with conjugate or light alone exhibited no injury. These data suggest that even though the antibody recognizes a cell surface antigen, the conjugate is internalized under the conditions of the experiment.

  18. Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade A and B viruses.

    Directory of Open Access Journals (Sweden)

    Hugo Mouquet

    Full Text Available Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity. Our results support previous findings showing a diverse antibody response to HIV gp140 envelope protein, characterized by differentially expanded B-cell clones producing highly hypermutated antibodies with heterogenous gp140-specificity and neutralizing activity. In addition to their high-affinity binding to the HIV spike, the vast majority of the new anti-gp140 antibodies are also polyreactive. Although none of the new antibodies are as broad or potent as VRC01 or PG9, two clonally-related antibodies isolated from a clade A HIV-1 infected donor, directed against the gp120 variable loop 3, rank in the top 5% of the neutralizers identified in our large collection of 185 unique gp140-specific antibodies in terms of breadth and potency.

  19. A simplification of the enzyme-linked immunospot technique. Increased sensitivity for cells secreting IgG antibodies to Haemophilus influenzae type b capsular polysaccharide

    DEFF Research Database (Denmark)

    Barington, T; Sparholt, S; Juul, L

    1992-01-01

    A simplified enzyme-linked immunospot (ELISPOT) technique is described for the detection of cells secreting antibodies to tetanus toxoid (TT), diphtheria toxoid (DT) or Haemophilus influenzae type b capsular polysaccharide (PRP). By combining the cell suspension with the enzyme-linked secondary...... antibodies in one incubation, the second incubation and washing procedure could be omitted from the original technique. The simplified assay had the same sensitivity for anti-TT and anti-DT spot-forming cells as the ordinary ELISPOT assay. The IgG anti-PRP spots were, however, improved both in quality...... and in quantity (median: 40% more spots), while the detection of IgM and IgA anti-PRP spot-forming cells was the same in the two techniques. This simplified technique can probably also be used to save time in other antigen systems and should be considered when designing ELISPOT assays for the detection...

  20. LIPOPOLYSACCHARIDE INDUCES THE PRODUCTION OF DIAGNOSTIC MONOCLONAL ANTIBODY BY HYBRIDOMA CELLS AGAINST CONGENITAL ADRENAL HYPERPLASIA

    Directory of Open Access Journals (Sweden)

    GEK KEE CHUA

    2017-11-01

    Full Text Available The purpose of this research is to screen and identify the potential inducers in maximizing the production of monoclonal antibody by hybridoma 192 cell line for Congenital Adrenal Hyperplasia diagnostic. There are nine inducers used in this research, namely lysozyme, aldolase, sodium butyrate, sodium phosphate, potassium phosphate, dimethyl sulfoxide, lipopolysaccharide, essential amino acids, and nonessential amino acids. Hybridoma 192 cell was cultured in 5% CO2 incubator at 37°C and ˃80% humidity in the medium with different concentrations of inducer agents. The inducers were added at the beginning of the culture and the samples were taken after 72 h of culture. The performance of these inducer agents was assessed based on the maximum monoclonal antibody titer achieved using Enzyme-linked Immunosorbent Assay. Lipopolysaccharide was found to increase the maximum monoclonal antibody titer when supplemented at 8 to 12 µg/mL. After optimization using one-factor central composite design at this range, the optimum point was determined to be 8 µg/mL. Verification experiments shows that lipopolysaccharide enhanced the average specific monoclonal antibody production rate by 56% relative to control. In conclusion, lipopolysaccharide at 8 µg/mL is able to increase the monoclonal antibody specific production of hybridoma 192 cell line.

  1. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Davide Corti

    2010-01-01

    Full Text Available The isolation of human monoclonal antibodies (mAbs that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine.We immortalized IgG(+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16 specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194 bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20 with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.

  2. Engineered protease-resistant antibodies with selectable cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Grugan, Katharine D; Soring, Keri L; Heeringa, Katharine A; McCarthy, Stephen G; Bannish, Gregory; Perpetua, Meredith; Lynch, Frank; Jordan, Robert E; Strohl, William R; Brezski, Randall J

    2013-10-25

    Molecularly engineered antibodies with fit-for-purpose properties will differentiate next generation antibody therapeutics from traditional IgG1 scaffolds. One requirement for engineering the most appropriate properties for a particular therapeutic area is an understanding of the intricacies of the target microenvironment in which the antibody is expected to function. Our group and others have demonstrated that proteases secreted by invasive tumors and pathological microorganisms are capable of cleaving human IgG1, the most commonly adopted isotype among monoclonal antibody therapeutics. Specific cleavage in the lower hinge of IgG1 results in a loss of Fc-mediated cell-killing functions without a concomitant loss of antigen binding capability or circulating antibody half-life. Proteolytic cleavage in the hinge region by tumor-associated or microbial proteases is postulated as a means of evading host immune responses, and antibodies engineered with potent cell-killing functions that are also resistant to hinge proteolysis are of interest. Mutation of the lower hinge region of an IgG1 resulted in protease resistance but also resulted in a profound loss of Fc-mediated cell-killing functions. In the present study, we demonstrate that specific mutations of the CH2 domain in conjunction with lower hinge mutations can restore and sometimes enhance cell-killing functions while still retaining protease resistance. By identifying mutations that can restore either complement- or Fcγ receptor-mediated functions on a protease-resistant scaffold, we were able to generate a novel protease-resistant platform with selective cell-killing functionality.

  3. Use of monoclonal antibodies to distinguish pathogenic Naegleria fowleri (cysts, trophozoites, or flagellate forms) from other Naegleria species.

    Science.gov (United States)

    Sparagano, O; Drouet, E; Brebant, R; Manet, E; Denoyel, G A; Pernin, P

    1993-10-01

    Monoclonal antibodies (MAbs) reactive to the pathogenic amoeba Naegleria fowleri were analyzed by enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay, Western blotting (immunoblotting), and radioimmunoprecipitation assay (RIPA). Two MAbs (3A4 and 5D12) showed reactivity by ELISA with all N. fowleri strains tested and no reactivity with the five other Naegleria species, N. lovaniensis, N. gruberi, N. australiensis, N. jadini, and N. andersoni. These MAbs reacted with the three morphological forms of N. fowleri (trophozoites, cysts, and flagellates). The reactivity on Western blots was suppressed by treatment with metaperiodate, suggesting a carbohydrate epitope. Differences in reactivity patterns between trophozoites and cysts observed with radioimmunoprecipitation assay might reflect differences in biological properties. The formalin stability of the epitope may be useful in detecting N. fowleri in fixed biopsies and in investigating the pathological process.

  4. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  5. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production

    Directory of Open Access Journals (Sweden)

    Miho Ushijima

    2018-02-01

    Full Text Available A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR, which triggers activation of B cells and differentiation into plasma cells (PCs. Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab′2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2–Rac axis in PC differentiation and IgG antibody responses.

  6. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin.

    Science.gov (United States)

    Chandra, Ashleigh J; Lee, Sammy C S; Grünert, Ulrike

    2017-12-15

    In primates, over 17 morphological types of retinal ganglion cell have been distinguished by their dendritic morphology and stratification, but reliable markers for specific ganglion cell populations are still rare. The calcium binding protein calretinin is known to be expressed in the inner nuclear and the ganglion cell layer of marmoset retina, however, the specific cell type(s) expressing calretinin in the ganglion cell layer are yet to be determined. Here, we identified calretinin positive retinal ganglion cells in the common marmoset Callithrix jacchus. Double labeling with the ganglion cell marker RBPMS demonstrated that the large majority (80%) of the calretinin positive cells in the ganglion cell layer are ganglion cells, and 20% are displaced amacrine cells. The calretinin positive ganglion cells made up on average 12% of the total ganglion cell population outside of the foveal region and their proportion increased with eccentricity. Prelabeling with antibodies against calretinin and subsequent intracellular injection with DiI revealed that the large majority of the injected cells (n = 74) were either narrow thorny or broad thorny ganglion cells, 14 cells were displaced amacrine cells. Narrow thorny cells were further distinguished into outer and inner stratifying cells. In addition, weakly labeled cells with a large soma were identified as parasol ganglion cells. Our results show that three types of thorny ganglion cells in marmoset retina can be identified with antibodies against calretinin. Our findings are also consistent with the idea that the proportion of wide-field ganglion cell types increases in peripheral retina. © 2017 Wiley Periodicals, Inc.

  7. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Amy E Gilbert

    Full Text Available Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10 to primary and metastatic melanoma cells compared to healthy volunteers (n = 10 (P<0.0001. Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21 (P<0.0001. Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800 compared to 2% of cultures from healthy controls (n = 600 produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  8. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    Science.gov (United States)

    Gilbert, Amy E; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H; Takhar, Pooja; Geh, Jenny L C; Healy, Ciaran; Harries, Mark; Acland, Katharine M; Rudman, Sarah M; Beavil, Rebecca L; Blower, Philip J; Beavil, Andrew J; Gould, Hannah J; Spicer, James; Nestle, Frank O; Karagiannis, Sophia N

    2011-04-29

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  9. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART)

    DEFF Research Database (Denmark)

    Skov Jensen, Sanne; Fomsgaard, Anders; Borggren, Marie

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated...... during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART....

  10. Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells.

    Science.gov (United States)

    Toleikis, Lars; Frenzel, André

    2012-01-01

    Despite the rising impact of the generation of antibodies by phage display and other technologies, hybridoma technology still provides a valuable tool for the generation of high-affinity binders against different targets. But there exist several limitations of using hybridoma-derived antibodies. The source of the hybridoma clones are mostly rat or mouse B-lymphocytes. Therefore a human-anti-mouse or human-anti-rat antibody response may result in immunogenicity of these antibodies. This leads to the necessity of humanization of these antibodies where the knowledge of the amino acid sequence of the proteins is inalienable. Furthermore, additional in vitro modifications, e.g., affinity maturation or fusion to other proteins, are dependent on cloning of the antigen-binding domains.Here we describe the isolation of RNA from hybridoma cells and the primers that can be used for the amplification of VL and VH as well as the cloning of the antibody in scFv format and its expression in Escherichia coli.

  11. Investigation on Cell Proliferation with a New Antibody against Thymidine Kinase 1

    Directory of Open Access Journals (Sweden)

    Naining Wang

    2001-01-01

    Full Text Available The cytosolic thymidine kinase 1 (TK1 is one of the enzymes involved in DNA replication. Based on biochemical studies, TK1 is activated at late G1 of cell cycle, and its activity correlates with the cell proliferation. We have developed a polyclonal anti‐TK1 antibody against a synthetic peptide from the C‐terminus of human TK1. Using this antibody, here we demonstrate the exclusive location of TK1 in the cytoplasm of cells. Cell cycle dependent TK1 expression was studied by simultaneous fluorescence staining for TK1 and bromodeoxyuridine, by using elutriated cells, and by quantitation of the amount TK1 in relation to the cellular DNA content. TK1, which was strongly expressed in the cells in S+G2 period, raised at late G1 and decreased during mitosis. The amount of TK1 increased three folds from late G1 to G2. TK1 positive cells were demonstrated in areas of proliferation activity of various normal and malignant tissues. The new anti‐TK1 antibody works in archival specimens and is a specific marker of cell proliferation.

  12. Antibody against the insulin receptor causes disappearance of insulin receptors in 3T3-L1 cells: a possible explanation of antibody-induced insulin resistance.

    OpenAIRE

    Grunfeld, C

    1984-01-01

    The effect of a rabbit antibody induced against the rat insulin receptor (RAR) was tested using cultured 3T3-L1 fat cells. As previously seen with antibodies against the insulin receptor from patients with the type B syndrome of insulin resistance and acanthosis nigricans, RAR acutely mimicked the action of insulin by stimulating deoxyglucose uptake. After prolonged exposure of 3T3-L1 cells to RAR, insulinomimetic activity was lost and the cells became resistant to the action of insulin. This...

  13. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... and by an up-regulation of enzymes involved in redox regulation and protein folding. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated proteins in whole cells. The results show that while the global thiol-disulfide state is affected to some extent...... by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion...

  14. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  15. Rare Association of Anti-Hu Antibody Positive Paraneoplastic Neurological Syndrome and Transitional Cell Bladder Carcinoma

    Directory of Open Access Journals (Sweden)

    S. Lukacs

    2012-01-01

    Full Text Available Introduction. Paraneoplastic encephalomyelitis (PEM and subacute sensory neuronopathy (SSN are remote effects of cancer, usually associated with small-cell lung carcinoma and positive anti-Hu antibody. We describe the rare association of bladder transitional cell carcinoma (TCC with anti-Hu antibody positivity resulting in this paraneoplastic neurological syndrome. Patient. A 76-year-old female presented with bilateral muscle weakness and paraesthesia of the upper and lower limbs in a length-dependent “glove and stocking” distribution. Central nervous system symptoms included cognitive problems, personality change, and truncal ataxia. Case notes and the literature were reviewed. Result. Autoantibody screening was positive for anti-Hu antibody (recently renamed antineuronal nuclear antibody 1, ANNA-1. The diagnosis of PEM and SSN was supported by MRI and lumbar puncture results. A superficial bladder TCC was demonstrated on CT and subsequently confirmed on histology. No other primary neoplasm was found on full-body imaging. The neurological symptoms were considered to be an antibody-mediated paraneoplastic neurological syndrome and improved after resection of the tumour. Discussion. The association of anti-Hu positive paraneoplastic neurological syndrome and TCC has not been described in the literature previously. We emphasize the need for detailed clinical examination and the importance of a multidisciplinary thought process and encourage further awareness of this rare association.

  16. Women's attitude towards prenatal screening for red blood cell antibodies, other than RhesusD

    NARCIS (Netherlands)

    Koelewijn, Joke M.; Vrijkotte, Tanja G. M.; de Haas, Masja; van der Schoot, C. E.; Bonsel, Gouke J.

    2008-01-01

    ABSTRACT: BACKGROUND: Since July 1998 all Dutch women (+/- 200,000/y) are screened for red cell antibodies, other than anti-RhesusD (RhD) in the first trimester of pregnancy, to facilitate timely treatment of pregnancies at risk for hemolytic disease of the fetus and newborn (HDFN). Evidence for

  17. Women's attitude towards prenatal screening for red blood cell antibodies, other than RhD

    NARCIS (Netherlands)

    J. Koelewijn; T.G.M. Vrijkotte (Tanja); M. de Haas; C.E. van der Schoot (Ellen); G.J. Bonsel (Gouke)

    2008-01-01

    textabstractBackground: Since July 1998 all Dutch women (± 200,000/y) are screened for red cell antibodies, other than anti-RhesusD (RhD) in the first trimester of pregnancy, to facilitate timely treatment of pregnancies at risk for hemolytic disease of the fetus and newborn (HDFN). Evidence for

  18. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech...

  19. A bacterial signal peptidase enhances processing of a recombinant single chain antibody fragment in insect cells

    NARCIS (Netherlands)

    Ailor, E; Pathmanathan, J; Jongbloed, JDH; Betenbaugh, MJ

    1999-01-01

    The production of an antibody single chain fragment (scFv) in insect cells was accompanied by the formation of an insoluble intracellular precursor even with the inclusion of the bee melittin signal peptide. The presence of the precursor polypeptide suggests a limitation in the processing of the

  20. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    NARCIS (Netherlands)

    Melchers, Mark; Bontjer, Ilja; Tong, Tommy; Chung, Nancy P. Y.; Klasse, Per Johan; Eggink, Dirk; Montefiori, David C.; Gentile, Maurizio; Cerutti, Andrea; Olson, William C.; Berkhout, Ben; Binley, James M.; Moore, John P.; Sanders, Rogier W.

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these

  1. T cell responsiveness correlates differentially with antibody isotype levels in clinical and asymptomatic filariasis

    NARCIS (Netherlands)

    Yazdanbakhsh, M.; Paxton, W. A.; Kruize, Y. C.; Sartono, E.; Kurniawan, A.; van het Wout, A.; Selkirk, M. E.; Partono, F.; Maizels, R. M.

    1993-01-01

    To establish the relationships among T and B cell responses, active infection, and clinical manifestations in lymphatic filariasis, filarial-specific lymphocyte proliferation, IgG antibody isotypes, and IgE levels were determined in an exposed population: 31 asymptomatic amicrofilaremics, 43

  2. Selection for antibody response against sheep red blood cells and layer age affect egg quality

    NARCIS (Netherlands)

    Brand, van den H.; Parmentier, H.K.; Kemp, B.

    2004-01-01

    1. After 22 generations of divergent selection for antibody response against sheep red blood cells (SRBC), hatchability differed between the selected lines. Whether there is a relationship between hatchability and egg traits in these lines is not clear. 2. The aim of the present study was to

  3. CD3 directed bispecific antibodies induce increased lymphocyte-endothelial cell interactions in vitro

    NARCIS (Netherlands)

    Molema, G; Tervaert, JWC; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    Bispecific antibody (BsMAb) BIS-1 has been developed to redirect the cytolytic activity of cytotoxic T lymphocytes (CTL) to epithelial glycoprotein-2 (EGP-2) expressing tumour cells; intravenous administration of BIS-1 F(ab')(2) to carcinoma patients in a phase I/II clinical trial, caused

  4. Antibodies That Block or Activate Mouse B Cell Activating Factor of the Tumor Necrosis Factor (TNF) Family (BAFF), Respectively, Induce B Cell Depletion or B Cell Hyperplasia.

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Schuepbach-Mallepell, Sonia; Vigolo, Michele; Willen, Laure; Tardivel, Aubry; Smulski, Cristian R; Zheng, Timothy S; Gommerman, Jennifer; Hess, Henry; Gottenberg, Jacques-Eric; Mackay, Fabienne; Donzé, Olivier; Schneider, Pascal

    2016-09-16

    B cell activating factor of the TNF family (BAFF), also known as B lymphocyte stimulator, is a ligand required for the generation and maintenance of B lymphocytes. In this study, the ability of different monoclonal antibodies to recognize, inhibit, or activate mouse BAFF was investigated. One of them, a mouse IgG1 named Sandy-2, prevented the binding of BAFF to all of its receptors, BAFF receptor, transmembrane activator and calcium modulating ligand interactor, and B cell maturation antigen, at a stoichiometric ratio; blocked the activity of mouse BAFF on a variety of cell-based reporter assays; and antagonized the prosurvival action of BAFF on primary mouse B cells in vitro A single administration of Sandy-2 in mice induced B cell depletion within 2 weeks, down to levels close to those observed in BAFF-deficient mice. This depletion could then be maintained with a chronic treatment. Sandy-2 and a previously described rat IgG1 antibody, 5A8, also formed a pair suitable for the sensitive detection of endogenous circulating BAFF by ELISA or using a homogenous assay. Interestingly, 5A8 and Sandy-5 displayed activities opposite to that of Sandy-2 by stimulating recombinant BAFF in vitro and endogenous BAFF in vivo These tools will prove useful for the detection and functional manipulation of endogenous mouse BAFF and provide an alternative to the widely used BAFF receptor-Fc decoy receptor for the specific depletion of BAFF in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins.

    Science.gov (United States)

    Li, Yifeng

    2017-06-01

    Recombinant therapeutic proteins are typically produced through cell culture process. Host cell proteins (HCPs) are endogenous proteins derived from the host cells used for such bioproduction. HCPs form a major class of process-related impurities and even at low levels they can potentially compromise the safety and efficacy of biopharmaceuticals. Therefore, they need to be adequately removed via the downstream process. HCPs are complex mixtures with diverse physiochemical properties, and certain subpopulations can bind to the intended product. Hence reducing them to the generally accepted level can be challenging. This article reviews effective HCP removing strategies at different stages of downstream process for monoclonal antibodies and Fc-fusion proteins. When used in combination, these strategies can greatly enhance the chance of meeting the drug substance specifications for residual HCP. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Antiviral antibodies stimulate production of reactive oxygen species in cultured canine brain cells infected with canine distemper virus.

    Science.gov (United States)

    Bürge, T; Griot, C; Vandevelde, M; Peterhans, E

    1989-06-01

    Canine distemper is characterized mainly by respiratory, enteric, and nervous symptoms. Infection of the central nervous system results in demyelination, to which inflammation has been shown to contribute significantly. It has been proposed that macrophages play a major role as effector cells in this process. We report that cultured dog brain cells contain a population of macrophages capable of producing reactive oxygen species as measured by luminol-dependent chemiluminescence. In cultures infected with canine distemper virus, a burst of reactive oxygen is triggered by antiviral antibody. This response depends on the presence of viral antigens on the surfaces of infected cells and is mediated by the interaction of antigen-bound antibody with Fc receptors on the macrophages. Since there is no evidence in vitro or in vivo that oligodendrocytes, the cells forming myelin, are infected, our observation supports the hypothesis that "innocent bystander killing" is important in demyelination caused by canine distemper virus. Reactive oxygen species released from macrophages may contribute to destruction of myelin.

  7. A novel human monoclonal antibody, TONO-1, reactive with T-lymphocytic leukemia cells.

    Science.gov (United States)

    Numasaki, M; Fukuoka, Y; Kudo, T; Saeki, H; Tachibana, T; Motomiya, M; Nukiwa, T

    1995-07-04

    Mononuclear cells from the peripheral blood of patients with systemic lupus erythematosus (SLE) were transformed with the Epstein-Barr virus (EBV) and the resultant polyclonal B-lymphoblastoid cell lines were tested for antibody activity to membrane antigens of certain T-cell lines. B lymphoblastoid cell lines secreting specific antibodies were fused with (mouse x human) heteromyeloma SHM-D33 cells. Among the large number of hybridomas generated, one which produced a human monoclonal antibody (MAb) TONO-1 (IgM, lambda) was selected. MAb TONO-1 proved to be reactive with 4 human T-cell lines, HPB-MLT, L-MAT, MOLT-3 and MOLT-4F, but not with B-leukemia, Burkitt's lymphoma, myelomonocytic leukemia, erythroleukemia or non-hematopoietic malignant cell lines. MAb TONO-1 reacted positively with fresh leukemia cells from 2 of 7 patients with acute T-lymphocytic leukemia, but no reaction was observed in non-T-cell leukemia cases. Normal lymphocytes, monocytes, granulocytes, red blood cells and platelets in the peripheral blood did not demonstrate remarkable binding. Neither thymocytes nor bone-marrow cells from healthy volunteers were reactive. The antigens defined by MAb TONO-1 were polypeptides of 57 kDa and 68 kDa. Immunohistological studies revealed no staining of thymocytes in the thymus of a 6-month-old child, but showed epithelial reticular cells and Hassall's corpuscles to stain positively. These results suggest that MAb TONO-1 is directed to T-leukemic cells and some components of thymus tissue.

  8. Age-associated B cells (ABC) inhibit B lymphopoiesis and alter antibody repertoires in old age.

    Science.gov (United States)

    Riley, Richard L; Khomtchouk, Kelly; Blomberg, Bonnie B

    2017-11-01

    With old age (∼2y old), mice show substantial differences in B cell composition within the lymphoid tissues. In particular, a novel subset of IgM + CD21/35 lo/- CD23 - mature B cells, the age-associated B cells or ABC, increases numerically and proportionately. This occurs at the expense of other B cell subsets, including B2 follicular B cells in spleen and recirculating primary B cells in bone marrow. Our studies suggest that ABC have a distinctive antibody repertoire, as evidenced by relatively high reactivity to the self-antigens phosphorylcholine (PC) and malondialdehyde (MDA). While PC and MDA are found on apoptotic cells and oxidized lipoproteins, antibodies to these antigens are also cross-reactive with epitopes on bacterial species. In old mice, ABC express TNFα and are pro-inflammatory. ABC can inhibit growth and/or survival in pro-B cells as well as common lymphoid progenitors (CLP). In particular, ABC cause apoptosis in pro-B cells with relatively high levels of the surrogate light chain (SLC) and, consequently, promote an "SLC low" pathway of B cell differentiation in old mice. SLC together with μ heavy chain comprises the pre-B cell receptor (preBCR) critical for pre-B cell expansion and selection of the μ heavy chain Vh repertoire. The low level of SLC likely impairs normal preBCR driven proliferation and alters μ heavy chain Vh selection thereby affecting the antibody specificities of new B cells. In this manner, ABC may contribute to both qualitative and quantitative disruptions of normal B lymphopoiesis in old age. Copyright © 2017. Published by Elsevier Inc.

  9. Human embryonic stem cells form functional thyroid follicles.

    Science.gov (United States)

    Ma, Risheng; Latif, Rauf; Davies, Terry F

    2015-04-01

    The molecular events that lead to human thyroid cell speciation remain incompletely characterized. It has been shown that overexpression of the regulatory transcription factors Pax8 and Nkx2-1 (ttf-1) directs murine embryonic stem (mES) cells to differentiate into thyroid follicular cells by initiating a transcriptional regulatory network. Such cells subsequently organized into three-dimensional follicular structures in the presence of extracellular matrix. In the current study, human embryonic stem (hES) cells were studied with the aim of recapitulating this scenario and producing functional human thyroid cell lines. Reporter gene tagged pEZ-lentiviral vectors were used to express human PAX8-eGFP and NKX2-1-mCherry in the H9 hES cell line followed by differentiation into thyroid cells directed by Activin A and thyrotropin (TSH). Both transcription factors were expressed efficiently in hES cells expressing either PAX8, NKX2-1, or in combination in the hES cells, which had low endogenous expression of these transcription factors. Further differentiation of the double transfected cells showed the expression of thyroid-specific genes, including thyroglobulin (TG), thyroid peroxidase (TPO), the sodium/iodide symporter (NIS), and the TSH receptor (TSHR) as assessed by reverse transcription polymerase chain reaction and immunostaining. Most notably, the Activin/TSH-induced differentiation approach resulted in thyroid follicle formation and abundant TG protein expression within the follicular lumens. On stimulation with TSH, these hES-derived follicles were also capable of dose-dependent cAMP generation and radioiodine uptake, indicating functional thyroid epithelial cells. The induced expression of PAX8 and NKX2-1 in hES cells was followed by differentiation into thyroid epithelial cells and their commitment to form functional three-dimensional neo-follicular structures. The data provide proof of principal that hES cells can be committed to thyroid cell speciation under

  10. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    Science.gov (United States)

    1990-02-01

    Bacillus circulans ATCC 4513 b - - NR NT NT NT NT Bacillus coagulans ATCC 7050 b - - NR NT NT NT NT Bacillus eugilitis B-61 f - - NR NT NT NT NT...American Society for Microbiology W Identification of Bacillus anthracis by-U-sing Monoclonal Antibody CC to Cell Wall Galactose-N-Acetylglucosamine...Received 22 June 1989/Accepted 31 October 1989 ’ Guanidine extracts of crude Bacillus anthracis cell wall were used to vaccinate BALB/c mice and to

  11. Interfacing antibody-based microarrays and digital holography enables label-free detection for loss of cell volume.

    Science.gov (United States)

    El-Schich, Zahra; Nilsson, Emmy; Gerdtsson, Anna S; Wingren, Christer; Wingren, Anette Gjörloff

    2015-11-01

    We introduce the combination of digital holographic microscopy (DHM) and antibody microarrays as a powerful tool to measure morphological changes in specifically antibody-captured cells. The aim of the study was to develop DHM for analysis of cell death of etoposide-treated suspension cells. We demonstrate that the cell number, mean area, thickness and volume were noninvasively measured by using DHM. The cell number was stable over time, but the two cell lines showed changes of cell area and cell irregularity after treatment. The cell volume in etoposide-treated cells was decreased, whereas untreated cells showed stable volume. Our results provide proof of concept for using DHM combined with antibody-based microarray technology for detecting morphological changes in captured cells.

  12. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    International Nuclear Information System (INIS)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-01-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of 3 H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes

  13. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    Energy Technology Data Exchange (ETDEWEB)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  14. Analysis of pancreas tissue in a child positive for islet cell antibodies.

    Science.gov (United States)

    Oikarinen, M; Tauriainen, S; Honkanen, T; Vuori, K; Karhunen, P; Vasama-Nolvi, C; Oikarinen, S; Verbeke, C; Blair, G E; Rantala, I; Ilonen, J; Simell, O; Knip, M; Hyöty, H

    2008-10-01

    Type 1 diabetes is caused by an immune-mediated process, reflected by the appearance of autoantibodies against pancreatic islets in the peripheral circulation. Detection of multiple autoantibodies predicts the development of diabetes, while positivity for a single autoantibody is a poor prognostic marker. The present study assesses whether positivity for a single autoantibody correlates with pathological changes in the pancreas. We studied post mortem pancreatic tissue of a child who repeatedly tested positive for islet cell antibodies (ICA) in serial measurements. Paraffin sections were stained with antibodies specific for insulin, glucagon, somatostatin, interferon alpha, CD3, CD68, cyclooxygenase-2 (COX-2), beta-2-microglobulin, coxsackie B and adenovirus receptor (CAR), natural killer and dendritic cells. Apoptosis was detected using Fas-specific antibody and TUNEL assay. Enterovirus was searched for using immunohistochemistry and in situ hybridisation, as well as enterovirus-specific RT-PCR from serum samples. The structure of the pancreas did not differ from normal. The number of beta cells was not reduced and no signs of insulitis were observed. Beta-2-microglobulin and CAR were strongly produced in the islets, but not in the exocrine pancreas. Enterovirus protein was detected selectively in the islets by two enterovirus-specific antibodies, but viral RNA was not found. These observations suggest that positivity for ICA alone, even when lasting for more than 1 year, is not associated with inflammatory changes in the islets. However, it is most likely that the pancreatic islets were infected by an enterovirus in this child.

  15. Impaired antibody response causes persistence of prototypic T cell-contained virus.

    Directory of Open Access Journals (Sweden)

    Andreas Bergthaler

    2009-04-01

    Full Text Available CD8 T cells are recognized key players in control of persistent virus infections, but increasing evidence suggests that assistance from other immune mediators is also needed. Here, we investigated whether specific antibody responses contribute to control of lymphocytic choriomeningitis virus (LCMV, a prototypic mouse model of systemic persistent infection. Mice expressing transgenic B cell receptors of LCMV-unrelated specificity, and mice unable to produce soluble immunoglobulin M (IgM exhibited protracted viremia or failed to resolve LCMV. Virus control depended on immunoglobulin class switch, but neither on complement cascades nor on Fc receptor gamma chain or Fc gamma receptor IIB. Cessation of viremia concurred with the emergence of viral envelope-specific antibodies, rather than with neutralizing serum activity, and even early nonneutralizing IgM impeded viral persistence. This important role for virus-specific antibodies may be similarly underappreciated in other primarily T cell-controlled infections such as HIV and hepatitis C virus, and we suggest this contribution of antibodies be given consideration in future strategies for vaccination and immunotherapy.

  16. Occurrence of haemolysin antibodies among sickle cell anaemia ...

    African Journals Online (AJOL)

    The role of alpha () and beta () haemolysins in blood transfusion has been well documented. However, the occurrence of haemolysins and its attending problems in sickle cell anaemia (SCA) patients has limited appearance in the literatures especially in black Africa. This study was therefore designed to investigate the ...

  17. Occurrence of haemolysin antibodies among sickle cell anaemia ...

    African Journals Online (AJOL)

    SERVER

    2007-05-16

    May 16, 2007 ... the whole blood after centrifugation and stored frozen at –20oC for haemolysin analysis. The remaining venous blood was dispensed into EDTA container. Haemoglobin electrophoresis. The anticoagulated blood was centrifuged, red blood cells sepa- rated and washed three times in physiological saline.

  18. Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity.

    OpenAIRE

    Chuong, C M; McClain, D A; Streit, P; Edelman, G M

    1982-01-01

    Previous studies in this laboratory have led to the identification and purification of a chicken cell surface protein named "neural cell adhesion molecule" (N-CAM) that is involved in neural cell-cell and neurite-neurite interactions. In the present investigation, we have found that a similar molecule exists in the mouse and have confirmed that it is also present in rat neural tissue. A monoclonal antibody to chicken N-CAM that crossreacted with mouse and rat brains and an independently deriv...

  19. DNA-templated antibody conjugation for targeted drug delivery to cancer cells

    DEFF Research Database (Denmark)

    Liu, Tianqiang

    2016-01-01

    conjugation strategy. Recently, a site-selective antibody conjugation method called “DNA-templated protein conjugation (DTPC)” was developed by our group. The site-selective covalently attachment of single-stranded DNA (ssDNA) to proteins was achieved by using a metal-affinity DNA probe and DNA-templated...... state to get a good pharmacological performance. Recombinant antibody engineering with non-natural amino acids, or enzyme-mediated conjugation approaches (transglutaminase, Sortase A or endoglycosidase) have been reported for producing homogeneous antibody conjugates. However, these methods require...... organic synthesis due to the wide existence of the 3-histidine cluster in most wild-type proteins. In this thesis, three projects that relate to targeted drug delivery to cancer cells based on the DTPC method is described. The first project was a delivery system which uses transferrin as the targeting...

  20. Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein.

    Science.gov (United States)

    Ding, Kai; Han, Lei; Zong, Huifang; Chen, Junsheng; Zhang, Baohong; Zhu, Jianwei

    2017-03-01

    Demonstration of reproducibility and consistency of process and product quality is one of the most crucial issues in using transient gene expression (TGE) technology for biopharmaceutical development. In this study, we challenged the production consistency of TGE by expressing nine batches of recombinant IgG antibody in human embryonic kidney 293 cells to evaluate reproducibility including viable cell density, viability, apoptotic status, and antibody yield in cell culture supernatant. Product quality including isoelectric point, binding affinity, secondary structure, and thermal stability was assessed as well. In addition, major glycan forms of antibody from different batches of production were compared to demonstrate glycosylation consistency. Glycan compositions of the antibody harvested at different time periods were also measured to illustrate N-glycan distribution over the culture time. From the results, it has been demonstrated that different TGE batches are reproducible from lot to lot in overall cell growth, product yield, and product qualities including isoelectric point, binding affinity, secondary structure, and thermal stability. Furthermore, major N-glycan compositions are consistent among different TGE batches and conserved during cell culture time.

  1. Immunodetection of retinoblastoma-related protein and its phosphorylated form in interphase and mitotic alfalfa cells.

    Science.gov (United States)

    Abrahám, Edit; Miskolczi, Pál; Ayaydin, Ferhan; Yu, Ping; Kotogány, Edit; Bakó, László; Otvös, Krisztina; Horváth, Gábor V; Dudits, Dénes

    2011-03-01

    Plant retinoblastoma-related (RBR) proteins are primarily considered as key regulators of G(1)/S phase transition, with functional roles in a variety of cellular events during plant growth and organ development. Polyclonal antibody against the C-terminal region of the Arabidopsis RBR1 protein also specifically recognizes the alfalfa 115 kDa MsRBR protein, as shown by the antigen competition assay. The MsRBR protein was detected in all cell cycle phases, with a moderate increase in samples representing G(2)/M cells. Antibody against the human phospho-pRb peptide (Ser807/811) cross-reacted with the same 115 kDa MsRBR protein and with the in vitro phosphorylated MsRBR protein C-terminal fragment. Phospho-MsRBR protein was low in G(1) cells. Its amount increased upon entry into the S phase and remained high during the G(2)/M phases. Roscovitine treatment abolished the activity of alfalfa MsCDKA1;1 and MsCDKB2;1, and the phospho-MsRBR protein level was significantly decreased in the treated cells. Colchicine block increased the detected levels of both forms of MsRBR protein. Reduced levels of the MsRBR protein in cells at stationary phase or grown in hormone-free medium can be a sign of the division-dependent presence of plant RBR proteins. Immunolocalization of the phospho-MsRBR protein indicated spots of variable number and size in the labelled interphase nuclei and high signal intensity of nuclear granules in prophase. Structures similar to phospho-MsRBR proteins cannot be recognized in later mitotic phases. Based on the presented western blot and immunolocalization data, the possible involvement of RBR proteins in G(2)/M phase regulation in plant cells is discussed.

  2. How a T Cell Receptor-like Antibody Recognizes Major Histocompatibility Complex-bound Peptide

    Energy Technology Data Exchange (ETDEWEB)

    Mareeva, T.; Martinez-Hackert, E; Sykulev, Y

    2008-01-01

    We determined the crystal structures of the T cell receptor (TCR)-like antibody 25-D1.16 Fab fragment bound to a complex of SIINFEKL peptide from ovalbumin and the H-2Kb molecule. Remarkably, this antibody directly 'reads' the structure of the major histocompatibility complex (MHC)-bound peptide, employing the canonical diagonal binding mode utilized by most TCRs. This is in marked contrast with another TCR-like antibody, Hyb3, bound to melanoma peptide MAGE-A1 in association with HLA-A1 MHC class I. Hyb3 assumes a non-canonical orientation over its cognate peptide-MHC and appears to recognize a conformational epitope in which the MHC contribution is dominant. We conclude that TCR-like antibodies can recognize MHC-bound peptide via two different mechanisms: one is similar to that exploited by the preponderance of TCRs and the other requires a non-canonical antibody orientation over the peptide-MHC complex.

  3. Biochemical events in naturally occurring forms of cell death.

    Science.gov (United States)

    Fesus, L

    1993-08-09

    Several molecular elements of programmed cell death and apoptosis have recently been revealed. The function of gene products which deliver the lethal 'hit' is still not known. Well-characterized and newly discovered cell surface structures (e.g. antigen receptors, FAS/APO-1), as well as transcriptional factors (steroid receptor, c-myc, P53, retinoblastoma protein and others), have been implicated in the initiation of the death pathway. Negative regulators of the process (ced-9 gene product in programmed death of cells in Caenorhabditis elegans and bcl-2 protein in apoptosis) have been described. Biochemical mechanisms responsible for the silent nature of natural deaths of cells include their rapid engulfment (mainly through integrin receptors), transglutaminase-catalyzed cross-linking of cellular proteins, and fragmentation of DNA. Several lines of evidence suggest that distinct molecular mechanisms may operate in various forms of natural cell death.

  4. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    Science.gov (United States)

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope.

  5. Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines.

    Science.gov (United States)

    Fan, Lianchun; Rizzi, Giovanni; Bierilo, Kathleen; Tian, Jun; Yee, Joon Chong; Russell, Reb; Das, Tapan K

    2017-11-01

    The long journey of developing a drug from initial discovery target identification to regulatory approval often leaves many patients with missed window of opportunities. Both regulatory agencies and biopharmaceutical industry continue to develop creative approaches to shorten the time of new drug development in order to deliver life-saving medicine to patients. Generally, drug substance materials to support the toxicology and early phase clinical study can only be manufactured after creating the final Master Cell Bank (MCB) of the clonally derived cell line, which normally takes 1-2 years. With recent advances in cell line development, cell culture process and analytical technologies, generating more homogeneous bulk/mini-pool population with higher productivity and acceptable quality attributes has become a norm, thereby making it possible to shorten the timeline to initiate First in Human (FIH) trial by using bulk/mini-pool generated materials to support toxicology and FIH studies. In this study, two monoclonal antibodies of different subclasses (IgG1 and IgG4) were expressed from the mini-pool cells as well as clonally derived cell lines generated from the same mini-pool. Cell growth, productivity, and product quality were compared between the materials generated from the mini-pool and clonally derived cell line. The results demonstrate the similarity of the antibody products generated from mini-pool cells and clonally derived cell lines from the same mini-pool, and strongly support the concept and feasibility of using antibody materials produced from mini-pool cultures for toxicology and FIH studies. The strategy to potentially shorten the FIH timeline is discussed. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1456-1462, 2017. © 2017 American Institute of Chemical Engineers.

  6. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies.

    Directory of Open Access Journals (Sweden)

    Claudio Ciferri

    2015-10-01

    Full Text Available Human Cytomegalovirus (HCMV is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.

  7. Targeted Killing of Virally Infected Cells by Radiolabeled Antibodies to Viral Proteins

    Science.gov (United States)

    Dadachova, Ekaterina; Patel, Mahesh C; Toussi, Sima; Apostolidis, Christos; Morgenstern, Alfred; Brechbiel, Martin W; Gorny, Miroslaw K; Zolla-Pazner, Susan; Casadevall, Arturo; Goldstein, Harris

    2006-01-01

    Background The HIV epidemic is a major threat to health in the developing and western worlds. A modality that targets and kills HIV-1-infected cells could have a major impact on the treatment of acute exposure and the elimination of persistent reservoirs of infected cells. The aim of this proof-of-principle study was to demonstrate the efficacy of a therapeutic strategy of targeting and eliminating HIV-1-infected cells with radiolabeled antibodies specific to viral proteins in vitro and in vivo. Methods and Findings Antibodies to HIV-1 envelope glycoproteins gp120 and gp41 labeled with radioisotopes bismuth 213 (213Bi) and rhenium 188 (188Re) selectively killed chronically HIV-1-infected human T cells and acutely HIV-1-infected human peripheral blood mononuclear cells (hPBMCs) in vitro. Treatment of severe combined immunodeficiency (SCID) mice harboring HIV-1-infected hPBMCs in their spleens with a 213Bi- or 188Re-labeled monoclonal antibody (mAb) to gp41 resulted in a 57% injected dose per gram uptake of radiolabeled mAb in the infected spleens and in a greater than 99% elimination of HIV-1-infected cells in a dose-dependent manner. The number of HIV-1-infected thymocytes decreased 2.5-fold in the human thymic implant grafts of SCID mice treated with the 188Re-labeled antibody to gp41 compared with those treated with the 188Re-control mAb. The treatment did not cause acute hematologic toxicity in the treated mice. Conclusions The current study demonstrates the effectiveness of HIV-targeted radioimmunotherapy and may provide a novel treatment option in combination with highly active antiretroviral therapy for the eradication of HIV. PMID:17090209

  8. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies

    Science.gov (United States)

    Bae, Pan Kee; Chung, Bong Hyun

    2014-07-01

    The effective targeting of cancer cell surface antigens is an attractive approach in cancer diagnosis and therapy. Multifunctional nanoprobes with cell-targeting specificity are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. In this study, we have fabricated biocompatible perfluorocan/quantum dot nanoemulsions as bimodal imaging nanoprobes for the targeting of breast cancer cells. Perfluorocarbon/quantum dot nanoemulsions conjugated with monoclonal antibodies, as a type of bimodal imaging nanoprobe based on 19 F-MR and optical imaging, have been synthesized and applied for targeted imaging of three different breast cancer cells (SKBR3, MCF-7, MDA-MB 468), respectively. We have shown that the cancer-detection capabilities of antibody-conjugated PFC/QDs nanoemulsions could be successfully applied to target of various breast cancer cells. These modified PFC/QDs nanoemulsions were shown to target the cancer cell surface receptors specially. Conjugation of ligands to nanoemulsions targeting over-expressed cell surface receptors is a promising approach for targeted imaging to tumor cells. We further propose that the PFC/QDs nanoemulsions could be used in targeted imaging of breast cancer cells.

  9. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    Science.gov (United States)

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  10. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART).

    Science.gov (United States)

    Jensen, Sanne Skov; Fomsgaard, Anders; Borggren, Marie; Tingstedt, Jeanette Linnea; Gerstoft, Jan; Kronborg, Gitte; Rasmussen, Line Dahlerup; Pedersen, Court; Karlsson, Ingrid

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.

  11. Expression of Receptors for Tetanus Toxin and Monoclonal Antibody A2B5 by Pancreatic Islet Cells

    Science.gov (United States)

    Eisenbarth, G. S.; Shimizu, K.; Bowring, M. A.; Wells, S.

    1982-08-01

    Studies of the reaction of antibody A2B5 and tetanus toxin with pancreatic islet cells, islet cell tumors, and other human amine precursor uptake and decarboxylation (APUD) tumors are described. By indirect immunofluorescence, antibody A2B5 and tetanus toxin were shown to specifically bind to the plasma membrane of human, rat, chicken, and mouse islet cells. The binding of antibody A2B5 to the cell surface of living islet cells has allowed isolation of these cells from a suspension of pancreatic cells by using a fluorescence-activated cell sorter. In studies designed to determine whether tetanus toxin and antibody A2B5 bound to the same surface antigen, A2B5 and tetanus toxin did not compete for binding to normal islet cells, a human islet cell tumor, or a rat islet cell tumor. In addition to binding to islet cell tumors, antibody A2B5 reacts with frozen sections, isolated cells, and cell lines of neural, neural crest, and APUD origin.

  12. [A patient of sensorimotor neuropathy with small cell lung carcinoma and anti-GM1 antibody].

    Science.gov (United States)

    Itou, Takashi; Enomoto, Setsu; Makita, Yoshihiro; Enomoto, Hiroyuki; Kuroda, Kenji; Kimura, Takashi; Hashimoto, Kazuki; Yahara, Osamu

    2002-09-01

    We reported a 62-year-old woman had sensorimotor neuropathy with small cell lung carcinoma (SCLC) and anti-GM1 antibody. She was admitted with several months history of progressive numbness, walking disturbance and anorexia. Neurologic examination revealed severe numbness and deep sensory disturbance of extremities and body, and mild weakness of distal extremities. Deep tendon reflexes were absent. Her limbs were ataxic. Nerve conduction studies showed no sensory evoked responses. CSF protein was elevated. Sural nerve biopsy revealed severe loss of myelinated fibers and perivascular mononuclear cells surrounding the perineurial vessel. Vasculitic neuropathy was diagnosed, and prednisolone was started, with no benefit. In the clinical course, she developed cough attacks and was found the lymphnode swelling in the mediastinum and supraclavicular fossa, which was diagnosed SCLC. Although anti-Hu antibody were not detected, anti-GM1 antibody was positive. She was treated with intravenous immunoglobulin, with transient improvement. The rare case of the paraneoplastic peripheral neuropathy with SCLC and anti-GM1 antibody was reported.

  13. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env

    NARCIS (Netherlands)

    Guttman, Miklos; Cupo, Albert; Julien, Jean-Philippe; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Lee, Kelly K.

    2015-01-01

    HIV's envelope glycoprotein (Env) is the sole target for neutralizing antibodies. The structures of many broadly neutralizing antibodies (bNAbs) in complex with truncated Env subunits or components have been reported. However, their interaction with the intact Env trimer, and the structural

  14. Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity

    DEFF Research Database (Denmark)

    Engelmann, H; Holtmann, H; Brakebusch, C

    1990-01-01

    lack TNF-like activities, but acquire them upon cross-linking with anti-F(ab)2 antibodies, suggesting that the ability of the anti-TBPI antibodies to mimic TNF correlates with their ability to cross-link the TNF receptors. This notion was further supported by data obtained in a comparative study...

  15. Benchmarking of commercially available CHO cell culture media for antibody production.

    Science.gov (United States)

    Reinhart, David; Damjanovic, Lukas; Kaisermayer, Christian; Kunert, Renate

    2015-06-01

    In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable

  16. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles.

    Science.gov (United States)

    Nilsang, Suthasinee; Nehru, Vishal; Plieva, Fatima M; Nandakumar, Kutty Selva; Rakshit, Sudip Kumar; Holmdahl, Rikard; Mattiasson, Bo; Kumar, Ashok

    2008-01-01

    Cell proliferation and long-term production of monoclonal antibody IgG(2b) by M2139 hybridoma cells immobilized in macroporous gel particles (MGPs) in packed-bed reactor were studied for a period of 60 days. The MGPs were made of supermacroporous gels produced in frozen conditions from crosslinked polyacrylamide and modified with gelatin which were housed in special plastic carriers (7 x 9 mm(2)). Cells were trapped in the interior part of MGPs by attaching to the void space of the gel matrix as three-dimensional (3D) cultivation using gelatin as a substrate layer. Optimizing productivity by hybridoma cell relies on understanding regulation of antibody production. In this study, the behavior of M2139 cells in two-dimensional cultures on multiwell plate surfaces was also investigated. The effect of three different medium such as basal medium Dulbecco's modified Eagle's medium (D-MEM) containing L-glutamine or L-glutamine + 2 mM alpha-ketoglutarate or L-alanyl-glutamine (GlutaMAXtrade mark) was studied prior to its use in 3D cultivation. The kinetics of cell growth in basal medium containing L-glutamine + alpha-ketoglutarate was similar to cells grown on GlutaMAX containing medium, whereas D-MEM containing L-glutamine showed lower productivity. With the maximal viable cell density (6.85 x 10(6) cells mL(-1)) and highest specific mAb production rate (3.9 mug mL(-1) 10(-4) viable cell day(-1)), D-MEM-GlutaMAX was further selected for 3D cultivation. Cells in MGPs were able to grow and secrete antibody for 30 days in packed-bed batch reactor, before a fresh medium reservoir was replaced. After being supplied with fresh medium, cells again showed continuous growth for another 30 days with mAb production efficiency of 50%. These results demonstrate that MGPs can be used efficiently as supporting carrier for long-term monoclonal antibody production.

  17. Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab

    Directory of Open Access Journals (Sweden)

    Greta Garrido

    2017-10-01

    Full Text Available Defining how epidermal growth factor receptor (EGFR-targeting therapies influence the immune response is essential to increase their clinical efficacy. A growing emphasis is being placed on immune regulator genes that govern tumor – T cell interactions. Previous studies showed an increase in HLA class I cell surface expression in tumor cell lines treated with anti-EGFR agents. In particular, earlier studies of the anti-EGFR blocking antibody cetuximab, have suggested that increased tumor expression of HLA class I is associated with positive clinical response. We investigated the effect of another commercially available anti-EGFR antibody nimotuzumab on HLA class I expression in tumor cell lines. We observed, for the first time, that nimotuzumab increases HLA class I expression and its effect is associated with a coordinated increase in mRNA levels of the principal antigen processing and presentation components. Moreover, using 7A7 (a specific surrogate antibody against murine EGFR, we obtained results suggesting the importance of the increased MHC-I expression induced by EGFR-targeted therapies display higher in antitumor immune response. 7A7 therapy induced upregulation of tumor MHC-I expression in vivo and tumors treated with this antibody display higher susceptibility to CD8+ T cells-mediated lysis. Our results represent the first evidence suggesting the importance of the adaptive immunity in nimotuzumab-mediated antitumor activity. More experiments should be conducted in order to elucidate the relevance of this mechanism in cancer patients. This novel immune-related antitumor mechanism mediated by nimotuzumab opens new perspectives for its combination with various immunotherapeutic agents and cancer vaccines.

  18. Wildtype p53-specific Antibody and T-Cell Responses in Cancer Patients

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune

    2011-01-01

    Mutation in the p53 gene based on single amino acid substitutions is a frequent event in human cancer. Accumulated mutant p53 protein is released to antigen presenting cells of the immune system and anti-p53 immune responses even against wt p53 is induced and observed in a number of human cancer...... patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients......(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal...

  19. Expression cloning and production of Human Heavy Chain Only antibodies from murine transgenic plasma cells

    Directory of Open Access Journals (Sweden)

    Dubravka Drabek

    2016-12-01

    Full Text Available Several technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies this involves either random pairing of VH and VL domains in combinatorial display libraries, or isolation of cognate pairs of VH and VL domains from human B cells or from transgenic mice carrying human immunoglobulin loci followed by single cell sorting, single cell RT-PCR and bulk cloning of isolated natural VH-VL pairs. Heavy chain only antibodies (HCAbs that naturally occur in camelids require only heavy immunoglobulin chain cloning. Here, we present an automatable novel, high-throughput technology, for rapid direct cloning and production of fully human HCAbs from sorted population of transgenic mouse plasma cells carrying a human HCAb locus. Utility of the technique is demonstrated by isolation of diverse sets of sequence unique, soluble, high affinity influenza A strain X-31 hemagglutinin (HA specific HCAbs

  20. Mammalian Cell Culture Clarification: A Case Study Using Chimeric Anti-CEA Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Abol Hassan

    2011-12-01

    Full Text Available The extracellular expression of monoclonal antibodies (mAbs in mammalian cell culture provides both opportunities and restrictions for the design of robust harvest and clarification operations. With advances in cell culture media and cell lines, it is now possible to achieve high titers of over 5 g/l for mAbs. However, Mammalian cells are sensitive to breakage due to shear stress that can result in release of proteases and other host cell proteins (HCPs which eventually affects product stability and purity. There is larger number of mAbs undergoing clinical development and it has placed significant importance on platform technologies of process development. Generally, Centrifugation and microfiltration are the primary harvest techniques used in the industry and depth filtration is also used as a step operation on clarification. This study compares the unit operations; centrifugation, microfiltration and depth filtration for maximum recovery of monoclonal antibodies. The results have shown that the depth filtration as more suitable operation for mammalian cell culture clarification since it gives 96% recovery of mAbs in comparison to centrifugation and microfiltration. ABSTRAK: Pengungkapan luar sel dari antibodi monoklon (monoclonal antibodies ((mAbs dalam kultur sel mamalia memberi ruang dan batasan terhadap reka bentuk penuaian yang cekap dan penerangan operasi. Dengan kemajuan dalam media sel kultur dan cell lines (produk yang berupa sel kekal yang digunakan untuk tujuan kajian biologi, kini adalah berkemungkinan untuk memperolehi titer tinggi melebihi 5g/l untuk mAbs [2]. Walaupun begitu, sel mamalia sensitif terhadap retakan disebabkan tegasan ricih yang menyebabkan pengeluaran protease dan hos sel protein yang lain, (host cell proteins (HCPs akhirnya mempengaruhi kestabilan dan keaslian produk. Terdapat mAbs dalam jumlah besar yang masih menjalani pembangunan klinikal dan sesungguhnya ini penting sebagai satu landasan teknologi dalam

  1. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78.

    Directory of Open Access Journals (Sweden)

    Leo Rasche

    Full Text Available In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.

  2. Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines

    Directory of Open Access Journals (Sweden)

    Cavazzoni Andrea

    2012-12-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib.

  3. Elevated levels of antibodies against phosphatidylserine/prothrombin complex and/or cardiolipin associated with infection and recurrent purpura in a child: a forme fruste of antiphospholipid syndrome?

    Science.gov (United States)

    Kinoshita, Yuri; Mayumi, Nobuko; Inaba, Motoyuki; Igarashi, Touru; Katagiri, Ichigen; Kawana, Seiji

    2015-07-15

    Antiphospholipid syndrome is an autoimmune disorder characterized by the occurrence of venous and arterial thrombosis, as well as morbidity in pregnancy, in the presence of anti-phospholipid antibodies. The diagnosis of antiphospholipid syndrome is usually established based on clinical and laboratory findings by strictly following the 2006 Sapporo classification. However, the diagnosis remains challenging owing to the ongoing debates on the serological criteria. We report a case we describe as forme fruste antiphospholipid syndrome in which these criteria were not fulfilled. Purpura appeared repeatedly in a female infant starting from the age of 6 months and following episodes of upper respiratory infections and vaccinations. The levels of anti-cardiolipin IgG antibodies and anti-phosphatidylserine/prothrombin complex antibodies were elevated in accordance with these events. Histopathological evaluation revealed multiple small vessel thrombi in the dermis and adipose tissue. After 2 weeks of treatment with aspirin and heparin, the cutaneous symptoms subsided. Infection has long been associated with antiphospholipid syndrome, and anti-phosphatidylserine/prothrombin antibodies are considered a new marker for the diagnosis of antiphospholipid syndrome. Forme fruste antiphospholipid syndrome should be considered even if the antiphospholipid syndrome diagnostic criteria are not completely fulfilled, especially in the presence of elevated levels of anti-phosphatidylserine/prothrombin antibodies and known preceding infections.

  4. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    Science.gov (United States)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  5. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  6. Toward anticancer immunotherapeutics: well-defined polymer-antibody conjugates for selective dendritic cell targeting.

    Science.gov (United States)

    Tappertzhofen, Kristof; Bednarczyk, Monika; Koynov, Kaloian; Bros, Matthias; Grabbe, Stephan; Zentel, Rudolf

    2014-10-01

    This paper describes the synthesis of semitelechelic maleimide-modified N-(2-hydroxypropyl)methacrylamid) (HPMA) based polymers of narrow dispersity that can be conjugated e.g. to anti-DEC-205 antibodies affording "star-like" topologies (one antibody decorated with several polymer chains). FCS revealed a hydrodynamic diameter of R(h)  = 7.9 nm and SEC narrow dispersity (1.45). Primary in vitro studies with bone marrow derived dendritic cells (DC) show higher cellular binding and uptake rates compared to control samples. Moreover, incubating these conjugates to primary splenocytes demonstrates a much higher affinity to the primary DCs than to any other immune cell population within the spleen. This differentiation is, thereby, much more pronounced for the star-like conjugates than for conjugates made from polymers statistically modified with anti-DEC-205. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide.

    Science.gov (United States)

    Marks, Alexandra J; Cooper, Margaret S; Anderson, Robert J; Orchard, Kim H; Hale, Geoffrey; North, Janet M; Ganeshaguru, Kanagasabai; Steele, Andrew J; Mehta, Atul B; Lowdell, Mark W; Wickremasinghe, R Gitendra

    2005-03-15

    The alpha-helical amphipathic peptide D-(KLAKLAK)2 is toxic to eukaryotic cells if internalized by a suitable targeting mechanism. We have targeted this peptide to malignant hemopoietic cells via conjugation to monoclonal antibodies, which recognize lineage-specific cell surface molecules. An anti-CD19/peptide conjugate efficiently killed 3/3 B lymphoid lines. However, an anti-CD33/peptide conjugate was cytotoxic to only one of three CD33-positive myeloid leukemia lines. The IC50 towards susceptible lines were in the low nanomolar range. Conjugates were highly selective and did not kill cells that did not express the appropriate cell surface cognate of the antibody moiety. Anti-CD19/peptide conjugates efficiently killed cells from patients with chronic lymphocytic leukemia but anti-CD33/peptide reagents were less effective against fresh acute myeloid leukemia cells. We therefore suggest that amphipathic peptides may be of value as targeted therapeutic agents for the treatment of a subset of hematologic malignancies.

  8. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells

    Directory of Open Access Journals (Sweden)

    Isabella Quinti

    2017-06-01

    Full Text Available Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.

  9. RNA-Seq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells

    DEFF Research Database (Denmark)

    Orellana, Camila A.; Marcellin, Esteban; Palfreyman, Robin W.

    2018-01-01

    The development of next-generation sequencing technologies has opened new opportunities to better characterize complex eukaryotic cells. Chinese hamster ovary (CHO) cells play a primary role in therapeutic protein production, with currently five of the top ten blockbuster drugs produced in CHO....... However, engineering superior CHO cells with improved production features has had limited success to date and cell lines are still developed through the generation and screening of large strain pools. Here, we applied RNA sequencing to contrast a high and a low monoclonal antibody producing cell line......-regulation of genes encoding secreted glycoproteins is found to be the most significant change. The large number of significant differences even between subclones challenges the notion of identifying and manipulating a few key genes to generate high production CHO cell lines....

  10. N-Acetyl-D-glucosamine-coated polyamidoamine dendrimer modulates antibody formation via natural killer cell activation

    Czech Academy of Sciences Publication Activity Database

    Huliková, Katarína; Benson, Veronika; Svoboda, Jan; Šíma, Petr; Fišerová, Anna

    2009-01-01

    Roč. 9, č. 6 (2009), s. 792-799 ISSN 1567-5769 R&D Projects: GA ČR GA310/06/0477; GA AV ČR IAA500200509; GA AV ČR IAA500200620 Institutional research plan: CEZ:AV0Z50200510 Keywords : GlcNAc(8) * antibody formation * NK cells Subject RIV: EC - Immunology Impact factor: 2.214, year: 2009

  11. T cell activation and differentiation is modulated by a CD6 domain 1 antibody Itolizumab.

    Directory of Open Access Journals (Sweden)

    Usha Bughani

    Full Text Available CD6 is associated with T-cell modulation and is implicated in several autoimmune diseases. We previously demonstrated that Itolizumab, a CD6 domain 1 (CD6D1 specific humanized monoclonal antibody, inhibited the proliferation and cytokine production by T lymphocytes stimulated with anti-CD3 antibody or when co-stimulated with ALCAM. Aberrant IL-17 producing CD4+ helper T-cells (Th17 have been identified as pivotal for the pathogenesis of certain inflammatory autoimmune disorders, including psoriasis. Itolizumab has demonstrated efficacy in human diseases known to have an IL-17 driven pathogenesis. Here, in in vitro experiments we show that by day 3 of human PBMC activation using anti-CD3 and anti-CD28 co-stimulation in a Th17 polarizing milieu, 15-35% of CD4+ T-cells overexpress CD6 and there is an establishment of differentiated Th17 cells. Addition of Itolizumab reduces the activation and differentiation of T cells to Th17 cells and decreases production of IL-17. These effects are associated with the reduction of key transcription factors pSTAT3 and RORγT. Further, transcription analysis studies in these conditions indicate that Itolizumab suppressed T cell activation by primarily reducing cell cycle, DNA transcription and translation associated genes. To understand the mechanism of this inhibition, we evaluated the effect of this anti-human CD6D1 mAb on ALCAM-CD6 as well as TCR-mediated T cell activation. We show that Itolizumab but not its F(ab'2 fragment directly inhibits CD6 receptor hyper-phosphorylation and leads to subsequent decrease in associated ZAP70 kinase and docking protein SLP76. Since Itolizumab binds to CD6 expressed only on human and chimpanzee, we developed an antibody binding specifically to mouse CD6D1. This antibody successfully ameliorated the incidence of experimental autoimmune encephalitis in the mice model. These results position CD6 as a key molecule in sustaining the activation and differentiation of T cells and an

  12. Serodiversity of opsonic antibodies against Enterococcus faecalis--glycans of the cell wall revisited.

    Directory of Open Access Journals (Sweden)

    Christian Theilacker

    Full Text Available In a typing system based on opsonic antibodies against carbohydrate antigens of the cell envelope, 60% of Enterococcus faecalis strains can be assigned to one of four serotypes (CPS-A to CPS-D. The structural basis for enterococcal serotypes, however, is still incompletely understood. Here we demonstrate that antibodies raised against lipoteichoic acid (LTA from a CPS-A strain are opsonic to both CPS-A and CPS-B strains. LTA-specific antibodies also bind to LTA of CPS-C and CPS-D strains, but fail to opsonize them. From CPS-C and CPS-D strains resistant to opsonization by anti-LTA, we purified a novel diheteroglycan with a repeating unit of →6-β-Galf-(1→3- β-D-Glcp-(1→ with O-acetylation in position 5 and lactic acid substitution at position 3 of the Galf residue. The purified diheteroglycan, but not LTA absorbed opsonic antibodies from whole cell antiserum against E. faecalis type 2 (a CPS-C strain and type 5 (CPS-D. Rabbit antiserum raised against purified diheteroglycan opsonized CPS-C and CPS-D strains and passive protection with diheteroglycan-specific antiserum reduced bacterial counts by 1.4-3.4 logs in mice infected with E. faecalis strains of the CPS-C and CPS-D serotype. Diheteroglycan-specific opsonic antibodies were absorbed by whole bacterial cells of E. faecalis FA2-2 (CPS-C but not by its isogenic acapsular cpsI-mutant and on native PAGE purified diheteroglycan co-migrated with the gene product of the cps-locus, suggesting that it is synthesized by this locus. In summary, two polysaccharide antigens, LTA and a novel diheteroglycan, are targets of opsonic antibodies against typeable E. faecalis strains. These cell-wall associated polymers are promising candidates for active and passive vaccination and add to our armamentarium to fight this important nosocomial pathogen.

  13. Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ellis, V

    1991-01-01

    -u-PA and plasminogen with U937 cells. This antibody, which is also the only one to completely inhibit the binding of DFP-inactivated [125I]-u-PA to U937 cells, is directed against the u-PA binding NH2-terminal domain of u-PAR, a well-defined fragment formed by limited chymotrypsin digestion of purified u......-PAR, demonstrating the functional independence of the u-PA binding domain as well as the critical role of u-PAR in the assembly of the cell-surface plasminogen activation system....

  14. Bispecific antibodies: an innovative arsenal to hunt, grab and destroy cancer cells.

    Science.gov (United States)

    Grandjenette, Cindy; Dicato, Mario; Diederich, Marc

    2015-01-01

    Targeted cellular immunotherapy with bifunctional antibodies (bsAbs) has emerged as a promising therapeutic approach for cancer over the last two decades. Progress in antibody engineering has led to the generation of many different types of antibody-derived entities that display at least two binding specificities. Most bsAbs consist of large IgG-like proteins with multiple antigen-binding regions containing Fc parts or smaller entities without Fc. BsAbs have the potential to engage effector cells of the immune system, thereby overcoming some of the immune response escape mechanisms of tumor cells. Preclinical and clinical trials of various bsAb constructs have demonstrated impressive results in terms of immune effector cell retargeting and induction of efficient anti-tumor responses. This review provides an overview of the established bsAbs focusing on improvements in format and design as well as the mechanisms of action of the most promising candidates and describes the results of the most recent clinical studies.

  15. Anti-beta2 glycoprotein I antibodies cause inflammation and recruit dendritic cells in platelet clearance.

    Science.gov (United States)

    Bondanza, A; Manfredi, A A; Zimmermann, V S; Iannacone, M; Tincani, A; Balestrieri, G; Sabbadini, M G; Querini, P R

    2001-11-01

    Scavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite proinflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the beta2 Glycoprotein I (beta2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se intemalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1beta, TNF-alpha, or IL-10, beta2GPI bound to activated platelets and was required for their recognition by anti-beta2GPI antibodies. DCs internalised platelets opsonised by anti-beta2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-alpha and IL-1beta by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-10. We conclude that anti-beta2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.

  16. A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production.

    Science.gov (United States)

    Zhang, Jinyou; Robinson, David; Salmon, Peter

    2006-12-20

    As the market for biopharmaceuticals especially monoclonal antibodies (MAbs) rapidly grows, their manufacturing methods are coming under increasing regulatory scrutiny, particularly due to concerns about the potential introduction of adventitious agents from animal-sourced components in the media used for their production in mammalian cell culture. Chinese hamster ovary (CHO) cells are by far the most commonly used production vehicles for these recombinant glycoproteins. In developing animal-component free media for CHO and other mammalian cell lines, the iron-transporter function of serum or human/bovine transferrin is usually replaced by certain organic or inorganic chelators capable of delivering iron for cell respiration and metabolism, but few of them are sufficiently effective. Selenium is a well-known essential trace element (TE) for cell growth and development, and its positive role in biological system includes detoxification of free radicals by activating glutathione peroxidase. In cell culture, selenium in the form of selenite can help cells to detoxify the medium thus protect them from oxidative damage. In this presentation, we describe the discovery and application of a novel function of selenite, that is, as a highly effective carrier to deliver iron for cell growth and function. In our in-house-developed animal protein-free (APF) medium for CHO cells, using an iron-selenite compound to replace the well-established tropolone delivery system for iron led to comparable or better cell growth and antibody production. A high cell density of >10 x 10(6) viable cells/mL and excellent antibody titer of approximately 3 g/L were achieved in 14-day fed-batch cultures in shake flasks, followed by successful scale-up to stirred bioreactors. The preparation of the commercially unavailable iron-selenite compound from respective ions, and its effectiveness in cell-culture performance, were dependent on reaction time, substrates, and other conditions. Copyright 2006

  17. Effect of producer cell line on functional activity of anti-D monoclonal antibodies destined for prevention of rhesus sensitization.

    Science.gov (United States)

    Olovnikova, N I; Ershler, M A; Belkina, E V; Nikolaeva, T L; Miterev, G Yu

    2009-04-01

    The ability of anti-D antibodies to cause antigen-specific immunosuppression depends on their interaction with low-affinity Fcgamma-receptors. Human monoclonal antibodies to D antigen of the rhesus system were investigated by antibody-dependent cytotoxicity assay in order to estimate their ability to induce hemolysis mediated by low-affinity Fcgamma receptors. We demonstrate that affinity of monoclonal antibodies to receptors of this type does not depend on primary structure of Fc-fragment, but depends on the producer cell line which expresses the antibodies. Monoclonal IgG1 antibodies interacting with FcgammaRIIa and FcgammaRIII lost this property, if they were secreted by human-mouse heterohybridoma, but not by human B-cell line. On the opposite, monoclonal antibodies that could not activate low-affinity Fcgamma receptors were highly active after human cells fusion with rat myeloma YB2/0. Hemolytic activity of IgG3 remained unchanged after fusion of human cells with rodent cells.

  18. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants.

    Directory of Open Access Journals (Sweden)

    Chia Yin Lee

    2011-12-01

    Full Text Available Chikungunya virus (CHIKV is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop "groove" as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.

  19. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. BAFF mediates splenic B cell response and antibody production in experimental Chagas disease.

    Directory of Open Access Journals (Sweden)

    Daniela A Bermejo

    Full Text Available BACKGROUND: B cells and antibodies are involved not only in controlling the spread of blood circulating Trypanosoma cruzi, but also in the autoreactive manifestations observed in Chagas disease. Acute infection results in polyclonal B cell activation associated with hypergammaglobulinemia, delayed specific humoral immunity and high levels of non-parasite specific antibodies. Since TNF superfamily B lymphocyte Stimulator (BAFF mediates polyclonal B cell response in vitro triggered by T. cruzi antigens, and BAFF-Tg mice show similar signs to T. cruzi infected mice, we hypothesized that BAFF can mediate polyclonal B cell response in experimental Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: BAFF is produced early and persists throughout the infection. To analyze BAFF role in experimental Chagas disease, Balb/c infected mice were injected with BR3:Fc, a soluble receptor of BAFF, to block BAFF activity. By BAFF blockade we observed that this cytokine mediates the mature B cell response and the production of non-parasite specific IgM and IgG. BAFF also influences the development of antinuclear IgG and parasite-specific IgM response, not affecting T. cruzi-specific IgG and parasitemia. Interestingly, BAFF inhibition favors the parasitism in heart. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate, for the first time, an active role for BAFF in shaping the mature B cell repertoire in a parasite infection.

  1. Specific Antibody Production by Blood B Cells is Retained in Late Stage Drug-naïve HIV-infected Africans

    Directory of Open Access Journals (Sweden)

    Lydie Béniguel

    2004-01-01

    Full Text Available Unseparated peripheral blood mononuclear cells (PBMCs obtained from drug-naïve African individuals living in a context of multi-infections and presenting with high viral load (VL, were cultured in vitro and tested for their ability to produce antibodies (Abs reacting with HIV-1 antigens. Within these PBMCs, circulating B cells were differentiated in vitro and produced IgG Abs against not only ENV, but also GAG and POL proteins. Under similar experimental conditions, HAART treated patients produced Abs to ENV proteins only. The in vitro antibody production by drug-naïve individuals' PBMCs depended on exogenous cytokines (IL-2 and IL-10 but neither on the re-stimulation of reactive cells in cultures by purified HIV-1-gp 160 antigen nor on the re-engagement of CD40 surface molecules. Further, it was not abrogated by the addition of various monoclonal Abs (mAbs to co-stimulatory molecules. This suggests that the in vitro antibody production by drug-naïve individuals' PBMCs resulted from the maturation of already envelope and core antigen-primed, differentiated B cells, presumably pre-plasma cells, which are not known to circulate at homeostasy. As in vitro produced Abs retained the capacity of binding antigen and forming complexes, this study provides pre-clinical support for functional humoral responses despite major HIV- and other tropical pathogen-induced B cell perturbations.

  2. In ovo injection of anti-chicken CD25 monoclonal antibodies depletes CD4+CD25+ T cells in chickens.

    Science.gov (United States)

    Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2013-01-01

    The CD4(+)CD25(+) cells have T regulatory cell properties in chickens. This study investigated the effect of in ovo injection of anti-chicken CD25 monoclonal antibodies (0.5 mg/egg) on CD4(+)CD25(+) cell depletion and on amounts of interleukin-2 mRNA and interferon-γ mRNA in CD4(+)CD25(-) cells posthatch. Anti-chicken CD25 or PBS (control) was injected into 16-d-old embryos. Chicks hatched from eggs injected with anti-chicken CD25 antibodies had a lower CD4(+)CD25(+) cell percentage in the blood until 25 d posthatch. The anti-chicken CD25 antibody injection nearly depleted CD4(+)CD25(+) cells in the blood until 16 d posthatch. At 30 d posthatch, the CD4(+)CD25(+) cell percentage in the anti-CD25-antibody-injected group was comparable with the percentage in the control group. At 16 d posthatch, the anti-chicken CD25 antibody injection decreased CD4(+)CD25(+) cell percentages in the thymus, spleen, and cecal tonsils. Chickens hatched from anti-CD25-antibody-injected eggs had approximately 25% of CD4(+)CD25(+) cells in the cecal tonsils and thymus compared with those in the cecal tonsils and thymus of the control group. The CD4(+)CD25(-) cells from the spleen and cecal tonsils of chicks hatched from anti-chicken-CD25-injected eggs had higher amounts of interferon-γ and interleukin-2 mRNA than CD4(+)CD25(-) cells from the control group. It could be concluded that injecting anti-chicken CD25 antibodies in ovo at 16 d of incubation nearly depleted the CD4(+)CD25(+) cells until 25 d posthatch.

  3. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins

    NARCIS (Netherlands)

    Hendrikx, Lotte H.; Ozturk, Kemal; de Rond, Lia G. H.; Veenhoven, Reinier H.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.; Buisman, Anne-Marie

    2011-01-01

    Whooping cough is a respiratory disease caused by Bordetella pertussis. Since the 1950s in developed countries pertussis vaccinations are included in the national immunization program. However, antibody levels rapidly wane after both whole cell and acellular pertussis vaccination. Therefore

  4. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment

    Directory of Open Access Journals (Sweden)

    Rajasekaran N

    2015-05-01

    Full Text Available Narendiran Rajasekaran,1,* Cariad Chester,1,* Atsushi Yonezawa,1,2 Xing Zhao,1,3 Holbrook E Kohrt1 1Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA; 2Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan; 3Tissue Engineering and Stem Cells Research Center, Department of Immunology, Guiyang Medical University, Guiyang, Guizhou Province, People's Republic of China *These authors contributed equally to this work Abstract: The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC against tumor cells is triggered by the interaction of the fragment crystallizable (Fc portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics. Keywords: ADCC, NK cell, reovirus, TLR, CD137

  5. Natural killer cell cytotoxicity and antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells in human pregnancy.

    Science.gov (United States)

    Gonik, B; Loo, L S; West, S; Kohl, S

    1987-01-01

    Natural killer cell (NKC) cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) represent the ability of human leukocyte effector cells to destroy target cells in the absence and presence of antibody, respectively. Since these immune systems play a pivotal role in the body's primary lines of defense against a variety of pathogens including herpes simplex virus (HSV), a study was undertaken to evaluate the influence of pregnancy on these systems. Eleven uncomplicated gravidas were followed serially through each trimester and compared to 11 nonpregnant female controls. Mononuclear cells were acquired by Ficoll-Hypaque centrifugation of heparinized blood. Chang liver cells infected with HSV-I were utilized as target cells in a 51Cr release assay. Mean NKC values in the pregnant patients were uniformly lower than in the controls. No similar decreases in ADCC activity were observed in a comparison between the two study populations. These data support previous observations suggesting that pregnancy represents a relatively immunocompromised state. Differences apparently exist between NKC and ADCC effector cell populations with regard to the influence of pregnancy. Although these physiologic alterations in immunoregulation may help support the fetoplacental allograph, detrimental conditions may exist regarding susceptibility to various pathogens such as HSV.

  6. Prevalence of irregular red cell antibody in healthy blood donors attending a tertiary care hospital in North India

    Directory of Open Access Journals (Sweden)

    Raj Nath Makroo

    2018-01-01

    Conclusion: Antibodies against red cells can be present in healthy donors detection of which is important in providing safe blood to the patient. The prevalence of red blood cell antibody in healthy donors in this study was found to be 0.27%, while the prevalence of alloantibodies was 0.09%. The majority of alloantibodies were anti-M (56.57% and anti-D (27.63%.

  7. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  8. Detection of antibody activity in human sera against meningococcal cell wall antigens using a gel-immuno-radio-assay (GIRA)

    International Nuclear Information System (INIS)

    Poolman, J.T.; Zanen, H.C.

    1980-01-01

    The authors recently described the application of the SDS-polyacrylamide-gel-electrophoresis-immuno-peroxidase (SGIP) technique to the analysis of meningococcal cell walls. However, it appeared that SGIP was not sensitive enough to detect low levels of human antibodies against meningococcal cell wall antigens. They therefore replaced the peroxidase labeled anti-IgG by 125 I-labeled protein A in order to detect antibody binding by bacterial antigens separated in gels, resulting in gel-immuno-radio-assay (GIRA). (Auth.)

  9. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  10. Expression of basal cell marker revealed by RAM11 antibody during epithelial regeneration in rabbits.

    Directory of Open Access Journals (Sweden)

    Tadeusz Cichocki

    2010-06-01

    Full Text Available RAM11 is a mouse monoclonal anti-rabbit macrophage antibody recognizing connective tissue and vascular macrophages. Our previous report showed that RAM11 reacted with basal cells of stratified squamous epithelia of rabbit skin, oral mucosa and esophagus. The aim of the present study was to follow the appearance of RAM11 immunoreactivity in basal cells of regenerating oral epithelium in rabbits. No RAM11 immunostaining was observed in the regenerating epithelium examined on days 1 and 3 of wound healing. A weak immunofluorescence first appeared on day 7 in single basal cells and 32% of RAM11- positive basal cells were observed on day 14. These findings indicate that expression of the antigen recognized by RAM11 antibody is a transient event in the differentiation of oral keratinocytes which not always occurs during epithelial repair, although it is a constant feature of epithelial turnover in mature epithelium. Therefore this antigen can be regarded as basal cell marker only in mature stratified squamous epithelia.

  11. Cell death induced by a {sup 131}I-labeled monoclonal antibody in ovarian cancer multicell spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Filippovich, I.V.; Sorokina, N.; Robillard, N.; Faivre-Chauvet, A.; Bardies, M.; Chatal, J.F

    1996-07-01

    Treatment of OVCAR-3 spheroids with {sup 131}I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor.

  12. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment.

    Directory of Open Access Journals (Sweden)

    Keith R Miller

    Full Text Available A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2, with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.

  13. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  14. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  15. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Science.gov (United States)

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  16. Antibody-engineered nanoparticles selectively inhibit mesenchymal cells isolated from patients with chronic lung allograft dysfunction.

    Science.gov (United States)

    Cova, Emanuela; Colombo, Miriam; Inghilleri, Simona; Morosini, Monica; Miserere, Simona; Peñaranda-Avila, Jesus; Santini, Benedetta; Piloni, Davide; Magni, Sara; Gramatica, Furio; Prosperi, Davide; Meloni, Federica

    2015-01-01

    Chronic lung allograft dysfunction represents the main cause of death after lung transplantation, and so far there is no effective therapy. Mesenchymal cells (MCs) are primarily responsible for fibrous obliteration of small airways typical of chronic lung allograft dysfunction. Here, we engineered gold nanoparticles containing a drug in the hydrophobic section to inhibit MCs, and exposing on the outer hydrophilic surface a monoclonal antibody targeting a MC-specific marker (half-chain gold nanoparticles with everolimus). Half-chain gold nanoparticles with everolimus have been synthesized and incubated with MCs to evaluate the effect on proliferation and apoptosis. Drug-loaded gold nanoparticles coated with the specific antibody were able to inhibit proliferation and induce apoptosis without stimulating an inflammatory response, as assessed by in vitro experiments. These findings demonstrate the effectiveness of our nanoparticles in inhibiting MCs and open new perspectives for a local treatment of chronic lung allograft dysfunction.

  17. Ri antibodies in patients with breast, ovarian or small cell lung cancer determined by a sensitive immunoprecipitation technique.

    Science.gov (United States)

    Knudsen, Anette; Monstad, Sissel E; Dørum, Anne; Lønning, Per E; Salvesen, Helga B; Drivsholm, Lars; Aarseth, Jan H; Vedeler, Christian A

    2006-10-01

    The presence of circulating antineuronal antibodies has been associated with paraneoplastic neurological syndromes (PNS). Ri antibodies are often associated with lung or breast cancer, but the prevalence of such antibodies in large cancer materials is largely unknown. We used a highly sensitive immunoprecipitation assay to study the level of Ri antibodies in blood samples from 200 patients with small cell lung cancer (SCLC), 253 patients with breast cancer and 557 patients with ovarian cancer. Two hundred blood donors and six Ri positive PNS patients served as controls. The recombinant antigen used in the immunoprecipitation assay was radiolabeled by a coupled in vitro transcription and translation (ITT) technique, enabling low levels of antibodies to be detected. None of the blood donors contained Ri antibodies, whereas all of the sera from the PNS patients were positive. Ri antibodies were present in 4.5% of the patients with SCLC, 0.8% of the patients with breast cancer and in 0.2% of the patients with ovarian cancer. Retesting of the Ri positive samples with immunofluorescense and immune blot showed that the immunoprecipitation technique was more sensitive than the other immune assays. Ri antibodies were not associated with PNS in the patients with breast or ovarian cancer. Neurological data were not available for the SCLC patients, but in these, Ri antibodies were not associated with survival.

  18. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    Directory of Open Access Journals (Sweden)

    Miseon Lee

    2015-03-01

    Full Text Available BackgroundMutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis.MethodsWe immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles.ResultsNinein signals were significantly impaired in CPAP-depleted cells.ConclusionThe results suggest that CPAP is required for mother centriole maturation in mammalian cells. The selective absence of centriolar appendages in young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells.

  19. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Lavrsen, Kirstine; Madsen, Caroline B; Rasch, Morten G

    2013-01-01

    not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed...... to Tn-MUC1 was investigated using BiaCore. The availability of Tn-MUC1 on the surface of breast cancer cells was evaluated by immunohistochemistry, confocal microscopy, and flow cytometry, followed by in vitro assessment of antibody-dependent cellular cytotoxicity by mAb 5E5. Biacore analysis...... is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies....

  20. Combination with a defucosylated anti-HM1.24 monoclonal antibody plus lenalidomide induces marked ADCC against myeloma cells and their progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Harada

    Full Text Available The immunomodulatory drug lenalidomide (Len has drawn attention to potentiate antibody-dependent cellular cytotoxicity (ADCC-mediated immunotherapies. We developed the defucosylated version (YB-AHM of humanized monoclonal antibody against HM1.24 (CD317 overexpressed in multiple myeloma (MM cells. In this study, we evaluated ADCC by YB-AHM and Len in combination against MM cells and their progenitors. YB-AHM was able to selectively kill via ADCC MM cells in bone marrow samples from patients with MM with low effector/target ratios, which was further enhanced by treatment with Len. Interestingly, Len also up-regulated HM1.24 expression on MM cells in an effector-dependent manner. HM1.24 was found to be highly expressed in a drug-resistant clonogenic "side population" in MM cells; and this combinatory treatment successfully reduced SP fractions in RPMI 8226 and KMS-11 cells in the presence of effector cells, and suppressed a clonogenic potential of MM cells in colony-forming assays. Collectively, the present study suggests that YB-AHM and Len in combination may become an effective therapeutic strategy in MM, warranting further study to target drug-resistant MM clonogenic cells.

  1. REDUCTION OF EGP-2-POSITIVE PULMONARY METASTASES BY BISPECIFIC-ANTIBODY-REDIRECTED T-CELLS IN AN IMMUNOCOMPETENT RAT MODEL

    NARCIS (Netherlands)

    KROESEN, BJ; HELFRICH, W; BAKKER, A; WUBBENA, AS; BAKKER, H; KAL, HB; THE, TH; DELEIJ, L

    1995-01-01

    Effectiveness of bispecific-monoclonal-antibody (B5MAb)-mediated cellular anti-tumour activity was evaluated in vitro and in vivo in relation to the additional need for T-cell activation in a new immunocompetent rat tumour model. L37 tumour cells, derived from a squamous-cell carcinoma of the lung

  2. Tumor-specific cytotoxic t cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer

    NARCIS (Netherlands)

    J.G.J.V. Aerts (Joachim); J.P.J.J. Hegmans (Joost)

    2013-01-01

    textabstractThere is growing evidence that activation of the immune system may be an effective treatment for patients with either small cell lung cancer or non-small cell lung cancer (NSCLC). Immunomodulatory antibodies directed against cytotoxic T cell-associated antigen 4 (CTLA-4/CD152) and

  3. Specific capture, recovery and culture of cancer cells using oriented antibody-modified polystyrene chips coated with agarose film.

    Science.gov (United States)

    Jeong, Jiyun; Lee, Yeolin; Yoo, Yeongeun; Lee, Myung Kyu

    2018-02-01

    Agarose gel can be used for three dimensional (3D) cell culture because it prevents cell attachment. The dried agarose film coated on a culture plate also protected cell attachment and allowed 3D growth of cancer cells. We developed an efficient method for agarose film coating on an oxygen-plasma treated micropost polystyrene chip prepared by an injection molding process. The agarose film was modified to maleimide or Ni-NTA groups for covalent or cleavable attachment of photoactivatable Fc-specific antibody binding proteins (PFcBPs) via their N-terminal cysteine residues or 6xHis tag, respectively. The antibodies photocrosslinked onto the PFcBP-modified chips specifically captured the target cells without nonspecific binding, and the captured cells grew 3D modes on the chips. The captured cells on the cleavable antibody-modified chips were easily recovered by treatment of commercial trypsin-EDTA solution. Under fluidic conditions using an antibody-modified micropost chip, the cells were mainly captured on the micropost walls of the chip rather than on the bottom of it. The presented method will also be applicable for immobilization of oriented antibodies on various microfluidic chips with different structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differences in the composition of the human antibody repertoire by B cell subsets in the blood

    Directory of Open Access Journals (Sweden)

    Eva Szymanska eMroczek

    2014-03-01

    Full Text Available The vast initial diversity of the antibody repertoire is generated centrally by means of a complex series of V (D J gene rearrangement events, variation in the site of gene segment joining, and TdT catalyzed N- region addition. Although the diversity is great, close inspection has revealed distinct and unique characteristics in the antibody repertoires expressed by different B cell developmental subsets. In order to illustrate our approach to repertoire analysis, we present an in-depth comparison of V (D J gene usage, hydrophobicity, length, DH reading frame, and amino acid usage between heavy chain repertoires expressed by immature, transitional, mature, memory IgD+, memory IgD-, and plasmacytes isolated from the blood of a single individual. Our results support the view that in both human and mouse the H chain repertoires expressed by individual, developmental B cell subsets appear to differ in sequence content. Sequencing of unsorted B cells from the blood is thus likely to yield an incomplete or compressed view of what is actually happening in the immune response of the individual. Our findings support the view that studies designed to correlate repertoire expression with diseases of immune function will likely require deep sequencing of B cells sorted by subset.

  5. An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses.

    Science.gov (United States)

    Thomas, Paul G; Brown, Scott A; Yue, Wen; So, Jenny; Webby, Richard J; Doherty, Peter C

    2006-02-21

    The ovalbumin(323-339) peptide that binds H2I-A(b) was engineered into the globular heads of hemagglutinin (H) molecules from serologically non-cross-reactive H1N1 and H3N2 influenza A viruses, the aim being to analyze recall CD4+ T cell responses in a virus-induced respiratory disease. Prime/challenge experiments with these H1ova and H3ova viruses in H2(b) mice gave the predicted, ovalbumin-specific CD4+ T cell response but showed an unexpectedly enhanced, early expansion of viral epitope-specific CD8+ T cells in spleen and a greatly diminished inflammatory process in the virus-infected respiratory tract. At the same time, the primary antibody response to the H3N2 challenge virus was significantly reduced, an effect that has been associated with preexisting neutralizing antibody in other experimental systems. Analysis of serum from the H1ova-primed mice showed low-level binding to H3ova but not to the wild-type H3N2 virus. Experiments with CD4+ T cell-depleted and Ig-/- mice indicated that this cross-reactive Ig is indeed responsible for the modified pathogenesis after respiratory challenge. Furthermore, the effect does not seem to be virus-dose related, although it does require infection. These findings suggest intriguing possibilities for vaccination and, at the same time, emphasize that engineered modifications in viruses may have unintended immunological consequences.

  6. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Rami Yossef

    Full Text Available Natural killer (NK cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D. Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  7. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by magnetic beads separating B cells and single cell RT-PCR cloning].

    Science.gov (United States)

    Huang, Xiang-Ying; Yu, Shuang-Qing; Cheng, Zhan; Ye, Jing-Rong; Xu, Ke; Feng, Xia; Zeng, Yi

    2013-04-01

    To establish a simple and practical method for screening of Env-specific monoclonal antibodies from HIV-1 infected individuals. Human B cells were purified by negative sorting from PBMCs and memory B cells were further enriched using anti-CD27 microbeads. Gp120 antigen labbled with biotin was incubated with memory B cells to specifically bind IgG on cells membrane. The memory B cells expressing the Env-specific antibody were harvested by magnetic beads separating, counted and diluted to the level of single cell in each PCR well that loading with catch buffer containing RNase inhibitor to get RNAs. The antibody genes were amplified by single cell RT-PCR and nested PCR, cloned into eukaryotic expression vectors and transfected into 293T cells. The binding activity of recombinant antibodies to Env were tested by ELISA. Three monocolonal Env-specific antibodies were isolated from one HIV-1 infected individual. We can obtain Env-specific antibody by biotin labbled antigen, magnetic beads separating technique coupled with single cell RT-PCR and expression cloning.

  8. De Novo Circulating Antidonor's Cell Antibodies During Induced Acute Rejection of Allogeneic Myofibers in Myogenic Cell Transplantation: A Study in Nonhuman Primates

    Directory of Open Access Journals (Sweden)

    Daniel Skuk, MD

    2017-12-01

    Conclusions. Flow cytometry detection of de novo circulating antibodies against the donor’s cells was consistently associated with AR. A clear increase in this antibody detection indicated current or recent AR. Smaller increases in comparison to the preimmunosuppression values were not associated with AR.

  9. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits

    Directory of Open Access Journals (Sweden)

    Sabrina de Almeida Lima

    2018-04-01

    Full Text Available Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1 (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV and two for hyaluronidase (LiHYAL (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA of sphingomyelinase D (SMase D SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox. We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.

  10. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo.

    Science.gov (United States)

    Norton, James E; Lytle, Andrew G; Shen, Shixue; Tzvetkov, Evgeni P; Dorfmeier, Corin L; McGettigan, James P

    2014-01-01

    We have previously shown that live-attenuated rabies virus (RABV)-based vaccines infect and directly activate murine and human primary B cells in-vitro, which we propose can be exploited to help develop a single-dose RABV-based vaccine. Here we report on a novel approach to utilize the binding of Intracellular Adhesion Molecule-1 (ICAM-1) to its binding partner, Lymphocyte Function-associated Antigen-1 (LFA-1), on B cells to enhance B cell activation and RABV-specific antibody responses. We used a reverse genetics approach to clone, recover, and characterize a live-attenuated recombinant RABV-based vaccine expressing the murine Icam1 gene (rRABV-mICAM-1). We show that the murine ICAM-1 gene product is incorporated into virus particles, potentially exposing ICAM-1 to extracellular binding partners. While rRABV-mICAM-1 showed 10-100-fold decrease in viral titers on baby hamster kidney cells compared to the parental virus (rRABV), rRABV-mICAM-1 infected and activated primary murine B cells in-vitro more efficiently than rRABV, as indicated by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. ICAM-1 expression on the virus surface was responsible for enhanced B cell infection since pre-treating rRABV-mICAM-1 with a neutralizing anti-ICAM-1 antibody reduced B cell infection to levels observed with rRABV alone. Furthermore, 100-fold less rRABV-mICAM-1 was needed to induce antibody titers in immunized mice equivalent to antibody titers observed in rRABV-immunized mice. Of note, only 10(3) focus forming units (ffu)/mouse of rRABV-mICAM-1 was needed to induce significant anti-RABV antibody titers as early as five days post-immunization. As both speed and potency of antibody responses are important in controlling human RABV infection in a post-exposure setting, these data show that expression of Icam1 from the RABV genome, which is then incorporated into the virus particle, is a promising strategy for the development of a single-dose RABV

  11. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo.

    Directory of Open Access Journals (Sweden)

    James E Norton

    Full Text Available We have previously shown that live-attenuated rabies virus (RABV-based vaccines infect and directly activate murine and human primary B cells in-vitro, which we propose can be exploited to help develop a single-dose RABV-based vaccine. Here we report on a novel approach to utilize the binding of Intracellular Adhesion Molecule-1 (ICAM-1 to its binding partner, Lymphocyte Function-associated Antigen-1 (LFA-1, on B cells to enhance B cell activation and RABV-specific antibody responses. We used a reverse genetics approach to clone, recover, and characterize a live-attenuated recombinant RABV-based vaccine expressing the murine Icam1 gene (rRABV-mICAM-1. We show that the murine ICAM-1 gene product is incorporated into virus particles, potentially exposing ICAM-1 to extracellular binding partners. While rRABV-mICAM-1 showed 10-100-fold decrease in viral titers on baby hamster kidney cells compared to the parental virus (rRABV, rRABV-mICAM-1 infected and activated primary murine B cells in-vitro more efficiently than rRABV, as indicated by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. ICAM-1 expression on the virus surface was responsible for enhanced B cell infection since pre-treating rRABV-mICAM-1 with a neutralizing anti-ICAM-1 antibody reduced B cell infection to levels observed with rRABV alone. Furthermore, 100-fold less rRABV-mICAM-1 was needed to induce antibody titers in immunized mice equivalent to antibody titers observed in rRABV-immunized mice. Of note, only 10(3 focus forming units (ffu/mouse of rRABV-mICAM-1 was needed to induce significant anti-RABV antibody titers as early as five days post-immunization. As both speed and potency of antibody responses are important in controlling human RABV infection in a post-exposure setting, these data show that expression of Icam1 from the RABV genome, which is then incorporated into the virus particle, is a promising strategy for the development of a

  12. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  13. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders

    2014-01-01

    of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR......, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94...... was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC. Refinement of sensitivity for the mutation-specific antibodies is warranted to improve molecular diagnosis using EGFR immunohistochemistry....

  14. Covalent Linkage of HIV-1 Trimers to Synthetic Liposomes Elicits Improved B Cell and Antibody Responses.

    Science.gov (United States)

    Bale, Shridhar; Goebrecht, Geraldine; Stano, Armando; Wilson, Richard; Ota, Takayuki; Tran, Karen; Ingale, Jidnyasa; Zwick, Michael B; Wyatt, Richard T

    2017-08-15

    We have demonstrated that a liposomal array of well-ordered trimers enhances B cell activation, germinal center formation, and the elicitation of tier-2 autologous neutralizing antibodies. Previously, we coupled well-ordered cleavage-independent NFL trimers via their C-terminal polyhistidine tails to nickel lipids integrated into the lipid bilayer. Despite favorable in vivo effects, concern remained over the potentially longer-term in vivo instability of noncovalent linkage of the trimers to the liposomes. Accordingly, we tested both cobalt coupling and covalent linkage of the trimers to the liposomes by reengineering the polyhistidine tail to include a free cysteine on each protomer of model BG505 NFL trimers to allow covalent linkage. Both cobalt and cysteine coupling resulted in a high-density array of NFL trimers that was stable in both 20% mouse serum and 100 mM EDTA, whereas the nickel-conjugated trimers were not stable under these conditions. Binding analysis and calcium flux with anti-Env-specific B cells confirmed that the trimers maintained conformational integrity following coupling. Following immunization of mice, serologic analysis demonstrated that the covalently coupled trimers elicited Env-directed antibodies in a manner statistically significantly improved compared to soluble trimers and nickel-conjugated trimers. Importantly, the covalent coupling not only enhanced gp120-directed responses compared to soluble trimers, it also completely eliminated antibodies directed to the C-terminal His tag located at the "bottom" of the spike. In contrast, soluble and noncovalent formats efficiently elicited anti-His tag antibodies. These data indicate that covalent linkage of well-ordered trimers to liposomes in high-density array displays multiple advantages in vitro and in vivo IMPORTANCE Enveloped viruses typically encode a surface-bound glycoprotein that mediates viral entry into host cells and is a primary target for vaccine design. Liposomes with

  15. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env

    Science.gov (United States)

    Guttman, Miklos; Cupo, Albert; Julien, Jean-Philippe; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Lee, Kelly K.

    2015-02-01

    HIV’s envelope glycoprotein (Env) is the sole target for neutralizing antibodies. The structures of many broadly neutralizing antibodies (bNAbs) in complex with truncated Env subunits or components have been reported. However, their interaction with the intact Env trimer, and the structural determinants that underlie neutralization resistance in this more native context are less well understood. Here we use hydrogen/deuterium exchange to examine the interactions between a panel of bNAbs and native-like Env trimers (SOSIP.664 trimers). Highly potent bNAbs cause only localized effects at their binding interface, while the binding of less potent antibodies is associated with elaborate changes throughout the trimer. In conjunction with binding kinetics, our results suggest that poorly neutralizing antibodies can only bind when the trimer transiently samples an open state. We propose that the kinetics of such opening motions varies among isolates, with Env from neutralization-sensitive viruses opening more frequently than Env from resistant viruses.

  16. A new Purkinje cell antibody (anti-Ca associated with subacute cerebellar ataxia: immunological characterization

    Directory of Open Access Journals (Sweden)

    Horn Sigrun

    2010-03-01

    Full Text Available Abstract We report on a newly discovered serum and cerebrospinal fluid (CSF reactivity to Purkinje cells (PCs associated with subacute inflammatory cerebellar ataxia. The patient, a previously healthy 33-year-old lady, presented with severe limb and gait ataxia, dysarthria, and diplopia two weeks after she had recovered from a common cold. Immunohistochemical studies on mouse, rat, and monkey brain sections revealed binding of a high-titer (up to 1:10,000 IgG antibody to the cerebellar molecular layer, Purkinje cell (PC layer, and white matter. The antibody is highly specific for PCs and binds to the cytoplasm as well as to the inner side of the membrane of PC somata, dendrites and axons. It is produced by B cell clones within the CNS, belongs to the IgG1 subclass, and activates complement in vitro. Western blotting of primate cerebellum extract revealed binding of CSF and serum IgG to an 80-97 kDa protein. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic antibodies known to be associated with cerebellar ataxia. Screening of >9000 human full length proteins by means of a protein array and additional confirmatory experiments revealed Rho GTPase activating protein 26 (ARHGAP26, GRAF, oligophrenin-1-like protein as the target antigen. Preadsorption of the patient's serum with human ARHGAP26 but not preadsorption with other proteins resulted in complete loss of PC staining. Our findings suggest a role of autoimmunity against ARHGAP26 in the pathogenesis of subacute inflammatory cerebellar ataxia, and extend the panel of diagnostic markers for this devastating disease.

  17. Antibody-mediated targeting of the transferrin receptor in cancer cells.

    Science.gov (United States)

    Luria-Pérez, Rosendo; Helguera, Gustavo; Rodríguez, José A

    Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  18. A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood.

    Directory of Open Access Journals (Sweden)

    Stefan Seeber

    Full Text Available We have developed a robust platform to generate and functionally characterize rabbit-derived antibodies using B cells from peripheral blood. The rapid high throughput procedure generates a diverse set of antibodies, yet requires only few animals to be immunized without the need to sacrifice them. The workflow includes (i the identification and isolation of single B cells from rabbit blood expressing IgG antibodies, (ii an elaborate short term B-cell cultivation to produce sufficient monoclonal antigen specific IgG for comprehensive phenotype screens, (iii the isolation of VH and VL coding regions via PCR from B-cell clones producing antigen specific and functional antibodies followed by the sequence determination, and (iv the recombinant expression and purification of IgG antibodies. The fully integrated and to a large degree automated platform (demonstrated in this paper using IL1RL1 immunized rabbits yielded clonal and very diverse IL1RL1-specific and functional IL1RL1-inhibiting rabbit antibodies. These functional IgGs from individual animals were obtained at a short time range after immunization and could be identified already during primary screening, thus substantially lowering the workload for the subsequent B-cell PCR workflow. Early availability of sequence information permits one to select early-on function- and sequence-diverse antibodies for further characterization. In summary, this powerful technology platform has proven to be an efficient and robust method for the rapid generation of antigen specific and functional monoclonal rabbit antibodies without sacrificing the immunized animal.

  19. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  20. Women's attitude towards prenatal screening for red blood cell antibodies, other than RhD

    Directory of Open Access Journals (Sweden)

    van der Schoot CE

    2008-11-01

    Full Text Available Abstract Background Since July 1998 all Dutch women (± 200,000/y are screened for red cell antibodies, other than anti-RhesusD (RhD in the first trimester of pregnancy, to facilitate timely treatment of pregnancies at risk for hemolytic disease of the fetus and newborn (HDFN. Evidence for benefits, consequences and costs of screening for non-RhD antibodies is still under discussion. The screening program was evaluated in a nation-wide study. As a part of this evaluation study we investigated, according to the sixth criterium of Wilson and Jüngner, the acceptance by pregnant women of the screening program for non-RhD antibodies. Methods Controlled longitudinal survey, including a prenatal and a postnatal measurement by structured questionnaires. Main outcome measures: information satisfaction, anxiety during the screening process (a.o. STAI state inventory and specific questionnaire modules, overall attitude on the screening program. Univariate analysis was followed by standard multivariate analysis to identify significant predictors of the outcome measures. Participants: 233 pregnant women, distributed over five groups, according to the screening result. Results Satisfaction about the provided information was moderate in all groups. All screen- positive groups desired more supportive information. Anxiety increased in screen- positives during the screening process, but decreased to basic levels postnatally. All groups showed a strongly positive balance between perceived utility and burden of the screening program, independent on test results or background characteristics. Conclusion Women highly accept the non-RhD antibody screening program. However, satisfaction about provided information is moderate. Oral and written information should be provided by obstetric care workers themselves, especially to screen-positive women.

  1. Antibody response to polyomavirus primary infection: high seroprevalence of Merkel cell polyomavirus and lymphoid tissue involvement.

    Science.gov (United States)

    Cason, Carolina; Monasta, Lorenzo; Zanotta, Nunzia; Campisciano, Giuseppina; Maestri, Iva; Tommasino, Massimo; Pawlita, Michael; Villani, Sonia; Comar, Manola; Delbue, Serena

    2018-01-12

    Human polyomaviruses (HPyVs) asymptomatically infect the human population establishing latency in the host, and their seroprevalence can reach 90% in healthy adults. Few studies have focused on the pediatric population, and there are no reports regarding the seroprevalence of all the newly isolated HPyVs among Italian children. Therefore, we investigated the frequency of serum antibodies against 12 PyVs in 182 immunocompetent children from Northeast Italy, by means of a multiplex antibody detection system. Additionally, secondary lymphoid tissues were collected to analyze the presence of HPyV DNA sequences using a specific real-time PCRs or PCRs. Almost 100% of subjects were seropositive for at least one PyV. Seropositivity ranged from 3% for antibodies against simian virus 40 (SV40) in children from 0 to 3 years, to 91% for antibodies against WU polyomavirus (WUPyV) and HPyV10 in children from 8 to 17 years. The mean number of PyV for which children were seropositive increased with the increasing of age: 4 standard deviations (SD) 1.8 in the 0-3-year group, 5 (SD 1.9) in the 4-7-year group, and 6 (SD 2.2) in the 8-17-year group. JC polyomavirus (JCPyV) DNA was detected in 1% of the adenoids, WUPyV in 12% of the tonsils, and 28% of the adenoids, and Merkel cell polyomavirus (MCPyV) was present in 6 and 2% of the tonsils and adenoids, respectively. Our study gives new insights on the serological evidence of exposure to PyVs during childhood, and on their possible respiratory route of transmission.

  2. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination.

    Science.gov (United States)

    Nivarthi, Usha K; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M; Doranz, Benjamin J; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P; Whitehead, Steve S; Baric, Ralph; Crowe, James E; de Silva, Aravinda M

    2017-03-01

    The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses

  3. EXAMINATION OF THE GERM CELL CHIMERA FORMING POTENTIAL OF MOUSE EMBRYONIC STEM CELLS

    Directory of Open Access Journals (Sweden)

    V.B. CÂRSTEA

    2007-05-01

    Full Text Available The aim of this study was to examine the factors, which influence the chimeraforming potential of mouse embryonic stem cells (ES cells. In our work, we examinethe chimera producing ability of R1 and R1/E mouse ES cell lines. We found that thepassage number affects chimera-forming capability of the ES cells. With theincreasing of the passage number, it could be getting less chimera animal, and onlythe R1/E ES cell line derived cells could contribute to the germ cells. At first, wecompared the marker of pluripotency using immunostaining and RT PCR, but wecould not find any difference between the R1 and R1/E cell in this way. Atchromosome analysis, we found, that the number of aneuploid cells, in R1 ES cellline, dramatically increased after 10 passages. We thought that the reason is thatduring the cell division Y chromosome could not arrange correctly between the twonewly derived progeny cells. To prove our conception, we made X and YchromosomeFISH analyses. We found, that the aneuploid R1 and R1/E ES cellscontain only one X and one Y chromosome, so not the loss of Y chromosome causethe problem at the germ cell formation. At last, we made the karyotypeanalysis of R1 and R1/E ES cells at different passages. The karyotype analysisdemonstrated that in the case of R1 ES cell line, the 41 and 42-chromosomecontaining cells hold trisomy. With the increasing of the passages number, thenumber of trisomy containing aneuploid cells increased. The aneuploid ES cells cancontribute to the different tissuses of chimera animals, but cannot form viable germcells.

  4. EXAMINATION OF THE GERM CELL CHIMERA FORMING POTENTIAL OF MOUSE EMBRYONIC STEM CELLS

    Directory of Open Access Journals (Sweden)

    CÂRSTEA V. B

    2007-01-01

    Full Text Available The aim of this study was to examine the factors, which influence the chimeraforming potential of mouse embryonic stem cells (ES cells. In our work, we examinethe chimera producing ability of R1 and R1/E mouse ES cell lines. We found that thepassage number affects chimera-forming capability of the ES cells. With theincreasing of the passage number, it could be getting less chimera animal, and onlythe R1/E ES cell line derived cells could contribute to the germ cells. At first, wecompared the marker of pluripotency using immunostaining and RT PCR, but wecould not find any difference between the R1 and R1/E cell in this way. Atchromosome analysis, we found, that the number of aneuploid cells, in R1 ES cellline, dramatically increased after 10 passages. We thought that the reason is thatduring the cell division Y chromosome could not arrange correctly between the twonewly derived progeny cells. To prove our conception, we made X and YchromosomeFISH analyses. We found, that the aneuploid R1 and R1/E ES cellscontain only one X and one Y chromosome, so not the loss of Y chromosome causethe problem at the germ cell formation. At last, we made the karyotypeanalysis of R1 and R1/E ES cells at different passages. The karyotype analysisdemonstrated that in the case of R1 ES cell line, the 41 and 42-chromosomecontaining cells hold trisomy. With the increasing of the passages number, thenumber of trisomy containing aneuploid cells increased. The aneuploid ES cells cancontribute to the different tissuses of chimera animals, but cannot form viable germcells.

  5. Endothelial Cells in Antibody-Mediated Rejection of Kidney Transplantation: Pathogenesis Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-01-01

    Full Text Available Antibody-mediated rejection (AMR has been identified as a main obstacle for stable immune tolerance and long survival of kidney allografts. In spite of new insights into the underlying mechanisms of AMR, accurate diagnosis and efficient treatment are still challenges in clinical practice. Endothelium is the first barrier between recipients’ immune systems and grafts in vascularized organ transplants. Considering that endothelial cells express a number of antigens that can be attacked by various allo- and autoantibodies, endothelial cells act as main targets for the recipients’ humoral immune responses. Importantly, emerging evidence has shown that endothelial cells in transplants could also initiate protective mechanisms in response to immune injuries. A better understanding of the role of endothelial cells during the pathogenesis of AMR might provide novel therapeutic targets. In the present review, we summarize the antigens expressed by endothelial cells and also discuss the activation and accommodation of endothelial cells as well as their clinical implications. Collectively, the progress discussed in this review indicates endothelial cells as promising targets to improve current diagnosis and therapeutic regimens for AMR.

  6. Expression of functional recombinant antibody molecules in insect cell expression systems.

    Science.gov (United States)

    Reavy, B; Ziegler, A; Diplexcito, J; Macintosh, S M; Torrance, L; Mayo, M

    2000-03-01

    Recombinant single-chain variable-fragment molecules (scFv) were constructed from a cell line expressing a monoclonal antibody against African cassava mosaic virus (ACMV) and expressed in Escherichia coli. DNA sequences that encoded the scFv were manipulated to allow scFv expression in insect cell lines. A recombinant baculovirus containing the scFv cDNA was constructed and large amounts of scFv were produced in each of three insect cell lines infected with the baculovirus. However, the scFv were not secreted into the medium by any of the cell lines despite the scFv having been linked to a honeybee melittin leader sequence. The same scFv cDNA construct was introduced into Drosophila DS2 cells and a stable recombinant cell line was obtained that produced scFv that was secreted into the medium. Culture medium containing the scFv was used directly in enzyme-linked immunosorbent assay (ELISA) tests to detect ACMV in plant tissues. Another construct that encoded the Ckappa domain of human IgG was fused to the C-terminus of the scFv that was produced and expressed in Drosophila cells. This scFv derivative also accumulated in the medium and was more active in ELISA than scFv lacking the Ckappa domain. Copyright 2000 Academic Press.

  7. Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire

    NARCIS (Netherlands)

    Kwakkenbos, Mark J.; Bakker, Arjen Q.; van Helden, Pauline M.; Wagner, Koen; Yasuda, Etsuko; Spits, Hergen; Beaumont, Tim

    2014-01-01

    Antibody based therapies are increasingly applied to prevent and treat human disease. While the majority of antibodies currently on the market are chimeric or humanized antibodies from rodents, the focus has now shifted to the isolation and development of fully human antibodies. By retroviral

  8. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells*

    Science.gov (United States)

    Kanderova, Veronika; Kuzilkova, Daniela; Stuchly, Jan; Vaskova, Martina; Brdicka, Tomas; Fiser, Karel; Hrusak, Ondrej; Lund-Johansen, Fridtjof

    2016-01-01

    Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients. To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation. In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified

  9. Use of monoclonal antibodies to distinguish pathogenic Naegleria fowleri (cysts, trophozoites, or flagellate forms) from other Naegleria species.

    OpenAIRE

    Sparagano, O; Drouet, E; Brebant, R; Manet, E; Denoyel, G A; Pernin, P

    1993-01-01

    Monoclonal antibodies (MAbs) reactive to the pathogenic amoeba Naegleria fowleri were analyzed by enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay, Western blotting (immunoblotting), and radioimmunoprecipitation assay (RIPA). Two MAbs (3A4 and 5D12) showed reactivity by ELISA with all N. fowleri strains tested and no reactivity with the five other Naegleria species, N. lovaniensis, N. gruberi, N. australiensis, N. jadini, and N. andersoni. These MAbs reacted with t...

  10. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope.

    Science.gov (United States)

    Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong

    2015-02-01

    Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Prevalence of irregular red cell antibody in healthy blood donors attending a tertiary care hospital in North India.

    Science.gov (United States)

    Makroo, Raj Nath; Rajput, Saroj; Agarwal, Soma; Chowdhry, Mohit; Prakash, Bindu; Karna, Prashant

    2018-01-01

    Alloantibodies may be detected in blood donors who have either been transfused previously or female donors with previous obstetric events. These antibodies can occasionally cause severe transfusion reaction, if a large amount of plasma or whole blood is transfused, as in massive transfusions and pediatric patients. The present study aims to assess the prevalence of red cell antibodies in healthy blood donors at a tertiary care hospital-based blood bank in India. A total of 82,153 donor samples were screened for irregular red cell antibodies between January 2012 and December 2015 at the Department of Transfusion Medicine, Indraprastha Apollo Hospitals, New Delhi. Antibody screening was performed by solid phase method using Immucor Capture-R ready screen (pooled cells) on fully automated immunohematology analyzer Galileo Neo (Immucor Inc., Norcross, GA, USA). Positive tests were further confirmed using Capture-R ready screen (4 cell panel). Advanced investigations to identify the antibody/ies were performed on confirmed positive samples. Antibody identification was conducted using various cell panels (Immucor Capture-R Ready-ID, Panocell-10, Ficin Treated). An advanced technique such as adsorption and elution was performed as per requirement. Screening with pooled cells and 4 cell panel was positive in 227 donors (0.27%), 150 of these donors had autoantibodies, 1 had autoantibodies with underlying alloantibody anti-Jk a (0.001%), and 76 had alloantibodies (0.09%) alone in their plasma. Anti-M was the most common antibody (43 donors) identified, followed by anti-D (21 donors). Anti-N was detected in 4; anti-Jk a , anti-C, and anti-E in two donors each followed by anti-P1 and anti-Le b in 1 donor. Antibodies against red cells can be present in healthy donors detection of which is important in providing safe blood to the patient. The prevalence of red blood cell antibody in healthy donors in this study was found to be 0.27%, while the prevalence of alloantibodies was 0

  12. Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody.

    Directory of Open Access Journals (Sweden)

    Mark T Winkler

    Full Text Available Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH. We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.

  13. Phage display aided improvement of a unique prostate-specific antigen (PSA) antibody unreactive with Lys(145)-Lys(146) internally cleaved forms.

    Science.gov (United States)

    Liton, Md Ferdhos Khan; Peltola, Mari T; Vehniäinen, Markus; Kuusela, Erica; Pettersson, Tiina; Lamminmäki, Urpo; Pettersson, Kim; Brockmann, Eeva-Christine

    2015-07-01

    Prostate specific antigen (PSA) is a commonly used marker of prostate cancer. A panel of four kallikrein immunoassays has been reported to improve the prediction of prostate biopsy outcome (cancer vs benign) in men with elevated PSA in the circulation. Assay of one of the kallikrein forms, intact free PSA (fPSA-I), is based on a unique monoclonal antibody (4D4), which is specific for PSA without the internal cleavage at Lys(145)-Lys(146). Due to high dissociation rate the 4D4 antibody is less than optimal for achieving a highly sensitive robust assay. In this study, we cloned the 4D4 Mab into a recombinant fragment (Fab) format and constructed three mutant libraries with the aim to increase its binding affinity. The libraries contained targeted mutations either in the CDR-H1, CDR-H2 or CDR-L3 region. PSA-I specific antibodies were enriched from the libraries by phage display technology. We identified fourteen unique clones with 1-5 mutated amino acids showing reduced dissociation of the PSA conjugate compared to the wt-4D4 Fab. Five of these mutant antibodies had 2-6 times higher binding affinity compared to the wt-4D4 Fab yet retaining the original specificity for PSA-I. The analytical sensitivity of fPSA-I assay with mutant L3-2 Fab was 0.12 μg/L compared to 4.46 μg/L with the original wt-4D4 Fab. In the method comparison study, the developed assay showed an excellent correlation to the existing fPSA-I assay. The high affinity and specificity of these mutant antibodies have potential to provide sensitive and robust detection of intact and nicked PSA from patient samples in different test formats. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Plasma CXCL13 but Not B Cell Frequencies in Acute HIV Infection Predicts Emergence of Cross-Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Jenniffer M. Mabuka

    2017-09-01

    Full Text Available Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase may contribute to the development of broadly cross-neutralizing antibodies. Here, we used pre-infection and acute-infection peripheral blood mononuclear cells and plasma samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig stages I–V of acute infection to study B cell subsets and B-cell associated cytokines (BAFF and CXCL13 kinetics for up to ~90 days post detection of plasma viremia. Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine levels were measured by ELISA. We observed a rapid but transient increase in exhausted tissue-like memory, activated memory, and plasmablast B cells accompanied by decline in resting memory cells in untreated, but not treated women. B cell subset frequencies in untreated women positively correlated with viral loads but did not predict emergence of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels predicted the later emergence of detectable cross-neutralizing antibodies at 12 months post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. However, plasma CXCL13 levels during hyperacute infection predicted the subsequent emergence of cross-neutralizing antibodies, providing a potential biomarker for the evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection studies to explore mechanisms underlying development of neutralizing antibodies.

  15. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  16. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Science.gov (United States)

    Flego, Michela; Ascione, Alessandro; Zamboni, Silvia; Dupuis, Maria L; Imperiale, Valentina; Cianfriglia, Maurizio

    2007-01-01

    Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc) into an infectious disease-associated isoform, (PrPsc). Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP). Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv) phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease. PMID:17605808

  17. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  18. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...

  19. Degradation of radioiodinated B cell monoclonal antibodies: inhibition via a FCgamma-receptor-II-mediated mechanism and by drugs

    NARCIS (Netherlands)

    Vervoordeldonk, S. F.; Balkenende, A. Y.; van den Berg, H.; von dem Borne, A. E.; van der Schoot, C. E.; van Leeuwen, E. F.; Slaper-Cortenbach, I. C.

    1996-01-01

    Our aim is to treat patients with B cell malignancies with radioimmunotherapy using monoclonal antibodies (mAb) such as CD19, CD20 and CD22. In this study we investigated the rate of internalization and catabolism of these mAb. After 24 h at 37 degrees C, 20%-25% of initially cell-bound (125)I-CD19

  20. BH3-only protein Noxa regulates apoptosis in activated B cells and controls high-affinity antibody formation

    NARCIS (Netherlands)

    Wensveen, Felix M.; Derks, Ingrid A. M.; van Gisbergen, Klaas P. J. M.; de Bruin, Alex M.; Meijers, Joost C. M.; Yigittop, Haciali; Nolte, Martijn A.; Eldering, Eric; van Lier, René A. W.

    2012-01-01

    The efficiency of humoral immune responses depends on the selective outgrowth of B cells and plasmacells that produce high affinity antibodies. The factors responsible for affinity maturation of B cell clones in the germinal center (GC) have been well established but selection mechanisms that allow

  1. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.

    Science.gov (United States)

    Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng

    2011-10-01

    The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.

  2. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might ...

  3. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might...... peptide/MHC complexes....

  4. In vitro functional test of two subclasses of an anti-RhD antibody produced by transient expression in COS cells

    DEFF Research Database (Denmark)

    Nielsen, Leif Kofoed; Norderhaug, Lars; Sandlie, Inger

    2006-01-01

    that other sources of anti-RhD will be needed. One such source is recombinant human antibodies. Here we describe the construction of plasmids encoding two subclasses (IgG1 and IgG3) of an anti-RhD antibody, their transient expression in COS cells, and subsequent functional characterization of the antibodies...

  5. Antibody and T cell responses to Fusobacterium nucleatum and Treponema denticola in health and chronic periodontitis.

    Directory of Open Access Journals (Sweden)

    Jieun Shin

    Full Text Available The characteristics of the T cell response to the members of oral flora are poorly understood. We characterized the antibody and T cell responses to FadA and Td92, adhesins from Fusobacterium nucleatum, an oral commensal, and Treponema denticola, a periodontal pathogen, respectively. Peripheral blood and saliva were obtained from healthy individuals and patients with untreated chronic periodontitis (CP, n = 11 paris and after successful treatment of the disease (n = 9. The levels of antigen-specific antibody were measured by ELISA. In plasma, IgG1 was the most abundant isotype of Ab for both Ags, followed by IgA and then IgG4. The levels of FadA-specific salivary IgA (sIgA were higher than Td92-specific sIgA and the FadA-specific IgA levels observed in plasma. However, the periodontal health status of the individuals did not affect the levels of FadA- or Td92-specific antibody. Even healthy individuals contained FadA- and Td92-specific CD4(+ T cells, as determined by the detection of intracytoplasmic CD154 after short-term in vitro stimulation of peripheral blood mononuclear cells (PBMCs with the antigens. Patients with CP tended to possess increased numbers of FadA- and Td92-specific CD4(+ T cells but reduced numbers of Td92-specific Foxp3(+CD4(+ Tregs than the healthy subjects. Both FadA and Td92 induced the production of IFNγ and IL-10 but inhibited the secretion of IL-4 by PBMCs. In conclusion, F. nucleatum induced Th3 (sIgA- and Th1 (IFNγ and IgG1-dominant immune responses, whereas T. denticola induced a Th1 (IFNγ and IgG1-dominant response. This IFNγ-dominant cytokine response was impaired in CP patients, and the Td92-induced IFNγ levels were negatively associated with periodontal destruction in patients. These findings may provide new insights into the homeostatic interaction between the immune system and oral bacteria and the pathogenesis of periodontitis.

  6. Assessment of in vivo anti-tumor activity of human umbilical vein endothelial cell vaccines prepared by various antigen forms.

    Science.gov (United States)

    Zhou, Ling; Si, Chunfeng; Li, Defang; Lu, Meiyu; Zhong, Weilan; Xie, Zeping; Guo, Lin; Zhang, Shumin; Xu, Maolei

    2018-03-01

    Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine. Copyright © 2017. Published by Elsevier B.V.

  7. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Directory of Open Access Journals (Sweden)

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  8. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Marcus, Susan E.; Haeger, Ash

    2008-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall...

  9. Direct targeting of cancer cells with antibodies: What can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias?

    Science.gov (United States)

    Golay, Josée

    2017-12-01

    Following approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-NHL and CLL, many other unconjugated IgG1 MAbs have been tested in pre-clinical and clinical trials for the treatment of lymphoid neoplasms. Relatively few have been approved however and these are directed against a limited number of target antigens (CD20, CD52, CCR4, CD38, CD319). We review here the known biological properties of these antibodies and discuss which factors may have led to their success or may, on the contrary, limit their clinical application. Common factors of the approved MAbs are that the target antigen is expressed at relatively high levels on the neoplastic targets and their mechanism of action is mostly immune-mediated. Indeed most of these MAbs induce ADCC and phagocytosis by macrophages, and many also activate complement, leading to target cell lysis. In contrast direct cell death induction is not a common feature but may enhance efficacy in some cases. Interestingly, a key factor for the success of several MAbs appears to be their capacity to skew immunity towards an anti-tumour mode, by inhibiting/depleting suppressor cells and/or activating immune cells within the microenvironment, independently of FcγRs. We also expose here some of the strategies employed by industry to expand the clinical use of these molecules beyond their original indication. Interestingly, due to the central role of lymphocytes in the control of the immune response, several of the antibodies are now successfully used to treat many different autoimmune diseases and have also been formally approved for some of these new indications. There is little doubt that this trend will continue and that the precise mechanisms of therapeutic MAbs will be further dissected and better understood in the context of both tumour immunology and autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of the enzyme test for the detection of clinically significant red blood cell antibodies during pregnancy.

    Science.gov (United States)

    Hundrić-Haspl, Z; Juraković-Loncar, N; Grgicević, D

    1999-01-01

    In the Croatian transfusion medicine, no general agreement has yet been achieved whether red blood cell (RBC) Rhesus (Rh) antibodies detected during pregnancy only by enzyme tests can cause hemolytic disease of the newborn (HDN). Results of the detection of clinically significant RBC antibodies by low-ionic-strength additive solution antiglobulin test (LISS-IAT) and trypsin enzyme test in 22,947 pregnant women are presented. All pregnant women in whom clinically significant RBC antibodies (RBC-CSA) were detected by LISS-IAT and/or enzyme tests were followed and observed during pregnancy. The women who had enzyme-only anti-D antibodies in their serum were followed up during subsequent pregnancies. Out of 302 positive results obtained by both techniques, irregular clinically significant enzyme-only antibodies (anti-RhD and anti-RhE specificity) were detected in 14 (4.6%) pregnant women. None of 11 RhD positive newborns whose mothers had enzyme-only anti-D antibodies, had signs of HDN after delivery. In these 11 women, anti-D antibodies were detected by LISS-IAT in the first trimenon of subsequent pregnancy. Nine infants born from subsequent pregnancies to women who had previously had enzyme-only anti-D, had clinical signs of HDN. The authors concluded that there is no need for enzyme tests in prenatal testing because enzyme tests are not reliable in the prediction of HDN.

  11. Targeted therapies for the treatment of non-small-cell lung cancer: Monoclonal antibodies and biological inhibitors.

    Science.gov (United States)

    Silva, Ana P S; Coelho, Priscila V; Anazetti, Maristella; Simioni, Patricia U

    2017-04-03

    The usual treatments for patients with non-small-cell lung cancer (NSCLC), such as advanced lung adenocarcinoma, are unspecific and aggressive, and include lung resection, radiotherapy and chemotherapy. Recently, treatment with monoclonal antibodies and biological inhibitors has emerged as an effective alternative, generating effective results with few side effects. In recent years, several clinical trials using monoclonal antibodies presented potential benefits to NSCLC, and 4 of them are already approved for the treatment of NSCLC, such as cetuximab, bevacizumab, nivolumab and pembrolizumab. Also, biological inhibitors are attractive tolls for biological applications. Among the approved inhibitors are crizotinib, erlotinib, afatinib and gefitinib, and side effects are usually mild to intense. Nevertheless, biological molecule treatments are under development, and several new monoclonal antibodies and biological inhibitors are in trial to treat NSCLC. Also under trial study are as follows: anti-epidermal growth factor receptor (EGFR) antibodies (nimotuzumab and ficlatuzumab), anti-IGF 1 receptor (IGF-1R) monoclonal antibody (figitumumab), anti-NR-LU-10 monoclonal antibody (nofetumomab) as well as antibodies directly affecting the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) molecule (ipilimumab and tremelimumab), to receptor activator of nuclear factor-kappa B ligand (RANKL) (denosumab) or to polymerase enzyme (veliparib and olaparib). Among new inhibitors under investigation are poly-ADP ribose polymerase (PARP) inhibitors (veliparib and olaparib) and phosphatidylinositol 3-kinase (PI3K) inhibitor (buparlisib). However, the success of immunotherapies still requires extensive research and additional controlled trials to evaluate the long-term benefits and side effects.

  12. Hybrid IgG4/IgG4 Fc antibodies form upon 'Fab-arm' exchange as demonstrated by SDS-PAGE or size-exclusion chromatography

    NARCIS (Netherlands)

    Rispens, Theo; den Bleker, Tamara H.; Aalberse, Rob C.

    2010-01-01

    Human IgG4 antibodies are dynamic molecules that in vivo exchange half-molecules to become bispecific antibodies. Here we show that IgG4 antibodies and IgG4 Fc fragments similarly exchange resulting in hybrid antibodies (a single Fab + Fc) with a molecular weight of ca. 100 kDa. These antibodies can

  13. T cell regulation of the thymus-independent antibody response to trinitrophenylated-Brucella abortus (TNP-BA)

    Energy Technology Data Exchange (ETDEWEB)

    Tanay, A.; Strober, S.

    1985-06-01

    The authors have previously observed a reduction of the T cell-dependent primary antibody response to dinitrophenylated keyhole limpet hemocyanin, and an enhancement of the T cell-independent response to trinitrophenylated Brucella abortus (TNP-BA) in BALB/c mice after treatment with total lymphoid irradiation (TLI). To elucidate the relative contribution of T and B cells to the enhanced T cell-independent antibody responses after TLI, a syngeneic primary adoptive transfer system was utilized whereby irradiated hosts were reconstituted with unfractionated spleen cells or a combination of purified T and B cells from TLI-treated and untreated control mice. Antibody responses of purified splenic B cells from TLI-treated BALB/c mice (TLI/B) to TNP-BA were enhanced 10-fold as compared with those of unfractionated (UF) spleen cells or B cells from normal (NL) BALB/c mice (NL/UF and NL/B, respectively). Splenic T cells from normal animals (NL/T) suppressed the anti-TNP-BA response of TLI/B by more than 100-fold. NL/T neither suppressed nor enhanced the response of NL/B. On the other hand, T cells from TLI-treated mice (TLI/T) enhanced by 100-fold the anti-TNP-BA response of NL/B, but neither suppressed nor enhanced the response of TLI/B. Thus, T cells can regulate the T cell-independent antibody response to TNP-BA. However, experimental manipulation of the T and B cell populations is needed to demonstrate the regulatory functions.

  14. Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum.

    Science.gov (United States)

    Nosanchuk, Joshua D; Steenbergen, Judith N; Shi, Li; Deepe, George S; Casadevall, Arturo

    2003-10-01

    A protective role for antibodies has not previously been described for host defense against the pathogenic fungus Histoplasma capsulatum (Hc). Mouse mAb's were generated from mice immunized with Hc yeast that binds the cell surface of Hc. Administration of mAb's before Hc infection reduced fungal burden, decreased pulmonary inflammation, and prolonged survival in a murine infection model. Protection mediated by mAb's was associated with enhanced levels of IL-4, IL-6, and IFN-gamma in the lungs of infected mice. The mAb's increased phagocytosis of yeast by J774.16 cells through a CR3-dependent process. Ingestion of mAb-opsonized Hc by J774.16 macrophage-like cells was associated with yeast cell growth inhibition and killing. The mAb's bound to a 17-kDa antigen expressed on the surface of Hc. The antigen was identified as a histone H2B-like protein. This study establishes that mAb's to a cell surface protein of Hc alter the intracellular fate of the fungus and mediate protection in a murine model of lethal histoplasmosis, and it suggests a new candidate antigen for vaccine development.

  15. [A pregnant woman with irregular erythrocyte antibodies for whom no compatible packed red blood cells were available].

    Science.gov (United States)

    Boonstra, J G; Overbeeke, M A M; de Rijke, Y B; Duvekot, J J

    2005-11-19

    A 45-year-old woman underwent a Caesarean section at a gestational age of over 32 weeks. Screening for irregular erythrocyte antibodies in the transfusion laboratory yielded a positive result. It appeared that the patient had for several years been known to have antibodies against At(a), a high-frequency antigen that may cause severe transfusion reactions when incompatible packed cells are administered. No autologous donated blood was available and the only compatible At(a)-negative unit of packed cells in the Blood Bank of the Council of Europe was damaged during the thawing process. A cell saver was therefore used during the Caesarean section, and family members were summoned for donation. This case report illustrates the necessity of a transfusion plan for pregnant women with (rare) irregular antibodies.

  16. The preparation, characterization, and application of environment-friendly monoclonal antibodies for human blood cell.

    Science.gov (United States)

    Zhou, Chenjie; Gao, Xuechao; He, Shixiang; Gao, Xiaoling; Zhuang, Jialin; Huang, Lirong; Guo, Hengchang

    2017-03-01

    Monoclonal anti-human blood group A (51A8) and B (63B6) antibody reagents were prepared using the serum-free technique. The aims of this research were to characterize the serum-free reagents and prove their reliabilities in routine use. Experiments including antigen-antibody agglutination testing, stability testing, SDS-PAGE, protein and IgM quantification, flow cytometry, and variable domain sequencing were performed to characterize the anti-A (51A8) and anti-B (63B6) reagents. Over 12 000 samples were tested using these reagents as routine blood grouping reagents. Serum-free anti-A (51A8) and anti-B (63B6) reagents were stable in longitudinal and accelerated testing, and their high purity was shown in SDS-PAGE and IgM quantification. These reagents have high specificity to red blood cells in serologic agglutination testing and flow cytometric analysis. A1 and A2 subgroup antigens can be distinguished clearly by patterns of flow cytometric histograms. No discrepancy was found in clinical trials of 12 000 samples. To reduce the risk of being affected by any animal additives, a serum-free culture system was applied to get mass-production of monoclonal anti-A/B antibodies. The high specificity and the high purity of the reagents were verified by the lab experiments. Lab research and clinical trial showed that serum-free monoclonal anti-A (51A8) and anti-B (63B6) reagents meet the requirements of routine blood grouping reagents. Moreover, these reagents featured ultra-high purity that is missing in other commercial counterparts, and therefore are recommended as more environment-friendly reagents.

  17. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

    Directory of Open Access Journals (Sweden)

    Corina Wilding

    Full Text Available The family of synuclein proteins (α, β and γ are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody but also down-regulations (e.g. γ-synuclein antibody of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5 as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15% and decreased reactive oxygen species levels (up to -12% of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated. These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical

  18. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

    Science.gov (United States)

    Wilding, Corina; Bell, Katharina; Beck, Sabine; Funke, Sebastian; Pfeiffer, Norbert; Grus, Franz H

    2014-01-01

    The family of synuclein proteins (α, β and γ) are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody) but also down-regulations (e.g. γ-synuclein antibody) of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5) as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15%) and decreased reactive oxygen species levels (up to -12%) of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated) and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated). These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical stainings

  19. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    OpenAIRE

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; Lardinois, Didier

    2015-01-01

    T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting fola...

  20. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  1. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells

    Science.gov (United States)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  2. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  3. Recipient-derived HPA-1a antibodies: a cause of prolonged thrombocytopenia after unrelated donor stem cell transplantation.

    Science.gov (United States)

    Lucas, Geoff; Culliford, Steven; Green, Frances; Sidra, Gamal; Calvert, Anthony; Green, Ann; Harrison, Penny; Harvey, John; Allen, Dave; Smillie, David; Masurekar, Ashish; Marks, David; Russell, Nigel; Massey, Edwin

    2010-02-01

    Patients with human platelet antigen (HPA) specific antibodies in cases of neonatal alloimmune thrombocytopenia and platelet (PLT) refractoriness derive clinical benefit from the use of HPA-selected PLTs. This study describes three patients with underlying diagnoses of acute myeloid leukemia, chronic lymphocytic leukemia, and myelodysplasia, respectively, who underwent allogeneic bone marrow transplantation (BMT) with unrelated donors matched at the HLA-A, B, C, Dr, and DQ loci but who failed to achieve an adequate PLT count. Investigation using PLT immunofluorescence test, monoclonal antibody immobilization of PLT antigens assay, and genotyping revealed the presence of recipient-derived HPA-1a antibodies. In two patients, anti-HPA-1a was detected post-BMT and in the third patient, anti-HPA-1a was detected during pre-BMT chemotherapy. Despite apparent 100% engraftment of donor cells, the patients' PLT counts failed to recover 9-10 months posttransplant. The patients remained PLT-transfusion dependent and failed to achieve satisfactory increments following random donor or HLA-matched PLT transfusions. After the identification of HPA-1a antibodies, the patients were supported by HPA-1a(-) PLTs and satisfactory posttransfusion PLT increments were obtained. These cases illustrate that HPA-1a antibodies may remain detectable for 10 months following apparently successful donor engraftment and the disappearance of recipient-derived HLA antibodies. The prolonged persistence of recipient-derived PLT-specific antibodies following BMT has to our knowledge not been described previously. HPA-1a antibodies were associated with protracted PLT-transfusion dependence and significant hemorrhagic complications. Appropriate and timely laboratory investigation for HPA-specific antibodies followed by transfusion support with HPA-selected PLTs provided the cornerstone of the hemostatic management in these cases.

  4. Neonatal Satellite Cells Form Small Myotubes In Vitro.

    Science.gov (United States)

    Carvajal Monroy, P L; Grefte, S; Kuijpers-Jagtman, A M; Von den Hoff, J W; Wagener, F A D T G

    2017-03-01

    Although palatal muscle reconstruction in patients with cleft palate takes place during early childhood, normal speech development is often not achieved. We hypothesized that the intrinsic properties of head satellite cells (SCs) and the young age of these patients contribute to the poor muscle regeneration after surgery. First, we studied the fiber type distribution and the expression of SC markers in ex vivo muscle tissue from head (branchiomeric) and limb (somite-derived) muscles from neonatal (2-wk-old) and young (9-wk-old) rats. Next, we cultured SCs isolated from these muscles for 5, 7, and 9 d, and investigated the in vitro expression of SC markers, as well as changes in proliferation, early differentiation, and fusion index (myotube formation) in these cells. In our ex vivo samples, we found that virtually all myofibers in both the masseter (Mass) and the levator veli palatini (LVP) muscles contained fast myosin heavy chain (MyHC), and a small percentage of digastric (Dig) and extensor digitorum longus myofibers also contained slow MyHC. This was independent of age. More SCs were found in muscles from neonatal rats as compared with young rats [17.6 (3.8%) v. 2.3 (1.6%); P < 0.0001]. In vitro, young branchiomeric head muscle (BrHM) SCs proliferated longer and differentiated later than limb muscle SCs. No differences were found between SC cultures from the different BrHMs. SC cultures from neonatal muscles showed a much higher proliferation index than those from young animals at 5 d (0.8 v. 0.2; P < 0.001). In contrast, the fusion index in neonate SCs was about twice as low as that in SCs from young muscles at 9 d [27.6 (1.4) v. 62.8 (10.2), P < 0.0001]. In conclusion, SCs from BrHM differ from limb muscles especially in their delayed differentiation. SCs from neonatal muscles form myotubes less efficiently than those from young muscles. These age-dependent differences in stem cell properties urge careful consideration for future clinical applications in

  5. Characterization and expression of the human T cell receptor-T3 complex by monoclonal antibody F101.01

    DEFF Research Database (Denmark)

    Geisler, C; Plesner, T; Pallesen, G

    1988-01-01

    A murine monoclonal antibody (MoAb) F101.01 reacting with the T cell receptor (TCR)-T3 complex is presented. Immunohistological studies showed that F101.01 specifically stains T-zone lymphocytes in lymph nodes, tonsils, and splenic tissue. Two-colour immunofluorescence and flow cytometry...... demonstrated co-expression of the antigen defined by F101.01 and the pan-T cell antigens defined by CD2, CD3, CD5, and CD7 antibodies. Cells stained with CD4 and CD8 antibodies were both included in the F101.01-positive population, whereas CD16-positive natural killer cells (NK), B cells (CD19 and CD20......), and myeloid cells (CD13 and CD33) were excluded. The target antigen of F101.01 co-modulated with the CD3-defined antigen (T3) and the TCR recognized by the MoAb WT-31. CD3 antibody and WT-31 both blocked binding of F101.01. F101.01 precipitated the TCR-T3 complex from lysates of 125I-labelled peripheral blood...

  6. Antiglycine receptor antibody and encephalomyelitis with rigidity and myoclonus (PERM) related to small cell lung cancer.

    Science.gov (United States)

    Kyskan, Robert; Chapman, Kristine; Mattman, André; Sin, Don

    2013-06-21

    A 39-year-old man (a lifetime non-smoker) presented with a locked left jaw and leg myoclonus. Clinical and electromyographic findings were in keeping with progressive encephalomyelitis with rigidity and myoclonus (PERM) syndrome. A thoracic CT scan demonstrated a 19 mm right hilar nodule, which was proven to be small cell lung cancer on bronchoscopic biopsy. Serological evaluation of the patient's plasma revealed antibodies against glycine receptors (serology negative for anti-GAD, anti-Yo, anti-Hu, anti-Ri, antiamphiphysin, anti-Ma2/Ta, anti-CRMP5 and anti-NMDA receptor). After his cancer was treated with chemotherapy and intravenous immunoglobulins (IVIg), neurological symptoms resolved but returned several months later without any evidence of cancer recurrence. Symptoms were refractory to corticosteroids and IVIg therapy. Rituximab was then initiated, which led to a dramatic and sustained resolution of symptoms. To our knowledge, this is the first case of PERM related to antiglycine receptor antibodies from paraneoplastic syndrome, which resolved with rituximab.

  7. Antibody persistence after serogroup C meningococcal conjugate vaccine in children with sickle cell disease.

    Science.gov (United States)

    Souza, Alessandra R; Maruyama, Claudia M; Sáfadi, Marco Aurélio P; Lopes, Marta H; Azevedo, Raymundo S; Findlow, Helen; Bai, Xilian; Borrow, Ray; Weckx, Lily Y

    2016-08-05

    A decline of protective antibody titers after MCC vaccine has been demonstrated in healthy children, this may be an issue of concern for risk groups. The aim of this study was to evaluate the persistence of bactericidal antibodies after MCC vaccine in sickle cell disease (SCD) patients. The type of vaccine used and booster response were also analyzed. SCD patients (n=141) previously immunized with MCC vaccines had blood drawn 2-8 years after the last priming dose. They were distributed according to age at primary immunization into groups: vaccination (2-3, 4-5 and 6-8). Serum bactericidal antibodies with baby rabbit complement (rSBA) and serogroup C-specific IgG concentrations were measured. The correlate of protection was rSBA titer ⩾8. Subjects with rSBA children primed under 2years of age rSBA titer ⩾8 was demonstrated in 53.3%, 21.7% and 35.0%, 2-3, 4-5, 6-8years, respectively, after vaccination, compared with 70.0%, 45.0% and 53.5%, respectively, for individuals primed at ages 2-13years. rSBA median titers and IgG median levels were higher in the older group. Six to eight years after vaccination the percentage of patients with rSBA titers ⩾8 was significantly higher in the group primed with MCC-TT (78.5%) compared with those primed with MCC-CRM197 [Menjugate® (33.3%) or Meningitec® (35.7%)] (p=0.033). After a booster, 98% achieved rSBA titer ⩾8. Immunity to meningococcal serogroup C in SCD children declines rapidly after vaccination and is dependent on the age at priming. Booster doses are needed to maintain protection in SCD patients. Persistence of antibodies seems to be longer in individuals primed with MCC-TT vaccine comparing to those immunized with MCC-CRM197. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation

    OpenAIRE

    F. Kashanian; M. M. Masoudi; A. Akbari; A. Shamloo; M. R. Zand; S. S. Salehi

    2017-01-01

    Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this...

  9. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  10. Direct injection of functional single-domain antibodies from E. coli into human cells.

    Science.gov (United States)

    Blanco-Toribio, Ana; Muyldermans, Serge; Frankel, Gad; Fernández, Luis Ángel

    2010-12-08

    Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 10⁵-10⁶ molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes.

  11. Direct injection of functional single-domain antibodies from E. coli into human cells.

    Directory of Open Access Journals (Sweden)

    Ana Blanco-Toribio

    2010-12-01

    Full Text Available Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS. The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 10⁵-10⁶ molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies into human cells for analytical and therapeutic purposes.

  12. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates.

    Science.gov (United States)

    Marega, Riccardo; Prasetyanto, Eko Adi; Michiels, Carine; De Cola, Luisa; Bonifazi, Davide

    2016-10-01

    Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. HIV transcription is induced with some forms of cell killing

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Schreck, S.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-01-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct', we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. Γ rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that γ-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture

  14. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  15. Small-cell lung cancer with voltage-gated calcium channel antibody-positive paraneoplastic limbic encephalitis: a case report.

    Science.gov (United States)

    Kaira, Kyoichi; Okamura, Takashi; Takahashi, Hiroki; Horiguchi, Norio; Sunaga, Noriaki; Hisada, Takeshi; Yamada, Masanobu

    2014-04-08

    Paraneoplastic limbic encephalitis is a rare neurological syndrome and clinically characterized by cognitive dysfunction, memory impairment, seizures and psychiatric symptoms. Paraneoplastic limbic encephalitis is most frequently found in small-cell lung cancer, among various malignancies, and antineuronal antibodies are related to the autoimmune mechanism. We experienced a rare case of a patient with small-cell lung cancer with anti-voltage-gated calcium channel antibody-positive paraneoplastic limbic encephalitis. A 61-year-old Japanese man with a history of smoking cigarettes presented with seizure, confusion and personality change in acute onset. Brain magnetic resonance imaging showed high signal intensity on T2-weighted image in his right temporal lobe, suggestive of limbic encephalitis. A mediastinoscopy of the lymph node revealed small-cell lung carcinoma, and he was staged as having limited stage disease. Antibodies against P/Q-type and N-type voltage-gated calcium channel were positive and Hu antibody was negative. He was started on chemotherapy of carboplatin plus etoposide with concurrent thoracic radiotherapy. Neurological symptoms were gradually improved after systemic chemotherapy. We should be alert to the potential of malignant neoplasms associated with paraneoplastic limbic encephalitis when we examine a patient with cancer with neurological disorders such as personality change, disorientation, unconsciousness and memory loss. A clinical marker such as voltage-gated calcium channel antibody may help our diagnosis in clinical practice.

  16. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells

    NARCIS (Netherlands)

    D.D. Drabek (Dubravka); R. Janssens (Rick); Boer, E. (Ernie de); Rademaker, R. (Rik); Kloess, J. (Johannes); J.J. Skehel (John ); Grosveld, F. (Frank)

    2016-01-01

    textabstractSeveral technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and

  17. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor

    Science.gov (United States)

    Manetta, Joseph; Bina, Holly; Ryan, Paul; Fox, Niles; Witcher, Derrick R; Kikly, Kristine

    2014-01-01

    B-cell activating factor (BAFF) is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect. PMID:25258549

  18. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor.

    Science.gov (United States)

    Manetta, Joseph; Bina, Holly; Ryan, Paul; Fox, Niles; Witcher, Derrick R; Kikly, Kristine

    2014-01-01

    B-cell activating factor (BAFF) is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect.

  19. Effects of in vivo injection of anti-chicken CD25 monoclonal antibody on regulatory T cell depletion and CD4+CD25- T cell properties in chickens.

    Science.gov (United States)

    Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2012-03-01

    Regulatory T cells (Tregs) are defined as CD4(+)CD25(+) cells in chickens. This study examined the effects of an anti-chicken CD25 monoclonal antibody injection (0.5 mg/bird) on in vivo depletion of Tregs and the properties of CD4(+)CD25(-) cells in Treg-depleted birds. The CD4(+)CD25(+) cell percentage in the blood was lower at 8 d post injection than at 0 d. Anti-CD25-mediated CD4(+)CD25(+) cell depletion in blood was maximum at 12 d post injection. The anti-CD25 antibody injection depleted CD4(+)CD25(+) cells in the spleen and cecal tonsils, but not in the thymus, at 12 d post antibody injection. CD4(+)CD25(-) cells from the spleen and cecal tonsils of birds injected with the anti-chicken CD25 antibody had higher proliferation and higher IL-2 and IFNγ mRNA amounts than the controls at 12 d post injection. At 20 d post injection, CD4(+)CD25(+) cell percentages in the blood, spleen and thymus were comparable to that of the 0 d post injection. It could be concluded that anti-chicken CD25 injection temporarily depleted Treg population and increased and IL-2 and IFNγ mRNA amounts in CD4(+)CD25(-) cells at 12d post injection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Prevalence and predictive value of islet cell antibodies and insulin autoantibodies in women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Kühl, C; Buschard, K

    1994-01-01

    The objective of the present study was to investigate the predictive value of islet cell antibodies (ICA) and insulin autoantibodies (IAA) for development of diabetes in women with previous gestational diabetes (GDM). Two hundred and forty-one previous diet-treated GDM patients and 57 women without...... previous GDM were examined 2-11 years after the index pregnancy. In subgroups, plasma from the diagnostic OGTT during index pregnancy was analysed for ICA and IAA. Among the previous GDM patients, 3.7% had developed Type 1 diabetes and 13.7% Type 2 diabetes. Four (2.9%) of the 139 GDM patients tested...... for ICA were ICA-positive and three of these had Type 1 diabetes at follow-up, as well as three ICA-negative patients. The sensitivity, specificity, and predictive value of ICA-positivity for later development of diabetes were 50%, 99%, and 75%, respectively. None of the women was IAA-positive during...

  1. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer.

    Science.gov (United States)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders; Skov, Birgit G

    2014-12-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR PCR kit, Qiagen, UK; reference method). For immunohistochemistry, antibodies against exon19 deletions (clone 6B6), exon21 mutations (clone 43B2) from Cell Signaling Technology (Boston, USA) and EGFR variantIII (clone 218C9) from Dako (Copenhagen, DK) were applied. Protein expression was evaluated, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94.4-99.4%). Sensitivity of exon19 antibody was 63.2% (95% confidence interval=38.4-83.7%) and of exon21 antibody was 80.0% (95% confidence interval=44.4-97.5%). Seven exon19 and four exon21 mutations were false negatives (immunohistochemistry negative, RT-PCR positive). Two exon19 and three exon21 mutations were false positive (immunohistochemistry positive, RT-PCR negative). One false positive exon21 mutation had staining score 300. The EGFR variantIII antibody showed no correlation to EGFR mutation status determined by RT-PCR or to EGFR immunohistochemistry. High specificity of the mutation-specific antibodies was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC

  2. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut.

    Science.gov (United States)

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-04-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  3. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haiying [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemistry, Yuncheng University, Yuncheng 044300 (China); Li, Zhejian; Shan, Meng; Li, Congcong; Qi, Honglan; Gao, Qiang [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Jinyi [College of Science and College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Zhang, Chengxiao, E-mail: cxzhang@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2015-03-10

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 10{sup 2} to 3.0 × 10{sup 4} cells mL{sup −1}, with a detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL{sup −1}. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.

  4. Dengue virus cell entry : Unraveling the role of antibodies, maturation status, and antiviral drugs

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa

    2014-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus-induced disease during a heterologous re-infection. Pre-existing cross-reactive anti-dengue antibodies are generally believed to bind to the newly infecting DENV and target the antibody-virus

  5. BiHC, a T-Cell–Engaging Bispecific Recombinant Antibody, Has Potent Cytotoxic Activity Against Her2 Tumor Cells

    Directory of Open Access Journals (Sweden)

    Jieyu Xing

    2017-10-01

    Full Text Available Among different cancer immunotherapy approaches, bispecific antibodies (BsAbs are of great interest due to their ability to recruit immune cells to kill tumor cells directly. Various BsAbs against Her2 tumor cells have been proposed with potent cytotoxic activities. However, most of these formats require extensive processing to obtain heterodimeric bispecific antibodies. In this study, we describe a bispecific antibody, BiHC (bispecific Her2-CD3 antibody, constructed with a single-domain anti-Her2 and a single-chain Fv (variable fragment of anti-CD3 in an IgG-like format. In contrast to most IgG-like BsAbs, the two arms in BiHC have different molecular weights, making it easier to separate hetero- or homodimers. BiHC can be expressed in Escherichia coli and purified via Protein A affinity chromatography. The purified BiHC can recruit T cells and induce specific cytotoxicity of Her2-expressing tumor cells in vitro. The BiHC can also efficiently inhibit the tumor growth in vivo. Thus, BiHC is a promising candidate for the treatment of Her2-positive cancers.

  6. Select host cell proteins coelute with monoclonal antibodies in protein A chromatography.

    Science.gov (United States)

    Nogal, Bartek; Chhiba, Krishan; Emery, Jefferson C

    2012-01-01

    The most significant factor contributing to the presence of host cell protein (HCP) impurities in Protein A chromatography eluates is their association with the product monoclonal antibodies (mAbs) has been reported previously, and it has been suggested that more efficacious column washes may be developed by targeting the disruption of the mAbs-HCP interaction. However, characterization of this interaction is not straight forward as it is likely to involve multiple proteins and/or types of interaction. This work is an attempt to begin to understand the contribution of HCP subpopulations and/or mAb interaction propensity to the variability in HCP levels in the Protein A eluate. We performed a flowthrough (FT) recycling study with product respiking using two antibody molecules of apparently different HCP interaction propensities. In each case, the ELISA assay showed depletion of select subpopulations of HCP in Protein A eluates in subsequent column runs, while the feedstock HCP in the FTs remained unchanged from its native harvested cell culture fluid (HCCF) levels. In a separate study, the final FT from each molecule's recycling study was cross-spiked with various mAbs. In this case, Protein A eluate levels remained low for all but two molecules which were known as having high apparent HCP interaction propensity. The results of these studies suggest that mAbs may preferentially bind to select subsets of HCPs, and the degree of interaction and/or identity of the associated HCPs may vary depending on the mAb. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  7. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sciuto, Tracey E.; Merley, Anne; Lin, Chi-Iou [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Richardson, Douglas [Department of Molecular and Cellular Biology, Harvard University (United States); Liu, Yu [Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Shanxi Province, Taiyuan 030001 (China); Li, Dan; Dvorak, Ann M. [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Dvorak, Harold F., E-mail: hdvorak@bidmc.harvard.edu [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Jaminet, Shou-Ching S., E-mail: sjaminet@bidmc.harvard.edu [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States)

    2015-09-25

    Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. - Highlights: • Anti-TM4SF1 antibody 8G4 was efficiently taken up by cultured endothelial cells. • TM4SF1–8G4 internalization is dynamin-dependent but clathrin-independent. • TM4SF1–8G4 complexes internalize along microtubules to reach the perinuclear region. • Internalized TM4SF1–8G4 complexes pass through nuclear pores into the nucleus. • TM4SF1 is an attractive candidate for ADC cancer therapy.

  8. Approach to a case of multiple irregular red cell antibodies in a liver transplant recipient: Need for developing competence.

    Science.gov (United States)

    Dara, Ravi C; Tiwari, Aseem K; Pandey, Prashant; Arora, Dinesh

    2015-01-01

    Liver transplant procedure acts as a challenge for transfusion services in terms of specialized blood components, serologic problems, and immunologic effects of transfusion. Red cell alloimmunization in patients awaiting a liver transplant complicate the process by undue delay or unavailability of compatible red blood cell units. Compatible blood units can be provided by well-equipped immunohematology laboratory, which has expertise in resolving these serological problems. This report illustrates resolution of a case with multiple alloantibodies using standard techniques, particularly rare antisera. Our case re-emphasizes the need for universal antibody screening in all patients as part of pretransfusion testing, which helps to identify atypical antibodies and plan for appropriate transfusion support well in time. We recommend that the centers, especially the ones that perform complex procedures like solid organ transplants and hematological transplants should have the necessary immunohematological reagents including rare antisera to resolve complex cases of multiple antibodies as illustrated in this case.

  9. Approach to a case of multiple irregular red cell antibodies in a liver transplant recipient: Need for developing competence

    Directory of Open Access Journals (Sweden)

    Ravi C Dara

    2015-01-01

    Full Text Available Liver transplant procedure acts as a challenge for transfusion services in terms of specialized blood components, serologic problems, and immunologic effects of transfusion. Red cell alloimmunization in patients awaiting a liver transplant complicate the process by undue delay or unavailability of compatible red blood cell units. Compatible blood units can be provided by well-equipped immunohematology laboratory, which has expertise in resolving these serological problems. This report illustrates resolution of a case with multiple alloantibodies using standard techniques, particularly rare antisera. Our case re-emphasizes the need for universal antibody screening in all patients as part of pretransfusion testing, which helps to identify atypical antibodies and plan for appropriate transfusion support well in time. We recommend that the centers, especially the ones that perform complex procedures like solid organ transplants and hematological transplants should have the necessary immunohematological reagents including rare antisera to resolve complex cases of multiple antibodies as illustrated in this case.

  10. Chlamydia trachomatis and chlamydial heat shock protein 60-specific antibody and cell-mediated responses predict tubal factor infertility

    DEFF Research Database (Denmark)

    Tiitinen, A.; Surcel, H.-M.; Halttunen, M.

    2006-01-01

    BACKGROUND: To evaluate the role of Chlamydia trachomatis-induced humoral and cell-mediated immune (CMI) responses in predicting tubal factor infertility (TFI). METHODS: Blood samples were taken from 88 women with TFI and 163 control women. C. trachomatis and chlamydial heat shock protein 60 (CHSP......60)-specific immunoglobulin G (IgG) antibodies were analysed using enzyme-linked immunosorbent assay (ELISA) kits. Proliferative reactivity of peripheral blood mononuclear cells was studied in vitro against Chlamydia elementary body (EB) and recombinant CHSP60 antigens. RESULTS: C. trachomatis......-specific IgG antibodies were found more frequently (43.2 versus 13.5%), and the antibody levels were higher in the TFI cases than in the controls (P cases and 58.9% of the controls (P

  11. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  12. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  13. Asymmetries in Chickens from Lines Selected and Relaxed for High or Low Antibody Titers to Sheep Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Yunjie Tu

    2015-03-01

    Full Text Available Wattle length, width, and area were measured to classify bilateral asymmetries in four lines of chickens. The lines were the S26 generation of White Leghorns selected for high (HAS or low (LAS response to sheep red blood cells and sublines in which selection had been relaxed for three generations (high antibody relaxed [HAR] and low antibody relaxed [LAR]. Antibody titers (AB were greater for HAS than for HAR with both greater than for LAS and LAR which while different for males did not differ for females. The low antibody lines were heavier and reached sexual maturity at younger age than the high antibody lines. In general, wattle length, width, and area were greater in the low than high antibody lines. In 24 comparisons for bilaterality 18 exhibited fluctuating asymmetry and 6 exhibited directional asymmetry with 5 of the 6 being for wattle length. There was not a clear pattern for changes in degree of asymmetry when selection was relaxed for 3 generations. For females, the relative asymmetry (RA of wattle area was larger (p≤0.05 for HAR than for LAR and not different from the selected lines and relaxed lines. There were no differences among lines for RA of wattle length and width of females and wattle length, width, and area of males.

  14. Detection of Staphylococci aureus cells with single domain antibody functionalized Raman nanoparobes

    Science.gov (United States)

    Tay, Li-Lin; Tanha, Jamshid; Ryan, Shannon; Veres, Teodor

    2007-06-01

    Raman spectroscopy has demonstrated to be an effective tool in the detection and classification of pathogenic microorganisms. The technique is, however, limited by the inherently low cross-section of the Raman scattering process. Among the many enhanced Raman processes, surface enhanced Raman scattering (SERS) technique provides the highest sensitivity and can be easily adapted in the bio-sensing applications such as DNA hybridization and protein binding events. In this study, we report the targeted detection of the pathogenic bacteria, Staphylococcus aureus, with novel single domain antibody (sdAb) conjugated SERS nanoprobes. A sdAb specific to protein A of S. aureus cells was conjugated to silver nanoparticles (Ag-NP). Bacteria recognition was achieved through specific binding of the sdAb (conjugated to SERS nanoprobe) to protein A. Binding rendered the nanoparticle-labeled S. aureus cells SERS active. As a result, S. aureus cells could be detected rapidly and with excellent sensitivity by monitoring the SERS vibrational signatures. This work demonstrates that the SERS imaging technique offers excellent sensitivity with a detection limit of a single bacterium.

  15. Conjugation effects on antibody-drug conjugates: evaluation of interaction kinetics in real time on living cells.

    Science.gov (United States)

    Bondza, Sina; Stenberg, Jonas; Nestor, Marika; Andersson, Karl; Björkelund, Hanna

    2014-11-03

    Antibody-drug conjugates (ADC) have shown promising effects in cancer therapy by combining the target specificity of an antibody with the toxicity of a chemotherapeutic drug. As the number of therapeutic antibodies is significantly larger than those used as ADCs, there is unused potential for more effective therapies. However, the conjugation of an additional molecule to an antibody may affect the interaction with its target, altering association rate, dissociation rate, or both. Any changes of the binding kinetics can have subsequent effects on the efficacy of the ADCs, thus the kinetics are important to monitor during ADC development and production. This paper describes a method for the analysis of conjugation effects on antibody binding to its antigen, using the instrument LigandTracer and a fluorescent monovalent anti-IgG binder denoted FIBA, which did not affect the interaction. All measurements were done in real time using living cells which naturally expressed the antigens. With this method the binding profiles of different conjugations of the therapeutic anti-EGFR antibody cetuximab and the anti-CD44v6 antibody fragment AbD15171 were evaluated and compared. Even comparatively small modifications of cetuximab altered the interaction with the epidermal growth factor receptor (EGFR). In contrast, no impact on the AbD15171-CD44v6 interaction was observed upon conjugation. This illustrates the importance to study the binding profile for each ADC combination, as it is difficult to draw any general conclusion about conjugation effects. The modification of interaction kinetics through conjugation opens up new possibilities when optimizing an antibody or an ADC, since the conjugations can be used to create a binding profile more apt for a specific clinical need.

  16. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo.

    Science.gov (United States)

    Park, Catherine C; Zhang, Hui; Pallavicini, Maria; Gray, Joe W; Baehner, Frederick; Park, Chong J; Bissell, Mina J

    2006-02-01

    Current therapeutic approaches to cancer are designed to target molecules that contribute to malignant behavior but leave normal tissues intact. beta(1) integrin is a candidate target well known for mediating cell-extracellular matrix (ECM) interactions that influence diverse cellular functions; its aberrant expression has been implicated in breast cancer progression and resistance to cytotoxic therapy. The addition of beta(1) integrin inhibitory agents to breast cancer cells at a single-cell stage in a laminin-rich ECM (three-dimensional lrECM) culture was shown to down-modulate beta(1) integrin signaling, resulting in malignant reversion. To investigate beta(1) integrin as a therapeutic target, we modified the three-dimensional lrECM protocol to approximate the clinical situation: before treatment, we allowed nonmalignant cells to form organized acinar structures and malignant cells to form tumor-like colonies. We then tested the ability of beta(1) integrin inhibitory antibody, AIIB2, to inhibit tumor cell growth in several breast cancer cell lines (T4-2, MDA-MB-231, BT474, SKBR3, and MCF-7) and one nonmalignant cell line (S-1). We show that beta(1) integrin inhibition resulted in a significant loss of cancer cells, associated with a decrease in proliferation and increase in apoptosis, and a global change in the composition of residual colonies. In contrast, nonmalignant cells that formed tissue-like structures remained resistant. Moreover, these cancer cell-specific antiproliferative and proapoptotic effects were confirmed in vivo with no discernible toxicity to animals. Our findings indicate that beta(1) integrin is a promising therapeutic target, and that the three-dimensional lrECM culture assay can be used to effectively distinguish malignant and normal tissue response to therapy.

  17. Anomalous expression of Thy1 (CD90) in B-cell lymphoma cells and proliferation inhibition by anti-Thy1 antibody treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ishiura, Yoshihito [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kotani, Norihiro, E-mail: kotani@kochi-u.ac.jp [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); Yamashita, Ryusuke [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamamoto, Harumi [Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Kozutsumi, Yasunori [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Honke, Koichi [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan)

    2010-05-28

    The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt's lymphoma cell line, Akata. Using DNA array, flow cytometry and Western blotting, we found that Thy1 was highly expressed in EBV-positive Akata cells. Subsequently, Thy1 was found to be expressed in other B-cell lymphoma cell lines: BJAB, MutuI, and MutuIII, irrespective of EBV infection. Treatment of these cells with an anti-Thy1 monoclonal antibody inhibited proliferation more strongly than the therapeutic Ab rituximab. The B-cell lymphoma cell lines were classified based on the extent of the proliferation inhibition, which was not correlated with the expression level of Thy1. It is suggested that stable residence of receptor tyrosine kinases in lipid rafts sustains cell growth in B-cell lymphoma cells.

  18. Regulation by anti-CD2 monoclonal antibody of the activation of a human T cell clone induced by anti-CD3 or anti-T cell receptor antibodies

    NARCIS (Netherlands)

    Yssel, H.; Aubry, J. P.; de Waal Malefijt, R.; de Vries, J. E.; Spits, H.

    1987-01-01

    In this study the effect of anti-cluster designation (CD) 2 monoclonal antibodies (mAb) on the activation of a cloned human T cell line, HY837, after triggering the CD3/T cell receptor (TcR) complex by anti-CD3 or anti-TcR mAb is described. HY837, which reacts with a series of mAb directed at

  19. Humanization of an anti-CCR4 antibody that kills Cutaneous T-Cell Lymphoma cells and abrogates suppression by T-regulatory cells

    Science.gov (United States)

    Chang, De-Kuan; Sui, Jianhua; Geng, Shusheng; Muvaffak, Asli; Bai, Mei; Fuhlbrigge, Robert C.; Lo, Agnes; Yammanuru, Anuradha; Hubbard, Luke; Sheehan, Jared; Campbell, James J.; Zhu, Quan; Kupper, Thomas S.; Marasco, Wayne A.

    2012-01-01

    Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of neoplastic disorders characterized by clonally derived and skin-homing malignant T-cells that express high level of chemokine receptor CCR4, which is associated with their skin-homing capacity. CCR4 is also highly expressed on T-regulatory cells (Tregs) that can migrate to several different types of chemotactic ligand CCL17 and CCL22 secreting tumors to facilitate tumor cell evasion from immune surveillance. Thus, its high level expression on CTCL cells and Tregs makes CCR4 a potential ideal target for antibody-based immunotherapy for CTCL and other types of solid tumors. Here we performed humanization and affinity optimization of a murine anti-CCR4 monoclonal antibody (mAb), mAb1567, that recognizes both the N-terminal and extracellular domains of CCR4 with high affinity and inhibits chemotaxis of CCR4+ CTCL cells. In a mouse CTCL tumor model, mAb1567 exhibited a potent anti-tumor effect and in vitro mechanistic studies showed that both complement-dependent cytotoxicity (CDC) and neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) likely mediated this effect. MAb1567 also exerts human NK cell-mediated ADCC activity in vitro. Moreover, mAb1567 also effectively inhibits chemotaxis of CD4+CD25high Tregs via CCL22 and abrogates Treg suppression activity in vitro. An affinity optimized variant of humanized mAb1567, mAb2-3, was selected for further preclinical development based on its higher binding affinity and more potent ADCC and CDC activities. Taken together, this high affinity humanized mAb2-3 with potent anti-tumor effect and a broad range of mechanisms of action may provide a novel immunotherapy for CTCL and other solid tumors. PMID:22869555

  20. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    Science.gov (United States)

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  1. The detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    International Nuclear Information System (INIS)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J.

    1983-01-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml. (author)

  2. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    Science.gov (United States)

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Michael J. Carter

    2017-06-01

    Full Text Available Despite the availability of advances in molecular diagnostic testing for infectious disease, there is still a need for tools that advance clinical care and public health. Current methods focus on pathogen detection with unprecedented precision, but often lack specificity. In contrast, the host immune response is highly specific for the infecting pathogen. Serological studies are rarely helpful in clinical settings, as they require acute and convalescent antibody testing. However, the B cell response is much more rapid and short-lived, making it an optimal target for determining disease aetiology in patients with infections. The performance of tests that aim to detect circulating antigen-specific antibody-secreting cells (ASCs has previously been unclear. Test performance is reliant on detecting the presence of ASCs in the peripheral blood. As such, the kinetics of the ASC response to infection, the antigen specificity of the ASC response, and the methods of ASC detection are all critical. In this review, we summarize previous studies that have used techniques to enumerate ASCs during infection. We describe the emergence, peak, and waning of these cells in peripheral blood during infection with a number of bacterial and viral pathogens, as well as malaria infection. We find that the timing of antigen-specific ASC appearance and disappearance is highly conserved across pathogens, with a peak response between day 7 and day 8 of illness and largely absent following day 14 since onset of symptoms. Data show a sensitivity of ~90% and specificity >80% for pathogen detection using ASC-based methods. Overall, the summarised work indicates that ASC-based methods may be very sensitive and highly specific for determining the etiology of infection and have some advantages over current methods. Important areas of research remain, including more accurate definition of the timing of the ASC response to infection, the biological mechanisms underlying variability

  4. Identification of tumor associated single-chain Fv by panning and screening antibody phage library using tumor cells

    Science.gov (United States)

    Nie, Yong-Zhan; He, Feng-Tian; Li, Zhi-Kui; Wu, Kai-Chun; Cao, Yun-Xin; Chen, Bao-Jun; Fan, Dai-Ming

    2002-01-01

    AIM: To study the feasibility of panning and screening phage-displaying recombinant single-chain variable fragment (ScFv) of anti-tumor monoclonal antibodies for fixed whole cells as the carriers of mAb-binding antigens. METHODS: The recombinant phage displaying libraries for anti-colorectal tumor mAb MC3Ab, MC5Ab and anti-gastric tumor mAb MGD1 was constructed. Panning and screening were carried out by means of modified fixation of colorectal and gastric tumor cells expressed the mAb-binding antigens. Concordance of binding specificity to tumor cells between phage clones and parent antibodies was analyzed. The phage of positive clones was identified with competitive ELISA, and infected by E. coli HB2151 to express soluble ScFv. RESULTS: The ratio of positive clones to MC3-ScF-MC5-ScFv and MGD1-ScFv were 60%, 24% and 30%. MC3-ScFv had Mr 32000 confirmed by Western blot. The specificity to antigen had no difference between 4 positive recombinant phage antibodies and MC3Ab. CONCLUSION: The modified process of fixing whole tumor cells is efficient, convenient and feasible to pan and screen the phage-displaying ScFv of anti-tumor monoclonal antibodies. PMID:12174367

  5. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells

    DEFF Research Database (Denmark)

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian

    2013-01-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage...

  6. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial

    DEFF Research Database (Denmark)

    Bingley, P J; Gale, E A M; Reimers, Jesper Irving

    2006-01-01

    AIMS/HYPOTHESIS: To examine the role of additional immune, genetic and metabolic risk markers in determining risk of diabetes in islet cell antibody (ICA)-positive individuals with a family history of type 1 diabetes recruited into the European Nicotinamide Diabetes Intervention Trial. METHODS...

  7. Antibody-linked drug destroys tumor cells and tumor blood vessels in many types of cancer | Center for Cancer Research

    Science.gov (United States)

    A team led by Brad St. Croix, Ph.D., Senior Associate Scientist, Mouse Cancer Genetics Program, has developed an antibody-drug conjugate (ADC) that destroys both tumor cells and the blood vessels that nourish them. The drug significantly shrank breast tumors, colon tumors and several other types of cancer and prolonged survival. Learn more...  

  8. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.

    2017-01-01

    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human

  9. Development of new immunoradiometric assay for CA 125 antigen using two monoclonal antibodies produced by immunizing lung cancer cells

    International Nuclear Information System (INIS)

    Kunimatsu, Mihoko; Endo, Keigo; Awaji, Toshikazu

    1988-01-01

    CA 125 is an antigen associated with non-mucinous epithelial ovarian cancer, which is defined by OC 125 antibody developed by immunizing ovarian cancer cells. We have produced two monoclonal antibodies, 130-22 and 145-9, by using the human lung adenocarcinoma cell line PC-9. Both 130-22 and 145-9 antibodies recognized CA 125 antigen. However, the binding sites seemed to be separate from those of OC 125. Testing by 9 immunoradiometric assays (IRMA), using different combinations of the 3 monoclonal antibodies 130-22, 145-9 and OC 125 demonstrated that the best standard curve for detecting CA 125 could be obtained by a 'simultaneous sandwich' assay based on a mixture of 125 I-labeled OC 125 and 130-22 or 145-9 coated beads. One-step IRMA, using 130-22 as a tracer and 145-9 as an immunoadsorbent, also showed good reproducibility and sensitivity for measuring CA 125. Antigens were detectable in the culture supernatants of PC-9 cells and 5 of 6 ovarian cancer and endometrial adenocarcinoma cells. These results indicate that one-step IRMA using 130-22 and 145-9 is useful for detecting CA 125 antigen. (author)

  10. Efficient production of antibody Fab fragment by transient gene expression in insect cells.

    Science.gov (United States)

    Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki

    2017-08-01

    Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor.

    Science.gov (United States)

    Vrolix, Kathleen; Fraussen, Judith; Losen, Mario; Stevens, Jo; Lazaridis, Konstantinos; Molenaar, Peter C; Somers, Veerle; Bracho, Maria Alma; Le Panse, Rozen; Stinissen, Piet; Berrih-Aknin, Sonia; Maessen, Jos G; Van Garsse, Leen; Buurman, Wim A; Tzartos, Socrates J; De Baets, Marc H; Martinez-Martinez, Pilar

    2014-08-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR-MG) is considered as a prototypic autoimmune disease. The thymus is important in the pathophysiology of the disease since thymus hyperplasia is a characteristic of early-onset AChR-MG and patients often improve after thymectomy. We hypothesized that thymic B cell and antibody repertoires of AChR-MG patients differ intrinsically from those of control individuals. Using immortalization with Epstein-Barr Virus and Toll-like receptor 9 activation, we isolated and characterized monoclonal B cell lines from 5 MG patients and 8 controls. Only 2 of 570 immortalized B cell clones from MG patients produced antibodies against the AChR (both clones were from the same patient), suggesting that AChR-specific B cells are not enriched in the thymus. Surprisingly, many B cell lines from both AChR-MG and control thymus samples displayed reactivity against striated muscle proteins. Striational antibodies were produced by 15% of B cell clones from AChR-MG versus 6% in control thymus. The IgVH gene sequence analysis showed remarkable similarities, concerning VH family gene distribution, mutation frequency and CDR3 composition, between B cells of AChR-MG patients and controls. MG patients showed clear evidence of clonal B cell expansion in contrast to controls. In this latter aspect, MG resembles multiple sclerosis and clinically isolated syndrome, but differs from systemic lupus erythematosus. Our results support an antigen driven immune response in the MG thymus, but the paucity of AChR-specific B cells, in combination with the observed polyclonal expansions suggest a more diverse immune response than expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development

    Directory of Open Access Journals (Sweden)

    Victor Greiff

    2017-05-01

    Full Text Available Antibody repertoire diversity and plasticity is crucial for broad protective immunity. Repertoires change in size and diversity across multiple B cell developmental stages and in response to antigen exposure. However, we still lack fundamental quantitative understanding of the extent to which repertoire diversity is predetermined. Therefore, we implemented a systems immunology framework for quantifying repertoire predetermination on three distinct levels: (1 B cell development (pre-B cell, naive B cell, plasma cell, (2 antigen exposure (three structurally different proteins, and (3 four antibody repertoire components (V-gene usage, clonal expansion, clonal diversity, repertoire size extracted from antibody repertoire sequencing data (400 million reads. Across all three levels, we detected a dynamic balance of high genetic (e.g., >90% for V-gene usage and clonal expansion in naive B cells and antigen-driven (e.g., 40% for clonal diversity in plasma cells predetermination and stochastic variation. Our study has implications for the prediction and manipulation of humoral immunity.

  13. Antibody biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... and automated, the hybrid cells can be stored for many years in liquid nitrogen and antibodies production is homogeneous. The hybridoma method .... they may be modified to vehicle active molecules such as radio-isotopes, toxins, cytokines, enzyme etc. In these cases, the therapeutic effect is due to ...

  14. Quantitation of soluble aggregates in recombinant monoclonal antibody cell culture by pH-gradient protein A chromatography.

    Science.gov (United States)

    Pan, Hai; Chen, Ken; Pulisic, Matt; Apostol, Izydor; Huang, Gang

    2009-05-15

    Monoclonal antibodies (mAbs) produced from mammalian cell culture may contain significant amounts of dimers and higher order aggregates. Quantitation of soluble aggregates in the cell culture is time-consuming and labor-intensive, usually involving a purification step to remove the impurities that interfere with the subsequent size exclusion chromatography (SEC) analysis. We have developed a novel pH-gradient protein A chromatography for rapid, non-size based separation of the aggregates in mAb cell culture samples. Our results demonstrate that this method has excellent correlation with SEC and can be applied to both human immunoglobulin gamma 1 (IgG1) and IgG2 antibodies. This approach can be useful in the quantitation of soluble aggregates in crude cell culture samples.

  15. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...

  16. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  17. Antibodies against Apoptotic Cells Present in End-stage Lung Disease Patients Do Not Correlate with Clinical Outcome after Lung Transplantation

    Science.gov (United States)

    Budding, Kevin; van de Graaf, Eduard A.; Kardol-Hoefnagel, Tineke; Oudijk, Erik-Jan D.; Kwakkel-van Erp, Johanna M.; Hack, C. Erik; Otten, Henny G.

    2017-01-01

    Antibodies against HLA and non-HLA are associated with transplantation outcome. Recently, pretransplant serum IgG antibody levels against apoptotic cells were found to correlate with kidney allograft loss. We investigated the presence of these antibodies in lung transplantation (LTx) patients and evaluated the correlation of pre-LTx serum levels of IgG antibodies against apoptotic cells with LTx outcome. These cells included donor lung endothelial cells (ECs) obtained from lung perfusion fluid collected during LTx procedure. Cells were isolated, expanded in vitro, and analyzed as targets for antiapoptotic cell reactivity. Cultured cells exhibited EC morphology and were CD31+, CD13+, and vWF+. End-stage lung disease patients showed elevated serum IgG levels against apoptotic lung EC (p = 0.0018) compared to healthy controls. Interestingly, the levels of circulating antibodies directed against either apoptotic Jurkat cells or apoptotic lung ECs did not correlate, suggesting a target cell specificity. We observed no correlation between chronic or acute rejection and pre-LTx serum levels of antiapoptotic antibodies. Also, these levels did not differ between matched patients developing chronic rejection or not during follow-up or at the time of diagnosis, as they remained as high as prior to transplantation. Thus, circulating levels of antiapoptotic cell antibodies are elevated in end-stage lung disease patients, but our data do not correlate with outcome after LTx. PMID:28377770

  18. Human Circulating Antibody-Producing B Cell as a Predictive Measure of Mucosal Immunity to Poliovirus.

    Directory of Open Access Journals (Sweden)

    Ayan Dey

    Full Text Available The "gold standard" for assessing mucosal immunity after vaccination with poliovirus vaccines consists in measuring virus excretion in stool after challenge with oral poliovirus vaccine (OPV. This testing is time and resource intensive, and development of alternative methods is a priority for accelerating polio eradication. We therefore evaluated circulating antibody-secreting cells (ASCs as a potential means to evaluate mucosal immunity to poliovirus vaccine.199 subjects, aged 10 years, and previously immunized repeatedly with OPV, were selected. Subjects were assigned to receive either a booster dose of inactivated poliovirus vaccine (IPV, bivalent OPV (bOPV, or no vaccine. Using a micro-modified whole blood-based ELISPOT assay designed for field setting, circulating poliovirus type-specific IgA- and IgG-ASCs, including gut homing α4β7+ ASCs, were enumerated on days 0 and 7 after booster immunization. In addition, serum samples collected on days 0, 28 and 56 were tested for neutralizing antibody titers against poliovirus types 1, 2, and 3. Stool specimens were collected on day 28 (day of bOPV challenge, and on days 31, 35 and 42 and processed for poliovirus isolation.An IPV dose elicited blood IgA- and IgG-ASC responses in 84.8 to 94.9% of subjects, respectively. In comparison, a bOPV dose evoked corresponding blood ASC responses in 20.0 to 48.6% of subjects. A significant association was found between IgA- and IgG-ASC responses and serum neutralizing antibody titers for poliovirus type 1, 2, 3 (p<0.001. In the IPV group, α4β7+ ASCs accounted for a substantial proportion of IgA-ASCs and the proportion of subjects with a positive α4β7+ IgA-ASC response to poliovirus types 1, 2 and 3 was 62.7%, 89.8% and 45.8%, respectively. A significant association was observed between virus excretion and α4β7+ IgA- and/or IgG-ASC responses to poliovirus type 3 among immunized children; however, only a weak association was found for type 1 poliovirus

  19. Obesity and youth diabetes: distinguishing characteristics between islet cell antibody positive vs. negative patients over time.

    Science.gov (United States)

    Rivera-Vega, Michelle Y; Flint, Amanda; Winger, Daniel G; Libman, Ingrid; Arslanian, Silva

    2015-08-01

    Obese youth clinically diagnosed with type 2 diabetes mellitus (T2DM) frequently have evidence of islet cell autoimmunity. We investigated the clinical and biochemical differences, and therapeutic modalities among autoantibody positive (Ab+) vs. autoantibody negative (Ab-) youth at the time of diagnosis and over time in a multi-provider clinical setting. Chart review of 145 obese youth diagnosed with T2DM from January 2003 to July 2012. Of these, 70 patients were Ab+ and 75 Ab-. The two groups were compared with respect to clinical presentation, physical characteristics, laboratory data, and therapeutic modalities at diagnosis and during follow up to assess the changes in these parameters associated with disease progression. At presentation, Ab+ youth with a clinical diagnosis of T2DM were younger, had higher rates of ketosis, higher hemoglobin A1c (HbA1c) and glucose levels, and lower insulin and c-peptide concentrations compared with the Ab- group. The Ab- group had a higher body mass index (BMI) z-score and cardiometabolic risk factors at diagnosis and such difference remained over time. Univariate analysis revealed that treatment modality had no effect on BMI in either group. Generalized estimating equations for longitudinal data analysis revealed that (i) BMI z-score and diastolic blood pressure (DBP) were significantly affected by duration of diabetes; (ii) systolic blood pressure (SBP) and ALT were affected by changes in BMI z-score; and (iii) changes in HbA1c had an effect on lipid profile and cardiometabolic risk factors regardless of antibody status. Irrespective of antibody status and treatment modality, youth who present with obesity and diabetes, show no improvement in obesity status over time, with the deterioration in BMI z-score affecting blood pressure (BP) and ALT, but the lipid profile being mostly impacted by HbA1c and glycemic control. Effective control of BMI and glycemia are needed to lessen the future macrovascular complications irrespective

  20. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies.

    Directory of Open Access Journals (Sweden)

    Benjamin A H Jensen

    Full Text Available It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of different tumors. In the present report, we have formally tested this hypothesis. Comparing the efficiency of combination antibody therapy against two antigenically distinct variants of the B16.F10 melanoma cell line, we observed that antibody therapy delayed the growth of a variant expressing an exogenous antigen (P<0.0001, while this treatment failed to protect against the non-transfected parental line (P = 0.1850 consistent with published observations. As both cell lines are poorly immunogenic in wild type mice, these observations suggested that the magnitude of the tumor targeting T-cell repertoire plays a major role in deciding the efficiency of this antibody treatment. To directly test this assumption, we made use of mice expressing the exogenous antigen as a self-antigen and therefore carrying a severely purged T-cell repertoire directed against the major tumor antigen. Notably, combination therapy completely failed to inhibit tumor growth in the latter mice (P = 0.8584. These results underscore the importance of a functionally intact T-cell population as a precondition for the efficiency of treatment with immunomodulatory antibodies. Clinically, the implication is that this type of antibody therapy should be attempted as an early form of tumor-specific immunotherapy before extensive exhaustion of the tumor-specific T-cell repertoire has occurred.

  1. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells.

    Science.gov (United States)

    Kaiser, Philipp D; Maier, Julia; Traenkle, Bjoern; Emele, Felix; Rothbauer, Ulrich

    2014-11-01

    In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Clearance of Human IgG1-Sensitised Red Blood Cells In Vivo in Humans Relates to the In Vitro Properties of Antibodies from Alternative Cell Lines

    Science.gov (United States)

    Armour, Kathryn L.; Smith, Cheryl S.; Ip, Natasha C. Y.; Ellison, Cara J.; Kirton, Christopher M.; Wilkes, Anthony M.; Williamson, Lorna M.; Clark, Michael R.

    2014-01-01

    We previously produced a recombinant version of the human anti-RhD antibody Fog-1 in the rat myeloma cell line, YB2/0. When human, autologous RhD-positive red blood cells (RBC) were sensitised with this IgG1 antibody and re-injected, they were cleared much more rapidly from the circulation than had been seen earlier with the original human-mouse heterohybridoma-produced Fog-1. Since the IgG have the same amino acid sequence, this disparity is likely to be due to alternative glycosylation that results from the rat and mouse cell lines. By comparing the in vitro properties of YB2/0-produced Fog-1 IgG1 and the same antibody produced in the mouse myeloma cell line NS0, we now have a unique opportunity to pinpoint the cause of the difference in ability to clear RBC in vivo. Using transfected cell lines that express single human FcγR, we showed that IgG1 made in YB2/0 and NS0 cell lines bound equally well to receptors of the FcγRI and FcγRII classes but that the YB2/0 antibody was superior in FcγRIII binding. When measuring complexed IgG binding, the difference was 45-fold for FcγRIIIa 158F, 20-fold for FcγRIIIa 158V and approximately 40-fold for FcγRIIIb. The dissimilarity was greater at 100-fold in monomeric IgG binding assays with FcγRIIIa. When used to sensitise RBC, the YB2/0 IgG1 generated 100-fold greater human NK cell antibody-dependent cell-mediated cytotoxicity and had a 103-fold advantage over the NS0 antibody in activating NK cells, as detected by CD54 levels. In assays of monocyte activation and macrophage adherence/phagocytosis, where FcγRI plays major roles, RBC sensitised with the two antibodies produced much more similar results. Thus, the alternative glycosylation profiles of the Fog-1 antibodies affect only FcγRIII binding and FcγRIII-mediated functions. Relating this to the in vivo studies confirms the importance of FcγRIII in RBC clearance. PMID:25302805

  3. Clearance of human IgG1-sensitised red blood cells in vivo in humans relates to the in vitro properties of antibodies from alternative cell lines.

    Directory of Open Access Journals (Sweden)

    Kathryn L Armour

    Full Text Available We previously produced a recombinant version of the human anti-RhD antibody Fog-1 in the rat myeloma cell line, YB2/0. When human, autologous RhD-positive red blood cells (RBC were sensitised with this IgG1 antibody and re-injected, they were cleared much more rapidly from the circulation than had been seen earlier with the original human-mouse heterohybridoma-produced Fog-1. Since the IgG have the same amino acid sequence, this disparity is likely to be due to alternative glycosylation that results from the rat and mouse cell lines. By comparing the in vitro properties of YB2/0-produced Fog-1 IgG1 and the same antibody produced in the mouse myeloma cell line NS0, we now have a unique opportunity to pinpoint the cause of the difference in ability to clear RBC in vivo. Using transfected cell lines that express single human FcγR, we showed that IgG1 made in YB2/0 and NS0 cell lines bound equally well to receptors of the FcγRI and FcγRII classes but that the YB2/0 antibody was superior in FcγRIII binding. When measuring complexed IgG binding, the difference was 45-fold for FcγRIIIa 158F, 20-fold for FcγRIIIa 158V and approximately 40-fold for FcγRIIIb. The dissimilarity was greater at 100-fold in monomeric IgG binding assays with FcγRIIIa. When used to sensitise RBC, the YB2/0 IgG1 generated 100-fold greater human NK cell antibody-dependent cell-mediated cytotoxicity and had a 103-fold advantage over the NS0 antibody in activating NK cells, as detected by CD54 levels. In assays of monocyte activation and macrophage adherence/phagocytosis, where FcγRI plays major roles, RBC sensitised with the two antibodies produced much more similar results. Thus, the alternative glycosylation profiles of the Fog-1 antibodies affect only FcγRIII binding and FcγRIII-mediated functions. Relating this to the in vivo studies confirms the importance of FcγRIII in RBC clearance.

  4. Imaging of cutaneous T cell lymphoma (CTCL) with In-111-T101 monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquillo, J.A.; Bunn, P.A.; Keenan, A.M.; Reynolds, J.C.; Schroff, R.W.; Foon, K.A.; Ming-Hsu, S.; Gazdar, A.F.; Mulshine, J.M.; Perentesis, P.

    1985-05-01

    T101 is a murine monoclonal antibody (MoAb), IgC2a, directed against a cell surface pan T-cell antigen present in high concentration in CTCL cells. In-111 labelling was performed with a modification of the Krejcarek method (Hybritech, Inc.). I mg of DTPA conjugated T101 was labeled with 5 mCi, with a mean incorporation of 95%. Immunoreactivity was preserved, mean 88%. In vivo, less than 3.6% of the injected dose was on circulating transferrin. 11 patients (pts) received 2-6h intravenous infusion of 1 mg (5 pts), 10 mg (3 pts), 50 mg (3 pts) of In-111 T101. By 24h all pts showed avid uptake in pathologically or clinically involved nodes and erythroderma including several previously unsuspected nodal regions. Skin plaques were not visualized. In addition, there was localization in liver, spleen and bone marrow. Concentration of In-111 in biopsied nodes was 0.01, 0.02 and 0.03% of the injected dose per gram. Control studies with In-111Cl/sub 3/ or a nonspecific MoAb, 9.2.27, did not concentrate in nodes or skin disease. No dose dependent differences in tumor localization was seen although blood clearance was prolonged for doses less than or equal to 10 mgs of T101. All pts receiving less than or equal to 10 mgs developed transient itching, urticaria and chills. 1 of 8 pts tested had an antimouse immune response. Modulation of the antigen from circulating T-cells, skin and nodes was seen. This study shows the feasibility of imaging CTCL pts with In-111 T101 and suggest a potential for radioimmunotherapy.

  5. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    Science.gov (United States)

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  6. Form and function in cell motility: from fibroblasts to keratocytes.

    Science.gov (United States)

    Herant, Marc; Dembo, Micah

    2010-04-21

    It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Monoclonal antibodies against human CD34 antigens do not cross-react with ovine umbilical cord blood cells

    Directory of Open Access Journals (Sweden)

    Maria Dattena

    2010-02-01

    Full Text Available CD34 is a cell surface glycoprotein expressed by hematopoietic progenitors and endothelial cells. It is widely used in the clinic for isolation of human hematopoietic stem cells. In recent years large animals are gaining increasing importance in biomedical research for the study and therapy of human diseases. Sheep has proved to be an useful experimental model for preclinical trials in transplantation procedures. Unfortunately, the lack of specie-specific monoclonal antibodies (MABS recognizing hemopoietic progenitor cells hampers the use of this animal in experimental hematology. The aim of this paper was to determine whether commercial monoclonal antibodies specific for human CD34 molecule could cross-react with hematopoietic progenitor cells (HPC present in sheep umbilical cord blood (UCB. Six antihuman CD34 MABS, recognizing the three different epitope classes, were tested in flow cytometry on purified mononuclear cells (MNC isolated from cord blood of both species. None of the MABS used in this trial seemed to be able to identify HPC from sheep UCB. These data suggest that the panel of monoclonal antibodies used for cross reactivity detection has to be expanded with recently produced reagents. Further studies should be directed towards the production of ovine specific anti CD34 MABS.

  8. Differential regulation of T-cell dependent and T-cell independent antibody responses through arginine methyltransferase PRMT1 in vivo.

    Science.gov (United States)

    Hata, Kikumi; Yanase, Noriko; Sudo, Katsuko; Kiyonari, Hiroshi; Mukumoto, Yoshiko; Mizuguchi, Junichiro; Yokosuka, Tadashi

    2016-04-01

    Protein arginine methyltransferase 1 (PRMT1), a major PRMT in mammalian cells, has been shown to play a crucial role in multiple biological functions in vitro. To explore the role of PRMT1 in B cells in vivo, we generated B cell-specific PRMT1-deficient (Prmt1(-/-) ) mice using a Cre-loxP system. Prmt1(-/-) mice showed a defect in B-cell development with diminished levels of serum antibodies. Antibody responses in Prmt1(-/-) mice were absent after stimulation with the type 2 T cell-independent antigen NP-Ficoll but intact after stimulation with the T cell-dependent antigen NP-OVA. Our findings comprise the first evidence showing that PRMT1 is necessary for lymphocyte functions in vivo. © 2016 Federation of European Biochemical Societies.

  9. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... are coexpressed. By the coexpression of Env glycoproteins that either can or cannot bind a neutralizing MAb in an env transcomplementation assay, virions were generated in which the proportion of MAb binding sites could be regulated. As the proportion of MAb binding sites in Env chimeric virus increased, MAb...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...

  10. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas.

    Science.gov (United States)

    Ralfkiaer, E; Wollf-Sneedorff, A; Vejlsgaard, G L

    1991-11-01

    Recent studies have suggested that antibodies against the variable (V) regions of the T-cell antigen receptor (TCR) may be used as markers for clonality and malignancy in T-cell infiltrates. We have investigated this by examining biopsy samples from 45 patients with cutaneous T-cell lymphomas (CTCL) for reactivity with seven antibodies against different V-gene families on the TCR alpha/beta heterodimer, i.e. ICI (V beta 5a), W112 (V beta 5b), OT145 (V beta 6a), 16G8 (V beta 8a), S511 (V beta 12a), F1 (V alpha 2a) and LC4 (alpha beta Va). Serial biopsies were available in 13 patients and a total of 62 samples were studied. The neoplastic cells in five cases were positive for either V beta 5 (one case), V beta 6 (one case), V beta 8 (two cases) or V beta 12 (one case). In the remaining 40 cases, no staining was seen of the neoplastic cells. These findings indicate that while antibodies against the TCR V-regions may be used as clonotypic markers for certain T-cell neoplasms, there is as yet not a sufficient number of anti-TCR V-region antibodies available for the routine diagnosis of these conditions.

  11. Trail networks formed by populations of immune cells

    Science.gov (United States)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.

    2014-02-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.

  12. Use of Monoclonal Antibodies for the Diagnosis of T-cell Malignancies: Applications and Limitations.

    Science.gov (United States)

    Hastrup, N; Pallesen, G; Ralfikiaer, E

    1990-01-01

    Biopsy samples from 136 peripheral T-cell lymphomas have been examined and compared with benign inflammatory T-cell infiltrates in an attempt to establish whether immunohistological methods may help to improve the distinction between these conditions. The results confirm and extend previous reports and indicate that the aberrant T-cell phenotypes constitute the single most reliable criterion for the distinction between benign and malignant T-cell infiltrates. These phenotypes are expressed frequently in T-cell malignancies in. lymphoid organs and are also seen in a substantial number of biopsy samples from advanced cutaneous T-cell lymphomas (CTCL). In contrast, early CTCL do not express aberrant T-cell phenotypes and are indistinguishable from benign cutaneous conditions in terms of their immunophenotypic properties. It is concluded that immunophenotypic techniques form a valuable supplement to routine histological methods for the diagnosis of T-cell lymphomas in lymphoid organs. The methods may also help to improve the diagnosis of advanced CTCL, but are of no or only limited help for the recognition of the early stages.

  13. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation.

    Science.gov (United States)

    Carroll-Portillo, Amanda; Cannon, Judy L; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra; Lidke, Diane S

    2015-08-31

    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell-cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell-cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC-DC synapse suggest a new role for intercellular crosstalk in defining the immune response. © 2015 Carroll-Portillo et al.

  14. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    Directory of Open Access Journals (Sweden)

    Bettina S Buchmaier

    Full Text Available Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight, besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  15. Enavatuzumab, a Humanized Anti-TWEAK Receptor Monoclonal Antibody, Exerts Antitumor Activity through Attracting and Activating Innate Immune Effector Cells

    Directory of Open Access Journals (Sweden)

    Shiming Ye

    2017-01-01

    Full Text Available Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fcγ receptor. The involvement of effector cells was further confirmed by immunohistochemistry, which revealed strong infiltration of CD45+ effector cells into tumor xenografts in responding models, but minimal infiltration in nonresponders. Consistent with the xenograft studies, human effector cells preferentially migrated toward in vivo-responsive tumor cells treated by enavatuzumab in vitro, with the majority of migratory cells being monocytes. Conditioned media from enavatuzumab-treated tumor cells contained elevated levels of chemokines, which might be responsible for enavatuzumab-triggered effector cell migration. These preclinical studies demonstrate that enavatuzumab can exert its potent antitumor activity by actively recruiting and activating myeloid effectors to kill tumor cells. Enavatuzumab-induced chemokines warrant further evaluation in clinical studies as potential biomarkers for such activity.

  16. Characterisation of CD4 T cells in healthy and diseased koalas (Phascolarctos cinereus) using cell-type-specific monoclonal antibodies.

    Science.gov (United States)

    Mangar, Chandan; Armitage, Charles W; Timms, Peter; Corcoran, Lynn M; Beagley, Kenneth W

    2016-07-01

    The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enzyme-labeled Antigen Method: Development and Application of the Novel Approach for Identifying Plasma Cells Locally Producing Disease-specific Antibodies in Inflammatory Lesions

    International Nuclear Information System (INIS)

    Mizutani, Yasuyoshi; Shiogama, Kazuya; Onouchi, Takanori; Sakurai, Kouhei; Inada, Ken-ichi; Tsutsumi, Yutaka

    2016-01-01

    In chronic inflammatory lesions of autoimmune and infectious diseases, plasma cells are frequently observed. Antigens recognized by antibodies produced by the plasma cells mostly remain unclear. A new technique identifying these corresponding antigens may give us a breakthrough for understanding the disease from a pathophysiological viewpoint, simply because the immunocytes are seen within the lesion. We have developed an enzyme-labeled antigen method for microscopic identification of the antigen recognized by specific antibodies locally produced in plasma cells in inflammatory lesions. Firstly, target biotinylated antigens were constructed by the wheat germ cell-free protein synthesis system or through chemical biotinylation. Next, proteins reactive to antibodies in tissue extracts were screened and antibody titers were evaluated by the AlphaScreen method. Finally, with the enzyme-labeled antigen method using the biotinylated antigens as probes, plasma cells producing specific antibodies were microscopically localized in fixed frozen sections. Our novel approach visualized tissue plasma cells that produced 1) autoantibodies in rheumatoid arthritis, 2) antibodies against major antigens of Porphyromonas gingivalis in periodontitis or radicular cyst, and 3) antibodies against a carbohydrate antigen, Strep A, of Streptococcus pyogenes in recurrent tonsillitis. Evaluation of local specific antibody responses expectedly contributes to clarifying previously unknown processes in inflammatory disorders

  18. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    Science.gov (United States)

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  19. Hippocampal CA1 pyramidal cells form functionally distinct sublayers

    OpenAIRE

    Mizuseki, Kenji; Diba, Kamran; Pastalkova, Eva; Buzsáki, György

    2011-01-01

    Summary Hippocampal CA1 pyramidal neurons have frequently been regarded as a homogeneous cell population in biophysical, pharmacological and modeling studies. Here we report robust differences between pyramidal neurons residing in the deep and superficial CA1 sublayers in the rat. Compared to their superficial peers, deep pyramidal cells fired at higher rates, burst more frequently, were more likely to have place fields and were more strongly modulated by slow oscillations of sleep. Both deep...

  20. CXCR4+ CD45- Cells are Niche Forming for Osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 Signaling Pathways in Bone Marrow.

    Science.gov (United States)

    Goto, Yoh; Aoyama, Mineyoshi; Sekiya, Takeo; Kakita, Hiroki; Waguri-Nagaya, Yuko; Miyazawa, Ken; Asai, Kiyofumi; Goto, Shigemi

    2016-11-01

    Bone homeostasis comprises the balance between bone-forming osteoblasts and bone-resorbing osteoclasts (OCs), with an acceleration of osteoclastic bone resorption leading to osteoporosis. OCs can be generated from bone marrow cells (BMCs) under the tightly regulated local bone environment. However, it remained difficult to identify the critical cells responsible for providing an osteoclastogenesis niche. In this study, we used a fluorescence-activated cell sorting technique to determine the cell populations important for forming an appropriate microenvironment for osteoclastogenesis and to verify the associated interactions between osteoclast precursor cells and non-OCs. We isolated and removed a small cell population specific for osteoclastogenesis (CXCR4 + CD45 - ) from mouse BMCs and cultured the remaining cells with receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage-colony stimulating factor. The resulting cultures showed significantly less large osteoclast formation. Quantitative RT-PCR analysis revealed that these CXCR4 + CD45 - cells expressed low levels of RANK and RANKL, but high levels of critical chemokines including stromal cell derived factor 1 (SDF-1), chemokine (C-X-C motif) ligand 7 (CXCL7), and chemokine (C-X3-C motif) ligand 1 (CX3CL1). Furthermore, an SDF-1-specific antibody strongly suppressed OC formation in RAW264.7 cells and antibodies against SDF-1, CXCL7, and CX3CL1 suppressed OC formation in BMCs. These results suggest that isolated CXCR4 + CD45 - cells support an appropriate microenvironment for osteoclastogenesis with a direct effect on the cells expressing SDF-1, CXCL7, and CX3CL1 receptors. The regulation of CXCR4 + CD45 - cell function might therefore inform therapeutic strategies for diseases involving loss of bone homeostasis. Stem Cells 2016;34:2733-2743. © 2016 AlphaMed Press.

  1. Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response.

    Science.gov (United States)

    Hogenesch, Harm; Dunham, Anisa; Hansen, Bethany; Anderson, Kathleen; Maisonneuve, Jean-Francois; Hem, Stanley L

    2011-07-29

    Streptococcus pneumoniae causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, and do not induce protection against serotypes that are not included in the vaccines. An affordable and broadly protective vaccine is very desirable. The goal of this study was to determine the optimal formulation of a killed whole cell pneumococcal vaccine with aluminum-containing adjuvants for intramuscular injection. Four aluminium-containing adjuvants were prepared with different levels of surface phosphate groups resulting in different adsorptive capacities and affinities for the vaccine antigens. Mice were immunized three times and the antigen-specific antibody titers and IL-17 responses in blood were analyzed. Although all adjuvants induced significantly higher antibody titers than antigen without adjuvant, the vaccine containing aluminum phosphate adjuvant (AP) produced the highest antibody response when low doses of antigen were used. Aluminum hydroxide adjuvant (AH) induced an equal or better antibody response at high doses compared with AP. Vaccines formulated with AH, but not with AP, induced an IL-17 response. The vaccine formulated with AH was stable and retained full immunogenicity when stored at 4°C for 4 months. Antibodies are important for protection against systemic streptococcal disease and IL-17 is critical in the prevention of nasopharyngeal colonization by S. pneumoniae in the mouse model. The formulation of the whole killed bacterial cells with AH resulted in a stable vaccine that induced both antibodies and an IL-17 response. These experiments underscore the importance of formulation studies with aluminium containing adjuvants for the development of stable and effective vaccines.

  2. Prokaryotic expression of a truncated form of bovine herpesvirus 1 glycoprotein E (gE and its use in an ELISA for gE antibodies

    Directory of Open Access Journals (Sweden)

    Stephan A.M. Oliveira

    2013-01-01

    Full Text Available This article describes the expression of a truncated form of bovine herpesvirus 1 (BoHV-1 glycoprotein E (gE for use as immunodiagnostic reagent. A 651 nucleotide fragment corresponding to the amino-terminal third (217 amino acids of BoHV-1 gE - that shares a high identity with the homologous BoHV-5 counterpart - was cloned as a 6×His-tag fusion protein in an Escherichia coli expression vector. A soluble protein of approximately 25 kDa purified from lysates of transformed E. coli was recognized in Western blot (WB by anti-6xHis-tag and anti-BoHV-1 gE monoclonal antibodies. In addition, the recombinant protein was specifically recognized in WB by antibodies present in the sera of cattle seropositive to BoHV-1 and BoHV-5. An indirect ELISA using the expressed protein as coating antigen performed comparably to a commercial anti-gE ELISA and was able to differentiate serologically calves vaccinated with a gE-deleted BoHV-5 strain from calves infected with BoHV-1. Thus, the truncated gE may be useful for serological tests designed to differentiate BoHV-1/BoHV-5 infected animals from those vaccinated with gE-negative marker vaccines.

  3. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...... neutralization of T-cell line-adapted HIV-1 is incremental rather than all or none and that each MAb binding an Env oligomer reduces the likelihood of infection....

  4. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor

    Directory of Open Access Journals (Sweden)

    Manetta J

    2014-08-01

    Full Text Available Joseph Manetta, Holly Bina, Paul Ryan, Niles Fox, Derrick R Witcher, Kristine Kikly Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Abstract: B-cell activating factor (BAFF is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect. Keywords: autoimmunity, B-cell malignancies, B-cell survival factor, BAFF

  5. Mechanisms of action of the anti-VEGF monoclonal antibody bevacizumab on chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Jakub Bogusz

    2013-03-01

    Full Text Available Introduction: Chronic lymphocytic leukemia (CLL remains incurable; therefore searching for new therapeutic strategies in this disease is necessary. An important mechanism of tumor development is neoangiogenesis. A potent antiangiogenic factor, bevacizumab (Avastin, AVA, has been poorly explored in CLL so far. In the current study we assessed cytotoxic activity of AVA alone or in combinations with drugs routinely used in this disease.Matherials and Methods: Cells isolated from 60 CLL patients were treated with AVA alone or in combination with anti-CD20 monoclonal antibody (MoAb, rituximab (RIT, anti-CD52 MoAb, alemtuzumab (ALT, 2-CdA (2-chlorodeoxyadenosine, FA (fludarabine, MAF (mafosfamide or RAPA (rapamycin. Cytotoxicity was assessed by propidium iodide staining. Apoptosis was evaluated using annexin-V and TUNEL assays. Additionally, a drop of mitochondrial potential (DYm as well as expression of apoptosis-regulating proteins Bax, Bak, Bid, Bad, Bcl-2, Mcl-2, XIAP, FLIP, Akt and Bcl-2-A1 were determined by flow cytometry.Results: At the dose of 40 μg/ml, after 48 hours of incubation, AVA induced significant cytotoxicity against CLL cells. The drug triggered apoptosis, with activation of caspase-3 and -9, but not caspase-8, along with a drop of DYm. Incubation with AVA induced significant overexpression of proapoptotic Bak and Bad as well as downregulation of antiapoptotic Mcl-2 and Akt proteins. Combination of AVA with RIT, ALT or RAPA significantly increased cytotoxicity when compared with the effects of single drugs.Discussion: In conclusion, this is the first report showing proapoptotic activity of AVA against CLL cells. Combination of AVA with RIT, ALT or RAPA may be a promising therapeutic strategy, which requires confirmation in further studies.

  6. Immunohistochemical analysis of Langerhans cells in chronic gingivitis using anti-CD1a antibody

    Directory of Open Access Journals (Sweden)

    Shweta Jaitley

    2014-01-01

    Full Text Available Background: The Langerhans cells (LCs are dendritic cells (DCs which belong to the group of antigen presenting cells (APCs. Their function is to recognize the antigen, capture it, and present it to the T lymphocytes; thus initiating an early immune response. The antigen presenting functional LCs may play an important part in initiation and development of gingivitis. The aim of this study was to analyze the density, intraepithelial distribution, and morphology of LCs in gingival epithelium among different age groups with chronic gingivitis and to compare it with that of normal gingiva. Materials and Methods: Immunohistochemistry (IHC was performed to study LCs in normal gingival epithelium (n = 10 and gingival epithelium in chronic gingivitis (n = 30 using anti-CD1a antibody. Mann Whitney U test was performed to compare the density of LCs in normal gingiva with chronic gingivitis. The distribution of LCs in various layers of the epithelium within the three age groups was analyzed using Kruskal-Wallis test. P value less than 0.05 was considered as significant. Results: The density of LCs in chronic gingivitis was significantly higher then that of normal gingiva. Comparing different age groups, the younger individuals had more number of LCs which were located in the superficial layers of gingival epithelium. In chronic gingivitis, higher number of LCs were located in deeper layers when compared with that of normal gingiva. Three morphological types of CD1a positive LCs were observed in normal gingiva, out of which the density of LCs with branched dendritic processes was highest in normal gingiva. Conclusion: The LCs showed variable number, location, and morphology which indicated their adaptation for function in chronic gingivitis.

  7. Effect of radioiodination on the binding of monoclonal antibody DF3 to breast carcinoma cells

    International Nuclear Information System (INIS)

    Hayes, D.F.; Kufe, D.W.; Noska, M.A.; Zalutsky, M.R.

    1988-01-01

    The murine monoclonal antibody (MAb) designated DF3 is an IgG 1 prepared against a membrane enriched fraction of human breast carcinoma. MAb DF3 reacts with a family of large molecular weight glycoproteins expressed by 78% of breast cancer cells and 95% of epithelial ovarian cancer cells. Binding to the breast cancer cell line, MCF-7, of native MAb DF3 was compared to that of MAb DF3 exposed to different concentrations of Iodogen or Bolton-Hunter reagent. The amount of MAb DF3 required to obtain half-maximal binding (Bsub(1/2 max) with MCF-7 extract for native MAb DF3 IgG was 180 ng, while the Bsub(1/2 max) for MAb DF3 IgG exposed to 1 and 10 μg Iodogen was 580 ng and 1800 mg, respectively. In contrast, the Bsub(1/2 max) for MAb DF3 IgG treated with Bolton-Hunter reagent was not different from that for native MAb DF3 IgG. Similar results were obtained with F(ab') 2 . Immunoreactive fractions for the 125 I-labeled MAb DF3 were 0.13, 0.24 and 0.65 for IgG after exposure to 1 μg Iodogen, 10 μg Iodogen and Bolton-Hunter, respectively. Immunoreactive fractions for F(ab') 2 were 0.08, 0.08, and 0.53 for 1 and 10 μg Iodogen and Bolton-Hunter reagent, respectively. (author)

  8. DNA-Encoded Antibody Libraries: A Unified Platform for Multiplexed Cell Sorting and Detection of Genes and Proteins

    Science.gov (United States)

    Bailey, Ryan C.; Kwong, Gabriel A.; Radu, Caius G.; Witte, Owen N.; Heath, James R.

    2013-01-01

    Whether for pathological examination or for fundamental biology studies, different classes of biomaterials and biomolecules are each measured from a different region of a typically heterogeneous tissue sample, thus introducing unavoidable sources of noise that are hard to quantitate. We describe the method of DNA-encoded antibody libraries (DEAL) for spatially multiplexed detection of ssDNAs and proteins as well as for cell sorting, all on the same diagnostic platform. DEAL is based upon the coupling of ssDNA oligomers onto antibodies which are then combined with the biological sample of interest. Spotted DNA arrays, which are found to inhibit biofouling, are utilized to spatially stratify the biomolecules or cells of interest. We demonstrate the DEAL technique for: (1) the rapid detection of multiple proteins within a single microfluidic channel, and, with the additional step of electroless amplification of gold-nanoparticle labeled secondary antibodies, we establish a detection limit of 10 femtoMolar for the protein IL-2, 150 times more sensitive than the analog ELISA; (2) the multiplexed, on-chip sorting of both immortalized cell lines and primary immune cells with an efficiency that exceeds surface confined panning approaches; and (3) the co-detection of ssDNAs, proteins and cell populations on the same platform. PMID:17260987

  9. Vault nanocapsules as adjuvants favor cell-mediated over antibody-mediated immune responses following immunization of mice.

    Directory of Open Access Journals (Sweden)

    Upendra K Kar

    Full Text Available BACKGROUND: Modifications of adjuvants that induce cell-mediated over antibody-mediated immunity is desired for development of vaccines. Nanocapsules have been found to be viable adjuvants and are amenable to engineering for desired immune responses. We previously showed that natural nanocapsules called vaults can be genetically engineered to elicit Th1 immunity and protection from a mucosal bacterial infection. The purpose of our study was to characterize immunity produced in response to OVA within vault nanoparticles and compare it to another nanocarrier. METHODOLOGY AND PRINCIPAL FINDINGS: We characterized immunity resulting from immunization with the model antigen, ovalbumin (OVA encased in vault nanocapsules and liposomes. We measured OVA responsive CD8(+ and CD4(+ memory T cell responses, cytokine production and antibody titers in vitro and in vivo. We found that immunization with OVA contain in vaults induced a greater number of anti-OVA CD8(+ memory T cells and production of IFNγ plus CD4(+ memory T cells. Also, modification of the vault body could change the immune response compared to OVA encased in liposomes. CONCLUSIONS/SIGNIFICANCE: These experiments show that vault nanocapsules induced strong anti-OVA CD8(+ and CD4(+ T cell memory responses and modest antibody production, which markedly differed from the immune response induced by liposomes. We also found that the vault nanocapsule could be modified to change antibody isotypes in vivo. Thus it is possible to create a vault nanocapsule vaccine that can result in the unique combination of immunogen-responsive CD8(+ and CD4(+ T cell immunity coupled with an IgG1 response for future development of vault nanocapsule-based vaccines against antigens for human pathogens and cancer.

  10. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  11. Cutaneous lesions as presentation form of mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Nayra Merino de Paz

    2011-12-01

    Full Text Available Mantle cell lymphoma is a type of no-Hodgkin lymphoma that affects extranodal areas, especially, bone narrow, digestive tract and Waldeyer ring. Here we report a case of mantle cell lymphoma IV Ann Arbor stage with cutaneous lesions on nasal dorsum and gland as the first manifestations. Skin involvement is a very rare manifestation and less than 20 cases have been reported in the literature. The importance of stablishing multidisciplinary relationships for a global approach has been shown by this clinical case.

  12. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507.

    Science.gov (United States)

    Zhang, Zhuo; Zhang, Meili; Ravetch, Jeffrey V; Goldman, Carolyn; Waldmann, Thomas A

    2003-07-01

    Adult T-cell leukemia (ATL) develops in a small proportion of individuals infected with the retrovirus human T-cell leukemia virus (HTLV-1). We evaluated the efficacy of MEDI-507 (a humanized monoclonal antibody directed against CD2) alone and in combination with humanized anti-Tac (HAT) directed toward CD25, the interleukin-2 receptor alpha (IL-2Ralpha) using a human adult T-cell leukemia xenograft model. Weekly treatments (4) with HAT significantly prolonged the survival of the ATL-bearing mice when compared with phosphate-buffered saline (PBS)-treated controls (P MEDI-507 (100 microg/wk for 4 weeks) survived longer than those treated with HAT (P MEDI-507 significantly improved the outcome when compared with a short course (4 weeks) of therapy (P MEDI-507 for 6 months led to a prolonged survival of the ATL-bearing mice that was comparable with the survival observed in the control group of mice that did not receive a tumor or therapeutic agent. We also found that the expression of Fcgamma receptors (FcRgamma) on polymorphonuclear leukocytes and monocytes was required for MEDI-507-mediated tumor killing in vivo. Thus, the tumor-killing mechanism with MEDI-507 in vivo required the expression of the receptor FcRgammaIII on polymorphonuclear leukocytes and monocytes, suggesting that it is mediated by a form of antibody-dependent cellular cytotoxicity. These results demonstrate that MEDI-507 has therapeutic efficacy on ATL in vivo and provides support for a clinical trial involving this monoclonal antibody in the treatment of patients with CD2-expressing leukemias and lymphomas.

  13. Anti·red cell activity of lymphocytotoxic antibodies: and in vitro and in ...

    African Journals Online (AJOL)

    It is believed rhat the synthesis of antibodies to intact lymphoid rissue represents a srimulus ro multiple antigen determinants. The need to investigate the effectiveness of antibody production to subcellular components of the lymphocyte is indicated before the biological approach to immunosuppressive therapy can be ...

  14. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  15. T10B9 monoclonal antibody: A short-acting nonstimulating monoclonal antibody that spares γδ T-cells and treats and prevents cellular rejection

    Directory of Open Access Journals (Sweden)

    Thomas H Waid

    2009-06-01

    Full Text Available Thomas H Waid1, John S Thompson1, Maria Siemionow2, Stephen A Brown1 1Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA; 2Cleveland Clinic, Cleveland, Ohio, USAAbstract: T10B9.1A-31/MEDI-500 is a nonmitogenic immunoglobulin M kappa murine monoclonal antibody (mAb directed against the alpha-beta (αβ heterodimer of the T-lymphocyte receptor complex. The hybridoma was first produced by fusing spleen cells from BALB/C mice immunized with human peripheral blood T-lymphocytes with SP2/O-Ag14 mutant myeloma cells. The mAb is produced and purified using multistep ion exchange and molecular sieve chromatography protocols. T10B9 has been used successfully to treat acute cellular rejection in renal transplantation and as an immunosuppression induction agent in heart and simultaneous kidney-pancreas transplantation. Because T10B9 is nonmitogenic and causes minimal cytokine release, both treatment of rejection and induction of immunosuppression were accomplished with significantly fewer and milder untoward effects (cytokine release syndrome than its comparator OKT3. Since T10B9 is directed against the αβ heterodimer of the CD3 epitope, it spares the gamma delta (γδ region. These gamma delta (γδ T cells have a unique role in the immune response controlling many serious human diseases and perhaps facilitating the development of immunologic tolerance. T10B9 has a relatively short duration of action, depleting T cells for only 10 to 14 days, unlike the protracted depletion seen with thymoglobulin and Campath-1H. There is no B-lymphocyte depletion with T10B9 as there is with both of the aforementioned reagents. The lack of prolonged lymphocyte depletion may account for less infection observed with T10B9 treatment.Keywords: T10B9.1A-31, γδ T-cell, monoclonal antibody, Campath-1H, thymoglobulin, OKT3

  16. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  17. Human invariant NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by B cells in vitro.

    OpenAIRE

    O'REILLY, VINCENT

    2013-01-01

    PUBLISHED Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and ...

  18. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins.

    Science.gov (United States)

    Hendrikx, Lotte H; Oztürk, Kemal; de Rond, Lia G H; Veenhoven, Reinier H; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2011-02-04

    Whooping cough is a respiratory disease caused by Bordetella pertussis. Since the 1950s in developed countries pertussis vaccinations are included in the national immunization program. However, antibody levels rapidly wane after both whole cell and acellular pertussis vaccination. Therefore protection against pertussis may depend largely on long-term B- and T-cell immunities. We investigated long-term pertussis-specific memory B-cell responses in children who were primed at infant age with the Dutch wP-vaccine (ISRCTN65428640). Purified B-cells were characterized by FACS-analysis and after polyclonal stimulation memory B-cells were detected by ELISPOT-assays specific for pertussis toxin, filamentous haemagglutinin, pertactin and tetanus. In addition, plasma IgG levels directed to the same antigens were measured by a fluorescent bead-based multiplex immunoassay. Two and 3 years after wP priming as well as 2 and 5 years after the aP booster at the age of 4, low plasma IgG levels to the pertussis proteins were found. At the same time, however pertussis protein-specific memory B-cells could be detected and their number increased with age. The number of tetanus-specific memory B-cells was similar in all age groups, whereas IgG-tetanus levels were high 2 years after tetanus booster compared to pre- and 5 years post-booster levels. This study shows the presence of long-term pertussis protein-specific memory B-cells in children despite waning antibody levels after vaccination, which suggests that memory B-cells in addition to antibodies may contribute to protection against pertussis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Neonatal Satellite Cells Form Small Myotubes in Vitro

    NARCIS (Netherlands)

    Carvajal Monroy, P.L.; Grefte, S.; Kuijpers-Jagtman, A.M.; Den Hoff, Von J.W.; Wagener, F.A.D.T.G.

    2017-01-01

    Although palatal muscle reconstruction in patients with cleft palate takes place during early childhood, normal speech development is often not achieved. We hypothesized that the intrinsic properties of head satellite cells (SCs) and the young age of these patients contribute to the poor muscle

  20. Neonatal Satellite Cells Form Small Myotubes In Vitro.

    NARCIS (Netherlands)

    Carvajal Monroy, P.L.; Grefte, S.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den; Wagener, F.A.D.T.G.

    2017-01-01

    Although palatal muscle reconstruction in patients with cleft palate takes place during early childhood, normal speech development is often not achieved. We hypothesized that the intrinsic properties of head satellite cells (SCs) and the young age of these patients contribute to the poor muscle

  1. Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA with monoclonal antibodies.

    Science.gov (United States)

    Scholten, R J; Kuipers, B; Valkenburg, H A; Dankert, J; Zollinger, W D; Poolman, J T

    1994-10-01

    To assess the applicability of a whole-cell ELISA (WCE) with monoclonal antibodies (MAbs) for lipo-oligosaccharide (LOS) immunotyping of Neisseria meningitidis, 675 meningococcal isolates obtained in 1989 and 1990 in the Netherlands and 57 isolates collected in 1974, of which the immunotype had been determined previously by microprecipitation, were analysed. Despite the lack of specific MAbs for L2 and L4, an algorithm was developed for the assignment of immunotypes on the basis of the reaction patterns of the reference strains and these isolates to a combination of 14 MAbs. The immunotypes found by WCE were in accordance with those obtained by microprecipitation and the results from WCE were reproducible. The distribution of immunotypes among isolates of the various serogroups in the Netherlands in 1989-1990 is presented. Based on the reaction patterns of the isolates, two main categories of related immunotypes could be distinguished among isolates of serogroups B and C: L2/L4 and L3/L1/L8. Some isolates of the latter category were of one immunotype, but many isolates expressed one or two additional immunotypes, either strongly or weakly, indicating that the differences in this category are quantitative rather than qualitative. The results of this study have demonstrated that the WCE method for LOS immunotyping is easily applicable and provides better definition of test strains for in-vitro bactericidal assays and research into pathogenesis.

  2. Autoimmune fasciitis triggered by the anti-programmed cell death-1 monoclonal antibody nivolumab.

    Science.gov (United States)

    Parker, Matthew Js; Roberts, Mark E; Lorigan, Paul C; du Plessis, Daniel G; Chinoy, Hector

    2018-02-08

    A 43-year-old woman with a history of recently diagnosed metastatic melanoma was commenced on systemic therapy with nivolumab, an anti-programmed cell death-1 monoclonal antibody and one of an increasing group of the so-called 'immune checkpoint inhibitors'. She experienced a dramatic complete response within 6 months of initiation. However, in addition to developing incident autoimmune hypothyroidism, she also developed progressive fatigue, proximal weakness, myalgia and dysphagia. Initial investigations with blood tests, electrophysiology and a muscle biopsy were non-specific or normal. Subsequent examination revealed 'woody' thickening of the subcutaneous tissues of the forearms, thighs and calves consistent with fasciitis. MRI and a full-thickness skin-muscle biopsy were ultimately diagnostic of a likely iatrogenic autoimmune myofasciitis. The clinical manifestations only responded partly to prednisolone 30 mg orally and treatment was escalated to include intravenous immunoglobulin. At 3 months, this has only resulted in a modest incremental improvement. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  4. White blood cell scintigraphy with monoclonal antibodies in the study of the infected endoprosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciuk, J.; Puskas, C.; Schober, O. (Muenster Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin); Greitemann, B. (Muenster Univ. (Germany). Klinik und Poliklinik fuer Allgemeine Orthopaedie)

    1992-07-01

    Forty-three patients with suspected infection of a hip or a knee prosthesis were studied with white blood cell scintigraphy (WBC), using technetium-99m (n=37) or iodine-123 (n=6) labelled monoclonal mouse antibody (MOA). Previously, all patients had undergone skeletal scintigraphy, which was performed as a three-phase study in 33 cases. The final diagnosis was established by open surgery, histology and culture in 37 cases, by puncture and cultere in 3 cases, and by clinical follow-up of at least 6 months in 3 cases. Eighteen prostheses were infected, 25 uninfected. The delayed phase of skeletal scintigraphy had a sensitivity of 92%, a specificity of 24% and an accuracy of 48% in the detection of infection. The perfusion and blood pool activity of the three-phase bone scan had a sensitivity of 67%, a specificity of 71% and an accuracy of 70%. The diagnostic value of WBC was sensitivty 89%, specificity 84% and accuracy 86%. WBC with {sup 99m}-Tc-MOA is easy to perform and always available. Its diagnostic accuracy is similar to conventional WBC scintigraphy with either indium-111 or {sup 99m}-Tc. (orig.).

  5. Identification and Characterization of Host Cell Protein Product-Associated Impurities in Monoclonal Antibody Bioprocessing

    Science.gov (United States)

    Levy, Nicholas E.; Valente, Kristin N.; Choe, Leila H.; Lee, Kelvin H.; Lenhoff, Abraham M.

    2018-01-01

    Downstream processing of monoclonal antibodies (mAbs) has evolved to allow the specific process for a new product to be developed largely by empirical specialization of a platform process that enables removal of impurities of different kinds. A more complete characterization of impurities and the product itself would provide insights into the rational design of efficient downstream processes. This work identifies and characterizes host cell protein (HCP) product associated impurities, i.e., HCP species carried through the downstream processes via direct interactions with the mAb. Interactions between HCP and mAbs are characterized using cross interaction chromatography under solution conditions typical of those used in downstream processing. The interacting species are then identified by two dimensional gel electrophoresis and mass spectrometry. This methodology has been applied to identify product associated impurities in one particular purification step, namely protein A affinity chromatography, for four therapeutic mAbs as well as the Fab and Fc domains of one of these mAbs. The results show both the differences in HCP-mAb interactions among different mAbs, and the relative importance of product association compared to co-elution in protein A affinity chromatography. PMID:24254318

  6. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display.

    Science.gov (United States)

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.

  7. An anti-CD45RO/RB monoclonal antibody modulates T cell responses via induction of apoptosis and generation of regulatory T cells

    OpenAIRE

    Gregori, Silvia; Mangia, Patrizia; Bacchetta, Rosa; Tresoldi, Eleonora; Kolbinger, Frank; Traversari, Catia; Carballido, Josè M.; de Vries, Jan E.; Korthäuer, Ulf; Roncarolo, Maria-Grazia

    2005-01-01

    The effects of a chimeric monoclonal antibody (chA6 mAb) that recognizes both the RO and RB isoforms of the transmembrane protein tyrosine phosphatase CD45 on human T cells were investigated. Chimeric A6 (chA6) mAb potently inhibited antigen-specific and polyclonal T cell responses. ChA6 mAb induced activation-independent apoptosis in CD4+CD45RO/RBhigh T cells but not in CD8+ T cells. In addition, CD4+ T cell lines specific for tetanus toxoid (TT) generated in the presence of chA6 mAb were an...

  8. When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid.

    Science.gov (United States)

    Chumsae, Chris; Hossler, Patrick; Raharimampionona, Haly; Zhou, Yu; McDermott, Sean; Racicot, Chris; Radziejewski, Czeslaw; Zhou, Zhaohui Sunny

    2015-08-04

    With the advent of new initiatives to develop chemically defined media, cell culture scientists screen many additives to improve cell growth and productivity. However, the introduction or increase of supplements, typically considered beneficial or protective on their own, to the basal media or feed stream may cause unexpected detrimental consequences to product quality. For instance, because cultured cells are constantly under oxidative stress, ascorbic acid (vitamin C, a potent natural reducing agent) is a common additive to cell culture media. However, as reported herein, a recombinant monoclonal antibody (adalimumab) in cell culture was covalently modified by xylosone (molecular weight 148), an oxidative product of ascorbate. Containing reactive carbonyl groups, xylosone modifies various amines (e.g., the N-termini of the heavy and light chains and susceptible lysines), forming either hemiaminal (+148 Da) or Schiff base (imine, +130 Da) products. Our findings show, for the first time, that ascorbate-derived xylosone can contribute to an increase in molecular heterogeneity, such as acidic species. Our work serves as a reminder that additives to cell culture and their metabolites may become reactive and negatively impact the overall product quality and should be carefully monitored with any changes in cell culture conditions.

  9. Rapid alternative to the clonogenic assay for measuring antibody and complement-mediated killing of tumor cells

    International Nuclear Information System (INIS)

    Gee, A.P.; Rolfe, A.E.; Worthington-White, D.; Graham-Pole, J.; Boyle, M.D.

    1985-01-01

    A study of the methods used to quantitate killing of tumor cells by antibody and complement has highlighted a number of problems. Using leukemia as a model, the authors have found that the release of 51 Cr from labeled tumor cells treated with antibody and complement can be an equivocal measure of cell viability. Combined with its restricted sensitivity (less than a 2 log range of cell killing) this makes this widely used assay of questionable value for detecting small numbers of viable cells, or for identifying subpopulations of complement-resistant cells. As an alternative a [ 125 I]iododeoxyuridine uptake assay has been developed, that combines the simplicity and rapidity of the 51 Cr release technique with the sensitivity of a clonogenic assay. This method eliminates the problem of spontaneous isotope release, inherent in prelabeling assays, and variability from experiment to experiment can be avoided by including a viable cell standard curve within each assay. The sensitivity of the 125 IUdR uptake method, which can be completed within a day, is similar to that of a 10 day methylcellulose cloning assay and was capable of detecting the presence of a minor subpopulation of complement-resistant tumor cells

  10. Cell surface-associated anti-MUC1-derived signal peptide antibodies: implications for cancer diagnostics and therapy.

    Directory of Open Access Journals (Sweden)

    Riva Kovjazin

    Full Text Available The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distribution on primary tumors and metastases renders it an attractive target for immunotherapy. After synthesis MUC1 is cleaved, yielding a large soluble extracellular alpha subunit containing the tandem repeats array (TRA domain specifically bound, via non-covalent interaction, to a smaller beta subunit containing the transmembrane and cytoplasmic domains. Thus far, inconclusive efficacy has been reported for anti-MUC1 antibodies directed against the soluble alpha subunit. Targeting the cell bound beta subunit, may bypass limitations posed by circulating TRA domains. MUC1's signal peptide (SP domain promiscuously binds multiple MHC class II and Class I alleles, which upon vaccination, generated robust T-cell immunity against MUC1-positive tumors. This is a first demonstration of non-MHC associated, MUC1 specific, cell surfaces presence for MUC1 SP domain. Polyclonal and monoclonal antibodies generated against MUC1 SP domain specifically bind a large variety of MUC1-positive human solid and haematological tumor cell lines; MUC1-positive bone marrow derived plasma cells obtained from multiple myeloma (MM-patients, but not MUC1 negative tumors cells, and normal naive primary blood and epithelial cells. Membranal MUC1 SP appears mainly as an independent entity but also co-localized with the full MUC1 molecule. MUC1-SP specific binding in BM-derived plasma cells can assist in selecting patients to be treated with anti-MUC1 SP therapeutic vaccine, ImMucin. A therapeutic potential of the anti-MUC1 SP antibodies was suggested by their ability to support of complement-mediated lysis of MUC1-positive tumor cells but not MUC1 negative tumor cells and normal naive primary epithelial cells. These findings suggest a novel cell surface presence of MUC1 SP domain, a potential therapeutic benefit for anti-MUC1 SP antibodies in MUC1-positive tumors and a selection tool for MM

  11. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production.

    Directory of Open Access Journals (Sweden)

    Joris K Sprokholt

    2017-11-01

    Full Text Available Follicular T helper cells (TFH are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV infection of human dendritic cells (DCs drives TFH formation via crosstalk of RIG-I-like receptor (RLR RIG-I and MDA5 with type I Interferon (IFN signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies.

  12. Optimizing front metallization patterns: Efficiency with aesthetics in free-form solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2016-01-01

    Free-form solar cells are cells of unconventional shapes (e.g. hexagonal, leaf-shaped etc). Their flexible shape adds to the aesthetics of the surroundings as well as allows to place them over objects where conventional solar cells might not fit. Evidently, these cells need to be efficient as well,

  13. A Novel Approach to Monitor Clearance of Host Cell Proteins Associated With Monoclonal Antibodies

    Science.gov (United States)

    Aboulaich, Nabila; Chung, Wai Keen; Thompson, Jenny Heidbrink; Larkin, Christopher; Robbins, David; Zhu, Min

    2014-01-01

    Co-purification of a subset of host cell proteins (HCPs) with monoclonal antibodies (mAbs) during the capture of mAbs on Protein A affinity chromatography is primarily caused by interactions of HCPs with the mAbs. To date, there is limited information about the identity of those HCPs due to the difficulty in detecting low abundance HCPs in the presence of a large amount of the mAb. Here, an approach is presented that allows identification of HCPs that specifically associate with the mAb, while avoiding interference from the mAb itself. This approach involves immobilization of purified mAb onto chromatography resin via cross-linking, followed by incubation with HCPs obtained from supernatant of non-mAb producer cells that are representative of the expression systems used in mAb manufacturing. The HCPs that bind to the mAb are recovered and identified using mass spectrometry. This approach has not only allowed a comprehensive comparison of HCP subpopulations that associate with different mAbs, but also enabled monitoring of the effects of a variety of wash modifiers on the dissociation of individual HCP–mAb interactions. The dissociation of HCPs that associated with the mAb was monitored by enzyme-linked immunosorbent assay and mass spectrometry. This approach can be utilized as a screening tool to assist the development of effective and targeted wash steps in Protein A chromatography that ensures not only reduction of HCP levels copurified with the mAb but also removal of specific HCPs that may have a potential impact on mAb structural stability and patient safety. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1114–1124, 2014 PMID:25044920

  14. Antibodies to biotinylated red blood cells in adults and infants: improved detection, partial characterization, and dependence on red blood cell-biotin dose.

    Science.gov (United States)

    Schmidt, Robert L; Mock, Donald M; Franco, Robert S; Cohen, Robert M; North, Anne K; Cancelas, José A; Geisen, Christof; Strauss, Ronald G; Vlaar, Alexander P; Nalbant, Demet; Widness, John A

    2017-06-01

    Biotin-labeled red blood cells (BioRBCs) are used for in vivo kinetic studies. Because BioRBC dosing occasionally induces antibodies, a sensitive and specific anti-BioRBC detection assay is needed. Aims were to 1) develop a gel card assay to evaluate existing, naturally occurring and BioRBC-induced plasma antibodies, 2) compare gel card and tube agglutination detection results, and 3) test for a relationship of antibody induction and BioRBC dose. Reagent BioRBCs were prepared using sulfo-NHS biotin ranging from densities 18 (BioRBC-18) to 1458 (BioRBC-1458) µg/mL RBCs. Among BioRBC-exposed subjects, gel card and tube agglutination results were concordant in 21 of 22 adults and all 19 infant plasma samples. Gel card antibody detection sensitivity was more than 10-fold greater than tube agglutination. Twelve to 16 weeks after BioRBC exposure, induced anti-antibodies were detected by gel card in three of 26 adults (12%) at reagent densities BioRBC-256 or less, but in none of 41 infants. Importantly, induced anti-BioRBC antibodies were associated with higher BioRBC dose (p = 0.008); no antibodies were detected in 18 subjects who received BioRBC doses less than or equal to BioRBC-18. For noninduced BioRBC antibodies, six of 1125 naïve adults (0.3%) and none of 46 naïve infants demonstrated existing anti-BioRBC antibodies using reagent BioRBC-140 or -162. Existing anti-BioRBCs were all neutralized by biotin compounds, while induced antibodies were not. The gel card assay is more sensitive than the tube agglutination assay. We recommend reagent BioRBC-256 for identifying anti-BioRBCs. Use of a low total RBC biotin label dose (≤ BioRBC-18) may minimize antibody induction. © 2017 AABB.

  15. Clinical and Immunological Features of Opsoclonus-Myoclonus Syndrome in the Era of Neuronal Cell Surface Antibodies.

    Science.gov (United States)

    Armangué, Thaís; Sabater, Lidia; Torres-Vega, Estefanía; Martínez-Hernández, Eugenia; Ariño, Helena; Petit-Pedrol, Mar; Planagumà, Jesús; Bataller, Luis; Dalmau, Josep; Graus, Francesc

    2016-04-01

    Most studies on opsoclonus-myoclonus syndrome (OMS) in adults are based on small case series before the era of neuronal cell surface antibody discovery. To report the clinical and immunological features of idiopathic OMS (I-OMS) and paraneoplastic OMS (P-OMS), the occurrence of antibodies to cell surface antigens, and the discovery of a novel cell surface epitope. Retrospective cohort study and laboratory investigations of 114 adult patients with OMS at a center for autoimmune neurological disorders done between January 2013 and September 2015. Review of clinical records. Immunohistochemistry on rat brain and cultured neurons as well as cell-based assays were used to identify known autoantibodies. Immunoprecipitation and mass spectrometry were used to characterize novel antigens. Of the 114 patients (62 [54%] female; median age, 45 years; interquartile range, 32-60 years), 45 (39%) had P-OMS and 69 (61%) had I-OMS. In patients with P-OMS, the associated tumors included lung cancer (n = 19), breast cancer (n = 10), other cancers (n = 5), and ovarian teratoma (n = 8); 3 additional patients without detectable cancer were considered to have P-OMS because they had positive results for onconeuronal antibodies. Patients with I-OMS, compared with those who had P-OMS, were younger (median age, 38 [interquartile range, 31-50] vs 54 [interquartile range, 45-65] years; P OMS with lung cancer (21% vs 5% in patients with OMS without lung cancer; P = .02); however, a similar frequency of glycine receptor antibodies was found in patients with lung cancer without OMS (13 of 65 patients [20%]). A novel cell surface epitope, human natural killer 1 (HNK-1), was the target of the antibodies in 3 patients with lung cancer and P-OMS. Patients with I-OMS responded better to treatment and had fewer relapses than those with P-OMS. Older age and encephalopathy, significantly associated with P-OMS, are clinical clues suggesting an underlying tumor. Glycine receptor antibodies occur

  16. Serum N-glycome characterization and anti-carbohydrate antibody profiling in oral squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Shih-Yun Guu

    Full Text Available Glycosylation is a protein post translational modification which plays important role in protein function, stabilization, trafficking, and turnover. Alteration of protein glycosylation is a common phenomenon during tumor progression, migration, invasion, angiogenesis, as well as metastasis. Hence, aberrant glycan structures and the induced corresponding anti-carbohydrate antibodies are potential biomarkers for cancer diagnosis. In this study, serum N-glycomes and anti-carbohydrate antibodies from normal populations and oral squamous cell carcinoma (OSCC patients were investigated. Total serum proteins were lyophilized and subjected to chemical reduction, alkylation and trypsin digestion. The N-glycans were released, purified, permethylated, and analyzed using MALDI-TOF-Mass spectrometry. In addition, the serum anti-carbohydrate antibody profiles were also investigated by carbohydrate microarray. We found that the relative abundances of seven N-glycans were decreased or increased in serum of OSCC with diagnostic accuracy greater than 75%. The relative abundances of total tri-antennary and tetra-antennary glycans with varying degrees of fucosylation and sialylation were also increased in serum N-glycomes of OSCC. In an independent validation group of forty-eight OCCC patients, most of the high-molecular weight serum N-glycans showed significantly high sensitivity and specificity according to the identified cutoff values. Furthermore, the serum levels of two IgM antibodies were elevated accompanied with the decreased levels of nine IgG antibodies in patient serum. Taken together, these serum N-glycans and antibodies identified in this study should be considered as the candidates of potential biomarkers for OSCC diagnosis.

  17. Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells

    Science.gov (United States)

    Hoopes, P. J.; Tate, J. A.; Ogden, J. A.; Strawbridge, R. R.; Fiering, S. N.; Petryk, A. A.; Cassim, S. M.; Giustini, A. J.; Demidenko, E.; Ivkov, R.; Barry, S.; Chinn, P.; Foreman, A.

    2009-02-01

    Hyperthermia, as an independent modality or in combination with standard cancer treatments such as chemotherapy and radiation, has been established in vitro and in vivo as an effective cancer treatment. However, despite efforts over the past 25 years, such therapies have never been optimized or widelyaccepted clinically. Although methods continue to improve, conventionally-delivered heat (RF, ultrasound, microwave etc) can not be delivered in a tumor selective manner. The development of antibody-targeted, or even nontargeted, biocompatible iron oxide nanoparticles (IONP) now allows delivery of cytotoxic heat to individual cancer cells. Using a murine mouse mammary adenocarcinoma (MTGB) and human colon carcinoma (HT29) cells, we studied the biology and treatment of IONP hyperthermia tumor treatment. Methods: Cancer cells (1 x 106) with or without iron oxide nanoparticles (IONP) were studied in culture or in vivo via implanted subcutaneously in female C3H mice, Tumors were grown to a treatment size of 150 mm3 and tumors volumes were measured using standard 3-D caliper measurement techniques. Mouse tumors were heated via delivery of an alternating magnetic field, which activated the nanoparticles, using a cooled 36 mm diameter square copper tube induction coil which provided optimal heating in 1.5 cm wide region of the coil. The IONPs were dextran coated and had a hydrodynamic radius of approximately 100 nm. For the in vivo studies, intra-tumor, peritumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Although some eddy current heating was generated in non-target tissues at the higher field strengths, our preliminary IONP hyperthermia studies show that whole mouse AMF exposure @160 KHz and 400 or 550 Oe, for a 20 minutes (heat-up and protocol heating), provides a safe and efficacious tumor treatment. Initial electron and light microscopic studies (in vitro and in vivo) showed the 100 nm used in our studies are

  18. Effect of screening for red cell antibodies, other than anti-D, to detect hemolytic disease of the fetus and newborn: a population study in the Netherlands

    NARCIS (Netherlands)

    Koelewijn, J. M.; Vrijkotte, T. G. M.; van der Schoot, C. E.; Bonsel, G. J.; de Haas, M.

    2008-01-01

    BACKGROUND: Hemolytic disease of the fetus and newborn (HDFN) is a severe disease, resulting from maternal red cell (RBC) alloantibodies directed against fetal RBCs. The effect of a first-trimester antibody screening program on the timely detection of HDFN caused by antibodies other than anti-D was

  19. A synthetic peptide derived from the animo acid sequence of canine parvovirus structural proteins which defines a B cell epitope and elicits antiviral antibody in BALB c mice.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractSynthetic peptides, recombinant fusion proteins and mouse monoclonal antibodies were used to delineate a B cell epitope of the VP'2 structural protein of canine parvovirus (CPV). Although this epitope is not preferentially recognized in the normal antibody response to CPV, virus-specific

  20. Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ellis, V

    1991-01-01

    We have raised four monoclonal antibodies recognizing different epitopes within the human cell-surface receptor for urokinase-type plasminogen activator (u-PA). One of these antibodies completely abolishes the potentiation of plasmin generation observed upon incubation of the zymogens pro...

  1. Radiolocalization of bovine lymphosarcoma cells in athymic mice, using a monoclonal antibody against tumor-associated antigens

    International Nuclear Information System (INIS)

    Aida, Y.; Ochiai, K.; Ito, K.; Onuma, M.; Fujimori, F.; Fujimoto, Y.; Izawa, H.

    1987-01-01

    Mouse monoclonal antibody c 143 was purified and F(ab')2 fragments were generated by pepsin digestion and then radiolabeled with 125 I. The 125 I-labeled c 143 F(ab')2 fragments were injected into athymic mice bearing bovine lymphoid tumor cells. The fragments became preferentially localized in tumor tissues, but not in normal tissues, as determined by differential counting of tissue radioactivity. The fragments became localized specifically in those tumors that were reactive with c 143 in vitro, but did not become localized in unrelated tumors. Localization of labeled F(ab')2 fragments of a monoclonal antibody of the same isotype directed against Taka virus (a variant of Newcastle disease virus) was not observed in athymic mice bearing bovine lymphoid tumor ce