WorldWideScience

Sample records for antibody conjugate dota-morab-003

  1. Haptens, conjugates and antibodies for pyrimethanil fungicide

    OpenAIRE

    Mercader Badia, Josep Vicent; Abad Fuentes, Antonio; Abad Somovilla, Antonio; Agulló, Consuelo

    2012-01-01

    [EN] The invention relates to haptens, conjugates and antibodies for pyrimethanil fungicide. In addition, the invention relates to the use of pyrimethanil conjugates as assay antigens or immunogens in order to obtain antibodies of the aforementioned fungicide, and to the use of the labelled derivatives of pyrimethanil as assay antigens. The invention also relates to a pyrimethanil analysis method using the antibodies obtained, at times together with assay antigens which are conjugates or labe...

  2. New Antibody Conjugates in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Serengulam V. Govindan

    2010-01-01

    Full Text Available Targeting of radiation, drugs, and protein toxins to cancers selectively with monoclonal antibodies (MAbs has been a topic of considerable interest and an area of continued development. Radioimmunotherapy (RAIT of lymphoma using directly labeled MAbs is of current interest after approval of two radiolabeled anti-CD20 MAbs, as illustrated with the near 100% overall response rate obtained in a recent clinical trial using an investigational radiolabeled anti-CD22 MAb, 90Y-epratuzumab. The advantage of pretargeted RAIT over directly labeled MAbs is continuing to be validated in preclinical models of lymphoma and solid tumors. Importantly, the advantages of combining RAIT with radiation sensitizers, with immunotherapy, or a drug conjugate targeting a different antigen are being studied clinically and preclinically. The area of drug-conjugated antibodies is progressing with encouraging data published for the trastuzumab-DM1 conjugate in a phase I clinical trial in HER2-positive breast cancer. The Dock-and-Lock platform technology has contributed to the design and the evaluation of complex antibody-cytokine and antibody-toxin conjugates. This review describes the advances made in these areas, with illustrations taken from advances made in the authors' institutions.

  3. Antibody-Conjugated Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Manuel Arruebo

    2009-01-01

    Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.

  4. Creating Ordered Antibody Arrays with Antibody-Polymer Conjugates

    Science.gov (United States)

    Dong, Xuehui; Obermeyer, Allie; Olsen, Bradley

    Antibodies are a category of functional proteins that play crucial roles in the immune system and have been widely applied in the area of cancer therapeutics, targeting delivery, signal detection, and sensors. Due to the extremely large size and lack of specific functional groups on the surface, it is challenging to functionalize antibodies and manipulate the ordered packing of antibodies in an array with high density and proper orientation, which is critical to achieve outstanding performance in materials. In this work, we demonstrate an efficient and facile approach for preparing antibody-polymer conjugates with two-step sequential ``click'' reaction to form antibody-polymer block copolymers. Highly ordered nanostructures are fabricated based on the principles of block copolymer self-assembly. The nanostructures are studied with both small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Lamellae with alternating antibody domain and polymer domain are observed with an overall domain size of ~50 nm. The nanostructure not only increases the packing density and promotes proper orientation of the antibody, but also provides possible channel to facilitate substrate transportation and improves the stability of the antibody.

  5. Goat serums for fluorescent antibody conjugates to chlamydial antigens.

    OpenAIRE

    Tessler, J.

    1984-01-01

    Serums from goats hyperimmunized with Chlamydia psittaci consistently produce antichlamydial fluorescent antibody conjugate of high titer. The titer of the fluorescent antibody conjugate prepared from a given serum correlated well with the titer obtained by agar gel precipitin, but not with the complement fixation. The agar gel precipitin test can be used to predict whether a given serum is satisfactory for use in production of a conjugate for direct fluorescent antibody tests. Serums with an...

  6. Haptens, conjugates and antibodies for the fungicide cyprodinil

    OpenAIRE

    Mercader Badia, Josep Vicent; Abad Fuentes, Antonio; Abad Somovilla, Antonio; Agulló, Consuelo

    2011-01-01

    [EN] The invention relates to haptens, conjugates, labelled derivatives and antibodies for cyprodinil. Likewise, the present invention also relates to the use of cyprodinil conjugates as test antigens or immunogens for obtaining antibodies of said fungicide, and to the use of the labelled derivatives of cyprodinil as test antigens. Furthermore, the present invention also relates to a method for analysing cyprodinil using the thus obtained antibodies, at times together with the test antigens, ...

  7. Current Status: Site-Specific Antibody Drug Conjugates.

    Science.gov (United States)

    Schumacher, Dominik; Hackenberger, Christian P R; Leonhardt, Heinrich; Helma, Jonas

    2016-05-01

    Antibody drug conjugates (ADCs), a promising class of cancer biopharmaceuticals, combine the specificity of therapeutic antibodies with the pharmacological potency of chemical, cytotoxic drugs. Ever since the first ADCs on the market, a plethora of novel ADC technologies has emerged, covering as diverse aspects as antibody engineering, chemical linker optimization and novel conjugation strategies, together aiming at constantly widening the therapeutic window for ADCs. This review primarily focuses on novel chemical and biotechnological strategies for the site-directed attachment of drugs that are currently validated for 2nd generation ADCs to promote conjugate homogeneity and overall stability. PMID:27003914

  8. Antibody-radioisotope conjugates for tumor localization and treatment

    International Nuclear Information System (INIS)

    In principle, anti-tumor antibodies can be used to carry radioactivity to tumors for in-vivo diagnosis and treatment of cancer. First, for diagnostic purposes, an antibody that targets a specific antigen (for example, the p97 antigen of human melanoma tumor), is labeled with a tracer amount of radioactivity. When this antibody-radioisotope conjugate is injected into the blood stream, the antibody carries the radioactivity throughout the body and in time, percolates through all the tissues of the body. Because the tumor has specific antigens to which the antibody can bind, the antibody conjugate progressively accumulates in the tumor. Using conventional nuclear medicine imaging equipment, the body of the patient is scanned for radioactivity content, and a map of the distribution of the radioactivity is displayed on photographic film. The tumor shows up as a dense area of radio-activity. These same antibody-radioisotope conjugates may be used for therapy of tumors, except that in this case large amounts of radioactivity are loaded on the antibody. After localization of the conjugate there is sufficient radiation deposited in the tumor of radiotherapy. The success of this approach in the clinic is determined in large measure by the concentration gradient that can be achieved between tissue antibody conjugate in tumor versus normal tissue

  9. Biophysical characterization of a model antibody drug conjugate.

    Science.gov (United States)

    Arakawa, Tsutomu; Kurosawa, Yasunori; Storms, Michael; Maruyama, Toshiaki; Okumura, C J; Maluf, Nasib Karl

    2016-01-01

    Antibody drug conjugates (ADC) are important next-generation biopharmaceuticals and thus require stringent structure characterization as is the case for monoclonal antibodies. We have tested several biophysical techniques, i.e., circular dichroism, analytical ultracentrifugation, differential scanning calorimetry and fluorescence spectroscopy, to characterize a fluorescein-labeled monoclonal antibody as a model ADC. These techniques indicated possible small structure and stability changes by the conjugation, while largely retaining the tertiary structure of the antibody, consistent with unaltered biological activities. Thus, the above biophysical techniques are effective at detecting changes in the structural properties of ADC. PMID:27534450

  10. Recent advances in the construction of antibody-drug conjugates

    Science.gov (United States)

    Chudasama, Vijay; Maruani, Antoine; Caddick, Stephen

    2016-02-01

    Antibody-drug conjugates (ADCs) comprise antibodies covalently attached to highly potent drugs using a variety of conjugation technologies. As therapeutics, they combine the exquisite specificity of antibodies, enabling discrimination between healthy and diseased tissue, with the cell-killing ability of cytotoxic drugs. This powerful and exciting class of targeted therapy has shown considerable promise in the treatment of various cancers with two US Food and Drug Administration approved ADCs currently on the market (Adcetris and Kadcyla) and approximately 40 currently undergoing clinical evaluation. However, most of these ADCs exist as heterogeneous mixtures, which can result in a narrow therapeutic window and have major pharmacokinetic implications. In order for ADCs to deliver their full potential, sophisticated site-specific conjugation technologies to connect the drug to the antibody are vital. This Perspective discusses the strategies currently used for the site-specific construction of ADCs and appraises their merits and disadvantages.

  11. Bone marrow purging by a xanthine oxidase-antibody conjugate.

    Science.gov (United States)

    Dinota, A; Tazzari, P L; Abbondanza, A; Battelli, M G; Gobbi, M; Stirpe, F

    1990-07-01

    The selective cytotoxicity of the xanthine oxidase conjugated to an 8A monoclonal antibody recognizing a human plasma cell-associated antigen has been described. The selectivity and the toxicity of the hypoxanthine/conjugated xanthine oxidase system was increased by removing the excess of conjugate and by adding chelated iron. Under these experimental conditions the cytotoxicity of the conjugate exceeded that of free xanthine oxidase by one order of magnitude. The conjugate effectively purged bone marrow from infiltrating neoplastic plasma cells and added target Raji cells, provided blood was removed and bone marrow peroxidases were exhausted. In conditions of purging effectiveness the conjugate had no toxicity to CFU-GM. No toxicity to mice was observed after i.v. injection of xanthine oxidase-antibody conjugate up to 2.9 U/kg body weight. Thus the hypoxanthine/conjugated xanthine oxidase system could be an effective and nontoxic tool for the ex vivo bone marrow purging in multiple myeloma patients for autologous transplantation. PMID:2390631

  12. Antibody–drug conjugates: targeted weapons against cancer

    OpenAIRE

    Scotti, Claudia

    2015-01-01

    Luisa Iamele, Luca Vecchia, Claudia ScottiDepartment of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, PV, Italy  All authors contributed equally to this work Abstract: Antibody–drug conjugates (ADCs) are formed by a targeting antibody conjugated to a chemotherapeutic molecule through a linker. Recent data demonstrate that ADCs represent a valuable advancement for the clinics and, despite their recent appearance in medicine, they ...

  13. New type of antibody-enzyme conjugate which specifically kills Candida albicans.

    OpenAIRE

    Okuda, K; Ishiwara, K; Noguchi, Y.; Takahashi, T.; Tadokoro, I

    1980-01-01

    A new type of antibody-enzyme conjugate was made, and its possible application to Candida infection was studied. Both lactoperoxidase and xanthine oxidase were conjugated to specific antibody against Candida albicans. In vitro microbiocidal activity of the new antibody-enzyme conjugate, when incubated together with xanthine and minute amount of halides, showed a remarkable level of candidacidal ability. When the new antibody-enzyme conjugate was given to Candida-infected mice, followed by inj...

  14. Conjugates of monoclonal antibodies and chelating polymers

    International Nuclear Information System (INIS)

    The primary purpose of protein modification with chelating polymers is to prepare monoclonal antibodies labeled with heavy metal isotopes (alpha-, beta-, and gamma-emitting metal and paramagnetic ions for NMR tomography). Conventional binding of metals to proteins via chelating agents directly coupled to proteins does not permit binding of a large number of metal atoms per protein molecule without causing alterations in the specific properties of the protein molecules. On the other hand, metal ion binding to proteins via intermediate chelating polymers should permit binding of several dozens of the metal atoms per protein molecule without affect the specific properties adversely. Moreover, the biodistribution and clearance rates can be regulated by varying the polymer properties. Modified antibodies may be used successfully in nuclear and NMR diagnostic applications and in radiotherapy. Possible applications of this approach shall be demonstrated with monoclonal antibody R11D10 for visualization of acute myocardial infarction. Use of this modification with other monoclonal antibodies is also discussed. The chemistry of protein modification with these polymers is presented

  15. Antibody conjugated graphene nanocomposites for pathogen detection

    Science.gov (United States)

    Sign, Chandan; Sumana, Gajjala

    2016-04-01

    Graphene oxide (GO), due to its excellent electrochemical properties and large surface area, known to be highly suitable material for biosensing application. Here, we report in situ synthesis of silver nanopaticles (AgNPs) onto the GO sheets for the electrochemical detection of Salmonella typhimurium (S.typhimurium). The GO-AgNPs composites have been deposited onto the indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. Carbodiimide coupling (EDC-NHS) has been used for the immobilization of antibodies of Salmonella typhimurium (anti-S.typhimurium) for detection of S.typhimurium. The electron microscopy and UV-visible studies reveal successful synthesis GO-AgNPs composites while FT-IR studies suggest the proper immobilization of anti-S.typhi. The cyclic voltammetry (CV) has been utilized for detection using anti-S.typhi/GOAgNPs/ITO based immunoelectrode as a function of S.typhimurium concentration. The fabricated immunosensor shows improved sensitivity of 33.04 μACFU-1mLcm-2 in a wide detection range of 101 to 106 CFUmL-1. This immunosensor may be utilized for the detection of other food borne pathogens like aflatoxin and E.coli also.

  16. Lectin immuno tests: quantitation and titration of antigens and antibodies using lectin-antibody conjugates

    International Nuclear Information System (INIS)

    The authors have investigated the possibility of using lectin-antibody conjugates as general reagents in immunological procedures requiring a labeled antigen or antibody. Using these conjugates, labeling is achieved through saccharide binding sites of lectins which operate as acceptors for glycoconjugate marker substances added secondarily. Marker substances used in this work were enzymes, radioactively labeled glycoconjugates and erythrocytes, but other markers can also be used. Using the first two markers, antigens and antibodies were determined with accuracy and sensitivity equal to those of conventional enzyme or radioimmunoassays. Using erythrocytes as a marker, a simple erythro-adsorption procedure, possibly followed by hemolysis, has been developed which allowed the titration of antigens and antibodies to be carried out with a sensitivity at least equal to enzyme or radioimmunoassays. (Auth.)

  17. Linkers Having a Crucial Role in Antibody-Drug Conjugates.

    Science.gov (United States)

    Lu, Jun; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody-drug conjugates (ADCs) comprised of a desirable monoclonal antibody, an active cytotoxic drug and an appropriate linker are considered to be an innovative therapeutic approach for targeted treatment of various types of tumors and cancers, enhancing the therapeutic parameter of the cytotoxic drug and reducing the possibility of systemic cytotoxicity. An appropriate linker between the antibody and the cytotoxic drug provides a specific bridge, and thus helps the antibody to selectively deliver the cytotoxic drug to tumor cells and accurately releases the cytotoxic drug at tumor sites. In addition to conjugation, the linkers maintain ADCs' stability during the preparation and storage stages of the ADCs and during the systemic circulation period. The design of linkers for ADCs is a challenge in terms of extracellular stability and intracellular release, and intracellular circumstances, such as the acid environment, the reducing environment and cathepsin, are considered as the catalysts to activate the triggers for initiating the cleavage of ADCs. This review discusses the linkers used in the clinical and marketing stages for ADCs and details the fracture modes of the linkers for the further development of ADCs. PMID:27089329

  18. Metal chelate conjugated monoclonal antibodies, wherein the metal is an α emitter

    International Nuclear Information System (INIS)

    Methods of manufacturing and purifying metal chelate conjugated monoclonal antibodies are described, wherein the chelated metal emits alpha radiation. The conjugates are suited for therapeutic uses being substantially free of nonchelated radiometal. (author)

  19. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells. PMID:20835432

  20. Measurement of tumour reactive antibody and antibody conjugate by competition, quantitated by flow cytofluorimetry.

    Science.gov (United States)

    Robins, R A; Laxton, R R; Garnett, M; Price, M R; Baldwin, R W

    1986-06-24

    Binding of unlabelled monoclonal antibody preparations has been assessed by competition at saturation with fluorochrome labelled homologous antibody for binding to antigen bearing target cells. The extent of competition was measured by quantitative flow cytofluorimetry, and simple mathematical procedures have been developed to allow the interpretation of competition data in terms of antibody binding activity. In the system studied, non-specific (non-competitive) fluorescence was minimal, but an iterative method to calculate its contribution to the measured signal is given. This approach has the advantage that the antibody preparation to be tested does not need to be labelled or modified; this is particularly important when evaluating the binding activity of therapeutic antibody conjugates. Comparison with a well characterized standard antibody preparation provides a rapid, sensitive and accurate quality control procedure. This test is also simple to perform, requiring only the mixing of labelled and unlabelled antibodies with target cells, a single incubation, followed by analysis without washing of the target cells. PMID:2424997

  1. Platinum-conjugated antibodies for application in mass cytometry.

    Science.gov (United States)

    Mei, Henrik E; Leipold, Michael D; Maecker, Holden T

    2016-03-01

    Mass cytometry has overcome limitations of fluorescent single cell cytometry by allowing for the measurement of up to currently ∼40 different parameters on a single cell level. However, the cellular proteome comprises many more potential analytes, and current mass cytometry instrumentation allows for theoretically up to 121 different mass detection channels. The labeling of specific probes with appropriate metal ions is a significant hurdle for exploiting more of mass cytometry's analytical capacity. To this end, we here describe the labeling of antibody with natural abundance or isotopically purified platinum as formulated in cisplatin and circumventing the use of chelator-loaded polymers. We confirm the utility of cisplatin-antibody-conjugates for surface, intracellular, and phosphoepitope-specific immunophenotyping, as well as for application in cell surface CD45-based barcoding. Cisplatin-labeling of antibody increases the analytical capacity of the CyTOF(®) platform by two channels based on available reagents, and has the potential to add a total of six channels for detection of specific probes, thus helping to better extend the analytical mass range of mass cytometers. PMID:26355391

  2. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture.

    Science.gov (United States)

    Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-01

    The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases. PMID:26333364

  3. Production of radiolabeled monoclonal antibody conjugates by photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Volkert, W.A.; Ketring, A.R.; Kuntz, R.R.; Holmes, R.A.; Mitchell, E.P. (Missouri Univ., Columbia, MO (USA)); Feldbush, T.L. (Harry S. Truman Memorial Veterans Hospital, Columbia, MO (USA))

    1990-06-01

    This report discusses activities and progress that has occurred since initiation of this project on September 1, 1989. We have synthesized ethyl N,N{prime}-bis(benzoylmercaptoacetyl)-2,3-diaminopropanoate, a ligand to be used as a bifunctional chelating agent (BFCA), to form {sup 186}Re or {sup 188}Re ({sup 186}Re/{sup 188}Re) complexes. {sup 186}Re/{sup 188}Re, in reducing media, reacts with this ligand to form {sup 186}Re/{sup 188}Re-CO{sub 2}DADS chelates that will be used to formulate new radiolabeled photoaffinity labels (RPALs). Initial steps have been taken to synthesize R-As-dithiol compounds. This approach will be used to produce {sup 77}As-RPALs or covalently link {sup 77}As directly to monoclonal antibodies (MAbs). The R group will contain a group that can be used for conjugation reactions. Spectral and photochemical properties of various types of photoaffinity labels (PALs) have been studied. Acrylo-azido compounds and 9-azido acridine have been studied as well as several other photoprobes. The binding characteristics of the azido-based PALs to HSA have been studied and progress has been made on developing techniques for efficiently separating of non-covalently sound PALs. The Nd-YAG laser was purchased and arrived in 1990. It has been assembled and tested and is now operational.

  4. 78 FR 18999 - Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates...

    Science.gov (United States)

    2013-03-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates for Photoimmunotherapy AGENCY: National Institutes of...

  5. Conjugation of R-Phycoerythrin to a Polyclonal Antibody and F (ab')2 Fragment of a Polyclonal Antibody by Two Different Methods.

    Science.gov (United States)

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah; Mahmoudi, Ahmad Reza; Akhondi, Mohammad Mehdi; Zarnani, Amir Hassan; Goli, Leila Balaei; Babaei, Mahdokht; Ghods, Roya

    2010-04-01

    R-Phycoerythrin (R-PE), a fluorescent protein from phycobiliprotein family, is isolated from red algae. Conjugation of antibodies to R-PE facilitates multiple fluorescent staining methods. In the present study polyclonal antibodies and polyclonal F(ab')2 fragment antibodies were conjugated to R-PE by two different methods. The efficiency of the methods was evaluated using Immunocytochemistry (ICC) and Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). In the first conjugation method, PE was attached to SMCC linker followed by conjugation of antibody to PE-SMCC. In the second method, SH groups were added onto R-PE molecule, while the antibody was attached to SPDP linker. Then, the antibody-SPDP molecule was conjugated to R-PE. Our results showed that the two conjugation methods did not have any abrogative effects on the antibody binding activity. PMID:23407609

  6. Effect of different hapten-carrier conjugation ratios and molecular orientations on antibody affinity against a peptide antigen

    DEFF Research Database (Denmark)

    Pedersen, M. K.; Sørensen, Nanna Skall; Heegaard, Peter M. H.;

    2006-01-01

    affinity and titre of antibodies raised against the hapten using different conjugation ratios and orientations. The peptide was coupled to ovalbumin in four Conjugation ratios and two molecular orientations - terminal and central - and the Conjugates were verified by mass spectrometry. Mice were immunised....... Furthermore, the molecular orientation of the Coupled peptide has a major effect on the anti-peptide antibody titres induced....

  7. Conjugation behaviours of CdTe quantum dots and antibody by a novel immunochromatographic method.

    Science.gov (United States)

    Wang, Y; Bai, Y; Wei, X

    2011-03-01

    Three water-soluble CdTe quantum dots (QDs) (green-emitting, yellow-emitting and red-emitting) were synthesised for different refluxing time with 3-mercaptopropionic acid (MPA) as stabiliser. Then the red-emitting CdTe QDs and mouse immunoglobulin G (IgG) were taken as the representative to study the conjugation behaviour of QDs and antibody by a novel immunochromatographic method. After comparing with several methods, that is, direct conjugation, 1-ethyl-3(3-dimethylaminopropyl) carbodiimides hydrochloride (EDC)-mediated conjugation, N-hydroxysuccinimide (NHS)-mediated conjugation, EDC/NHS-mediated conjugation by immunochromatographic strips, EDC and NHS were selected together as coupling agents to conjugate QDs with antibody efficiently. Finally, the K562 leukaemia cells were incubated with the EDC/NHS-mediated conjugates to evaluate the performance in practical application, and the result from fluorescence images showed that it was successfully applied to label cells. The immunochromatographic strip was a superior method to study the conjugation of the fluorophore and antibody. PMID:21241157

  8. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies

    DEFF Research Database (Denmark)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-01-01

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene...... against Salmonella typhimurium and Salmonella dublin. The presented method was compared with a similar method for conjugation of Salmonella polysaccharide antigens to surfaces. Here, the new method showed higher antigen coupling efficiency by detecting low concentrations of antibodies. Furthermore, the...... polysaccharide-conjugated beads showed preserved bioactivity after 1 year of use....

  9. Early detection of antibody to human immunodeficiency virus type 1 by using an antigen conjugate immunoassay correlates with the presence of immunoglobulin M antibody.

    OpenAIRE

    Gallarda, J L; Henrard, D R; Liu, D.; Harrington, S.; Stramer, S L; Valinsky, J E; Wu, P

    1992-01-01

    Sequential plasma samples obtained from 16 individuals who seroconverted were tested for the presence of antibody to human immunodeficiency virus type 1 (HIV-1) by an antigen conjugate enzyme immunoassay (EIA) and a conventional antibody conjugate assay. In 11 of these individuals, the antigen conjugate assay detected antibody to HIV-1 2 to 11 days (mean, 5.5 days) earlier than the antibody conjugate assay. In 11 individuals, HIV-1 p24 antigen was detected a median of 6.5 days (range, 3 to 14...

  10. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    Science.gov (United States)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  11. Comparative assay of fluorescent antibody test results among twelve European National Reference Laboratories using various anti-rabies conjugates

    DEFF Research Database (Denmark)

    Robardet, E.; Andrieu, S.; Rasmussen, Thomas Bruun;

    2013-01-01

    Twelve National Reference Laboratories (NRLs) for rabies have undertaken a comparative assay to assess the comparison of fluorescent antibody test (FAT) results using five coded commercial anti-rabies conjugates (Biorad, Bioveta, Fujirebio, Millipore, and SIFIN conjugates). Homogenized positive...

  12. Photo-thermal therapy of bladder cancer with Anti-EGFR antibody conjugated gold nanoparticles.

    Science.gov (United States)

    Chen, Chieh Hsiao; Wu, Yi-Jhen; Chen, Jia-Jin

    2016-01-01

    The aim of this study was to enhance the effectiveness of photo thermal therapy (PTT) in the targeting of superficial bladder cancers using a green light laser in conjunction with gold nanoparticles (GNPs) conjugated to antibody fragments (anti-EGFR). GNPs conjugated with anti-EGFR-antibody fragments were used as probes in the targeting of tumor cells and then exposed to a green laser (532nm), resulting in the production of sufficient thermal energy to kill urothelial carcinomas both in vitro and in vivo. Nanoparticles conjugated with antibody fragments are capable of damaging cancer cells even at relatively very low energy levels, while non-conjugated nanoparticles would require an energy level of 3 times under the same conditions. The lower energy required by the nanoparticles allows this method to destroy cancerous cells while preserving normal cells when applied in vivo. Nanoparticles conjugated with antibody fragments (anti-EGFR) require less than half the energy of non-conjugated nanoparticles to kill cancer cells. In an orthotopic bladder cancer model, the group treated using PTT presented significant differences in tumor development. PMID:27100501

  13. A rapid approach for characterization of thiol-conjugated antibody-drug conjugates and calculation of drug-antibody ratio by liquid chromatography mass spectrometry.

    Science.gov (United States)

    Firth, David; Bell, Leonard; Squires, Martin; Estdale, Sian; McKee, Colin

    2015-09-15

    We present the demonstration of a rapid "middle-up" liquid chromatography mass spectrometry (LC-MS)-based workflow for use in the characterization of thiol-conjugated maleimidocaproyl-monomethyl auristatin F (mcMMAF) and valine-citrulline-monomethyl auristatin E (vcMMAE) antibody-drug conjugates. Deconvoluted spectra were generated following a combination of deglycosylation, IdeS (immunoglobulin-degrading enzyme from Streptococcus pyogenes) digestion, and reduction steps that provide a visual representation of the product for rapid lot-to-lot comparison-a means to quickly assess the integrity of the antibody structure and the applied conjugation chemistry by mass. The relative abundance of the detected ions also offer information regarding differences in drug conjugation levels between samples, and the average drug-antibody ratio can be calculated. The approach requires little material (small-scale process development testing or as an early component of a complete characterization project facilitating informed decision making regarding which aspects of a molecule might need to be examined in more detail by orthogonal methodologies. PMID:26070852

  14. Quantum dot-antibody and amputator conjugates shift fluorescence upon binding bacteria

    International Nuclear Information System (INIS)

    CdSe/ZnS quantum dots (QDs) exhibited fluorescence emission blue shifts when conjugated to antibodies or DNA aptamers that are bound to bacteria. The intensity of the shifted emission peak increased with the number of bound bacteria. Curiously, the emission was consistently shifted to approximately 440-460 nm, which is distinctly different from the major component of the natural fluorescence spectrum of these QDs. This minor emission peak can grow upon conjugation to antibodies or aptamers and subsequent binding to bacterial cell surfaces. We hypothesize that the wavelength shift is due to changes in the chemical environment of the QD conjugates when they encounter the bacterial surface and may be due to physical deformation of the QD that changes the quantum confinement state. Regardless of the mechanism, these remarkable emission wavelength shifts of greater than 140 nm in some cases strongly suggest new applications for QD-receptor conjugates

  15. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies.

    Science.gov (United States)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-11-15

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 °C without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies against Salmonella typhimurium and Salmonella dublin. The presented method was compared with a similar method for conjugation of Salmonella polysaccharide antigens to surfaces. Here, the new method showed higher antigen coupling efficiency by detecting low concentrations of antibodies. Furthermore, the polysaccharide-conjugated beads showed preserved bioactivity after 1 year of use. PMID:25076184

  16. DNA-templated antibody conjugation for targeted drug delivery to cancer cells

    DEFF Research Database (Denmark)

    Liu, Tianqiang

    2016-01-01

    state to get a good pharmacological performance. Recombinant antibody engineering with non-natural amino acids, or enzyme-mediated conjugation approaches (transglutaminase, Sortase A or endoglycosidase) have been reported for producing homogeneous antibody conjugates. However, these methods require......-templated organic synthesis due to the wide existence of the 3-histidine cluster in most wild-type proteins. In this thesis, three projects that relate to targeted drug delivery to cancer cells based on the DTPC method is described. The first project was a delivery system which uses transferrin as the targeting...... ligand and saporin (ribosome inactivating protein) as the warhead to achieve enhanced cellular uptake and cytotoxicity of saporin to transferrin receptor overexpressed cancer cell line. The transferrin-saporin conjugate complex are formed by linking the site-selective DNA-transferrin conjugates with mono...

  17. SPECIFIC UPTAKE OF MONOCLONAL ANTIBODY-CONJUGATED METHOTREXATE BY HUMAN LYMPHOCYTIC LEUKEMIC B CELLS

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhenping; Yang Chunzheng; Tarunendu Ghose; Jaroslav Kralovec

    1998-01-01

    Objective: To analysis the uptake of free MTX and MTX conjugated to tumor specific monoclonal antibody by target and non-target cells. Methods: The folate antagonist methotrexate (MTX) was conjugated to two monoclonal antibodies (Mab) directed against human chronic lymphocytic leukemia (CLL), Dal B01 and Dal B02, by an active ester method. Both conjugates were more cytotoxic toward the target tumor cell line D10-1than to the non-target cell line MOLT-3, and Dal B02-MTX conjugate was more inhibitory to D10-1 cells than free MTX in a 6 h pulse exposure assay. Results: Drug uptake studies revealed that D10-1 cells took up much more Dal B01 and Dal B02-conjugated MTX than free MTX. The amounts of drug taken up by D10-1 cells incubated with Dal B01 and Dal B02-conjugated MTX were always 3 to 5-fold higher than that taken up by MOLT-3 cells, although the latter took up more drug when incubated with free MTX. Furthermore, tumor cells incubated with Dal B01 or Dal B02-conjugated MTX retained much larger amounts of drug for a prolonged period of time than those incubated with free MTX.Conclusion: The enhanced specific cytotoxicity of Dal B01 and Dal B02-MTX conjugates toward target tumor cells is therefore likely due to (Ⅰ) delivery of larger amounts of MTX to target cells when the drug is conjugated to Mab;(ii) longer retention of Mab-conjugated MTX by target cells; and (iii) slow, prolonged release of MTX from the surface-bound or endocytosed conjugates, rendering them into a sustained release dosage form.

  18. Gold Nanotheranostics: Photothermal Therapy and Imaging of Mucin 7 Conjugated Antibody Nanoparticles for Urothelial Cancer

    OpenAIRE

    Chieh Hsiao Chen; Yi-Jhen Wu; Jia-Jin Chen

    2015-01-01

    Objective. To kill urothelial cancer cells while preserving healthy cells, this study used photothermal therapy (PTT). PTT techniques target urothelial cancer cells using gold nanoparticles (GNPs) and a green light laser. Materials and Methods. The GNPs were conjugated with anti-Mucin 7 antibodies, which acted as a probe for targeting tumor cells. Conjugated GNPs were exposed to a green light laser (532 nm) with sufficient thermal energy to kill the transitional cell carcinomas (TCCs). Result...

  19. Study of conjugation and radiolabeling of monoclonal antibody rituximab for use in radionuclide therapy

    International Nuclear Information System (INIS)

    Lymphomas are tumors originated from the transformation of a lymphocyte in the lymphatic system. The most common lymphoma is the Non-Hodgkin Lymphoma (NHL). Advances in immunology and molecular biology have been improving NHL's detection and treatment strategies development, such as Radioimmunotherapy (RIT). Rituximab is an anti-CD20 monoclonal antibody used as immunotherapeutic to treat refractory or relapsed NHL. The goal of the present work was to conjugate this antibody to DOTA-NHS-ester bifunctional chelator and to radiolabel it with 177Lu radioisotope in order to develop a radio immunotherapeutic agent for NHL's treatment. Different rituximab to DOTA molar ratios (1:5, 1:10, 1:20, 1:50, 1:250, 1:500 and 1:1000) were evaluated in order to determine the best condition for obtaining the highest radiochemical purity of radio immunotherapeutic. The stability of the unlabeled immuno conjugated was evaluated by high performance liquid chromatography (HPLC) for up to 240 days in different storage conditions. The stability of the labeled preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C. The binding to serum proteins was also determined. In vivo studies were performed in healthy Swiss mice, in order to characterize the biological properties of labeled conjugate. Finally, preliminary studies of radio immuno conjugated competitive binding to CD20 positive Raji cells were carried out in order to analyze if the process of conjugation and radiolabeling compromises the immunoreactivity of the antibody. The conjugation applying lower antibody to chelator molar ratios (1:5, 1:10 and 1:20) showed high stability when stored for up to 240 days in different conditions. The HPLC analysis showed that the monoclonal antibody conjugated in molar ratio 1:50 was labeled with higher radiochemical purity (> 95%) when purified in PD-10 column. This conjugate showed reasonable stability at 2-8 degree C. The analysis of the stability

  20. Hacking into the granuloma: could antibody antibiotic conjugates be developed for TB?

    Science.gov (United States)

    Ekins, Sean

    2014-12-01

    Alternatives to small molecule or vaccine approaches to treating tuberculosis are rarely discussed. Attacking Mycobacterium tuberculosis in the granuloma represents a challenge. It is proposed that the conjugation of small molecules onto a monoclonal antibody that recognizes macrophage or lymphocytes cell surface receptors, might be a way to target the bacteria in the granuloma. This antibody drug conjugate approach is currently being used in 2 FDA approved targeted cancer therapies. The pros and cons of this proposal for further research are discussed. PMID:25287628

  1. Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.

    Science.gov (United States)

    Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F

    1988-07-01

    The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested. PMID:3262464

  2. A rapid, single vessel method for preparation of clinical grade ligand conjugated monoclonal antibodies

    International Nuclear Information System (INIS)

    A rapid, single vessel method for the preparation of clinical grade chelate conjugated monoclonal antibodies has been developed. By use of an Amicon concentrator with reservoir, each of the steps necessary for the preparation of the conjugated drug may be performed in a single vessel. Advantages include reduced risk of metal, pyrogen and bacterial contamination; buffer exchanges are achieved rapidly and efficiently using a continuous dilution method. The radiolabeling efficiency, the radiochemical purity, the total immunoreactivity and the affinity of the final product have been evaluated in the production of CHXA-DTPA-chelate conjugated HuM195. The characteristics compare favorably to those achieved using our conventional synthetic methods

  3. RECOMBINANT PRODUCTION OF HORSERADISH PEROXIDASE CONJUGATES WITH FAB ANTIBODIES IN PICHIA PASTORIS FOR ANALYTICAL APPLICATIONS

    OpenAIRE

    Koliasnikov, O.; Grigorenko, V.; Egorov, A.; S. Lange(Justus Liebig-Universität Gie\\ssen II Physikalisches Institut, Germany); Schmid, R

    2011-01-01

    Recombinant immunoconjugates of marker enzymes with antigens or antibodies present considerably more advantages than those obtained by conventional methods of chemical synthesis; i.e. they are homogeneous, have a strictly determined stoichiometry, and retain the functional activity of both a marker protein and an antigen/antibody. Based on the pPICZαB shuttle vector, we first managed to obtain a recombinant conjugate of key marker enzyme horseradish peroxidase (HRP) with Fab fragments of anti...

  4. FAST TRACK COMMUNICATION: Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer

    Science.gov (United States)

    Kim, G. C.; Kim, G. J.; Park, S. R.; Jeon, S. M.; Seo, H. J.; Iza, F.; Lee, J. K.

    2009-02-01

    Ambient air plasmas have been known to kill cancer cells. To enhance selectivity we have used antibody-conjugated nanoparticles. We achieved five times enhancement of melanoma cell death over the case of the plasma alone by using an air plasma with gold nanoparticles bound to anti-FAK antibodies. Our results show that this new interdisciplinary technique has enormous potential for use as a complement to conventional therapies.

  5. Chemotherapy by Intravenous Administration of Conjugates of Daunomycin with Monoclonal and Conventional Anti-Rat α -fetoprotein Antibodies

    Science.gov (United States)

    Tsukada, Yutaka; Hurwitz, Esther; Kashi, Rina; Sela, Michael; Hibi, Nozomu; Hara, Akihiko; Hirai, Hidematsu

    1982-12-01

    Monoclonal antibodies to rat α -fetoprotein (AFP) were produced by hybridization of mouse myeloma cells with spleen cells from mice immunized with rat AFP. The monoclonal antibodies as well as horse anti-rat AFP were coupled via a dextran bridge to daunomycin. Both types of conjugates were tested in vitro and in vivo for their anti-tumor activity. They were equally cytotoxic to rat AH66 hepatoma cell line in culture. Rats challenged with hepatoma cells were treated with the conjugates either by intraperitoneal or intravenous injections. Daunomycin conjugates with horse anti-AFP and monoclonal mouse anti-AFP were capable of delaying the tumor development more efficiently than the controls of antibodies or free drug, mixtures of drug with antibodies, and a conjugate of drug and normal immunoglobulin. The specific conjugates were considerably more effective when the treatments were given intravenously. The specific conjugates produced 60% long-term survival, whereas the controls delayed only slightly tumor development.

  6. Increased streptavidin uptake in tumors pretargeted with biotinylated antibody using a conjugate of streptavidin-Fab fragment

    International Nuclear Information System (INIS)

    Radiolabeled streptavidin accumulated in tumors pretargeted with biotinylated antibody. However, the absolute delivery of radioactivity was limited. To increase the tumor uptake of radioactivity further, we conjugated streptavidin with a mouse monoclonal antibody (MAb) fragment, OST6Fab, which recognizes antigen on human osteosarcoma. Another mouse MAb, OST7, which also reacts with the same tumor but recognizes an epitope different from the OST6 epitope, was biotinylated. The radioiodinated streptavidin-OST6Fab conjugate was administered to tumor-bearing mice after the biotinylated OST7 pretargeting. The uptake of the conjugate in tumors pretargeted with the biotinylated antibody was significantly higher than that of streptavidin and that of the conjugate of streptavidin and irrelevant Fab fragment. Renal uptake of radioactivity was decreased markedly, and the blood clearance was retarded by the conjugation with Fab fragment. In conclusion, the conjugate of streptavidin with specific Fab fragment increased the accumulation of radioactivity in tumors pretargeted with biotinylated antibody

  7. Lysine-directed conjugation of ethidium homodimer to B72.3 antibody: retention of immunoreactivity but altered tumor targeting

    International Nuclear Information System (INIS)

    Ethidium homodimer (EHD) was conjugated to B72.3 monoclonal antibody using a method whereby 85-90% of the conjugated EHD remains available for DNA intercalation. Antibody was thiopropionylated by reaction with N-succinimidyl 3-(2-pyridyldithio)propionate and reduction of pyridyldithio groups with dithiothreitol. EHD was maleimido-functionalized with succinimidyl-4-(N-maleimidoethyl)cyclohexane-1-carboxylate and treated with thiopropionylated antibody to obtain a conjugate containing ∼3.4 EHD per antibody molecule. For biologic studies, 14C-labeled EHD was synthesized by reductive amination and conjugated as above. In vitro the conjugate maintained chemical integrity and immunoreactivity, while in vivo its targeting of LS174T tumors was reduced compared with that of iodinated antibody. A decrease in isoelectric point of the immunoconjugate was also observed

  8. Antibody response to Haemophilus influenzae type b capsular polysaccharide conjugated to tetanus toxoid in preterm infants

    DEFF Research Database (Denmark)

    Kristensen, Kim; Gyhrs, A; Lausen, B;

    1996-01-01

    OBJECTIVE: To evaluate the antibody response to a Haemophilus influenzae type b capsular polysaccharide (HibCP) tetanus toxoid (TT) conjugate vaccine (HibCP-TT) in preterm infants. SUBJECTS: Thirty-five healthy preterm infants with gestational ages (GA) from 27 to 36 weeks and birth weights from ...

  9. Scintigraphic imaging of tumors by in vivo application of biotin-conjugated antibodies and radiolabelled streptavidin

    International Nuclear Information System (INIS)

    Scintigraphic tumor imaging by in vivo application of the streptavidin-biotin system was studied. Binding of anti-cytokeratin antibodies to HeLa carcinoma cells was demonstrated in vitro by immunohistochemical staining and in vivo by scintigraphic imaging using 125I labeled antibodies in nude rats bearing HeLa cell carcinomas. For imaging of tumors with radiolabeled streptavidin, 'cold' biotin-conjugated antiboties were preinjected i.v. In this case, the tumor could be localized after 15 to 60 min whereas it took at least 3 days with the directly labeled antibody. The application of radiolabeled streptavidin was limited by an antibody-independent radioactivity uptake in kidney, liver and spleen. Nevertheless, the short time needed for imaging gives the opportunity of using high energy/short half life isotopes in radioimmunodetection. Furthermore, one single tracer can be used for a wide spectrum of antibodies. (orig.)

  10. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits

    Science.gov (United States)

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K. David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J.; Hildebrandt, Niko; Reiss, Peter

    2016-05-01

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter 26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL-1 obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL-1) and demonstrate their direct applicability in clinical diagnostics.A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter 26 nm without biomolecules). The LODs

  11. An improved method for covalently conjugating morpholino oligomers to antitumor antibodies.

    Science.gov (United States)

    He, Jiang; Liu, Guozheng; Dou, Shuping; Gupta, Suresh; Rusckowski, Mary; Hnatowich, Donald

    2007-01-01

    Whether for conventional pretargeting, amplification pretargeting, or affinity enhancement pretargeting, it will be necessary to conjugate an antitumor antibody as the first injectate. This laboratory is investigating phosphorodiamidate morpholinos (MORFs) for pretargeting, and accordingly we are examining methods of attaching MORFs to antitumor antibodies that provide at least one group per molecule (gpm) without adversely influencing antibody properties. The aim of this investigation was to evaluate the commercial Hydralink for the conjugation of the anti-CEA MN14 antibody with an 18 mer amine-derivatized MORF. The conjugation was approached in both directions by first reacting MN14 with the NHS derivatives of 4-hydrozinonicotinate acetone hydrazone (SANH) or 4-formylbenzoate (SFB) and then combining with MORF that was previously reacted with SFB or SANH to yield MN14(SANH)-MORF and MN14(SFB)-MORF respectively. The storage stability, immunoreactive fraction, and the biodistribution in normal mice were compared for both conjugates. Thereafter, MN14(SANH)-MORF was used in a pretargeting study in tumored nude mice, and the results were compared to that obtained historically with MN14-MORF prepared by carbodiimide (EDC) coupling. Both new methods of conjugation provided between 1 and 2 gpm compared to 0.2 achieved previously by EDC. Furthermore, by repeat SE HPLC with and without CEA, both showed an unimpaired immunoreactive fraction. MN14(SANH)-MORF tolerated long-term storage best. More importantly, when labeled by hybridization with 99mTc-labeled complementary MORF (99mTc-cMORF), the biodistribution of MN14(SANH)-MORF was more favorable than that of MN14(SFB)-MORF in normal mice with lower liver (5.7 vs 9.4 %ID/g at 18 h) and spleen (3.5 vs 8.4 %ID/g) accumulations and higher blood levels (4.8 vs 3.4 %ID/g). Accordingly, only MN14(SANH)-MORF was used in a pretargeting study in tumored mice. When targeted with 99mTc-cMORF and at 2 days postinjection of antibody

  12. Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568- and Fluorescein Isothiocyanate- conjugated Antibody

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Mahmoudi

    2011-01-01

    Full Text Available Objective: Synthetic fluorescent dyes that are conjugated to antibodies are useful tools toprobe molecules. Based on dye chemical structures, their photobleaching and photostabilityindices are quite diverse. It is generally believed that among different fluorescent dyes,Alexa Fluor family has greater photostability than traditional dyes like fluorescein isothiocyanate(FITC and Cy5. Alexa Fluor 568 is a member of Alexa Fluor family presumed tohave superior photostability and photobleahing profiles than FITC.Materials and Methods: In this experimental study, we conjugated Alexa Fluor 568 andFITC dyes to a mouse anti-human nestin monoclonal antibody (ANM to acquire their photobleachingprofiles and photostability indices. Then, the fluorophore/antibody ratios werecalculated using a spectrophotometer. The photobleaching profiles and photostability indicesof conjugated antibodies were subsequently studied by immunocytochemistry (ICC.Samples were continuously illuminated and digital images acquired under a fluorescentmicroscope. Data were processed by ImageJ software.Results: Alexa Fluor 568 has a brighter fluorescence and higher photostability thanFITC.Conclusion: Alexa Fluor 568 is a capable dye to use in photostaining techniques and ithas a longer photostability when compared to FITC.

  13. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Medley, Colin D., E-mail: medley.colin@gene.com [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States); Kay, Jacob [Research Pharmaceutical Services, 520 Virginia Dr. Fort, Washington, PA (United States); Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P. [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States)

    2014-11-19

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  14. Specific IgE antibodies to reactive dye-albumin conjugates

    International Nuclear Information System (INIS)

    Hypersensitivity to reactive dye powders has been recognised for a number of years, although the extent of sensitisation amongst dye house operatives and the immunochemistry of the dye molecules has not been investigated. The authors have developed a radioallergosorbent test (RAST) to detect specific IgE to reactive dye-human serum albumin (HSA) conjugates. From a total of 19 dye-HSA conjugates, positive RASTs were found in six workers with allergic symptoms associated with dye exposure, while six asymptomatic case-matched controls were negative. Sera with raised total IgE (up to 4300 kU/l) from unexposed workers gave negative results except for two conjugates which gave a weak positive at 4300 kU/l and one which gave weak positives at all concentrations tested (750-4300 kU/l). RAST inhibition studies demonstrated that the antibody was specific for the complete dye-HSA conjugate. Substitution of bovine serum albumin (BSA) for HSA in the conjugate markedly reduced immunoreactivity and free hapten gave lower inhibition than the complete conjugate. Comparison of the dye-HSA RAST with a RAST using dyed discs showed that the latter did not correlate well with symptoms and was influenced by the total IgE concentration. (Auth.)

  15. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    International Nuclear Information System (INIS)

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products

  16. High Turnover of Tissue Factor Enables Efficient Intracellular Delivery of Antibody-Drug Conjugates

    DEFF Research Database (Denmark)

    de Goeij, Bart E.C.G.; Satijn, D.; Freitag, C. M.;

    2015-01-01

    Antibody-drug conjugates (ADC) are emerging as powerful cancer treatments that combine antibody-mediated tumor targeting with the potent cytotoxic activity of toxins. We recently reported the development of a novel ADC that delivers the cytotoxic payload monomethyl auristatin E (MMAE) to tumor...... toxicology profile. To gain more insight in the efficacy of TF-directed ADC treatment, we compared the internalization characteristics and intracellular routing of TF with the EGFR and HER2. Both in absence and presence of antibody, TF demonstrated more efficient internalization, lysosomal targeting, and...... cells expressing tissue factor (TF). By carefully selecting a TF-specific antibody that interferes with TF: FVIIa-dependent intracellular signaling, but not with the procoagulant activity of TF, an ADC was developed (TF-011-MMAE/HuMax-TF-ADC) that efficiently kills tumor cells, with an acceptable...

  17. Production of a macromomycin (MCR-monoclonal antibody conjugate and its biological activity.

    Directory of Open Access Journals (Sweden)

    Manabe,Yuichi

    1984-04-01

    Full Text Available Macromomycin (MCR, an unique membrane-reactive anticancer antibiotic, was incubated with murine monoclonal anti-HLA IgG1 antibody (H-1 in the presence of carbodiimide. The resulting mixture was fractionated with a Sephadex G-200 column. The first and second fractions were shown to contain MCR-(H-1 conjugate by the elution profile, as well as by the Sarcina lutea growth inhibition assay and Ouchterlony double-diffusion method. A membrane immunofluorescence test with anti-MCR and anti-mouse IgG antibodies demonstrated specific localization of MCR-(H-1 on the surface of HLA-bearing NALL -1 cells. MCR-(H-1 inhibited the growth of HLA-lacking NS-1 cells statistically less effectively than MCR alone (p less than 0.01. On the other hand, the conjugate and free MCR equally inhibited the growth and 3H-TdR incorporation of HLA-bearing NALL -1 cells. These results indicate that the antibody-bound MCR retained both MCR and antibody activities, and thus exerted antibody-targeting MCR cytotoxicity in vitro.

  18. Application of a Trifunctional Reactive Linker for the Construction of Antibody-Drug Hybrid Conjugates

    OpenAIRE

    Thomas, Joshua D.; Hofer, Thomas; Rader, Christoph; Burke, Terrence R

    2008-01-01

    A flexible, trifunctional poly(ethylene glycol)-succinamide-Lysine-Lysine-maleimide (PEG-SU-Lys-Lys-mal) linker was employed to simultaneously allow biotin tagging and cell-surface targeting through an integrin α4β1-binding peptidomimetic that was regiospecifically conjugated to an IgG1-derived Fc fragment with an engineered C-terminal selenocysteine residue. The resulting antibody derivative mediates Fc receptor binding by virtue of the Fc protein and selectively targets cancer cells express...

  19. Photochemical inactivation of viruses by antibody conjugates of compounds generating singlet oxygen

    Science.gov (United States)

    Savitsky, Alexander P.; Tourkin, Andrey I.; Tourkina, Elena V.; Cherednikova, Tatyana V.; Ponomarev, Gely V.; Poglazov, Boris F.

    1994-03-01

    For the first time a method is proposed for targeted destruction of viral particles with a photoimmuno-toxin. The photoinununotoxin is a conjugate of antibodies and dimethoxy haematoporphyrin (a potent singlet oxygen generator), binding with the viral particle and upon illumination with visible light inactivating the virus by singlet oxygen. The method can be used to combat viral infection in humans and to prevent lysis of industrial micro-organisms by lysogenic bacteriophage strains.

  20. Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568- and Fluorescein Isothiocyanate- conjugated Antibody

    OpenAIRE

    Ahmad Reza Mahmoudi; Mohtaram Vafakhah; Elham Shaban; Reza Hadavi; Mahmood Jeddi-Tehrani; Ali Ahmad Bayat; Maryam Darzi; Majid Tarahomi; Roya Ghods; Jafar Mahmoudian

    2011-01-01

    Objective: Synthetic fluorescent dyes that are conjugated to antibodies are useful tools to probe molecules. Based on dye chemical structures, their photobleaching and photostability indices are quite diverse. It is generally believed that among different fluorescent dyes, Alexa Fluor family has greater photostability than traditional dyes like fluorescein isothiocyanate (FITC) and Cy5. Alexa Fluor 568 is a member of Alexa Fluor family presumed to have superior photostability and photobleahin...

  1. World Antibody-Drug Conjugate Summit, October 15–16, 2013, San Francisco, CA

    OpenAIRE

    Klinguer-Hamour, Christine; Strop, Pavel; Shah, Dhaval K; Ducry, Laurent; Xu, April; Beck, Alain

    2013-01-01

    The World Antibody-Drug Conjugate (WADC) Summits organized by Hanson Wade are currently the largest meetings fully dedicated to ADCs. The first global ADC Summit was organized in Boston in October 2010. Since 2011, two WADC are held every year in Frankfurt and San Francisco, respectively. The 2013 WADC San Francisco event was structured around plenary sessions with keynote speakers from AbbVie, Agensys, ImmunoGen, Immunomedics, Genentech, Pfizer and Seattle Genetics. Parallel tracks were also...

  2. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits.

    Science.gov (United States)

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J; Hildebrandt, Niko; Reiss, Peter

    2016-06-01

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL(-1) obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL(-1)) and demonstrate their direct applicability in clinical diagnostics. PMID:27188210

  3. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases

    DEFF Research Database (Denmark)

    Samuelsen, Simone V; Maity, Arindam; Nybo, Mads;

    2016-01-01

    Reliable measurement of clinically relevant autoimmune antibodies toward phospholipid-protein conjugates is highly desirable in research and clinical assays. To date, the development in this field has been limited to the use of natural heterogeneous antigens. However, this approach does not take ...... correlation of detected autoantibodies with disease activity and manifestations. This confirms the crucial importance of antigens' composition on research and diagnostic assays, and opens up exciting perspectives for synthetic antigens in future studies of autoimmunity.......Reliable measurement of clinically relevant autoimmune antibodies toward phospholipid-protein conjugates is highly desirable in research and clinical assays. To date, the development in this field has been limited to the use of natural heterogeneous antigens. However, this approach does not take...... structural features of biologically active antigens into account and leads to low reliability and poor scientific test value. Here we describe novel phospholipid-protein conjugates for specific detection of human autoimmune antibodies. Our synthetic approach includes mild oxidation of synthetic phospholipid...

  4. Targeting of a plasma cell line with a conjugate containing xanthine oxidase and the monoclonal antibody 62B1.

    Science.gov (United States)

    Tazzari, P L; Battelli, M G; Abbondanza, A; Dinota, A; Rizzi, S; Gobbi, M; Stirpe, F

    1989-07-01

    We report on the preparation of an antibody-conjugated enzyme consisting of xanthine oxidase, a free-radical-producing enzyme, linked to the 62B1 monoclonal antibody, which recognizes the last steps of differentiation of B cell lineage (plasma cell and hairy cells). The conjugate specifically kills target cells, retaining both enzymic and immunological properties, without any damage to normal myeloid clonogenic efficiency. The model is suitable for ex vivo bone marrow purging in multiple myeloma patients. PMID:2787552

  5. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    Science.gov (United States)

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. PMID:27369865

  6. Deferoxamine as a chelator for {sup 67}Ga in the preparation of antibody conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Govindan, Serengulam V. [Immunomedics, Inc., Morris Plains, NJ 07950 (United States); Michel, Rosana B. [Center for Molecular Medicine and Immunology, Belleville, NJ 07109 (United States); Griffiths, Gary L. [Immunomedics, Inc., Morris Plains, NJ 07950 (United States); Goldenberg, David M. [Center for Molecular Medicine and Immunology, Belleville, NJ 07109 (United States); Mattes, M. Jules [Center for Molecular Medicine and Immunology, Belleville, NJ 07109 (United States)]. E-mail: mjmattes@gscancer.org

    2005-07-01

    {sup 67}Ga antibodies (Abs) have been shown to be effective agents for single-cell killing due to the Auger electrons emitted, but their specific activities have not been as high as desired. We therefore evaluated deferoxamine (DFO) as a chelator, as opposed to the cyclic chelator NOTA, which was used previously. Use of DFO for Ab conjugation to {sup 67}Ga was reported previously by several laboratories. DFO was conjugated to Abs by two methods, one using Ablysine conjugation and another using mild reduction of Abs to generate thiols in the hinge region. Labeling with {sup 67}Ga was efficient, and the specific activities obtained under nonoptimized conditions were twice as high as those achieved previously. However, analysis of these conjugates revealed two problems that appear to prevent their further development. First, the stability was inadequate for the 3-day half-life of the nuclide. Second, the labels were poorly retained within cells after Ab internalization and catabolism. Also, it was found that stability was significantly affected by the incubation buffer used: buffers lacking physiological concentrations of divalent cations Ca and Mg resulted in much lower stability than buffers including them. In conclusion, DFO does not seem to be a suitable chelator for {sup 67}Ga conjugation for our purposes.

  7. Simple Method To Prepare Oligonucleotide-Conjugated Antibodies and Its Application in Multiplex Protein Detection in Single Cells.

    Science.gov (United States)

    Gong, Haibiao; Holcomb, Ilona; Ooi, Aik; Wang, Xiaohui; Majonis, Daniel; Unger, Marc A; Ramakrishnan, Ramesh

    2016-01-20

    The diversity of nucleic acid sequences enables genomics studies in a highly multiplexed format. Since multiplex protein detection is still a challenge, it would be useful to use genomics tools for this purpose. This can be accomplished by conjugating specific oligonucleotides to antibodies. Upon binding of the oligonucleotide-conjugated antibodies to their targets, the protein levels can be converted to oligonucleotide levels. In this report we describe a simple method for preparing oligonucleotide-conjugated antibodies and discuss this method's application in oligonucleotide extension reaction (OER) for multiplex protein detection. Conjugation is based on strain-promoted alkyne-azide cycloaddition (the Cu-free click reaction), in which the antibody is activated with a dibenzocyclooctyne (DBCO) moiety and subsequently linked covalently with an azide-modified oligonucleotide. In the functional test, the reaction conditions and purification processes were optimized to achieve maximum yield and best performance. The OER assay employs a pair of antibody binders (two antibodies, each conjugated with its own oligonucleotide) developed for each protein target. The two oligonucleotides contain unique six-base complementary regions at their 3' prime ends to allow annealing and extension by DNA synthesis enzymes to form a DNA template. Following preamplification, the DNA template is detected by qPCR. Distinct oligonucleotide sequences are assigned to different antibody binders to enable multiplex protein detection. When tested using recombinant proteins, some antibody binders, such as those specific to CSTB, MET, EpCAM, and CASP3, had dynamic ranges of 5-6 logs. The antibody binders were also used in a multiplexed format in OER assays, and the binders successfully detected their protein targets in cell lysates, and in single cells in combination with the C1 system. This click reaction-based antibody conjugation procedure is cost-effective, needs minimal hands-on time, and

  8. Optimization of a methamphetamine conjugate vaccine for antibody production in mice.

    Science.gov (United States)

    Stevens, Misty W; Gunnell, Melinda G; Tawney, Rachel; Owens, S Michael

    2016-06-01

    There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants. PMID:27039212

  9. Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application

    International Nuclear Information System (INIS)

    Highlights: ► The effects of acid functionalization and biocompatible polymer on iron oxide nanoparticles (IONPs) ferrofluid were studied. ► The IONPs functionalized using citric acid (IONPs-CA) is the most stable ferrofluid with zeta potential value of −49 mV. ► IONPs-CA can be directly conjugated with antibody without biocompatible polymer coating. ► IONPs-CA had optimum detection efficiency of 15 min assay time. ► IONPs-CA showed the highest colour intensity in labelling lateral flow immunoassay. - Abstract: In this study, colloidal stability of iron oxide nanoparticles (IONPs) with several acid functionalizations and biocompatible polymer coating were compared for use as labelling agent in lateral flow immunoassay (LFIA). IONPs were synthesized using the precipitation method and peptized using perchloric acid (PA), nitric acid (NA) and citric acid (CA) to form a stable IONPs ferrofluid. Steric stabilization of IONPs using silane polyethelene glycol (SiPEG) was developed to improve biocompatibility and provide spaces for subsequent conjugation process. From the transmission electron microscopy (TEM) images, the sizes of IONPs obtained with different acids peptization were in range of 11–17 nm. The IONPs peptized using citric acid showed the most stable ferrofluid condition at physiological condition with zeta potential value of −49 mV. The LFIA was also developed to examine the conjugation properties of IONPs to mouse anti-human IgG4 antibody (MαHIgG4). IONPs functionalized with citric acid can be directly conjugated with the MαHIgG4 without the need of SiPEG addition. This is due to the presence of the carboxylic group that acted as a ligand to the extended bond formation with the antibody. Moreover, the conjugation of IONPs with MαHIgG4 was also tested in a LFIA to detect brugian filariasis. The conjugated IONPs-CA without SIPEG showed the optimum detection efficiency within 15 min of assay time.

  10. Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application

    Energy Technology Data Exchange (ETDEWEB)

    Nor, Noorhashimah Mohamad [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@eng.usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), 11800 USM, Penang (Malaysia); Tan, Soo Choon; Noordin, Rahmah [NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), 11800 USM, Penang (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The effects of acid functionalization and biocompatible polymer on iron oxide nanoparticles (IONPs) ferrofluid were studied. Black-Right-Pointing-Pointer The IONPs functionalized using citric acid (IONPs-CA) is the most stable ferrofluid with zeta potential value of -49 mV. Black-Right-Pointing-Pointer IONPs-CA can be directly conjugated with antibody without biocompatible polymer coating. Black-Right-Pointing-Pointer IONPs-CA had optimum detection efficiency of 15 min assay time. Black-Right-Pointing-Pointer IONPs-CA showed the highest colour intensity in labelling lateral flow immunoassay. - Abstract: In this study, colloidal stability of iron oxide nanoparticles (IONPs) with several acid functionalizations and biocompatible polymer coating were compared for use as labelling agent in lateral flow immunoassay (LFIA). IONPs were synthesized using the precipitation method and peptized using perchloric acid (PA), nitric acid (NA) and citric acid (CA) to form a stable IONPs ferrofluid. Steric stabilization of IONPs using silane polyethelene glycol (SiPEG) was developed to improve biocompatibility and provide spaces for subsequent conjugation process. From the transmission electron microscopy (TEM) images, the sizes of IONPs obtained with different acids peptization were in range of 11-17 nm. The IONPs peptized using citric acid showed the most stable ferrofluid condition at physiological condition with zeta potential value of -49 mV. The LFIA was also developed to examine the conjugation properties of IONPs to mouse anti-human IgG{sub 4} antibody (M{alpha}HIgG{sub 4}). IONPs functionalized with citric acid can be directly conjugated with the M{alpha}HIgG{sub 4} without the need of SiPEG addition. This is due to the presence of the carboxylic group that acted as a ligand to the extended bond formation with the antibody. Moreover, the conjugation of IONPs with M{alpha}HIgG{sub 4} was also tested in a LFIA to detect brugian

  11. Anti-Endosialin Antibody-Drug Conjugate: Potential in Sarcoma and Other Malignancies.

    Science.gov (United States)

    Rouleau, Cecile; Gianolio, Diego A; Smale, Robert; Roth, Stephanie D; Krumbholz, Roy; Harper, Jay; Munroe, Kenneth J; Green, Tessa L; Horten, Bruce C; Schmid, Steven M; Teicher, Beverly A

    2015-09-01

    Endosialin/TEM1/CD248 is a cell surface protein expressed at high levels by the malignant cells of about 50% of sarcomas and neuroblastomas. The antibody-drug conjugate (ADC) anti-endosialin-MC-VC-PABC-MMAE was selectively cytotoxic to endosialin-positive cells in vitro and achieved profound and durable antitumor efficacy in preclinical human tumor xenograft models of endosialin-positive disease. MC-VC-PABC-MMAE was conjugated with anti-endosialin with 3-4 MMAE molecules per ADC. The anti-endosialin-MC-VC-PABC-MMAE conjugate was tested for activity in four human cell lines with varied endosialin levels. The HT-1080 fibrosarcoma cells do not express endosialin, A-673 Ewing sarcoma cells and SK-N-AS neuroblastoma cells are moderate expressers of endosialin, and SJSA-1 osteosarcoma cells express very high levels of endosialin. To determine whether endosialin expression was maintained in vivo, A-673 Ewing sarcoma, SK-N-AS neuroblastoma, and SJSA-1 osteosarcoma cells were grown as xenograft tumors in nude mice. The SK-N-AS neuroblastoma and the A-673 Ewing sarcoma lines were selected for in vivo efficacy testing of the anti-endosialin-MC-VC-PABC-MMAE conjugate. The treatment groups included a vehicle control, unconjugated anti-endosialin, an admix control consisting of anti-endosialin and a dose of free MMAE equivalent to the dose administered as the ADC, and the anti-endosialin-MC-VC-PABC-MMAE conjugate. The unconjugated anti-endosialin had no antitumor activity and resulted in similar tumor growth as the vehicle control. The admix control produced a modest tumor growth delay. Administration of the anti-endosialin-MC-VC-PABC-MMAE conjugate resulted in a marked prolonged tumor response of both xenograts. These proof-of-concept results break new ground and open a promising drug discovery approach to these rare and neglected tumors. PMID:26184481

  12. Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics.

    Science.gov (United States)

    Thompson, Pamela; Fleming, Ryan; Bezabeh, Binyam; Huang, Fengying; Mao, Shenlan; Chen, Cui; Harper, Jay; Zhong, Haihong; Gao, Xizhe; Yu, Xiang-Qing; Hinrichs, Mary Jane; Reed, Molly; Kamal, Adeela; Strout, Patrick; Cho, Song; Woods, Rob; Hollingsworth, Robert E; Dixit, Rakesh; Wu, Herren; Gao, Changshou; Dimasi, Nazzareno

    2016-08-28

    Antibody-drug conjugates (ADCs) are among the most promising empowered biologics for cancer treatment. ADCs are commonly prepared by chemical conjugation of small molecule cytotoxic anti-cancer drugs to antibodies through either lysine side chains or cysteine thiols generated by the reduction of interchain disulfide bonds. Both methods yield heterogeneous conjugates with complex biophysical properties and suboptimal serum stability, efficacy, and pharmacokinetics. To limit the complexity of cysteine-based ADCs, we have engineered and characterized in vitro and in vivo antibody cysteine variants that allow precise control of both site of conjugation and drug load per antibody molecule. We demonstrate that the chemically-defined cysteine-engineered antibody-tubulysin conjugates have improved ex vivo and in vivo stability, efficacy, and pharmacokinetics when compared to conventional cysteine-based ADCs with similar drug-to-antibody ratios. In addition, to limit the non-target FcγRs mediated uptake of the ADCs by cells of the innate immune system, which may result in off-target toxicities, the ADCs have been engineered to lack Fc-receptor binding. The strategies described herein are broadly applicable to any full-length IgG or Fc-based ADC and have been incorporated into an ADC that is in phase I clinical development. PMID:27327768

  13. Immunophotosensitizer: the preparation and antitumor properties of monoclonal antibody-hematoporphyrin conjugate

    Science.gov (United States)

    Bai, Shan; Liu, Cheng-gui; Guo, Zhong-He

    1993-03-01

    The immunophotosensitizer was prepared by conjugating hematoporphyrin (HP) with anti-CEA and anti-colonic cancer monoclonal antibody (McAb), respectively. In vitro, the anti-CEA McAb-HP conjugate showed cytotoxicity for human colonic cancer cell line SW1116 which was CEA positive, but no cytotoxicity for the CEA-negative Hep-2 cell line. The cytotoxicity of immunophotosensitizer was much higher than the McAb alone, the HP alone, or the mixture of McAb and HP. In vivo experiments, the nude mice bearing the xenografted human colonic cancer were used to test the activity of the anti-colonic cancer McAb-HP conjugate. The results demonstrated that the tumor necrotic areas of the conjugate-treated animals were notably larger than those of the free HP-treated animals. The specificity offered by the McAb permits increase of the aggregation of the drug at the tumor site. This property makes it possible to use a lower effective dosage of the drug, which minimizes undesired side effects. Further experiments are now in progress.

  14. Synthesis and evaluation of 99mTc/99Tc-MAG3-biotin conjugates for antibody pretargeting strategies

    International Nuclear Information System (INIS)

    Four 99mTc-MAG3-biotin conjugates were synthesized to determine their potential use in antibody pretargeting strategies for radioimmunoscintigraphy (RIS). To use these 99mTc-MAG3-biotin conjugates as model compounds for 186Re-MAG3-biotin conjugates for radioimmunotherapy (RIT), nanomolar amounts of 99Tc were added as carrier to 99mTc. The biotin derivatives used for the preparation of the conjugates - biocytin, biotin hydrazide, biotinyl-piperazine, and biotinyl-diaminosuccinic acid - differed at the site that is regarded to be susceptible to hydrolysis by biotinidase present in human plasma. All four conjugates were produced with high radiochemical purity, were stable in PBS, and demonstrated full binding capacity to streptavidin. The 99mTc/99Tc-MAG3-labeled biotinyl-piperazine and biotinyl-diaminosuccinic acid conjugates were stable in mouse as well as human plasma, whereas the corresponding biocytin and biotin hydrazide conjugates were rapidly degraded. The biodistribution in nude mice at 30 min after injection was similar for all conjugates, and a rapid blood clearance and high intestinal excretion were both observed. It is concluded that the metabolic routing of a conjugate containing biotin and MAG3 is dominated by these two moieties. For this reason, MAG3-biotin conjugates do not seem suited for pretargeted RIT, for which quantitative and fast renal excretion is a prerequisite to minimize radiation toxicity. However, in a pretargeted RIS approach the 99mTc-MAG3-biotin conjugates might have potential

  15. Detecting Proteins in Highly Autofluorescent Cells Using Quantum Dot Antibody Conjugates

    Directory of Open Access Journals (Sweden)

    Karen M. Orcutt

    2009-09-01

    Full Text Available We have applied quantum dot (Qdot antibody conjugates as a biomolecular probe for cellular proteins important in biogeochemical cycling in the sea. Conventional immunological methods have been hampered by the strong autofluorescence found in cyanobacteria cells. Qdot conjugates provide an ideal alternative for studies that require long-term imaging of cells such as detection of low abundance cellular antigens by fluorescence microscopy. The advantage of Qdot labeled probes over conventional immunological methods is the photostability of the probe. Phycoerythrin bleaches in cyanobacterial cells under prolonged UV or blue light excitation, which means that the semiconducting nanocrystal probe, the Qdot, can yield a strong fluorescent signal without interference from cellular pigments.

  16. Synthesis of Phospholipid-Protein Conjugates as New Antigens for Autoimmune Antibodies

    Directory of Open Access Journals (Sweden)

    Arindam Maity

    2015-06-01

    Full Text Available Copper(I-catalyzed azide-alkyne cycloaddition, or CuAAC click chemistry, is an efficient method for bioconjugation aiming at chemical and biological applications. Herein, we demonstrate how the CuAAC method can provide novel phospholipid-protein conjugates with a high potential for the diagnostics and therapy of autoimmune conditions. In doing this, we, for the first time, covalently bind via 1,2,3-triazole linker biologically complementary molecules, namely phosphoethanol amine with human β2-glycoprotein I and prothrombin. The resulting phospholipid-protein conjugates show high binding affinity and specificity for the autoimmune antibodies against autoimmune complexes. Thus, the development of this work might become a milestone in further diagnostics and therapy of autoimmune diseases that involve the production of autoantibodies against the aforementioned phospholipids and proteins, such as antiphospholipid syndrome and systemic lupus erythematosus.

  17. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects. PMID:26700095

  18. Comparative distribution study of /sup 111/In-labelled DTPA and TTHA monoclonal antibody conjugates in a choriocarcinoma xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.G.; Barnett, P.; Searle, F.; Pedley, R.; Boden, J.A.

    1986-11-01

    Conjugates of the chelating agents DTPA and TTHA with a monoclonal anti-HCG were prepared. The tissue distribution of the /sup 111/In-Labelled conjugates and also /sup 111/In-citrate was studied in mice bearing human choriocarcinoma xenografts. The antibody conjugates both gave high liver and spleen radionuclide accumulation. Elevated femur levels were observed for the TTHA conjugate and /sup 111/In-citrate. Generally the DTPA conjugate showed the highest tumor-tissue ratios, although its tumor/blood ratio was lower than the other two materials. The results infer that the DTPA conjugate has the greatest utility as an imaging agent but that it would require a background subtraction technique.

  19. Neural stem cells harvested from live brains by antibody-conjugated magnetic nanoparticles.

    Science.gov (United States)

    Lui, C N P; Tsui, Y P; Ho, A S L; Shum, D K Y; Chan, Y S; Wu, C T; Li, H W; Tsang, S C Edman; Yung, K K L

    2013-11-18

    It stems from the magnetism: The extraction of stem/progenitor cells from the brain of live animals is possible using antibodies conjugated to magnetic nanoparticles (Ab-MNPs). The Ab-MNPs are introduced to a rat's brain with a superfine micro-syringe. The stem cells attach to the Ab-MNPs and are magnetically isolated and removed. They can develop into neurospheres and differentiate into different types of cells outside the subject body. The rat remains alive and healthy. PMID:24108547

  20. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cell

    Science.gov (United States)

    Agasti, Sarit S.; Liong, Monty; Peterson, Vanessa M.; Lee, Hakho; Weissleder, Ralph

    2012-01-01

    DNA barcoding is an attractive technology as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here, we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells. PMID:23092113

  1. Radioimmunotherapy: A Specific Treatment Protocol for Cancer by Cytotoxic Radioisotopes Conjugated to Antibodies

    Directory of Open Access Journals (Sweden)

    Hidekazu Kawashima

    2014-01-01

    Full Text Available Radioimmunotherapy (RIT represents a selective internal radiation therapy, that is, the use of radionuclides conjugated to tumor-directed monoclonal antibodies (including those fragments or peptides. In a clinical field, two successful examples of this treatment protocol are currently extended by 90Y-ibritumomab tiuxetan (Zevalin and 131I-tositumomab (Bexxar, both of which are anti-CD20 monoclonal antibodies coupled to cytotoxic radioisotopes and are approved for the treatment of non-Hodgkin lymphoma patients. In addition, some beneficial observations are obtained in preclinical studies targeting solid tumors. To date, in order to reduce the unnecessary exposure and to enhance the therapeutic efficacy, various biological, chemical, and treatment procedural improvements have been investigated in RIT. This review outlines the fundamentals of RIT and current knowledge of the preclinical/clinical trials for cancer treatment.

  2. Effect of previous vaccination with pneumococcal conjugate vaccine on pneumococcal polysaccharide vaccine antibody responses.

    Science.gov (United States)

    Schaballie, H; Wuyts, G; Dillaerts, D; Frans, G; Moens, L; Proesmans, M; Vermeulen, F; De Boeck, K; Meyts, I; Bossuyt, X

    2016-08-01

    During the past 10 years, pneumococcal conjugate vaccine (PCV) has become part of the standard childhood vaccination programme. This may impact upon the diagnosis of polysaccharide antibody deficiency by measurement of anti-polysaccharide immunoglobulin (Ig)G after immunization with unconjugated pneumococcal polysaccharide vaccine (PPV). Indeed, contrary to PPV, PCV induces a T-dependent, more pronounced memory response. The antibody response to PPV was studied retrospectively in patients referred for suspected humoral immunodeficiency. The study population was divided into four subgroups based on age (2-5 years versus ≥ 10 years) and time tested (1998-2005 versus 2010-12). Only 2-5-year-old children tested in 2010-12 had been vaccinated with PCV prior to PPV. The PCV primed group showed higher antibody responses for PCV-PPV shared serotypes 4 and 18C than the unprimed groups. To a lesser extent, this was also found for non-PCV serotype 9N, but not for non-PCV serotypes 19A and 8. Furthermore, PCV-priming elicited a higher IgG2 response. In conclusion, previous PCV vaccination affects antibody response to PPV for shared serotypes, but can also influence antibody response to some non-PCV serotypes (9N). With increasing number of serotypes included in PCV, the diagnostic assessment for polysaccharide antibody deficiency requires careful selection of serotypes that are not influenced by prior PCV (e.g. serotype 8). Further research is needed to identify more serotypes that are not influenced. PMID:26939935

  3. Indication of viruses and virus-specific antibodies by ELISA using conjugates based on. beta. -lactamase obtained by genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonenkov, I.G.; Kordym, V.A.; Khristova, M.L.; Leonov, S.V.; Kirillova, V.S.; Chernykh, S.I.

    1987-10-01

    The method of enzyme-linked immunosorbent assay (ELISA), by means of which antigens and antibodies of different origin can be detected with high sensitivity and specificity, is an immunoenzymatic technique based on the use of conjugates, or macromolecular complexes formed by covalent attachment of enzyme molecules to antigen or antibody molecules. Conjugates based on peroxidase, alkaline phosphatase, and beta-galactosidase are most frequently used to construct immunoenzymatic test systems. The use of these enzymes in ELISA, however, is complicated by the fact that they are often present in free or bound form in the biological material under study, and that their substrates either possess low stability, are difficult to synthesize, or are toxic. In this paper, in order to avoid these shortcomings, the authors develop a method for the biosynthesis of lactamase conjugates which is based on genetic engineering, and demonstrate the viability and stability of these conjugates in radioimmunoenzymatic assay of viruses.

  4. The study of conjugation of anti-CD20 monoclonal antibody for labeling with metallic or lanthanides radionuclides

    International Nuclear Information System (INIS)

    Lymphomas are malignancies or cancers that start from the malign transformation of a lymphocyte in the lymphatic system. Generally, lymphomas start from the lymph nodes or from the agglomeration of the lymphatic tissues, organs like stomach, intestines, in some cases it can involve the bone marrow and the blood, it can also disseminate to other organs. Lymphomas are divided in two major categories: Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Patient with NHL are generally treated with radiotherapy alone or combined with immunotherapy using monoclonal antibody rituximab (MabThera®). Currently, monoclonal antibodies (Acm) conjugated with bifunctional chelate agents and radiolabeled with metallic or lanthanides radionuclides are a treatment reality for patients with NHL by the principle of radioimmunotherapy (RIT). This study focused on the conditions of conjugation of Acm rituximab (MabThera®) with bifunctional chelating agents DOTA and DTPA. Various parameters were studied: method of Acm purification, conditions of Acm conjugation, the method for determination of number of chelate agent coupled to the Acm, method for purification of the conjugated antibody Acm, conditions of labeling of the conjugated antibody with lutetium-177, method of purification of the radiolabeled immuno conjugate, method of radiochemical purity (RP), specific binding in vitro Raji cells (Human Burkitt) and biological distribution performed in normal Balb-c mouse. The three methodologies employed in pre-purification of Acm (dialysis, size exclusion chromatograph and dial filtration) demonstrated to be efficient; they provided sample recovery exceeding 90%. However, the methodology of dial filtration presents minimal sample loss, and gave the final recovery of the sample in micro liters; thereby facilitating sample use in subsequent experiments. Numbers of chelators attached to the Acm molecule was proportional to the molar ratio studied. When we evaluated the influence of different

  5. Targeted sonodynamic therapy of cancer using a photosensitizer conjugated with antibody against carcinoembryonic antigen.

    Science.gov (United States)

    Abe, Hironori; Kuroki, Motomu; Tachibana, Katsuro; Li, Tieli; Awasthi, Aradhana; Ueno, Aruto; Matsumoto, Hisanobu; Imakiire, Takayuki; Yamauchi, Yasushi; Yamada, Hiromi; Ariyoshi, Asami; Kuroki, Masahide

    2002-01-01

    The goal of this study was to develop a strategy for the selective destruction of cancer cells by ultrasonic irradiation in the presence of an antibody-conjugated photosensitizer. To this end, a photoimmunoconjugate (PIC) was prepared between ATX-70, a photosensitizer of a gallium-porphyrin analogue, and F11-39, a high affinity monoclonal antibody (MAb) against carcinoembryonic antigen (CEA), which is often overexpressed in various carcinoma cells. This conjugate, designated F39/ATX-70, retained immunoreactivity against purified CEA and CEA-expressing cells as determined by enzyme-linked immunosorbent assay, flow cytometry and immunofluorescence microscopic analysis. The cytotoxicity of F39/ATX-70 against CEA-expressing human gastric carcinoma cells in vitro was found to be greater than that of ATX-70 when applied in combination with ultrasound irradiation. When in vivo anti-tumor effects in a mouse xenograft model were assessed, intravenous administration of F39/ATX-70 followed by ultrasonic irradiation produced a marked growth inhibition of tumor compared with irradiation alone or irradiation after administration of ATX-70. These results suggest that the PIC between anti-CEA MAb and ATX-70 may have applications in sonodynamic therapy where destruction of CEA-expressing tumor is required. PMID:12168839

  6. Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus

    OpenAIRE

    Rollett, Alexandra; Thallinger, Barbara; Ohradanova-Repic, Anna; Machacek, Christian; Walenta, Evelyn; Paulo, Artur Cavaco; Birner-Gruenberger, Ruth; Bogner-Strauss, Juliane G.; Stockinger, Hannes; Guebitz, G.M.

    2013-01-01

    Highly specific targeted drug delivery devices can be obtained with antibody-human serum albumin (mAb-HSA) conjugates. However, their conventional production involves several reaction steps including chemical modification and activation of both proteins followed by cross-linking often involving toxic chemicals. Here, we describe the enzymatic synthesis of mAb-HSA conjugates for targeted drug delivery devices using tyrosinase from Agaricus bisporus under mild reaction conditions (pH 6.8, 25 [d...

  7. Visualization of Trichoderma reesei Cellobiohydrolase I and Endoglucanase I on Aspen Cellulose by Using Monoclonal Antibody-Colloidal Gold Conjugates

    OpenAIRE

    Nieves, Rafael A.; Robert P. Ellis; Todd, Roberta J.; Johnson, Timothy J. A.; Grohmann, Karel; Himmel, Michael E.

    1991-01-01

    Monoclonal antibodies (MAbs) specific for cellobiohydrolase I (CBH I) and endoglucanase I (EG I) were conjugated to 10- and 15-nm colloidal gold particles, respectively. The binding of CBH I and EG I was visualized by utilizing the MAb-colloidal gold probes. The visualization procedure involved immobilization of cellulose microfibrils on copper electron microscopy grids, incubation of the cellulose-coated grids with cellulase(s), binding of MAb-colloidal gold conjugates to cellulase(s), and v...

  8. Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy

    Science.gov (United States)

    Broekgaarden, M.; van Vught, R.; Oliveira, S.; Roovers, R. C.; van Bergen En Henegouwen, P. M. P.; Pieters, R. J.; van Gulik, T. M.; Breukink, E.; Heger, M.

    2016-03-01

    Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested.Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c6nr00014b

  9. Synthesis and Preliminary Biological Evaluation of High-drug Load Paclitaxel-Antibody Conjugates for Tumor-targeted Chemotherapy1

    OpenAIRE

    Quiles, Sherly; Raisch, Kevin P.; Sanford, Leisa L.; Bonner, James A.; Safavy, Ahmad

    2010-01-01

    The goal of this study was to design paclitaxel (PTX)-monoclonal antibody (MAb) prodrug conjugates (PTXMAbs) with the ability to deliver therapeutically significant doses of the drug to the tumor while avoiding the previously observed solubility limitations of conjugates with PTX : MAb molar ratios of >3. New PTX conjugates were synthesized using the discrete poly(ethylene glycol) (dPEG) as linkers. These compounds, PTX-L-Lys[(dPEG12)3-dPEG4]-dPEG6-NHS (9a and 9b, for L=GL or SX, respectively...

  10. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases

    Science.gov (United States)

    Nybo, Mads; Macaubas, Claudia; Lønstrup, Lars; Balboni, Imelda M.; Mellins, Elizabeth D.; Astakhova, Kira

    2016-01-01

    Reliable measurement of clinically relevant autoimmune antibodies toward phospholipid-protein conjugates is highly desirable in research and clinical assays. To date, the development in this field has been limited to the use of natural heterogeneous antigens. However, this approach does not take structural features of biologically active antigens into account and leads to low reliability and poor scientific test value. Here we describe novel phospholipid-protein conjugates for specific detection of human autoimmune antibodies. Our synthetic approach includes mild oxidation of synthetic phospholipid cardiolipin, and as the last step, coupling of the product with azide-containing linker and copper-catalyzed click chemistry with β2-glycoprotein I and prothrombin. To prove utility of the product antigens, we used enzyme-linked immunosorbent assay and three cohorts of samples obtained from patients in Denmark (n = 34) and the USA (n = 27 and n = 14). Afterwards we analyzed correlation of the obtained autoantibody titers with clinical parameters for each patient. Our results prove that using novel antigens clinically relevant autoantibodies can be detected with high repeatability, sensitivity and specificity. Unlike previously used antigens the obtained autoantibody titers strongly correlate with high disease activity and in particular, with arthritis, renal involvement, anti-Smith antibodies and high lymphocyte count. Importantly, chemical composition of antigens has a strong influence on the correlation of detected autoantibodies with disease activity and manifestations. This confirms the crucial importance of antigens’ composition on research and diagnostic assays, and opens up exciting perspectives for synthetic antigens in future studies of autoimmunity. PMID:27257889

  11. HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang

    2014-05-01

    The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.

  12. Synthesis of HPMA-DOX-antibody conjugates. Optimization of antibody-binding reaction of a polyHPMA procursor containing thiazolidine-2-thione reactive groups

    Czech Academy of Sciences Publication Activity Database

    Šubr, Vladimír; Ulbrich, Karel

    Cardiff: Welsh School of Pharmacy , Redwood Building, Cardiff University, 2004, s. 46. [International Symposium on Polymer Therapeutics /6./. Cardiff (GB), 07.01.2004-09.01.2004] R&D Projects: GA AV ČR IBS5020101 Institutional research plan: CEZ:AV0Z4050913 Keywords : polymer-drug-antibody conjugates * thiazolidine-2-thione reactive polymers Subject RIV: CD - Macromolecular Chemistry

  13. Antibody-Drug Conjugates: A Clinical Pharmacy Perspective on an Emerging Cancer Therapy.

    Science.gov (United States)

    Jerjian, Taleen V; Glode, Ashley E; Thompson, Lisa A; O'Bryant, Cindy L

    2016-01-01

    Antibody-drug conjugates (ADCs) combine highly specific monoclonal antibodies with potent cytotoxic drugs. Their synergy allows for targeted delivery of toxic drugs to cancer cells while sparing systemic exposure. In this review, we focus on the history and clinical applications of ADCs approved by the U.S. Food and Drug Administration (FDA) for the treatment of cancer and highlight new ADCs in the drug development pipeline. Three ADCs have received FDA approval thus far. Gemtuzumab ozogamicin, although withdrawn from the U.S. market, may still be an effective treatment modality in subsets of patients with acute myeloid leukemia. Brentuximab vedotin and ado-trastuzumab emtansine have shown improved efficacy and safety data compared with standard chemotherapy for the treatment of advanced lymphoma and breast cancer, respectively. With a number of ADCs with promising preliminary data in the clinical trial pipeline, cancer therapy is moving forward from traditional chemotherapy to targeted treatment modalities driven by the specificity of monoclonal antibodies and advancing biotechnology. PMID:26799352

  14. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific.

    Science.gov (United States)

    Gikanga, Benson; Adeniji, Nia S; Patapoff, Thomas W; Chih, Hung-Wei; Yi, Li

    2016-04-20

    Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the VH, VL, or CH2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in KM or kcat values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different sites is not

  15. Antibody-Conjugated Paramagnetic Nanobeads: Kinetics of Bead-Cell Binding

    Directory of Open Access Journals (Sweden)

    Shahid Waseem

    2014-05-01

    Full Text Available Specific labelling of target cell surfaces using antibody-conjugated paramagnetic nanobeads is essential for efficient magnetic cell separation. However, studies examining parameters determining the kinetics of bead-cell binding are scarce. The present study determines the binding rates for specific and unspecific binding of 150 nm paramagnetic nanobeads to highly purified target and non-target cells. Beads bound to cells were enumerated spectrophotometrically. Results show that the initial bead-cell binding rate and saturation levels depend on initial bead concentration and fit curves of the form A(1 − exp(−kt. Unspecific binding within conventional experimental time-spans (up to 60 min was not detectable photometrically. For CD3-positive cells, the probability of specific binding was found to be around 80 times larger than that of unspecific binding.

  16. In Vivo Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nano-Graphene

    Science.gov (United States)

    Hong, Hao; Yang, Kai; Zhang, Yin; Engle, Jonathan W.; Feng, Liangzhu; Yang, Yunan; Nayak, Tapas R.; Goel, Shreya; Bean, Jero; Theuer, Charles P.; Barnhart, Todd E.; Liu, Zhuang; Cai, Weibo

    2012-01-01

    Herein we demonstrate that nano-graphene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e. endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nano-graphene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO conjugates were investigated with serial non-invasive positron emission tomography (PET) imaging and biodistribution studies, which were validated by in vitro, in vivo, and ex vivo experiments. The incorporation of an active targeting ligand (TRC105, a monoclonal antibody that binds to CD105) led to significantly improved tumor uptake of functionalized GO, which was specific for the neovasculature with little extravasation, warranting future investigation of these GO conjugates for cancer-targeted drug delivery and/or photothermal therapy to enhance therapeutic efficacy. Since poor extravasation is a major hurdle for nanomaterial-based tumor targeting in vivo, this study also establishes CD105 as a promising vascular target for future cancer nanomedicine. PMID:22339280

  17. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene.

    Science.gov (United States)

    Hong, Hao; Yang, Kai; Zhang, Yin; Engle, Jonathan W; Feng, Liangzhu; Yang, Yunan; Nayak, Tapas R; Goel, Shreya; Bean, Jero; Theuer, Charles P; Barnhart, Todd E; Liu, Zhuang; Cai, Weibo

    2012-03-27

    Herein we demonstrate that nanographene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e., endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nanographene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO conjugates were investigated with serial noninvasive positron emission tomography imaging and biodistribution studies, which were validated by in vitro, in vivo, and ex vivo experiments. The incorporation of an active targeting ligand (TRC105, a monoclonal antibody that binds to CD105) led to significantly improved tumor uptake of functionalized GO, which was specific for the neovasculature with little extravasation, warranting future investigation of these GO conjugates for cancer-targeted drug delivery and/or photothermal therapy to enhance therapeutic efficacy. Since poor extravasation is a major hurdle for nanomaterial-based tumor targeting in vivo, this study also establishes CD105 as a promising vascular target for future cancer nanomedicine. PMID:22339280

  18. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    Science.gov (United States)

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis. PMID:25945727

  19. Surface plasmon resonance analysis of antipolysaccharide antibody specificity: responses to meningococcal group C conjugate vaccines and bacteria.

    Science.gov (United States)

    García-Ojeda, Pablo A; Hardy, Sharon; Kozlowski, Steven; Stein, Kathryn E; Feavers, Ian M

    2004-06-01

    Antibody (Ab) responses to polysaccharides (PS), such as Neisseria meningitidis group C PS (MCPS), are characterized as being thymus independent and are restricted with regard to clonotype and isotype expression. PS conjugated to proteins, e.g., MCPS coupled with tetanus toxoid or the diphtheria toxin derivative CRM197, elicit thymus-dependent responses. The present study developed a surface plasmon resonance approach to evaluate Ab responses to MCPS conjugate vaccines, including either O-acetylated (OAc+) or de-O-acetylated (OAc-) forms of the PS. The results were generally consistent with those obtained by enzyme-linked immunosorbent assay and showed that sera from mice immunized with conjugate vaccines contain Abs that bind more effectively to OAc+ and OAc- MCPS than sera from mice immunized with fixed bacteria. The data suggest a critical shared or overlapping epitope recognized by all the conjugate vaccine immune sera and strategies for assessing polyclonal Ab avidity. PMID:15155652

  20. Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies

    International Nuclear Information System (INIS)

    The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe0.5Te0.5 and CdSe0.7Te0.3. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine

  1. Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo Gómez, J.A. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico); Casas Espinola, J.L., E-mail: jlcasas@esfm.ipn.mx [ESFM – Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Douda, J. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)

    2014-11-15

    The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe{sub 0.5}Te{sub 0.5} and CdSe{sub 0.7}Te{sub 0.3}. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.

  2. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity.

    Directory of Open Access Journals (Sweden)

    Martin Kreutz

    Full Text Available Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA and CpG oligodeoxynucleotides (ODN. We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses.

  3. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  4. Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E.

    2000-04-04

    Stable aqueous dispersions consisting of CdS nanoparticles having modal diameters, ranging between 2 and 8 nm, were prepared with amino-derivatized polysaccharides (aminodextrans, hence abbreviated as Amdex) as the stabilizing agents. The size, stability, and luminescence intensity of such dispersions were shown to be dependent on the types of the cadmium salts and aminodextrans used, as well as on the reactant concentrations. Specifically, it was demonstrated that the degree of substitution of amino groups in the aminodextran molecules greatly affected the properties of the dispersions; i.e., with higher degree of substitution, smaller CdS particles and higher luminescence intensity were achieved. It was also shown that the Amdex-CdS nanoparticle complexes could be activated and conjugated with antibody by conventional means. Molecular weight ranges of the Amdex and their complexes with CdS nanoparticles and the purity of antibody-Amdex-CdS nanoparticle conjugates were determined by polyacrylamide gel electrophoresis combined with Coomassie blue staining of resultant gel bands. The purified conjugate of the aminodextran-CdS nanoparticle complex with anti-CD4 monoclonal antibody was mixed with a whole blood control, followed by indirect sheep antimouse antibody-phycoerythrin (SAM-PE) labeling of washed cells incubated with T4-5X-Amdex-CdS. Red blood cells were then lysed and quenched, and the resulting mixture, which was run on a flow cytometer with 488.0 nm argon ion laser excitation, suggested that the T4 antibody from the conjugate was present specifically on lymphocytes.

  5. Evaluation of a new biotin-DOTA conjugate for pretargeted antibody-guided radioimmunotherapy (PAGRIT registered)

    International Nuclear Information System (INIS)

    A novel biotin-DOTA conjugate (r-BHD: reduced biotinamidohexylamine-DOTA) was investigated in order to provide an efficient pretargeted antibody-guided radioimmunotherapy (PAGRIT registered) application. Preclinical and clinical results are described. 90Y and 177Lu were used to label r-BHD. The effect of pH and a wide range of specific activities were studied. Radiolabelled r-BHD was tested for affinity towards avidin and for stability in saline or in human serum with and without ascorbic acid. Pharmacokinetic data were collected and organ biodistribution evaluated in a tumour-bearing pretargeted animal model. A pilot study was performed in a metastatic melanoma patient and dosimetry was estimated. High radiochemical purity (>99%) was routinely achieved with 90Y or 177Lu in sodium acetate buffer (1.0 M, pH 5.0) at a specific activity of 2.6 MBq/nmol. Both 90Y- and 177Lu-r-BHD were also prepared at higher specific activities. Radiolabelled r-BHD was stable up to 96 h in human serum and saline with the addition of ascorbic acid. The structural modifications proposed for the r-BHD stabilised it against enzymatic degradation while retaining high binding affinity for avidin. Renal clearance appeared to be the main route of excretion in animals, and high tumour uptake was observed in the pretargeted animals. The patient study showed a total body clearance of ∝85% in 24 h, with a kidney absorbed dose of 1.5 mGy/MBq. Tumour uptake was rapid and the calculated dose to a 10-mm tumour lesion was ∝12 mGy/MBq. These results indicate that the new biotin-DOTA conjugate may be a suitable candidate for pretargeting trials. (orig.)

  6. Association of Serotype-Specific Antibody Concentrations and Functional Antibody Titers with Subsequent Pneumococcal Carriage in Toddlers Immunized with a 9-Valent Pneumococcal Conjugate Vaccine

    OpenAIRE

    Simell, Birgit; Nurkka, Anu; Lahdenkari, Mika; Givon-Lavi, Noga; Käyhty, Helena; Dagan, Ron; Jokinen, Jukka

    2012-01-01

    Association of pneumococcal nasopharyngeal carriage with the concentration and opsonophagocytic activity (OPA) of serum serotype-specific antibodies was determined for toddlers 1 month after immunization with a 9-valent pneumococcal conjugate vaccine. Higher anti-serotype 14 and anti-serotype 19F IgG and anti-serotype 14 IgM correlated with a lowered probability of pneumococcal acquisition. Postvaccination OPA did not correlate with pneumococcal carriage.

  7. Altering Antibody-Drug Conjugate Binding to the Neonatal Fc Receptor Impacts Efficacy and Tolerability.

    Science.gov (United States)

    Hamblett, Kevin J; Le, Tiep; Rock, Brooke M; Rock, Dan A; Siu, Sophia; Huard, Justin N; Conner, Kip P; Milburn, Robert R; O'Neill, Jason W; Tometsko, Mark E; Fanslow, William C

    2016-07-01

    Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index. PMID:27248573

  8. Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Gehrmann MK

    2015-09-01

    Full Text Available Mathias K Gehrmann,1 Melanie A Kimm,2 Stefan Stangl,1 Thomas E Schmid,1 Peter B Noël,2 Ernst J Rummeny,2 Gabriele Multhoff11Department of Radiation Oncology, 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, GermanyAbstract: Real-time imaging of small tumors is still one of the challenges in cancer diagnosis, prognosis, and monitoring of clinical outcome. Targeting novel biomarkers that are selectively expressed on a large variety of different tumors but not normal cells has the potential to improve the imaging capacity of existing methods such as computed tomography. Herein, we present a novel technique using cmHsp70.1 monoclonal antibody-conjugated spherical gold nanoparticles for quantification of the targeted uptake of gold nanoparticles into membrane Hsp70-positive tumor cells. Upon binding, cmHsp70.1-conjugated gold nanoparticles but not nanoparticles coupled to an isotype-matched IgG1 antibody or empty nanoparticles are rapidly taken up by highly malignant Hsp70 membrane-positive mouse tumor cells. After 24 hours, the cmHsp70.1-conjugated gold nanoparticles are found to be enriched in the perinuclear region. Specificity for membrane Hsp70 was shown by using an Hsp70 knockout tumor cell system. Toxic side effects of the cmHsp70.1-conjugated nanoparticles are not observed at a concentration of 1–10 µg/mL. Experiments are ongoing to evaluate whether cmHsp70.1 antibody-conjugated gold nanoparticles are suitable for the detection of membrane-Hsp70-positive tumors in vivo.Keywords: heat shock protein 70, tumor biomarker, theranostics, multimodal CT, multispectral CT, k-edge

  9. World Antibody-Drug Conjugate Summit, October 15–16, 2013, San Francisco, CA

    Science.gov (United States)

    Klinguer-Hamour, Christine; Strop, Pavel; Shah, Dhaval K; Ducry, Laurent; Xu, April; Beck, Alain

    2014-01-01

    The World Antibody-Drug Conjugate (WADC) Summits organized by Hanson Wade are currently the largest meetings fully dedicated to ADCs. The first global ADC Summit was organized in Boston in October 2010. Since 2011, two WADC are held every year in Frankfurt and San Francisco, respectively. The 2013 WADC San Francisco event was structured around plenary sessions with keynote speakers from AbbVie, Agensys, ImmunoGen, Immunomedics, Genentech, Pfizer and Seattle Genetics. Parallel tracks were also organized addressing ADC discovery, development and optimization of chemistry, manufacturing and control (CMC) issues. Discovery and process scientists, regulatory experts (US Food and Drug Administration), academics and clinicians were present, including representatives from biotechnology firms (Concortis, CytomX Therapeutics, Glykos, Evonik, Igenica, Innate Pharma, Mersana Therapeutics, Polytherics, Quanta Biodesign, Redwood Bioscience, Sutro Biopharma, SynAffix), pharmaceutical companies (Amgen, Genmab, Johnson and Johnson, MedImmune, Novartis, Progenics, Takeda) and contract research or manufacturing organizations (Baxter, Bayer, BSP Pharmaceuticals, Fujifilm/Diosynth, Lonza, Pierre Fabre Contract Manufacturing, Piramal, SAFC, SafeBridge). PMID:24423618

  10. World Antibody-Drug Conjugate Summit, October 15-16, 2013, San Francisco, CA.

    Science.gov (United States)

    Klinguer-Hamour, Christine; Strop, Pavel; Shah, Dhaval K; Ducry, Laurent; Xu, April; Beck, Alain

    2014-01-01

    The World Antibody-Drug Conjugate (WADC) Summits organized by Hanson Wade are currently the largest meetings fully dedicated to ADCs. The first global ADC Summit was organized in Boston in October 2010. Since 2011, two WADC are held every year in Frankfurt and San Francisco, respectively. The 2013 WADC San Francisco event was structured around plenary sessions with keynote speakers from AbbVie, Agensys, ImmunoGen, Immunomedics, Genentech, Pfizer and Seattle Genetics. Parallel tracks were also organized addressing ADC discovery, development and optimization of chemistry, manufacturing and control (CMC) issues. Discovery and process scientists, regulatory experts (US Food and Drug Administration), academics and clinicians were present, including representatives from biotechnology firms (Concortis, CytomX Therapeutics, Glykos, Evonik, Igenica, Innate Pharma, Mersana Therapeutics, Polytherics, Quanta Biodesign, Redwood Bioscience, Sutro Biopharma, SynAffix), pharmaceutical companies (Amgen, Genmab, Johnson and Johnson, MedImmune, Novartis, Progenics, Takeda) and contract research or manufacturing organizations (Baxter, Bayer, BSP Pharmaceuticals, Fujifilm/Diosynth, Lonza, Pierre Fabre Contract Manufacturing, Piramal, SAFC, SafeBridge). PMID:24423618

  11. TLR9-adjuvanted pneumococcal conjugate vaccine induces antibody-independent memory responses in HIV-infected adults

    OpenAIRE

    Offersen, Rasmus; Melchjorsen, Jesper; Paludan, Søren R; Østergaard, Lars; Tolstrup, Martin; Søgaard, Ole S.

    2012-01-01

    HIV-patients have excess of pneumococcal infection. We immunized 40 HIV-patients twice with pneumococcal conjugate vaccine (Prevnar, Pfizer) +/− a TLR9 agonist (CPG 7909). Peripheral blood mononuclear cells were stimulated with pneumococcal polysaccharides and cytokine concentrations measured. The CPG 7909 adjuvant group had significantly higher relative cytokine responses than the placebo group for IL-1β, IL-2R, IL-6, IFN-γ and MIP-β, which, did not correlate with IgG antibody responses. The...

  12. Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Alyona Sukhanova, Klervi Even-Desrumeaux, Patrick Chames, Daniel Baty, Mikhail Artemyev, Vladimir Oleinikov & Igor Nabiev ### Abstract Nanoparticle-based biodetection commonly employs monoclonal antibodies (mAbs) for targeting. Although several types of conjugates have been used for biomarker labeling, the large size of mAbs limits the number of ligands per nanoparticle, impedes their intratumoral distribution, and limits intracellular penetration. Furthermore, the condi...

  13. Demonstration of Actinomyces and Arachnia species in cervicovaginal smears by direct staining with species-specific fluorescent-antibody conjugate.

    OpenAIRE

    Pine, L; Malcolm, G B; Curtis, E M; Brown, J. M.

    1981-01-01

    For direct observation of microaerophilic actinomycetes by fluorescent antibody, a procedure was developed in which pepsin treatment and rhodamine conjugate of normal serum were used to reduce nonspecific staining in cervicovaginal smears. Actinomyces israelii, Actinomyces naeslundii, and Arachnia propionica were observed in cervicovaginal smears from women who did use and who did not use an intrauterine contraceptive device. A. israelii was found more commonly in women with an intrauterine c...

  14. Immunosuppressive drugs impairs antibody response of the polysaccharide and conjugated pneumococcal vaccines in patients with Crohn's disease

    DEFF Research Database (Denmark)

    Kantsø, Bjørn; Halkjær, Sofie Ingdam; Thomsen, Ole Østergaard;

    2015-01-01

    with and without immunosuppressive treatment four weeks post vaccination. METHODS: In a randomized trial of the 23-valent pneumococcal polysaccharide vaccine (PPV23) and the 13-valent pneumococcal conjugated vaccine (PCV13), a group of CD patients treated with immunosuppressive drugs (IS) alone or in...... between treatment groups showed that immunosuppressive treatment impaired the antibody response to both vaccines and that TNF-a treatment further conveyed additional impairment of the response. CONCLUSION: PCV13 induces higher antibody response for some serotypes compared to PPV23. In addition, CD...... patients treated with immunosuppressive drugs alone or in combination with TNF-α antagonists had an impaired antibody response to both PPV23 and PCV13 compared to patients not receiving any of these treatments. The study has been registered in the European Clinical Trials Database (EudraCT, record no 2012...

  15. Transfer of copper from a chelated 67Cu-antibody conjugate to ceruloplasmin in lymphoma patients

    International Nuclear Information System (INIS)

    The Lym-1 monoclonal antibody was conjugated with the bifunctional chelating agent 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N' -tetraacetic acid (BAT), using 2IT as a linker, and radiolabeled with 67Cu to make the radiopharmaceutical, 67Cu-2IT-BAT-Lym-1. Ten patients received a total of 18 doses of 67Cu-2IT-BAT-Lym-1 as targeted, systemic radiotherapy. The beta phase of blood clearance, when corrected for 67Cu decay, was positive or flat, a phenomenon not observed in similar patients treated with 131I-Lym-1. The flat beta phase of blood clearance suggested recycling of 67Cu from 67Cu-2IT-BAT-Lym-1 to another plasma protein. Therefore, the amount of 67Cu transferred from the radiopharmaceutical to CP, Alb, and TF was measured using affinity-purified polyclonal antibodies. The fraction of plasma 67Cu precipitated by anti-human CP increased daily; most blood radioactivity was 67Cu-CP after a median of 4 days (range 2-7 days). The transfer of 67Cu to CP was observed in all patients and was consistent from dose to dose within the same patient. An average of 2.8±1.5% (range 0.8-7.8%) of the 67Cu dose (%ID) was transferred to CP. The release rate of 67Cu-CP from the liver into the blood was 0.9±0.4 %ID/day for the first 3 days. The 67Cu-CP effective clearance half-life was 3.7 ± 0.7 days. Subtraction of the 67Cu-CP activity from the total blood radioactivity yielded a biphasic blood clearance similar to that obtained for patients given 131I-Lym-1. Cu-67-CP increased the AUC for whole blood by 24 ± 10%. The %ID of 67Cu recycled correlated with GGT, ALT, and alkaline phosphatase levels; r=0.958 (p67Cu-2IT-BAT-Lym-1 and recycles a small fraction of the 67Cu, transferring it to CP

  16. Development and validation of the 57Co assay for determining the ligand to antibody ratio in bifunctional chelate/antibody conjugates for use in radioimmunotherapy

    International Nuclear Information System (INIS)

    Introduction: The ligand to antibody ratio is an important characteristic of a chelate/antibody conjugate. It has been widely reported that if the ratio is too high, there will be detrimental effects on immunoreactivity and biodistribution; conversely, if the ratio is too low, the radionuclide may not bind efficiently, and the stability and the specific activity will be reduced. There are little published data on the accuracy or precision of the 57Co assay. The UK Clinical Trials Regulations state that “systems with procedures that assure the quality of every aspect of the trial should be implemented”. The aims of this study were to assess the reliability and accuracy of the 57Co binding assay and validate it against defined criteria. Method: Thirty-two serial assays were assessed for reliability. Two batches of conjugated antibody were also analysed by matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometry (MS) to allow the comparison of the functional test with a physical method. Results: Reliability: The coefficient of variation was 0.13. Accuracy: There was 9% variation between the 57Co binding assay and MALDI-TOF MS results. Conclusion: A detailed method for the 57Co ligand to antibody test is described that allows a discrete value to be obtained. The assay was validated as fit for purpose against target values of coefficient of variation <0.20, accuracy±10%, over a permissive range of 0.5–3.0 ligand to antibody ratio.

  17. Characterization of the antibody response to a Haemophilus influenzae type b conjugate vaccine in children with recurrent lower respiratory tract infection

    DEFF Research Database (Denmark)

    Kristensen, K; Barington, T; Pressler, T;

    1995-01-01

    once with a Haemophilus influenzae type b (Hib) conjugate vaccine. Total IgG subclasses, total antipolysaccharide Hib antibodies, and antipolysaccharide Hib antibodies of IgM, IgG, IgA, and IgG1-4 specificity were determined by ELISA. There were no significant differences between the two groups in any...

  18. Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry.

    Science.gov (United States)

    VanBrunt, Michael P; Shanebeck, Kurt; Caldwell, Zachary; Johnson, Jeffrey; Thompson, Pamela; Martin, Thomas; Dong, Huifang; Li, Gary; Xu, Hengyu; D'Hooge, Francois; Masterson, Luke; Bariola, Pauline; Tiberghien, Arnaud; Ezeadi, Ebele; Williams, David G; Hartley, John A; Howard, Philip W; Grabstein, Kenneth H; Bowen, Michael A; Marelli, Marcello

    2015-11-18

    Antibody-drug conjugates (ADC) have emerged as potent antitumor drugs that provide increased efficacy, specificity, and tolerability over chemotherapy for the treatment of cancer. ADCs generated by targeting cysteines and lysines on the antibody have shown efficacy, but these products are heterogeneous, and instability may limit their dosing. Here, a novel technology is described that enables site-specific conjugation of toxins to antibodies using chemistry to produce homogeneous, potent, and highly stable conjugates. We have developed a cell-based mammalian expression system capable of site-specific integration of a non-natural amino acid containing an azide moiety. The azide group enables click cycloaddition chemistry that generates a stable heterocyclic triazole linkage. Antibodies to Her2/neu were expressed to contain N6-((2-azidoethoxy)carbonyl)-l-lysine at four different positions. Each site allowed over 95% conjugation efficacy with the toxins auristatin F or a pyrrolobenzodiazepine (PBD) dimer to generate ADCs with a drug to antibody ratio of >1.9. The ADCs were potent and specific in in vitro cytotoxicity assays. An anti Her2/neu conjugate demonstrated stability in vivo and a PBD containing ADC showed potent efficacy in a mouse tumor xenograph model. This technology was extended to generate fully functional ADCs with four toxins per antibody. The high stability of the azide-alkyne linkage, combined with the site-specific nature of the expression system, provides a means for the generation of ADCs with optimized pharmacokinetic, biological, and biophysical properties. PMID:26332743

  19. An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification

    International Nuclear Information System (INIS)

    We describe an aptamer-based colorimetric assay for chloramphenicol (CAP) based on the ability of anti-single-stranded DNA antibody (anti-ssDNA Ab) to recognize ssDNA, and the catalytic ability of PowerVision (PV), which is a polymeric conjugate of horseradish peroxidase and antibody with a high enzyme-to-antibody ratio. The complementary DNA of the aptamer (cDNA) was immobilized on magnetic gold nanoparticles (Fe3O4-Au) and used as a capture probe (AuMNPs-cDNA). The ssDNA Ab and PV were conjugated to AuNPs to form signal tags that recognize ssDNA with anti-ssDNA Ab to form beads containing the amplified probe (AuMNPs-cDNA-anti-ssDNA Ab/PV-AuNPs). The PV on their surface catalyzes the oxidation of the substrate 3,3’,5,5’-tetramethylbenzidine to produce a color change which is quantified by absorptiometry at 652 nm. The assay has a linear calibration plot for CAP in the 0.01 to 100 ng mL−1 range, with a detection limit as low as 3 pg mL−1. The method was successfully employed to detect CAP in real samples. Results were consistent with data obtained using a conventional enzyme-linked immunosorbent assay. (author)

  20. Stimulation of protective antibodies against type Ia and Ib group B streptococci by a type Ia polysaccharide-tetanus toxoid conjugate vaccine.

    OpenAIRE

    Wessels, M R; Paoletti, L C; Rodewald, A K; Michon, F; DiFabio, J; Jennings, H J; Kasper, D L

    1993-01-01

    Antisera elicited by type Ia group B streptococci (GBS) contain antibodies that react with both type Ia and type Ib strains. Previous studies suggested that antibodies elicited by type Ia organisms recognized a carbohydrate antigen or epitope common to Ia and Ib strains. We now report the synthesis and immunogenicity testing of a type Ia polysaccharide-tetanus toxoid (Ia-TT) conjugate vaccine. Ia-TT elicited type Ia polysaccharide-specific immunoglobulin G antibodies in all three of the rabbi...

  1. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates.

    Science.gov (United States)

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-01

    Antibody-drug conjugates (ADCs) are complex therapeutic agents that use the specific targeting properties of antibodies and the highly potent cytotoxicity of small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. Two critical quality attributes of ADCs are the purity and stability of the active small molecule drug linked to the ADC, but these are difficult to assess once the drug is conjugated to the antibody. In this study, we report a enzyme deconjugation approach to cleave small molecule drugs from ADCs, which allows the drugs to be subsequently characterized by reversed-phase high performance liquid chromatography. The model ADC we used in this study utilizes a valine-citrulline linker that is designed to be sensitive to endoproteases after internalization by tumor cells. We screened several proteases to determine the most effective enzyme. Among the 3 cysteine proteases evaluated, papain had the best efficiency in cleaving the small molecule drug from the model ADC. The deconjugation conditions were further optimized to achieve complete cleavage of the small molecule drug. This papain deconjugation approach demonstrated excellent specificity and precision. The purity and stability of the active drug on an ADC drug product was evaluated and the major degradation products of the active drug were identified. The papain deconjugation method was also applied to several other ADCs, with the results suggesting it could be applied generally to ADCs containing a valine-citrulline linker. Our results indicate that the papain deconjugation method is a powerful tool for characterizing the active small molecule drug conjugated to an ADC, and may be useful in ensuring the product quality, efficacy and the safety of ADCs. PMID:26891281

  2. In vivo evaluation of an anti-PSMA antibody conjugated with varying numbers of biotin molecules in a pretargeting protocol

    International Nuclear Information System (INIS)

    An investigation has been conducted to determine the effect of varying the number of biotin molecules conjugated with an anti-PSMA antibody (mAb) as part of our studies to optimize biotinylated antibodies and radiolabeled streptavidin in pretargeting protocols for Targeted Radionuclide Therapy of prostate cancer. In the investigation, the anti-PSMA antibody 107-1A4 was biotinylated with varying amounts of biotinamidocaproate N-hydroxysuccinimide ester. This procedure resulted in obtaining 107-1A4 with 2.3, 4.5, and 6.8 biotin conjugated as measured by the standard HABA assay. The biotinylated 107-1A4 was radioiodinated and was evaluated in a pretargeting protocol in athymic mice bearing LNCaP human tumor xenografts. In the protocol, 50 μg biotinylated [125I]107-1A4 was injected, followed 48h later by 25 μg of avidin for blood clearance, and 1h after that 20 μg of radiolabeled succinylated recombinant streptavidin ([13 1I]sSAv) was administered. The tumor localization and tissue distribution was evaluated at 24, 48, and 72h post [131I]sSAv injection. With 2.3 biotin/mAb, an approximate 1:1 molar ratio (4-5 pmol/g) of sSAv/mAb was obtained at all three time points. With 4.5 biotin/mAb, a 1:1 ratio was observed at 24h, but approx. 2: 1 was observed at 48 and 72h pi. With 6.8 biotin/mAb, sSAv/mAb ratios of approximately 1.5:1; 2:1; and 3:1 were obtained at 24, 48, and 72h pi respectively. The amount of sSAv localized in the tumor was nearly the same (4-5 pmol/g) when 107-1A4 had 2.3 or 4.5 biotin conjugated, but decreased to 3-4.5 pmol/g with 6.8 biotin conjugated. Because the highest levels of co-localized sSAv was found with the lowest number of biotin conjugates, the observed differences in ratios of sSAv/mAb may be best explained as differences in internalization, and degradation of mAb and protease resistant sSAv. In duplicate experiments, similar results were obtained with biotinylated 107-1A4 F(ab')2 , but not with an mAb to a non-internalizing antigen

  3. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast "Click-to-Release" Chemistry in Mice.

    Science.gov (United States)

    Rossin, Raffaella; van Duijnhoven, Sander M J; Ten Hoeve, Wolter; Janssen, Henk M; Kleijn, Laurens H J; Hoeben, Freek J M; Versteegen, Ron M; Robillard, Marc S

    2016-07-20

    The use of a bioorthogonal reaction for the selective cleavage of tumor-bound antibody-drug conjugates (ADCs) would represent a powerful new tool for ADC therapy, as it would not rely on the currently used intracellular biological activation mechanisms, thereby expanding the scope to noninternalizing cancer targets. Here we report that the recently developed inverse-electron-demand Diels-Alder pyridazine elimination reaction can provoke rapid and self-immolative release of doxorubicin from an ADC in vitro and in tumor-bearing mice. PMID:27306828

  4. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor, E-mail: manzoork@aims.amrita.edu, E-mail: ullasmony@aims.amrita.edu [Amrita Centre for Nanoscience and Molecular Medicine, Amrita Institute of Medical Science, Cochin 682 041 (India)

    2011-07-15

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with {approx} 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of {approx} 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in {approx} 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of {approx} 12 nm retained bright fluorescence over an extended duration of {approx} a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of {approx} 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of {approx} 8.2% in human peripheral blood cells (PBMCs) which are CD33{sup low}. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  5. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Science.gov (United States)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-07-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  6. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    International Nuclear Information System (INIS)

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ∼ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ∼ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ∼ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ∼ 12 nm retained bright fluorescence over an extended duration of ∼ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ∼ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ∼ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  7. Indication of viruses and virus-specific antibodies by ELISA using conjugates based on β-lactamase obtained by genetic engineering

    International Nuclear Information System (INIS)

    The method of enzyme-linked immunosorbent assay (ELISA), by means of which antigens and antibodies of different origin can be detected with high sensitivity and specificity, is an immunoenzymatic technique based on the use of conjugates, or macromolecular complexes formed by covalent attachment of enzyme molecules to antigen or antibody molecules. Conjugates based on peroxidase, alkaline phosphatase, and beta-galactosidase are most frequently used to construct immunoenzymatic test systems. The use of these enzymes in ELISA, however, is complicated by the fact that they are often present in free or bound form in the biological material under study, and that their substrates either possess low stability, are difficult to synthesize, or are toxic. In this paper, in order to avoid these shortcomings, the authors develop a method for the biosynthesis of lactamase conjugates which is based on genetic engineering, and demonstrate the viability and stability of these conjugates in radioimmunoenzymatic assay of viruses

  8. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin.

    Science.gov (United States)

    Falvo, Elisabetta; Tremante, Elisa; Fraioli, Rocco; Leonetti, Carlo; Zamparelli, Carlotta; Boffi, Alberto; Morea, Veronica; Ceci, Pierpaolo; Giacomini, Patrizio

    2013-12-21

    A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4(+) melanoma cell line, but not to a CSPG4(-) breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy. PMID:24150593

  9. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  10. Concomitant Administration of Mycobacterium bovis BCG with the Meningococcal C Conjugate Vaccine to Neonatal Mice Enhances Antibody Response and Protective Efficacy ▿

    OpenAIRE

    Brynjolfsson, Siggeir F.; Bjarnarson, Stefania P.; Mori, Elena; Del Giudice, Giuseppe; Jonsdottir, Ingileif

    2011-01-01

    Mycobacterium bovis BCG is administered to human neonates in many countries worldwide. The objective of the study was to assess if BCG could act as an adjuvant for polysaccharide-protein conjugate vaccines in newborns and thereby induce protective immunity against encapsulated bacteria in early infancy when susceptibility is high. We assessed whether BCG could enhance immune responses to a meningococcal C (MenC) conjugate vaccine, MenC-CRM197, in mice primed as neonates, broaden the antibody ...

  11. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for {sup 68}Ga-labeled small recombinant antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Eder, Matthias; Waengler, Bjoern; Eisenhut, Michael [German Cancer Research Center, Radiopharmaceutical Chemistry, Heidelberg (Germany); Knackmuss, Stefan; LeGall, Fabrice; Little, Melvyn [Affimed Therapeutics, Heidelberg (Germany); Haberkorn, Uwe; Mier, Walter [University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany)

    2008-10-15

    The success of {sup 68}Ga-labeled peptides for positron emission tomography of neuroendocrine tumors is mainly depending on the complex chemistry of this radioisotope. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), the chelator of choice has however limitations if its application is expanded to heat-sensitive proteins. Recombinant antibodies like single chain Fv or diabodies belong to this class of proteins. They are suited to provide imaging contrast despite the short-lived {sup 68}Ga because of their rapid blood clearances and nanomolar affinities. The heterobifunctional agent N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC) was chosen as an alternative ligand because this agent is complexing [{sup 68}Ga]Ga{sup 3+} much faster than DOTA at ambient temperatures. A versatile technology for HBED-CC conjugation of proteins and {sup 68}Ga-labeling has been developed. This included HBED-CC-tetrafluorophenol (TFP) ester synthesis, coupling to the antibody at various pH and complexation reactions performed in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer under different conditions. The synthesis of the monoreactive 2,3,5,6-tetrafluorophenolate of HBED-CC at a carboxyl group not participating in complex formation used [Fe(HBED-CC)]{sup -} for ester formation. The removal of Fe{sup 3+} from purified (HBED-CC)TFP ester was achieved with RP{sub 18} cartridge technology. The conjugation chemistry was performed with mAb425 which binds to the epidermal growth factor receptor (EGFR). This protein was used for optimizing purposes only. The influence of complexation parameters like temperature, pH, reaction time, and HBED-CC/antibody ratio on the biological activity of this model antibody was investigated. Furthermore, the outcome of this labeling procedure on the biological activity of a recombinant diabody (50 kDa) was studied. It is known that small HBED-CC/antibody ratios are prerequisites

  12. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies

    International Nuclear Information System (INIS)

    The success of 68Ga-labeled peptides for positron emission tomography of neuroendocrine tumors is mainly depending on the complex chemistry of this radioisotope. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), the chelator of choice has however limitations if its application is expanded to heat-sensitive proteins. Recombinant antibodies like single chain Fv or diabodies belong to this class of proteins. They are suited to provide imaging contrast despite the short-lived 68Ga because of their rapid blood clearances and nanomolar affinities. The heterobifunctional agent N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC) was chosen as an alternative ligand because this agent is complexing [68Ga]Ga3+ much faster than DOTA at ambient temperatures. A versatile technology for HBED-CC conjugation of proteins and 68Ga-labeling has been developed. This included HBED-CC-tetrafluorophenol (TFP) ester synthesis, coupling to the antibody at various pH and complexation reactions performed in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer under different conditions. The synthesis of the monoreactive 2,3,5,6-tetrafluorophenolate of HBED-CC at a carboxyl group not participating in complex formation used [Fe(HBED-CC)]- for ester formation. The removal of Fe3+ from purified (HBED-CC)TFP ester was achieved with RP18 cartridge technology. The conjugation chemistry was performed with mAb425 which binds to the epidermal growth factor receptor (EGFR). This protein was used for optimizing purposes only. The influence of complexation parameters like temperature, pH, reaction time, and HBED-CC/antibody ratio on the biological activity of this model antibody was investigated. Furthermore, the outcome of this labeling procedure on the biological activity of a recombinant diabody (50 kDa) was studied. It is known that small HBED-CC/antibody ratios are prerequisites for minimal interference of labels with antigen

  13. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer

    Directory of Open Access Journals (Sweden)

    Ni Jian

    2011-05-01

    Full Text Available Abstract Background Gastric cancer is 2th most common cancer in China, and is still the second most common cause of cancer-related death in the world. How to recognize early gastric cancer cells is still a great challenge for early diagnosis and therapy of patients with gastric cancer. This study is aimed to develop one kind of multifunctional nanoprobes for in vivo targeted magnetofluorescent imaging of gastric cancer. Methods BRCAA1 monoclonal antibody was prepared, was used as first antibody to stain 50 pairs of specimens of gastric cancer and control normal gastric mucous tissues, and conjugated with fluorescent magnetic nanoparticles with 50 nm in diameter, the resultant BRCAA1-conjugated fluorescent magnetic nanoprobes were characterized by transmission electron microscopy and photoluminescence spectrometry, as-prepared nanoprobes were incubated with gastric cancer MGC803 cells, and were injected into mice model loaded with gastric cancer of 5 mm in diameter via tail vein, and then were imaged by fluorescence optical imaging and magnetic resonance imaging, their biodistribution was investigated. The tissue slices were observed by fluorescent microscopy, and the important organs such as heart, lung, kidney, brain and liver were analyzed by hematoxylin and eosin (HE stain method. Results BRCAA1 monoclonal antibody was successfully prepared, BRCAA1 protein exhibited over-expression in 64% gastric cancer tissues, no expression in control normal gastric mucous tissues, there exists statistical difference between two groups (P in vivo gastric cancer tissues loaded by mice, and could be used to image gastric cancer tissues by fluorescent imaging and magnetic resonance imaging, and mainly distributed in local gastric cancer tissues within 12 h post-injection. HE stain analysis showed that no obvious damages were observed in important organs. Conclusions The high-performance BRCAA1 monoclonal antibody-conjugated fluorescent magnetic nanoparticles

  14. Study of conjugation and radiolabeling of monoclonal antibody rituximab for use in radionuclide therapy; Estudo da conjugacao e radiomarcacao do anticorpo monoclonal rituximab para aplicacao em terapia radionuclidica

    Energy Technology Data Exchange (ETDEWEB)

    Massicano, Adriana Vidal Fernandes

    2011-07-01

    Lymphomas are tumors originated from the transformation of a lymphocyte in the lymphatic system. The most common lymphoma is the Non-Hodgkin Lymphoma (NHL). Advances in immunology and molecular biology have been improving NHL's detection and treatment strategies development, such as Radioimmunotherapy (RIT). Rituximab is an anti-CD20 monoclonal antibody used as immunotherapeutic to treat refractory or relapsed NHL. The goal of the present work was to conjugate this antibody to DOTA-NHS-ester bifunctional chelator and to radiolabel it with {sup 177}Lu radioisotope in order to develop a radio immunotherapeutic agent for NHL's treatment. Different rituximab to DOTA molar ratios (1:5, 1:10, 1:20, 1:50, 1:250, 1:500 and 1:1000) were evaluated in order to determine the best condition for obtaining the highest radiochemical purity of radio immunotherapeutic. The stability of the unlabeled immuno conjugated was evaluated by high performance liquid chromatography (HPLC) for up to 240 days in different storage conditions. The stability of the labeled preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C. The binding to serum proteins was also determined. In vivo studies were performed in healthy Swiss mice, in order to characterize the biological properties of labeled conjugate. Finally, preliminary studies of radio immuno conjugated competitive binding to CD20 positive Raji cells were carried out in order to analyze if the process of conjugation and radiolabeling compromises the immunoreactivity of the antibody. The conjugation applying lower antibody to chelator molar ratios (1:5, 1:10 and 1:20) showed high stability when stored for up to 240 days in different conditions. The HPLC analysis showed that the monoclonal antibody conjugated in molar ratio 1:50 was labeled with higher radiochemical purity (> 95%) when purified in PD-10 column. This conjugate showed reasonable stability at 2-8 degree C. The analysis

  15. Synthesis of Antibodies-Conjugated Fluorescent Dye-Doped Silica Nanoparticles for a Rapid Single Step Detection of Campylobacter jejuni in Live Poultry

    International Nuclear Information System (INIS)

    The preparation of antibodies-conjugated fluorescent dye-doped silica nanoparticles (FDS-NPs) was developed to detect Campylobacter jejuni cells under a fluorescence microscope. The particles prepared by sol-gel microemulsion techniques have a round shape with an average size of 43±4 nm. They were highly photo stable and could emit strong orange fluorescent for 60 min. Both amine- and carboxyl-functionalized properties were evident from FTIR and FT Raman spectra. The FDS-NPs conjugated with antibodies against C. jejuni were well dispersed in PBS solution at 20 mM of NaCl. The conjugation with monoclonal antibodies against C. jejuni was successful. The direct observation of the antibodies-conjugated FDS-NPs- that bounds C. jejuni with Petroff Hausser counting chamber at 40 x was clear. The different focus lengths clearly separated bound and unbound FDS-NPs under the microscope. We successfully synthesis the bio-conjugated dye doped silica nanoparticles for C. jejuni that are easy to use and giving clear detection in due time.

  16. Synthesis of Antibodies-Conjugated Fluorescent Dye-Doped Silica Nanoparticles for a Rapid Single Step Detection of Campylobacter jejuni in Live Poultry

    Directory of Open Access Journals (Sweden)

    Wachira Tansub

    2012-01-01

    Full Text Available The preparation of antibodies-conjugated fluorescent dye-doped silica nanoparticles (FDS-NPs was developed to detect Campylobacter jejuni cells under a fluorescence microscope. The particles prepared by sol-gel microemulsion techniques have a round shape with an average size of 43 ± 4 nm. They were highly photo stable and could emit strong orange fluorescent for 60 min. Both amine- and carboxyl-functionalized properties were evident from FTIR and FT Raman spectra. The FDS-NPs conjugated with antibodies against C. jejuni were well dispersed in PBS solution at 20 mM of NaCl. The conjugation with monoclonal antibodies against C. jejuni was successful. The direct observation of the antibodies-conjugated FDS-NPs- that bounds C. jejuni with Petroff Hausser counting chamber at 40x was clear. The different focus lengths clearly separated bound and unbound FDS-NPs under the microscope. We successfully synthesis the bio-conjugated dye doped silica nanoparticles for C. jejuni that are easy to use and giving clear detection in due time.

  17. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    OpenAIRE

    Maawy, Ali A.; Hiroshima, Yukihiko; Kaushal, Sharmeela; Luiken, George A.; Robert M Hoffman; Bouvet, Michael

    2013-01-01

    Abstract. The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); ...

  18. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    OpenAIRE

    Takashi Jin; Watanabe, Tomonobu M.; Keiko Yoshizawa; Dhermendra K Tiwari; Yasushi Inouye; Shin-Ichi Tanaka

    2009-01-01

    The early detection of HER2 (human epidermal growth factor receptor 2) status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs) have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this s...

  19. Maternal immunization of mice with group B streptococcal type III polysaccharide-beta C protein conjugate elicits protective antibody to multiple serotypes.

    OpenAIRE

    Madoff, L C; Paoletti, L C; Tai, J Y; Kasper, D L

    1994-01-01

    Group B streptococcal infection is a major cause of neonatal mortality. Antibody to the capsular polysaccharide protects against invasive neonatal disease, but immunization with capsular polysaccharides fails to elicit protective antibody in many recipients. Conjugation of the polysaccharide to tetanus toxoid has been shown to increase immune response to the polysaccharide. In animal models, C proteins of group B streptococci are also protective determinants. We examined the ability of the be...

  20. Pneumococcal Conjugate Vaccines Overcome Splenic Dependency of Antibody Response to Pneumococcal Polysaccharides

    OpenAIRE

    Breukels, Mijke A.; Zandvoort, Andre; van den Dobbelsteen, Germie P. J. M.; van den Muijsenberg, Adrie; Lodewijk, Monique E.; Beurret, Michel; Pieter A Klok; Timens, Wim; Rijkers, Ger T.

    2001-01-01

    Protection against infections with Streptococcus pneumoniae depends on the presence of antibodies against capsular polysaccharides that facilitate phagocytosis. Asplenic patients are at increased risk for pneumococcal infections, since both phagocytosis and the initiation of the antibody response to polysaccharides take place in the spleen. Therefore, vaccination with pneumococcal polysaccharide vaccines is recommended prior to splenectomy, which, as in the case of trauma, is not always feasi...

  1. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    International Nuclear Information System (INIS)

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  2. Impact of C4'-O-Alkyl Linker on in Vivo Pharmacokinetics of Near-Infrared Cyanine/Monoclonal Antibody Conjugates.

    Science.gov (United States)

    Sato, Kazuhide; Nagaya, Tadanobu; Nakamura, Yuko; Harada, Toshiko; Nani, Roger R; Shaum, James B; Gorka, Alexander P; Kim, Insook; Paik, Chang H; Choyke, Peter L; Schnermann, Martin J; Kobayashi, Hisataka

    2015-09-01

    Near-infrared (NIR) fluorophores have several advantages over visible-light fluorophores, including superior tissue penetration and lower autofluorescence. We recently accessed a new class of readily synthesized NIR cyanines containing a novel C4'-O-alkyl linker, which provides both high chemical stability and excellent optical properties. In this study, we provide the first in vivo analysis of this new class of compounds, represented by the tetrasulfonate FNIR-774 (Frederick NIR 774). Monoclonal antibody (mAb) conjugates of FNIR-774 were compared to conjugates of the commercially available dye (IRDye800CW (IR800)), one of the most widely used NIR fluorophores for clinical translation. Both dyes were conjugated to panitumumab (pan) or cetuximab (cet) with ratios of 1:2 or 1:5. Conjugates of both dyes demonstrated similar quenching capacity, stability, and brightness in target cells in vitro. In contrast, in vivo imaging in mice showed different pharmacokinetics between pan-FNIR-774 (1:5) and pan-IR800 (1:5), or cet-FNIR-774 (1:5) and cet-IR800 (1:5). Particularly at the higher labeling density, mAb-FNIR-774 conjugates showed superior specific accumulation in tumors compared with mAb-IR800 conjugates. Thus, FNIR-774 conjugates showed superior in vivo pharmacokinetics compared with IR800 conjugates, independent of the mAb. These results suggest that FNIR-774 is a promising fluorescent probe for NIR optical imaging. PMID:26261913

  3. Chromatography-based methods for determining molar extinction coefficients of cytotoxic payload drugs and drug antibody ratios of antibody drug conjugates.

    Science.gov (United States)

    Wang, Chunlei; Chen, Sike; Caceres-Cortes, Janet; Huang, Richard Y-C; Tymiak, Adrienne A; Zhang, Yingru

    2016-07-15

    UV spectrophotometry is widely used to determine the molar extinction coefficients (MECs) of cytotoxic drugs as well as the drug antibody ratios (DARs) of antibody drug conjugates (ADCs). However, the unknown purity of a drug due to interfering impurities can lead to erroneous MECs and DARs. Hence, reliable methods to accurately determine purity and the MECs of drugs with limited quantity is urgently needed in Drug Discovery. Such a method has been developed. It achieves absolute purity and accurate MEC determination by a single automated HPLC analysis that uses less than 5μg of material. Specifically, analytical HPLC separation with online UV detection was used to resolve impurities and measure absorbance from only the compound of interest. Simultaneously, an online chemiluminescence nitrogen detector (CLND) was used to determine the concentration of the analyte. The MECs were then calculated from the absorbance and concentration results. The accuracy of the method was demonstrated using caffeine and a commercial cytotoxic drug, DM1. This approach is particularly suited to analyzing mixtures or samples with low purities. Excellent reproducibility was demonstrated by analyzing a proprietary drug with linker synthesized from different batches with very different levels of purity. In addition, the MECs of drug with linker, along with ADC peak areas measured from size exclusion chromatography (SEC), were used to calculate DARs for 21 in-house ADCs. The DAR results were consistent with those obtained by MS analysis. PMID:27286648

  4. Understanding How the Stability of the Thiol-Maleimide Linkage Impacts the Pharmacokinetics of Lysine-Linked Antibody-Maytansinoid Conjugates.

    Science.gov (United States)

    Ponte, Jose F; Sun, Xiuxia; Yoder, Nicholas C; Fishkin, Nathan; Laleau, Rassol; Coccia, Jennifer; Lanieri, Leanne; Bogalhas, Megan; Wang, Lintao; Wilhelm, Sharon; Widdison, Wayne; Pinkas, Jan; Keating, Thomas A; Chari, Ravi; Erickson, Hans K; Lambert, John M

    2016-07-20

    Antibody-drug conjugates (ADCs) have become a widely investigated modality for cancer therapy, in part due to the clinical findings with ado-trastuzumab emtansine (Kadcyla). Ado-trastuzumab emtansine utilizes the Ab-SMCC-DM1 format, in which the thiol-functionalized maytansinoid cytotoxic agent, DM1, is linked to the antibody (Ab) via the maleimide moiety of the heterobifunctional SMCC linker. The pharmacokinetic (PK) data for ado-trastuzumab emtansine point to a faster clearance for the ADC than for total antibody. Cytotoxic agent release in plasma has been reported with nonmaytansinoid, cysteine-linked ADCs via thiol-maleimide exchange, for example, brentuximab vedotin. For Ab-SMCC-DM1 ADCs, however, the main catabolite reported is lysine-SMCC-DM1, the expected product of intracellular antibody proteolysis. To understand these observations better, we conducted a series of studies to examine the stability of the thiol-maleimide linkage, utilizing the EGFR-targeting conjugate, J2898A-SMCC-DM1, and comparing it with a control ADC made with a noncleavable linker that lacked a thiol-maleimide adduct (J2898A-(CH2)3-DM). We employed radiolabeled ADCs to directly measure both the antibody and the ADC components in plasma. The PK properties of the conjugated antibody moiety of the two conjugates, J2898A-SMCC-DM1 and J2898A-(CH2)3-DM (each with an average of 3.0 to 3.4 maytansinoid molecules per antibody), appear to be similar to that of the unconjugated antibody. Clearance values of the intact conjugates were slightly faster than those of the Ab components. Furthermore, J2898A-SMCC-DM1 clears slightly faster than J2898A-(CH2)3-DM, suggesting that there is a fraction of maytansinoid loss from the SMCC-DM1 ADC, possibly through a thiol-maleimide dependent mechanism. Experiments on ex vivo stability confirm that some loss of maytansinoid from Ab-SMCC-DM1 conjugates can occur via thiol elimination, but at a slower rate than the corresponding rate of loss reported for thiol

  5. In Vivo Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nano-Graphene

    OpenAIRE

    Hong, Hao; Yang, Kai; Zhang, Yin; Engle, Jonathan W.; Feng, Liangzhu; Yang, Yunan; Nayak, Tapas R.; Goel, Shreya; Bean, Jero; Theuer, Charles P.; Barnhart, Todd E.; Liu, Zhuang; Cai, Weibo

    2012-01-01

    Herein we demonstrate that nano-graphene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e. endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nano-graphene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO conjugates were investigated with serial non-invasive positron emission tomography (PET) imaging and biodistribution studies, which were val...

  6. Development of indirect competitive fluorescence immunoassay for 2,2',4,4'-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels

    Science.gov (United States)

    An indirect competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels was developed on 96-well plates for the identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in aqueous samples. A hapten, 2,4,2'-tribromodiphenyl ether-4’-aldehyde was sy...

  7. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity

    NARCIS (Netherlands)

    Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F.O.; Diebold, S.S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is par

  8. In vitro and in vivo imaging of prostate cancer angiogenesis using anti-vascular endothelial growth factor receptor 2 antibody-conjugated quantum dot

    International Nuclear Information System (INIS)

    Authors aimed to determine the targeting ability of vascular endothelial growth factor receptor 2 (VEGFR2)-conjugated quantum dots (QDs) in vitro, and apply it for a xenograft prostate cancer mouse model. Conjugation reaction of QDs was performed by using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and sulfo-(N-hydroxysulfosuccinimide) (Sulfo-NHS). The human umbilical vein cord endothelial cells (HUVECs) were incubated with QDs, conjugated with antiVGFR2, to see a specific binding in vitro. Fluorescent cell images were taken by a confocal microscope. The human prostate cancer cells (PC3) were injected to five nude mice on hind limbs to make the xenograft tumor model. QD-antiVEGFR2 antibody complex was injected into the tumor model and fluorescence measurements were performed at 1, 4, 9, 12, 15, and 24 hours after the injection. The specific interaction between HUVECs and QD-antiVEGFR2 antibody was clearly shown in vitro. The in vivo fluorescence image disclosed that there was an increased signal of tumor, 12 hours after the injection of QDs. By showing endothelial cells binding with QDs-antiVEGFR2 antibodyand an experimental application of the antibody for VEGFR2 imaging in the prostate cancer xenograft mouse model, we suggests that the antibody-conjugated QDs can be a potential imaging tool for angiogenesis of the cancer.

  9. In vitro and in vivo imaging of prostate cancer angiogenesis using anti-vascular endothelial growth factor receptor 2 antibody-conjugated quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Haejin; Lee, Jiyeon; Song, Rita; Lee, Jung Han [Medicinal Chemistry Laboratory, Institute Pasteur Korea (IP-K), Seongnam (Korea, Republic of); Hwang, Sung Il; Lee, Hak Jong [Seoul National University Bundang Hospital, Institute of Radiation Medicine, Seoul National University Medical Research Center, Clinical Research Institute, Seongnam (Korea, Republic of); Kim, Young Hwa [Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2013-01-15

    Authors aimed to determine the targeting ability of vascular endothelial growth factor receptor 2 (VEGFR2)-conjugated quantum dots (QDs) in vitro, and apply it for a xenograft prostate cancer mouse model. Conjugation reaction of QDs was performed by using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and sulfo-(N-hydroxysulfosuccinimide) (Sulfo-NHS). The human umbilical vein cord endothelial cells (HUVECs) were incubated with QDs, conjugated with antiVGFR2, to see a specific binding in vitro. Fluorescent cell images were taken by a confocal microscope. The human prostate cancer cells (PC3) were injected to five nude mice on hind limbs to make the xenograft tumor model. QD-antiVEGFR2 antibody complex was injected into the tumor model and fluorescence measurements were performed at 1, 4, 9, 12, 15, and 24 hours after the injection. The specific interaction between HUVECs and QD-antiVEGFR2 antibody was clearly shown in vitro. The in vivo fluorescence image disclosed that there was an increased signal of tumor, 12 hours after the injection of QDs. By showing endothelial cells binding with QDs-antiVEGFR2 antibodyand an experimental application of the antibody for VEGFR2 imaging in the prostate cancer xenograft mouse model, we suggests that the antibody-conjugated QDs can be a potential imaging tool for angiogenesis of the cancer.

  10. A New Triglycyl Peptide Linker for Antibody-Drug Conjugates (ADCs) with Improved Targeted Killing of Cancer Cells.

    Science.gov (United States)

    Singh, Rajeeva; Setiady, Yulius Y; Ponte, Jose; Kovtun, Yelena V; Lai, Katharine C; Hong, E Erica; Fishkin, Nathan; Dong, Ling; Jones, Gregory E; Coccia, Jennifer A; Lanieri, Leanne; Veale, Karen; Costoplus, Juliet A; Skaletskaya, Anna; Gabriel, Rabih; Salomon, Paulin; Wu, Rui; Qiu, Qifeng; Erickson, Hans K; Lambert, John M; Chari, Ravi V J; Widdison, Wayne C

    2016-06-01

    A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties. Mol Cancer Ther; 15(6); 1311-20. ©2016 AACR. PMID:27197308

  11. Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation.

    Science.gov (United States)

    Rickert, Mathias; Strop, Pavel; Lui, Victor; Melton-Witt, Jody; Farias, Santiago Esteban; Foletti, Davide; Shelton, David; Pons, Jaume; Rajpal, Arvind

    2016-02-01

    Applications of microbial transglutaminase (mTGase) produced from Streptomyces mobarensis (S. mobarensis) were recently extended from food to pharmaceutical industry. To use mTGase for clinical applications, like generation of site specific antibody drug conjugates, it would be beneficial to manufacture mTGase in Escherichia coli (E. coli). To date, attempts to express recombinant soluble and active S. mobarensis mTGase have been largely unsuccessful. mTGase from S. mobarensis is naturally expressed as proenzyme and stepwise proteolytically processed into its active mature form outside of the bacterial cell. The pro-domain is essential for correct folding of mTGase as well as for inhibiting activity of mTGase inside the cell. Here, we report a genetically modified mTGase that has full activity and can be expressed at high yields in the cytoplasm of E. coli. To achieve this we performed an alanine-scan of the mTGase pro-domain and identified mutants that maintain its chaperone function but destabilize the cleaved pro-domain/mTGase interaction in a temperature dependent fashion. This allows proper folding of mTGase and keeps the enzyme inactive during expression at 20°C, but results in full activity when shifted to 37°C due to loosen domain interactions. The insertion of the 3C protease cleavage site together with pro-domain alanine mutants Tyr14, Ile24, or Asn25 facilitate high yields (30-75 mg/L), and produced an enzyme with activity identical to wild type mTGase from S. mobarensis. Site-specific antibody drug conjugates made with the E .coli produced mTGase demonstrated identical potency in an in vitro cell assay to those made with mTGase from S. mobarensis. PMID:26481561

  12. Visualization of Pseudomonas aeruginosa O antigens by using a protein A-dextran-colloidal gold conjugate with both immunoglobulin G and immunoglobulin M monoclonal antibodies.

    OpenAIRE

    Lam, J S; Lam, M. Y.; MacDonald, L A; Hancock, R E

    1987-01-01

    Two lipopolysaccharide O-antigen-specific monoclonal antibodies, MA1-8 (an immunoglobulin G1 [IgG1]) and MF15-4 (an IgM), were used to localize the O antigen of the lipopolysaccharide of Pseudomonas aeruginosa PAO1. A protein A-dextran-gold conjugate with an average particle diameter of 12.5 nm was used to label bacterial cells treated with MA1-8, while a second antibody (goat anti-mouse IgM) was required before the same probe could interact with cells treated with the IgM antibody MF15-4. Bo...

  13. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  14. Immunogenicity of a promiscuous T cell epitope peptide based conjugate vaccine against benzo[a]pyrene: redirecting antibodies to the hapten.

    Directory of Open Access Journals (Sweden)

    Mario T Schellenberger

    Full Text Available The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142-51. Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15-56%. We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted.

  15. Immunogenicity of a promiscuous T cell epitope peptide based conjugate vaccine against benzo[a]pyrene: redirecting antibodies to the hapten.

    Science.gov (United States)

    Schellenberger, Mario T; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Revets, Dominique; Muller, Claude P

    2012-01-01

    The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142-51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15-56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted. PMID:22666501

  16. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines

    Science.gov (United States)

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela

    2016-01-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  17. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines.

    Science.gov (United States)

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela; Van Der Wielen, Marie

    2016-07-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  18. Site-Directed Conjugation of Antibodies to Apoferritin Nanocarrier for Targeted Drug Delivery to Prostate Cancer Cells.

    Science.gov (United States)

    Dostalova, Simona; Cerna, Tereza; Hynek, David; Koudelkova, Zuzana; Vaculovic, Tomas; Kopel, Pavel; Hrabeta, Jan; Heger, Zbynek; Vaculovicova, Marketa; Eckschlager, Tomas; Stiborova, Marie; Adam, Vojtech

    2016-06-15

    Herein, we describe a novel approach for targeting of ubiquitous protein apoferritin (APO)-encapsulating doxorubicin (DOX) to prostate cancer using antibodies against prostate-specific membrane antigen (PSMA). The conjugation of anti-PSMA antibodies and APO was carried out using HWRGWVC heptapeptide, providing their site-directed orientation. The prostate-cancer-targeted and nontargeted nanocarriers were tested using LNCaP and HUVEC cell lines. A total of 90% of LNCaP cells died after treatment with DOX (0.25 μM) or DOX in nontargeted and prostate-cancer-targeted APO, proving that the encapsulated DOX toxicity for LNCaP cells remained the same. Free DOX showed higher toxicity for nonmalignant cells, whereas the toxicity was lower after treatment with the same dosage of APO-encapsulated DOX (APODOX) and even more in prostate-cancer-targeted APODOX. Hemolytic assay revealed exceptional hemocompatibility of the entire nanocarrier. The APO encapsulation mechanism ensures applicability using a wide variety of chemotherapeutic drugs, and the presented surface modification enables targeting to various tumors. PMID:27219717

  19. Comparative sensitivity of 125I-protein A and enzyme-conjugated antibodies for detection of immunoblotted proteins

    International Nuclear Information System (INIS)

    Immunoblotting is a powerful technique for the detection of small amounts of immunologically interesting proteins in unpurified preparations. Iodinated protein A (PA) has been widely used as a second antibody for detection of proteins; however, it does not bind equally well to immunoglobulins from different species nor does it bind to all subclasses of immunoglobulin G (IgG). We compared the sensitivity of [125I]PA with those of both horseradish peroxidase-conjugated second antibodies (HRP) and glucose oxidase-anti-glucose oxidase (GAG) soluble complexes for visualizing bovine serum albumin, human IgG, or human C3 which was either dot blotted or electroblotted to nitrocellulose. [125I]PA was uniformly 10- to 100-fold less sensitive than either HRP or GAG. GAG was more sensitive than HRP except for C3 (electroblotting) and bovine serum albumin and IgG (dot blotting), in which they were equivalent. In general, dot blotting was 10- to 1000-fold more sensitive than electroblotting. Although relative sensitivities varied depending on the proteins analyzed and the antisera used, GAG appeared to be superior to [125I]PA and HRP for detection of immunoblotted proteins

  20. Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye

    International Nuclear Information System (INIS)

    Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FITC conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity

  1. Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Ho; Choi, Tae Hyun; Woo, Kwang Sun; Chung, Wee Sup; Kang, Joo Hyun; Jeong, Su Young; Choi, Chang Woon; Lim, Sang Moo; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-10-15

    Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FITC conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity

  2. Complement C3d conjugation to anthrax protective antigen promotes a rapid, sustained, and protective antibody response.

    Directory of Open Access Journals (Sweden)

    Ravi V Kolla

    Full Text Available B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4 of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure.

  3. Incubation-free electrochemical immunoassay for diethylstilbestrol in milk using gold nanoparticle-antibody conjugates for signal amplification

    International Nuclear Information System (INIS)

    We report on a novel enzyme-enhanced label for the electrochemical determination of diethylstilbestrol (DES). The label was obtained by orientation-controlled immobilization of a multiplex horseradish peroxidase (HRP) conjugated polymer on gold nanoparticles (AuNPs) using the Envision reagent (EV) which is an enzyme-polymer complex that contains HRP and anti-IgG antibody in a polydextrin amine skeleton. The AuNPs were modified with Concanavalin A (Con A) and served as a carrier for immobilization of the EV−DES antibody composite. This resulted in a bioconjugate of the type AuNP−Con A−EV−DES Ab which was employed as the label. On exposure to samples containing DES, a sandwich immunocomplex is formed between antibody against DES (which was immobilized on a glassy carbon electrode and is acting as a capture probe), DES (the analyte), and the above label as the signal tracer. Hemin was used as an electronic mediator in the reaction of HRP. The HRP on the label catalyzes the oxidative formation of hydrogen peroxide at pH 7.0, and this induces an increased reductive current in the presence of hemin as an electron mediator. Under optimal conditions, the current increases linearly with increasing concentrations of DES in the range from 5 to 500 pg · mL−1, with a detection limit as low as 2 pg · mL−1 (at an S/N of 3). The method exhibits high selectivity and good stability. It works without incubation so that the time for an assay is shortened to 5 min. The assays was successfully applied to the determination of DES in milk samples. (author)

  4. Radionuclide antibody-conjugates: developments and applications to obtain a targeted cancer therapy

    OpenAIRE

    Gjorgieva Ackova, Darinka; Smilkov, Katarina; Makreski, Petre; Stafilov, Trajče; Duatti, Adriano; Janevik-Ivanovska, Emilija

    2015-01-01

    Understanding the behaviour and function of biomolecules at the molecular level is key to the discovery and development of new drugs, as well as diagnostic techniques. The characterization of therapeutic monoclonal antibodies (mAbs) poses many challenges compared to those of low-molecular mass drugs because of their inherent complexity due to their protein nature. Achievements in this field of science have changed the way that drugs are being designed and developed nowadays. Vibrational spect...

  5. Detection of Chlamydia trachomatis inclusions in Mccoy cell cultures with fluorescein-conjugated monoclonal antibodies.

    OpenAIRE

    Stamm, W. E.; Tam, M; Koester, M; Cles, L

    1983-01-01

    We compared two methods for identification of Chlamydia trachomatis inclusions in McCoy cell monolayers: conventional iodine staining and immunofluorescence staining with monoclonal antibodies against the species-specific major outer membrane protein antigen of C. trachomatis. Among 878 urethral and cervical specimens tested in parallel, the immunofluorescence method detected eightfold more inclusions per monolayer, identified a higher proportion of positive specimens on first passage (98 ver...

  6. Immunogenicity of a Promiscuous T Cell Epitope Peptide Based Conjugate Vaccine against Benzo[a]pyrene: Redirecting Antibodies to the Hapten

    OpenAIRE

    Schellenberger, Mario T; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Revets, Dominique; Muller, Claude P.

    2012-01-01

    The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142–51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) i...

  7. Elevated levels of maternal anti-tetanus toxin antibodies do not suppress the immune response to a Haemophilus influenzae type b polyribosylphosphate-tetanus toxoid conjugate vaccine.

    OpenAIRE

    Panpitpat, C.; Thisyakorn, U.; Chotpitayasunondh, T; Fürer, E; Que, J U; Hasler, T.; Cryz, S J

    2000-01-01

    Reported are the effects of elevated levels of anti-tetanus antibodies on the safety and immune response to a Haemophilus influenzae type b polyribosylphosphate (PRP)-tetanus toxoid conjugate (PRP-T) vaccine. A group of Thai infants (n = 177) born to women immunized against tetanus during pregnancy were vaccinated with either a combined diphtheria-tetanus-pertussis (DTP) PRP-T vaccine or DTP and a PRP-conjugate vaccine using Neisseria meningitidis group B outer-membrane proteins as a carrier ...

  8. Fluorophore-conjugated antibodies for imaging and resection of GI tumors

    Science.gov (United States)

    Bouvet, Michael; Hoffman, Robert M.

    2016-03-01

    Negative surgical margins are critical to prevent recurrence in cancer surgery. This is because with current technology in many cases negative margins are impossible due the inability of the surgeon to detect the margin. Our laboratory has developed fluorophore-labeled monoclonal antibodies to aid in cancer visualization in orthotopic nude mouse models of human gastrointestinal (GI) cancer in order to achieve negative margins in fluorescence-guided surgery (FGS). The technologies described herein have the potential to change the paradigm of surgical oncology to engender significantly improved outcomes.

  9. Prodrugs of anthracyclines for chemotherapy via enzyme-monoclonal antibody conjugates.

    Science.gov (United States)

    Gesson, J P; Jacquesy, J C; Mondon, M; Petit, P; Renoux, B; Andrianomenjanahary, S; Dufat-Trinh Van, H; Koch, M; Michel, S; Tillequin, F

    1994-10-01

    New prodrugs of daunorubicin, 1c, 1e and 2c, including a galactopyranosyl residue linked to the N-3' of the daunosaminyl moiety through substituted o- or p-benzyloxycarbonyl groups were synthesized. Their low cytotoxicity and high stability in plasma fulfil the conditions for antibody-directed enzyme prodrug therapy (ADEPT). Enzymatic hydrolysis using alpha-D-galactosidase gives rise to daunorubicin by subsequent self-elimination of the spacers. However, elimination clearly depends on the aromatic substitution pattern, as demonstrated especially by comparison with non-substituted analogues. PMID:7945725

  10. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugates.

    Science.gov (United States)

    Bjorn, M J; Larrick, J; Piatak, M; Wilson, K J

    1984-10-23

    Two translational inhibitors (pokeweed antiviral protein and pokeweed antiviral protein II) isolated from the leaves of the pokeweed plant, Phytolacca americana, were characterized as to their behavior during reverse-phase HPLC and their amino-terminal sequences. Alignment of the sequences demonstrated that a substantial degree of homology was present (10 of 29 identical residues). Pokeweed antiviral protein was shown by reverse-phase chromatography to be composed of at least two components, pokeweed antiviral proteina and pokeweed antiviral proteinb, which comigrated on sodium dodecyl sulfate polyacrylamide gel electrophoresis, shared identical N-terminal amino-acid sequences through residue 31, and had similar specific activities in a cell-free translation inhibition assay. Pokeweed antiviral protein II was covalently coupled to a monoclonal antibody that recognizes the transferrin receptor (anti-transferrin receptor). The disulfide-linked conjugate inhibited protein synthesis in the human breast tumor cell line MCF-7, whereas anti-transferrin receptor, pokeweed antiviral protein II, or an immunotoxin composed of an irrelevant antiserum and pokeweed antiviral protein II, were nontoxic. The inhibitory dose 50% of anti-transferrin receptor-pokeweed antiviral protein II for MCF-7 cells was 0.7 nM, whereas the corresponding ricin A chain conjugate (anti-transferrin receptor-ricin A chain) was more potent with a inhibitory dose 50% of 0.1 nM. Pokeweed antiviral protein II can be added to the growing list of translation inhibitors that are effective as components of immunotoxins in vitro. Additional studies will be needed to determine whether pokeweed antiviral protein II immunotoxins provide advantageous properties for in vivo applications. PMID:6091760

  11. Increment in Drug Loading on an Antibody-Drug Conjugate Increases Its Binding to the Human Neonatal Fc Receptor in Vitro.

    Science.gov (United States)

    Brachet, Guillaume; Respaud, Renaud; Arnoult, Christophe; Henriquet, Corinne; Dhommée, Christine; Viaud-Massuard, Marie-Claude; Heuze-Vourc'h, Nathalie; Joubert, Nicolas; Pugnière, Martine; Gouilleux-Gruart, Valérie

    2016-04-01

    Antibody-drug conjugates, such as brentuximab vedotin (BTXv), are an innovative category of monoclonal antibodies. BTXv is bioconjugated via the chemical reduction of cysteine residues involved in disulfide bonds. Species of BTXv containing zero, two, four, six, or eight vedotin molecules per antibody coexist in the stock solution. We investigated the influence of drug loading on the binding of the antibody to FcRn, a major determinant of antibody pharmacokinetics in humans. We developed a hydrophobic interaction chromatography (HIC) method for separating the different species present in the stock solution of BTXv, and we purified and characterized the collected species before use. We assessed the binding of these different species to FcRn in a cellular assay based on flow cytometry and surface plasmon resonance. HIC separated the different species of BTXv and allowed their collection at adequate levels of purity. Physicochemical characterization showed that species with higher levels of drug loading tended to form more aggregates. FcRn binding assays showed that the most conjugated species, particularly those with saturated loading, interacted more strongly than unconjugated BTXv with the FcRn. PMID:26900766

  12. DOTA-Functionalized Polylysine: A High Number of DOTA Chelates Positively Influences the Biodistribution of Enzymatic Conjugated Anti-Tumor Antibody chCE7agl

    OpenAIRE

    Jürgen Grünberg; Simone Jeger; Dikran Sarko; Patrick Dennler; Kurt Zimmermann; Walter Mier; Roger Schibli

    2013-01-01

    Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N'-N''-N'''-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decaly...

  13. DOTA-Functionalized Polylysine: A High Number of DOTA Chelates Positively Influences the Biodistribution of Enzymatic Conjugated Anti-Tumor Antibody chCE7agl

    OpenAIRE

    Grünberg, Jürgen; Jeger, Simone; Sarko, Dikran; Dennler, Patrick; Zimmermann, Kurt; Mier, Walter; Schibli, Roger

    2013-01-01

    Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N′-N′′-N′′′-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decaly...

  14. Use of a charge reducing agent to enable intact mass analysis of cysteine-linked antibody-drug-conjugates by native mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kamila J. Pacholarz

    2016-06-01

    Full Text Available Antibody-drug-conjugates (ADC are a growing class of anticancer biopharmaceuticals. Conjugation of cysteine linked ADCs, requires initial reduction of mAb inter-chain disulfide bonds, as the drugs are attached via thiol chemistry. This results in the active mAb moiety being transformed from a covalently linked tetramer to non-covalently linked complexes, which hinders precise determination of drug load with LC–MS. Here, we show how the addition of the charge reducing agent triethylammonium acetate (TEAA preserves the intact mAb structure, is well suited to the study of cysteine linked conjugates and facilitates easy drug load determination by direct infusion native MS.

  15. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles.

    Science.gov (United States)

    Chen, Feng; Hong, Hao; Zhang, Yin; Valdovinos, Hector F; Shi, Sixiang; Kwon, Glen S; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-10-22

    Since the first use of biocompatible mesoporous silica (mSiO2) nanoparticles as drug delivery vehicles, in vivo tumor targeted imaging and enhanced anticancer drug delivery has remained a major challenge. In this work, we describe the development of functionalized mSiO2 nanoparticles for actively targeted positron emission tomography (PET) imaging and drug delivery in 4T1 murine breast tumor-bearing mice. Our structural design involves the synthesis, surface functionalization with thiol groups, PEGylation, TRC105 antibody (specific for CD105/endoglin) conjugation, and (64)Cu-labeling of uniform 80 nm sized mSiO2 nanoparticles. Systematic in vivo tumor targeting studies clearly demonstrated that (64)Cu-NOTA-mSiO2-PEG-TRC105 could accumulate prominently at the 4T1 tumor site via both the enhanced permeability and retention effect and TRC105-mediated binding to tumor vasculature CD105. As a proof-of-concept, we also demonstrated successful enhanced tumor targeted delivery of doxorubicin (DOX) in 4T1 tumor-bearing mice after intravenous injection of DOX-loaded NOTA-mSiO2-PEG-TRC105, which holds great potential for future image-guided drug delivery and targeted cancer therapy. PMID:24083623

  16. Detection of MUC1-Expressing Ovarian Cancer by C595 Monoclonal Antibody-Conjugated SPIONs Using MR Imaging

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2013-01-01

    Full Text Available The aim of this study is to find out the development and application of MUC1-expressing ovarian cancer (OVCAR3 by C595 monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles (SPIONs using MR imaging. At the end, its use as a nanosized contrast agent MR imaging probe for ovarian cancer detection was investigated. The strategy is to use SPIONs attached to C595 mAb that binds to the MUC1, to specifically detect ovarian cancer cells. Anticancer effects and MR imaging parameters of the prepared nanoconjugate was investigated both under in vitro and in vivo experiments. The characterization of nanoconjugate includes its size, cell toxicity, flow cytometry, Prussian blue staining test and its cellular uptake as well as its biodistribution, and MR imaging was also investigated. The findings of the study showed good tumor accumulation and detection, no in vivo toxicity, and potential selective antiovarian cancer activity. Overall, based on the findings SPIONs-C595 nanosized probe is a selective ovarian molecular imaging modality. Further subsequent clinical trials appear warranted.

  17. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer

    Directory of Open Access Journals (Sweden)

    Emily S Day

    2010-06-01

    Full Text Available Emily S Day, Lissett R Bickford, John H Slater, Nicholas S Riggall, Rebekah A Drezek, Jennifer L WestDepartment of Bioengineering, Rice University, Houston, TX, USAAbstract: The goal of this study was to develop near-infrared (NIR resonant gold-gold sulfide nanoparticles (GGS-NPs as dual contrast and therapeutic agents for cancer management via multiphoton microscopy followed by higher intensity photoablation. We demonstrate that GGS-NPs exposed to a pulsed, NIR laser exhibit two-photon induced photoluminescence that can be utilized to visualize cancerous cells in vitro. When conjugated with anti-HER2 antibodies, these nanoparticles specifically bind SK-BR-3 breast carcinoma cells that overexpress the HER2 receptor, enabling the cells to be imaged via multiphoton microscopy with an incident laser power of 1 mW. Higher excitation power (50 mW could be employed to induce thermal damage to the cancerous cells, producing extensive membrane blebbing within seconds leading to cell death. GGS-NPs are ideal multifunctional agents for cancer management because they offer the ability to pinpoint precise treatment sites and perform subsequent thermal ablation in a single setting.Keywords: cancer, nanomedicine, multiphoton microscopy, photoluminescence, photothermal therapy, theranostics

  18. Risk-based scientific approach for determination of extractables/leachables from biomanufacturing of antibody-drug conjugates (ADCs).

    Science.gov (United States)

    Ding, Weibing

    2013-01-01

    Recent developments in biopharmaceutical processes twined with a desire to remove cleaning and cross-contamination issues from drug production have led to the widespread introduction of single-use technologies and systems within operations. One key area that end users need to address with the advent of these single-use solutions is the potential for increased levels of extractables and leachables within a process, which need to be evaluated and understood as part of any regulatory submission. A science-based and practical method for characterization of extractables and leachables from single-use systems used in manufacturing antibody-drug conjugates has been developed and described in detail. This risk-based approach minimizes the amount of test work while meeting the regulatory requirements to ensure the drug safety and quality. The test design is optimized and the analytical methods (gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry, and inductively coupled plasma/mass spectrometry) are shown to be suitable for quantifying and identifying the extracted chemical compounds. Application of this characterization method speeds up the filing process for qualification and validation of single-use systems used in bioprocesses. PMID:23913157

  19. Novel antibody conjugates for enhanced tumor uptake. Final report, September 1, 1992--August 31, 1997

    International Nuclear Information System (INIS)

    Progress in three areas of research is summarized. These are as follows: Labeling Monoclonal antibodies (MAbs) with Tc-99m and Re-186; human melanoma tumors and specific MAbs; evaluation of biological response modifiers (BRM). The techniques of labeling MAbs (IgM, IgG, F(ab')2 or F(ab')) with Tc-99m was developed in the author's laboratory in 1989 and that with Re-186 in 1992. The techniques are in daily use in the laboratory since then and are adapted to a convenient kit formulation. The metal ions are bound at MAb sulfhydryls generated by a controlled reduction of a pair of disulfide groups. At least two types of MAbs labeled with Tc-99m by this method have been administered into patients and excellent diagnostic results have been obtained. Over the past two and a half years the author has been successfully growing human melanoma tumors in athymic Balb/c nude mice. The cell LINE, WM-9, was obtained from Dr. D Herlyn's laboratory at Wistar Institute in Philadelphia. Sufficient quantities of antihuman melanoma specific antibodies ME 31.3 (Wistar, IgG-1) and MEM-136 (Hybritech, IgG-2A) and their F(ab')2 fragments are also available in the laboratory. The use of BRM is a rapidly evolving field. Over the past four years, the author has evaluated a number of BRMs in a quest for agents that may augment MAb tumor uptake. These included interferon-α; a pokeweed mitogen and Ukrain, an alkaloid separated from a plant Chelideonium Majis. In these preliminary studies, normal Balb/c mice were used and the BRMs were given i.p. one hour prior to the i.v. administration of tumor necrosis factor or an MAb (TNT-F(ab')2) labeled with Tc-99m which served as an imaging agent. Animals were sacrificed at 1.5 hr or 4 hrs post-injection. Highlights of the work are given here in a table

  20. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells

    OpenAIRE

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; Liu, Gang; ZHANG, FENGCHUN; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upo...

  1. Preparation of HIV monoclonal antibody-conjugated pulchellin in order to study its intracellular trafficking pathway in HIV-infected cells by confocal microscopy

    Science.gov (United States)

    Sadraeian, M.; Tsutae, F. M.; Moreira, H. H. T.; Araujo, A. P. U.; Guimarães, F. E. G.; Pincus, S. H.

    2015-06-01

    Pulchellin is a type 2 of ribosome-inactivating proteins isolated from some seeds significantly growing in Brazil. It is a potent agent to inhibit the protein synthesis in cancer cells and also HIV-infected cells. Pulchellin can be conjugated to HIV monoclonal antibodies to specifically target the HIV-infected cells. To analyze the protein synthesis inhibition by Pulchellin, the intracellular localization of the immunoconjugate should be compared to Pulchellin. In this case, the intracellular trafficking of this protein in cells can be determined by confocal microscopy. In our study, we utilized Pulchellin to construct HIV monoclonal antibody-conjugated Pulchellin A chain in order to target HIV-infected lymphocyte cells. Afterward the conjugation was labeled with the superior Alexa Fluor 488 dye. As a subsequent step, we are interested in studying the intracellular trafficking pathway of this novel conjugation in HIV-infected cells by confocal microscopy. Moreover, possible quantitative methods for fluorescent labeling of the immunoconjugate during confocal microscopy will be investigated.

  2. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Takashi Jin

    2009-11-01

    Full Text Available The early detection of HER2 (human epidermal growth factor receptor 2 status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC. As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs with fluorescence quantum yields of 0.23~0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission on the fluorescence image of KPL-4 cells.

  3. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells.

    Science.gov (United States)

    Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M; Jin, Takashi

    2009-01-01

    The early detection of HER2 (human epidermal growth factor receptor 2) status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs) have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs) using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC). As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs) with fluorescence quantum yields of 0.23∼0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line) was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission) on the fluorescence image of KPL-4 cells. PMID:22291567

  4. Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT).

    Science.gov (United States)

    Nagaya, Tadanobu; Nakamura, Yuko; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L; Kobayashi, Hisataka

    2016-06-28

    Near infrared photoimmunotherapy (NIR-PIT), a targeted cancer therapy which uses an antibody-photo absorber conjugate (APC) and near infrared light exposure, dramatically improves nano-drug delivery into treated tumor beds due to enhanced vascular permeability. We investigated the micro-distribution of APCs in a variety of NIR-PIT treated tumors. Either cetuximab (cet) or trastuzumab (tra) conjugated with IR700 (cet-tra-IR700) was administered, as appropriate, to each mouse model of tumor. Tumor-bearing mice implanted with A431-GFP, MDAMB468-GFP, 3T3Her2-GFP or N87-GFP were separated into 5 groups: group 1=no treatment; group 2=cet-tra-IR700 i.v., no light exposure; group 3=cet-tra-IR700 i.v., NIR light exposure; group 4=cet-tra-IR700 i.v. and additional cet-tra-IR700 i.v. at 24h but no light exposure; group 5=cet-tra-IR700 i.v., NIR light exposure and additional cet-tra-IR700 i.v. immediately after NIR but no additional NIR light exposure. In vivo, ex vivo and microscopic fluorescence imaging was performed. Fluorescence from the surface of the tumor (s-tumor) was compared to fluorescence from deeper areas of the tumor (d-tumor). In general, there was no significant difference in the fluorescence intensity of GFP in the tumors among all groups, however the highest IR700 fluorescence intensity was consistently shown in group 5 tumors due to added APC after NIR-PIT. Fluorescence microscopy in all tumor types demonstrated that GFP relative fluorescence intensity (RFI) in s-tumor was significantly lower in group 3 and 5 (NIR-PIT groups) than in group 1, 2, and 4 (no NIR-PIT) yet there was no significant difference in d-tumor RFI among all groups. IR700 fluorescent RFI in the d-tumor was highest in group 5 (NIR-PIT+additional APC) compared to the other groups. Cell killing after NIR-PIT was primarily on the surface, however, APCs administered immediately after NIR-PIT penetrated deeper into tissue resulting in improved cell killing after a 2nd NIR-PIT session. This

  5. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  6. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection.

    Science.gov (United States)

    Birdsall, Robert E; McCarthy, Sean M; Janin-Bussat, Marie Claire; Perez, Michel; Haeuw, Jean-François; Chen, Weibin; Beck, Alain

    2016-01-01

    Conjugation processes and stability studies associated with the production and shelf life of antibody-drug conjugates (ADCs) can result in free (non-conjugated) drug species. These free drug species can increase the risk to patients and reduce the efficacy of the ADC. Despite stringent purification steps, trace levels of free drug species may be present in formulated ADCs, reducing the therapeutic window. The reduction of sample preparation steps through the incorporation of multidimensional techniques has afforded analysts more efficient methods to assess trace drug species. Multidimensional methods coupling size-exclusion and reversed phase liquid chromatography with ultra-violet detection (SEC-RPLC/UV) have been reported, but offer limited sensitivity and can limit method optimization. The current study addresses these challenges with a multidimensional method that is specific, sensitive, and enables method control in both dimensions via coupling of an on-line solid phase extraction column to RPLC with mass spectral detection (SPE-RPLC/MS). The proposed method was evaluated using an antibody-fluorophore conjugate (AFC) as an ADC surrogate to brentuximab vedotin and its associated parent maleimide-val-cit-DSEA payload and the derived N-acetylcysteine adduct formed during the conjugation process. Assay sensitivity was found to be 2 orders more sensitive using MS detection in comparison to UV-based detection with a nominal limit of quantitation of 0.30 ng/mL (1.5 pg on-column). Free-drug species were present in an unadulterated ADC surrogate sample at concentrations below 7 ng/mL, levels not detectable by UV alone. The proposed SPE-RPLC/MS method provides a high degree of specificity and sensitivity in the assessment of trace free drug species and offers improved control over each dimension, enabling straightforward integration into existing or novel workflows. PMID:26651262

  7. Concomitant administration of Mycobacterium bovis BCG with the meningococcal C conjugate vaccine to neonatal mice enhances antibody response and protective efficacy.

    Science.gov (United States)

    Brynjolfsson, Siggeir F; Bjarnarson, Stefania P; Mori, Elena; Del Giudice, Giuseppe; Jonsdottir, Ingileif

    2011-11-01

    Mycobacterium bovis BCG is administered to human neonates in many countries worldwide. The objective of the study was to assess if BCG could act as an adjuvant for polysaccharide-protein conjugate vaccines in newborns and thereby induce protective immunity against encapsulated bacteria in early infancy when susceptibility is high. We assessed whether BCG could enhance immune responses to a meningococcal C (MenC) conjugate vaccine, MenC-CRM(197), in mice primed as neonates, broaden the antibody response from a dominant IgG1 toward a mixed IgG1 and IgG2a/IgG2b response, and increase protective efficacy, as measured by serum bactericidal activity (SBA). Two-week-old mice were primed subcutaneously (s.c.) with MenC-CRM(197). BCG was administered concomitantly, a day or a week before MenC-CRM(197). An adjuvant effect of BCG was observed only when it was given concomitantly with MenC-CRM(197), with increased IgG response (P = 0.002) and SBA (8-fold) after a second immunization with MenC-CRM(197) without BCG, indicating increased T-cell help. In neonatal mice (1 week old) primed s.c. with MenC-CRM(197) together with BCG, MenC-polysaccharide (PS)-specific IgG was enhanced compared to MenC-CRM(197) alone (P = 0.0015). Sixteen days after the second immunization with MenC-CRM(197), increased IgG (P CRM(197) plus BCG showed affinity maturation and detectable SBA (SBA > 128). Thus, vaccination with a meningococcal conjugate vaccine (and possibly with other conjugates) may benefit from concomitant administration of BCG in the neonatal period to accelerate and enhance production of protective antibodies, compared to the current infant administration of conjugate which follows BCG vaccination at birth. PMID:21900528

  8. Novel Hybrid Compound of a Plinabulin Prodrug with an IgG Binding Peptide for Generating a Tumor Selective Noncovalent-Type Antibody-Drug Conjugate.

    Science.gov (United States)

    Muguruma, Kyohei; Yakushiji, Fumika; Kawamata, Ryosuke; Akiyama, Daichi; Arima, Risako; Shirasaka, Takuya; Kikkawa, Yamato; Taguchi, Akihiro; Takayama, Kentaro; Fukuhara, Takeshi; Watabe, Tetsuro; Ito, Yuji; Hayashi, Yoshio

    2016-07-20

    Although several approaches for making antibody-drug conjugates (ADC) have been developed, it has yet to be reported that an antibody binding peptide such as Z33 from protein A is utilized as the pivotal unit to generate the noncovalent-type ADC (NC-ADC). Herein we aim to establish a novel probe for NC-ADC by synthesizing the Z33-conjugated antitumor agent, plinabulin. Due to the different solubility of two components, including hydrophobic plinabulin and hydrophilic Z33, an innovative method with a solid-supported disulfide coupling reagent is required for the synthesis of the target compounds with prominent efficiency (29% isolated yield). We demonstrate that the synthesized hybrid exhibits a binding affinity against the anti-HER2 antibody (Herceptin) and the anti-CD71 antibody (6E1) (Kd = 46.6 ± 0.5 nM and 4.5 ± 0.56 μM, respectively) in the surface plasmon resonance (SPR) assay. In the cell-based assays, the hybrid provides a significant cytotoxicity in the presence of Herceptin against HER2 overexpressing SKBR-3 cells, but not against HER2 low-expressing MCF-7 cells. Further, it is noteworthy that the hybrid in combination with Herceptin induces cytotoxicity against Herceptin-resistant SKBR-3 (SKBR-3HR) cells. Similar results are obtained with the 6E1 antibody, suggesting that the synthesized hybrid can be widely applicable for NC-ADC using the antibody of interest. In summary, a series of evidence presented here strongly indicate that NC-ADCs have high potential for the next generation of antitumor agents. PMID:27304609

  9. Efficacy, but not antibody titer or affinity, of a heroin hapten conjugate vaccine correlates with increasing hapten densities on tetanus toxoid, but not on CRM197 carriers.

    Science.gov (United States)

    Jalah, Rashmi; Torres, Oscar B; Mayorov, Alexander V; Li, Fuying; Antoline, Joshua F G; Jacobson, Arthur E; Rice, Kenner C; Deschamps, Jeffrey R; Beck, Zoltan; Alving, Carl R; Matyas, Gary R

    2015-06-17

    Vaccines against drugs of abuse have induced antibodies in animals that blocked the biological effects of the drug by sequestering the drug in the blood and preventing it from crossing the blood-brain barrier. Drugs of abuse are too small to induce antibodies and, therefore, require conjugation of drug hapten analogs to a carrier protein. The efficacy of these conjugate vaccines depends on several factors including hapten design, coupling strategy, hapten density, carrier protein selection, and vaccine adjuvant. Previously, we have shown that 1 (MorHap), a heroin/morphine hapten, conjugated to tetanus toxoid (TT) and mixed with liposomes containing monophosphoryl lipid A [L(MPLA)] as adjuvant, partially blocked the antinociceptive effects of heroin in mice. Herein, we extended those findings, demonstrating greatly improved vaccine induced antinociceptive effects up to 3% mean maximal potential effect (%MPE). This was obtained by evaluating the effects of vaccine efficacy of hapten 1 vaccine conjugates with varying hapten densities using two different commonly used carrier proteins, TT and cross-reactive material 197 (CRM197). Immunization of mice with these conjugates mixed with L(MPLA) induced very high anti-1 IgG peak levels of 400-1500 μg/mL that bound to both heroin and its metabolites, 6-acetylmorphine and morphine. Except for the lowest hapten density for each carrier, the antibody titers and affinity were independent of hapten density. The TT carrier based vaccines induced long-lived inhibition of heroin-induced antinociception that correlated with increasing hapten density. The best formulation contained TT with the highest hapten density of ≥30 haptens/TT molecule and induced %MPE of approximately 3% after heroin challenge. In contrast, the best formulation using CRM197 was with intermediate 1 densities (10-15 haptens/CRM197 molecule), but the %MPE was approximately 13%. In addition, the chemical synthesis of 1, the optimization of the conjugation

  10. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2015-12-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining. PMID:26682358

  11. Elimination of Tumor Cells Using Folate Receptor Targeting by Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles in a Murine Breast Cancer Model

    Directory of Open Access Journals (Sweden)

    Evan S. Krystofiak

    2012-01-01

    Full Text Available Background. The chemotherapeutic treatment of cancer suffers from poor specificity for targeting the tumor cells and often results in adverse effects such as systemic toxicity, damage to nontarget tissues, and development of drug-resistant tumors in patients. Increasingly, drug nanocarriers have been explored as a way of lessening or overcoming these problems. In this study, antibody-conjugated Au-coated magnetite nanoparticles, in conjunction with inductive heating produced by exposure to an oscillating magnetic field (OMF, were evaluated for their effects on the viability of tumor cells in a murine model of breast cancer. Treatment effects were evaluated by light microscopy and SEM. Results. 4T1 mammary epithelial carcinoma cells overexpressing the folate receptor were targeted with an anti-folate receptor primary antibody, followed by labeling with secondary antibody-conjugated Au-coated magnetite nanoparticles. In the absence of OMF exposure, nanoparticle labeling had no effect on 4T1 cell viability. However, following OMF treatment, many of the labeled 4T1 cells showed extensive membrane damage by SEM analysis, and dramatically reduced viability as assessed using a live/dead staining assay. Conclusions. These results demonstrate that Au-coated magnetite targeted to tumor cells through binding to an overexpressed surface receptor, in the presence of an OMF, can lead to tumor cell death.

  12. Photoluminescence of double core/shell infrared (CdSeTe)/ZnS quantum dots conjugated to Pseudo rabies virus antibodies

    Science.gov (United States)

    Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.

    2013-06-01

    Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.

  13. Development and screening of a series of antibody-conjugated and silica coated iron-oxide nanoparticles for targeting the Prostate Specific Membrane Antigen

    Science.gov (United States)

    Mukherjee, Amarnath; Darlington, Thomas; Baldwin, Richard; Holz, Charles; Olson, Sage; Kulkarni, Prakash; DeWeese, Theodore L.; Getzenberg, Robert H.; Ivkov, Robert

    2014-01-01

    The Prostate Specific Membrane Antigen (PSMA) is an established target for the delivery of cancer therapeutic and imaging agents due to its high expression on the surface of prostate cancer cells and within the neovasculature of other solid tumors. Here we describe the synthesis and screening of antibody-conjugated silica-coated iron oxide nanoparticles for PSMA-specific cell targeting. The humanized anti-PSMA antibody, HuJ591, was conjugated to a series of nanoparticles with varying densities of polyethylene glycol and primary amine groups. Customized assays utilizing iron spectral absorbance and Enzyme-Linked Immunoassay (ELISA) were developed to screen microgram quantities of nanoparticle formulations for immunoreactivity and cell targeting ability. Antibody and PSMA-specific targeting of the optimized nanoparticle was evaluated using an isogenic PSMA-positive and PSMA-negative cell line pair. Specific nanoparticle targeting was confirmed by iron quantification with inductively coupled plasma mass spectrometry (ICP-MS). These methods and nanoparticles support the promise of targeted theranostic agents for future treatment of prostate and other cancers. PMID:24591351

  14. The Methylene Alkoxy Carbamate Self-Immolative Unit: Utilization for the Targeted Delivery of Alcohol-Containing Payloads with Antibody-Drug Conjugates.

    Science.gov (United States)

    Kolakowski, Robert V; Haelsig, Karl T; Emmerton, Kim K; Leiske, Chris I; Miyamoto, Jamie B; Cochran, Julia H; Lyon, Robert P; Senter, Peter D; Jeffrey, Scott C

    2016-07-01

    A strategy for the conjugation of alcohol-containing payloads to antibodies has been developed and involves the methylene alkoxy carbamate (MAC) self-immolative unit. A series of MAC β-glucuronide model constructs were prepared to evaluate stability and enzymatic release, and the results demonstrated high stability at physiological pH in a substitution-dependent manner. All the MAC model compounds efficiently released alcohol drug surrogates under the action of β-glucuronidase. To assess the MAC technology for ADCs, the potent microtubule-disrupting agent auristatin E (AE) was incorporated through the norephedrine alcohol. Conjugation of the MAC β-glucuronide AE drug linker to the anti-CD30 antibody cAC10, and an IgG control antibody, gave potent and immunologically specific activities in vitro and in vivo. These studies validate the MAC self-immolative unit for alcohol-containing payloads within ADCs, a class that has not been widely exploited. PMID:27198854

  15. A protein-conjugate approach to develop a monoclonal antibody-based antigen detection test for the diagnosis of human brucellosis.

    Directory of Open Access Journals (Sweden)

    Kailash P Patra

    2014-06-01

    Full Text Available Human brucellosis is most commonly diagnosed by serology based on agglutination of fixed Brucella abortus as antigen. Nucleic acid amplification techniques have not proven capable of reproducibly and sensitively demonstrating the presence of Brucella DNA in clinical specimens. We sought to optimize a monoclonal antibody-based assay to detect Brucella melitensis lipopolysaccharide in blood by conjugating B. melitensis LPS to keyhole limpet hemocyanin, an immunogenic protein carrier to maximize IgG affinity of monoclonal antibodies. A panel of specific of monoclonal antibodies was obtained that recognized both B. melitensis and B. abortus lipopolysaccharide epitopes. An antigen capture assay was developed that detected B. melitensis in the blood of experimentally infected mice and, in a pilot study, in naturally infected Peruvian subjects. As a proof of principle, a majority (7/10 of the patients with positive blood cultures had B. melitensis lipopolysaccharide detected in the initial blood specimen obtained. One of 10 patients with relapsed brucellosis and negative blood culture had a positive serum antigen test. No seronegative/blood culture negative patients had a positive serum antigen test. Analysis of the pair of monoclonal antibodies (2D1, 2E8 used in the capture ELISA for potential cross-reactivity in the detection of lipopolysaccharides of E. coli O157:H7 and Yersinia enterocolitica O9 showed specificity for Brucella lipopolysaccharide. This new approach to develop antigen-detection monoclonal antibodies against a T cell-independent polysaccharide antigen based on immunogenic protein conjugation may lead to the production of improved rapid point-of-care-deployable assays for the diagnosis of brucellosis and other infectious diseases.

  16. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl.

    Directory of Open Access Journals (Sweden)

    Jürgen Grünberg

    Full Text Available Site-specific enzymatic reactions with microbial transglutaminase (mTGase lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N'-N''-N'''-tetraacetic acid (DOTA chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA1-decalysine, (DOTA3-decalysine or (DOTA5-decalysine to the antibody heavy chain (via Gln295/297 gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with (177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA5-decalysine]2. The rapid elimination from the blood of chCE7agl-[(DOTA-decalysine]2 (1.0±0.1% ID/g at 24 h is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h. This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA3 versus 11.7±1.4% ID/g (DOTA5, p<0.005 at 24 h and lower radioactivity levels in the liver (21.4±3.4 (DOTA3 versus 5.8±0.7 (DOTA5, p<0.005 at 24 h. We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA5-decalysine to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for

  17. Heptavalent pneumococcal conjugate vaccine elicits similar antibody response as standard 23-valent polysaccharide vaccine in adult patients with RA treated with immunomodulating drugs.

    Science.gov (United States)

    Kapetanovic, Meliha Crnkic; Roseman, Carmen; Jönsson, Göran; Truedsson, Lennart

    2011-12-01

    The objectives of the study were to compare antibody response in immunosuppressed patients with rheumatoid arthritis (RA) after vaccination with heptavalent pneumococcal conjugate vaccine (PCV7) to that of RA patients and healthy controls vaccinated with 23-valent polysaccharide vaccine (PPV23) and to study the impact of disease and/or treatment characteristics and type of vaccine on antibody response following pneumococcal vaccination in patients with RA. In total, 253 RA patients treated with methotrexate (MTX), anti-TNF blockers as monotherapy or anti-TNF + MTX were vaccinated with a single dose (0.5 ml) of PCV7. In addition, 149 RA patients receiving corresponding treatments and 47 healthy controls were vaccinated with a single dose (0.5 ml) of PPV23. Serotype-specific IgG to 23F and 6B were measured at vaccination and 4-6 weeks after vaccination using ELISA. Antibody response ratio (ARR), i.e. ratio between post-/prevaccination antibody levels, was compared between corresponding treatment groups. Differences in ARR were analysed using analysis of variance. Positive antibody response (posAR) was defined as equal to or greater than twofold increase in prevaccination antibody levels. Possible predictors of posAR were analysed using logistic regression model. Corresponding RA treatment groups showed similar ARR and posAR for both serotypes regardless of vaccine type. Higher age at vaccination and concomitant MTX were identified as predictors of impaired posAR for both serotypes tested, whereas type of vaccine did not influence posAR significantly. PCV7 elicits similar antibody response as PPV23 in patients with RA receiving immunosuppressive treatment. In RA patients, higher age and MTX treatment but not type of vaccine predicted impaired posAR. PMID:21956234

  18. Effects of antibodies induced by a conjugate vaccine on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone absorptive transport, metabolism, and proliferation of human lung cells.

    Science.gov (United States)

    De Buck, Stefan S; Schellenberger, Mario T; Ensch, Corinne; Muller, Claude P

    2010-08-01

    One of the most abundant and potent lung carcinogen is the nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The monoclonal antibody P9D5 induced with a NNK-conjugate vaccine was used to investigate the ability of NNK-specific antibodies to modulate NNK-induced adverse effects as well as its absorptive transport and metabolism in two lung cancer cell lines (Calu-3 and NCI-H82). Transport experiments in Calu-3 cells with a 50-fold molar excess of apical P9D5 increased the recovery of coadministered apical NNK, with a concomitant decrease in NNK transepithelial transport of more than 50% compared to controls. In contrast, basolateral P9D5 did neither influence transepithelial transport of NNK nor its disappearance from the apical compartment. Calu-3 cells were also found to reduce NNK to NNAL and a 65-fold molar excess of NNK-specific antibody inhibited this metabolic conversion by 46 and 54% compared to irrelevant control antibody after 48 and 72 hr, respectively. The biological relevance of NNK redistribution by antibody was demonstrated by reversion of NNK-induced cell proliferation in NCI-H82 cells. Repartitioning of tobacco carcinogens by antibody may reduce their early effective peak concentrations in susceptible target organs and thus relieve overloaded local DNA repair mechanisms and diminish carcinogen-induced cell proliferation. These in vitro data therefore suggest that a prophylactic antibody response may be associated with a reduced risk of cancer. PMID:19960439

  19. CYP3A-mediated drug-drug interaction potential and excretion of brentuximab vedotin, an antibody-drug conjugate, in patients with CD30-positive hematologic malignancies

    OpenAIRE

    Han, Tae H.; Gopal, Ajay K.; Ramchandren, Radhakrishnan; Goy, Andre; Chen, Robert; Matous, Jeffrey V.; Cooper, Maureen; Grove, Laurie E.; Alley, Stephen C.; Lynch, Carmel M.; O’Connor, Owen A.

    2013-01-01

    Brentuximab vedotin is an antibody-drug conjugate (ADC) that selectively delivers monomethyl auristatin E (MMAE) into CD30-expressing cells. This study evaluated the CYP3A-mediated drug-drug interaction potential of brentuximab vedotin and the excretion of MMAE. Two 21-day cycles of brentuximab vedotin (1.2 or 1.8 mg/kg intravenously) were administered to 56 patients with CD30-positive hematologic malignancies. Each patient also received either a sensitive CYP3A substrate (midazolam), an effe...

  20. Impact of IgM Antibodies on Cross-Protection against Pneumococcal Serogroups 6 and 19 after Immunization with 7-Valent Pneumococcal Conjugate Vaccine in Children.

    Science.gov (United States)

    Cho, Hye-Kyung; Park, In Ho; Burton, Robert L; Kim, Kyung-Hyo

    2016-06-01

    Although it is well known that pneumococcal conjugate vaccines provide cross-protection against some vaccine-related serotypes, these mechanisms are still unclear. This study was performed to investigate the role of cross-protective IgM antibodies against vaccine-related serotypes 6A, 6C, and 19A induced in children aged 12-23 months after immunization with 7-valent pneumococcal conjugate vaccine (PCV7). We obtained serum samples from 18 Korean children aged 12-23 months after a PCV7 booster immunization. The serum IgG and IgM concentrations of serotypes 6B and 19F were measured by enzyme-linked immunosorbent assay (ELISA) in serum. The opsonic indices (OIs) against vaccine serotypes 6B and 19F and vaccine-related serotypes 6A, 6C, and 19A were determined by an opsonophagocytic killing assay (OPA) in IgM-depleted and control serum. Both IgG and IgM antibodies in ELISA and opsonic indices in OPA against serotypes 6B and 19F were demonstrated in the immune serum. IgM depletion decreased the OIs against vaccine serotypes 6B (geometric means of OIs (GMIs) of 3,009 vs. 1,396, 38% reduction) and 19F (1,117 vs. 750, 36% reduction). In addition, IgM depletion markedly decreased the OIs against vaccine-related serotypes 6A (GMIs of 961 vs. 329, 70% reduction), 6C (432 vs. 185, 72% reduction), and 19A (301 vs. 166, 58% reduction). The booster immunization PCV7 induced protective antibodies in the form of both IgG and IgM isotypes. IgM antibodies contributed to eliciting cross-protection against vaccine-related serotypes as well as against vaccine serotypes. PMID:27247505

  1. Development of indirect competitive fluorescence immunoassay for 2,2′,4,4′-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels

    Institute of Scientific and Technical Information of China (English)

    Zi-Yan Fan; Young Soo Keum; Qing-Xiao Li; Weilin L. Shelver; Liang-Hong Guo

    2012-01-01

    An indirect competitive fluorescence immunoassay using a DNA/dye conjugate as antibody multiple labels was developed on 96-well plates for the identification and quantification of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in aqueous samples.A hapten,2,4,2′-tribromodiphenyl ether-4′-aldehyde,was synthesized,and was conjugated to bovine serum albumin to form a coating antigen,Specific recognition of the antigen by anti-PBDE antiserum was confirmed by a surface plasmon resonance measurement.In the immunoassay,the coating antigen was adsorbed on a 96-well plate first,and a sample,antiserum and biotinylated goat anti-rabbit secondary antibody were then added and reacted sequentially.A biotinylated,double-stranded DNA with 219 base pairs was attached to the secondary antibody by using streptavidin as a molecular bridge.In situ multiple labeling of the antibody was accomplished after addition of a DNA-binding fluorescent dye,SYBR Green I.The working range of the immunoassay for the BDE-47 standard was 3.1-390 μg/L,with an IC50 value of 15.6 μg/L.The calculated LOD of the immunoassay is 0.73 μg/L.The immunoassay demonstrated relatively high selectivity for BDE-47,showing very low cross-reactivity (< 3%) with BDE-15,BDE-153 and BDE-209.With a spiked river water sample containing 50 μg/L BDE-47,quantification by the immunoassay was 41.9 μg/L,which compared well with the standard GC-ECD method (45.7 μg/L).The developed immunoassay provides a rapid screening tool for polybrominated diphenyl ethers in environmental samples.

  2. Outer Membrane Protein Complex of Meningococcus Enhances the Antipolysaccharide Antibody Response to Pneumococcal Polysaccharide–CRM197 Conjugate Vaccine ▿

    OpenAIRE

    Lai, Zengzu; Schreiber, John R.

    2011-01-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antib...

  3. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity

    OpenAIRE

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J.; Mukherjee, Pinku

    2012-01-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 design...

  4. The study of conjugation of anti-CD20 monoclonal antibody for labeling with metallic or lanthanides radionuclides; Estudo de conjugacao do anticorpo anti-CD20 para marcacao com radionuclideos metalicos ou lantanideos

    Energy Technology Data Exchange (ETDEWEB)

    Akanji, Akinkunmi Ganiyu

    2012-07-01

    Lymphomas are malignancies or cancers that start from the malign transformation of a lymphocyte in the lymphatic system. Generally, lymphomas start from the lymph nodes or from the agglomeration of the lymphatic tissues, organs like stomach, intestines, in some cases it can involve the bone marrow and the blood, it can also disseminate to other organs. Lymphomas are divided in two major categories: Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Patient with NHL are generally treated with radiotherapy alone or combined with immunotherapy using monoclonal antibody rituximab (MabThera Registered-Sign ). Currently, monoclonal antibodies (Acm) conjugated with bifunctional chelate agents and radiolabeled with metallic or lanthanides radionuclides are a treatment reality for patients with NHL by the principle of radioimmunotherapy (RIT). This study focused on the conditions of conjugation of Acm rituximab (MabThera Registered-Sign ) with bifunctional chelating agents DOTA and DTPA. Various parameters were studied: method of Acm purification, conditions of Acm conjugation, the method for determination of number of chelate agent coupled to the Acm, method for purification of the conjugated antibody Acm, conditions of labeling of the conjugated antibody with lutetium-177, method of purification of the radiolabeled immuno conjugate, method of radiochemical purity (RP), specific binding in vitro Raji cells (Human Burkitt) and biological distribution performed in normal Balb-c mouse. The three methodologies employed in pre-purification of Acm (dialysis, size exclusion chromatograph and dial filtration) demonstrated to be efficient; they provided sample recovery exceeding 90%. However, the methodology of dial filtration presents minimal sample loss, and gave the final recovery of the sample in micro liters; thereby facilitating sample use in subsequent experiments. Numbers of chelators attached to the Acm molecule was proportional to the molar ratio studied. When we evaluated

  5. Drug safety evaluation through biomarker analysis-A toxicity study in the cynomolgus monkey using an antibody-cytotoxic conjugate against ovarian cancer

    International Nuclear Information System (INIS)

    Antibody-cytotoxin conjugates are complex novel therapeutic agents whose toxicological properties are not presently well understood. The objective of this study was to identify serum biomarkers that correlate with MLN8866 (an Antibody-Cytotoxic Conjugate, mAb8866-CT) pathological events in monkeys and to predict the maximal tolerated dose (MTD) level using biomarkers. Cynomolgus monkeys were administered a single dose MLN8666 (5, 15 or 30 mg/kg) by intravenous infusion and evaluated over a 7-day period. Exposure levels were determined by quantifying MLN8866 levels (Cmax and AUC0-96h) in serum. The increase in MLN8866 Cmax and AUC0-96h was approximately dose proportional. Two biomarkers in serum (m/z 316 and m/z 368) were identified to be correlated with MLN8866 toxicological outcomes. The predicted MTD, 11.4 mg/kg, was within the MTD range set by pathology results (5-15 mg/kg). Administration of MLN8866 at 15 mg/kg and 30 mg/kg dose levels resulted in changes in hematology parameters associated with impaired hematopoiesis and bone marrow toxicity. The projected MLN8866 MTD exposure level was integrated with toxicokinetic analysis and showed Cmax = 236 μg/mL and AUC0-96h = 7246 h mg/mL. The safety of three different MLN8866 dosing regimens with three dosing schedules was explored with pharmacokinetic modeling

  6. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Kaushal, Sharmeela; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2013-12-01

    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model.

  7. Localization of radioiodine conjugated to the monoclonal antibody HMFG2 in human ovarian carcinoma: assessment of intravenous and intraperitoneal routes of administration

    Energy Technology Data Exchange (ETDEWEB)

    Ward, B.G.; Mather, S.J.; Hawkins, L.R.; Crowther, M.E.; Shepherd, J.H.; Granowska, M.; Britton, K.E.; Slevin, M.L.

    1987-09-01

    The localization of i.p. injected, radioiodine conjugated monoclonal antibody HMFG2 was studied in 18 patients with ovarian carcinoma. Patients were injected i.p. at time points up to 168 h before laparotomy, at which time tumor, ascites, normal tissue, and blood samples were removed and the contained radioactivity measured. In the first 10 patients, localization was compared with that of a simultaneously injected irrelevant (nonspecific) antibody (UJ13A) of the same immunoglobulin class and, in the subsequent 8 patients, with HMFG2 administered i.v. After i.p. injection, HMFG2-radioiodine was found in concentrations of 0.0001-0.0030% of the injected amount per gram in solid tumor, 0.0363-0.02560%/g in ascites, 0.0003-0.0017%/g in blood, and 0.001-0.0012%/g in normal tissue. Tumor:normal tissue ratios of 0.9-10.0 and tumor:blood ratios of 0.3-4.0 were seen up to 168 h after injection. Localization of the HMFG2 conjugate was consistently greater than that of the irrelevant antibody. For solid tumor, the i.v. route of administration resulted in consistently higher absolute levels of HMFG2 conjugate uptake but tumor:blood and tumor:normal tissue ratios were similar. On the other hand the i.p. route of administration offered consistent advantages of 4- to 71-fold over the i.v. route when HMFG2 conjugate localization on ascites cells was examined. Ascites:normal tissue and ascites:blood ratios of up to 512 and 448, respectively, were achieved. After i.p. injection, radioiodine was cleared from the body exponentially with a half-life of 50 h. Maximum circulating blood levels of 8.6 +/- 2.0% injected activity were seen at 48 h and these then decreased with a t 1/2 value of 38 h. Over 80% of injected activity was cleared in the urine as nonprotein bound iodine by 168 h.

  8. Localization of radioiodine conjugated to the monoclonal antibody HMFG2 in human ovarian carcinoma: assessment of intravenous and intraperitoneal routes of administration

    International Nuclear Information System (INIS)

    The localization of i.p. injected, radioiodine conjugated monoclonal antibody HMFG2 was studied in 18 patients with ovarian carcinoma. Patients were injected i.p. at time points up to 168 h before laparotomy, at which time tumor, ascites, normal tissue, and blood samples were removed and the contained radioactivity measured. In the first 10 patients, localization was compared with that of a simultaneously injected irrelevant (nonspecific) antibody (UJ13A) of the same immunoglobulin class and, in the subsequent 8 patients, with HMFG2 administered i.v. After i.p. injection, HMFG2-radioiodine was found in concentrations of 0.0001-0.0030% of the injected amount per gram in solid tumor, 0.0363-0.02560%/g in ascites, 0.0003-0.0017%/g in blood, and 0.001-0.0012%/g in normal tissue. Tumor:normal tissue ratios of 0.9-10.0 and tumor:blood ratios of 0.3-4.0 were seen up to 168 h after injection. Localization of the HMFG2 conjugate was consistently greater than that of the irrelevant antibody. For solid tumor, the i.v. route of administration resulted in consistently higher absolute levels of HMFG2 conjugate uptake but tumor:blood and tumor:normal tissue ratios were similar. On the other hand the i.p. route of administration offered consistent advantages of 4- to 71-fold over the i.v. route when HMFG2 conjugate localization on ascites cells was examined. Ascites:normal tissue and ascites:blood ratios of up to 512 and 448, respectively, were achieved. After i.p. injection, radioiodine was cleared from the body exponentially with a half-life of 50 h. Maximum circulating blood levels of 8.6 +/- 2.0% injected activity were seen at 48 h and these then decreased with a t 1/2 value of 38 h. Over 80% of injected activity was cleared in the urine as nonprotein bound iodine by 168 h

  9. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils

    Directory of Open Access Journals (Sweden)

    Skaat H

    2013-10-01

    Full Text Available Hadas Skaat,1 Enav Corem-Slakmon,1 Igor Grinberg,1 David Last,2 David Goez,2 Yael Mardor,2,3 Shlomo Margel1 1Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel; 2Advanced Technology Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; 3Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel Abstract: Amyloid-β (Aβ peptide is the main fibrillar component of plaque deposits found in brains affected by Alzheimer's disease (AD and is related to the pathogenesis of AD. Passive anti-Aβ immunotherapy has emerged as a promising approach for the therapy of AD, based on the administration of specific anti-Aβ monoclonal antibodies (aAβmAbs to delay Aβ aggregation in the brain. However, the main disadvantage of this approach is the required readministration of the aAβmAbs at frequent intervals. There are only a few reports describing in vitro study for the immobilization of aAβmAbs to nanoparticles as potential targeting agents of Aβ aggregates. In this article, we report the immobilization of the aAβmAb clone BAM10 to near-infrared fluorescent maghemite nanoparticles for the inhibition of Aβ40 fibrillation kinetics and the specific detection of Aβ40 fibrils. The BAM10-conjugated iron oxide nanoparticles were well-characterized, including their immunogold labeling and cytotoxic effect on PC-12 (pheochromocytoma cell line. Indeed, these antibody-conjugated nanoparticles significantly inhibit the Aβ40 fibrillation kinetics compared with the same concentration, or even five times higher, of the free BAM10. This inhibitory effect was confirmed by different assays such as the photo-induced crosslinking of unmodified proteins combined with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A cell viability assay also confirmed that these antibody-conjugated nanoparticles significantly reduced the Aβ40-induced cytotoxicity to PC-12 cells. Furthermore, the selective

  10. Effect of chelator conjugation level and injection dose on tumor and organ uptake of 111In-labeled MORAb-009, an anti-mesothelin antibody

    International Nuclear Information System (INIS)

    Introduction: Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor-targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin, and the effect of MORAb dose on the biodistribution of 111In-labeled MORAb-009. Methods: We used nude mice bearing the A431/K5 tumor as a mesothelin-positive tumor model and the A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5 and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed mesothelin in the circulation, biodistribution studies were performed after the intravenous co-injection of 111In-labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses: 0.2, 2 and 30 μg of MORAb-009. Results: The tumor uptake in A431/K5 tumor was four times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in the biodistribution of the 111In label. The 111In-labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30-μg dose produced higher tumor uptake than the 0.2- and 2-μg doses, whereas the 30-μg dose produced lower liver and spleen uptakes than the 0.2-μg dose

  11. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  12. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and ppancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (p<0.001 for the 650 dyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  13. Quantitation of antibody-secreting cells in the blood after vaccination with Haemophilus influenzae type b conjugate vaccine

    DEFF Research Database (Denmark)

    Barington, T; Heilmann, C; Andersen, V

    1990-01-01

    The human B-lymphocyte response to protein-conjugated polysaccharide antigens has not previously been studied at the cellular level. In order to do so, we developed and evaluated haemolytic plaque-forming cell assays detecting Haemophilus influenzae type b (Hib) capsular polysaccharide...... capsular polysaccharides from Hib and pneumococci. The predominance of IgA AbSC in response to both conjugate and pure polysaccharide vaccines is probably due to reactivation of the same clones of IgA-committed memory B cells originally primed at the mucosa by natural exposure to the polysaccharide or...

  14. Per-oral immunization with antigen-conjugated nanoparticles followed by sub-cutaneous boosting immunization induces long-lasting mucosal and systemic antibody responses in mice.

    Directory of Open Access Journals (Sweden)

    Savannah E Howe

    Full Text Available Food or water-borne enteric pathogens invade their hosts via intestinal mucosal surfaces, thus developing effective oral vaccines would greatly reduce the burden of infectious diseases. The nature of the antigen, as well as the mode of its internalization in the intestinal mucosa affects the ensuing immune response. We show that model protein antigen ovalbumin (Ova given per-orally (p.o. induces oral tolerance (OT, characterized by systemic IgG1-dominated antibody response, which cannot be boosted by sub-cutaneous (s.c. immunization with Ova in complete Freund's adjuvant (CFA. Intestinal IgA generated in response to Ova feeding diminished over time and was abrogated by s.c. immunization with Ova+CFA. Humoral response to Ova was altered by administering Ova conjugated to 20 nm nanoparticles (NP-Ova. P.o. administration of NP-Ova induced systemic IgG1/IgG2c, and primed the intestinal mucosa for secretion of IgA. These responses were boosted by secondary s.c. immunization with Ova+CFA or p.o. immunization with NP-Ova. However, only in s.c.-boosted mice serum and mucosal antibody titers remained elevated for 6 months after priming. In contrast, s.c. priming with NP-Ova induced IgG1-dominated serum antibodies, but did not prime the intestinal mucosa for secretion of IgA, even after secondary p.o. immunization with NP-Ova. These results indicate that Ova conjugated to NPs reaches the internal milieu in an immunogenic form and that mucosal immunization with NP-Ova is necessary for induction of a polarized Th1/Th2 immune response, as well as intestinal IgA response. In addition, mucosal priming with NP-Ova, followed by s.c. boosting induces superior systemic and mucosal memory responses. These findings are important for the development of efficacious mucosal vaccines.

  15. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7

    Science.gov (United States)

    Thanh Ngo, Vo Ke; Phuong Uyen Nguyen, Hoang; Phat Huynh, Trong; Nguyen Pham Tran, Nguyen; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-09-01

    Gold nanoparticles (AuNPs) of 15-20 nm size range have attracted attention for producing smart sensing devices as diagnostic tools in biomedical sciences. Citrate capped AuNPs are negatively charged, which can be exploited for electrostatic interactions with some positively charged biomolecules like antibodies. In this paper we describe a method for the low cost synthesis of gold nanoparticles using sodium citrate (Na3Ct) reduction in chloroauric acid (HAuCl4.3H2O) by microwave heating (diameter about 13-15 nm). Gold nanoparticles were functionalized with surface activation by 3-mercaptopropionic acid for attaching antibody. These nanoparticles were then reacted with anti-E. coli O157:H7, using N-hydroxy succinimide (NHS) and carbondimide hydrochloride (EDC) coupling chemistry. The product was characterized with UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and zeta potential. In addition, the binding of antibody-gold nanoparticles conjugates to E. coli O157:H7 was demonstrated using transmission electron microscopy (TEM).

  16. Social Mixing with Other Children during Infancy Enhances Antibody Response to a Pneumococcal Conjugate Vaccine in Early Childhood▿

    OpenAIRE

    Salt, Penny; Banner, Carly; Oh, Sarah; Yu, Ly-Mee; Lewis, Susan; Pan, DingXin; Griffiths, David; Ferry, Berne; Pollard, Andrew

    2007-01-01

    Children who have siblings and/or who attend day care have higher rates of nasopharyngeal colonization with pneumococci than lone children do. Pneumococcal colonization is usually asymptomatic but is a prerequisite for invasive disease. We studied the effect of social mixing with other children on immunity to a pneumococcal vaccine. One hundred sixty children aged 1 year were immunized with a 7-valent conjugate pneumococcal vaccine. A blood sample was obtained before and 9 to 11 days after th...

  17. Kinetic screening of antibody-Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors.

    Science.gov (United States)

    Hosse, Ralf J; Tay, Leigh; Hattarki, Meghan K; Pontes-Braz, Luisa; Pearce, Lesley A; Nuttall, Stewart D; Dolezal, Olan

    2009-02-15

    Antibody generation by phage display and related in vitro display technologies routinely yields large panels of clones detected in primary end-point screenings such as enzyme-linked immunosorbent assay (ELISA). However, for the development of clinical lead candidates, rapid determination of secondary characteristics such as kinetics and thermodynamics is of nearly equal importance. Surface plasmon resonance-based biosensors are ideal tools for carrying out such high-throughput secondary screenings, allowing preliminary but confident ranking and identification of lead clones. A key feature of these assays is the stable and reversible capture of antibody fragments from crude samples leading to high-resolution kinetic analysis of library outputs. Here we exploit the high-affinity interaction between the naturally occurring nuclease domain of E. coli colicin E7 (DNaseE7) and its cognate partner, the immunity protein 7 (Im7), to develop a ligand capture system suitable for accurate kinetic ranking of library clones. We demonstrate generic applicability for a range of antibody formats: scFv antibodies, diabodies, antigen binding fragments (Fabs), and shark V(NAR) single domain antibodies. The system is adaptable and reproducible, with comparable results achieved for both the Biacore T100 and ProteOn XPR36 array biosensors. PMID:19073134

  18. Enhanced delivery of etoposide across the blood-brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles.

    Science.gov (United States)

    Kuo, Yung-Chih; Wang, I-Hsin

    2016-08-01

    Melanotransferrin antibody (MA) and tamoxifen (TX) were conjugated on etoposide (ETP)-entrapped solid lipid nanoparticles (ETP-SLNs) to target the blood-brain barrier (BBB) and glioblastom multiforme (GBM). MA- and TX-conjugated ETP-SLNs (MA-TX-ETP-SLNs) were used to infiltrate the BBB comprising a monolayer of human astrocyte-regulated human brain-microvascular endothelial cells (HBMECs) and to restrain the proliferation of malignant U87MG cells. TX-grafted ETP-SLNs (TX-ETP-SLNs) significantly enhanced the BBB permeability coefficient for ETP and raised the fluorescent intensity of calcein-AM when compared with ETP-SLNs. In addition, surface MA could increase the BBB permeability coefficient for ETP about twofold. The viability of HBMECs was higher than 86%, suggesting a high biocompatibility of MA-TX-ETP-SLNs. Moreover, the efficiency in antiproliferation against U87MG cells was in the order of MA-TX-ETP-SLNs  >  TX-ETP-SLNs  >  ETP-SLNs  >  SLNs. The capability of MA-TX-ETP-SLNs to target HBMECs and U87MG cells during internalization was verified by immunochemical staining of expressed melanotransferrin. MA-TX-ETP-SLNs can be a potent pharmacotherapy to deliver ETP across the BBB to GBM. PMID:26768307

  19. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Targeted polymer drug conjugates for cancer diagnosis and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Ban-An; Gada, Keyur S.; Patil, Vishwesh; Panwar, Rajiv; Mandapati, Savitri [Northeastern University, Department of Pharmaceutical Sciences, Bouve College of Health Sciences, School of Pharmacy, Boston, MA (United States); Hatefi, Arash [Rutgers University, Department of Pharmaceutics, New Brunswick, NJ (United States); Majewski, Stan [West Virginia University, Department of Radiology, Morgantown, WV (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Jefferson Lab, Newport News, VA (United States)

    2014-08-15

    Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20). After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD). Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice. Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities. (orig.)

  20. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Targeted polymer drug conjugates for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20). After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD). Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice. Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities. (orig.)

  1. Poly(o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen

    International Nuclear Information System (INIS)

    We report on a new electrochemical immunosensor for the carcinoembryonic antigen (CEA; a model analyte). First, poly(o-phenylenediamine) nanospheres (PPDNSs) were synthesized by using a wet-chemistry method. The nanospheres were utilized as the support for immobilizing horseradish peroxidase-labeled polyclonal rabbit anti-human CEA antibody (HRP-anti-CEA) on a pretreated glassy carbon electrode (GCE) using glutaraldehyde as a crosslinker. In the presence of target CEA, an antigen-antibody immunocomplex formed on the electrode. This results in a partial inhibition of the active center of HRP and decreases the activity of HRP in terms of H2O2 reduction. The performance and factors influencing the performance of the immunoelectrode were studied. Under optimal conditions, the reduction current obtained from the anti-CEA-conjugated HRP (best at a working voltage of −265 mV vs. Ag/AgCl) is proportional to the CEA concentration in the 0.01 to 60 ng mL−1 range, with a detection limit of 3.2 pg mL−1. Non-specific adsorption was not observed. Relative standard deviations for intra-assay and inter-assay are <8.3 % and <9.7 %, respectively. The method was applied to the analysis of nine human serum samples, and a good relationship was found between the electrochemical immunoassay and the commercialized ELISA kit for human CEA. (author)

  2. Pneumococcal antibody concentrations of subjects in communities fully or partially vaccinated with a seven-valent pneumococcal conjugate vaccine.

    Directory of Open Access Journals (Sweden)

    Martin O C Ota

    Full Text Available BACKGROUND: A recent trial with PCV-7 in a rural Gambian community showed reduced vaccine-type pneumococcal carriage in fully vaccinated compared with control communities. We measured pneumococcal polysaccharide antibody concentrations in this trial to understand further the mechanisms underlying the observed changes. METHODS: A single-blind, cluster-randomized (by village trial was conducted in 21 Gambian villages. In 11 villages, all residents received PCV-7 (Vaccine group; in 10 control villages only children 5.0 µg/mL for all but serotype 9V of the PCV-7 serotypes in the older group, but not in the younger age group. CONCLUSION: Higher antibodies in vaccinated communities provide an explanation for the lower pneumococcal carriage rates in fully vaccinated compared to control communities. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN51695599 51695599.

  3. Pneumococcal antibody concentrations of subjects in communities fully or partially vaccinated with a seven-valent pneumococcal conjugate vaccine.

    OpenAIRE

    Ota, Martin O. C.; Anna Roca; Christian Bottomley; Philip C. Hill; Uzochukwu Egere; Brian Greenwood; Adegbola, Richard A.

    2012-01-01

    BACKGROUND A recent trial with PCV-7 in a rural Gambian community showed reduced vaccine-type pneumococcal carriage in fully vaccinated compared with control communities. We measured pneumococcal polysaccharide antibody concentrations in this trial to understand further the mechanisms underlying the observed changes. METHODS A single-blind, cluster-randomized (by village) trial was conducted in 21 Gambian villages. In 11 villages, all residents received PCV-7 (Vaccine group); in 10 contr...

  4. Optical Imaging of Disseminated Leukemia Models in Mice with Near-Infrared Probe Conjugated to a Monoclonal Antibody

    OpenAIRE

    Sabrina Pesnel; Arnaud Pillon; Laurent Créancier; Stéphanie Lerondel; Alain Le Pape; Christian Recher; Cécile Demur; Nicolas Guilbaud; Anna Kruczynski

    2012-01-01

    BACKGROUND: The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived ...

  5. Platinum(II) as bifunctional linker in antibody-drug conjugate formation: coupling of a 4-nitrobenzo-2-oxa-1,3-diazole fluorophore to trastuzumab as a model.

    Science.gov (United States)

    Waalboer, Dennis C J; Muns, Joey A; Sijbrandi, Niels J; Schasfoort, Richard B M; Haselberg, Rob; Somsen, Govert W; Houthoff, Hendrik-Jan; van Dongen, Guus A M S

    2015-05-01

    The potential of platinum(II) as a bifunctional linker in the coordination of small molecules, such as imaging agents or (cytotoxic) drugs, to monoclonal antibodies (mAbs) was investigated with a 4-nitrobenzo-2-oxa-1,3-diazole (NBD) fluorophore and trastuzumab (Herceptin™) as a model antibody. The effect of ligand and reaction conditions on conjugation efficiency was explored for [Pt(en)(L-NBD)Cl](NO3 ) (en=ethylenediamine), with L=N-heteroaromatic, N-alkyl amine, or thioether. Conjugation proceeded most efficiently at pH 8.0 in the presence of NaClO4 or Na2 SO4 in tricine or HEPES buffer. Reaction of N-coordinated complexes (20 equiv) with trastuzumab at 37 °C for 2 h, followed by removal of weakly bound complexes with excess thiourea, afforded conjugates with an NBD/mAb ratio of 1.5-2.9 that were stable in phosphate-buffered saline at room temperature for at least 48 h. In contrast, thioether-coordinated complexes afforded unstable conjugates. Finally, surface plasmon resonance analysis showed no loss in binding affinity of trastuzumab after conjugation. PMID:25809281

  6. ChAcNLS, a Novel Modification to Antibody-Conjugates Permitting Target Cell-Specific Endosomal Escape, Localization to the Nucleus, and Enhanced Total Intracellular Accumulation.

    Science.gov (United States)

    Beaudoin, Simon; Rondeau, Andreanne; Martel, Olivier; Bonin, Marc-Andre; van Lier, Johan E; Leyton, Jeffrey V

    2016-06-01

    The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high

  7. New Insights in Tissue Distribution, Metabolism, and Excretion of [3H]-Labeled Antibody Maytansinoid Conjugates in Female Tumor-Bearing Nude Rats.

    Science.gov (United States)

    Walles, Markus; Rudolph, Bettina; Wolf, Thierry; Bourgailh, Julien; Suetterlin, Martina; Moenius, Thomas; Peraus, Gisela; Heudi, Olivier; Elbast, Walid; Lanshoeft, Christian; Bilic, Sanela

    2016-07-01

    For antibody drug conjugates (ADCs), the fate of the cytotoxic payload in vivo needs to be well understood to mitigate toxicity risks and properly design the first in-patient studies. Therefore, a distribution, metabolism, and excretion (DME) study with a radiolabeled rat cross-reactive ADC ([(3)H]DM1-LNL897) targeting the P-cadherin receptor was conducted in female tumor-bearing nude rats. Although multiple components [total radioactivity, conjugated ADC, total ADC, emtansine (DM1) payload, and catabolites] needed to be monitored with different technologies (liquid scintillation counting, liquid chromatography/mass spectrometry, enzyme-linked immunosorbent assay, and size exclusion chromatography), the pharmacokinetic data were nearly superimposable with the various techniques. [(3)H]DM1-LNL897 was cleared with half-lives of 51-62 hours and LNL897-related radioactivity showed a minor extent of tissue distribution. The highest tissue concentrations of [(3)H]DM1-LNL897-related radioactivity were measured in tumor. Complimentary liquid extraction surface analysis coupled to micro-liquid chromatography-tandem mass spectrometry data proved that the lysine (LYS)-4(maleimidylmethyl) cyclohexane-1-carboxylate-DM1 (LYS-MCC-DM1) catabolite was the only detectable component distributed evenly in the tumor and liver tissue. The mass balance was complete with up to 13.8% ± 0.482% of the administered radioactivity remaining in carcass 168 hours postdose. LNL897-derived radioactivity was mainly excreted via feces (84.5% ± 3.12%) and through urine only to a minor extent (4.15% ± 0.462%). In serum, the major part of radioactivity could be attributed to ADC, while small molecule disposition products were the predominant species in excreta. We show that there is a difference in metabolite profiles depending on which derivatization methods for DM1 were applied. Besides previously published results on LYS-MCC-DM1 and MCC-DM1, maysine and a cysteine conjugate of DM1 could be

  8. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples.

    Science.gov (United States)

    Varshney, Madhukar; Li, Yanbin

    2007-05-15

    An impedance biosensor based on interdigitated array microelectrode (IDAM) coupled with magnetic nanoparticle-antibody conjugates (MNAC) was developed and evaluated for rapid and specific detection of E. coli O157:H7 in ground beef samples. MNAC were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles, which were used to separate and concentrate E. coli O157:H7 from ground beef samples. Magnitude of impedance and phase angle were measured in a frequency range of 10 Hz to 1 MHz in the presence of 0.1M mannitol solution. The lowest detection limits of this biosensor for detection of E. coli O157:H7 in pure culture and ground beef samples were 7.4 x 10(4) and 8.0 x 10(5)CFU ml(-1), respectively. The regression equation for the normalized impedance change (NIC) versus E. coli O157:H7 concentration (N) in ground beef samples was NIC=15.55 N-71.04 with R(2)=0.95. Sensitivity of the impedance biosensor was improved by 35% by concentrating bacterial cells attached to MNAC in the active layer of IDAM above the surface of electrodes with the help of a magnetic field. Based on equivalent circuit analysis, it was observed that bulk resistance and double layer capacitance were responsible for the impedance change caused by the presence of E. coli O157:H7 on the surface of IDAM. Surface immobilization techniques, redox probes, or sample incubation were not used in this impedance biosensor. The total detection time from sampling to measurement was 35 min. PMID:17045791

  9. Determination of Cellular Processing Rates for a Trastuzumab-Maytansinoid Antibody-Drug Conjugate (ADC) Highlights Key Parameters for ADC Design.

    Science.gov (United States)

    Maass, Katie F; Kulkarni, Chethana; Betts, Alison M; Wittrup, K Dane

    2016-05-01

    Antibody-drug conjugates (ADCs) are a promising class of cancer therapeutics that combine the specificity of antibodies with the cytotoxic effects of payload drugs. A quantitative understanding of how ADCs are processed intracellularly can illustrate which processing steps most influence payload delivery, thus aiding the design of more effective ADCs. In this work, we develop a kinetic model for ADC cellular processing as well as generalizable methods based on flow cytometry and fluorescence imaging to parameterize this model. A number of key processing steps are included in the model: ADC binding to its target antigen, internalization via receptor-mediated endocytosis, proteolytic degradation of the ADC, efflux of the payload out of the cell, and payload binding to its intracellular target. The model was developed with a trastuzumab-maytansinoid ADC (TM-ADC) similar to trastuzumab-emtansine (T-DM1), which is used in the clinical treatment of HER2+ breast cancer. In three high-HER2-expressing cell lines (BT-474, NCI-N87, and SK-BR-3), we report for TM-ADC half-lives for internalization of 6-14 h, degradation of 18-25 h, and efflux rate of 44-73 h. Sensitivity analysis indicates that the internalization rate and efflux rate are key parameters for determining how much payload is delivered to a cell with TM-ADC. In addition, this model describing the cellular processing of ADCs can be incorporated into larger pharmacokinetics/pharmacodynamics models, as demonstrated in the associated companion paper. PMID:26912181

  10. T-DM1, a novel antibody-drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo.

    Science.gov (United States)

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Bortolomai, Ileana; Bonazzoli, Elena; Cocco, Emiliano; Buza, Natalia; Hui, Pei; Lopez, Salvatore; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2014-10-01

    Amplification of c-erbB2 has been reported in over 30% of uterine serous carcinoma (USC) and found to confer poor survival because of high proliferation and increased resistance to therapy. In this study, we evaluated for the first time Trastuzumab emtansine (T-DM1), a novel antibody-drug conjugate, against multiple epidermal growth factor receptor-2 (HER2)-positive USC cells in vitro followed by developing a supportive in vivo model. Fifteen primary USC cell lines were assessed by immunohistochemistry (IHC) and flow cytometry for HER2 protein expression. C-erbB2 gene amplification was evaluated using fluorescent in situ hybridization. Sensitivity to T-DM1 and trastuzumab (T)-induced antibody-dependent cell-mediated cytotoxicity was evaluated in 5-h chromium release assays. T-DM1 and T cytostatic and apoptotic activities were evaluated using flow-cytometry-based proliferation assays. In vivo activity of T-DM1 versus T in USC xenografts in SCID mice was also evaluated. High levels of HER2 protein overexpression and HER2 gene amplification were detected in 33% of USC cell lines. T-DM1 was considerably more effective than trastuzumab in inhibiting cell proliferation and in causing apoptosis (P = 0.004) of USC showing HER2 overexpression. Importantly, T-DM1 was highly active at reducing tumor formation in vivo in USC xenografts overexpressing HER2 (P = 0.04) and mice treated with TDM-1 had significantly longer survival when compared to T-treated mice and control mice (P ≤ 0.0001). T-DM1 shows promising antitumor effect in HER2-positive USC cell lines and USC xenografts and its activity is significantly higher when compared to T. T-DM1 may represent a novel treatment option for HER2-positive USC patients with disease refractory to trastuzumab and traditional chemotherapy. PMID:24890382

  11. Optical imaging of disseminated leukemia models in mice with near-infrared probe conjugated to a monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Sabrina Pesnel

    Full Text Available BACKGROUND: The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived leukemic cells using fluorescence reflectance imaging (FRI to determine when to start treatments with novel antitumor agents. METHODS: Two mAbs against the CD44 human myeloid marker or the CD45 human leukocyte marker were labeled with Alexa Fluor 750 and administered to leukemia-bearing mice after having verified the immunoreactivity in vitro. Bioluminescent leukemic cells (HL60-Luc were used to compare the colocalization of the fluorescent mAb with these cells. The impact of the labeled antibodies on disease progression was further determined. Finally, the fluorescent hCD45 mAb was tested in mice engrafted with human leukemic cells. RESULTS: The probe labeling did not modify the immunoreactivity of the mAbs. There was a satisfactory correlation between bioluminescence imaging (BLI and FRI and low doses of mAb were sufficient to detect leukemic foci. However, anti-hCD44 mAb had a strong impact on the tumor proliferation contrary to anti-hCD45 mAb. The use of anti-hCD45 mAb allowed the detection of leukemic patient cells engrafted onto NOD/SCID mice. CONCLUSIONS: A mAb labeled with a near infrared fluorochrome is useful to detect leukemic foci in disseminated models provided that its potential impact on tumor proliferation has been thoroughly documented.

  12. Optical Imaging of Disseminated Leukemia Models in Mice with Near-Infrared Probe Conjugated to a Monoclonal Antibody

    Science.gov (United States)

    Pesnel, Sabrina; Pillon, Arnaud; Créancier, Laurent; Lerondel, Stéphanie; Le Pape, Alain; Recher, Christian; Demur, Cécile; Guilbaud, Nicolas; Kruczynski, Anna

    2012-01-01

    Background The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived leukemic cells using fluorescence reflectance imaging (FRI) to determine when to start treatments with novel antitumor agents. Methods Two mAbs against the CD44 human myeloid marker or the CD45 human leukocyte marker were labeled with Alexa Fluor 750 and administered to leukemia-bearing mice after having verified the immunoreactivity in vitro. Bioluminescent leukemic cells (HL60-Luc) were used to compare the colocalization of the fluorescent mAb with these cells. The impact of the labeled antibodies on disease progression was further determined. Finally, the fluorescent hCD45 mAb was tested in mice engrafted with human leukemic cells. Results The probe labeling did not modify the immunoreactivity of the mAbs. There was a satisfactory correlation between bioluminescence imaging (BLI) and FRI and low doses of mAb were sufficient to detect leukemic foci. However, anti-hCD44 mAb had a strong impact on the tumor proliferation contrary to anti-hCD45 mAb. The use of anti-hCD45 mAb allowed the detection of leukemic patient cells engrafted onto NOD/SCID mice. Conclusions A mAb labeled with a near infrared fluorochrome is useful to detect leukemic foci in disseminated models provided that its potential impact on tumor proliferation has been thoroughly documented. PMID:22303450

  13. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells

    Science.gov (United States)

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; liu, Gang; zhang, Fengchun; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upon near-infrared (NIR) laser treatment (790 nm, 1.5 W/cm2, 5 min) in vitro experiment. Orthotopic and subcutaneous xenografted nude mice models of human gastric cancer were established. Subsequently, biodistribution and photothermal therapeutic effects after being intravenously injected with the prepared nanoprobes were assessed. Photoacoustic imaging revealed that CD44v6-GNS nanoprobes could target the gastric cancer vascular system actively at 4 h post-injection, while the probes inhibited tumor growth remarkably upon NIR laser irradiation, and even extended survivability of the gastric cancer-bearing mice. The CD44v6-GNS nanoprobes exhibited great potential for applications of gastric cancer targeted imaging and photothermal therapy in the near future. PMID:26155313

  14. CYP3A-mediated drug-drug interaction potential and excretion of brentuximab vedotin, an antibody-drug conjugate, in patients with CD30-positive hematologic malignancies.

    Science.gov (United States)

    Han, Tae H; Gopal, Ajay K; Ramchandren, Radhakrishnan; Goy, Andre; Chen, Robert; Matous, Jeffrey V; Cooper, Maureen; Grove, Laurie E; Alley, Stephen C; Lynch, Carmel M; O'Connor, Owen A

    2013-08-01

    Brentuximab vedotin is an antibody-drug conjugate (ADC) that selectively delivers monomethyl auristatin E (MMAE) into CD30-expressing cells. This study evaluated the CYP3A-mediated drug-drug interaction potential of brentuximab vedotin and the excretion of MMAE. Two 21-day cycles of brentuximab vedotin (1.2 or 1.8 mg/kg intravenously) were administered to 56 patients with CD30-positive hematologic malignancies. Each patient also received either a sensitive CYP3A substrate (midazolam), an effective inducer (rifampin), or a strong inhibitor (ketoconazole). Brentuximab vedotin did not affect midazolam exposures. ADC exposures were unaffected by concomitant rifampin or ketoconazole; however, MMAE exposures were lower with rifampin and higher with ketoconazole. The short-term safety profile of brentuximab vedotin in this study was generally consistent with historic clinical observations. The most common adverse events were nausea, fatigue, diarrhea, headache, pyrexia, and neutropenia. Over a 1-week period, ∼23.5% of intact MMAE was recovered after administration of brentuximab vedotin; all other species were below the limit of quantitation. The primary excretion route is via feces (median 72% of the recovered MMAE). These results suggest that brentuximab vedotin (1.8 mg/kg) and MMAE are neither inhibitors nor inducers of CYP3A; however, MMAE is a substrate of CYP3A. PMID:23754575

  15. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells.

    Science.gov (United States)

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; Liu, Gang; Zhang, Fengchun; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upon near-infrared (NIR) laser treatment (790 nm, 1.5 W/cm(2), 5 min) in vitro experiment. Orthotopic and subcutaneous xenografted nude mice models of human gastric cancer were established. Subsequently, biodistribution and photothermal therapeutic effects after being intravenously injected with the prepared nanoprobes were assessed. Photoacoustic imaging revealed that CD44v6-GNS nanoprobes could target the gastric cancer vascular system actively at 4 h post-injection, while the probes inhibited tumor growth remarkably upon NIR laser irradiation, and even extended survivability of the gastric cancer-bearing mice. The CD44v6-GNS nanoprobes exhibited great potential for applications of gastric cancer targeted imaging and photothermal therapy in the near future. PMID:26155313

  16. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse

    Directory of Open Access Journals (Sweden)

    Terakawa M

    2012-05-01

    Full Text Available Mitsuhiro Terakawa, Yasuyuki Tsunoi, Tatsuki MitsuhashiDepartment of Electronics and Electrical Engineering, Keio University, Yokohama, Kanagawa, JapanAbstract: Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane.Keywords: femtosecond laser, drug delivery, transfection, biodegradable polymer

  17. The biology of MDR1-P-glycoprotein (MDR1-Pgp in designing functional antibody drug conjugates (ADCs: the experience of gemtuzumab ozogamicin

    Directory of Open Access Journals (Sweden)

    Maurizio Cianfriglia

    2013-06-01

    Full Text Available BACKGROUND: The treatment of cancer remains a formidable challenge owing to the difficulties in differentiating tumor cells from healthy cells to ameliorate the disease without causing intolerable toxicity to patients. In addition, the emergence of MDR1-Pgp mediated multi-drug resistance (MDR it is a biological phenomenon that inhibits the curative potential of chemotherapeutic treatments. One way to improve the selectivity of therapeutic molecules in tumors would be to target them on the tumor site, thereby sparing normal tissues. AIMS: In this overview, we will discuss the biological factors influencing the safety and efficacy of the humanized mAb hP67.6 linked to the potent cytotoxic drug calicheamicin-gamma1 (gemtuzumab ozogamicin that target CD33 cell surface antigen expressed on AML cells. In addition, we highlight key aspects of MDR1-Pgp biology as a platform to understand its functional role in gemtuzumab ozogamicin immunotherapy which is tightly linked to an accurate assessment of the MDR status of AML cells. DISCUSSION: Several factors may affect the efficacy and safety of immunoconjugates. These include the common issues of chemical and antibody therapeutics such as specificity, heterogeneous target antigen expression and the complex pharmacokinetics profile of conveyed antibody. Further, the delivered drug may not be sufficient for providing therapeutic benefit, since the curative cytotoxic compound may be affected by intrinsic or acquired resistance of target cells. These and other potential problems, as well as the possible ways to overcome them will be discussed in this review by examining the biological factors involved in safety and efficacy of the first in class antibody drug conjugate (ADC gentuzumab ozogamicin. Despite this set-back, the extensive recorded data and the lessons learned from gentuzumab ozogamicin recently withdrawn from the market for safety concerns helped to pave the way for next generations of clinically

  18. Antibody-drug conjugates and their application in the treatment of hematological malignancies%抗体药物偶联物及其在恶性血液系统肿瘤治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    林莉; 丁倩; 汤沁; 张珍珍; 代争; 詹金彪

    2012-01-01

    单克隆抗体靶向治疗是目前临床肿瘤治疗的热点.针对抗体分子大而组织穿透性差以及临床使用剂量大、生产成本高的问题,抗体的小型化和高效性设计已成为抗体药物研发的新趋势.近年来,单抗与细胞毒性药物的结合物被称为抗体药物偶联物(antibody-drug conjugates,ADCs),已加入到抗癌药物的行列中,成为新型的抗体药物而受到广泛关注.泛义的ADC通常由抗体、接头(linker)和效应分子等3部分组成.根据效应分子的不同,可将ADC分为化学免疫偶联物、免疫毒素、放射性免疫偶联物等3类.ADC被内化进入细胞后,通过细胞内的化学和酶解作用释放出细胞毒性物质,细胞毒性物质则通过抑制蛋白合成、解聚微管蛋白或断裂双链DNA等作用而对靶细胞产生杀伤作用.近年来,FDA已经批准2种ADC药物上市,有多种处于Ⅱ~Ⅲ期临床试验阶段,取得了显著的临床效果,吸引了越来越多的制药企业争相竞逐.本文介绍ADC的过去和现状,结合临床肿瘤应用中的实际问题,探讨其将来的发展趋势.%Monoclonal antibody-targeted therapy has been a hot spot in current clinical cancer treatment. As current antibody drugs have large molecule sizes leading to poor tissue penetration, and high dosage in clinical application leading to high cost, to overcome the problems, the development of new antibody drugs with miniaturization and high potency has become a new trend. In recent years, the conjugates of monoclonal antibodies and cytotoxins, called antibody-drug conjugates (ADCs), have entered the arsenal of anti-cancer drugs, becoming a new format of antibody drugs and attracting extensive attentions. The ADC molecule usually consists of antibody, linker and effector molecule. According to different effector molecules, ADCs can be divided into three categories as chemo-conjugates, immunotoxins and radio-conjugates. When ADC molecules are internalized into cancer

  19. Imaging small human prostate cancer xenografts after pretargeting with bispecific bombesin-antibody complexes and targeting with high specific radioactivity labeled polymer-drug conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vishwesh; Gada, Keyur; Panwar, Rajiv; Ferris, Craig; Khaw, Ban-An [Northeastern University, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA (United States); Varvarigou, Alexandra [Institute of Radioisotopes and Radiodiagnostics, National Centre for Scientific Research ' ' Demokritos' ' , Athens (Greece); Majewski, Stan [West Virginia University, Department of Radiology, Nuclear Medicine Imaging Instrumentation Program, Center for Advanced Imaging, Morgantown, WV (United States); Weisenberger, Andrew [Jefferson LA, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tekabe, Yared [Columbia University Medical Center, New York, NY (United States)

    2012-05-15

    Pretargeting with bispecific monoclonal antibodies (bsMAb) for tumor imaging was developed to enhance target to background activity ratios. Visualization of tumors was achieved by the delivery of mono- and divalent radiolabeled haptens. To improve the ability to image tumors with bsMAb, we have combined the pretargeting approach with targeting of high specific activity radiotracer labeled negatively charged polymers. The tumor antigen-specific antibody was replaced with bombesin (Bom), a ligand that binds specifically to the growth receptors that are overexpressed by many tumors including prostate cancer. Bom-anti-diethylenetriaminepentaacetic acid (DTPA) bispecific antibody complexes were used to demonstrate pretargeting and imaging of very small human prostate cancer xenografts targeted with high specific activity {sup 111}In- or {sup 99m}Tc-labeled negatively charged polymers. Bispecific antibody complexes consisting of intact anti-DTPA antibody or Fab' linked to Bom via thioether bonds (Bom-bsCx or Bom-bsFCx, respectively) were used to pretarget PC-3 human prostate cancer xenografts in SCID mice. Negative control mice were pretargeted with Bom or anti-DTPA Ab. {sup 111}In-Labeled DTPA-succinyl polylysine (DSPL) was injected intravenously at 24 h (7.03 {+-} 1.74 or 6.88 {+-} 1.89 MBq {sup 111}In-DSPL) after Bom-bsCx or 50 {+-} 5.34 MBq of {sup 99m}Tc-DSPL after Bom-bsFCx pretargeting, respectively. Planar or single photon emission computed tomography (SPECT)/CT gamma images were obtained for up to 3 h and only planar images at 24 h. After imaging, all mice were killed and biodistribution of {sup 111}In or {sup 99m}Tc activities were determined by scintillation counting. Both planar and SPECT/CT imaging enabled detection of PC-3 prostate cancer lesions less than 1-2 mm in diameter in 1-3 h post {sup 111}In-DSPL injection. No lesions were visualized in Bom or anti-DTPA Ab pretargeted controls. {sup 111}In-DSPL activity in Bom-bsCx pretargeted tumors (1

  20. Synthesis of polyamide supports for use in peptide synthesis and as peptide-resin conjugates for antibody production.

    Science.gov (United States)

    Kanda, P; Kennedy, R C; Sparrow, J T

    1991-10-01

    We have synthesized beaded, hydrophilic cross-linked, aminoalkyl polydimethylacrylamide supports upon which peptides have been assembled using standard Boc or Fmoc chemistry in automated equipment. The resins were prepared by the free radical-initiated co-polymerization of N,N-dimethylacrylamide, N,N'-bisacrylyl-1,3-diaminopropane, and a functional monomer which were contained in a reverse-phase, detergent-emulsified suspension. The functional monomers used were N-(2-(methylsulfonyl)ethyloxycarbonyl)-allyl-amine (MSC-allylamine), N-acrylyl-1,6-diaminohexane hydrochloride or N-methacrylyl-1,3-diamino-propane hydrochloride. The MSC protecting group was removed by treatment of the resin with methanolic base during workup. After coupling of N-alpha-t-butyloxycarbonyl-alanine (Boc-alanine), amino acid analyses gave resin loading capacities between 0.15 mmol/g and 1.4 mmol/g, depending on the concentration and composition of the functional monomer. The resulting polymers were highly swollen by polar solvents including aqueous buffers. Peptides were synthesized on these supports after attaching the first amino acid directly or through a cleavable ester linker. When the carboxyl-terminal amino acid was coupled as the 4-oxymethylbenzoic acid derivative, the peptide could be deprotected and remain attached to the hydrophilic polymer since the peptide-benzyl ester bond was stable to HF deprotection at 0 degrees in the presence of 10% anisole and 1% ethanedithiol. The resulting peptidyl-resin could be swollen in aqueous buffers and injected into animals for the production of antibodies. PMID:1797711

  1. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  2. Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction

    International Nuclear Information System (INIS)

    The role of tumor stroma in regulation of breast cancer growth has been widely studied. However, the details on the type of heterocellular cross-talk between stromal and breast cancer cells (BCCs) are still poorly known. In the present study, in order to investigate the intercellular communication between human mesenchymal stromal cells (hMSCs) and breast cancer cells (BCCs, MDA-MB-231), we recruited cell-internalizing quantum dots (i-QD) generated by conjugation of cell-internalizing anti-mortalin antibody and quantum dots (QD). Co-culture of illuminated and color-coded hMSCs (QD655) and BCCs (QD585) revealed the intercellular transfer of QD655 signal from hMSCs to BCCs. The amount of QD double positive BCCs increased gradually within 48 h of co-culture. We found prominent intercellular transfer of QD655 in hanging drop co-culture system and it was non-existent when hMSCs and BBCs cells were co-cultured in trans-well system lacking imminent cell–cell contact. Fluorescent and electron microscope analyses also supported that the direct cell-to-cell interactions may be required for the intercellular transfer of QD655 from hMSCs to BCCs. To the best of our knowledge, the study provides a first demonstration of transcellular crosstalk between stromal cells and BCCs that involve direct contact and may also include a transfer of mortalin, an anti-apoptotic and growth-promoting factor enriched in cancer cells

  3. Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pietilä, Mika [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7, P.O. Box 5000, FIN-90014 (Finland); Institute of Clinical Medicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu University Hospital, Aapistie 5a, P.O. Box 5000, FIN-90014 (Finland); Kuvaja, Paula [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7, P.O. Box 5000, FIN-90014 (Finland); Department of Pathology, Oulu University Hospital, P.O. Box 50, FIN-90029 OYS, Oulu (Finland); Kaakinen, Mika [Biocenter Oulu, University of Oulu, P.O. Box 5000, FI-90014 (Finland); Kaul, Sunil C.; Wadhwa, Renu [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan); Uemura, Toshimasa, E-mail: t.uemura@aist.go.jp [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan)

    2013-11-01

    The role of tumor stroma in regulation of breast cancer growth has been widely studied. However, the details on the type of heterocellular cross-talk between stromal and breast cancer cells (BCCs) are still poorly known. In the present study, in order to investigate the intercellular communication between human mesenchymal stromal cells (hMSCs) and breast cancer cells (BCCs, MDA-MB-231), we recruited cell-internalizing quantum dots (i-QD) generated by conjugation of cell-internalizing anti-mortalin antibody and quantum dots (QD). Co-culture of illuminated and color-coded hMSCs (QD655) and BCCs (QD585) revealed the intercellular transfer of QD655 signal from hMSCs to BCCs. The amount of QD double positive BCCs increased gradually within 48 h of co-culture. We found prominent intercellular transfer of QD655 in hanging drop co-culture system and it was non-existent when hMSCs and BBCs cells were co-cultured in trans-well system lacking imminent cell–cell contact. Fluorescent and electron microscope analyses also supported that the direct cell-to-cell interactions may be required for the intercellular transfer of QD655 from hMSCs to BCCs. To the best of our knowledge, the study provides a first demonstration of transcellular crosstalk between stromal cells and BCCs that involve direct contact and may also include a transfer of mortalin, an anti-apoptotic and growth-promoting factor enriched in cancer cells.

  4. Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA

    Science.gov (United States)

    Zang, Xinlong; Ding, Huaiwei; Zhao, Xiufeng; Li, Xiaowei; Du, Zhouqi; Hu, Haiyang; Qiao, Mingxi; Chen, Dawei; Deng, Yuihui; Zhao, Xiuli

    2016-01-01

    Therapeutic delivery of small interfering RNA (siRNA) is a major challenge that limits its potential clinical application. Here, a pH-sensitive cholesterol–Schiff base–polyethylene glycol (Chol–SIB–PEG)-modified cationic liposome–siRNA complex, conjugated with the recombinant humanized anti-EphA10 antibody (Eph), was developed as an efficient nonviral siRNA delivery system. Chol–SIB–PEG was successfully synthesized and confirmed with FTIR and 1H-NMR. An Eph–PEG–SIB–Chol-modified liposome–siRNA complex (EPSLR) was prepared and characterized by size, zeta potential, gel retardation, and encapsulation efficiency. Electrophoresis results showed that EPSLR was resistant to heparin replacement and protected siRNA from fetal bovine serum digestion. EPSLR exhibited only minor cytotoxicity in MCF-7/ADR cells. The results of flow cytometry and confocal laser scanning microscopy suggested that EPSLR enhanced siRNA transfection in MCF-7/ADR cells. Intracellular distribution experiment revealed that EPSLR could escape from the endo-lysosomal organelle and release siRNA into cytoplasm at 4 hours posttransfection. Western blot experiment demonstrated that EPSLR was able to significantly reduce the levels of MDR1 protein in MCF-7/ADR cells. The in vivo study of DIR-labeled complexes in mice bearing MCF-7/ADR tumor indicated that EPSLR could reach the tumor site rather than other organs more effectively. All these results demonstrate that EPSLR has much potential for effective siRNA delivery and may facilitate its therapeutic application. PMID:27574425

  5. In vitro and in vivo comparison of DTPA- and DOTA-conjugated antiferritin monoclonal antibody for imaging and therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Pancreatic cancer has a very poor prognosis with a less than 5% survival rate at 5 years. Neither external beam radiation nor chemotherapy, alone or in combination, have given encouraging results so far. A possible solution might come from the use of targeted therapy such as radioimmunotherapy. We present here the results obtained from the preclinical development of a new monoclonal antiferritin antibody (Ab), AMB8LK. Ferritin is overexpressed in pancreatic cancer and could thus be used as a target for the delivery of radioactivity at the tumour sites. The AMB8LK Ab was conjugated to three chelating agents: the 2-(4-isothiocyanatobenzyl)-diethylenetriamine pentaacetic acid (PSCN-Bz-DTPA), the (R)-2-amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1, 2-diamine-pentaacetic acid (p5CN-Bz-CHX-A''-DTPA) and the 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (pSCN-Bz-DOTA). Radiolabelling of the three immunoconjugates with indium 111 and yttrium 90 as well as in vitro stability and immunoreactivity against pure ferritin and cells expressing ferritin were analysed. In vivo biodistribution studies were conducted on normal and on human pancreatic adenocarcinoma CAPAN-1 tumour bearing mice. These experiments demonstrated good radiolabelling (>95%), stability and immunoreactivity of the three compounds. In the biodistribution studies, differences between the three immunoconjugates were apparent in the rate of blood clearance and in tumour, liver and bone uptake. A very good pancreatic adenocarcinoma tumour targeting was observed especially with the Bz-DTPA-AMB8LK: 20% of the injected dose of the indium-labelled compound 3 days after injection; 15% of the injected dose 5 days after that of the yttrium-labelled Ab. Altogether, these results in animal models suggest that 90Y-Bz-DTPA-AMB8LK is a good candidate for further therapeutic efficacy studies

  6. In Vitro and In Vivo Imaging of Prostate Cancer Angiogenesis Using Anti-Vascular Endothelial Growth Factor Receptor 2 Antibody-Conjugated Quantum Dot

    OpenAIRE

    Kwon, Haejin; Lee, Jiyeon; Song, Rita; Hwang, Sung Il; Lee, Junghan; Kim, Young-Hwa; Lee, Hak Jong

    2012-01-01

    Objective Authors aimed to determine the targeting ability of vascular endothelial growth factor receptor 2 (VEGFR2)-conjugated quantum dots (QDs) in vitro, and apply it for a xenograft prostate cancer mouse model. Materials and Methods Conjugation reaction of QDs was performed by using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and sulfo-(N-hydroxysulfosuccinimide) (Sulfo-NHS). The human umbilical vein cord endothelial cells (HUVECs) were incubated with QDs, conjugated with ant...

  7. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1)

    Science.gov (United States)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Marchenko, Yaroslav Y.; Parr, Marina A.; Rolich, Valerij I.; Mikhrina, Anastasiya L.; Dobrodumov, Anatolii V.; Pitkin, Emil; Multhoff, Gabriele

    2015-12-01

    The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T2-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M2 measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy

  8. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2016-01-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining. PMID:27398438

  9. Enhanced Photoelectrochemical Immunosensing Platform Based on CdSeTe@CdS:Mn Core-Shell Quantum Dots-Sensitized TiO2 Amplified by CuS Nanocrystals Conjugated Signal Antibodies.

    Science.gov (United States)

    Fan, Gao-Chao; Zhu, Hua; Du, Dan; Zhang, Jian-Rong; Zhu, Jun-Jie; Lin, Yuehe

    2016-03-15

    A new, ultrasensitive photoelectrochemical immunosensing platform was established on the basis of CdSeTe@CdS:Mn core-shell quantum dots-sensitized TiO2 coupled with signal amplification of CuS nanocrystals conjugated signal antibodies. In this proposal, carcinoembryonic antigen (CEA, Ag) was selected as an example of target analyte to show the analytical performances of the platform. Specifically, TiO2-modified electrode was first assembled with CdSeTe alloyed quantum dots (AQDs) via electrostatic adsorption assisted by oppositely charged polyelectrolyte, and then further deposited with CdS:Mn shells on the surface of CdSeTe AQDs via successive ionic layer adsorption and reaction strategy, forming TiO2/CdSeTe@CdS:Mn sensitization structure, which was used as photoelectrochemical matrix to immobilize capture CEA antibodies (Ab1); signal CEA antibodies (Ab2) were labeled with CuS nanocrystals (NCs) to form Ab2-CuS conjugates, which were employed as signal amplification elements when specific immunoreaction occurred. The ultrahigh sensitivity of this immunoassay resulted from the following two aspects. Before detection of target Ag, the TiO2/CdSeTe@CdS:Mn sensitization structure could adequately harvest the exciting light with different bands, evidently expedite the electron transfer, and effectively depress the charge recombination, resulting in noticeably increased photocurrent. When target Ag existed, the Ab2-CuS conjugates could dramatically decrease the photocurrent due to competitive absorption of exciting light and consumption of electron donor for CuS NCs coupled with steric hindrance of Ab2 molecules. The fabricated photoelectrochemical immunosensor showed a low limit of detection of 0.16 pg/mL and a wide linear range from 0.5 pg/mL to 100 ng/mL for CEA detection, and it also exhibited good specificity, reproducibility, and stability. PMID:26910366

  10. A novel HER2-targeted drug:T-DM1 antibody-drug conjugate%新型抗Her-2药物T-DM1

    Institute of Scientific and Technical Information of China (English)

    岳健; 徐兵河

    2013-01-01

    T-DM1是新型抗体-药物偶联物,具有曲妥珠单抗类似的生物活性,可特异性的将强效抗微管药物DM1释放至Her-2过表达的肿瘤细胞内。T-DM1单药疗效优于拉帕替尼联合卡培他滨,有望成为Her-2阳性晚期乳腺癌的标准二线治疗药物。比较T-DM1与曲妥珠单抗联合紫杉类药物一线治疗晚期乳腺癌的试验正在进行中。该药是继曲妥珠单抗之后又一种全新的抗Her-2药物。美国FDA正式批准T-DM1作为治疗Her-2阳性晚期乳腺癌患者的药物。%T-DM1 is a novel antibody-drug conjugate that has similar biological activity with that of trastuzumab. T-DM1 specifically delivers DM1, the effective anti-microtubule drug, into the cytoplasm of tumor cells with HER2 overexpression. The efficacy of T-DM1 monotherapy is better than lapatinib in combination with capecitabine and T-DM and is expected to become the standard second-line treatment for HER2-positive advanced breast cancer drugs. Clinical trials that compare T-DM1 with trastuzumab joint taxane as the first-line of treatment for advanced breast cancer trials are currently being performed. T-DM1 is a brand new anti-HER2 drug after trastuzumab. U.S. FDA already approved T-DM1 as a drug for the treatment of HER2-positive advanced breast cancer patients.

  11. Bispecific Antibody Conjugated Manganese-Based Magnetic Engineered Iron Oxide for Imaging of HER2/neu- and EGFR-Expressing Tumors

    Science.gov (United States)

    Wu, Shou-Cheng; Chen, Yu-Jen; Wang, Hsiang-Ching; Chou, Min-Yuan; Chang, Teng-Yuan; Yuan, Shyng-Shiou; Chen, Chiao-Yun; Hou, Ming-Feng; Hsu, John Tsu-An; Wang, Yun-Ming

    2016-01-01

    The overexpression of HER2/neu and EGFR receptors plays important roles in tumorigenesis and tumor progression. Targeting these two receptors simultaneously can have a more widespread application in early diagnosis of cancers. In this study, a new multifunctional nanoparticles (MnMEIO-CyTE777-(Bis)-mPEG NPs) comprising a manganese-doped iron oxide nanoparticle core (MnMEIO), a silane-amino functionalized poly(ethylene glycol) copolymer shell, a near infrared fluorescence dye (CyTE777), and a covalently conjugated anti-HER2/neu and anti-EGFR receptors bispecific antibody (Bis) were successfully developed. In vitro T2-weighted MR imaging studies in SKBR-3 and A431 tumor cells incubated with MnMEIO-CyTE777-(Bis)-mPEG NPs showed - 94.8 ± 3.8 and - 84.1 ± 2.8% negative contrast enhancement, respectively. Pharmacokinetics study showed that MnMEIO-CyTE777-(Bis)-mPEG NPs were eliminated from serum with the half-life of 21.3 mins. In vivo MR imaging showed that MnMEIO-CyTE777-(Bis)-mPEG NPs could specifically and effectively target to HER2/neu- and EGFR-expressing tumors in mice; the relative contrast enhancements were 11.8 (at 2 hrs post-injection) and 61.5 (at 24 hrs post-injection) fold higher in SKBR-3 tumors as compared to Colo-205 tumors. T2-weighted MR and optical imaging studies revealed that the new contrast agent (MnMEIO-CyTE777-(Bis)-mPEG NPs) could specifically and effectively target to HER2/neu- and/or EGFR-expressing tumors. Our results demonstrate that MnMEIO-CyTE777-(Bis)-mPEG NPs are able to recognize the tumors expressing both HER2/neu and/or EGFR, and may provide a novel molecular imaging tool for early diagnosis of cancers expressing HER2/neu and/or EGFR. PMID:26722378

  12. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsieh WJ

    2012-06-01

    Full Text Available Wan-Ju Hsieh,1 Chan-Jung Liang,1 Jen-Jie Chieh,4 Shu-Huei Wang,1 I-Rue Lai,1 Jyh-Horng Chen,2 Fu-Hsiung Chang,3 Wei-Kung Tseng,4–6 Shieh-Yueh Yang,4 Chau-Chung Wu,7 Yuh-Lien Chen11Institute of Anatomy and Cell Biology, College of Medicine, 2Department of Electrical Engineering, 3Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan; 4Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan; 5Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Taipei, Taiwan; 6Department of Medical Imaging and Radiological Sciences, I-Shou University, Taipei, Taiwan; 7Department of Internal Medicine and Primary Care Medicine, National Taiwan University Hospital, Taipei, TaiwanBackground: Active targeting by specific antibodies combined with nanoparticles is a promising technology for cancer imaging and detection by magnetic resonance imaging (MRI. The aim of the present study is to investigate whether the systemic delivery of antivascular endothelial growth factor antibodies conjugating to the surface of functionalized supermagnetic iron oxide nanoparticles (anti-VEGF-NPs led to target-specific accumulation in the tumor.Methods: The VEGF expression in human colon cancer and in Balb/c mice bearing colon cancers was examined by immunohistochemistry. The distribution of these anti-VEGF-NPs particles or NPs particles were evaluated by MRI at days 1, 2, or 9 after the injection into the jugular vein of Balb/c mice bearing colon cancers. Tumor and normal tissues (liver, spleen, lung, and kidney were collected and were examined by Prussian blue staining to determine the presence and distribution of NPs in the tissue sections.Results: VEGF is highly expressed in human and mouse colon cancer tissues. MRI showed significant changes in the T*2 signal and T2 relaxation in the anti-VEGF-NP- injected-mice, but not in mice injected with NP alone. Examination of paraffin

  13. Preparation of Anti-malaria Antibodies with a Way of Peptide-protein Conjugation%用多肽-蛋白偶联方法制备抗恶性疟原虫抗体

    Institute of Scientific and Technical Information of China (English)

    钱锋

    2012-01-01

    目的 介绍一种多肽-蛋白偶联的流程,并用多肽-蛋白偶联产物制备抗疟原虫抗体. 方法 用化学连接剂Sulfo-EMCS在作为载体蛋白的铜绿假单胞菌重组去毒外毒素(rEPA)上加马来酰亚胺基团,用间接Ellman反应测定载体蛋白上所加的马来酰亚胺基团数量.用马来酰亚胺修饰的载体蛋白滴定Pfs48/45-158多肽[含恶性疟原虫表面蛋白48/45(Pfs48/45)第158~~173氨基酸序列,其N末端带有一个半胱氨酸残基],绘制滴定曲线并用线性回归进行曲线拟合,根据滴定曲线确定理论滴定终点,计算多肽与载体蛋白的偶联比(每摩尔载体蛋白所能结合的多肽的摩尔数).用过量的Pfs48/45-158多肽与马来酰亚胺修饰的rEPA进行反应,规模制备Pfs48/45-158-rEPA多肽-蛋白偶联物,偶联物用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进行鉴定.用所制备的Pfs48/45-158-rEPA偶联物免疫BALA/c小鼠,制备免疫血清.用ELISA测定免疫小鼠血清抗Pfs48/45-158多肽的抗体效价,用免疫荧光试验(IFA)测定免疫血清识别疟原虫的能力. 结果 通过化学连接剂在每摩尔rEPA上添加约6.94摩尔的马来酰亚胺基团.制备了偶联比约为7.33的Pfs48/45-158-rEPA多肽-蛋白偶联物.偶联物免疫小鼠激发出抗Pfs48/45-158多肽的高抗体应答,免疫血清抗Pfs48/45-158多肽的效价为12 500 ELISA单位(即吸光度A405值为1时的血清稀释度倒数),同时免疫血清可识别疟原虫. 结论 多肽-蛋白偶联是一种可用于制备抗疟原虫抗体的便捷方法,间接Ellman检测、滴定反应和SDS-PAGE分析构成了多肽-蛋白偶联物制备的质控方法,可更好地保证多肽-蛋白偶联物的质量和稳定性.%Objective To introduce a procedure of peptide-protein conjugation and prepare anti-malaria antibodies using a peptide-protein conjugate. Methods The recombinant atoxic form of Pseudomonas aeruginosa exotoxin A (rEPA) was used as carrier

  14. Non-epitope-specific suppression of the antibody response to Haemophilus influenzae type b conjugate vaccines by preimmunization with vaccine components

    DEFF Research Database (Denmark)

    Barington, T; Skettrup, M; Juul, L;

    1993-01-01

    children and adults. Despite its potential importance, the possible influence of preexisting immunity to the components of such conjugates on the vaccination response in humans has been addressed by few studies. To study this issue, we randomized 82 healthy adult volunteers into six groups and vaccinated...

  15. Tandem Native Mass-Spectrometry on Antibody-Drug Conjugates and Submillion da Antibody-Antigen Protein Assemblies on an Orbitrap EMR Equipped with a High-Mass Quadrupole Mass Selector

    NARCIS (Netherlands)

    Dyachenko, Andrey; Wang, Guanbo; Belov, Mike; Makarov, Alexander; De Jong, Rob N.; Van Den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2015-01-01

    Native mass spectrometry is emerging as a powerful tool for the characterization of intact antibodies and antibody-based therapeutics. Here, we demonstrate new possibilities provided by the implementation of a high mass quadrupole mass selector on the recently introduced Orbitrap Exactive EMR mass s

  16. Determination of Conjugation Efficiency of Antibodies and Proteins to the Superparamagnetic Iron Oxide Nanoparticles by Capillary Electrophoresis with Laser-Induced Fluorescence Detection

    International Nuclear Information System (INIS)

    The method based on capillary electrophoresis with laser-induced fluorescence detection (CE/LIF) was developed for determination of magnetic iron oxide nanoparticles (hydrodynamic diameters of 100 nm) functionalized with molecules containing primary amino groups. The magnetic nanoparticles with carboxylic or aminopropyl-trimethoxysilane groups at their surface were conjugated to the model proteins (bovine serum albumin, BSA; streptavidin or goat anti-rabbit immunoglobulin G, IgG) using carbodiimide as a zero-length cross-linker.The nanoparticle-protein conjugates (hydrodynamic diameter 163-194 nm) were derivatized with naphthalene-2,3-dicarboxaldehyde reagent and separated by CE/LIF with a helium-cadmium laser (excitation at 442 nm, emission at 488 nm). The separations were carried out by using a fused-silica capillary (effective length 48 cm, inner diameter 75 um) and 100 mM sodium borate buffer (pH 9.2), the potential was 30 kV. The detection limit for BSA-conjugate was 1.3 pg/10 nl, i.e. about 20 amol. The present method provides an efficient and fast tool for sensitive determination of the efficacy of biomolecular functionalization of magnetic nanoparticles. The CE/LIF technique requires only negligible sample volumes for analysis, which is especially suitable for controlling the process of preparation of functionalized nanoparticles with unique properties aimed to be used for diagnostic or therapeutic purposes

  17. Preparation and near-quantitative Y-90 labelings of monoclonal antibody-macrocylic chelator (MAb-DOTA) conjugates for radioimmunotherapy (RAIT)

    Energy Technology Data Exchange (ETDEWEB)

    Govindan, S.V.; Griffiths, G.L.; Losman, M.J. [Immunomedics, Inc., Morris Plains, NJ (United States)] [and others

    1996-05-01

    The importance of kinetically inert Y-90-DOTA chelate for RAIT is well recognized. The aim of this study was to adapt a published procedure to overcome long-standing problems related to practical preparation of DOTA-MAb conjugates and poor Y-90 incorporation, and further improve upon labeling efficiencies. Using monoactivated DOTA, we have prepared conjugates of a CEA MAb (MN-14), a lymphoma MAb (LL2), their humanized versions (hMN-14 and hLL2), and the respective divalent fragments, and systematically examined the Y-90-labeling parameters. The DOTA/Mab ratios in conjugates were in the 3.0-6.8 range. In competitive CEA-binding assays, unmodified MN-14, MN-14-DOTA (6.8 chelators) and hMN-14-DOTA (4.4 chelators) exhibited very similar binding patterns. Y-90 labeling yields of >90% were obtained using a labeling time of 2 h at 40-45{degrees}C, pH {approximately}5.5, and DOTA/MAb ratio >3. Incorporations (specific activities):>99%for hMN-14-DOTA (103-170 MBa/mg), 94-97% for hLL2-DOTA (107-185 MBa/mg), 93-98%for hLL2F(ab`){sub 2}-DOTA (111 MBa/mg), and >90% for MN14-DOTA (37-185 MBq/mg). Aggregate content was usually less than 5%. Observed high incorporations are due both to the higher temperature used and DOTA/Y-90 molar ratios which readily exceeded a threshold requirement of three. Labeling efficiencies also depended upon the level of trace metal contaminants in the Y-90 shipment. Incubations of Y-90 labeled DOTA conjugates of hMN-14 and hLL2 in serum and in 1 mM DTPA at 37{degrees}C showed no detectable loss of metal over a 10-day period. These results should allow us to routinely use Y-90-DOTA-MAb conjugates in future preclinical and clinical RAIT studies.

  18. Radiohalogenated half-antibodies and maleimide intermediate therefor

    Science.gov (United States)

    Kassis, A.I.; Khawli, L.A.

    1991-02-19

    N-(m-radiohalophenyl) maleimide can be conjugated with a reduced antibody having a mercapto group to provide a radiolabeled half-antibody having immunological specific binding characteristics of whole antibody. No Drawings

  19. Heavy-chain isotype patterns of human antibody-secreting cells induced by Haemophilus influenzae type b conjugate vaccines in relation to age and preimmunity

    DEFF Research Database (Denmark)

    Barington, T; Juul, Lars; Gyhrs, A;

    1994-01-01

    The influence of preexisting immunity on the heavy-chain isotypes of circulating antibody-secreting cells (AbSC) induced by vaccination with Haemophilus influenzae type b (Hib) capsular polysaccharide (HibCP) coupled to tetanus toxoid (TT) or diphtheria toxoid (DT) and by vaccination with TT or DT...

  20. Antibodies conjugated with new highly luminescent Eu3+ and Tb3+ chelates as markers for time resolved immunoassays. Application to simultaneous determination of clenbuterol and free cortisol in horse urine.

    Science.gov (United States)

    Bacigalupo, M A; Meroni, G; Secundo, F; Scalera, C; Quici, S

    2009-12-15

    Highly luminescent Eu(3+) and Tb(3+) complexes of 10-[4-(3-isothiocyanatopropoxy)benzoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7 triacetic acid Eu(3+) is a subset of 1 and Tb(3+) is a subset of 1 were conjugated with a goat anti-rabbit IgG and a rabbit anti-mouse IgG, respectively, and applied as markers in a time resolved immunoassay for simultaneous quantitative determination of anabolic compounds clenbuterol (CL) and hydrocortisone (HC). The assay was performed in horse urine, using a monoclonal antibody specific to CL and a rabbit polyclonal antibody specific to the free HC. These lanthanide chelates are very stable and highly luminescent in aqueous solution and allowed to reach 10 microg L(-1) and 40 microg L(-1) sensitivities for CL and for HC, respectively. Application to the horse urine, that is a very complex matrix, has a considerable interest in the control of illegal use of these compounds. PMID:19836578

  1. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Green, Damian J.; Shadman, Mazyar; Jones, Jon C.; Frayo, Shani; Kenoyer, Aimee L.; Hylarides, Mark; Hamlin, Donald K.; Wilbur, D. Scott; Balkan, Ethan R.; Lin, Yukang; Miller, Brian W.; Frost, Sophia; Gopal, Ajay K.; Orozco, Johnnie J.; Gooley, Ted; Laird, Kelley L.; Till, B. G.; Back, Tom; Sandmaier, B. M.; Pagel, John M.; Press, Oliver W.

    2015-03-26

    Alpha emitting radionuclides release a large amount of energy within a few cell diameters and may be particularly effective for radioimmunotherapy targeting minimal residual disease (MRD) conditions in which micrometastatic disease satellites are broadly distributed. To evaluate this hypothesis, 211At conjugated 1F5 mAb (anti-CD20) was studied in both bulky lymphoma tumor xenograft and MRD animal models. Superior treatment responses to 211At conjugated 1F5 mAb were evident in the MRD setting. Lymphoma xenograft tumor bearing animals treated with doses of up to 48µCi of anti-CD20 211At-decaborate [211At-B10-1F5] experienced modest responses (0% cures but 2-3-fold prolongation of survival compared to negative controls). In contrast, 70% of animals in the MRD lymphoma model demonstrated complete eradication of disease when treated with 211At-B10-1F5 at a radiation dose that was less than one-third (15 µCi) of the highest dose given to xenograft animals. Tumor progression among untreated control animals in both models was uniformly lethal. After 130 days, no significant renal or hepatic toxicity is observed in the cured animals receiving 15 µCi of 211At-B10-1F5. These findings suggest that in a MRD lymphoma model, where isolated cells and tumor microclusters prevail, α-emitters may be uniquely efficacious.

  2. Intranasal Immunization of Guinea Pigs with an Immunodominant Foot-and-Mouth Disease Virus Peptide Conjugate Induces Mucosal and Humoral Antibodies and Protection against Challenge†

    OpenAIRE

    Fischer, D.; Rood, D.; Barrette, R. W.; Zuwallack, A.; Kramer, E.; Brown, F.; Silbart, L. K.

    2003-01-01

    Guinea pigs immunized intranasally with a keyhole limpet hemocyanin-linked peptide, corresponding to the prominent G-H loop of the VP1 protein of foot-and-mouth disease virus, raised substantial levels of antipeptide and virus-neutralizing antibodies in sera and of peptide-specific secretory immunoglobulin A in nasal secretions. In groups of animals immunized intranasally without adjuvant, 86 percent were fully protected upon challenge with homotypic virus. Surprisingly, animals given the pep...

  3. Conjugal violence

    Directory of Open Access Journals (Sweden)

    Simona Mihaiu

    2015-10-01

    Full Text Available Scientific knowledge of different aspects related to conjugal violence is highly important for people directly involved, such as researchers, practitioners and the entire society. In this respect, globally, specialised studies continue to advance, offer correct definitions, clear descriptions, convincing assessments to certain issues, encouraging thus long-term research, since some specialists have managed to overcome restrictive or ideological methods and explanations. Moreover, in practice, debates reach almost all social, political and legal dimensions regarding appropriate and efficient forms of preventing conjugal violence. Unfortunately, in Romania there are fewer research and prevention approaches of this social problem. In general, attention is directed to domestic violence and conjugal violence is dealt with only implicitly. Considering the given context, the aim of the paper is to outline, by analysing specialised literature, a new research direction and implicitly, social intervention. I specify that this article represents a stage in the ongoing postdoctoral research project, entitled "Conjugal homicide. Aggressors and victims".

  4. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC)*

    Science.gov (United States)

    Goldenberg, David M.; Cardillo, Thomas M.; Govindan, Serengulam V.; Rossi, Edmund A.; Sharkey, Robert M.

    2015-01-01

    Trop-2 is a novel target for ADC therapy because of its high expression by many solid cancers. The rational development of IMMU-132 represents a paradigm shift as an ADC that binds a well-known moderately-cytotoxic drug, SN-38, to the anti-Trop-2 antibody. In vitro and in vivo studies show enhanced efficacy, while there is a gradual release of SN-38 that contributes to the overall effect. IMMU-132 is most efficacious at a high drug:antibody ratio (DAR) of 7.6:1, which does not affect binding and pharmacokinetics. It targets up to 136-fold more SN-38 to a human cancer xenograft than irinotecan, SN-38′s prodrug. IMMU-132 delivers SN-38 in its most active, non-glucuronidated form, which may explain the lower frequency of severe diarrhea than with irinotecan. Thus, this ADC, carrying a moderately-toxic drug targeting Trop-2 represents a novel cancer therapeutic that is showing promising activity in patients with several metastatic cancer types, including triple-negative breast cancer, non-small-cell and small-cell lung cancers. PMID:26101915

  5. Selective elimination in vitro of alloresponsive T cells to human transplantation antigens by toxin or radionuclide conjugated anti-IL-2 receptor (Tac) monoclonal antibody

    International Nuclear Information System (INIS)

    The human allogeneic mixed lymphocyte reaction is the in vitro correlate of graft rejection. Cytotoxic effector cells generated during an allogeneic mixed lymphocyte reaction were previously shown to express the human p55 IL-2 receptor subunit, whereas resting cells do not express this receptor peptide. In this study, we asked whether Pseudomonas exotoxin or bismuth-212 (an alpha-particle emitting radionuclide) coupled to the anti-IL-2 receptor mAb, anti-Tac, were able to selectively eliminate alloresponsive cells generated during an allogeneic mixed lymphocyte reaction. After assembly, anti-Tac immunoconjugates retained their binding integrity, specificity, and selectivity. Deletion of alloresponsive cells was shown by the removal of alloproliferating cells as assessed by quantitating cell recovery and by measurement of thymidine incorporation into newly synthesized DNA. Both toxin and radionuclide immunoconjugates eliminated established cytotoxic effector cells generated in an allogeneic mixed lymphocyte reaction, while leaving intact the PHA-inducible mitogenic response of the nonactivated cells. The addition of excess anti-Tac blocked all of the effects of these cytotoxic reagents. The therapeutic reagents in vitro were most effective when added just prior to the peak of the alloproliferative response, when receptor expression would be close to maximum. Thus, anti-Tac conjugated either with toxin or radionuclide is effective in vitro in specifically eliminating cytotoxic effector cells

  6. T-DM1, a novel antibody-drug conjugate, is highly effective against uterine and ovarian carcinosarcomas overexpressing HER2.

    Science.gov (United States)

    Nicoletti, Roberta; Lopez, Salvatore; Bellone, Stefania; Cocco, Emiliano; Schwab, Carlton L; Black, Jonathan D; Centritto, Floriana; Zhu, Liancheng; Bonazzoli, Elena; Buza, Natalia; Hui, Pei; Mezzanzanica, Delia; Canevari, Silvana; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-01-01

    Ovarian and uterine carcinosarcoma (CS) are characterized by their aggressive clinical behavior and poor prognosis. We evaluated the efficacy of trastuzumab-emtansine (T-DM1), against primary HER2 positive and HER2 negative CS cell lines in vitro and in vivo. Eight primary CS cell lines were evaluated for HER2 amplification and protein expression by fluorescence in situ hybridization, immunohistochemistry, flow cytometry and qRT-PCR. Sensitivity to T-DM1-induced antibody-dependent-cell-mediated-cytotoxicity (ADCC) was evaluated in 4-h-chromium-release-assays. T-DM1 cytostatic and apoptotic activities were evaluated using flow cytometry based proliferation assays. In vivo activity of T-DM1 was also evaluated. HER2 protein overexpression and gene amplification were detected in 25 % (2/8) of the primary CS cell lines. T-DM1 and T were similarly effective in inducing strong ADCC against CS overexpressing HER2 at 3+ levels. In contrast, T-DM1 was dramatically more effective than T in inhibiting cell proliferation (P < 0.0001) and in inducing G2/M phase cell cycle arrest in the HER2 expressing cell lines (shift of G2/M: mean ± SEM from 14.87 ± 1.23 to 66.57 ± 4.56 %, P < 0.0001). Importantly, T-DM1 was highly active at reducing tumor formation in vivo in CS xenografts overexpressing HER2 (P = 0.0001 and P < 0.0001 compared to T and vehicle respectively) with a significantly longer survival when compared to T and vehicle mice (P = 0.008 and P = 0.0001 respectively). T-DM1 may represent a novel treatment option for the subset of HER2 positive CS patients with disease refractory to chemotherapy. PMID:25398397

  7. Validation of analytical method to calculate the concentration of conjugated monoclonal antibody; Validacao de metodo analitico para calculo de concentracao de anticorpo monoclonal conjugado

    Energy Technology Data Exchange (ETDEWEB)

    Alcarde, Lais F.; Massicano, Adriana V.F.; Oliveira, Ricardo S.; Araujo, Elaine B. de, E-mail: lais_alcarde@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of this study was to develop a quantitative analytical method using high performance liquid chromatography (HPLC) to determine the antibody concentration in conjunction with bifunctional chelator. Assays were performed using a high performance liquid chromatograph, and the following conditions were used: flow rate of 1 mL / min, 15 min run time, 0.2 M sodium phosphate buffer pH 7.0 as the mobile phase and column of molecular exclusion BioSep SEC S-3000 (300 x 7.8 mm, 5 μM - Phenomenex). The calibration curve was obtained with AcM diluted in 0.2 M sodium phosphate buffer pH 7.0 by serial dilution, yielding the concentrations: 400 μg/mL, 200 μg/mL, 100 μg/mL, 50 μg/mL, 25 μg/mL and 12.5 μg/mL. From the calibration curve calculated the equation of the line and with it the concentration of the immunoconjugate. To ensure the validity of the method accuracy and precision studies were conducted. The accuracy test consisted in the evaluation of 3 samples of known concentration, being this test performed with low concentrations (50 μg/mL), medium (100 μg/mL) and high (200 μg/mL). The precision test consisted of 3 consecutive measurements of one sample of known concentration, subject to the conditions set forth above for the other tests. The correlation coefficient of the standard curve was greater than 97%, the accuracy was satisfactory at low concentrations as well as accuracy. The method was validated by showing it for the accurate and precise determination of the concentration of the immunoconjugate. Furthermore, this assay was found to be extremely important, because using the correct mass of the protein, the radiochemical purity of the radioimmunoconjugate was above 95% in all studies.

  8. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are...... powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  9. Interaction of CdTe/CdS quantum dots with antibodies

    Institute of Scientific and Technical Information of China (English)

    Chen Shi; Xiang Yi Huang; Chao Qing Dong; Hong Jin Chen; Ji Cun Ren

    2009-01-01

    In the study,we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates.Capillary electrophoresis with laser-induced fluorescence detection(CE-LIF),fluorescence spectrometry and fluorescence correlation spectroscopy(FCS)were used to characterize the QDs conjugates with antibody.We found that the QDs-antibody conjugates possessed high fluorescence,small hydrodynamic radii and good stability in aqueous solution.

  10. Enterobacterial common antigen-tetanus toxoid conjugate as immunogen.

    OpenAIRE

    Lugowski, C; Kułakowska, M; Romanowska, E

    1983-01-01

    The methods of limited periodate oxidation and reductive amination were used to obtain covalently linked enterobacterial common antigen (ECA) with tetanus toxoid. This procedure is simple and gives a good yield of the conjugate with high ECA content (molecular ratio of ECA to tetanus toxoid, 6:1). The ECA-tetanus toxoid conjugate is immunogenic in rabbits, in contrast to free ECA or a mixture of ECA with proteins. This conjugate produces high levels of ECA-specific immunoglobulin G antibodies...

  11. Thyroid Antibodies

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Thyroid Antibodies Share this page: Was this page helpful? Also known as: Thyroid Autoantibodies; Antithyroid Antibodies; Antimicrosomal Antibody; Thyroid Microsomal Antibody; ...

  12. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  13. Preparation of self-assembled core-shell nano structure of conjugated generation 4.5 poly (amidoamine) dendrimer and monoclonal Anti-IL-6 antibody as bioimaging probe.

    Science.gov (United States)

    Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2015-11-01

    In this article, interleukin-6 (IL-6)-conjugated anionic generation 4.5 (G4.5) poly(amidoamine) (PAMAM) was synthesized through EDC/NHS coupling chemistry and evaluated for its optical properties in vitro. Conjugation was confirmed using Fourier-transformed infrared spectroscopy (FT-IR) and 2-dimensional nuclear magnetic resonance (2D NMR). After IL-6 conjugation, nanoparticle size increased to approximately 70 nm and zeta potential increased from -56.5 ± 0.2 to -19.1 ± 2.4 mV due to neutralization of negatively charged G4.5. Wide-angle X-ray scattering (WAXS) suggested that a layered nanoparticle structure was formed by the G4.5/IL-6 conjugate. Most interestingly, the intrinsic fluorescence of G4.5 significantly increased after IL-6 conjugation and underwent a blue shift as a result of H-aggregation. Furthermore, the cellular uptake of the conjugates by HeLa cells was significantly enhanced in comparison to free G4.5, as demonstrated by confocal microscopy and flow cytometry. These results indicated that the described system may be a potential bioimaging probe in vitro. PMID:26263213

  14. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    International Nuclear Information System (INIS)

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket

  15. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Rameshwer; Thomas, Thommey P; Desai, Ankur M; Kotlyar, Alina; Park, Steve J; Baker, James R Jr [Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109 (United States)], E-mail: rameshwe@umich.edu, E-mail: jbakerjr@med.umich.edu

    2008-07-23

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  16. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    Science.gov (United States)

    Shukla, Rameshwer; Thomas, Thommey P.; Desai, Ankur M.; Kotlyar, Alina; Park, Steve J.; Baker, James R., Jr.

    2008-07-01

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  17. Concatenated Conjugate Codes

    CERN Document Server

    Hamada, M

    2006-01-01

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  18. Monoclonal antibodies.

    Science.gov (United States)

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  19. A monoclonal antibody against leptin.

    Science.gov (United States)

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin. PMID:23098305

  20. Imaging tumors with radiolabelled monoclonal antibodies

    International Nuclear Information System (INIS)

    Using a metallic radionuclide, either directly bound to a monoclonal antibody, or to a chelating agent (such as di-ethylenetriamine-pentaacetic acid (DTPA)) conjugated to the antibody, a tumor can be traced rapidly and with high specificity. The labelled antibody is injected into the host. In some cases, a localization of distant metastases is possible, giving an indication of tumor spreading. Detection occurs by photoscanning. (Auth.)

  1. Assessment of reagents for selenocysteine conjugation and the stability of selenocysteine adducts.

    Science.gov (United States)

    Pedzisa, Lee; Li, Xiuling; Rader, Christoph; Roush, William R

    2016-06-14

    Conventional antibody-drug conjugates (ADCs) are heterogeneous mixtures that have poor pharmacokinetic properties and decreased efficacy relative to homogenous ADCs. Furthermore, ADCs that are maleimide-based often have inadequate circulatory stability, which can result in premature drug release with consequent off-target toxicities. Selenocysteine-modified antibodies have been developed that allow site-specific antibody conjugation, yielding homogeneous ADCs. Herein, we survey several electrophilic functional groups that react with selenocystine with high efficiency. Several of these result in conjugates with stabilities that are superior to maleimide conjugates. Among these, the allenamide functional group reacts with notably high efficiency, leads to conjugates with remarkable stability, and shows exquisite selectivity for selenocysteine conjugation. PMID:27184239

  2. Neutralization of lymphokine-mediated antirickettsial activity of fibroblasts and macrophages with monoclonal antibody specific for murine interferon gamma.

    OpenAIRE

    Jerrells, T R; Turco, J; Winkler, H H; Spitalny, G L

    1986-01-01

    Lymphokine-mediated inhibition of Rickettsia prowazekii multiplication in L929 fibroblasts was eliminated by treatment of the lymphokine with a monoclonal antibody specific for interferon-gamma. Soluble monoclonal antibody and antibody conjugated to Sepharose beads were equally effective. Macrophage activation to limit the multiplication of Rickettsia conorii was eliminated with antibody-conjugated beads; however, neutralization of the ability to activate macrophages with soluble antibody was...

  3. Optimization of multi-epitopic HIV-1 recombinant protein expression in prokaryote system and conjugation to mouse DEC-205 monoclonal antibody: implication for in-vivo targeted delivery of dendritic cells

    OpenAIRE

    Roghayeh Rahimi; Massoumeh Ebtekar; Seyed Mohammad Moazzeni; Ali Mostafaie; Mehdi Mahdavi

    2015-01-01

    Objective(s):Multi-epitopic protein vaccines and direction of vaccine delivery to dendritic cells (DCs) are promising approaches for enhancing immune responses against mutable pathogens. Escherichia coli is current host for expression of recombinant proteins, and it is important to optimize expression condition. The aim of this study was the optimization of multi-epitopic HIV-1 tat/pol/gag/env recombinant protein (HIVtop4) expression by E. coli and conjugation of purified protein to anti DEC-...

  4. Antibody-Directed Phototherapy (ADP

    Directory of Open Access Journals (Sweden)

    M. Adil Butt

    2013-04-01

    Full Text Available Photodynamic therapy (PDT is a clinically-approved but rather under-exploited treatment modality for cancer and pre-cancerous superficial lesions. It utilises a cold laser or LED to activate a photochemical reaction between a light activated drug (photosensitiser-drug and oxygen to generate cytotoxic oxygen species. These free radical species damage cellular components leading to cell death. Despite its benefits, the complexity, limited potency and side effects of PDT have led to poor general usage. However, the research area is very active with an increasing understanding of PDT-related cell biology, photophysics and significant progress in molecular targeting of disease. Monoclonal antibody therapy is maturing and the next wave of antibody therapies includes antibody-drug conjugates (ADCs, which promise to be more potent and curable. These developments could lift antibody-directed phototherapy (ADP to success. ADP promises to increase specificity and potency and improve drug pharmacokinetics, thus delivering better PDT drugs whilst retaining its other benefits. Whole antibody conjugates with first generation ADP-drugs displayed problems with aggregation, poor pharmacokinetics and loss of immuno-reactivity. However, these early ADP-drugs still showed improved selectivity and potency. Improved PS-drug chemistry and a variety of conjugation strategies have led to improved ADP-drugs with retained antibody and PS-drug function. More recently, recombinant antibody fragments have been used to deliver ADP-drugs with superior drug loading, more favourable pharmacokinetics, enhanced potency and target cell selectivity. These improvements offer a promise of better quality PDT drugs.

  5. Pneumococcal Conjugate Vaccine for Adults: A New Paradigm

    OpenAIRE

    Paradiso, Peter R

    2012-01-01

    A 13-valent pneumococcal conjugate vaccine has been studied in adults aged ≥50 years to compare the immune response to that induced by the 23-valent pneumococcal polysaccharide vaccine, which has been the standard of care over the past 30 years. The results demonstrate that adults, regardless of whether they are naive or previously vaccinated with the polysaccharide vaccine, have an overall superior antibody response when vaccinated with the conjugate vaccine compared with the pneumococcal po...

  6. Pneumococcal vaccination of older adults: Conjugate or polysaccharide?

    OpenAIRE

    Fedson, David S; Guppy, Martin J.

    2013-01-01

    Invasive pneumococcal disease continues to be important problem for older adults. Pneumococcal polysaccharide vaccine (PPV23) has a clinical effectiveness of 43–81%, and following primary vaccination and revaccination, antibody responses last 5–10 y. Hyporesponsiveness to a second dose of vaccine has not been shown to be a significant problem. The use of pneumococcal conjugate vaccines (initially PCV7; more recently PCV13) has led to a dramatic fall in the incidence of conjugate vaccine-type ...

  7. Quantitative Assessment of Antibody Internalization with Novel Monoclonal Antibodies against Alexa Fluorophores

    OpenAIRE

    Liao-Chan, Sindy; Daine-Matsuoka, Barbara; Heald, Nathan; Wong, Tiffany; Lin, Tracey; Cai, Allen G.; Lai, Michelle; D’Alessio, Joseph A.; Theunissen, Jan-Willem

    2015-01-01

    Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of inte...

  8. Optimization of biotin labeling of antibodies using mouse IgG and goat anti-mouse IgG-conjugated fluorescent beads and their application as capture probes on protein chip.

    Science.gov (United States)

    Lee, Jin Hyung; Choi, Hong Kyung; Chang, Jeong Ho

    2010-10-31

    This study shows the optimization of biotin labeling to antibodies using mouse IgG. Several parameters of the biotin labeling, including the molar ratio of biotin to antibody, the coupling time and the dialysis time, were studied to optimum conditions. The biotin-tagged mouse IgGs were immobilized on avidin-coated PMMA (Polymethyl Methacrylate) plates via a biotin-avidin linkage. The immobilization of the IgG to the chip was quantified using goat anti-mouse IgG bound fluorescent beads. It was found that the binding of the fluorescent beads saturated when a 10-fold or higher molar ratio of biotin to antibody was used. In biotin coupling time tests, sixty minutes was sufficient for the capture probes to bind to the surface. However, the results from the dialysis experiments showed no difference, indicating that 2 hours was sufficient to remove any unbound biotin. Finally, to prove the universality of this protocol using mouse antibodies, the optimum conditions were successfully applied in sandwich immunoassays designed to detect troponin I (TnI) and N-terminal probrain natriuretic peptide (NT-proBNP). PMID:20804762

  9. Rabbit antibodies to the cell wall polysaccharide of Streptococcus pneumoniae fail to protect mice from lethal challenge with encapsulated pneumococci.

    OpenAIRE

    Szu, S C; Schneerson, R; Robbins, J B

    1986-01-01

    A conjugate, composed of the cell wall polysaccharide (C polysaccharide) of Streptococcus pneumoniae and bovine serum albumin (BSA), was prepared with the bifunctional agent N-succinimidyl-3-(2-pyridyldithio)-propionate. Analysis with monoclonal antibodies provided evidence that the phosphocholine (PC) moiety of the C polysaccharide was retained during the conjugation procedure. The C polysaccharide-BSA conjugate elicited antibodies to C polysaccharide in rabbits; no PC-specific antibodies we...

  10. Production and characterization of antibody against aflatoxin Q1.

    OpenAIRE

    Fan, T. S.; Zhang, G S; Chu, F. S.

    1984-01-01

    Antibodies against aflatoxin Q1 (AFQ1) were obtained from rabbits after immunization of either AFQ1-hemisuccinate or AFQ2a conjugated to bovine serum albumin. Both radioimmunoassay and enzyme-linked immunosorbent assaY (ELISA) were used for the determination of antibody titers and specificities. Antibodies obtained from rabbits after immunization with AFQ1-hemisuccinate-bovine serum albumin had the highest affinity to aflatoxin B1, whereas antibodies obtained from rabbits after immunization w...

  11. Specific Imaging of Colorectal Cancer Cells using Quantum Dots Probes Conjugated with ND-1 Monoclonal Antibodies%单克隆抗体ND-1-量子点荧光探针对大肠癌细胞的特异成像研究

    Institute of Scientific and Technical Information of China (English)

    王蒴; 方瑾

    2013-01-01

    Objective To prepare the immuno-conjugate of ND-1 monoclonal antibody and quantum dots for targeted fluorescent imaging of colorectal cancer cells. Methods ND-1 , a monoclonal antibody a-gainst human colorectal cancer cells, was covalently coupled to QD605 at differnet ratios using EDC and NHS to optimize the conjugating condition. The obtained QD-linked conjugate was analyzed by fluorespec-trophotometry to characterise its optical properties and anti-photobleach ability. Immunofluorescence assay was utilized to observe the targeted imaging of the probe. Results A high coupling efficiency was a-chieved at 1:40 molar ratio of QD605 to ND-1 monoclonal antibodies. The fluorescence spectrum showed that ND-1-QD605 had similar fluorescent property to free QD, and the fluorescence intensity-time curves showed no significant intensity change during 1h of continuous illumination at 488nm. The fluorescence images demonstrated that ND-1-QD605 was able to specifically bind and image colorectal cancer cells which expressed large external antigens (LEA). Conclusion The results indicate that the QD-linked conjugate can be used to detect cancer cells owing to its ability of targeted binding and imaging. This is a novel approach for studying targeted imaging of colorectal cancer in vivo and clinical diagnosis.%目的 制备抗人大肠癌单克隆抗体ND-1的量子点荧光探针,实现对大肠癌细胞的靶向成像.方法 采用共价偶联方法,以1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)和N-羟基硫代琥珀酰亚胺(NHS)为缩合剂,通过在反应体系中加入不同摩尔比例的单克隆抗体ND-1和游离量子点QD605进行条件优化,制备偶联产物ND-1-QD605荧光探针;利用荧光光谱扫描技术对ND-1-QD605进行光学特性表征,并检测其抗光漂白能力;利用免疫荧光方法检测ND-1-QD605对大肠癌细胞的靶向结合能力.结果 在量子点QD605与单克隆抗体ND-1摩尔比1:40条件下,可实现二者的高

  12. Antithyroid microsomal antibody

    Science.gov (United States)

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... Granulomatous thyroiditis Hashimoto thyroiditis High levels of these antibodies have also been linked to an increased risk ...

  13. Conjugations on 6-Manifolds

    OpenAIRE

    Olbermann, Martin

    2007-01-01

    Conjugation spaces are spaces with involution such that the fixed point set of the involution has Z/2-cohomology isomorphic to the Z/2-cohomology of the space itself, with the little difference that all degrees are divided by two (e.g. CP^n with the complex conjugation). One also requires that a certain conjugation equation is fulfilled. I give a new characterization of conjugation spaces and apply it to the following realization question: given M, a closed orientable 3-manifold, is there a 6...

  14. Highly sensitive electroluminescence immunoassay for Hg(II) ions based on the use of CdSe quantum dots, the methylmercury-6-mercaptonicotinic acid-ovalbumin conjugate, and a specific monoclonal antibody

    International Nuclear Information System (INIS)

    We have designed a rapid and ultrasensitive electrochemiluminescent (ECL) competitive immunoassay for the determination of mercury(II) ion. It is based on the use of CdSe quantum dots (QDs), methylmercury-6-mercaptonicotinic acid-ovalbumin as coating antigen and specific monoclonal antibodies (mAbs) against Hg(II). The latter is quite selective for Hg(II). The coating antigen was immobilized on the surface of a gold electrode via reaction between the functional groups of cysteamine and glutaraldehyde. The mercury(II) ions in a sample and the coating antigen compete for binding sites of QD-labeled monoclonal antibody which binds specifically to Hg(II) ions. The ECL of the system decreases with increasing concentration of Hg(II) because less QD-labeled mAbs are present on the surface of the electrode. Under optimal conditions, the decrease of ECL intensity is linearly related to the logarithm of the Hg(II) concentration in the range from 0.02 to 100 ng mL−1, with a detection limit of 6.2 pg mL−1. As far as we know, this is the first report on an ECL immunoassay for Hg(II) based on a specific monoclonal antibody. The favorable results obtained when this method was applied to real samples indicate that this detection scheme can widely enlarge the applicability of detecting heavy metal ions by exploiting the ECL of QDs for immunoassays. (author)

  15. Radioimmunotherapy with engineered antibody fragments

    International Nuclear Information System (INIS)

    Authors have developed and begun evaluating radiometal-chelated (213Bi) engineered antibody fragments as radioimmunotherapy agents that target the HER2/neu (c-erbB-2) antigen. The diabody format was found to have 40-fold greater affinity for HER2/neu and to be associated with significantly greater tumor localization than is achieved with scFv molecule. It is shown that short-lived isotopes like 213Bi would be most effective when used in conjunction with antibodies that targeted diffuse malignancies (leukemia or lymphoma) or when used for very rapid pretargeted radioimmunotherapy application in which the radioisotope is conjugated to a very small ligand

  16. ANTITUMOR EFFECTS OF MONOCLONAL ANTIBODY FAB′ FRAGMENT CONTAINING IMMUNOCONJUGATES

    Institute of Scientific and Technical Information of China (English)

    刘小云; 甄永苏

    2002-01-01

    Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.

  17. Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society December 7-10, 2015, San Diego, CA, USA.

    Science.gov (United States)

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M; Lund-Johansen, Fridtjof; Bradbury, Andrew R M; Carter, Paul J; Melis, Joost P M

    2016-01-01

    The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6-10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on "Antibodies to watch" in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  18. Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraazacyclododecane tetraacetic acid (2B-DOTA)

    International Nuclear Information System (INIS)

    The biodistribution of indium-111/yttrium-88-labeled B3 monoclonal antibody, a murine IgGlk, was evaluated in non-tumor-bearing mice. B3 was conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1B4M) or 2-(p-SCN-Bz)-1,4,7,10 tetraazacyclododecane tetra-acetic acid (2B-DOTA) and labeled with 111In at 1.4-2.4 mCi/mg and 88Y at 0.1-0.3 mCi/mg. Non-tumor-bearing nude mice were co-injected i.v. with 5-10 μCi/4-10 μg of 111In/88Y-labeled B3 conjugates and sacrificed at 6 h and daily up to 168 h post-injection. Mice injected with 111In/88Y-(1B4M)-B3 showed a similar biodistribution of the two radiolabels in all tissues except the bones, where significantly higher accretion of 88Y than 111In was observed, with 2.8% ± 0.2% vs 1.3% ± 0.16% ID/g in the femur at 168 h, respectively (P111In/88Y-(DOTA)-B3 conjugate showed significantly higher accumulation of 111In than 88Y in most tissues, including the bones, with 2.0% ± 0.1% vs 1.2% ± 0.09% ID/g in the femur at 168 h, respectively (P111In/88Y-(1B4M)-B3 and 0.84, 1.23, 1.56, and 1.31 for 111In/88Y-(DOTA)-B3, respectively, ratios ∼ 1 were observed between 111In-(1B4M)-B3 and 88Y-(DOTA)-B3. In summary, while neither 1B4M nor DOTA was equally stable for 111In and 88Y, the fate of 88Y-(DOTA)-B3 could be closely traced by that of 111In-(1B4M)-B3. (orig.)

  19. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    G Padmanaban; S Ramakrishnan

    2003-08-01

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying excitation energies. The latter feature, especially when the chromophores are fluorescent, like in MEHPPV, makes these systems particularly interesting from the photophysics point of view. Segmented MEHPPV- samples, where x represents the mole fraction of conjugated segments, were prepared by a novel approach that utilizes a suitable precursor wherein selective elimination of one of the two eliminatable groups is affected; the uneliminated units serve as conjugation truncations. Control of the composition x of the precursor therefore permits one to prepare segmented MEHPPV- samples with varying levels of conjugation (elimination). Using fluorescence spectroscopy, we have seen that even in single isolated polymer chains, energy migration from the shorter (higher energy) chromophores to longer (lower energy) ones occurs – the extent of which depends on the level of conjugation. Further, by varying the solvent composition, it is seen that the extent of energy transfer and the formation of poorly emissive inter-chromophore excitons are greatly enhanced with increasing amounts of non-solvent. A typical S-shaped curve represents the variation of emission yields as a function of composition suggestive of a cooperative collapse of the polymer coil, reminiscent of conformational transitions seen in biological macromolecules.

  20. Evaluation of a competitive enzyme immunoassay for detection of Coxiella burnetii antibody in animal sera.

    OpenAIRE

    Soliman, A.K.; Botros, B A; Watts, D M

    1992-01-01

    A competitive enzyme immunoassay (CEIA) was established and compared with other serological techniques for detecting Coxiella burnetii antibody in camels, goats, and sheep. This technique was evaluated because a conjugated anti-camel immunoglobulin was not available to serve as a direct signal for the demonstration of antigen-antibody reaction. A C. burnetii antibody-positive human serum and a peroxidase-conjugated anti-human immunoglobulin G were used as an indicator system competing against...

  1. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    International Nuclear Information System (INIS)

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that 125I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors

  2. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular risk.

    Science.gov (United States)

    Haller, Elisabeth; Lindner, Wolfgang; Lämmerhofer, Michael

    2015-02-01

    Oxidized low-density lipoproteins (OxLDLs) like malondialdehyde-modified low-density lipoprotein (MDA-LDL) play a major role in atherosclerosis and have been proposed as useful biomarkers for oxidative stress. In this study, gold-nanoparticles (GNPs) were functionalized via distinct chemistries with anti-MDA-LDL antibodies (Abs) for selective recognition and capture of MDA-LDL from biological matrices. The study focused on optimization of binding affinities and saturation capacities of the antiMDA-LDL-Ab-GNP bioconjugate by exploring distinct random and oriented immobilization approaches, such as (i) direct adsorptive attachment of Abs on the GNP surface, (ii) covalent bonding by amide coupling of Abs to carboxy-terminated-pegylated GNPs, (iii) oriented immobilization via oxidized carbohydrate moiety of the Ab on hydrazide-derivatized GNPs and (iv) cysteine-tagged protein A (cProtA)-bonded GNPs. Depending on immobilization chemistry, up to 3 antibodies per GNP could be immobilized as determined by ELISA. The highest binding capacity was achieved with the GNP-cProtA-Ab bioconjugate which yielded a saturation capacity of 2.24±0.04μgmL(-1) GNP suspension for MDA-LDL with an affinity Kd of 5.25±0.11×10(-10)M. The GNP-cProtA-antiMDA-LDL bioconjugate revealed high specificity for MDA-LDL over copper(II)-oxidized LDL as well as native human LDL. This clearly demonstrates the usefulness of the new GNP-Ab bioconjugates for specific extraction of MDA-LDL from plasma samples as biomarkers of oxidative stress. Their combination as specific immunoextraction nanomaterials with analysis by LC-MS/MS allows sensitive and selective detection of MDA-LDL in complex samples. PMID:25604820

  3. Palladium-109 labeled anti-melanoma monoclonal antibodies

    Science.gov (United States)

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)

  4. π-Clamp-mediated cysteine conjugation

    Science.gov (United States)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  5. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  6. Notes on partial conjugation

    OpenAIRE

    Fang, Chuying; He, Xuhua

    2011-01-01

    In this notes, we will give an exposition of some results on the method of partial conjugation action. We first discuss the partial conjugation action of a parabolic subgroup of a Coxeter group. We then discuss some applications to Lusztig's $G$-stable pieces and its affine generalization. We also discuss some recent work on the $\\s$-conjugacy classes of loop groups and affine Deligne-Lusztig varieties.

  7. Structural Characterization of a Monoclonal Antibody-Maytansinoid Immunoconjugate.

    Science.gov (United States)

    Luo, Quanzhou; Chung, Hyo Helen; Borths, Christopher; Janson, Matthew; Wen, Jie; Joubert, Marisa K; Wypych, Jette

    2016-01-01

    Structural characterization was performed on an antibody-drug conjugate (ADC), composed of an IgG1 monoclonal antibody (mAb), mertansine drug (DM1), and a noncleavable linker. The DM1 molecules were conjugated through nonspecific modification of the mAb at solvent-exposed lysine residues. Due to the nature of the lysine conjugation process, the ADC molecules are heterogeneous, containing a range of species that differ with respect to the number of DM1 per antibody molecule. The DM1 distribution profile of the ADC was characterized by electrospray ionization mass spectrometry (ESI-MS) and capillary isoelectric focusing (cIEF), which showed that 0-8 DM1s were conjugated to an antibody molecule. By taking advantage of the high-quality MS/MS spectra and the accurate mass detection of diagnostic DM1 fragment ions generated from the higher-energy collisional dissociation (HCD) approach, we were able to identify 76 conjugation sites in the ADC, which covered approximately 83% of all the putative conjugation sites. The diagnostic DM1 fragment ions discovered in this study can be readily used for the characterization of other ADCs with maytansinoid derivatives as payload. Differential scanning calorimetric (DSC) analysis of the ADC indicated that the conjugation of DM1 destabilized the C(H)2 domain of the molecule, which is likely due to conjugation of DM1 on lysine residues in the C(H)2 domain. As a result, methionine at position 258 of the heavy chain, which is located in the C(H)2 domain of the antibody, is more susceptible to oxidation in thermally stressed ADC samples when compared to that of the naked antibody. PMID:26629796

  8. Preparation of a Lysine based DTPA derivative and its Immuno conjugate for RIT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Pyun, Mi-Sun; Hong, Young-Don; Choi, Sun-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    Radioimmunotherapy (RIT) has beneficiary effect of both immunotherapy and radiotherapy in cancer treatment. Those are the effect on predominant tumoricidal potency induced by radiation and intensified tumor cell targeting by antibody of radioimmunoconjugate. For conjugation of radioisotope with antibody for RIT the introduction of proper BFCA (bifunctional chelating agent) is very important. The most widely used BFCA is a diethylene triamine penta acetic acid (DTPA), However, it is known to form less stable conjugation due to competitive conjugation between radioisotope and antibody. In present study, to overcome the unstable chelation we synthesized the lysine based DTPA derivative. Furthermore, we prepared even more stable conjugate with human IgG using this DTPA derivative by its active isothiocyanate, demonstrated a stability of the immunoconjugate.

  9. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    Science.gov (United States)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  10. The future of antibody therapeutics: ADCs bi-specifics and RIT

    International Nuclear Information System (INIS)

    Full text of publication follows. Antibodies are widely accepted as remarkably versatile therapeutic agents. As evidence of this, the ∼ 30 antibody products marketed worldwide had total global sales of more than 50 billion dollars in 2012, and the commercial clinical pipeline currently comprises over 350 antibody-based product candidates. In a testament to scientific ingenuity, the investigational molecules (clinical and preclinical) are notably diverse in their composition of matter and include antibodies conjugated to a variety of agents (drugs, radioisotopes), bi-specific antibodies, and fragments or domains of antibodies. The concepts that form the basis of these agents were established decades ago, but advances in technology are now allowing new opportunities for their development. In this presentation, future directions in antibody therapeutics development will be discussed, with a focus on antibody-drug conjugates, bi-specific antibodies and radioimmunotherapy. (author)

  11. High-conjugation-efficiency aqueous CdSe quantum dots.

    Science.gov (United States)

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2013-11-12

    Quantum dots (QDs) are photoluminescent nanoparticles that can be directly or indirectly coupled with a receptor such as an antibody to specifically image a target biomolecule such as an antigen. Recent studies have shown that QDs can be directly made at room temperature and in an aqueous environment (AQDs) with 3-mercaptopropionic acid (MPA) as the capping ligand without solvent and ligand exchange typically required by QDs made by the organic solvent routes (OQDs). In this study, we have synthesized CdSe AQDs and compared their conjugation efficiency and imaging efficacy with commercial carboxylated OQDs in HT29 colon cancer cells using a primary antibody-biotinylated secondary antibody-streptavidin (SA) sandwich. We showed that the best imaging condition for AQDs occurred when one AQD was bound with 3 ± 0.3 SA with a nominal SA/AQD ratio of 4 corresponding to an SA conjugation efficiency of 75 ± 7.5%. In comparison, for commercial CdSe-ZnS OQDs to achieve 2.7 ± 0.4 bound SAs per OQD for comparable imaging efficacy a nominal SA/OQD ratio of 80 was needed corresponding to an SA conjugation efficiency of 3.4 ± 0.5% for CdSe-ZnS OQDs. The more than 10 times better SA conjugation efficiency of the CdSe AQDs as compared to that of the CdSe-ZnS OQDs was attributed to more capping molecules on the AQD surface as a result of the direct aqueous synthesis. More capping molecules on the AQD surface also allowed the SA-AQD conjugate to be stable in cell culture medium for more than three days without losing their staining capability in a flowing cell culture medium. In contrast, SA-OQD conjugates aggregated in cell culture medium and in phosphate buffer saline solution over time. PMID:24151632

  12. Advances in 99mTc-labeling of antibodies

    International Nuclear Information System (INIS)

    Several methods have been developed to label antibodies with 99mTc. Direct labeling results in 99mTc binding to multiple sites of various affinities that are often weaker than the binding to strong chelating agents. Attempts to overcome this disadvantage involve conjugation of strong chelating agents to the antibodies. While stability is usually enhanced, this approach suffers from alteration of antibody properties as well as non-specific binding of 99mTc to the antibody instead of to the conjugation chelating agent. This has been of concern for studies with DTPA as the chelating agent. In this study the loss of 99mTc by N2S2 challenge shows that a fraction to the 99mTc is nonspecifically bound to the antibody. An advantage of the approach of labeling antibodies containing a bifunctional chelating agent is the simplicity of the labeling procedure and the apparent high yields that in reality are the sum of chelating agent and non-specifically bound radioactivity. The last approach described in our work of conjugation of a preformed chelate has advantages of characterizable 99mTc complex chemistry and conjugation by standard protein derivatization chemistry. Slow chelation kinetics can be overcome in the small molecule stage and then conjugation performed under mild conditions with respect to the antibody of fragments. This approach, however, suffers from greater complexity of the labeling process including multiple steps, purifications and non-quantitative yields. The use of ligands for 99mTc in which the complexes are of high stability and predictable chemistry is likely to result in eventual optimal labeling technologies. Processes which are non-specific may work in some cases, but are likely to present difficulties in optimization and general applicability from antibody to antibody. (orig.)

  13. An integrated approach for enhanced protein conjugation and capture with viral nanotemplates and hydrogel microparticle platforms via rapid bioorthogonal reactions.

    Science.gov (United States)

    Jung, Sukwon; Yi, Hyunmin

    2014-07-01

    We demonstrate significantly enhanced protein conjugation and target protein capture capacity by exploiting tobacco mosaic virus (TMV) templates assembled with hydrogel microparticles. Protein conjugation results with a red fluorescent protein R-Phycoerythrin (R-PE) show significantly enhanced protein conjugation capacity of TMV-assembled particles (TMV-particles) compared to planar substrates or hydrogel microparticles. In-depth examination of protein conjugation kinetics via tetrazine (Tz)-trans-cyclooctene (TCO) cycloaddition and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction demonstrates that TMV-particles provide a less hindered environment for protein conjugation. Target protein capture results using an anti-R-PE antibody (R-Ab)-R-PE pair also show substantially improved capture capacity of R-Ab conjugated TMV-particles over R-Ab conjugated hydrogel microparticles. We further demonstrate readily controlled protein and antibody conjugation capacity by simply varying TMV concentrations, which show negligible negative impact of densely assembled TMVs on protein conjugation and capture capacity. Combined, these results illustrate a facile postfabrication protein conjugation approach with TMV templates assembled onto hydrogel microparticles for improved and controlled protein conjugation and sensing platforms. We anticipate that our approach can be readily applied to various protein sensing applications. PMID:24937661

  14. Qualidade conjugal: mapeando conceitos

    OpenAIRE

    Clarisse Mosmann; Adriana Wagner; Terezinha Féres-Carneiro

    2006-01-01

    Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais n...

  15. Comparison of in vitro immunogenicity, tolerogenicity and mitogenicity of dinitrophenyl-levan conjugates with varying epitope density.

    Science.gov (United States)

    Desaymard, C; Ivanyi, L

    1976-01-01

    The mitogenicity, immunogenicity and tolerogenicity of various DNP-levan (DNP-LE) conjugates were compared using in vitro methods. Anti-DNP antibody synthesis induced by DNP-LE conjugates was related to the epitope density of DNP, BUT WAS NOT AFFECTED BY Macrophage dependent and was not influenced by the degree of hapten conjugation. These results imply that mitogenicity of an antigen is not necessarily related to the specific triggering of B cells. PMID:58831

  16. Specific fluorescein-labeled antibodies to bovine viral diarrhea virus prepared from sera of rabbits immunized with purified virus.

    OpenAIRE

    Hart, R. A.; Rhodes, M B

    1980-01-01

    Specific fluorescein-labeled antibody conjugates to three strains of bovine virus diarrhea virus were prepared from hyperimmune rabbit sera. Viruses used to hyperimmunize the rabbits were purified by four different procedures. Conjugates were comparable in quality and specificity to conjugates prepared from serum of a calf hyperimmunized to bovine virus diarrhea virus in our laboratory. The latter conjugate was tested by Biologics Laboratories, National Veterinary Services, U.S.D.A., Ames, Iowa.

  17. Stabilized polyacrylic saccharide protein conjugates

    Science.gov (United States)

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  18. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    Science.gov (United States)

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications. PMID:27521696

  19. DNA-cell conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  20. Dihydroazulene-buckminsterfullerene conjugates

    DEFF Research Database (Denmark)

    Santella, Marco; Mazzanti, Virginia; Jevric, Martyn; Parker, Christian Richard; Broman, Søren Lindbæk; Bond, Andrew; Nielsen, Mogens Brøndsted

    2012-01-01

    combined the two units with the overall aim to elucidate how C(60) influences the DHA-VHF switching events. Efficient synthetic protocols for making covalently linked DHA-C(60) conjugates were developed, using Prato, Sonogashira, Hay, and Cadiot-Chodkiewicz reactions. These syntheses provide as well a...

  1. Conjugation in "Escherichia coli"

    Science.gov (United States)

    Phornphisutthimas, Somkiat; Thamchaipenet, Arinthip; Panijpan, Bhinyo

    2007-01-01

    Bacterial conjugation is a genetic transfer that involves cell-to-cell between donor and recipient cells. With the current method used to teach students in genetic courses at the undergraduate level, the transconjugants are identified using bacterial physiology and/or antibiotic resistance. Using physiology, however, is difficult for both…

  2. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials.

    Science.gov (United States)

    Pichichero, Michael E

    2013-12-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  3. Bispecific antibodies.

    Science.gov (United States)

    Kontermann, Roland E; Brinkmann, Ulrich

    2015-07-01

    Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development. PMID:25728220

  4. Referencing cross-reactivity of detection antibodies for protein array experiments [version 1; referees: 1 approved, 2 approved with reservations

    OpenAIRE

    Darragh Lemass; Richard O'Kennedy; Kijanka, Gregor S.

    2016-01-01

    Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires requires a platform-dependent, lot-to-lot validation of secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human protei...

  5. Synthetic Antibodies for Reversible Cell Recognition

    Science.gov (United States)

    Zhou, Jing Zhou

    2011-12-01

    Antibody-mediated cell recognition plays a critical role in various biological and biomedical applications. However, strong antibody-cell interactions can lead to the difficulty of separating antibodies from the bound cells in a simple and non-destructive manner, which is often necessary to numerous applications such as cell sorting or separation. Thus, this thesis research is aimed to create an antibody-like nanomaterial with the function of reversible cell recognition It was hypothesized that nucleic acid aptamer and dendrimer could be used as fundamental structural components to develop an antibody-like nanomaterial. The aptamer functions as the binding site of an antibody; the dendrimer is used as a robust, defined nano-scaffold to support the aptamer and to carry small molecules (e.g., fluorophores). To test this hypothesis, a novel method was first developed to discover the essential nucleotides of full-length aptamers to mimic the binding sites of antibodies. The essential nucleotides were further conjugated with a dendrimer to synthesize a monovalent aptamer-dendrimer nanomaterial. The results clearly showed that the essential nucleotides could maintain high affinity and specificity after tethered on dendrimer surface. To further test the hypothesis that antibody-like nanomaterials can be rationally designed to acquire the capability of reversible cell recognition, an aptamer that was selected at 0 °C was used as a model to synthesize a "Y-shaped" nanomaterial by conjugating two aptamers to the same dendrimer. The results showed that the nanomaterial-cell interaction could be affected by the distance between two binding aptamers. In addition, the "Y-shaped" antibody-like nanomaterial could bind target cells more strongly than its monovalent control. Importantly, the strong cell-nanomaterial interaction could be rapidly reversed when the temperature was shifted from 0 °C to 37 °C. In summary, we developed a synthetic antibody that can not only mimic the

  6. Mouse Monoclonal Antibodies for Liver Cancer Research | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute Laboratory of Molecular Biology seeks parties for collaborative research to co-develop and commercialize antibody drug/toxin conjugates as liver cancer therapy and diagnostics.

  7. Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA

    Science.gov (United States)

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M.; Lund-Johansen, Fridtjof; Bradbury, Andrew R.M.; Carter, Paul J.; Melis, Joost P.M.

    2016-01-01

    ABSTRACT The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  8. Liposomes surface conjugated with human hemoglobin target delivery to macrophages

    OpenAIRE

    Zhang, Ning; Palmer, Andre F.

    2011-01-01

    Current strategies to deliver therapeutic molecules to specific cell and tissue types rely on conjugation of antibodies and other targeting ligands directly to the therapeutic molecule itself or its carrier. This work describes a novel strategy to deliver therapeutic molecules into macrophages that takes advantage of the native hemoglobin (Hb) scavenging activity of plasma haptoglobin (Hp) and the subsequent uptake of the Hb-Hp complex into macrophages via CD163 receptor mediated endocytosis....

  9. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy

    OpenAIRE

    Wiebke Sihver; Jens Pietzsch; Mechthild Krause; Michael Baumann; Jörg Steinbach; Hans-Jürgen Pietzsch

    2014-01-01

    The epidermal growth factor receptor (EGFR) has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a) chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b) with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specif...

  10. Conjugate gradient method

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    Liberec : Technická univerzita v Liberci, 2006, s. 335-341. ISBN 80-7372-055-8. [International Conference Presentation of Mathematics ICPM ´05. Liberec (CZ), 20.09.2005-23.09.2005] R&D Projects: GA ČR(CZ) GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear algebraic system * conjugate gradient method * preconditioning Subject RIV: BA - General Mathematics

  11. Anti- (conjugate) linearity

    Science.gov (United States)

    Uhlmann, Armin

    2016-03-01

    This is an introduction to antilinear operators. In following Wigner the terminus antilinear is used as it is standard in Physics. Mathematicians prefer to say conjugate linear. By restricting to finite-dimensional complex-linear spaces, the exposition becomes elementary in the functional analytic sense. Nevertheless it shows the amazing differences to the linear case. Basics of antilinearity is explained in sects. 2, 3, 4, 7 and in sect. 1.2: Spectrum, canonical Hermitian form, antilinear rank one and two operators, the Hermitian adjoint, classification of antilinear normal operators, (skew) conjugations, involutions, and acq-lines, the antilinear counterparts of 1-parameter operator groups. Applications include the representation of the Lagrangian Grassmannian by conjugations, its covering by acq-lines. As well as results on equivalence relations. After remembering elementary Tomita-Takesaki theory, antilinear maps, associated to a vector of a two-partite quantum system, are defined. By allowing to write modular objects as twisted products of pairs of them, they open some new ways to express EPR and teleportation tasks. The appendix presents a look onto the rich structure of antilinear operator spaces.

  12. Conjugate flow action functionals

    International Nuclear Information System (INIS)

    We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines

  13. Sortase-conjugation generates a capsule vaccine that protects guinea pigs against Bacillus anthracis

    OpenAIRE

    Garufi, Gabriella; Wang, Ya-Ting; Oh, So-Young; Maier, Hannah; Missiakas, Dominique M.; Schneewind, Olaf

    2012-01-01

    Capsules protect bacteria against phagocytic clearance. Capsular polysaccharides or polyglutamates have evolved also to resist antigen presentation by immune cells, thereby interfering with the production of opsonophagocytic antibodies. Linking capsular material to a carrier protein stimulates its presentation to the immune system. For many conjugate vaccines this is achieved by a process of random chemical cross-linking. Here we describe a new technology, designated sortase-conjugation, whic...

  14. Endotoxin contamination of enzyme conjugates used in enzyme-linked immunosorbent assays.

    OpenAIRE

    Bryant, R. E.; Chamovitz, B N; Morse, S A; Apicella, M A; Morthland, V H

    1983-01-01

    The specificity of the enzyme-linked immunosorbent assay(s) is thought to depend on the specificity of the antibody used in the assay system. Therefore, the association of broadly reactive antigens like endotoxin with enzyme conjugates or other enzyme-linked immunosorbent assay reagents has the potential of altering the specificity of reactions in the enzyme-linked immunosorbent assay. Using the Limulus amoebocyte lysate assay, we demonstrated that commercially prepared conjugates of goat ant...

  15. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    Science.gov (United States)

    Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell

    2014-07-01

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.

  16. Radioimmunoscintigraphy with anti-thyroglobulin monoclonal antibodies

    International Nuclear Information System (INIS)

    Monoclonal mouse antibodies to human thyroglobulin were conjugated to the cyclic dianhydride of DTPA. After radiolabelling with 111In this compound was injected into nude mice bearing various human thyroid carcinomas. Repeated imaging studies were carried out 15 min to 50 h after tracer administration. In both papillary and undifferentiated thyroid carcinoma no significant uptake of radiolabelled anti-hTG-MAb was observed. (orig.)

  17. Solid-phase fluoroimmunoassay for treponemal antibody.

    OpenAIRE

    Stevens, R W; Schell, R F

    1982-01-01

    An objective, solid-phase fluoroimmunoassay for treponemal antibody was developed with a lysate of virulent Treponema pallidum (Nichols strain) adsorbed on cellulose acetate disks. A probe containing both the antigen and control disks is inserted successively into a serum specimen dilution, a buffer rinse, fluoroscein isothiocyanate-conjugated goat anti-human immunoglobulin G, and a second buffer rinse. Fluorescence signal units are measured with a fluorometer. To establish test calibration c...

  18. Generation and characterization of monoclonal antibodies specific to Coenzyme A

    Directory of Open Access Journals (Sweden)

    Malanchuk O. M.

    2015-06-01

    Full Text Available Aim. Generation of monoclonal antibodies specific to Coenzyme A. Methods. Hybridoma technique. KLH carrier protein conjugated with CoA was used for immunization. Screening of positive clones was performed with BSA conjugated to CoA. Results. Monoclonal antibody that specifically recognizes CoA and CoA derivatives, but not its precursors ATP and cysteine has been generated. Conclusion. In this study, we describe for the first time the production and characterization of monoclonal antibodies against CoA. The monoclonal antibody 1F10 was shown to recognize specifically CoA in Western blotting, ELISA and immunoprecipitation. These properties make this antiboby a particularly valuable reagent for elucidating CoA function in health and disease.

  19. The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, Tetyana V. [ESFM Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, México, D.F. 07738 (Mexico); Vorobiev, Yuri V. [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230 Querétaro (Mexico); Makhniy, Victor P. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., 58012 Chernivtsi (Ukraine); Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico)

    2014-11-15

    We report a considerable blue shift in the luminescence spectra of CdSe/ZnS quantum dots conjugated to anti-interleukin-10 antibodies. This phenomenon can be explained theoretically by accounting for bio-conjugation as a process causing electrostatic interaction between a quantum dot and an antibody, which reduces effective volume of the dot core. To solve the Schrödinger equation for an exciton confined in the quantum dot, we use mirror boundary conditions that were successfully tested for different geometries of quantum wells.

  20. The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots

    International Nuclear Information System (INIS)

    We report a considerable blue shift in the luminescence spectra of CdSe/ZnS quantum dots conjugated to anti-interleukin-10 antibodies. This phenomenon can be explained theoretically by accounting for bio-conjugation as a process causing electrostatic interaction between a quantum dot and an antibody, which reduces effective volume of the dot core. To solve the Schrödinger equation for an exciton confined in the quantum dot, we use mirror boundary conditions that were successfully tested for different geometries of quantum wells

  1. Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies—Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Gamze Tan

    2015-08-01

    Full Text Available The synthesis of polymer-coated gold nanoparticles with high colloidal stability is described, together with appropriate characterization techniques concerning the colloidal properties of the nanoparticles. Antibodies against vascular endothelial growth factor (VEGF are conjugated to the surface of the nanoparticles. Antibody attachment is probed by different techniques, giving a guideline about the characterization of such conjugates. The effect of the nanoparticles on human adenocarcinoma alveolar basal epithelial cells (A549 and human umbilical vein endothelial cells (HUVECs is probed in terms of internalization and viability assays.

  2. A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres.

    Science.gov (United States)

    Schlottmann, Sonela A; Jain, Neil; Chirmule, Narendra; Esser, Mark T

    2006-02-20

    Here we describe a novel method to conjugate pneumococcal polysaccharides (PnPS) to Luminex microspheres for use in serological assays. 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium (DMTMM) modification of PnPS and conjugation to carboxyl functional groups on Luminex microspheres (COOH-DMTMM method) was shown to be a reproducible chemistry that efficiently conjugated PnPS to Luminex microspheres without affecting the antigenicity of a broad set of PnPS. The COOH-DMTMM method was compared to three other methods for robustness, reproducibility and effect on PnPS antigenicity in a multiplexed assay format. The other methods examined included adsorption of the unmodified PnPS to Luminex microspheres, oxidation of the PnPS to conjugate them to amino-modified microspheres using carbodiimide chemistry and poly-l-lysine modification of the PnPS before conjugating to carboxy Luminex microspheres using carbodiimide chemistry. Of the four methods, the COOH-DMTMM chemistry was shown to be a robust methodology, producing stable PnPS coupled microspheres with a 4-log dynamic range and low cross-reactivity when used in a PnPS-specific IgG serology assay. This novel chemistry should be useful for developing serological assays to measure antibodies to polysaccharides for use in vaccine and epidemiology studies. PMID:16448665

  3. Influence of prevaccination immunity on the human B-lymphocyte response to a Haemophilus influenzae type b conjugate vaccine

    DEFF Research Database (Denmark)

    Barington, T; Kristensen, K; Henrichsen, J;

    1991-01-01

    The purpose of this study was to investigate whether preexisting immunity to components of a polysaccharide-protein conjugate influences the B-lymphocyte response to vaccination with the conjugate. Thirty-two healthy adults were vaccinated once or twice with a conjugate (PRP-D) consisting of...... Haemophilus influenzae type b capsular polysaccharide (PRP) and diphtheria toxoid (DT), and the response was related to the prevaccination levels of PRP and DT antibodies. Positive correlations were found between increases in plasma PRP (median, 32.0 micrograms/ml) and DT (1.14 IU/ml) antibodies and numbers...... of circulating PRP and DT antibody-secreting cells (AbSC) (postvaccination days 6 to 9). The B-cell responses (antibody response and AbSC) to both PRP and DT correlated positively with prevaccination levels of anti-DT. DT AbSC appeared earlier (peak, day 7) than PRP AbSC (peak, day 8). Individuals...

  4. Antibody caging of a nuclear-targeting signal.

    OpenAIRE

    Halleck, M S; Rechsteiner, M

    1990-01-01

    We have developed a technique for reversibly masking a peptide-targeting signal. A fluoresceinated derivative of the simian virus 40 large tumor antigen nuclear-targeting signal was synthesized and cross-linked to bovine serum albumin. The conjugated protein was efficiently transported into rat liver nuclei unless the peptide-targeting signal was sterically hindered by binding of an anti-fluorescein antibody. Addition of free 5-aminofluorescein competed for antibody binding and rapidly restor...

  5. Nonlinear Conjugate Gradient Methods

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    Praha: Matematický ústav AV ČR, v.v.i, 2015 - (Chleboun, J.; Přikryl, P.; Segeth, K.; Šístek, J.; Vejchodský, T.), s. 130-135 ISBN 978-80-85823-64-6. [Programs and Algorithms of Numerical Mathematics /17./. Dolní Maxov (CZ), 08.06.2014-13.06.2014] Institutional support: RVO:67985807 Keywords : minimization * nonlinear conjugate gradient methods * comparison of methods * efficiency of methods Subject RIV: BA - General Mathematics http://dml.cz/handle/10338.dmlcz/702674

  6. Two-monoclonal-antibody sandwich-type assay for thyrotropin, with use of an avidin-biotin separation technique

    International Nuclear Information System (INIS)

    We have developed a sensitive, specific, noncompetitive, sandwich-type radioimmunoassay for human thyrotropin (hTSH), which can be performed in 30 min. The assay involves two monoclonal antibodies, selected for high affinity and specificity and also for reaction against antigenic sites on hTSH that are distal from each other. One of these antibodies is labeled with 125I; the other is conjugated covalently to biotin. Polystyrene beads were also conjugated covalently to biotin. After conjugation, the beads were incubated with avidin. These beads represent a rapid, simple method for separating hTSH-bound antibody from free antibody. The biotin-antibody-hTSH-125I-labeled antibody complexes bind to the beads and hTSH concentration is directly related to counts per minute. This assay can detect hTSH at a concentration of 0.06 milli-unit/L in serum

  7. On charge conjugation

    International Nuclear Information System (INIS)

    The group of automorphisms of the conformal algebra su(2,2) has four components giving the usual four components of symmetries of space time. Only two of these components extend to symmetries of the conformal superalgebra - the identity component and the component which induces the parity transformation, P, on space time. There is no automorphism of the conformal superalgebra which induces T or PT on space time. Automorphisms of su(2,2) which belong to these last two components induce transformations on the conformal superalgebra which reverse the sign of the odd brackets. In this sense conformal supersymmetry prefers CP to CPT. The operator of charge conjugation acting on spinors, as is found in the standard texts, induces conformal inversion and hence a parity transformation on space time, when considered as acting on the odd generators of the conformal superalgebra. Although it commutes with Lorentz transformations, it does not commute with all of su(2,2). We propose a different operator for charge conjugation. Geometrically it is induced by the Hodge star operator acting on twistor space. Under the known realization of conformal states from the inclusion SU(2,2)→Sp(8) and the metaplectic representations, its action on states is induced by the unique (up to phase) antilinear intertwining operator between the two metaplectic representations. It is consistent with the split orthosymplectic algebras and hence, by the inclusion of the superconformal in the orthosymplectic, with the orthosymplectic algebra. (orig.)

  8. Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models

    OpenAIRE

    Park, Jeong Youp; Murakami, Takashi; Lee, Jin Young; Zhang, Yong; Hoffman, Robert M; Bouvet, Michael

    2016-01-01

    Fluorescent-antibody targeting of metastatic cancer has been demonstrated by our laboratory to enable tumor visualization and effective fluorescence-guided surgery. The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of metastatic colon cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24–31) was conjugated with 550 nm, 650 nm or PEGylated 650 nm fluoropho...

  9. Development of hen antihepatitis B antigen IgY-based conjugate for ELISA assay

    OpenAIRE

    Najat Muayed Nafea; Majeed Arsheed Sabbah; Raghad AL-Suhail; Amir Hossein Mahdavi; Sedigheh Asgary

    2015-01-01

    Background: Chicken antibodies have many advantages to the mammalian antibodies and have several important differences against mammalian IgG with regard to their specificity and large-scale production. In this study, the production, purification, and HRP conjugation of polyclonal IgY against hepatitis virus surface antigen (HBsAg) were carried out. Materials and Methods: Single Comb White Leghorn hens were immunized intramuscularly with hepatitis B vaccine in combination with Freund′s adj...

  10. Conjugate points in Euler's elastic problem

    CERN Document Server

    Sachkov, Yu L

    2007-01-01

    For the classical Euler's elastic problem, conjugate points are described. Inflectional elasticae admit the first conjugate point between the first and the third inflection points. All the rest elasticae do not have conjugate points.

  11. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of 75Se-, 111In-, and 125I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    International Nuclear Information System (INIS)

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating [75Se]methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v

  12. Monoclonal antibodies

    International Nuclear Information System (INIS)

    Monoclonal antibodies (MAbs) are antibodies having single specificity for a given antigen site (epitope). The development of hybridoma technology and the relative ease by which MAbs can be prepared has revolutionized many aspects of serological applications in diagnosis and differentiation of disease producing agents. The property of monospecificity offers advantages in diagnostic applications over polyclonal sera in that tests can be defined exactly with regard to the antigen detected and the affinity of reaction between the given antigenic site and the monoclonal reagent. In addition, MAbs offer better possibilities for test standardization, because the same reagent can be used in different laboratories. Such an MAb can be supplied by a central laboratory or 'grown' from hybridoma cells, ensuring that the resultant product is identical from laboratory to laboratory and that the part of the test involving the MAb reaction is the same. The methodologies for inoculation regimes, mice, cloning methods, selection of fusion partners, etc., have been validated extensively in developed country laboratories. The decision to establish a MAb production facility must be examined on a strict cost-benefit basis, since it is still expensive to produce a product. There are many MAbs available that should be sought to allow exploitation in developing tests. If a production facility is envisaged, it should produce reagents for national needs, i.e. there should be a clear problem oriented approach whereby exact needs are defined. In the field of veterinary applications, MAbs are the central reagent in many immunoassays based on the enzyme linked immunosorbent assay (ELISA). The development of specific tests for diagnosing diseases is dominated by MAbs and has been fuelled by a strong research base, mainly in developed countries allied to developing countries through the study of related diseases. Thus, there are very many assays dependent on MAbs, some of which form the basis of

  13. Development of antibody against sulfamethazine

    International Nuclear Information System (INIS)

    Sulfamethazine (SMT) is widely used to treat bacterial and protozoan infections in food animals. So its residue has been detected in various food products, and in Europe, the tolerance level for sulfonamides in meat and milk is 100 ng/g. To ensure that residues in animal food products do not exceed this limit, a simple, sensitive, and rapid method to determinate their residues in animal tissues is needed. In this paper the development of polyclonal or monoclonal antibodies against sulfamethazine (SMT) and a simplified method to identify residual sulfamethazine by radio immunoassay (RIA) is presented. Polyclonal antibodies (PcAbs) against sulfamethazine (SMT) were obtained by immunizing rabbits with SMT-conjugated bovine serum albumin (BSA). The association constants (Ka) of the PcAbs were higher than 108 and the cross-reactivities with Sulfadiazine(SD), Sulfaquinoxaline(SQX) which were structurally related compounds were lower than 0.05%(RIA). Simultaneous, six strains of hybridoma cell were prepared which can secrete monoclonal antibodies (McAbs) against SMT . The Ka of the McAbs against SMT were higher than 107 and the cross-reactivities with SD, SQX were lower than 0.1%(RIA). (authors)

  14. Engineered antibodies for molecular imaging of cancer.

    Science.gov (United States)

    Wu, Anna M

    2014-01-01

    Antibody technology has transformed drug development, providing robust approaches to producing highly targeted and active therapeutics that can routinely be advanced through clinical evaluation and registration. In parallel, there is an emerging need to access similarly targeted agents for diagnostic purposes, including non-invasive imaging in preclinical models and patients. Antibody engineering enables modification of key properties (immunogenicity, valency, biological inertness, pharmacokinetics, clearance route, site-specific conjugation) in order to produce targeting agents optimized for molecular imaging. Expanded availability of positron-emitting radionuclides has led to a resurgence of interest and applications of immunoPET (immuno-positron emission tomography). Molecular imaging using engineered antibodies and fragments provides a general approach for assessing cell surface phenotype in vivo and stands to play an increasingly important role in cancer diagnosis, treatment selection, and monitoring of molecularly targeted therapeutics. PMID:24091005

  15. Generalized conjugate gradient squared

    Energy Technology Data Exchange (ETDEWEB)

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  16. Electrochromic in conjugated polymers

    International Nuclear Information System (INIS)

    This revision considered object the description of one of the materials with the greatest potential in the field of electrochromic (mainly in the visible region): the conjugated polymers (CP), area of enormous potential both now and in a short time ahead. The CP are insulating materials and organic semiconductors in a state not doped. They can be doped positively or negatively being observed a significant increase in the conductivity and being generated a color change in these materials. The understanding of how optical properties vary based on the chemical structure of the polymer or its mixtures and more precisely of the alternatives that can be entered into the conjugated system or π system to obtain a material that besides to be flexible, environmentally stable, presents the colored states. The revision was centred chiefly in the polypyrrole (Ppy), the polythiophene (PTh) and their derivatives such as poly (3.4-ethylenedioxythiophene) (PEDOT). The advantage of using monomers with variable structure, to adjust the composition of the copolymer, or to blend with the PC, allows to obtain a variety of colored states that can be modulated through the visible spectrum and even with applications to wavelengths outside of this region. Because the PC presented at least two different colored states can be varied continuously as a function of the voltage applied. In some cases, they may submit multicoloured statements, which offers a range of possibilities for their application in flexible electronic devices type screens and windows. Applications include smart windows, camouflage clothing and data screens. This type of material is emerging as one of the substitutes of the traditional inorganic semiconductor, with the advantage of its low cost, high flexibility and the possibility to generate multiple colors through the handling of the monomers in the structure and control of energy of his band gap. (author)

  17. Imaging of immobilized antibody layers with scanning electrochemical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wittstock, G.; Yu, K.J.; Halsall, H.B.; Ridgway, T.H.; Heineman, W.R. [Univ. of Cincinnati, OH (United States)

    1995-10-01

    Visualization of immobilized antibodies can be achieved with scanning electrochemical microscopy (SECM) by saturation of the antigen binding sites with an alkaline phosphatase-antigen conjugate, which catalyzes hydrolysis of the redox-inactive 4-aminophenyl phosphate to the redox-active 4-aminophenol (PAP). PAP was detected in the collection mode at an amperometric SECM tip. The tip current reflects the density of active binding sites in the immobilized antibody layer. The application of this approach for immunosensing research has been demonstrated with the optimization of a covalent immobilization procedure of antibodies on glass. The special advantages and present limitations of the procedures are discussed. 28 refs., 8 figs.

  18. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.

    Science.gov (United States)

    Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen

    2015-08-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765

  19. A sulfhydryl-reactive ruthenium (II complex and its conjugation to protein G as a universal reagent for fluorescent immunoassays.

    Directory of Open Access Journals (Sweden)

    Jing-Tang Lin

    Full Text Available To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2'-dipyridine Ruthenium bis (hexafluorophosphate. The synthesized Ru(II complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The emission peak wavelength of the Ru(II-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II complex, indicating that Ru(II-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG binding assay was conducted. The result showed that Ru(II-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays.

  20. Effect of chelating agents on the distribution of monoclonal antibodies in mice

    International Nuclear Information System (INIS)

    The potential for altering the biodistribution of radiolabel from gallium- and indium-labeled mouse monoclonal antibodies was investigated in mice using metal chelating agents. The chelating agents used were desferrioxamine (DFO), diethylenetriaminepentaacetic acid (DTPA), ethylenediamine-di (O-hydroxyphenylacetic acid) (EDHPA), and 2,2' dipyridyl (DIPY). The mouse monoclonal antibody LICR-LON-M8 was labeled with 111In after conjugation to DTPA, and with 67Ga after conjugation to DFO. All the chelating agents except DIPY altered the biodistribution of [67Ga]citrate and [111In]citrate but did not affect the 48-hr tissue uptake of label from [111In]DTPA-M8 or [67Ga]DFO-M8, confirming the in vivo stability of the antibody conjugates. Label fixed in the tissues was inaccessible to the chelating agents, indicating that they will not be suitable for reducing the high background liver radioactivity in patients undergoing scanning with indium-labeled antibodies

  1. Antibody-based biosensor assays for the detection of zilpaterol and markers for prostate cancer

    OpenAIRE

    Dillon, Mary

    2008-01-01

    The research presented in this thesis describes the production and application of antibodies against the drug of abuse zilpaterol, and the application of antibodies against prostate-specific antigen (PSA), a cancer marker. Polyclonal antibodies were used in the development of immunoassays in a competitive ELISA format and on the Biacore (a surface plasmon resonance-based optical biosensor capable of monitoring biomolecular interactions in 'real-time'). A zilpaterol-HSA conjugate was u...

  2. Development of monoclonal antibody against isoquinoline alkaloid coptisine and its application for the screening of medicinal plants

    OpenAIRE

    Kim, Jun-Sik; Tanaka, Hiroyuki; YUAN, CHUN-SU; Shoyama, Yukihiro

    2004-01-01

    In the development of immunoassay technique, the design of hapten containing a functional group suitable for protein conjugate is the key step for the preparation of antibodies against small molecules. Coptisine (MW 320), a bioactive constituent of Berberis and Coptis species, is small as an immunogen. In addition, coptisine has no reactive group in molecule for conjugating with a protein. To overcome this problem, 9-O-carboxymethyl-berberrubine was designed and conjugated with carrier protei...

  3. Star-Shaped Conjugated Systems

    Directory of Open Access Journals (Sweden)

    Heiner Detert

    2010-05-01

    Full Text Available The present review deals with the preparation and the properties of star-shaped conjugated compounds. Three, four or six conjugated arms are attached to cross-conjugated cores, which consist of single atoms (B, C+, N, benzene or azine rings or polycyclic ring systems, as for example triphenylene or tristriazolotriazine. Many of these shape-persistent [n]star compounds tend to π-stacking and self-organization, and exhibit interesting properties in materials science: Linear and non-linear optics, electrical conductivity, electroluminescence, formation of liquid crystalline phases, etc.

  4. Tumor targeting of radiolabeled antibodies using HYNIC chelate

    International Nuclear Information System (INIS)

    There is an increasing interest in the use of labeled antibodies for diagnosis of cancers as well as for therapy. Various radiolabeling methods have been used in order to obtain better tumor specific targeting for detection and therapy. It was generally used to tumor targeted immunotherapy and immunodetection that lym-1, mouse monoclonal antibody, was specific binding to surface antigen of Raji. The 3E8 antibody was produced from humanized anti-TAG-72 monoclonal antibody (AKA) by amino acid change in 95-99 residues of heavy chain complementary determinant regions (HCDRs) 3 using phage displayed library technology. In this study, we are investigating the usefulness of HYNIC chelate as a bifunctional chelating agent in radioimmunodetecton of tumor. Two types of antibodies, Lym-1 and 3E8, were used for the conjugation with HYNIC chelate. Lym-1 and 3E8 are specific antibodies to surface antigen of Non-Hogkin's lymphoma and TAG-72 antigen of colorectal carcinoma, respectively. We prepare HYNIC-antibody conjugates, determine radiolabeling yield with 99mTc and evaluate tumor targeting in tumor bearing nude mice model

  5. Linkers Having a Crucial Role in Antibody–Drug Conjugates

    Science.gov (United States)

    Lu, Jun; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody–drug conjugates (ADCs) comprised of a desirable monoclonal antibody, an active cytotoxic drug and an appropriate linker are considered to be an innovative therapeutic approach for targeted treatment of various types of tumors and cancers, enhancing the therapeutic parameter of the cytotoxic drug and reducing the possibility of systemic cytotoxicity. An appropriate linker between the antibody and the cytotoxic drug provides a specific bridge, and thus helps the antibody to selectively deliver the cytotoxic drug to tumor cells and accurately releases the cytotoxic drug at tumor sites. In addition to conjugation, the linkers maintain ADCs’ stability during the preparation and storage stages of the ADCs and during the systemic circulation period. The design of linkers for ADCs is a challenge in terms of extracellular stability and intracellular release, and intracellular circumstances, such as the acid environment, the reducing environment and cathepsin, are considered as the catalysts to activate the triggers for initiating the cleavage of ADCs. This review discusses the linkers used in the clinical and marketing stages for ADCs and details the fracture modes of the linkers for the further development of ADCs. PMID:27089329

  6. Conjugate Codes and Applications to Cryptography

    CERN Document Server

    Hamada, M

    2006-01-01

    A conjugate code pair is defined as a pair of linear codes such that one contains the dual of the other. The conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is argued that conjugate code pairs are applicable to quantum cryptography in order to motivate studies on conjugate code pairs.

  7. Linear maps respecting unitary conjugation

    OpenAIRE

    Bhat, B V Rajarama

    2011-01-01

    We characterize linear maps on von Neumann algebras which leave every unital subalgebra invariant. We use this characterization to determine linear maps which respect unitary conjugation, answering a question of M. S. Moslehian.

  8. Radioimmunoassay for the determination of free and conjugated abscisic acid

    International Nuclear Information System (INIS)

    The characterization and application of a radioimmunoassay specific for free and conjugated abscisic acid (ABA) is reported, The antibodies produced against a bovine serum albumin-(+-)-ABA conjugate have a high affinity for ABA (Ka= 1.3 x 109 l mol-1). Trans, trans-ABA and related compounds, such as xanthoxin, phaseic acid, dihydrophaseic acid, vomifoliol or violaxanthin do not interfere with the assay. The detection limit of this method is 0.25 x 10-12 mol ABA, the measuring range extends to 20 x 10-12 mol, and average recoveries are 103%. Because of the high specificity of this immunoassay, no extract purification steps are required prior to analysis. Several hundred plants can be analyzed per day in a semi-automatic assay performance. ABA has been detected in all higher plant families examined, but was absent in the blue-green alga, Spirulina platensis, the liverwort Marchantia polymorpha, and two species of fungi. (orig.)

  9. Sequential measurements of conjugate observables

    Energy Technology Data Exchange (ETDEWEB)

    Carmeli, Claudio [Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Heinosaari, Teiko [Department of Physics and Astronomy, Turku Centre for Quantum Physics, University of Turku, 20014 Turku (Finland); Toigo, Alessandro, E-mail: claudio.carmeli@gmail.com, E-mail: teiko.heinosaari@utu.fi, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica ' Francesco Brioschi' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2011-07-15

    We present a unified treatment of sequential measurements of two conjugate observables. Our approach is to derive a mathematical structure theorem for all the relevant covariant instruments. As a consequence of this result, we show that every Weyl-Heisenberg covariant observable can be implemented as a sequential measurement of two conjugate observables. This method is applicable both in finite- and infinite-dimensional Hilbert spaces, therefore covering sequential spin component measurements as well as position-momentum sequential measurements.

  10. Steenrod squares on conjugation spaces

    OpenAIRE

    Franz, Matthias; Puppe, Volker

    2005-01-01

    We prove that the coefficients of the so-called conjugation equation for conjugation spaces in the sense of Hausmann-Holm-Puppe are completely determined by Steenrod squares. This generalises a result of V.A. Krasnov for certain complex algebraic varieties. It also leads to a generalisation of a formula given by Borel and Haefliger, thereby largely answering an old question of theirs in the affirmative.

  11. Determination of conjugation rates on solid surfaces

    OpenAIRE

    del Campo I.; Ruiz R; Cuevas A.; Revilla C.; Vielva L.; de la Cruz F.

    2012-01-01

    A cytometric method for the estimation of end-point conjugation rates is developed and adapted to surface conjugation. This method improves the through-put of conjugation assays based on replica-plating and results in less noisy experimental data. Although conjugation on solid surfaces deviates from ideal conditions in which cells are continuously mixed, results show that, within the limits of high initial population densities and short mating times, end-point estimates of the conjugation rat...

  12. Diversity of integrating conjugative elements in actinobacteria

    OpenAIRE

    Bordeleau, Eric; Ghinet, Mariana Gabriela; Burrus, Vincent

    2012-01-01

    Conjugation is certainly the most widespread and promiscuous mechanism of horizontal gene transfer in bacteria. During conjugation, DNA translocation across membranes of two cells forming a mating pair is mediated by two types of mobile genetic elements: conjugative plasmids and integrating conjugative elements (ICEs). The vast majority of conjugative plasmids and ICEs employ a sophisticated protein secretion apparatus called type IV secretion system to transfer to a recipient cell. Yet anoth...

  13. Modulation of carcinogen bioavailability by immunisation with benzo[a]pyrene-conjugate vaccines.

    Science.gov (United States)

    Grova, Nathalie; Prodhomme, Emmanuel J F; Schellenberger, Mario T; Farinelle, Sophie; Muller, Claude P

    2009-06-24

    Benzo[a]pyrene (B[a]P) conjugate vaccines based on ovalbumin, tetanus toxoid and diphtheria toxoid (DT) as carrier proteins were developed to investigate the effect of specific antibodies on the bioavailability of this ubiquitous carcinogen and its metabolites. After metabolic activation of this prototype carcinogen, B[a]P forms DNA adducts which initiate chemical carcinogenesis. B[a]P-DT conjugate induced the most robust immune response. The antibodies reacted not only with B[a]P but also with the proximate carcinogen 7,8-diol-B[a]P. Antibodies modulated the bioavailability of B[a]P and its metabolic activation in a dose-dependent manner by sequestration in the blood. Our results showed that this immune prophylactic strategy influences the pharmacokinetic of B[a]P and further studies to investigate their effects on chemical carcinogenesis are warranted. PMID:19406187

  14. Evaluation of adjuvants for a candidate conjugate vaccine against benzo[a]pyrene.

    Science.gov (United States)

    Schellenberger, Mario T; Farinelle, Sophie; Willième, Stéphanie; Muller, Claude P

    2011-01-01

    We have recently developed an experimental vaccine based on benzo[a]pyrene (B[a]P) conjugated to tetanus toxoid as a carrier protein. In combination with Freund adjuvant, this vaccine induces high levels of B[a]P-specific antibodies to protect against detrimental effects of this carcinogen. Here we evaluate this conjugate vaccine by replacing Freund adjuvant by adjuvants that are potentially compatible with their use in humans. We showed that all adjuvants tested induced specific antibodies against B[a]P and 7,8-diol-B[a]P, its carcinogenic metabolite. The best antibody levels were obtained with Quil A, MF-59 and Alum. Biological activity in terms of enhanced retention of B[a]P was confirmed in mice immunised with Quil A, Montanide, Alum and MF-59. Our findings demonstrate that a vaccination against B[a]P is feasible in combination with adjuvants licensed in humans. PMID:21245662

  15. Flow immunoassay of trinitrophenol based on a surface plasmon resonance sensor using a one-pot immunoreaction with a high molecular weight conjugate.

    Science.gov (United States)

    Kobayashi, Masatoshi; Sato, Masahiro; Li, Yan; Soh, Nobuaki; Nakano, Koji; Toko, Kiyoshi; Miura, Norio; Matsumoto, Kiyoshi; Hemmi, Akihide; Asano, Yasukazu; Imato, Toshihiko

    2005-12-15

    A surface plasmon resonance (SPR) immunosensor based on a competitive immunoreaction for the determination of trinitrophenol (TNP) is described. A goat anti-mouse IgG (1st antibody), which recognizes an Fc moiety of an antibody, was immobilized on a gold film of an SPR sensor chip by physical adsorption. A TNP solution containing a fixed concentration of a mouse anti-TNP monoclonal antibody (2nd antibody) and a TNP-keyhole limpet hemocyanin (KLH) conjugate was incubated in one-pot and introduced into the sensor chip. The TNP-KLH conjugate competes with TNP for binding with the 2nd antibody. The resulting complex of the 2nd antibody with the TNP-KLH conjugate was bound to the 1st antibody, which is immobilized on the sensor chip. The SPR sensor signal based on resonance angle shift is dependent on the concentration of TNP in the incubation solution in the range from 25ppt to 25ppb, and the coefficient of variation of the SPR signals for the 25ppb TNP solution was determined to be 13% (n=4). The experimental results for the adsorption constant of the 1st antibody on the sensor chip and the binding constant of the 1st antibody complex with the 2nd antibody are discussed, together with theoretical considerations. PMID:18970305

  16. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines.

    Science.gov (United States)

    Kafi, Kamran; Betting, David J; Yamada, Reiko E; Bacica, Michael; Steward, Kristopher K; Timmerman, John M

    2009-01-01

    The collection of epitopes present within the variable regions of the tumor-specific clonal immunoglobulin expressed by B cell lymphomas (idiotype, Id) can serve as a target for active immunotherapy. Traditionally, tumor-derived Id protein is chemically conjugated to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde to serve as a therapeutic vaccine. While this approach offered promising results for some patients treated in early clinical trials, glutaraldehyde Id-KLH vaccines have failed to induce immune and clinical responses in many vaccinated subjects. We recently described an alternative conjugation method employing maleimide-sulfhydryl chemistry that significantly increased the therapeutic efficacy of Id-KLH vaccines in three different murine B cell lymphoma models, with protection mediated by either CD8(+) T cells or antibodies. We now define in detail the methods and parameters critical for enhancing the in vivo immunogenicity of human as well as murine Id-KLH conjugate vaccines. Optimal conditions for Id sulfhydryl pre-reduction were determined, and maleimide Id-KLH conjugates maintained stability and potency even after prolonged storage. Field flow fractionation analysis of Id-KLH particle size revealed that maleimide conjugates were far more uniform in size than glutaraldehyde conjugates. Under increasingly stringent conditions, maleimide Id-KLH vaccines maintained superior efficacy over glutaraldehyde Id-KLH in treating established, disseminated murine lymphoma. More importantly, human maleimide Id-KLH conjugates were consistently superior to glutaraldehyde Id-KLH conjugates in inducing Id-specific antibody and T cell responses. The described methods should be easily adaptable to the production of clinical grade vaccines for human trials in B cell malignancies. PMID:19046770

  17. A Novel Affibody-Auristatin E Conjugate With a Potent and Selective Activity Against HER2+ Cell Lines.

    Science.gov (United States)

    Sochaj-Gregorczyk, Alicja M; Serwotka-Suszczak, Anna M; Otlewski, Jacek

    2016-01-01

    Targeted therapy is a new type of cancer treatment that most often uses biologically active drugs attached to a monoclonal antibody. This so called antibody-drug conjugate strategy allows the use of highly toxic substances that target tumor cells specifically, leaving healthy tissues largely unaffected. Over the last few years, antibody-drug conjugates have become a powerful tool in cancer treatment. We developed and characterized a novel cytotoxic conjugate against HER2 tumors in which the antibody has been substituted with a much smaller molecule: the affibody. The conjugate is composed of the ZHER2:2891 affibody that recognizes HER2 and a highly potent cytotoxic drug auristatin E. The ZHER2:2891 molecule does not contain cysteine(s) in its amino acid sequence. We generated 3 variants of ZHER2:2891, each containing a single cysteine to allow conjugation through the maleimide group that is present in the cytotoxic component. In 2 variants, we introduced single S46C and D53C substitutions. In the third variant, a short Drug Conjugation Sequence (DCS) containing a single cysteine was introduced at the C-terminus of ZHER2:2891, resulting in ZHER2:2891-DCS. The latter variant exhibited a significantly higher conjugation yield, and therefore its cytotoxicity has been studied more thoroughly. The ZHER2:2891-DCS-MMAE conjugate killed the HER2-overexpressing SK-BR-3 and MDA-MB-453 cells efficiently (IC50 values of 5.2 and 24.8 nM, respectively). The T-47-D and MDA-MB-231 cells that express normal levels of HER2 were significantly less sensitive to the conjugate (IC50 values of 135.6 and 161.5 nM, respectively). Overall, we have demonstrated for the first time that proteins other than antibodies/antibody fragments can be successfully combined with a linker-drug module, resulting in conjugates that eliminate cancer cells selectively. PMID:27227324

  18. Update on the use of meningococcal serogroup C CRM₁₉₇-conjugate vaccine (Meningitec) against meningitis.

    Science.gov (United States)

    Badahdah, Al-Mamoon; Rashid, Harunor; Khatami, Ameneh

    2016-01-01

    Meningitec is a CRM197-conjugated meningococcal serogroup C (MenC) vaccine, first licensed in 1999. It has been used as a primary and booster vaccine in infants, toddlers, older children and adults, and has been shown to be immunogenic and well-tolerated in all age groups, including premature infants. Vaccine effectiveness has been demonstrated using combined data on all three licensed MenC conjugate vaccines. Evidence from clinical trials, however, suggests that the different MenC conjugate vaccines behave differently with respect to the induction and persistence of bactericidal antibody and generation of immune memory. It appears that Meningitec has a less favorable immunologic profile compared particularly to tetanus toxoid (TT) MenC conjugate vaccines. Data from comparative trials have raised interesting questions on priming of the immune system by conjugate vaccines, particularly in infants. The results from these and other studies are reviewed here with specific focus on Meningitec. PMID:26560735

  19. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients. PMID:25667985

  20. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  1. DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens.

    Science.gov (United States)

    Seymour, Elif; Daaboul, George G; Zhang, Xirui; Scherr, Steven M; Ünlü, Nese Lortlar; Connor, John H; Ünlü, M Selim

    2015-10-20

    Here, we describe the use of DNA-conjugated antibodies for rapid and sensitive detection of whole viruses using a single-particle interferometric reflectance imaging sensor (SP-IRIS), a simple, label-free biosensor capable of imaging individual nanoparticles. First, we characterize the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional (3-D) polymeric surface using a fluorescence axial localization technique, spectral self-interference fluorescence microscopy (SSFM). Our results indicate that using DNA linkers results in significant elevation of the antibodies on the 3-D polymeric surface. We subsequently show the specific detection of pseudotyped vesicular stomatitis virus (VSV) as a model virus on SP-IRIS platform. We demonstrate that DNA-conjugated antibodies improve the capture efficiency by achieving the maximal virus capture for an antibody density as low as 0.72 ng/mm(2), whereas for unmodified antibody, the optimal virus capture requires six times greater antibody density on the sensor surface. We also show that using DNA conjugated anti-EBOV GP (Ebola virus glycoprotein) improves the sensitivity of EBOV-GP carrying VSV detection compared to directly immobilized antibodies. Furthermore, utilizing a DNA surface for conversion to an antibody array offers an easier manufacturing process by replacing the antibody printing step with DNA printing. The DNA-directed immobilization technique also has the added advantages of programmable sensor surface generation based on the need and resistance to high temperatures required for microfluidic device fabrication. These capabilities improve the existing SP-IRIS technology, resulting in a more robust and versatile platform, ideal for point-of-care diagnostics applications. PMID:26378807

  2. Preparation of monoclonal antibody against crocin and its characterization

    OpenAIRE

    Xuan, Lijiang; Tanaka, Hiroyuki; Xu, Yaming; Shoyama, Yukihiro

    1999-01-01

    Three crocin-carrier protein conjugates were synthesized and their hapten numbers were determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Three monoclonal antibodies against crocin were produced by hybridomas fused with the splenocytes immunized with crocin hemisuccinate-bovine serum albumin conjugate and HAT-sensitive mouse myeloma cell line, P3-X63-Ag8-653. They were identified as IgG2a and IgG2b possessing λ light chain, respectively. Their wide rea...

  3. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro

    International Nuclear Information System (INIS)

    The objective of this paper was to study the effect of antibody-directed targeting of S. aureus by comparing the activities of lysostaphin conjugated to biodegradable polylactide nanoparticles (NPs) in the presence and in the absence of co-immobilized anti-S. aureus antibody. Lysostaphin–antibody–NP conjugates were synthesized through physical adsorption at different enzyme:antibody:NP ratios. The synthesized enzyme–NP conjugates were characterized by means of dynamic light scattering and zeta potential analysis, and the total protein binding yield on the NPs was characterized using Alexa Fluor 350 and 594 dyes for the S. aureus antibody and lysostaphin respectively. We observed enhanced antimicrobial activity for both enzyme-coated and enzyme–antibody-coated NPs for lysostaphin coatings corresponding to ∼ 40% of the initial monolayer and higher compared to the free enzyme case (p < 0.05). At the highest antibody coating concentration, bacterial lysis rates for antibody-coated samples were significantly higher than for lysostaphin-coated samples lacking the antibody (p < 0.05). Such enzyme–NP conjugates thus have the potential for becoming novel therapeutic agents for treating antibiotic-resistant S. aureus infections.

  4. Antibodies and Selection of Monoclonal Antibodies.

    Science.gov (United States)

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    2016-01-01

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology. PMID:27236550

  5. Storage Conditions of Conjugated Reagents Can Impact Results of Immunogenicity Assays

    Directory of Open Access Journals (Sweden)

    Robert J. Kubiak

    2016-01-01

    Full Text Available Consistent performance of anti-drug antibody (ADA assays through all stages of clinical development is critical for the assessment of immunogenicity and interpretation of PK, PD, safety, and efficacy. The electrochemiluminescent assays commonly employed for ADA measurement use drug conjugated with ruthenium and biotin to bind ADA in samples. Here we report an association between high nonspecific ADA responses in certain drug-naïve individuals and the storage buffer of the conjugated reagents used in a monoclonal antibody ADA assay. Ruthenylated reagents stored in phosphate-buffered saline (PBS buffer had increased levels of aggregate and produced variable and high baseline responses in some subjects. Reagents stored in a histidine-sucrose buffer (HSB had lower aggregate levels and produced low sample responses. In contrast to PBS, conjugated reagents formulated in HSB remained low in aggregate content and in sample response variability after 5 freeze/thaw cycles. A reagent monitoring control (RMC serum was prepared for the real-time evaluation of conjugated reagent quality. Using appropriate buffers for storage of conjugated reagents together with RMCs capable of monitoring of reagent aggregation status can help ensure consistent, long-term performance of ADA methods.

  6. A Geometric View of Conjugate Priors

    CERN Document Server

    Agarwal, Arvind

    2010-01-01

    In Bayesian machine learning, conjugate priors are popular, mostly due to mathematical convenience. In this paper, we show that there are deeper reasons for choosing a conjugate prior. Specifically, we formulate the conjugate prior in the form of Bregman divergence and show that it is the inherent geometry of conjugate priors that makes them appropriate and intuitive. This geometric interpretation allows one to view the hyperparameters of conjugate priors as the {\\it effective} sample points, thus providing additional intuition. We use this geometric understanding of conjugate priors to derive the hyperparameters and expression of the prior used to couple the generative and discriminative components of a hybrid model for semi-supervised learning.

  7. Preparation, characterization, and immunogenicity of meningococcal lipooligosaccharide-derived oligosaccharide-protein conjugates.

    Science.gov (United States)

    Gu, X X; Tsai, C M

    1993-05-01

    A method was developed for coupling carboxylic acid-containing oligosaccharides (OS) to proteins. An OS was isolated from Neisseria meningitidis group A strain A1 lipooligosaccharide (LOS). This LOS has no human glycolipid-like lacto-N-neotetraose structure and contains multiple immunotypes, including L8, found in group B and C strains. The carboxylic acid at 2-keto-3-deoxyoctulosonic acid of the OS was linked through adipic acid dihydrazide to tetanus toxoid. The molar ratio of the OS to tetanus toxoid in three conjugates ranged from 11:1 to 19:1. The antigenicity of the OS was conserved in these conjugates, as measured by an enzyme-linked immunosorbent assay (ELISA) and an inhibition ELISA with polyclonal and monoclonal antibodies to A1 LOS. These conjugates induced immunoglobulin G antibodies to A1 LOS in mice and rabbits. The immunogenicity of the conjugates in rabbits was enhanced by use of monophosphoryl lipid A plus trehalose dimycolate as an adjuvant. The resulting rabbit antisera cross-reacted with most of 12 prototype LOSs and with LOSs from two group B disease strains, 44/76 and BB431, in an ELISA and in Western blotting (immunoblotting), which revealed a 3.6-kDa reactive band in these LOSs. The rabbit antisera showed bactericidal activity against homologous strain A1 and heterologous strains 44/76 and BB431. These results indicate that conjugates derived from A1 LOS can induce antibodies against many LOS immunotypes from different organism serogroups, including group B. OS-protein conjugates derived from meningococcal LOSs may therefore be candidate vaccines to prevent meningitis caused by meningococci. PMID:8478076

  8. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    International Nuclear Information System (INIS)

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors. (paper)

  9. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid......Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the...... successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable...

  10. Application of bispecific antibody against antigen and hapten for immunodetection and immunopurification

    OpenAIRE

    Kim, Hyori; Park, Sunyoung; Lee, Hwa Kyoung; Chung, Junho

    2013-01-01

    We present a bispecific antibody that recognizes an antigen and a hapten and can be applied to various biological assays, including immunoblotting and immunoprecipitation. In immunoblot analysis of serum, an anti-C5 × anti-cotinine bispecific tandem single-chain variable fragment (scFv)-Fc fusion protein and cotinine-conjugated horseradish peroxidase (HRP) generated a clean signal without the high background that was observed in a parallel experiment using HRP-conjugated goat anti-rabbit immu...

  11. Development of a monoclonal antibody-based broad-specificity ELISA for fluroquinolone antibiotics in foods and molecular modeling studies of cross-reactive compounds

    Science.gov (United States)

    Development of a competitive indirect enzyme-linked immunosorbent assay (ciELISA) with monoclonal antibodies (Mabs) having broad specificity for fluoroquinolone (FQ) antibiotics is described. Four FQs, ciprofloxacin (CIP), norfloxacin (NOR), enrofloxacin (ENR) and ofloxacin (OFL) were conjugated to...

  12. Toward antibody-directed "abzyme" prodrug therapy, ADAPT: carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing.

    OpenAIRE

    Wentworth, P; Datta, A.; Blakey, D; Boyle, T; Partridge, L. J.; Blackburn, G M

    1996-01-01

    Antibody-directed enzyme prodrug therapy, ADEPT, is a recent approach to targeted cancer chemotherapy intended to diminish the nonspecific toxicity associated with many commonly used chemotherapeutic agents. Most ADEPT systems incorporate a bacterial enzyme, and thus their potential is reduced because of the immunogenicity of that component of the conjugate. This limitation can be circumvented by the use of a catalytic antibody, which can be "humanized," in place of the bacterial enzyme catal...

  13. Mappings of Conjugation of Quaternion Algebra

    OpenAIRE

    Kleyn, Aleks

    2012-01-01

    In the paper I considered mappings of conjugation of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of mappings of conjugation.

  14. Therapeutic application of radiolabelled monoclonal antibody UJ13A in children with disseminated neuroblastoma - A phase 1 study

    International Nuclear Information System (INIS)

    Heteroantisera to human ferritin radiolabelled with 131I have been used therapeutically in patients with Hodgkins disease and hepatocellular carcinoma. Monoclonal antibodies with their high degree of specificity may also have therapeutic potential in targeting drugs, toxins or isotopes to tumours. This is despite a lack of absolute specificity for tumour tissue, as all reagents described to date also bind to certain normal tissue. Studies using monoclonal antibodies conjugated with low doses of either/sup 123/I or 131I have demonstrated the possibility of targeting antibodies to primary and metastatic tumour sites in patients with neuroblastoma. This study describes the use of 131I conjugated to monoclonal antibody UJ13A to ablate human neuroblastomas xenografted into nude mice and the results of a phase 1 study of the toxicity of the conjugate in patients with disseminated neuroblastoma

  15. Antiphospholipid Antibody Syndrome

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Antiphospholipid Antibody Syndrome? Antiphospholipid (AN-te-fos-fo-LIP-id) antibody ... weeks or months. This condition is called catastrophic antiphospholipid syndrome (CAPS). People who have APS also are at ...

  16. Differentiation between temporary and real non-clearability of biotinylated IgG antibody by avidin in mice

    OpenAIRE

    Dou, Shuping; Virostko, John; Rusckowski, Mary; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2014-01-01

    Although an increasing number of antibody conjugates are being used in the clinic, there remain many unmet needs in antibody targeting. Normal tissue background is one of the key issues that limits the therapeutic efficacy and the detection sensitivity. Background reduction coupled with dose increase may provide the required target accumulation of the label or toxin at an acceptable normal tissue background. However, the knowledge about the in vivo interaction between antibody and a clearing ...

  17. Differentiation between temporary and real non-clearability of biotinylated IgG antibody by avidin in mice

    OpenAIRE

    GuozhengLiu; JohnVirostko; DaleGreiner; AlvinPowers

    2014-01-01

    Although an increasing number of antibody conjugates are being used in the clinic, there remain many unmet needs in antibody targeting. Normal tissue background is one of the key issues that limits the therapeutic efficacy and detection sensitivity. Background reduction coupled with dose increase may provide the required target accumulation of the label or toxin at an acceptable normal tissue background. However, the knowledge about the in vivo interaction between antibody and a clearing agen...

  18. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain.

    Science.gov (United States)

    Mahmood, Rubab

    2016-01-01

    Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle. PMID:25569629

  19. The antibody mining toolbox

    OpenAIRE

    D'Angelo, Sara; Glanville, Jacob; Ferrara, Fortunato; Naranjo, Leslie; Gleasner, Cheryl D.; Shen, Xiaohong; Bradbury, Andrew RM; Kiss, Csaba

    2013-01-01

    In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput ...

  20. Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots

    Science.gov (United States)

    Torchynska, T. V.

    2009-03-01

    The paper presents the results of photoluminescence (PL) and Raman scattering studies of non-conjugated and bio-conjugated CdSe/ZnS core-shell quantum dots (QDs). The commercial CdSe/ZnS QDs used are characterized by color emission with maxima at 605-610 nm (2.03-2.05 eV). PL spectra of non-conjugated QDs are the superposition of PL bands related to exciton emission in the CdSe core (2.03-2.05 eV) and to hot electron-hole emission via defect states at the CdSe/ZnS interface (2.37 and 2.68 eV). QD conjugation was performed with biomolecules—the antihuman interleukin 10 antibody (antihuman IL10). The PL spectra of bio-conjugated QDs have been changed dramatically: only one PL band related to exciton emission in the CdSe core was detected in bio-conjugated QDs. To explain this effect a model has been proposed which assumes that the QD bio-conjugation process is accompanied by the recharging of acceptor-like interface states at the CdSe/ZnS interface. A comparative analysis of normalized PL spectra of non-conjugated CdSe/ZnS QDs with different intensities of interface state PL has confirmed the proposed electron-hole recombination model in QDs.

  1. Advanced conjugated polymers for photonics

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Výprachtický, Drahomír; Kmínek, Ivan; Dzhabarov, Vagif; Pokorná, Veronika

    Orlando, 2013. s. 142. [2013 EMN Fall - 2013 Energy Materials & Nanotechnology Meeting. 07.12.2013-10.12.2013, Orlando] R&D Projects: GA ČR(CZ) GA13-26542S; GA ČR GAP106/12/0827 Institutional support: RVO:61389013 Keywords : conjugated polymers * photoluminescence * electroluminescence Subject RIV: CD - Macromolecular Chemistry

  2. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte; Wengel, Jesper

    2013-01-01

    Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical...

  3. Ubiquitin conjugates are formed in vivo in beef and rabbit eye lens

    International Nuclear Information System (INIS)

    Ubiquitin (UB) conjugation to substrate proteins represents a requisite step for commencement of physiological proteolysis in some cell systems. In order to determine if UB-lens protein conjugates are formed in vivo, supernatants of rabbit and beef cultured lens epithelial cells, lens tissue epithelium, cortex and core were prepared. The soluble proteins were separated on 10% SDS-PAGE, and transferred to nitrocellulose. The blot was reacted with anti-human UB antibodies, then with 125I-protein A and autoradiographed. Comparison of the UB-lens protein conjugates in beef and rabbit lens epithelial cells reveals a few differences between the species, although the majority of conjugates appear identical. There are some similarities between the patterns of UB-lens protein conjugates observed in epithelium and cortex for both species. Patterns of UB conjugates for cortex and core are virtually indistinguishable. Quantitative immunological tests show that there is a dramatic decrease in total UB (38 vs 7 pmol total UB/mg protein) in young vs older tissues. Total UB content is even higher in cultured epithelial cells (45 to 90 pmol/mg protein). It appears that the decrease of UB in older tissues may result in impaired function of the putative UB-dependent proteolytic pathway. This may cause the accumulation instead of degradation of damaged proteins in aged lens tissue

  4. Heavy chain only antibodies

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud;

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen...

  5. Hepatitis A virus antibody

    International Nuclear Information System (INIS)

    A description is presented of a radioimmunoassay designed to prove the presence of the antibody against the hepatitis A virus (HA Ab, anti-Ha) using an Abbott HAVAB set. This proof as well as the proof of the antibody against the nucleus of the hepatitis B virus is based on competition between a normal antibody against hepatitis A virus and a 125I-labelled antibody for the binding sites of a specific antigen spread all over the surface of a tiny ball; this is then indirect proof of the antibody under investigation. The method is described of reading the results from the number of impulses per 60 seconds: the higher the titre of the antibody against the hepatitis A virus in the serum examined, the lower the activity of the specimen concerned. The rate is reported of incidence of the antibody against the hepatitis A virus in a total of 68 convalescents after hepatitis A; the antibody was found in 94.1%. The immunoglobulin made from the convalescents' plasma showed the presence of antibodies in dilutions as high as 1:250 000 while the comparable ratio for normal immunoglobulin Norga was only 1:2500. Differences are discussed in the time incidence of the antibodies against the hepatitis A virus, the antibodies against the surface antigen of hepatitis B, and the antibody against the nucleus of the hepatitis V virus. (author)

  6. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  7. Conjugation of Morse Function on 3-Manifolds

    OpenAIRE

    Prishlyak, Alexander

    1998-01-01

    The questions when two Morse function on closed manifolds are conjugated is investigated. Using the handle decompositions of manifolds the condition of conjugation is formulated. For each Morse function on 3-manifold the ordered generalized Heegaard diagram is built. The criteria of Morse function conjugation are given in the terms of equivalence of such diagrams.

  8. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  9. The construction and in vitro testing of photo-activatable cancer targeting folated anti-CD3 conjugates

    International Nuclear Information System (INIS)

    The construction and in vitro testing of a photo-activatable anti-tumour immuno-regulatory antibody is described. In this 'cloaked' folated anti-CD3 antibody conjugate, the folate portion of the conjugate is free to bind to folate receptor expressing cancer cells, whilst the anti-CD3 activity is effectively rendered inert by a coating of photo-labile 2-nitrobenzyl groups. On irradiation with UV-A light the activity of the anti-CD3 antibody is restored, not only when it is required, but more importantly, only where it is required. The conjugate can then attract killer T-cells to the surface of the tumour cells and kill them. Unirradiated normal tissues, to which the conjugate has been targeted by specific and non-specific binding, remain unharmed. We believe that these 'photo-switchable' conjugates could be used to markedly improve the targeting of the immune response to folate receptor (FR) expressing ovarian and breast cancers whilst minimising the side effects in the rest of the body

  10. Monoclonal antibodies and cancer

    International Nuclear Information System (INIS)

    The usefulness of radiolabeled monoclonal antibodies for imaging and treatment of human (ovarian) cancer was investigated. A review of tumor imaging with monoclonal antibodies is presented. Special attention is given to factors that influence the localization of the antibodies in tumors, isotope choice and methods of radiolabeling of the monoclonal antibodies. Two monoclonal antibodies, OC125 and OV-TL3, with high specificity for human epithelial ovarian cancer are characterized. A simple radio-iodination technique was developed for clinical application of the monoclonal antibodies. The behavior of monoclonal antibodies in human tumor xenograft systems and in man are described. Imaging of tumors is complicated because of high background levels of radioactivity in other sites than the tumor, especially in the bloodpool. A technique was developed to improve imaging of human tumor xenographs in nude mice, using subtraction of a specific and a non-specific antibody, radiolabeled with 111In, 67Ga and 131I. To investigate the capability of the two monoclonal antibodies, to specifically localize in human ovarian carcinomas, distribution studies in mice bearing human ovarian carcinoma xenografts were performed. One of the antibodies, OC125, was used for distribution studies in ovarian cancer patients. OC125 was used because of availability and approval to use this antibody in patients. The same antibody was used to investigate the usefulness of radioimmunoimaging in ovarian cancer patients. The interaction of injected radiolabeled antibody OC125 with circulating antigen and an assay to measure the antibody response in ovarian cancer patients after injection of the antibody is described. 265 refs.; 30 figs.; 19 tabs

  11. Production of a highly group-specific monoclonal antibody against zearalenone and its application in an enzyme-linked immunosorbent assay

    OpenAIRE

    Cha, Sang-Ho; Kim, Sung-Hee; Bischoff, Karyn; Kim, Hyun-Jeong; Son, Seong-Wan; Kang, Hwan-Goo

    2012-01-01

    A monoclonal antibody (mAb) against zearalenone (ZEN) was produced using ZEN-carboxymethoxylamine and -BSA conjugates. Antibody produced by one clone showing a very high binding ability was selected and found to have a higher affinity for ZEN compared to a commerciall ZEN antibody. We developed two direct competitive ELISA systems using the selected antibody (ZEN-coated and anti-ZEN antibody-coated ELISA). Quantitative ranges for the anti-ZEN antibody-coated ELISA and ZEN-coated ELISA were fr...

  12. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Science.gov (United States)

    Liao-Chan, Sindy; Daine-Matsuoka, Barbara; Heald, Nathan; Wong, Tiffany; Lin, Tracey; Cai, Allen G; Lai, Michelle; D'Alessio, Joseph A; Theunissen, Jan-Willem

    2015-01-01

    Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs) that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology. PMID:25894652

  13. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Directory of Open Access Journals (Sweden)

    Sindy Liao-Chan

    Full Text Available Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  14. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    OpenAIRE

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substra...

  15. Superior Immune Response to Protein-Conjugate versus Free Pneumococcal Polysaccharide Vaccine in Chronic Obstructive Pulmonary Disease

    OpenAIRE

    Dransfield, Mark T.; Nahm, Moon H.; Han, MeiLan K.; Harnden, Sarah; Criner, Gerard J.; Fernando J Martinez; Scanlon, Paul D.; Woodruff, Prescott G.; Washko, George R.; Connett, John E.; Anthonisen, Nicholas R.; Bailey, William C.

    2009-01-01

    Rationale: Debate exists about the immunogenicity and protective efficacy of antibodies produced by the 23-valent pneumococcal polysaccharide vaccine (PPSV23) in chronic obstructive pulmonary disease (COPD). The 7-valent diphtheria-conjugated pneumococcal polysaccharide vaccine (PCV7) induces a more robust immune response than PPSV23 in healthy elderly adults.

  16. Pneumococcal conjugate vaccination does not induce a persisting mucosal IgA response in children with recurrent acute otitis media.

    NARCIS (Netherlands)

    Bogaert, D.; Veenhoven, R.H.; Ramdin, R.; Luijendijk, I.H.; Rijkers, G.T.; Sanders, E.A.M.; Groot, R. de; Hermans, P.W.M.

    2005-01-01

    AIM: In a prospective controlled study in young children with a history of recurrent acute otitis media, we analyzed the salivary IgA and IgG antibody titers upon vaccination with a 7-valent pneumococcal conjugate vaccine (PCV) given once or twice, followed by a 23-valent polysaccharide booster vacc

  17. Conjugative plasmids of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones and with and without different tetM determinants (Dutch and American type tetM determinants have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233 or containing Dutch (pEP5289 or American (pEP5050 type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1alpha, beta, gamma, delta and epsilon subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids

  18. Magnetosome Expression of Functional Camelid Antibody Fragments (Nanobodies) in Magnetospirillum gryphiswaldense▿†

    OpenAIRE

    Pollithy, Anna; Romer, Tina; Lang, Claus; Müller, Frank D.; Helma, Jonas; Leonhardt, Heinrich; Rothbauer, Ulrich; Schüler, Dirk

    2011-01-01

    Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surf...

  19. SERUM ANTIBODIES TO WHOLE-CELL AND RECOMBINANT ANTIGENS OF BORRELIA BURGDORFERI IN COTTONTAIL RABBITS

    OpenAIRE

    Magnarelli, Louis A.; Norris, Steven J; Fikrig, Erol

    2012-01-01

    Archived serum samples, from 95 eastern cottontail rabbits (Sylvilagus floridanus) captured in New York, New York, USA and Millbrook, New York, USA, during 1985–86, were analyzed in solid-phase enzyme-linked immunosorbent assays (ELISA) for total and class-specific immunoglobulin (Ig) M antibodies to whole-cell or recombinant antigens of Borrelia burgdorferi sensu stricto. Using a polyvalent conjugate, rabbit sera contained antibodies to whole-cell and recombinant antigens (protein [p]35, p37...

  20. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB - E. coli cytoplasm

    OpenAIRE

    Markiv Anatoliy; Beatson Richard; Burchell Joy; Durvasula Ravi V; Kang Angray S

    2011-01-01

    Abstract Background Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains link...

  1. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander;

    2014-01-01

    humans and animals, through the endogenous B12 transport systems. Binding of the organometallic B12 octadecanucleotide to the three important human proteins of B12 transport was studied, to examine its structural suitability for the task of eventual in vivo oligonucleotide delivery. Binding was efficient......Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in...... with transcobalamin (TC), but not so efficient with the homologous glycoproteins intrinsic factor and haptocorrin. Binding of the B12 octadecanucleotide to TC suggests the capacity of the B12 moiety to serve as a natural vector for specific transport of single stranded, organometallic oligonucleotide...

  2. The ISG15 conjugation system.

    Science.gov (United States)

    Durfee, Larissa A; Huibregtse, Jon M

    2012-01-01

    ISG15 is a ubiquitin-like modifier that is expressed in response to type 1 interferon signaling (IFN-α/β) and plays a role in antiviral responses. The core E1, E2, and E3 enzymes for ISG15 are Ube1L, UbcH8, and Herc5, respectively, and these are all also induced at the transcriptional level by IFN-α/β. We recently showed that Herc5 associates with polysomes and modifies target proteins in a cotranslational manner. Here, we describe the expression of the core conjugating enzymes in human cells, the detection of ISG15 conjugates, and the methods for fractionation of Herc5 with polysomes. PMID:22350882

  3. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... for scalable PSCs fully printed under ambient conditions [Adv. Energy Mater. 2015, 5, 1402186]. PPDTBT resulted to be the conjugated polymer with the best photovoltaic performance within the 104 synthesized macromolecules. Therefore, further studies have been done on such material. The impact of side chain...... arylation (DAr) and direct arylation polymerization (DArP) have been applied to the preparation of PPDTBT, making this polymer readily available in only 4 synthetic steps and thus easily transferable to a large scale-production setup. DArP avoids organometallic species and therefore is an appealing...

  4. Fiber bundle phase conjugate mirror

    Science.gov (United States)

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  5. Anti-CD20 multivalent HPMA copolymer-Fab′ conjugates for the direct induction of apoptosis

    OpenAIRE

    Chu, Te-Wei; Yang, Jiyuan; Kopeček, Jindřich

    2012-01-01

    A hybrid biomimetic system comprising high-molecular-weight, linear copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) grafted with multiple Fab′ fragments of anti-CD20 monoclonal antibody (mAb) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization followed by attachment of Fab′ fragments via thioether bonds. Exposure of human non-Hodgkin’s lymphoma (NHL) Raji B cells to the multivalent conjugates resulted in crosslinking of CD20 receptors and commenceme...

  6. A morphine conjugate vaccine attenuates the behavioral effects of morphine in rats

    OpenAIRE

    Kosten, Therese A.; Shen, Xiaoyun Y.; O'Malley, Patrick W.; Kinsey, Berma M.; Lykissa, Ernest D.; Orson, Frank M.; Kosten, Thomas R.

    2013-01-01

    Vaccines for opioid dependence may provide a treatment that would reduce or slow the distribution of the drug to brain, thus reducing the drug's reinforcing effects. We tested whether a conjugate vaccine against morphine (keyhole limpet hemocyanin-6-succinylmorphine; KLH-6-SM) administered to rats would produce antibodies and show specificity for morphine or other heroin metabolites. The functional effects of the vaccine were tested with antinociceptive and conditioned place preference (CPP) ...

  7. Conjugated polyelectrolytes fundamentals and applications

    CERN Document Server

    Liu, Bin

    2013-01-01

    This is the first monograph to specifically focus on fundamentals and applications of polyelectrolytes, a class of molecules that gained substantial interest due to their unique combination of properties. Combining both features of organic semiconductors and polyelectrolytes, they offer a broad field for fundamental research as well as applications to analytical chemistry, optical imaging, and opto-electronic devices. The initial chapters introduce readers to the synthesis, optical and electrical properties of various conjugated polyelectrolytes. This is followed by chapters on the applica

  8. Variable metric conjugate gradient methods

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  9. Review on the association of Group B Streptococcus capsular antibody and protection against invasive disease in infants.

    Science.gov (United States)

    Dangor, Ziyaad; Kwatra, Gaurav; Izu, Alane; Lala, Sanjay G; Madhi, Shabir A

    2015-01-01

    A trivalent Group B streptococcus (GBS) polysaccharide-protein conjugate vaccine for vaccination of pregnant women is under development to protect their newborns against invasive GBS disease. Establishing sero-correlates of protection against invasive GBS disease in infants could expedite the licensure pathway of polysaccharide-protein conjugate vaccine. A systematic review of studies reporting on the association of capsular antibodies and invasive GBS disease in infants and colonization in women or newborns was undertaken. Most studies that described maternal and/or infant capsular antibody levels in infants with invasive GBS disease identified an association between low capsular antibody levels in invasive GBS cases compared to controls. Different assay methods and the lack of standardized reference ranges for serotype-specific antibody levels makes it difficult to select an antibody level that may be used as a reliable sero-correlate of protection. Further studies using standardized methods are warranted. PMID:25242617

  10. Engineering antibody therapeutics.

    Science.gov (United States)

    Chiu, Mark L; Gilliland, Gary L

    2016-06-01

    The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment. PMID:27525816

  11. 8(th) Annual European Antibody Congress 2012: November 27-28, 2012, Geneva, Switzerland.

    Science.gov (United States)

    Beck, Alain; Carter, Paul J; Gerber, Hans-Peter; Lugovskoy, Alexey A; Wurch, Thierry; Junutula, Jagath R; Kontermann, Roland E; Mabry, Robert

    2013-01-01

    The 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds. The meeting started and closed with three plenary lectures to give common background and to share the final panel discussion and conclusions. The two day event included case studies and networking for nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The monoclonal antibody track was focused on understanding the structure-function relationships, optimization of antibody design and developability, and processes that allow better therapeutic candidates to move through the clinic. Discussions on novel target identification and validation were also included. The ADC track was dedicated to evaluation of the ongoing success of the established ADC formats alongside the rise of the next generation drug-conjugates. The bispecific and alternative scaffold track was focused on taking stock of the multitude of bispecific formats being investigated and gaining insight into recent innovations and advancements. Mechanistic understanding, progression into the clinic and the exploration of multispecifics, redirected T cell killing and alternative scaffolds were extensively discussed. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:23493119

  12. Prion-Specific Antibodies Produced in Wild-Type Mice.

    Science.gov (United States)

    Heegaard, Peter M H; Bergström, Ann-Louise; Andersen, Heidi Gertz; Cordes, Henriette

    2015-01-01

    Peptide-specific antibodies produced against synthetic peptides are of high value in probing protein structure and function, especially when working with challenging proteins, including not readily available, non-immunogenic, toxic, and/or pathogenic proteins. Here, we present a straightforward method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well as a thorough characterization of their reactivity with a range of normal and pathogenic (misfolded) prion proteins. It is demonstrated that immunization of wild-type mice with ovalbumin-conjugated peptides formulated with Freund's adjuvant induces a good immune response, including high levels of specific anti-peptide antibodies, even against peptides very homologous to murine protein sequences. In general, using the strategies described here for selecting, synthesizing, and conjugating peptides and immunizing 4-5 mice with 2-3 different peptides, high-titered antibodies reacting with the target protein are routinely obtained with at least one of the peptides after three to four immunizations with incomplete Freund's adjuvant. PMID:26424281

  13. Enhanced antigen detection in immunohistochemical staining using a 'digitized' chimeric antibody.

    Science.gov (United States)

    Eng, Hui-Yan; Wang, Cheng-I; Xue, Yuezhen; Lee, Chia-Yin; Zulkifli, Sarah Binte; Chiam, Poh-Cheang; Ghadessy, Farid J; Lane, David P

    2016-01-01

    The immunohistochemical (IHC) staining of mouse tissue sections using antibodies of mouse origin can result in high nonspecific background due to the staining of endogenous immunoglobulins (Igs) by enzyme-conjugated secondary antibodies. In order to obviate this issue, we developed a chimeric mouse-human anti-p53 monoclonal antibody (MH242) by grafting the variable regions of a known mouse antibody into a human Ig scaffold. This facilitated use of an anti-human secondary antibody, and resulted in near-zero background when compared with its parental mouse monoclonal antibody (PAb242). Furthermore, the chimeric antibody enabled reproducible detection of mutant p53 (homozygous R172H) expression in mouse tissue, an observation hitherto largely equivocal based on the use of existing antibodies. The approach we describe leads to the generation of tractable antibody reagents, whose integrity can be readily verified through DNA sequencing of expressor plasmids. The wide-spread adoption of such 'digitized' antibodies should reduce experimental disparities that can commonly arise through variations in antibody quality. PMID:26508747

  14. Mass Spectrometry Based Mechanistic Insights into Formation of Tris Conjugates: Implications on Protein Biopharmaceutics

    Science.gov (United States)

    Kabadi, Pradeep G.; Sankaran, Praveen Kallamvalliillam; Palanivelu, Dinesh V.; Adhikary, Laxmi; Khedkar, Anand; Chatterjee, Amarnath

    2016-08-01

    We present here extensive mass spectrometric studies on the formation of a Tris conjugate with a therapeutic monoclonal antibody. The results not only demonstrate the reactive nature of the Tris molecule but also the sequence and reaction conditions that trigger this reactivity. The results corroborate the fact that proteins are, in general, prone to conjugation and/or adduct formation reactions and any modification due to this essentially leads to formation of impurities in a protein sample. Further, the results demonstrate that the conjugation reaction happens via a succinimide intermediate and has sequence specificity. Additionally, the data presented in this study also shows that the Tris formation is produced in-solution and is not an in-source phenomenon. We believe that the facts given here will open further avenues on exploration of Tris as a conjugating agent as well as ensure that the use of Tris or any ionic buffer in the process of producing a biopharmaceutical drug is monitored closely for the presence of such conjugate formation.

  15. Monoclonal antibodies to human urinary thrombopoietin

    International Nuclear Information System (INIS)

    Monoclonal antibodies (MA) to a thrombocytopoiesis-stimulating factor (TSF or thrombopoietin) were obtained from hybridomas derived from the fusion of P3 x 63/Ag 8 cells and spleen cells from TSF-immunized BALB/c mice. Media from several hybrid cultures were tested in a microantibody detection technique that measured the binding of MA to a 125I-purified TSF preparation from human embryonic kidney (HEK) cells. Hybridized cells were injected into pristane-primed mice and the antibodies produced in the ascites fluid were also shown to bind the 125I-TSF. Compared to the results of normal mouse serum, ascites fluid containing MA was shown to bind the unlabeled TSF from HEK cells. The TSF activity was significantly reduced in the supernatant fluid after precipitating the TSF-anti-TSF immune complex by a second antibody when tested in an immunothrombocythemic mouse assay. After SDS-PAGE, the precipitate from this TSF-Ma conjugate showed that the antiserum bound a single 32,000 mol wt component, indicating the monospecificity of the MA. MA directed toward human TSF will allow studies that were not previously possible

  16. On-chip sample preparation by controlled release of antibodies for simple CD4 counting

    NARCIS (Netherlands)

    Beck, M.; Brockhuis, S.; Velde, van der N.; Breukers, C.; Greve, J.; Terstappen, L.W.M.M.

    2012-01-01

    We present a simple system for CD4 and CD8 counting for point-of-care HIV staging in low-resource settings. Automatic sample preparation is achieved through a dried reagent coating inside a thin (26 μm) counting chamber, allowing the delayed release of fluorochrome conjugated monoclonal antibodies a

  17. Monoclonal antibodies for rapid, strain-specific identification of influenza virus isolates.

    OpenAIRE

    Schmidt, N. J.; Ota, M; Gallo, D; Fox, V L

    1982-01-01

    Monoclonal antibodies conjugated with fluorescein permitted rapid, strain-specific identification of influenza A isolates and type-specific identification of influenza B isolates by direct immunofluorescence staining. Identification of H1 influenza A strains could be accomplished by direct immunofluorescence on cell culture fluids lacking sufficient hemagglutinin activity to permit identification by hemagglutination inhibition.

  18. Purification and iodination of antibody for use in an immunoradiometric assay for serum ferritin

    International Nuclear Information System (INIS)

    Antibodies were purified by affinity chromatography and radioiodinated by a conjugation method for use in the immunoradiometric assay for serum ferritin. These procedures are simpler and more reproducible than those described earlier, and the radiolabeled preparations were usable for at least 13 weeks

  19. ON CONJUGATES AND MODULII OF BICOMPLEX NUMBERS

    Directory of Open Access Journals (Sweden)

    JAISHREE

    2012-06-01

    Full Text Available The paper presents extensive use of complex pairs to develop the algebraic properties of bicomplex numbers and contains various aspects of finding the conjugates and modulii of bicomplex numbers.We discuss three types of conjugations and some specific modulii with complex and hyperbolic ranges. We also examine the impact of different conjugations on the principal ideals I1 and I2.

  20. Phase Conjugation of Continuous Quantum Variables

    OpenAIRE

    Cerf, N. J.; Iblisdir, S.

    2000-01-01

    The phase conjugation of an unknown Gaussian state cannot be realized perfectly by any physical process. A semi-classical argument is used to derive a tight lower bound on the noise that must be introduced by an approximate phase conjugation operation. A universal transformation achieving the optimal imperfect phase conjugation is then presented, which is the continuous counterpart of the universal-NOT transformation for quantum bits. As a consequence, it is also shown that more information c...

  1. Internalization, Intracellular Trafficking, Biodistribution of Monoclonal Antibody 806: A Novel Anti-Epidermal Growth Factor Receptor Antibody

    Directory of Open Access Journals (Sweden)

    Rushika M. Perera

    2007-12-01

    Full Text Available Overexpression of the epidermal growth factor receptor (EGFR in epithelial tumors is associated with poor prognosis and is the target for a number of cancer therapeutics. Monoclonal antibody (mAb 806 is a novel anti-EGFR antibody with significant therapeutic efficacy in tumor models when used as a single agent, displays synergistic antitumor activity in combination with other EGFR therapeutics. Unlike other EGFR antibodies, mAb 806 is selective for tumor cells and does not bind to normal tissue, making it an ideal candidate for generation of radioisotope or toxin conjugates. Ideally, antibodies suited to these therapeutic applications must bind to and actively internalize their cognate receptor. We investigated the intracellular trafficking of fluorescently tagged mAb 806 in live cells and analyzed its biodistribution in a tumor xenograffed nude mouse model. Following binding to EGFR, mAb 806 was internalized through dynamin-dependent, clathrin-mediated endocytosis. Internalized mAb 806 localized to early endosomes and subsequently trafficked to and accumulation in lysosomal compartments. Furthermore, biodistribution analysis in nude mice showed specific uptake and retention of radiolabeled mAb 806 to human tumor xenografts. These results highlight the potential use of mAb 806 for generation of conjugates suitable for diagnostic and therapeutic use in patients with EGFR-positive malignancies.

  2. Radiolabelling of monoclonal antibodies with technetium-99 m via metallothionein

    International Nuclear Information System (INIS)

    Metallothionein (MT), a small cysteine-rich protein, was used as a bifunctional chelating agent in the radiolabelling of monoclonal antibodies with Tc-99m. The efficiency of the conjugation reaction of MT with antibodies (Ab) was found as 58%. The yield of radiolabelling of Tc-99m to MT-Ab by reduction method was higher than 90%, while the unspecific radiolabelling occurred less than 10%. The Tc-99m-MT-Ab has proven to be satisfactory stable in Vitro in the presence of a couple of strong chelating agents. The preliminary biological experimental results in tumor-bearing nude mice indicated that the Tc-99m-labelled anti-colorectal carcinoma monoclonal antibody 2C10 had strong affinity toward tumor and was stable in vivo

  3. Probing Antigen-Antibody Interaction Using Fluorescence Coupled Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Pengju Jiang

    2013-09-01

    Full Text Available In this report, the use of fluorescence detection coupled capillary electrophoresis (CE-FL allowed us to fully characterize the antigen-antibody interaction. CE-FL allowed separation of unbound quantum dots (QDs and ligand bound QDs and also revealed an ordered assembly of biomolecules on QDs. Further, we observed FRET from QDs donor to DyLight acceptor, which were covalently conjugated with human IgG and goat anti-human IgG, respectively. The immunocomplex was formed and the mutual affinity of the antigen and antibody brought QDs and DyLight close enough to allow FRET to occur. This novel CE-based technique can be easily extended to other FRET systems based on QDs and may have potential application in the detection of antibodies.

  4. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik;

    2010-01-01

    Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  5. Targeting the insulin growth factor-1 receptor with fluorescent antibodies enables high resolution imaging of human pancreatic cancer in orthotopic mouse models

    Science.gov (United States)

    Park, Jeong Youp; Lee, Jin Young; Zhang, Yong; Hoffman, Robert M.; Bouvet, Michael

    2016-01-01

    The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of pancreatic cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24-31) was conjugated with 550 nm or 650 nm fluorophores. Western blotting confirmed the expression of IGF-1R in Panc-1, BxPC3, and MIAPaCa-2 human pancreatic cancer cell lines. Labeling with fluorophore-conjugated IGF-1R antibody demonstrated fluorescent foci on the membrane of the pancreatic cancer cells. Subcutaneous Panc-1, BxPC-3, and MIA PaCa-2 tumors became fluorescent after intravenous administration of fluorescent IGF-1R antibodies. Orthotopically-transplanted BxPC-3 tumors became fluorescent with the conjugated IGF-1R antibodies, and were easily visible with intravital imaging. Gross and microscopic ex vivo imaging of resected pancreatic tumor and normal pancreas confirmed that fluorescence indeed came from the membrane of cancer cells, and it was stronger from the tumor than the normal tissue. The present study demonstrates that fluorophore-conjugated IGF-1R antibodies can visualize pancreatic cancer and it can be used with various imaging devices such as endoscopy and laparoscopy for diagnosis and fluorescence-guided surgery. PMID:26919100

  6. Localization at high resolution of antibody-induced mobilization of vaccinia virus hemagglutinin and the major histocompatibility antigens on the plasma membrane of infected cells

    OpenAIRE

    1982-01-01

    We examined the consequence of simultaneous or independent binding of monospecific antibody to the hemagglutinin (HA) of vaccinia virus and the A-, B- and -determinants of HLA on HeLa or Raji cells or KkDk determinants of H-2 on L929 cells. The bound antibodies were marked by goat-anti-mouse (GAM) or goat-anti-rabbit (GAR) fluorochrome conjugates suitable for light microscopy and GAM or GAR gold conjugates, used in electron microscopy. Specificity and amount of antibody adsorbed was ascertain...

  7. Affinity purification of antibodies

    Science.gov (United States)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  8. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  9. Production Of Human Antibodies

    Science.gov (United States)

    Sammons, David W.; Neil, Garry A.

    1993-01-01

    Process for making human monoclonal antibodies based on combination of techniques. Antibodies made active against specific antigen. Process involves in vivo immunization of human B lymphocyte cells in mice. B cells of interest enriched in vitro before fusion. Method potentially applicable to any antigen. Does not rely on use of Epstein-Barr virus at any step. Human lymphocytes taken from any source.

  10. RBC Antibody Screen

    Science.gov (United States)

    ... the baby is Rh-positive and the mother's antibody status is negative for anti-D, the mother is given additional RhIG. This test also may be used to help diagnose autoimmune-related hemolytic anemia ... when a person produces antibodies against his or her own RBC antigens. This ...

  11. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...

  12. Preclinical evaluation of (111)In-DTPA-INCA-X anti-Ku70/Ku80 monoclonal antibody in prostate cancer.

    OpenAIRE

    Evans, Susan; Vilhelmsson Timmermand, Oskar; Welinder, Charlotte; Borrebaeck, Carl AK; Strand, Sven-Erik; Tran, Thuy; Jansson, Bo; Bjartell, Anders

    2014-01-01

    The aim of this investigation was to assess the Ku70/Ku80 complex as a potential target for antibody imaging of prostate cancer. We evaluated the in vivo and ex vivo tumor targeting and biodistribution of the (111)In-labeled human internalizing antibody, INCA-X ((111)In-DTPA-INCA-X antibody), in NMRI-nude mice bearing human PC-3, PC-3M-Lu2 or DU145 xenografts. DTPA-conjugated, non-labeled antibody was pre-administered at different time-points followed by a single intravenous injection of (111...

  13. Studies on the preparation of T3-BSA, T4-BSA conjugates, and radioimmunoassay use of the produced antisera

    International Nuclear Information System (INIS)

    T3-BSA and T4-BSA conjugates were prepared and identified spectrophotometrically. The Λmax of the conjugates was just coincided with that of BSA, but the molar extinction coefficients of the conjugates were generally larger than that of BSA itself. The molar ratios of T3: BSA and T4: BSA in the prepared conjugates were found to be 9:1 and 5:1, respectively. The titers of the T3 antisera were generally higher (max. 1.5x104:1) than those of T4 (max. 2x103:1), and the average cross reactivity of the T3 antibody with T4 was lower(0.45%)than that of T4 antibody with T3(3approximately4%). The results of the study indicate that the predominant cause of the lower titers and the lower specificity of the T4 antisera comparing with those of T3 is mainly due to the unstability of the T4-BSA and consequent degradation of the conjugate to T3-BSA during preparation, purification, and even during immunization. The lower molar ratio of T4 to BSA in the preparation stage is also considered to be a minor factor. By measuring T3, T4 levels in the reference control serum, it has been confirmed that the prepared antisera can sufficiently be utilized, respectively, in the established radioimmunoassay systems. (Author)

  14. Immunotoxins, ligand-toxin conjugates and molecular targeting.

    Science.gov (United States)

    Soria, M

    1989-01-01

    Biotechnology provides tools for therapeutic exploitation following advances in the elucidation of protein-to-cell and cell-to-cell interactions. Molecular targeting of bacterial and plant toxins to the desired district of action can be achieved through effector molecules like monoclonal antibodies or protein ligands. Biochemical conjugation of these effectors to SO-6, a single-chain Ribosome Inactivating Protein from Saponaria officinalis, yielded powerful cytotoxic agents that are attractive candidates for therapeutic evaluation. Cloning of the gene for this plant toxin has been achieved. Technologies for expression of protein ligands, such as apolipoproteins or several growth factors, are available in recombinant microorganisms, providing adequate partners for the assembly of targeted chimaeras. Domain engineering of structural and functional regions in effector proteins is now possible and will be carried out with the available technologies to improve existing therapy. PMID:2698471

  15. Covalent conjugation of multi-walled carbon nanotubes with proteins.

    Science.gov (United States)

    Yi, Changqing; Qi, Suijian; Zhang, Dawei; Yang, Mengsu

    2010-01-01

    Linkage of proteins to carbon nanotubes (CNTs) is fundamentally important for applications of CNTs in medicinal and biological fields, as well as in biosensor or chemically modulated nanoelectronic devices. In this contribution, we provide a detailed protocol for the synthesis and characterization of covalent CNT-protein adducts. Functionalization of multiwalled carbon nanotubes (MWCNTs) with proteins has been achieved by the initial carboxylation of MWCNTs followed by amidation with the desired proteins. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) measurements validated the presence of a covalent linkage between MWCNTs and proteins. The visualization of proteins on the surface of MWCNTs was furthermore achieved using atomic force microscopy (AFM). The protein-conjugated nanocomposites can also be assembled into multidimensional addressable heterostructures through highly specific biomolecular recognition system (e.g., antibody-antigen). PMID:20422377

  16. Selection of Recombinant Human Antibodies.

    Science.gov (United States)

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies. PMID:27236551

  17. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine.

    Science.gov (United States)

    Donnelly, J J; Deck, R R; Liu, M A

    1990-11-01

    Polysaccharide-protein conjugate vaccines made with different carriers vary in their ability to elicit antipolysaccharide IgG antibody responses in young infants and an adult mouse model, suggesting that the carrier proteins used in the conjugate vaccines differ in their ability to act as carriers, or that additional mechanisms of immunogenicity play a role. A conjugate vaccine of Haemophilus influenzae PRP coupled to the outer membrane protein complex (OMPC) of Neisseria meningitidis serogroup B is immunogenic in children as young as 2 mo of age and is immunogenic in infant rhesus monkeys, an animal model for infant humans. In the present study, PRP-OMPC was found to induce efficient IgM to IgG switching of anti-PRP serum antibody in adult mice, whereas PRP conjugated to two other protein carriers did not. Thus the PRP-OMPC conjugate was examined in order to determine why PRP coupled to OMPC was so immunogenic, even more immunogenic than conjugates made with other carrier proteins. The OMPC carrier differs from the other protein carriers in that the proteins are present in a liposomal form containing lipids (including LPS) derived from the outer membrane of N. meningitidis. We studied the OMPC to see whether the different components or the nature of the OMPC carrier could contribute to its enhanced immunogenicity. Specifically we evaluated the OMPC for both classic Th cell carrier activity and adjuvanticity, and the LPS component of OMPC for systemic polyclonal B cell activation. Carrier recognition of the OMPC moiety of PRP-OMPC was demonstrated. In addition the PRP-OMPC conjugate vaccine was observed to have adjuvant properties for both T cell-dependent and T cell-independent Ag in the absence of LPS-induced systemic polyclonal B cell activation. These observations suggest that in addition to functioning as a classic protein carrier whereby the proteins in OMPC provide Th cell epitopes, the OMPC also has adjuvant activity that distinguishes it from other protein

  18. Solution assembly of conjugated polymers

    Science.gov (United States)

    Bokel, Felicia A.

    This dissertation focuses on the solution-state polymer assembly of conjugated polymers with specific attention to nano- and molecular-scale morphology. Understanding how to control these structures holds potential for applications in polymer-based electronics. Optimization of conjugated polymer morphology was performed with three objectives: 1) segregation of donor and acceptor materials on the nanometer length-scale, 2) achieving molecular-scale ordering in terms of crystallinity within distinct domains, and 3) maximizing the number and quality of well-defined donor/acceptor interfaces. Chapter 1 introduces the development of a mixed solvent method to create crystalline poly(3-hexyl thiophene) (P3HT) fibrils in solution. Chapter 2 describes fibril purification and approaches to robust and functional fibrils, while chapters 3 and 4 demonstrate the formation of hybrid nanocomposite wires of P3HT and cadmium selenide (CdSe) nanoparticles by two methods: 1) co-crystallization of free and P3HT-grafted CdSe for composite nanowires and 2) direct attachment of CdSe nanoparticles at fibril edges to give superhighway structures. These composite structures show great potential in the application of optoelectronic devices, such as the active layer of solar cells. Finally, ultrafast photophysical characterization of these polymers, using time-resolved photoluminescence and transient absorption, was performed to determine the aggregation types present in suspended fibrils and monitor the formation and decay of charged species in fibrils and donor-acceptor systems.

  19. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    Science.gov (United States)

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  20. Optimization of the DTPA mixed-anhydride reaction with antibodies at low concentration

    International Nuclear Information System (INIS)

    Diethylenetriaminepentaacetic acid (DTPA) was conjugated with antibody to human serum albumin (Ab) at low concentration (300 μg/ml, 2.0 μM/ via the DTPA carboxycarbonyl mixed-anhydride method. To study parameters determining the balance between the degree of conjugation and the antibody-binding activaty of Ab, a known concentration of the anhydride prepared at isobutylchloroformate (IBC)-to-DTPA ratios of 1, 2.1, or 4.2 was reacted with Ab. The percentage yields of the anhydride were determined by spectrophotometric and gravimetric titration. By the former method the percentage yields, based on DTPA concentration, were 18, 24, and 220, respectively, when the IBC-to-DTPA ratios were 1, 2.1, and 4.2. The corresponding percentage yields were 17, 39, and 262 when determined by the latter method. When the anhydride was prepared at an IBC-to-DTPA ratio of 2.1, an optimum conjugation giving three indium atoms per Ab was obtained, wtih 64% retention of antibody-binding activity. For an IBC-to-DTPA ratio of 1, the antibody retained almost 100% binding activity but the number of indium atoms incorporated (0.2) was too small. For an IBC-to-DTPA ratio of 4.2, up to 22 indium atoms were incorporated but antibody-binding activity was completely destroyed

  1. PURE mRNA display for in vitro selection of single-chain antibodies.

    Science.gov (United States)

    Nagumo, Yu; Fujiwara, Kei; Horisawa, Kenichi; Yanagawa, Hiroshi; Doi, Nobuhide

    2016-05-01

    mRNA display is a method to form a covalent linkage between a cell-free synthesized protein (phenotype) and its encoding mRNA (genotype) through puromycin for in vitro selection of proteins. Although a wheat germ cell-free translation system has been previously used in our mRNA display system, a protein synthesis using recombinant elements (PURE) system is a more attractive approach because it contains no endogenous nucleases and proteases and is optimized for folding of antibodies with disulphide bonds. However, when we used the PURE system for mRNA display of single-chain Fv (scFv) antibodies, the formation efficiency of the mRNA-protein conjugates was quite low. To establish an efficient platform for the PURE mRNA display of scFv, we performed affinity selection of a library of scFv antibodies with a C-terminal random sequence and obtained C-terminal sequences that increased the formation of mRNA-protein conjugates. We also identified unexpected common substitution mutations around the start codon of scFv antibodies, which were inferred to destabilize the mRNA secondary structure. This destabilization causes an increase in protein expression and the efficiency of the formation of mRNA-protein conjugates. We believe these improvements should make the PURE mRNA display more efficient for selecting antibodies for diagnostic and therapeutic applications. PMID:26711234

  2. The generation of rhenium-188-labeled antibodies by direct labeling methods

    International Nuclear Information System (INIS)

    Rhenium-188 having similar chemistry to Tc-99m and favorable decay properties, is an attractive agent for radioimmunotherapy, despite the greater difficulties in antibody labeling with this element. The authors have succeeded in generating a reproducible process for the production of 188Re-IgC conjugates in near quantitative yield with highly preserved immunoreactivity. Incubation of perrhenate with a thiol-containing antibody in the presence of a reductant gives rise to radiolabeled antibody in yields approaching > 95% at 1-3 hr time periods, with unreduced perrhenate as the only other species. 188Re from a 188W/188Re generator system has been used to label antibody with a specific activity up to 15 mCi/mg. Animal biodistribution in LS174T tumor bearing nude mice out to 96 hours verified its stability with good tumor/non-tumor ratios being seen, while the strong uptake and retention in the tumor further reinforced this conclusion. Use of this approach, with the readily available 188Re source from the generator, gives a clinically viable procedure for the generation of 188Re antibody conjugates ready for immediate therapeutic use in as simple a manner as the corresponding technetium conjugates are now used for radioimmunodetection

  3. Antibody discovery: sourcing of monoclonal antibody variable domains.

    Science.gov (United States)

    Strohl, William R

    2014-03-01

    Historically, antibody variable domains for therapeutic antibodies have been sourced primarily from the mouse IgG repertoire, and typically either chimerized or humanized. More recently, human antibodies from transgenic mice producing human IgG, phage display libraries, and directly from human B lymphocytes have been used more broadly as sources of antibody variable domains for therapeutic antibodies. Of the total 36 antibodies approved by major maket regulatory agencies, the variable domain sequences of 26 originate from the mouse. Of these, four are marketed as murine antibodies (of which one is a mouse-rat hybrid IgG antibody), six are mouse-human chimeric antibodies, and 16 are humanized. Ten marketed antibodies have originated from human antibody genes, three isolated from phage libraries of human antibody genes and seven from transgenic mice producing human antibodies. Five antibodies currently in clinical trials have been sourced from camelids, as well as two from non-human primates, one from rat, and one from rabbit. Additional sources of antibody variable domains that may soon find their way into the clinic are potential antibodies from sharks and chickens. Finally, the various methods for retrieval of antibodies from humans, mouse and other sources, including various display technologies and amplification directly from B cells, are described. PMID:24168292

  4. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG3k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of [3H]naloxone. The antibody which did not inhibit the binding of [3H]naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG3k antibody that blocked the binding of [3H]naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form

  5. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.

  6. Referencing cross-reactivity of detection antibodies for protein array experiments.

    Science.gov (United States)

    Lemass, Darragh; O'Kennedy, Richard; Kijanka, Gregor S

    2016-01-01

    Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires requires a platform-dependent, lot-to-lot validation of secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human proteins. Probing protein arrays with secondary antibodies in absence of chicken serum revealed non-specific binding to 61 distinct human proteins. The cross-reactivity of the tested secondary detection antibodies points towards the necessity of platform-specific antibody characterisation studies for all secondary immunoreagents. Secondary antibody characterisation using protein arrays enables generation of reference lists of cross-reactive proteins, which can be then excluded from analysis in follow-up experiments. Furthermore, making such cross-reactivity lists accessible to the wider research community may help to interpret data generated by the same antibodies in applications not related to protein arrays such as immunoprecipitation, Western blots or other immunoassays. PMID:27335636

  7. DENDRIMER CONJUGATES FOR SELECTIVE OF PROTEIN AGGREGATES

    DEFF Research Database (Denmark)

    2004-01-01

    Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...

  8. CONJUGATE-SYMPLECTICITY OF LINEAR MULTISTEP METHODS

    Institute of Scientific and Technical Information of China (English)

    Ernst Hairer

    2008-01-01

    For the numerical treatment of Hamiltonian differential equations, symplectic integra-tors are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded-hess of parasitic solution components is not addressed.

  9. Multicolor passive (self-pumped) phase conjugation

    OpenAIRE

    Cronin-Golomb, Mark; Kwong, Sze-Keung; Yariv, Amnon

    1984-01-01

    Passive phase conjugation of up to six lines (457, 476, 488, 496, 501, and 514 nm) of the all lines output of an argon ion laser is reported. Imaging characteristics and reflectivity measurements are given. In general, multiline operation results in some loss in both reflectivity and image resolution. This work opens the possibility for passive phase conjugation of full color images.

  10. [Immunochemical Detection of Azospirilla in Soil with Genus-Specific Antibodies].

    Science.gov (United States)

    Shirokov, A A; Krasov, A I; Selivanov, N Yu; Burygin, G L; Shchegolev, S Yu; Matora, L Yu

    2015-01-01

    Immunoelectrophoresis and immunodiffusion analysis with antibodies to whole intact cells of the type strain of nitrogen-fixing soil bacteria Azospirillum brasilense Sp7 revealed at least three conservative surface immunogenic proteins of azospirilla. Cross-reactions with these proteins made it possible to use the above antibodies for detection of azospirilla as a genus-specific probe conjugated with horseradish peroxidase as an enzymatic label. Direct immune-enzyme analysis of soil suspensions (typical chernozem, Saratov oblast) confirmed applicability of the conjugates based on genus-specific antibodies to the surface proteins of azospirilla for direct detection of this bacterial genus in environmental samples. These results provide a basis for broad application of this method for analysis of Azospirillum occurrence in soil. PMID:26263631

  11. Studies on conjugation of Spirogyra using monoclonal culture

    OpenAIRE

    Ikegaya, Hisato; Nakase, Takuto; Iwata, Kazuyoshi; Tsuchida, Hideaki; Sonobe, Seiji; Shimmen, Teruo

    2011-01-01

    We succeeded in inducing conjugation of Spirogyra castanacea by incubating algal filaments on agar plate. Conjugation could be induced using clone culture. The scalariform conjugation was generally observed, while lateral conjugation was rarely. When two filaments formed scalariform conjugation, all cells of one filament behaved as male and those of other filament did as female. Very rarely, however, zygospores were formed in both of pair filaments. The surface of conjugation tube was stained...

  12. Radiolabelled antibodies in imaging

    International Nuclear Information System (INIS)

    Recent technological advances make it possible to produce pure (monoclonal) antibodies in unlimited quantities without the need for continuous immunization of animals and to label these antibodies with a variety of radionuclides which can be traced by single-photon computed tomography. An outline review of the state of the art is presented, with particular reference to the imaging of myocardial infarcts and to tumour imaging studies using labelled monoclonal antibodies (sup(99m)Tc and 125I). Lengthy bibliography. (U.K.)

  13. Theoretical analysis and simulation of conjugate heights for dual-conjugate AO system in lidar

    Institute of Scientific and Technical Information of China (English)

    Xueke Ding; Jian Rong; Hong Bai; Xiu Wang; Jine Shen; Fang Li

    2008-01-01

    A multi-conjugate adaptive optics (MCAO) can offer a possibility of widening field of view (FOV) characterized by the isoplanatic angle, and the choose of conjugate height becomes a basic problem for MCAO,which influences the size of iosplanatic angle. Considering the application of lidar, the isoplanatic angle's expressions of two deformable mirrors (DMs) MCAO for uplink and downlink are deduced. The effects of conjugate heights for dual-conjugate AO are thoughtfully discussed, and the isoplanatic angles are further analyzed. The results show that the isopanatic angle varies with the conjugate height and reaches the maximum as the conjugate height is at the optimal altitude. Moreover, the optimal conjugate height changes with the propagation distance.

  14. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  15. Conjugated Polymer Surfaces and Interfaces

    Science.gov (United States)

    Salaneck, W. R.; Stafstrom, S.; Brédas, J. L.

    2003-10-01

    The authors illustrate the basic physics and materials science of conjugated polymers and their interfaces, particularly, but not exclusively, as they are applied to polymer-based light emitting diodes. The approach is to describe the basic physical and associated chemical principles that apply to these materials, which in many instances are different from those that apply to their inorganic counterparts. The main aim of the authors is to highlight specific issues and properties of polymer surfaces and interfaces that are relevant in the context of the emerging field of polymer-based electronics in general, and polymer-based light emitting diodes in particular. Both theoretical and experimental methods used in the study of these systems are discussed. This book will be of interest to graduate students and research workers in departments of physics, chemistry, electrical engineering and materials sciences studying polymer surfaces and interfaces and their application in polymer-based electronics.

  16. Photoconductive properties of conjugated polymers

    CERN Document Server

    Halls, J J M

    1997-01-01

    The research described in my dissertation has involved the fabrication and characterisation of photovoltaic cells based on conjugated polymers, including the widely studied polymer poly(p-phenylenevinylene). These materials have semiconducting properties which arise from the delocalisation of electrons along the pi-electron systems of the polymer chains. Research into these materials is motivated both by their novel electronic properties, and also their potential for use in a wide range of applications including light-emitting diodes (LEDs), thin-film transistors, and photovoltaic cells (solar cells and light detectors). Light absorbed in a photovoltaic cell generates opposite charges which are collected at two different electrodes, giving rise to an electric current

  17. Anti-sulfotyrosine antibodies

    Science.gov (United States)

    Bertozzi, Carolyn R.; Kehoe, John; Bradbury, Andrew M.

    2009-09-15

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  18. HIV Antibody Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? HIV Antibody and HIV Antigen (p24) Share this page: Was this page helpful? Also known as: HIV Screening Tests; AIDS Test; AIDS Screen; HIV Serology; ...

  19. Antinuclear antibody panel

    Science.gov (United States)

    ... blood may be due to: Chronic liver disease Collagen vascular disease Drug-induced lupus erythematosus Myositis (inflammatory muscle disease) ... Saunders; 2011:chap 51. Read More Antibody Arthritis Collagen vascular disease Drug-induced lupus erythematosus Liver disease Scleroderma Systemic ...

  20. PRODUCTION OF MONOCLONAL ANTIBODIES

    Directory of Open Access Journals (Sweden)

    TOLKOVA E.S.

    2015-01-01

    Full Text Available The article considers the use of monoclonal antibodies in immunotherapy and immunodiagnostics of oncological diseases and their production using hybridoma technolody with flow diagram and technological scheme of manufacturing process

  1. PRODUCTION OF MONOCLONAL ANTIBODIES

    OpenAIRE

    TOLKOVA E.S.

    2015-01-01

    The article considers the use of monoclonal antibodies in immunotherapy and immunodiagnostics of oncological diseases and their production using hybridoma technolody with flow diagram and technological scheme of manufacturing process

  2. Expression of Recombinant Antibodies

    OpenAIRE

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transg...

  3. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Wiebke Sihver

    2014-03-01

    Full Text Available The epidermal growth factor receptor (EGFR has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment.

  4. Detection of Cryptosporidium parvum oocysts in bovine feces by monoclonal antibody capture enzyme-linked immunosorbent assay.

    OpenAIRE

    Anusz, K Z; Mason, P H; Riggs, M W; Perryman, L E

    1990-01-01

    A monoclonal antibody enzyme-linked immunosorbent assay (ELISA) was developed to detect Cryptosporidium parvum oocysts in bovine feces. Fecal oocysts were concentrated by centrifugation through Formalin-ethyl acetate solution and captured with monoclonal antibody 18.280.2 reactive with C. parvum oocysts. Captured oocysts were detected with goat anti-oocyst serum, following the addition of a peroxidase conjugate of rabbit anti-goat immunoglobulin and O-phenylenediamine substrate. The assay was...

  5. Macrophage-specific RAM11 monoclonal antibody cross-reacts with basal cells of stratified squamous epithelia.

    OpenAIRE

    Tadeusz Cichocki; Joanna Zarzecka; Alicja Furgal-Borzych; Jan A. Litwin; Grzegorz J. Lis

    2007-01-01

    RAM11 is a mouse monoclonal anti-rabbit macrophage antibody recognizing connective tissue and vascular (atheromatous tissue) macrophages. This study demonstrates a cross-reaction of RAM11 with an unknown antigen in rabbit normal epithelial cells. Formalin-fixed, paraffin sections of the New Zealand White rabbit normal skin, oral mucosa, esophagus, small intestine and lung were immunostained with RAM11 antibody followed by goat anti-mouse Cy-3-conjugated antiglobulin. RAM11-positive immunofluo...

  6. Pneumococcal Serotype 19F Conjugate Vaccine Induces Cross-Protective Immunity to Serotype 19A in a Murine Pneumococcal Pneumonia Model

    OpenAIRE

    Jakobsen, Håvard; Sigurdsson, Viktor D.; Sigurdardottir, Sigurveig; Schulz, Dominique; Jonsdottir, Ingileif

    2003-01-01

    Immunization with a pneumococcal conjugate vaccine (PNC) containing serotype 19F induces cross-reactive antibodies to 19A in mice and human infants. Active immunization with PNC and passive immunization with serum samples from infants vaccinated with PNC containing serotype 19F, but not serotype 19A, protected against lung infection caused by both serotypes in a murine model.

  7. Xenobiotic conjugation with phosphate - a metabolic rarity.

    Science.gov (United States)

    Mitchell, Stephen C

    2016-08-01

    1. Although not unknown, the conjugation of a xenobiotic with phosphate appears a rarity amongst the routes available for foreign compound metabolism. This is especially true in mammals and may be somewhat surprising as conjugation with sulphate, a seemingly similar moiety, is commonplace. 2. Information from the literature, where xenobiotic phosphate conjugates have been described or suggested, has been collated and presented in this article. By bringing together this diverse material, hopefully interest will be generated in this unusual xenobiotic reaction, and perhaps further research undertaken to better understand and delineate the reasons for its relative absence from the xenobiotic scene. PMID:26611118

  8. Mitigation of nonlinearities using conjugate data repetition.

    Science.gov (United States)

    Eliasson, Henrik; Johannisson, Pontus; Karlsson, Magnus; Andrekson, Peter A

    2015-02-01

    We investigate a time-domain implementation of generalized phase-conjugated twin waves which we call conjugate data repetition. A theory based on time-domain perturbation analysis explaining the mitigation of nonlinear effects is provided, and the concept is evaluated using numerical simulations. Compared to PM-QPSK at the same channel bit rate, the single-channel transmission reach in a conventional system with standard single-mode fiber of conjugate data repetition-QPSK is increased by approximately a factor of 2. PMID:25836107

  9. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    Science.gov (United States)

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. PMID:27111124

  10. Transtuzumab-conjugated liposome-coated fluorscent magnetic namoparticles to target breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Mi Jung; Lee, Hak Jong; Hwang, Sung Il; Yun, Bo La; Kim, Sun Mi [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Yoon, Young Il; Kwon, Yong Soo [Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of); Yoon, Tae Jong [NanoBio Materials Chemistry Lab., Dept. of Applied Bioscience, CHA University, Pocheon (Korea, Republic of)

    2014-08-15

    To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNPm-SiO{sub 2}]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNPm-SiO{sub 2}]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. The physiochemical characteristics of Lipo[MNPm-SiO{sub 2}] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNPm-SiO{sub 2}] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin)-conjugated Lipo[MNPm-SiO{sub 2}] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. We obtained uniformly-sized and evenly distributed Lipo[MNPm-SiO{sub 2}] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNPm-SiO{sub 2}] was observed by in vitro fluorescence and MR imaging. Trastuzumab-conjugated Lipo[MNPm-SiO{sub 2}] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.

  11. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99mTc and 188Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  12. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  13. Second generation competitive enzyme immunoassay for detection of bovine antibody to Brucella abortus.

    Science.gov (United States)

    Nielsen, K; Smith, P; Yu, W L; Elmgren, C; Nicoletti, P; Perez, B; Bermudez, R; Renteria, T

    2007-09-20

    A second generation competitive enzyme immunoassay (CELISA) for detection of bovine antibody to Brucella abortus was developed. This assay was different from previously developed CELISAs in that the detection reagent used was a recombinant combination of the receptor portions of protein A and protein G, labelled with horseradish peroxidase. This eliminates the need for polyclonal anti-mouse-enzyme conjugate reagents for detection thus allowing for true standardization. The assay utilized a monoclonal antibody specific for a common epitope of the O-polysaccharide (OPS) of smooth lipopolysaccharide (SLPS) derived from B. abortus S1119.3 but which did not react with protein A/G. This monoclonal antibody was used to compete with antibody in the bovine test serum. Binding of bovine antibody to the smooth lipopolysaccharide antigen was then measured directly with the protein A/G enzyme conjugate. In this case, development of colour in the reaction was indicative of the presence of bovine antibody. The performance characteristics, sensitivity, specificity and exclusion of B. abortus S19 vaccinated animals, of the assay were very similar to those of the classical CELISA. PMID:17467200

  14. The production of antibodies for radioimmunoassay

    International Nuclear Information System (INIS)

    Three factors which affect the outcome of any immunisation schedule designed to produce antisera for radio-immunoassay, the antigen, the method of immunisation and the choice of animal are considered. Several factors concerning the nature of the antigen are dealt with, for example, the molecular size and immunogenicity of the antigen. It is noted that the larger polypeptide and proteins are sufficiently immunogenic to elicit a useful antibody response alone and that whilst substances with molecular weights of less than 2000 may produce a response alone they will probably produce a better one if they are conjugated (chemically coupled) to a much larger molecule. The method of immunisation is discussed including a consideration of the use of adjuvant and the route and timing of injections. It is noted that antisera showing the relevant properties for radio-immunoassay are rarely produced without emulsification of the immunogen in Freund's adjuvant although this is not an absolute requirement for antibody production. Data are presented comparing the intramuscular and multiple intradermal routes of injection. The results, however, fail to demonstrate any major advantage for either method although the latter may be more economical, producing high titre antisera with relatively small amounts of immunogen. Because of their convenience rabbits are generally the first choice of animal for raising antisera for radioimmunoassay although guinea pigs, chickens and sheep have been used successfully in many cases

  15. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    International Nuclear Information System (INIS)

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody–colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus. (paper)

  16. The antibody-linked chelating polymers for nuclear therapy and diagnostics

    International Nuclear Information System (INIS)

    This review deals with the problem of protein modification with chelating polymers. The main purpose of this approach is the preparation of monoclonal antibodies labeled with heavy metal isotopes (α-, β-, and δ-emitting metals and metals used for NMR-tomography). Traditional binding of metals with proteins via chelating agents directly coupled to protein molecule does not allow binding a high number of metal atoms per single protein molecule and can also alter protein specific properties. At the same time, metal-to-protein binding via intermediate chelating polymer makes possible the binding of several dozen metal atoms per single protein without affecting its specific properties. Moreover, the variations in polymer properties and molecular weight allow controlled modified antibody biodistribution and clearance rate. Modified antibodies can be used successfully for nuclear and NMR diagnostics and for nuclear therapy. The following problems are discussed: the chemistry of the coupling of chelating groups to polymer backbone; the binding of chelating polymers to proteins, including monoclonal antibodies; the ability of chelating polymer-to-protein conjugates to bind heavy metals; the influence of the modification on protein conformation and specific properties; the behavior of metal-containing conjugates in vivo; the practical use of conjugates obtained for radioimmunoimaging, radioimmunotherapy, NMR-tomography, and in vitro immunoassays. Future prospects of the approach are also discussed.101 references

  17. Design and Application of Antimicrobial Peptide Conjugates.

    Science.gov (United States)

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  18. Design and Application of Antimicrobial Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Andre Reinhardt

    2016-05-01

    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  19. Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging.

    Science.gov (United States)

    Ha, Yonghwang; Choi, Hyun-Kyung

    2016-03-25

    Conjugation between various small fluorophores and specific ligands has become one of the main strategies for bioimaging in disease diagnosis, medicinal chemistry, immunology, and fluorescence-guided surgery, etc. Herein, we present our review of recent studies relating to molecular fluorescent imaging techniques for various cancers in cell-based and animal-based models. Various organic fluorophores, especially near-infrared (NIR) probes, have been employed with specific ligands. Types of ligands used were small molecules, peptides, antibodies, and aptamers; each has specific affinities for cellular receptor proteins, cancer-specific antigens, enzymes, and nucleic acids. This review can aid in the selection of cancer-specific ligands and fluorophores, and may inspire the further development of new conjugation strategies in various cellular and animal models. PMID:26892219

  20. Immunogenicity and Tolerance of a 7-Valent Pneumococcal Conjugate Vaccine in Nonresponders to the 23-Valent Pneumococcal Vaccine

    OpenAIRE

    Zielen, S; Bühring, I.; Strnad, N.; Reichenbach, J; Hofmann, D.

    2000-01-01

    There is still a lack of effective vaccination strategies for patients with a deficient antibody response to bacterial polysaccharide antigens. In an open trial, we evaluated the immunogenicity and tolerance of a new 7-valent pneumococcal conjugate vaccine in 22 infection-prone nonresponders to pneumococcal polysaccharide vaccine and 21 controls. In the patient group, nonresponsiveness was confirmed by repeated vaccination with a 23-valent pneumococcal polysaccharide vaccine. The study protoc...