WorldWideScience

Sample records for antibodies targeting epitopes

  1. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins

    Science.gov (United States)

    Sormanni, Pietro; Aprile, Francesco A.; Vendruscolo, Michele

    2015-01-01

    Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions. PMID:26216991

  2. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins.

    Science.gov (United States)

    Sormanni, Pietro; Aprile, Francesco A; Vendruscolo, Michele

    2015-08-11

    Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions.

  3. Computational prediction of neutralization epitopes targeted by human anti-V3 HIV monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs. Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design.

  4. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  5. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies.

    Science.gov (United States)

    Prechl, J; Tchorbanov, A; Horváth, A; Baiu, D C; Hazenbos, W; Rajnavölgyi, E; Kurucz, I; Capel, P J; Erdei, A

    1999-05-01

    Single-chain variable fragment (scFv) antibodies are genetically engineered molecules comprising the variable regions responsible for specific binding. scFv that recognize certain surface molecules on professional antigen presenting cells could therefore be suitable for targeting Ag to these cells. We have produced an scFv that recognizes murine complement receptors 1 and 2 (CR1/CR2) and genetically fused it with different numbers of influenza hemagglutinin peptides which contain both B and T cell epitopes. The CR1/CR2 specific hybridoma 7G6 was used for RT-PCR to obtain the variable regions, which were then combined to create an scFv fragment. The influenza hemagglutinin intersubunit peptide HA317-41 (IP) was engineered to the N terminus of the scFv in one, two or three copies. The so obtained IP(1-3)7G6scFv still bound the complement receptors; the peptides in the construct were recognized by the peptide specific monoclonal IP2-11-1 on Western blots and ELISAs. The CR1/CR2 positive B lymphomas A20 and 2PK3 presented the peptide to an I-Ed restricted IP specific T cell hybridoma more efficiently when incubated with the IP(1)7G6 constructs as compared to the free peptide. The results suggest that scFv could work as targeting devices in subunit vaccines.

  6. Hepatitis C virus (HCV infection may elicit neutralizing antibodies targeting epitopes conserved in all viral genotypes.

    Directory of Open Access Journals (Sweden)

    Nicasio Mancini

    Full Text Available Anti-hepatitis C virus (HCV cross-neutralizing human monoclonal antibodies, directed against conserved epitopes on surface E2 glycoprotein, are central tools for understanding virus-host interplay, and for planning strategies for prevention and treatment of this infection. Recently, we developed a research aimed at identifying these antibody specificities. The characteristics of one of these antibodies (Fab e20 were addressed in this study. Firstly, using immunofluorescence and FACS analysis of cells expressing envelope HCV glycoproteins, Fab e20 was able to recognize all HCV genotypes. Secondly, competition assays with a panel of mouse and rat monoclonals, and alanine scanning mutagenesis analyses located the e20 epitope within the CD81 binding site, documenting that three highly conserved HCV/E2 residues (W529, G530 and D535 are critical for e20 binding. Finally, a strong neutralizing activity against HCV pseudoparticles (HCVpp incorporating envelope glycoproteins of genotypes 1a, 1b, 2a, 2b and 4, and against the cell culture-grown (HCVcc JFH1 strain, was observed. The data highlight that neutralizing antibodies against HCV epitopes present in all HCV genotypes are elicited during natural infection. Their availability may open new avenues to the understanding of HCV persistence and to the development of strategies for the immune control of this infection.

  7. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans.

    Science.gov (United States)

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F; Woelkers, Douglas; Shaw, Peter X; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L; Binder, Christoph J

    2009-05-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis.

  8. Prediction of Antibody Epitopes

    DEFF Research Database (Denmark)

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity...... to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin.Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody...

  9. Detection of Aichi virus with antibody targeting of conserved viral protein 1 epitope.

    Science.gov (United States)

    Chen, Yao-Shen; Chen, Bao-Chen; Lin, You-Sheng; Chang, Jenn-Tzong; Huang, Tsi-Shu; Chen, Jih-Jung; Chang, Tsung-Hsien

    2013-10-01

    Aichi virus (AiV) is an emerging single-stranded, positive-sense, non-enveloped RNA virus in the Picornaviridae that causes acute gastroenteritis in humans. The first case of AiV infection in Taiwan was diagnosed in a human neonate with enterovirus-associated symptoms; the virus was successfully isolated and propagated. To establish a method to detect AiV, we analyzed the antigen epitope and generated a polyclonal antibody against AiV viral protein 1 (VP1). This peptide-purified anti-AiV VP1 antibody showed high specificity against AiV VP1 without cross-reaction to nine other tested strains of Picornaviruses. The anti-AiV VP1 antibody was used in immunofluorescence analysis, immunoblotting, and enzyme-linked immunosorbent assay to elucidate the cell tropism and replication kinetics of AiV. Use of the anti-AiV VP1 antibody also revealed AiV infection restriction with interferon type I and polyI/C antiviral treatment. The AiV infection and detection system may provide an in vitro platform for AiV virology study.

  10. A combinatorial mutagenesis approach for functional epitope mapping on phage-displayed target antigen: application to antibodies against epidermal growth factor.

    Science.gov (United States)

    Infante, Yanelys Cabrera; Pupo, Amaury; Rojas, Gertrudis

    2014-01-01

    Although multiple different procedures to characterize the epitopes recognized by antibodies have been developed, site-directed mutagenesis remains the method of choice to define the energetic contribution of antigen residues to binding. These studies are useful to identify critical residues and to delineate functional maps of the epitopes. However, they tend to underestimate the roles of residues that are not critical for binding on their own, but contribute to the formation of the target epitope in an additive, or even cooperative, way. Mapping antigenic determinants with a diffuse energetic landscape, which establish multiple individually weak interactions with the antibody paratope, resulting in high affinity and specificity recognition of the epitope as a whole, is thus technically challenging. The current work was aimed at developing a combinatorial strategy to overcome the limitations of site-directed mutagenesis, relying on comprehensive randomization of discrete antigenic regions within phage-displayed antigen libraries. Two model antibodies recognizing epidermal growth factor were used to validate the mapping platform. Abrogation of antibody recognition due to the introduction of simultaneous replacements was able to show the involvement of particular amino acid clusters in epitope formation. The abundance of some of the original residues (or functionally equivalent amino acids sharing their physicochemical properties) among the set of mutated antigen variants selected on a given antibody highlighted their contributions and allowed delineation of a detailed functional map of the corresponding epitope. The use of the combinatorial approach could be expanded to map the interactions between other antigens/antibodies.

  11. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    Science.gov (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  12. Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations.

    Science.gov (United States)

    Hicar, Mark D; Chen, Xuemin; Kalams, Spyros A; Sojar, Hakimuddin; Landucci, Gary; Forthal, Donald N; Spearman, Paul; Crowe, James E

    2016-02-01

    Neutralizing antibodies (Abs) are thought to be a critical component of an appropriate HIV vaccine response. It has been proposed that Abs recognizing conformationally dependent quaternary epitopes on the HIV envelope (Env) trimer may be necessary to neutralize diverse HIV strains. A number of recently described broadly neutralizing monoclonal Abs (mAbs) recognize complex and quaternary epitopes. Generally, many such Abs exhibit extensive numbers of somatic mutations and unique structural characteristics. We sought to characterize the native antibody (Ab) response against circulating HIV focusing on such conformational responses, without a prior selection based on neutralization. Using a capture system based on VLPs incorporating cleaved envelope protein, we identified a selection of B cells that produce quaternary epitope targeting Abs (QtAbs). Similar to a number of broadly neutralizing Abs, the Ab genes encoding these QtAbs showed extensive numbers of somatic mutations. However, when expressed as recombinant molecules, these Abs failed to neutralize virus or mediate ADCVI activity. Molecular analysis showed unusually high numbers of mutations in the Ab heavy chain framework 3 region of the variable genes. The analysis suggests that large numbers of somatic mutations occur in Ab genes encoding HIV Abs in chronically infected individuals in a non-directed, stochastic, manner.

  13. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis.

    Science.gov (United States)

    Jin, Jing; Liss, Nathan M; Chen, Dong-Hua; Liao, Maofu; Fox, Julie M; Shimak, Raeann M; Fong, Rachel H; Chafets, Daniel; Bakkour, Sonia; Keating, Sheila; Fomin, Marina E; Muench, Marcus O; Sherman, Michael B; Doranz, Benjamin J; Diamond, Michael S; Simmons, Graham

    2015-12-22

    We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV) infection. Potently neutralizing antibodies (NAbs) blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G) at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  14. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jing Jin

    2015-12-01

    Full Text Available We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV infection. Potently neutralizing antibodies (NAbs blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  15. Repeated epitope in the recombinant epitope-peptide could enhance ELDKWA-epitope-specific antibody response

    Institute of Scientific and Technical Information of China (English)

    LIU Zuqiang; WANG Zuguang; CHEN Yinghua

    2005-01-01

    Based on the hypothesis suggested by us that epitope-vaccine may be a new strategy against HIV mutation, we have studied several neutralizing epitopes on HIV envelope proteins. However we do not know whether a repeated epitope in a recombinant epitope-peptide can enhance epitope-specific antibody response or not. ELDKWA-epitope (aa669-674) on the C-domain of HIV-1 gp41 is a neutralizing epitope defined by the monoclonal antibody (mAb) 2F5 with broad neutralizing activity. In this study, we designed and prepared a series of the recombinant epitope-peptides bearing 1, 4 and 8 copies of ELDKWA-epitope respectively. In the comparison of the antisera induced by the three recombinant antigens, an obviously increased titre of ELDKWA-epitope-specific antibody was observed in the case of four and eight repeated epitopes. In flow cytometry analysis, the epitope-specific antibodies in both antisera showed stronger activity to bind the transfected CHO-WT cells that stably express HIV-1 envelope glycoprotein on the cell surfaces. These experimental results indicated that repeated epitope in the recombinant epitope-peptide could enhance ELDKWA-epitope-specific antibody response, which could contribute to designing an effective recombinant epitope-vaccine.

  16. Structural and Antigenic Definition of Hepatitis C Virus E2 Glycoprotein Epitopes Targeted by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Giuseppe Sautto

    2013-01-01

    Full Text Available Hepatitis C virus (HCV is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2 is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.

  17. Atomic-level mapping of antibody epitopes on a GPCR.

    Science.gov (United States)

    Paes, Cheryl; Ingalls, Jada; Kampani, Karan; Sulli, Chidananda; Kakkar, Esha; Murray, Meredith; Kotelnikov, Valery; Greene, Tiffani A; Rucker, Joseph B; Doranz, Benjamin J

    2009-05-27

    Epitopes that define the immunodominant regions of conformationally complex integral membrane proteins have been difficult to reliably delineate. Here, a high-throughput approach termed shotgun mutagenesis was used to map the binding epitopes of five different monoclonal antibodies targeting the GPCR CCR5. The amino acids, and in some cases the atoms, that comprise the critical contact points of each epitope were identified, defining the immunodominant structures of this GPCR and their physicochemistry.

  18. Broad epitope coverage of a human in vitro antibody library

    Science.gov (United States)

    Sivasubramanian, Arvind; Lynaugh, Heather; Yu, Yao; Miles, Adam; Eckman, Josh; Schutz, Kevin; Piffath, Crystal; Boland, Nadthakarn; Durand, Stéphanie; Boland, Todd; Vásquez, Maximiliano; Xu, Yingda; Abdiche, Yasmina

    2017-01-01

    ABSTRACT Successful discovery of therapeutic antibodies hinges on the identification of appropriate affinity binders targeting a diversity of molecular epitopes presented by the antigen. Antibody campaigns that yield such broad “epitope coverage” increase the likelihood of identifying candidates with the desired biological functions. Accordingly, epitope binning assays are employed in the early discovery stages to partition antibodies into epitope families or “bins” and prioritize leads for further characterization and optimization. The collaborative program described here, which used hen egg white lysozyme (HEL) as a model antigen, combined 3 key capabilities: 1) access to a diverse panel of antibodies selected from a human in vitro antibody library; 2) application of state-of-the-art high-throughput epitope binning; and 3) analysis and interpretation of the epitope binning data with reference to an exhaustive set of published antibody:HEL co-crystal structures. Binning experiments on a large merged panel of antibodies containing clones from the library and the literature revealed that the inferred epitopes for the library clones overlapped with, and extended beyond, the known structural epitopes. Our analysis revealed that nearly the entire solvent-exposed surface of HEL is antigenic, as has been proposed for protein antigens in general. The data further demonstrated that synthetic antibody repertoires provide as wide epitope coverage as those obtained from animal immunizations. The work highlights molecular insights contributed by increasingly higher-throughput binning methods and their broad utility to guide the discovery of therapeutic antibodies representing a diverse set of functional epitopes. PMID:27748644

  19. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells......; this binding was inhibitable by pure Tn antigen, and indications were found that this inhibition occurred at a pre-entry step. Boosting the naturally occurring low-titer anti-Tn activity may be of prophylactic value, as suggested by the in vitro neutralization found in this study....

  20. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M;

    1991-01-01

    . This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus......The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells...

  1. Elicitation of structure-specific antibodies by epitope scaffolds

    OpenAIRE

    2010-01-01

    Elicitation of antibodies against targets that are immunorecessive, cryptic, or transient in their native context has been a challenge for vaccine design. Here we demonstrate the elicitation of structure-specific antibodies against the HIV-1 gp41 epitope of the broadly neutralizing antibody 2F5. This conformationally flexible region of gp41 assumes mostly helical conformations but adopts a kinked, extended structure when bound by antibody 2F5. Computational techniques were employed to transpl...

  2. High-Throughput Tools for Characterization of Antibody Epitopes

    DEFF Research Database (Denmark)

    Christiansen, Anders

    multiple years. Taken together, the presented studies demonstrated new applications for the investigated techniques focusing on their utilization in epitope mapping. In the process, new insights were obtained into how antibodies recognize their targets in a major disease, i.e. food allergy....

  3. A strategy for eliciting antibodies against cryptic, conserved, conformationally dependent epitopes of HIV envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Hanna C Kelker

    Full Text Available BACKGROUND: Novel strategies are needed for the elicitation of broadly neutralizing antibodies to the HIV envelope glycoprotein, gp120. Experimental evidence suggests that combinations of antibodies that are broadly neutralizing in vitro may protect against challenge with HIV in nonhuman primates, and a small number of these antibodies have been selected by repertoire sampling of B cells and by the fractionation of antiserum from some patients with prolonged disease. Yet no additional strategies for identifying conserved epitopes, eliciting antibodies to these epitopes, and determining whether these epitopes are accessible to antibodies have been successful to date. The defining of additional conserved, accessible epitopes against which one can elicit antibodies will increase the probability that some may be the targets of broadly neutralizing antibodies. METHODOLOGY/PRINCIPAL FINDINGS: We postulate that additional cryptic epitopes of gp120 are present, against which neutralizing antibodies might be elicited even though these antibodies are not elicited by gp120, and that many of these epitopes may be accessible to antibodies should they be formed. We demonstrate a strategy for eliciting antibodies in mice against selected cryptic, conformationally dependent conserved epitopes of gp120 by immunizing with multiple identical copies of covalently linked peptides (MCPs. This has been achieved with MCPs representing 3 different domains of gp120. We show that some cryptic epitopes on gp120 are accessible to the elicited antibodies, and some epitopes in the CD4 binding region are not accessible. The antibodies bind to gp120 with relatively high affinity, and bind to oligomeric gp120 on the surface of infected cells. CONCLUSIONS/SIGNIFICANCE: Immunization with MCPs comprised of selected peptides of HIV gp120 is able to elicit antibodies against conserved, conformationally dependent epitopes of gp120 that are not immunogenic when presented as gp120. Some

  4. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM.

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    Full Text Available The urokinase plasminogen activator receptor (uPAR plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268-275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM, a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.

  5. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    DEFF Research Database (Denmark)

    Buus, Søren; Rockberg, Johan; Forsström, Björn

    2012-01-01

    -resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against......Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning...... against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high...

  6. Induction of multi-epitope specific antibodies against HIV-1 by multi-epitope vaccines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some neutralizing antibodies against HIV-1 envelope proteins were highly effective to inhibit the infection of different strains in vitro, and existed in the infected individuals with very low levels. We suggested multi-epitope-vaccine as a new strategy to increase levels of neutralizing antibodies and the abilities against HIV mutation in vivo. Two candidate multi-epitope-vaccines induced antibodies with predefined multi-epitope-specificity in rhesus macaque. These antibodies recognized corresponding neutralizing epitopes on epitope-peptides, gp41 peptides, V3 loop peptide, rsgp41 and rgp120. Besides, three candidate epitope-vaccines in combination (another kind of multi-epitopevaccines) showed similar potency to induce predefined multiple immune responses in rabbits. These results suggest that multi-epitope-vaccines may be a new strategy to induce multi-antiviral activities against HIV-1 infection and mutafions.

  7. Parallel immunizations of rabbits using the same antigen yield antibodies with similar, but not identical, epitopes.

    Directory of Open Access Journals (Sweden)

    Barbara Hjelm

    Full Text Available A problem for the generation of polyclonal antibodies is the potential difficulties for obtaining a renewable resource due to batch-to-batch variations when the same antigen is immunized into several separate animals. Here, we have investigated this issue by determining the epitopes of antibodies generated from parallel immunizations of rabbits with recombinant antigens corresponding to ten human protein targets. The epitopes were mapped by both a suspension bead array approach using overlapping synthetic 15-mer peptides and a bacterial display approach using expression of random fragments of the antigen on the surface of bacteria. Both methods determined antibody binding with the aid of fluorescent-based analysis. In addition, one polyclonal antibody was fractionated by peptide-specific affinity capture for in-depth comparison of epitopes. The results show that the same antigen immunized in several rabbits yields polyclonal antibodies with similar epitopes, but with larger differences in the relative amounts of antibodies to the different epitopes. In some cases, unique epitopes were observed for one of the immunizations. The results suggest that polyclonal antibodies generated by repeated immunizations do not display an identical epitope pattern, although many of the epitopes are similar.

  8. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    DEFF Research Database (Denmark)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivi...

  9. Peptide-Based Vaccinology: Experimental and Computational Approaches to Target Hypervariable Viruses through the Fine Characterization of Protective Epitopes Recognized by Monoclonal Antibodies and the Identification of T-Cell-Activating Peptides

    Directory of Open Access Journals (Sweden)

    Matteo Castelli

    2013-01-01

    Full Text Available Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization of monoclonal antibodies (mAbs, still represents the best approach to identify protective epitopes. In particular, a protective mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing. Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.

  10. Influenza A HA's conserved epitopes and broadly neutralizing antibodies: a prediction method.

    Science.gov (United States)

    Ren, Jing; Ellis, John; Li, Jinyan

    2014-10-01

    A conserved epitope is an epitope retained by multiple strains of influenza as the key target of a broadly neutralizing antibody. Identification of conserved epitopes is of strong interest to help design broad-spectrum vaccines against influenza. Conservation score measures the evolutionary conservation of an amino acid position in a protein based on the phylogenetic relationships observed amongst homologous sequences. Here, Average Amino Acid Conservation Score (AAACS) is proposed as a method to identify HA's conserved epitopes. Our analysis shows that there is a clear distinction between conserved epitopes and nonconserved epitopes in terms of AAACS. This method also provides an excellent classification performance on an independent dataset. In contrast, alignment-based comparison methods do not work well for this problem, because conserved epitopes to the same broadly neutralizing antibody are usually not identical or similar. Location-based methods are not successful either, because conserved epitopes are located at both the less-conserved globular head (HA1) and the more-conserved stem (HA2). As a case study, two conserved epitopes on HA are predicted for the influenza A virus H7N9: One should match the broadly neutralizing antibodies CR9114 or FI6v3, while the other is new and requires validation by wet-lab experiments.

  11. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides.

    Science.gov (United States)

    Trier, Nicole Hartwig

    2015-01-01

    Characterization of peptide antibodies through identification of their target epitopes is of utmost importance. Understanding antibody specificity at the amino acid level provides the key to understand the specific interaction between antibodies and their epitopes and their use as research and diagnostic tools as well as therapeutic agents. This chapter describes a straightforward strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies: (1) overlapping peptides, used to locate antigenic regions; (2) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (3) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for fine mapping. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-sparing and straightforward approach for characterization of peptide antibodies.

  12. Antibody specific epitope prediction-emergence of a new paradigm.

    Science.gov (United States)

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data.

  13. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein

    Science.gov (United States)

    Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.

    2016-01-01

    Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063

  14. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein.

    Directory of Open Access Journals (Sweden)

    Mark D Hicar

    Full Text Available Numerous broadly neutralizing antibodies (Abs target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes. Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs, we previously used HIV virus-like particles (VLPs to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection.

  15. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen.

    Science.gov (United States)

    Bluemel, Claudia; Hausmann, Susanne; Fluhr, Petra; Sriskandarajah, Mirnalini; Stallcup, William B; Baeuerle, Patrick A; Kufer, Peter

    2010-08-01

    Melanoma chondroitin sulfate proteoglycan (MCSP; also called CSPG4, NG2, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a surface antigen frequently expressed on human melanoma cells, which is involved in cell adhesion, invasion and spreading, angiogenesis, complement inhibition, and signaling. MCSP has therefore been frequently selected as target antigen for development of antibody- and vaccine-based therapeutic approaches. We have here used a large panel of monoclonal antibodies against human MCSP for generation of single-chain MCSP/CD3-bispecific antibodies of the BiTE (for bispecific T cell engager) class. Despite similar binding affinity to MCSP, respective BiTE antibodies greatly differed in their potency of redirected lysis of CHO cells stably transfected with full-length human MCSP, or with various MCSP deletion mutants and fusion proteins. BiTE antibodies binding to the membrane proximal domain D3 of MCSP were more potent than those binding to more distal domains. This epitope distance effect was corroborated with EpCAM/CD3-bispecific BiTE antibody MT110 by testing various fusion proteins between MCSP and EpCAM as surface antigens. CHO cells expressing small surface target antigens were generally better lysed than those expressing larger target antigens, indicating that antigen size was also an important determinant for the potency of BiTE antibody. The present study for the first time relates the positioning of binding domains and size of surface antigens to the potency of target cell lysis by BiTE-redirected cytotoxic T cells. In case of the MCSP antigen, this provides the basis for selection of a maximally potent BiTE antibody candidate for development of a novel melanoma therapy.

  16. Anti-epitope antibody,a novel site-directed antibody against human acetylcholinesterase

    Institute of Scientific and Technical Information of China (English)

    Xing-mei ZHANG; Gang LIU; Man-ji SUN

    2004-01-01

    AIM: To construct synthetic antigens using the epitope of human brain acetylcholinesterase (hbAChE) for induction and detection of the specific antibody against the epitope, and to analyse the immunogenicity of the antibody.METHODS: The epitope (RTVLVSMNYR, amino acids 143-152) of hbAChE was chemically synthesized, coupled with the carrier protein keyhole limpet hemocyanin (KLH) to construct an artificial immunogen (KLH-epitope), and injected into rabbits to raise antibody. The epitope conjugated with bovine serum albumin (BSA) was used as the detection antigen. The specificity of the antibody was tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The immunoreaction between the anti-recombinant human butyrylcholinesterase (rhBChE)polyclonal antibody and the biotinylated-epitope was examined by indirect ELISA. RESULTS: The erythrocyte AChE, the hbAChE, rhBChE and the BSA-epitope all immunoreacted with the anti-epitope antibody against the epitope (143-152) of hbAChE, whereas the torpedo AChE did not. CONCLUSION: The hbAChE, the human erythrocyte AChE and hBChE share the conservative antigenic epitope RTVLVSMNYR, hence they can all immunoreact with the anti-epitope antibody. Since the epitope of hbAChE is less similar with the aligned amino acid sequences of AChE of Torpedo californica or Torpedo marmorata, there is not any immunoreactivity between them. The R, M, and N residues in the epitope seem to be necessary radicals for the conservation of antigenicity.

  17. High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface.

    Science.gov (United States)

    Rojas, Gertrudis; Tundidor, Yaima; Infante, Yanelys Cabrera

    2014-01-01

    Antibody engineering must be accompanied by mapping strategies focused on identifying the epitope recognized by each antibody to define its unique functional identity. High throughput fine specificity determination remains technically challenging. We review recent experiences aimed at revisiting the oldest and most extended display technology to develop a robust epitope mapping platform, based on the ability to manipulate target-derived molecules (ranging from the whole native antigen to antigen domains and smaller fragments) on filamentous phages. Single, multiple and combinatorial mutagenesis allowed comprehensive scanning of phage-displayed antigen surface that resulted in the identification of clusters of residues contributing to epitope formation. Functional pictures of the epitope(s) were thus delineated in the natural context. Successful mapping of antibodies against interleukin-2, epidermal growth factor and its receptor, and vascular endothelial growth factor showed the versatility of these procedures, which combine the accuracy of site-directed mutagenesis with the high throughput potential of phage display.

  18. Antibody protection reveals extended epitopes on the human TSH receptor.

    Directory of Open Access Journals (Sweden)

    Rauf Latif

    Full Text Available Stimulating, and some blocking, antibodies to the TSH receptor (TSHR have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD. However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.

  19. Dengue virus antibody database: Systematically linking serotype-specificity with epitope mapping in dengue virus

    Science.gov (United States)

    Chaudhury, Sidhartha; Gromowski, Gregory D.; Ripoll, Daniel R.; Khavrutskii, Ilja V.; Desai, Valmik; Wallqvist, Anders

    2017-01-01

    Background A majority infections caused by dengue virus (DENV) are asymptomatic, but a higher incidence of severe illness, such as dengue hemorrhagic fever, is associated with secondary infections, suggesting that pre-existing immunity plays a central role in dengue pathogenesis. Primary infections are typically associated with a largely serotype-specific antibody response, while secondary infections show a shift to a broadly cross-reactive antibody response. Methods/Principal findings We hypothesized that the basis for the shift in serotype-specificity between primary and secondary infections can be found in a change in the antibody fine-specificity. To investigate the link between epitope- and serotype-specificity, we assembled the Dengue Virus Antibody Database, an online repository containing over 400 DENV-specific mAbs, each annotated with information on 1) its origin, including the immunogen, host immune history, and selection methods, 2) binding/neutralization data against all four DENV serotypes, and 3) epitope mapping at the domain or residue level to the DENV E protein. We combined epitope mapping and activity information to determine a residue-level index of epitope propensity and cross-reactivity and generated detailed composite epitope maps of primary and secondary antibody responses. We found differing patterns of epitope-specificity between primary and secondary infections, where secondary responses target a distinct subset of epitopes found in the primary response. We found that secondary infections were marked with an enhanced response to cross-reactive epitopes, such as the fusion-loop and E-dimer region, as well as increased cross-reactivity in what are typically more serotype-specific epitope regions, such as the domain I-II interface and domain III. Conclusions/Significance Our results support the theory that pre-existing cross-reactive memory B cells form the basis for the secondary antibody response, resulting in a broadening of the response

  20. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition.

    Science.gov (United States)

    Liang, Yu; Guttman, Miklos; Davenport, Thaddeus M; Hu, Shiu-Lok; Lee, Kelly K

    2016-04-19

    Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes.

  1. Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform

    Science.gov (United States)

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Borgogni, Erica; Castellino, Flora; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete “hot spots” with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope. PMID:27530334

  2. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    Science.gov (United States)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  3. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell

    2009-05-21

    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  4. Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping

    Science.gov (United States)

    Liu, Xiaofeng; Taylor, Richard D.; Griffin, Laura; Coker, Shu-Fen; Adams, Ralph; Ceska, Tom; Shi, Jiye; Lawson, Alastair D. G.; Baker, Terry

    2017-01-01

    Therapeutic and diagnostic applications of monoclonal antibodies often require careful selection of binders that recognize specific epitopes on the target molecule to exert a desired modulation of biological function. Here we present a proof-of-concept application for the rational design of an epitope-specific antibody binding with the target protein Keap1, by grafting pre-defined structural interaction patterns from the native binding partner protein, Nrf2, onto geometrically matched positions of a set of antibody scaffolds. The designed antibodies bind to Keap1 and block the Keap1-Nrf2 interaction in an epitope-specific way. One resulting antibody is further optimised to achieve low-nanomolar binding affinity by in silico redesign of the CDRH3 sequences. An X-ray co-crystal structure of one resulting design reveals that the actual binding orientation and interface with Keap1 is very close to the design model, despite an unexpected CDRH3 tilt and VH/VL interface deviation, which indicates that the modelling precision may be improved by taking into account simultaneous CDR loops conformation and VH/VL orientation optimisation upon antibody sequence change. Our study confirms that, given a pre-existing crystal structure of the target protein-protein interaction, hotspots grafting with CDR loop swapping is an attractive route to the rational design of an antibody targeting a pre-selected epitope. PMID:28128368

  5. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

    Science.gov (United States)

    Lee, Jeong Hyun; Leaman, Daniel P.; Kim, Arthur S.; Torrents de La Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W.; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R.; Nussenzweig, Michel C.; Poignard, Pascal; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.; Zwick, Michael B.; Wilson, Ian A.; Ward, Andrew B.

    2015-09-01

    The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120-gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.

  6. Epitope-specific antibody levels in tuberculosis: biomarkers of protection, disease and response to treatment.

    Directory of Open Access Journals (Sweden)

    Graham H Bothamley

    2014-06-01

    Full Text Available Monoclonal antibodies restricted to Mycobacterium tuberculosis can measure epitope-specific antibody levels in a competition assay. Immunodominant epitopes were defined from clinical samples and related to the clinical spectrum of disease. Antibody to the immunodominant epitopes was associated with HLA-DR15. Occupational exposure showed a different response and was consistent with recognition of dormancy related proteins and protection despite exposure to tuberculosis. Studies in leprosy revealed the importance of immune deviation and the relationships between T and B cell epitopes. During treatment, antibody levels increased, epitope spreading occurred, but the affinity constants remained the same after further antigen exposure, suggesting constraints on the process of epitope selection. Epitope-specific antibody levels have a potential role as biomarkers for new vaccines which might prevent the progression of latent to active tuberculosis and as tools to measure treatment effects on subpopulations of tubercle bacilli.

  7. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues.

  8. Preparation and epitope characterization of monoclonal antibodies against firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    徐沁; 丁建芳; 胡红雨; 许根俊

    1999-01-01

    The 6-His tagged firefly luciferase was highly expressed in E. coli and purified to homogeneity by affinity chromatography and gel filtration. After immunizing Balb/c mice with the antigen, 6 hybridomas clones were found to secrete monoelonal antibodies (mAbs) and the mAbs were also purified separately. The competitive binding experiments show that 2 mAbs can bind heat-denatured antigen or its proteolytic fragments but not the native lueiferase, suggesting that their epitopes might be accommodated in the internal segments of the protein. On the other hand, the other 4 mAbs are capable of binding both native and denatured antigens. It infers that their epitopes locate in the segments on the protein surface. The results also suggest that the six mAbs are all sequence-specific.

  9. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza.

    Directory of Open Access Journals (Sweden)

    Veronika I Zarnitsyna

    2016-06-01

    Full Text Available The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i results in more rapid clearance of the antigen; (ii leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.

  10. Murine anti-vaccinia virus D8 antibodies target different epitopes and differ in their ability to block D8 binding to CS-E.

    Directory of Open Access Journals (Sweden)

    Michael H Matho

    2014-12-01

    Full Text Available The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV. Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E. CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4' and 6' of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV fully abrogated CS-E binding, while MAbs of a second group (group III displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.

  11. Characterization of single chain antibody targets through yeast two hybrid

    Directory of Open Access Journals (Sweden)

    Vielemeyer Ole

    2010-08-01

    Full Text Available Abstract Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv, are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID, efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise

  12. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    Science.gov (United States)

    Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  13. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  14. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Science.gov (United States)

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  15. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes.

    Directory of Open Access Journals (Sweden)

    Constantinos Kurt Wibmer

    2013-10-01

    Full Text Available Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257 whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.

  16. Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies.

    Directory of Open Access Journals (Sweden)

    Ben-Jiang Ma

    2011-09-01

    Full Text Available The HIV-1 gp41 envelope (Env membrane proximal external region (MPER is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL, or weakly bound (CON-S, 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.

  17. Label free checkerboard assay to determine overlapping epitopes of Ebola virus VP-40 antibodies using surface plasmon resonance.

    Science.gov (United States)

    Anderson, George P; Liu, Jinny L; Zabetakis, Dan; Legler, Patricia M; Goldman, Ellen R

    2017-03-01

    Immunoassay formats, in which antibodies provide sensitivity and specificity, are often utilized to provide rapid and simple diagnostic tests. Surface plasmon resonance is frequently used to evaluate the suitability of antibodies by determining binding kinetics to agents or surrogate antigens. We used SPR to evaluate a number of commercial monoclonal antibodies as well as single domain antibodies produced in-house. All the antibodies targeted the Ebola virus viral protein 40 (VP40). We determined the ability of each antibody to bind to immobilized VP40, and ensured they did not bind Ebola glycoprotein or the nucleoprotein. A subset of the monoclonal antibodies was immobilized to characterize antigen capture in solution. It can be advantageous to utilize antibodies that recognize distinct epitopes when choosing reagents for detection and diagnostic assays. We determined the uniqueness of the epitope recognized by the anti-VP40 antibodies using a checkerboard format that exploits the 6×6 array of interactions monitored by the Bio-Rad ProteOn XPR36 SPR instrument. The results demonstrate the utility of surface plasmon resonance to characterize monoclonal and recombinant antibodies. Additionally, the analysis presented here enabled the identification of pairs of anti-VP40 antibodies which could potentially be utilized in sandwich type immunoassays for the detection of Ebola virus.

  18. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Directory of Open Access Journals (Sweden)

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  19. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    OpenAIRE

    Babu Ramanathan; Chit Laa Poh; Kristin Kirk; William John Hannan McBride; John Aaskov; Lara Grollo

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction app...

  20. Targeting of Antibodies using Aptamers

    OpenAIRE

    2003-01-01

    The chapter presents a methodology for the rapid selection of aptamers against antibody targets. It is a detailed account of the various methodological steps that describe the selection of aptamers, including PCR steps, buffers to be used, target immobilisation, partitioning and amplification of aptamers, clonning and sequencing, to results in high affinity and specificity ligands for the chosen target antibody.

  1. Immunodominant epitope and properties of pyroglutamate-modified Abeta-specific antibodies produced in rabbits.

    Science.gov (United States)

    Acero, G; Manoutcharian, K; Vasilevko, V; Munguia, M E; Govezensky, T; Coronas, G; Luz-Madrigal, A; Cribbs, D H; Gevorkian, G

    2009-08-18

    N-truncated and N-modified forms of amyloid beta (Abeta) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Abeta is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant N-truncated/modified Abeta peptide bearing amino-terminal pyroglutamate at position 3 (AbetaN3(pE)). We demonstrated that AbetaN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AbetaN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AbetaN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AbetaN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Abeta, which is absent in N-amino truncated peptides.

  2. IMMUNODOMINANT EPITOPE AND PROPERTIES OF PYROGLUTAMATE-MODIFIED Aβ-SPECIFIC ANTIBODIES PRODUCED IN RABBITS

    Science.gov (United States)

    Acero, G.; Manoutcharian, K.; Vasilevko, V.; Munguia, M.E.; Govezensky, T.; Coronas, G.; Luz-Madrigal, A.; Cribbs, DH.; Gevorkian, G.

    2009-01-01

    N-truncated and N-modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer’s disease (AD) and Down’s syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Aβ is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full-length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant Ntruncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 3 (AβN3(pE)). We demonstrated that AβN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AβN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AβN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AβN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides. PMID:19545911

  3. ElliPro: a new structure-based tool for the prediction of antibody epitopes

    Directory of Open Access Journals (Sweden)

    Fusseder Nicholas

    2008-12-01

    Full Text Available Abstract Background Reliable prediction of antibody, or B-cell, epitopes remains challenging yet highly desirable for the design of vaccines and immunodiagnostics. A correlation between antigenicity, solvent accessibility, and flexibility in proteins was demonstrated. Subsequently, Thornton and colleagues proposed a method for identifying continuous epitopes in the protein regions protruding from the protein's globular surface. The aim of this work was to implement that method as a web-tool and evaluate its performance on discontinuous epitopes known from the structures of antibody-protein complexes. Results Here we present ElliPro, a web-tool that implements Thornton's method and, together with a residue clustering algorithm, the MODELLER program and the Jmol viewer, allows the prediction and visualization of antibody epitopes in a given protein sequence or structure. ElliPro has been tested on a benchmark dataset of discontinuous epitopes inferred from 3D structures of antibody-protein complexes. In comparison with six other structure-based methods that can be used for epitope prediction, ElliPro performed the best and gave an AUC value of 0.732, when the most significant prediction was considered for each protein. Since the rank of the best prediction was at most in the top three for more than 70% of proteins and never exceeded five, ElliPro is considered a useful research tool for identifying antibody epitopes in protein antigens. ElliPro is available at http://tools.immuneepitope.org/tools/ElliPro. Conclusion The results from ElliPro suggest that further research on antibody epitopes considering more features that discriminate epitopes from non-epitopes may further improve predictions. As ElliPro is based on the geometrical properties of protein structure and does not require training, it might be more generally applied for predicting different types of protein-protein interactions.

  4. Structural analysis of B-cell epitopes in antibody:protein complexes

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Nielsen, Morten; Padkjær, Søren Berg;

    2013-01-01

    developed a novel framework for comparing and superimposing B-cell epitopes and applied it on a dataset of 107 non-similar antigen:antibody structures extracted from the PDB database. With the presented framework, we were able to describe the general B-cell epitope as a flat, oblong, oval shaped volume...

  5. Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1

    Science.gov (United States)

    Messer, William B.; Yount, Boyd L.; Royal, Scott R.; de Alwis, Ruklanthi; Widman, Douglas G.; Smith, Scott A.; Crowe, James E.; Pfaff, Jennifer M.; Kahle, Kristen M.; Doranz, Benjamin J.; Ibarra, Kristie D.; Harris, Eva

    2016-01-01

    ABSTRACT The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they

  6. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  7. Induction of epitope-specific neutralizing antibodies against West Nile virus.

    Science.gov (United States)

    Oliphant, Theodore; Nybakken, Grant E; Austin, S Kyle; Xu, Qing; Bramson, Jonathan; Loeb, Mark; Throsby, Mark; Fremont, Daved H; Pierson, Theodore C; Diamond, Michael S

    2007-11-01

    Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.

  8. Induction of Epitope-Specific Neutralizing Antibodies against West Nile Virus▿

    Science.gov (United States)

    Oliphant, Theodore; Nybakken, Grant E.; Austin, S. Kyle; Xu, Qing; Bramson, Jonathan; Loeb, Mark; Throsby, Mark; Fremont, Daved H.; Pierson, Theodore C.; Diamond, Michael S.

    2007-01-01

    Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies. PMID:17715236

  9. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus.

    Directory of Open Access Journals (Sweden)

    Ebenezer Tumban

    Full Text Available BACKGROUND: Virus-like Particles (VLPs display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV that provides broad protection from diverse HPV types in a mouse pseudovirus infection model. METHODOLOGY/PRINCIPAL FINDINGS: Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types. CONCLUSION/SIGNIFICANCE: We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.

  10. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus

    Directory of Open Access Journals (Sweden)

    J. A. Swanstrom

    2016-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73% failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], 1:100 serum dilution; 9% levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV.

  11. A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody.

    Directory of Open Access Journals (Sweden)

    Benny Chain

    Full Text Available The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies. A short peptide encoding the linear epitope can induce antibodies which recognise the intact receptor when administered colinear with a tetanus toxoid helper T cell epitope. The monoclonal antibody RoAb 13 is shown to bind to both cells and peptide with moderate to high affinity (6x10^8 and 1.2x107 M-1 respectively, and binding to the peptide is enhanced by sulfation of tyrosines at positions 10 and 14. RoAb13, which has previously been shown to block HIV infection, also blocks migration of monocytes in response to CCR5 binding chemokines and to inflammatory macrophage conditioned medium. A Fab fragment of RoAb13 has been crystallised and a structure of the antibody is reported to 2.1 angstrom resolution.

  12. Epitope-distal effects accompany the binding of two distinct antibodies to hepatitis B virus capsids

    NARCIS (Netherlands)

    Bereszczak, J.Z.; Rose, R.J.; Duijn, E. van; Watts, N.R.; Wingfield, P.T.; Steven, A.C.; Heck, A.J.R.

    2013-01-01

    Infection of humans by hepatitis B virus (HBV) induces the copious production of antibodies directed against the capsid protein (Cp). A large variety of anticapsid antibodies have been identified that differ in their epitopes. These data, and the status of the capsid as a major clinical antigen, mot

  13. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Koksunan, Sarawut [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya [National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Prachasupap, Apichai [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Sasaki, Tadahiro [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); Yasugi, Mayo [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); Ono, Ken-ichiro [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Arai, Yasuha [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  14. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    Science.gov (United States)

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.

  15. Generation of Monoclonal Antibodies against Dengue Virus Type 4 and Identification of Enhancing Epitopes on Envelope Protein.

    Directory of Open Access Journals (Sweden)

    Chung-Tao Tang

    Full Text Available The four serotypes of dengue virus (DENV1-4 pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE. Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodies in the pathogenesis of dengue, we generated a panel of 16 new monoclonal antibodies (mAbs against DENV4. Using plaque reduction neutralization test (PRNT, we examined the neutralizing activity of these mAbs. Furthermore, we used the in vitro and in vivo ADE assay to evaluate the enhancement of DENV infection by mAbs. The results indicate that the cross-reactive and poorly neutralizing mAbs, DD11-4 and DD18-5, strongly enhance DENV1-4 infection of K562 cells and increase mortality in AG129 mice. The epitope residues of these enhancing mAbs were identified using virus-like particle (VLP mutants. W212 and E26 are the epitope residues of DD11-4 and DD18-5, respectively. In conclusion, we generated and characterized 16 new mAbs against DENV4. DD11-4 and D18-5 possessed non-neutralizing activities and enhanced viral infection. Moreover, we identified the epitope residues of enhancing mAbs on envelope protein. These results may provide useful information for development of safe dengue vaccine.

  16. Localization of key amino acid residues in the dominant conformational epitopes on thyroid peroxidase recognized by mouse monoclonal antibodies.

    Science.gov (United States)

    Godlewska, Marlena; Czarnocka, Barbara; Gora, Monika

    2012-09-01

    Autoantibodies to thyroid peroxidase (TPO), the major target autoantigen in autoimmune thyroid diseases, recognize conformational epitopes limited to two immunodominant regions (IDRs) termed IDR-A and -B. The apparent restricted heterogeneity of TPO autoantibodies was discovered using TPO-specific mouse monoclonal antibodies (mAbs) and later confirmed by human recombinant Fabs. In earlier studies we identified key amino acids crucial for the interaction of human autoantibodies with TPO. Here we show the critical residues that participate in binding of five mAbs to the conformational epitopes on the TPO surface. Using ELISA we tested the reactivity of single and multiple TPO mutants expressed in CHO cells with a panel of mAbs specifically recognizing IDR-A (mAb 2 and 9) and IDR-B (mAb 15, 18, 64). We show that antibodies recognizing very similar regions on the TPO surface may interact with different sets of residues. We found that residues K713 and E716 contribute to the interaction between mAb 2 and TPO. The epitope for mAb 9 is critically dependent on residues R646 and E716. Moreover, we demonstrate that amino acids E604 and D630 are part of the functional epitope for mAb 15, and amino acids D624 and K627 for mAb 18. Finally, residues E604, D620, D624, K627, and D630 constitute the epitope for mAb 64. This is the first detailed study identifying the key resides for binding of mAbs 2, 9, 15, 18, and 64. Better understanding of those antibodies' specificity will be helpful in elucidating the properties of TPO as an antigen in autoimmune disorders.

  17. Epitope Mapping of Dengue-Virus-Enhancing Monoclonal-Antibody Using Phage Display Peptide Library

    OpenAIRE

    Chung-I Rai; Huan-Yao Lei; Yee-Shin Lin; Hsiao-Sheng Liu; Shun-Hua Chen; Lien-Cheng Chen; Trai-Ming Yeh

    2008-01-01

    The Antibody-Dependent Enhancement (ADE) hypothesis has been proposed to explain why more severe manifestations of Dengue Hemorrhagic Fever and Dengue Shock Syndrome (DHF/DSS) occur predominantly during secondary infections of Dengue Virus (DV) with different serotypes. However, the epitopes recognized by these enhancing antibodies are unclear. Recently, anti-pre-M monoclonal antibody (mAb 70-21), which recognized all DV serotypes without neutralizing activity, were generated and demonstrated...

  18. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies

    Directory of Open Access Journals (Sweden)

    Jing eSun

    2014-02-01

    Full Text Available Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast gene mutation on surface proteins of influenza virus result in increasing resistance to current vaccines and available antiviral drugs. Broadly neutralizing antibodies represent targets for prophylactic and therapeutic treatments of influenza. We performed a systematic bioinformatics study of cross-reactivity of neutralizing antibodies against influenza virus surface glycoprotein hemagglutinin (HA. This study utilized the available crystal structures of HA complexed with the antibodies for the analysis of tens of thousands of HA sequences. The detailed description of B-cell epitopes, measurement of epitope area similarity among different strains, and estimation of antibody neutralizing coverage provide insights into cross-reactivity status of existing neutralizing antibodies against influenza virus. We have developed a method to assess the likely cross-reactivity potential of broadly neutralizing antibodies for influenza strains, either newly emerged or existing. Our method catalogs influenza strains by a new concept named discontinuous peptide, and then provide assessment of cross-reactivity. Potentially cross-reactive strains are those that share 100% identity with experimentally verified neutralized strains. By cataloging influenza strains and their B-cell epitopes for known broadly neutralizing antibodies, our method provides guidance for selection of representative strains for further experimental design. The knowledge of sequences, their B-cell epitopes, and differences between historical influenza strains, we enhance our preparedness and the ability to respond to the emerging pandemic threats.

  19. Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences.

    Science.gov (United States)

    Reineke, Ulrich; Ivascu, Claudia; Schlief, Marén; Landgraf, Christiane; Gericke, Seike; Zahn, Grit; Herzel, Hanspeter; Volkmer-Engert, Rudolf; Schneider-Mergener, Jens

    2002-09-01

    We used a relatively small library of 5520 randomly generated single 15-mer peptides prepared by SPOT synthesis as an array of 28.5x19.0 cm to identify epitopes for three distinct monoclonal antibodies, namely anti-p24 (human immunodeficiency virus (HIV)-1) monoclonal anibody (mab) CB4-1, anti-interleukin-10 (IL-10) mab CB/RS/13, and anti-transforming growth factor alpha (TGFalpha) mab Tab2. Initially identified peptide ligands mostly had very low affinities for the antibodies with dissociation constants around 10(-4) M. Subsequent identification of residues critical for the antibody interactions involved complete L-amino acid substitutional analyses. Several substitutions resulted in analogs with dissociation constants in the low micromolar and high nanomolar range. Specifically binding peptides with key residue patterns matching the wild-type epitopes were identified for all three antibodies. In addition, for antibody CB4-1 mimotopes that showed no homology to the known epitope were selected. Our results suggest that a very limited library diversity, although far from covering the entire sequence repertoire, can suffice to rapidly and economically select peptidic antibody epitopes and mimotopes.

  20. Analysis of potato virus Y coat protein epitopes recognized by three commercial monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Yan-Ping Tian

    Full Text Available BACKGROUND: Potato virus Y (PVY, genus Potyvirus causes substantial economic losses in solanaceous plants. Routine screening for PVY is an essential part of seed potato certification, and serological assays are often used. The commercial, commonly used monoclonal antibodies, MAb1128, MAb1129, and MAb1130, recognize the viral coat protein (CP of PVY and distinguish PVYN strains from PVYO and PVYC strains, or detect all PVY strains, respectively. However, the minimal epitopes recognized by these antibodies have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: SPOT peptide array was used to map the epitopes in CP recognized by MAb1128, MAb1129, and MAb1130. Then alanine replacement as well as N- and C-terminal deletion analysis of the identified peptide epitopes was done to determine critical amino acids for antibody recognition and the respective minimal epitopes. The epitopes of all antibodies were located within the 30 N-terminal-most residues. The minimal epitope of MAb1128 was 25NLNKEK30. Replacement of 25N or 27N with alanine weakened the recognition by MAb1128, and replacement of 26L, 29E, or 30K nearly precluded recognition. The minimal epitope for MAb1129 was 16RPEQGSIQSNP26 and the most critical residues for recognition were 22I and 23Q. The epitope of MAb1130 was defined by residues 5IDAGGS10. Mutation of residue 6D abrogated and mutation of 9G strongly reduced recognition of the peptide by MAb1130. Amino acid sequence alignment demonstrated that these epitopes are relatively conserved among PVY strains. Finally, recombinant CPs were produced to demonstrate that mutations in the variable positions of the epitope regions can affect detection with the MAbs. CONCLUSIONS/SIGNIFICANCE: The epitope data acquired can be compared with data on PVY CP-encoding sequences produced by laboratories worldwide and utilized to monitor how widely the new variants of PVY can be detected with current seed potato certification schemes or during the

  1. Predefined GPGRAFY-Epitope-Specific Monoclonal Antibodies with Different Activities for Recognizing Native HIV-1 gp120

    Institute of Scientific and Technical Information of China (English)

    蓝灿辉; 田海军; 陈应华

    2004-01-01

    A seven-amino acid epitope GPGRAFY at the tip of the V3 loop in HIV-1 gp120 is the principal neutralizing epitope,and a subset of anti-V3 antibodies specific for this epitope shows a broad range of neutralizing activity.GPGRAFY-epitope-specific neutralizing antibodies were produced using predefined GPGRAFY-epitope-specific peptides instead of a natural or recombinant gp120 bearing this epitope.All six monoclonal antibodies (mAbs) could recognize the GPGRAFY-epitope on peptides and two of the antibodies,9D8 and 2D7,could recognize recombinant gp120 in enzymelinked immunosorkentassy (ELISA) assays.In the flow cytometry analysis,the mAbs 9D8 and 2D7 could bind to HIV-Env+ CHO-WT cells and the specific bindings could be inhibited by the GPGRAFY-epitope peptide,which suggests that these two mAbs could recognize the native envelope protein gp120 expressed on the cell membrane.However,in syncytium assays,none of the mAbs was capable of inhibiting HIV-Env-mediated cell membrane fusion.The different activities for recognizing native HIV-1 gp120 might be associated with different antibody affinities against the epitopes.The development of conformational mimics of the neutralization epitope in the gp120 V3 loop could elicit neutralizing mAbs with high affinity.

  2. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    R Rajkannan; E J Padma Malar

    2007-09-01

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the crystal structure of monoclonal antibody specific for the pres1 region of the hepatitis B virus. At the optimized docked conformation, the interactions between the amino acids of antigen and antibody were examined. It is found that the docked complex is stabilized by 59.3 kcal/mol. The stability of the docked antigen-antibody complex is due to hydrogen bonding and van der Waals interactions. The amino acids of the antigen and antibody responsible for the interaction were identified.

  3. Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans.

    Science.gov (United States)

    Marchalonis, J J; Adelman, M K; Robey, I F; Schluter, S F; Edmundson, A B

    2001-01-01

    This review considers definitions of the specificity of antibodies including the development of recent concepts of recognition polyspecificity and epitope promiscuity. Using sets of homologous and unrelated peptides derived from the sequences of immunoglobulin and T cell receptor chains we offer operational definitions of cross-reactivity by investigating correlations of either identities in amino acid sequence, or in hydrophobicity/hydrophilicity profiles with degree of binding in enzyme-linked immunosorbent assays. Polyreactivity, or polyspecificity, are terms used to denote binding of a monoclonal antibody or purified antibody preparation to large complex molecules that are structurally unrelated, such as thyroglobulin and DNA. As a first approximation, there is a linear correlation between degree of sequence identity or hydrophobicity/hydrophilicity and antigenic cross-binding. However, catastrophic interchanges of amino acids can occur where changing of one amino acid out of 16 in a synthetic peptide essentially eliminates binding to certain antibodies. An operational definition of epitope promiscuity for peptides is the case where two peptides show little or no identity in amino acid sequence but bind strongly to the same antibody as shown by either direct binding or competitive inhibition. Analysis of antibodies of humans and sharks, the two most divergent species in evolution to express antibodies and the combinatorial immune response, indicates that the capacity for both exquisite specificity and epitope recognition promiscuity are essential conserved features of individual vertebrate antibodies.

  4. MHC class I-presented T cell epitopes identified by immunoproteomics analysis are targets for a cross reactive influenza-specific T cell response.

    Directory of Open Access Journals (Sweden)

    James S Testa

    Full Text Available Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines.

  5. Multipin peptide libraries for antibody and receptor epitope screening and characterization.

    Science.gov (United States)

    Tribbick, Gordon

    2002-09-01

    It has been nearly 15 years since the papers describing the fully systematic epitope mapping approach both for the so-called "continuous" epitopes [Proc. Natl. Acad. Sci. U. S. A. 81 (1984) 3998] and "discontinuous" epitopes [Mol. Immunol. 23 (1986) 709] were published. These seminal papers laid the conceptual foundation for all subsequent developments where a combinatorial approach is applied. Dr. Mario Geysen, the 2000 Kilby Laureate, can certainly lay claim to be the "father of combinatorial chemistry" (http://www.kilby.org/laureates.htm). In this review, I will focus on the aspects of the Multipin technology as they apply to antibody and receptor epitope mapping. Much of what will be presented applies equally well to other applications where peptide libraries (PepSets) and combinatorial approaches are used [Rodda, S.J., 1996. T-cell epitope mapping with synthetic peptides and peripheral blood mononuclear cells. In: Morris, G.E. (Eds.), Methods in Molecular Biology, Vol. 66: Epitope Mapping Protocols. Humana Press, Totowa, NJ, Chap. 30, p. 363; Int. J. Pept. Protein Res. 42 (1993) 384; J. Biol. Chem. 271 (1996) 5603]. Factors and techniques that influence the use of the Multipin method for successful epitope mapping will be presented.

  6. Epitope Mapping of Anti-Interleukin-13 Neutralizing Antibody CNTO607

    Energy Technology Data Exchange (ETDEWEB)

    Teplyakov, Alexey; Obmolova, Galina; Wu, Sheng-Jiun; Luo, Jinquan; Kang, James; O' Neil, Karyn; Gilliland, Gary L.; (Centocor)

    2009-06-24

    CNTO607 is a neutralizing anti-interleukin-13 (IL-13) human monoclonal antibody obtained from a phage display library. To determine how this antibody inhibits the biological effect of IL-13, we determined the binding epitope by X-ray crystallography. The crystal structure of the complex between CNTO607 Fab and IL-13 reveals the antibody epitope at the surface formed by helices A and D of IL-13. This epitope overlaps with the IL-4Ralpha/IL-13Ralpha1 receptor-binding site, which explains the neutralizing effect of CNTO607. The extensive antibody interface covers an area of 1000 A(2), which is consistent with the high binding affinity. The key features of the interface are the charge and shape complementarity of the molecules that include two hydrophobic pockets on IL-13 that accommodate Phe32 [complementarity-determining region (CDR) L2] and Trp100a (CDR H3) and a number of salt bridges between basic residues of IL-13 and acidic residues of the antibody. Comparison with the structure of the free Fab shows that the CDR residues do not change their conformation upon complex formation, with the exception of two residues in CDR H3, Trp100a and Asp100b, which change rotamer conformations. To evaluate the relative contribution of the epitope residues to CNTO607 binding, we performed alanine-scanning mutagenesis of the A-D region of IL-13. This study confirmed the primary role of electrostatic interactions for antigen recognition.

  7. Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies

    Directory of Open Access Journals (Sweden)

    M. Angeles López-Matas

    2013-01-01

    Full Text Available Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.

  8. Characterization of epitopes recognized by monoclonal antibodies: experimental approaches supported by freely accessible bioinformatic tools.

    Science.gov (United States)

    Clementi, Nicola; Mancini, Nicasio; Castelli, Matteo; Clementi, Massimo; Burioni, Roberto

    2013-05-01

    Monoclonal antibodies (mAbs) have been used successfully both in research and for clinical purposes. The possible use of protective mAbs directed against different microbial pathogens is currently being considered. The fine definition of the epitope recognized by a protective mAb is an important aspect to be considered for possible development in epitope-based vaccinology. The most accurate approach to this is the X-ray resolution of mAb/antigen crystal complex. Unfortunately, this approach is not always feasible. Under this perspective, several surrogate epitope mapping strategies based on the use of bioinformatics have been developed. In this article, we review the most common, freely accessible, bioinformatic tools used for epitope characterization and provide some basic examples of molecular visualization, editing and computational analysis.

  9. Analysis of epitopes in the capsid protein of avian hepatitis E virus by using monoclonal antibodies.

    Science.gov (United States)

    Dong, Shiwei; Zhao, Qin; Lu, Mingzhe; Sun, Peiming; Qiu, Hongkai; Zhang, Lu; Lv, Junhua; Zhou, En-Min

    2011-02-01

    Avian hepatitis E virus (HEV) is related genetically and antigenically to human and swine HEVs and capsid protein of avian HEV shares approximately 48-49% amino acid sequence identities with those of human and swine HEVs. Six monoclonal antibodies (MAbs) were produced and used to locate different epitopes in the ORF2 region of aa 339-570 of avian HEV Chinese isolate. The results showed that five epitopes were located in the aa 339-414 region and one in the aa 510-515 region. Two epitopes located in aa 339-355 and aa 384-414 regions are the immunodominant epitopes on the surface of the avian HEV particles as demonstrated by immune capture of viral particles and immunohistochemical detection of the ORF2 antigens with two MAbs.

  10. Select human anthrax protective antigen (PA) epitope-specific antibodies provide protection from lethal toxin challenge

    Science.gov (United States)

    Crowe, Sherry R.; Ash, Linda L.; Engler, Renata J. M.; Ballard, Jimmy D.; Harley, John B.; Farris, A. Darise; James, Judith A.

    2010-01-01

    Bacillus anthracis remains a serious bioterrorism concern, and the currently licensed vaccine remains an incomplete solution for population protection from inhalation anthrax and has been associated with concerns regarding efficacy and safety. Thus, understanding how to generate long lasting protective immunity with reduced immunizations or providing protection through post exposure immunotherapeutics are long sought goals. Through evaluation of a large military cohort, we characterized the levels of antibodies against protective antigen and found that over half of anthrax vaccinees had low levels of in vitro toxin neutralization capacity in their sera. Using solid phase epitope mapping and confirmatory assays, we identified several neutralization-associated humoral epitopes and demonstrated that select anti-peptide responses mediated protection in vitro. Finally, passively transferred antibodies specific for select epitopes provided protection in an in vivo lethal toxin mouse model. Identification of these antigenic regions has important implications for vaccine design and the development of directed immunotherapeutics. PMID:20533877

  11. Antibodies induced by multi-epitope vaccine showed inhibitory activity against heterologous influenza A virus (H3N2)

    Institute of Scientific and Technical Information of China (English)

    DING Jian; WU Fan; WEI Wei; CHEN Yinghua

    2006-01-01

    In this study, recognition of 4 recombinant viral proteins (GST-NHA1) by the antibodies induced by multi-epitope vaccine was testified. Inhibitory activities of these antibodies were also investigated in vitro against four heterologous influenza A viruses (H3N2). Three epitope-specific antibodies purified by affinity chromatography could reduce the plaque formation. Interestingly, the three neutralizing antibodies in combination showed obvious enhancement of inhibitory activity, suggesting that the development of recombinant multi-epitope vaccine might be an effective way against viral mutation.

  12. Antibodies to both terminal and internal B-cell epitopes of Francisella tularensis O-polysaccharide produced by patients with tularemia.

    Science.gov (United States)

    Lu, Zhaohua; Perkins, Hillary M; Sharon, Jacqueline

    2014-02-01

    Francisella tularensis, the Gram-negative bacterium that causes tularemia, is considered a potential bioterrorism threat due to its low infectivity dose and the high morbidity and mortality from respiratory disease. We previously characterized two mouse monoclonal antibodies (MAbs) specific for the O-polysaccharide (O antigen [OAg]) of F. tularensis lipopolysaccharide (LPS): Ab63, which targets a terminal epitope at the nonreducing end of OAg, and Ab52, which targets a repeating internal OAg epitope. These two MAbs were protective in a mouse model of respiratory tularemia. To determine whether these epitope types are also targeted by humans, we tested the ability of each of 18 blood serum samples from 11 tularemia patients to inhibit the binding of Ab63 or Ab52 to F. tularensis LPS in a competition enzyme-linked immunosorbent assay (ELISA). Although all serum samples had Ab63- and Ab52-inhibitory activities, the ratios of Ab63 to Ab52 inhibitory potencies varied 75-fold. However, the variation was only 2.3-fold for sequential serum samples from the same patient, indicating different distributions of terminal- versus internal-binding antibodies in different individuals. Western blot analysis using class-specific anti-human Ig secondary antibodies showed that both terminal- and internal-binding OAg antibodies were of the IgG, IgM, and IgA isotypes. These results support the use of a mouse model to discover protective B-cell epitopes for tularemia vaccines or prophylactic/therapeutic antibodies, and they present a general strategy for interrogating the antibody responses of patients and vaccinees to microbial carbohydrate epitopes that have been characterized in experimental animals.

  13. Mapping of the epitopes of poliovirus type 2 in complex with antibodies.

    Science.gov (United States)

    Bannwarth, Ludovic; Girerd-Chambaz, Yves; Arteni, Ana; Guigner, Jean-Michel; Ronzon, Frederic; Manin, Catherine; Vénien-Bryan, Catherine

    2015-10-01

    The inactivated polio vaccine (IPV) contains poliovirus (PV) samples that belong to serotypes 1, 2 and 3. All three serotypes contain the D-antigen, which induces protective antibodies. The antigenic structure of PVs consists of at least four different antigenic sites and the D-antigen content represents the combined activity of multiple epitopes (Ferguson et al., 1993; Minor, 1990; Minor et al., 1986). The potency of IPV vaccines is determined by measuring the D-antigen content. Several ELISA methods have been developed using polyclonal or monoclonal antibodies (Mabs) in order to quantify the D-antigen content. Characterization of the epitopes recognized by the different Mabs is crucial to map the entire virus surface and ensure the presence of epitopes able to induce neutralizing antibodies. Using a new approach that we developed to study the interaction between monoclonal antibodies and poliovirus type 2, which combines cryo-electron microscopy, image analysis and X-ray crystallography along with identification of exposed amino acids, we have mapped in 3D the epitope sites recognized by three specific Fabs at the surface of poliovirus type 2 (PV2) and characterized precisely the antigenic sites for these Fabs.

  14. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress.

    Science.gov (United States)

    Fox, Julie M; Long, Feng; Edeling, Melissa A; Lin, Hueylie; van Duijl-Richter, Mareike K S; Fong, Rachel H; Kahle, Kristen M; Smit, Jolanda M; Jin, Jing; Simmons, Graham; Doranz, Benjamin J; Crowe, James E; Fremont, Daved H; Rossmann, Michael G; Diamond, Michael S

    2015-11-19

    We screened a panel of mouse and human monoclonal antibodies (MAbs) against chikungunya virus and identified several with inhibitory activity against multiple alphaviruses. Passive transfer of broadly neutralizing MAbs protected mice against infection by chikungunya, Mayaro, and O'nyong'nyong alphaviruses. Using alanine-scanning mutagenesis, loss-of-function recombinant proteins and viruses, and multiple functional assays, we determined that broadly neutralizing MAbs block multiple steps in the viral lifecycle, including entry and egress, and bind to a conserved epitope on the B domain of the E2 glycoprotein. A 16 Å resolution cryo-electron microscopy structure of a Fab fragment bound to CHIKV E2 B domain provided an explanation for its neutralizing activity. Binding to the B domain was associated with repositioning of the A domain of E2 that enabled cross-linking of neighboring spikes. Our results suggest that B domain antigenic determinants could be targeted for vaccine or antibody therapeutic development against multiple alphaviruses of global concern.

  15. Exploiting chimeric human antibodies to characterize a protective epitope of Neisseria adhesin A, one of the Bexsero vaccine components.

    Science.gov (United States)

    Bertoldi, Isabella; Faleri, Agnese; Galli, Barbara; Lo Surdo, Paola; Liguori, Alessia; Norais, Nathalie; Santini, Laura; Masignani, Vega; Pizza, Mariagrazia; Giuliani, Marzia Monica

    2016-01-01

    Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown. In order to further investigate its immunogenic properties, we have characterized the murine IgG1 mAb (6E3) that was able to recognize the 2 main antigenic variants of NadA on the surface of MenB strains. The epitope targeted by mAb 6E3 was mapped by hydrogen-deuterium exchange mass spectrometry and shown to be located on the coiled-coil stalk region of NadA (aa 206-249). Although no serum bactericidal activity was observed for murine IgG1 mAb 6E3, functional activity was restored when using chimeric antibodies in which the variable regions of the murine mAb 6E3 were fused to human IgG3 constant regions, thus confirming the protective nature of the mAb 6E3 epitope. The use of chimeric antibody molecules will enable future investigations of complement-mediated antibody functionality independently of the Fc-mediated differences in complement activation.

  16. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1

    Science.gov (United States)

    El-Diwany, Ramy; Mankowski, Madeleine C.; Wasilewski, Lisa N.; Brady, Jillian K.; Snider, Anna E.; Osburn, William O.; Murrell, Ben; Ray, Stuart C.

    2017-01-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes. PMID:28235087

  17. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    Science.gov (United States)

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  18. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies

    DEFF Research Database (Denmark)

    Sun, Jing; Kudahl, Ulrich J.; Simon, Christian

    2014-01-01

    Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast gene mutation on surface proteins of influenza virus result in increasing resistance to current vaccines and available antiviral drugs. Broadly neutralizing antibodies (bnAbs) represent targets for prophylactic...... and therapeutic treatments of influenza. We performed a systematic bioinformatics study of cross-reactivity of neutralizing antibodies (nAbs) against influenza virus surface glycoprotein hemagglutinin (HA). This study utilized the available crystal structures of HA complexed with the antibodies for the analysis...... of tens of thousands of HA sequences. The detailed description of B-cell epitopes, measurement of epitope area similarity among different strains, and estimation of antibody neutralizing coverage provide insights into cross-reactivity status of existing nAbs against influenza virus. We have developed...

  19. A novel antibody humanization method based on epitopes scanning and molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available 1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs. The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization.

  20. Selection of peptide mimics of HIV-1 epitope recognized by neutralizing antibody VRC01.

    Directory of Open Access Journals (Sweden)

    Anton N Chikaev

    Full Text Available The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.

  1. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Antu K Dey

    Full Text Available The identification of HIV-1 envelope glycoprotein (Env structures that can generate broadly neutralizing antibodies (BNAbs is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4 receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i epitope(s known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH, was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140 using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1 complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s. These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s here, and its potential role in vaccine application.

  2. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies.

    Science.gov (United States)

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M; Tsimikas, Sotirios; Fischer, Michael B; Witztum, Joseph L; Lang, Irene M; Binder, Christoph J

    2015-02-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA(+) MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE(+) MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD.

  3. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... to elicit antibodies preferentially neutralizing mutant variants of HIV-BRU lacking the N306 glycan. Therefore, two guinea pigs were immunized with monomeric wild-type HIV-BRU gp120 possessing the N306 glycan and immune sera were tested for neutralization against target viruses HIV-BRU, -A308, and -A308T321....... HIV-A308 and HIV-A308T321 lack the N306 glycan; HIV-A308T321 contains an additional mutation at the tip of V3 rendering it resistant to MAb binding at this epitope. Both immune sera preferentially neutralized the two mutant virus variants lacking the N306 glycan, with a 10- to 20-fold increase...

  4. The Humoral Theory of Transplantation: Epitope Analysis and the Pathogenicity of HLA Antibodies

    Science.gov (United States)

    Farber, John L.

    2016-01-01

    Central to the humoral theory of transplantation is production of antibodies by the recipient against mismatched HLA antigens in the donor organ. Not all mismatches result in antibody production, however, and not all antibodies are pathogenic. Serologic HLA matching has been the standard for solid organ allocation algorithms in current use. Antibodies do not recognize whole HLA molecules but rather polymorphic residues on the surface, called epitopes, which may be shared by multiple serologic HLA antigens. Data are accumulating that epitope analysis may be a better way to determine organ compatibility as well as the potential immunogenicity of given HLA mismatches. Determination of the pathogenicity of alloantibodies is evolving. Potential features include antibody strength (as assessed by antibody titer or, more commonly and inappropriately, mean fluorescence intensity) and ability to fix complement (in vitro by C1q or C3d assay or by IgG subclass analysis). Technical issues with the use of solid phase assays are also of prime importance, such as denaturation of HLA antigens and manufacturing and laboratory variability. Questions and controversies remain, and here we review new relevant data. PMID:28070526

  5. High-throughput antibody development and retrospective epitope mapping

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro

    Plant cell walls are composed of an interlinked network of polysaccharides, glycoproteins and phenolic polymers. When addressing the diverse polysaccharides in green plants, including land plants and the ancestral green algae, there are significant overlaps in the cell wall structures. Yet...... the binding profile - in more or less high resolution - of two small molecular probes, 11 carbohydrate binding modules and 24 monoclonal antibodies. This was made possible by combining the HTP multiplexing capacity of carbohydrate microarrays with diverse glycomic tools, to downstream characterize...

  6. Epitope Mapping of Dengue-Virus-Enhancing Monoclonal-Antibody Using Phage Display Peptide Library

    Directory of Open Access Journals (Sweden)

    Chung-I Rai

    2008-01-01

    Full Text Available The Antibody-Dependent Enhancement (ADE hypothesis has been proposed to explain why more severe manifestations of Dengue Hemorrhagic Fever and Dengue Shock Syndrome (DHF/DSS occur predominantly during secondary infections of Dengue Virus (DV with different serotypes. However, the epitopes recognized by these enhancing antibodies are unclear. Recently, anti-pre-M monoclonal antibody (mAb 70-21, which recognized all DV serotypes without neutralizing activity, were generated and demonstrated as an enhancing antibody for DV infection. In the present study, the epitope recognized by mAb 70-21 was identified using a phage-displayed random-peptide library. After three rounds of biopanning, ELISA showed that immunopositive phage clones specifically bound to mAb 70-21 but not to serum or purified IgG from naive mice. DNA sequencing of these phage clones showed a consensus sequence, QNNLGPR. Like mAb70-21, these phage-induced antisera also enhanced the DV infection of cells. In addition, indirect fluorescent assays showed phage-induced antisera bound to human rhabdomyosarcoma or Vero cells. Western blotting and immunoprecipitation analysis showed that phage-induced antisera recognized hsp 60 in BHK cell lysate. Moreover, the sera levels of antibodies against the synthetic peptide QNNLGPR correlated with the disease severity of dengue patients. Taken together, these results suggest that antibodies which recognized epitopes shared by pre-M of DV and hsp 60 of host cells may enhance DV infection and be involved in the development of DHF or DSS.

  7. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers

    Science.gov (United States)

    Morris, Charles D.; Azadnia, Parisa; de Val, Natalia; Vora, Nemil; Honda, Andrew; Giang, Erick; Saye-Francisco, Karen; Cheng, Yushao; Lin, Xiaohe; Mann, Colin J.; Tang, Jeffrey; Sok, Devin; Burton, Dennis R.; Law, Mansun; Ward, Andrew B.

    2017-01-01

    ABSTRACT Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches. PMID:28246356

  8. The Fas antigen (CD95) on human lymphoid cells: epitope analysis with ten antibodies.

    Science.gov (United States)

    Zola, H; Fusco, M; Ridings, J; Flego, L R; Weedon, H M; Nicholson, I; Organ, N; Roberton, D M; Macardle, P J

    1996-11-01

    The expression of CD95 antigen was examined on adult and cord blood lymphocytes using a highly sensitive immunofluorescence/flow cytometric procedure. CD95 was expressed by the majority of circulating blood T cells in adults, and by a smaller proportion of CD4+ and CD8+ T cells in cord blood. The majority of circulating B cells did not react with seven CD95 antibodies, but three antibodies did stain B cells. In tonsil sections, CD95 was expressed throughout the tissue but germinal centres showed generally stronger staining than the surrounding follicular mantle and interfollicular areas. This was confirmed by flow cytometry, which showed expression preferentially on B cells with a germinal centre phenotype. Because different antibodies stained different proportions of B cells, CD95 epitopes were examined by inhibition, additive binding and protease susceptibility studies using a panel of ten CD95 antibodies. B cells apparently reacting selectively with CD95 antibodies were sorted and CD95 mRNA was reverse transcribed to cDNA and analyzed, in order to confirm the presence of CD95 in cells which reacted selectively and to explore the possible existence of CD95 isoforms. The major cDNA band was identical in the two populations. Inhibition of N-glycosylation suggested that the epitopes detected differentially could not be accounted for by differential N-glycosylation.

  9. A human PrM antibody that recognizes a novel cryptic epitope on dengue E glycoprotein.

    Science.gov (United States)

    Chan, Annie Hoi Yi; Tan, Hwee Cheng; Chow, Angelia Yee; Lim, Angeline Pei Chiew; Lok, Shee Mei; Moreland, Nicole J; Vasudevan, Subhash G; MacAry, Paul A; Ooi, Eng Eong; Hanson, Brendon J

    2012-01-01

    Dengue virus (DENV) is a major mosquito-borne pathogen infecting up to 100 million people each year; so far no effective treatment or vaccines are available. Recently, highly cross-reactive and infection-enhancing pre-membrane (prM)-specific antibodies were found to dominate the anti-DENV immune response in humans, raising concern over vaccine candidates that contain native dengue prM sequences. In this study, we have isolated a broadly cross-reactive prM-specific antibody, D29, during a screen with a non-immunized human Fab-phage library against the four serotypes of DENV. The antibody is capable of restoring the infectivity of virtually non-infectious immature DENV (imDENV) in FcγR-bearing K562 cells. Remarkably, D29 also cross-reacted with a cryptic epitope on the envelope (E) protein located to the DI/DII junction as evidenced by site-directed mutagenesis. This cryptic epitope, while inaccessible to antibody binding in a native virus particle, may become exposed if E is not properly folded. These findings suggest that generation of anti-prM antibodies that enhance DENV infection may not be completely avoided even with immunization strategies employing E protein alone or subunits of E proteins.

  10. Anti-idiotypic antibodies function as a surrogate surface epitope of Brugia malayi infective larvae.

    Science.gov (United States)

    Carlow, C K; Busto, P; Storey, N; Philipp, M

    1990-07-01

    Anti-idiotypic (AB2) antibodies were generated in rabbits following immunization with a murine IgM monoclonal antibody (AB1) recognizing a surface determinant of Brugia malayi infective stage larvae. AB2 specifically inhibited the binding of AB1 to B. malayi larvae. Furthermore, AB2 had the ability to mimic the original antigen since mice immunized with AB2 possessed serum antibodies (AB3) specific for the B. malayi surface determinant. The presence of anti-surface antibodies (AB3 and AB1) induced either by AB2 immunization or by administration of AB1, did not alter the outcome of an intraperitoneal infection of B. malayi larvae in BABL/c mice when compared to untreated animals. AB3 antibodies like AB1, were IgM, thus indicating an isotype restricted response to the B. malayi epitope. There were no detectable cell mediated responses to the surface determinant in mice immunized with AB2, assessed by lymphocyte blastogenesis or IL3 production in vitro in response to the idiotope as presented by living larvae. The lack of cellular responses and/or the previously demonstrated rapid shedding of the epitope may explain the inability of AB1 or AB2 to protect mice against larval challenge in this study.

  11. Mapping of linear antibody epitopes of the glycoprotein of VHSV, a salmonid rhabdovirus

    DEFF Research Database (Denmark)

    Fernandez-Alonso, M.; Lorenzo, G.; Perez, L.

    1998-01-01

    Antibody Linear epitopes of the glycoprotein G (gpG) of the viral haemorrhagic septicaemia virus (VHSV), a rhabdovirus of salmonids, were mapped by pepscan using overlapping 15-mer peptides covering the entire gpG sequence and ELISA with polyclonal and monoclonal murine and polyclonal trout...... antibodies. Among the regions recognized in the pepscan by the polyclonal antibodies (PAbs) were the previously identified phosphatidylserine binding heptad-repeats (Estepa & Coll 1996; Virology 216:60-70) and leucocyte stimulating peptides (Lorenzo et al. 1995; Virology 212:348-355). Among 17 monoclonal...... antibodies (MAbs), only 2 non-neutralizing MAbs, I10 (aa 139-153) and IP1H3 (aa 399-413), could be mapped to specific peptides in the pepscan of the gpG. Mapping of these MAbs was confirmed by immunoblotting with recombinant proteins and/or other synthetic peptides covering those sequences. None...

  12. Quinine-dependent antibodies bind a restricted set of epitopes on the glycoprotein Ib-IX complex: Characterization of the epitopes

    NARCIS (Netherlands)

    Burgess, Janette K.; Lopez, Jose A.; Berndt, Michael C.; Dawes, Ian; Chesterman, Colin N.; Chong, Beng H.

    1998-01-01

    Severe immune thrombocytopenia is an idiosyncratic complication of quinine therapy. Although in most cases the responsible antibody is directed against platelet membrane glycoprotein (GP) Ib-IX, specificity for GPIIb- IIIa or both epitopes has also been reported. The objective of this study was to c

  13. Quinine-dependent antibodies bind a restricted set of epitopes on the glycoprotein Ib-IX complex : characterization of the epitopes

    NARCIS (Netherlands)

    Burgess, J K; Lopez, J A; Berndt, M C; Dawes, I; Chesterman, C N; Chong, B H

    1998-01-01

    Severe immune thrombocytopenia is an idiosyncratic complication of quinine therapy. Although in most cases the responsible antibody is directed against platelet membrane glycoprotein (GP) Ib-IX, specificity for GPIIb-IIIa or both epitopes has also been reported. The objective of this study was to ch

  14. Evaluation of epitopes specificity of antibodies to thyroid peroxidase in autoimmune thyroid disorders

    Directory of Open Access Journals (Sweden)

    A V Subkov

    2011-06-01

    Full Text Available The problem of the human antithyroid peroxidase autoantibodies epitopes heterogeneity diagnosed in case of Graves' disease and Hashimoto's thyroiditis has been researched using monoclonal antibodies to thyroid peroxidase. It was shown, that in the competition for the binding sites of thyroid peroxidase and autoantibodies taken from patients with Graves' disease and Hashimoto's thyroiditis sera participate 8 mAb to epitopes 1, 70, 82, 88, 2, 3, 77 and 79. The maxima of the binding inhibition has been marked for the conformation epitope mAb 3: in case of Graves' disease it amounts to 60.3 ± 12.7%, in case of Hashimoto's thyroiditis – 61.8 ± 32.2%. Moreover the level of the binding inhibition did not depend on the concentration of Ab to thyroid peroxidase in the sera of patient with Graves' as opposed to the serum of patients with Hashimoto's thyroiditis. Autoantibodies in the serum of the patientswith Hashimoto's thyroiditis inhibited the binding of mAb to epitope 77 much more effectively, than in the serum of the patients with: 36.3 ± 17.2 and 54.3 ± 9.6% (p ≤ 0.05.The obtained results represented the specific reaction of the autoantibodies to the certain thyroid peroxidase molecular patterns which corresponds to the literature data. It is possible to assume that the further research of the competitive interactions with other autoantibodies to monoclonal antibodies, not included in this trial, and widening of the different thyroid diseased patients' serum palette can expose new immunodominant thyroid peroxidase molecular patterns, forming antibodies for different diseases, and enable the development of diagnostics and control of the thyroid functions and applied therapy.

  15. Epitope analysis of anti-myeloperoxidase antibodies in patients with ANCA-associated vasculitis.

    Directory of Open Access Journals (Sweden)

    Shen-Ju Gou

    Full Text Available OBJECTIVE: Increasing evidences have suggested the pathogenic role of anti-neutrophil cytoplasmic antibodies (ANCA directing myeloperoxidase (MPO in ANCA-associated vasculitis (AAV. The current study aimed to analyze the association between the linear epitopes of MPO-ANCA and clinicopathological features of patients with AAV. METHODS: Six recombinant linear fragments, covering the whole length amino acid sequence of a single chain of MPO, were produced from E.coli. Sera from 77 patients with AAV were collected at presentation. 13 out of the 77 patients had co-existence of serum anti-GBM antibodies. Ten patients also had sequential sera during follow up. The epitope specificities were detected by enzyme-linked immunosorbent assay using the recombinant fragments as solid phase ligands. RESULTS: Sera from 45 of the 77 (58.4% patients with AAV showed a positive reaction to one or more linear fragments of the MPO chain. The Birmingham Vasculitis Activity Scores and the sera creatinine were significantly higher in patients with positive binding to the light chain fragment than that in patients without the binding. The epitopes recognized by MPO-ANCA from patients with co-existence of serum anti-GBM antibodies were mainly located in the N-terminus of the heavy chain. In 5 out of the 6 patients, whose sera in relapse recognize linear fragments, the reactivity to linear fragments in relapse was similar to that of initial onset. CONCLUSION: The epitope specificities of MPO-ANCA were associated with disease activity and some clinicopathological features in patients with ANCA-associated vasculitis.

  16. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  17. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs, AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. CONCLUSIONS/SIGNIFICANCE: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

  18. Epitope mapping of a monoclonal antibody against the Gp85 of avian leukosis virus subgroup J.

    Science.gov (United States)

    Sun, Miao; Yu, Duo; Mo, Hongfei; Cao, Hong; Chen, Chen; Chen, Fuyong

    2012-06-01

    Avian leukosis virus subgroup J poses a great threat to the poultry industry in China. To reduce the economic losses, a quick method for detection of ALV-J antigen is required for diagnosis and identification of the congenitally transmitting hens. In this study, we report the production and evaluation of one monoclonal antibody (MAb) suitable for achieving these goals. The gp85 gene of avian leukosis virus subgroup J CAUHM01 China isolates was subcloned into the expression vectors pGEX-6p-1 and pET28a and successfully expressed in E. coli. After immunizing BALB/c mice with recombinant His-Jgp85 protein, splenic cells from immunized mice were fused with SP2/0 myeloma cells to produce hybridomas. We isolated and characterized one ALV-J gp85-specific MAb by determining its titer, affinity and IgG subclass. In addition, we performed epitope mapping and determined the epitope for the MAb 1E3 to be 81-92 aa of ALV-J gp85 protein (LPWDPQELDILG). Bioinformatics analysis and IFA studies revealed that this epitope is conserved among all ALV-J isolates and that this antibody could serve as a useful reagent for ALV-J detection and diagnosis.

  19. Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement

    Directory of Open Access Journals (Sweden)

    Hughes Holly R

    2012-06-01

    Full Text Available Abstract Background Dengue viruses (DENV are the most important arboviruses of humans and cause significant disease. Infection with DENV elicits antibody responses to the envelope glycoprotein, predominantly against immunodominant, cross-reactive, weakly-neutralizing epitopes. These weakly-neutralizing antibodies are implicated in enhancing infection via Fcγ receptor bearing cells and can lead to increased viral loads that are associated with severe disease. Here we describe results from the development and testing of cross-reactivity reduced DENV-2 DNA vaccine candidates that contain substitutions in immunodominant B cell epitopes of the fusion peptide and domain III of the envelope protein. Results Cross-reactivity reduced and wild-type vaccine candidates were similarly immunogenic in outbred mice and elicited high levels of neutralizing antibody, however mice immunized with cross-reactivity reduced vaccines produced significantly reduced levels of immunodominant cross-reactive antibodies. Sera from mice immunized with wild-type, fusion peptide-, or domain III- substitution containing vaccines enhanced heterologous DENV infection in vitro, unlike sera from mice immunized with a vaccine containing a combination of both fusion peptide and domain III substitutions. Passive transfer of immune sera from mice immunized with fusion peptide and domain III substitutions also reduced the development of severe DENV disease in AG129 mice when compared to mice receiving wild type immune sera. Conclusions Reducing cross-reactivity in the envelope glycoprotein of DENV may be an approach to improve the quality of the anti-DENV immune response.

  20. Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies.

    Science.gov (United States)

    Howard, Christopher B; Fletcher, Nicholas; Houston, Zachary H; Fuchs, Adrian V; Boase, Nathan R B; Simpson, Joshua D; Raftery, Lyndon J; Ruder, Tim; Jones, Martina L; de Bakker, Christopher J; Mahler, Stephen M; Thurecht, Kristofer J

    2016-08-01

    Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG. The binding of BsAb-HBP bioconjugate to EGFR on MDA-MB-468 cancer cells is investigated in vitro using a fluorescently labeled polymer, and in in vivo xenograft models by small animal optical imaging. The antibody-targeted nanostructures show improved accumulation in tumor cells compared to non-targeted nanomaterials. This demonstrates a facile approach for tuning targeting ligand density on nanomaterials, by modulating surface functionality. Antibody fragments are tethered to the nanomaterial through simple mixing prior to administration to animals, overcoming the extensive procedures encountered for developing targeted nanomedicines.

  1. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    Directory of Open Access Journals (Sweden)

    Salvador Eugenio C. Caoili

    2012-01-01

    Full Text Available B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins.

  2. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  3. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides.

    Directory of Open Access Journals (Sweden)

    Nathali Kaushansky

    Full Text Available Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and "epitope spread", have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such "multi-epitope-targeting" approach in murine experimental autoimmune encephalomyelitis (EAE associated with a single ("classical" or multiple ("complex" anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as "multi-epitope-targeting" agents. Y-MSPc was superior to peptide(s in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells. Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of "classical" or "complex EAE" or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a "multi-epitope-targeting" strategy is required for

  4. Engineering therapeutic antibodies targeting G-protein-coupled receptors.

    Science.gov (United States)

    Jo, Migyeong; Jung, Sang Taek

    2016-02-05

    G-protein-coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.

  5. Production and characterization of monoclonal antibody specific to recombinant dengue multi-epitope protein.

    Science.gov (United States)

    Abhyankar, Ajay Vinayak; Bhargava, Rakesh; Jana, Asha Mukul; Sahni, Ajay Kumar; Rao, P V Lakshmana

    2008-06-01

    Monoclonal antibodies against novel dengue recombinant protein were produced following immunization of Balb/c mice with recombinant dengue multi-epitope protein (r-DMEP) expressed in Escherichia coli vector and purified in a single-step chromatography system. Antigenicity of r-DMEP was evaluated by dot enzyme immunoassay. Mice were immunized intraperitoneally with five doses each of 100 microg of this novel antigen at 1-week intervals and a final intravenous booster dose prior to the fusion. Hybridomas resulted from fusion of myeloma cells and splenocytes using PEG-1500 as an additive. Selection of the hybrids was done using HAT medium, and the hybrids thus selected were finally screened qualitatively and quantitatively by dot and plate immunoassays, respectively. Five antibody secretory hybrid clones exhibited specific reactivity against r-DMEP by dot-ELISA, whereas a lone clone was found to be cross-reactive with Japanese encephalitis virus (JEV). Monoclonal antibodies (MAbs) specific to r-DME protein recognized the envelope and non-structural epitopes by Western blot analysis. These MAbs were further checked for their diagnostic efficacy using dengue suspected clinical samples and found overall sensitivity and specificity for DRDE dipstick ELISA. MAb-based dipstick ELISA results were 85%, 75% and 85%, 90%, respectively.

  6. EPITOPE MAPPING OF SCLC-CLUSTER-2 MABS AND GENERATION OF ANTIBODIES DIRECTED AGAINST NEW EGP-2 EPITOPES

    NARCIS (Netherlands)

    HELFRICH, W; KONING, PW; THE, TH; DELEIJ, L

    1994-01-01

    Western blot analysis proved that all cluster-2 MAbs recognize identical or overlapping disulfide-bond-dependent epitopes, indicating the presence of a disulfide-bond-stabilized EGP-2 domain carrying highly immunodominant non-linear epitopes. The apparent immunodominance of this domain makes it diff

  7. Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA

    DEFF Research Database (Denmark)

    Barfod, L.; Bernasconi, N. L.; Dahlback, M.

    2007-01-01

    to evaluate B-cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3-X construct. Our findings show that there is a high-frequency memory response to VSA(PAM), indicating that VAR2CSA is a primary target of naturally acquired PAM......-molecular-weight (> 200 kDa) proteins, while seven reacted with either the DBL3-X or the DBL5-epsilon domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3-X domains from P. falciparum field isolates...

  8. Human serum antibodies to a major defined epitope of human herpesvirus 8 small viral capsid antigen.

    Science.gov (United States)

    Tedeschi, R; De Paoli, P; Schulz, T F; Dillner, J

    1999-04-01

    The major antibody-reactive epitope of the small viral capsid antigen (sVCA) of human herpesvirus 8 (HHV-8) was defined by use of overlapping peptides. Strong IgG reactivity was found among approximately 50% of 44 human immunodeficiency virus-positive or -negative patients with Kaposi's sarcoma and 13 subjects who were seropositive by immunofluorescence assay (IFA) for the latent HHV-8 nuclear antigen. Only 1 of 106 subjects seronegative for both lytic and latent HHV-8 antigens and 10 of 81 subjects IFA-seropositive only for the lytic HHV-8 antigen had strong IgG reactivity to this epitope. Among 534 healthy Swedish women, only 1.3% were strongly seropositive. Comparison of the peptide-based and purified sVCA protein-based ELISAs found 55% sensitivity and 98% specificity. However, only 1 of 452 serum samples from healthy women was positive in both tests. In conclusion, the defined sVCA epitope was a specific, but not very sensitive, serologic marker of active HHV-8 infection. Such infection appears to be rare among Swedish women, even with sexual risk-taking behavior.

  9. Mapping of Lol p I allergenic epitopes by using murine monoclonal antibodies.

    Science.gov (United States)

    Mourad, W; Bernier, D; Jobin, M; Hébert, J

    1989-11-01

    Murine monoclonal antibodies (MAbs) against three non-overlapping epitopes of Lol p I allergen were previously produced and subsequently used for purification of the allergen. In the present study, these MAbs were further characterized, and the biological activity of the purified allergen assessed. The three MAbs were of the IgG isotype and carried a kappa light chain. Their affinity constants were in the range of 7.4-15.1 x 10(-9) mol/l. Purified Lol p I kept its biological activity, as shown by its ability to induce histamine release by basophils of Lol p I-sensitive patients. The profiles of histamine release induced by either Lol p I or crude Lolium perenne extracts were comparable. This observation suggests that human IgE bound to basophils are polyspecific which has been confirmed by immunoblot and inhibition assay. Our data indicated also that Lol p I possesses a major allergenic epitope recognized by all human serum IgE tested. This epitope seems to be partially shared by those recognized by the three MAbs. Finally, preincubation of Lol p I with either one of the Mabs did not affect significantly the basophil-histamine release induced by the purified allergen. This suggests that Lol p I possesses allergenic sites other than the one shared by MAbs and IgE Abs.

  10. Carbohydrate Microarrays Identify Blood Group Precursor Cryptic Epitopes as Potential Immunological Targets of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-01-01

    Full Text Available Using carbohydrate microarrays, we explored potential natural ligands of antitumor monoclonal antibody HAE3. This antibody was raised against a murine mammary tumor antigen but was found to cross-react with a number of human epithelial tumors in tissues. Our carbohydrate microarray analysis reveals that HAE3 is specific for an O-glycan cryptic epitope that is normally hidden in the cores of blood group substances. Using HAE3 to screen tumor cell surface markers by flow cytometry, we found that the HAE3 glycoepitope, gpHAE3, was highly expressed by a number of human breast cancer cell lines, including some triple-negative cancers that lack the estrogen, progesterone, and Her2/neu receptors. Taken together, we demonstrate that HAE3 recognizes a conserved cryptic glycoepitope of blood group precursors, which is nevertheless selectively expressed and surface-exposed in certain breast tumor cells. The potential of this class of O-glycan cryptic antigens in breast cancer subtyping and targeted immunotherapy warrants further investigation.

  11. Characterization of an isotype-dependent monoclonal antibody against linear neutralizing epitope effective for prophylaxis of enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Xiao Fang Lim

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the main causative agent of Hand, Foot and Mouth disease (HFMD and is associated with severe neurologic complications and mortalities. At present, there is no vaccine or therapeutic available for treatment. METHODOLOGY/PRINCIPAL FINDING: In this study, we generated two mAbs, denoted as mAb 51 and 53, both targeting the same linear epitope on VP1 capsid protein, spanning amino acids 215-219. In comparison, mAb 51 belonging to isotype IgM possesses neutralizing activity in vitro, whereas, mAb 53 belonging to isotype IgG1 does not have any neutralizing ability, even towards its homologous strain. When mAb 51 at 10 µg/g of body weight was administered to the 2-week-old AG129 mice one day prior to lethal challenge, 100% in vivo passive protection was observed. In contrast, the isotype control group mice, injected with an irrelevant IgM antibody before the challenge, developed limb paralysis as early as day 6 post-infection. Histological examination demonstrated that mAb 51 was able to protect against pathologic changes such as neuropil vacuolation and neuronal loss in the spinal cord, which were typical in unprotected EV-71 infected mice. BLAST analyses of that epitope revealed that it was highly conserved among all EV71 strains, but not coxsachievirus 16 (CA16. CONCLUSION: We have defined a linear epitope within the VP1 protein and demonstrated its neutralizing ability to be isotype dependent. The neutralizing property and highly conserved sequence potentiated the application of mAb 51 and 53 for protection against EV71 infection and diagnosis respectively.

  12. Method for generation of peptide-specific IgY antibodies directed to Staphylococcus aureus extracellular fibrinogen binding protein epitope.

    Science.gov (United States)

    Walczak, Maciej; Grzywa, Renata; Łupicka-Słowik, Agnieszka; Skoreński, Marcin; Bobrek, Kamila; Nowak, Daria; Boivin, Stephane; Brown, Eric L; Oleksyszyn, Józef; Sieńczyk, Marcin

    2015-09-01

    The IgY antibodies offer an attractive alternative to mammalian IgGs in research, diagnosis and medicine. The isolation of immunoglobulin Y from the egg yolks is efficient and economical, causing minimal suffering to animals. Here we present the methodology for the production of IgY antibodies specific to Staphylococcus aureus fibrinogen binding protein (Efb) and its peptidyl epitope (spanning residues 127-140). The Efb is an extracellular, adhesion protein which binds both human fibrinogen and complement C3 protein thus contributing to the high infectious potential of this pathogen. The selected epitope of Efb protein is responsible for the interaction with C3. The immunochemical characterization of both anti-Efb and epitope-specific IgY antibodies revealed their similar avidity, titer, and reactivity profile, although some differences in the hen's immune response to administered antigens is discussed.

  13. Development of a sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains.

    Directory of Open Access Journals (Sweden)

    Fang He

    Full Text Available BACKGROUND: Human Enterovirus 71 (EV71 is a common cause of hand, foot and mouth disease (HFMD in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. METHODOLOGY/PRINCIPAL FINDING: In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6 that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. CONCLUSION: The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.

  14. Electrophysical characteristics of Azospirillum brasilense Sp245 during interaction with antibodies to various cell surface epitopes.

    Science.gov (United States)

    Guliy, Olga I; Matora, Larisa Y; Burygin, Gennady L; Dykman, Lev A; Ostudin, Nikolai A; Bunin, Viktor D; Ignatov, Vladimir V; Ignatov, Oleg V

    2007-11-15

    This work was undertaken to examine the electrooptical characteristics of cells of Azospirillum brasilense Sp245 during their interaction with antibodies developed to various cell surface epitopes. We used the dependences of the cell suspension optical density changes induced by electroorientation on the orienting field frequency (740, 1000, 1450, 2000, and 2800kHz). Cell interactions with homologous strain-specific antibodies to the A. brasilense Sp245 O antigen and with homologous antibodies to whole bacterial cells brought about considerable changes in the electrooptical properties of the bacterial suspension. When genus-specific antibodies to the flagellin of the Azospirillum sheathed flagellum and antibodies to the serologically distinct O antigen of A. brasilense Sp7 were included in the A. brasilense Sp245 suspension, the changes caused in the electrooptical signal were slight and had values close to those for the above changes. These findings agree well with the immunochemical characteristics of the Azospirillum O antigens and with the data on the topographical distribution of the Azospirillum major cell surface antigens. The obtained results can serve as a basis for the development of a rapid test for the intraspecies detection of microorganisms.

  15. Toward Effective HIV Vaccination INDUCTION OF BINARY EPITOPE REACTIVE ANTIBODIES WITH BROAD HIV NEUTRALIZING ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie; Nitti, Giovanni; Taguchi, Hiroaki; Jin, Lei; Symersky, Jindrich; Boivin, Stephane; Sienczyk, Marcin; Salas, Maria; Hanson, Carl V.; Paul, Sudhir; (Texas-MED); (Viral Rickettsial)

    2009-11-23

    We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragment revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.

  16. An epitope common to gangliosides O-acetyl-GD3 and GD3 recognized by antibodies in melanoma patients after active specific immunotherapy.

    Science.gov (United States)

    Ravindranath, M H; Morton, D L; Irie, R F

    1989-07-15

    GD3 is a major ganglioside of human melanoma and was shown to be an effective target for passive immunotherapy with murine monoclonal antibodies. It was noted earlier that GD3 neither purified nor in melanoma cell vaccine (MCV), could elicit an antibody response in melanoma patients. In this study, we demonstrate that melanoma patients who received MCV had autoantibodies against a derivative of GD3, O-acetylated GD3 (O-AcGD3), a minor ganglioside expressed on human melanoma cells, and that the antibodies cross-reacted with GD3. Thin layer chromatographic immunostaining revealed that all of the sera containing antibodies against O-AcGD3 also reacted to GD3. None of the other sera responded only to GD3, although the MCV contained 7- to 12-fold higher GD3 than O-AcGD3. Furthermore, the antibody activity was completely abolished by absorption with animal erythrocytes expressing either O-acetyl disialogangliosides or GD3, indicating that the antibodies recognize an epitope commonly shared by GD3 and O-AcGD3. The antibodies bound only to the sialyloligosaccharide moiety but not to the ceramide portion of GD3 after endoglycosylceramidase treatment. The antibodies failed to bind to GD3 after neuraminidase treatment. These results indicate that the sialyloligosaccharides of the gangliosides are important components of the epitope. Periodate oxidation abolished reactivity of the antibodies to GD3 but not that to O-AcGD3, revealing that the glycerol side chain of the sialic acids in both GD3s was an important structure of the epitope. The binding of the antibodies to melanoma cell surface gangliosides was confirmed by an absorption with a GD3- and O-AcGD3-positive melanoma cell line. These results in the light of previous reports on the inability of GD3 to elicit immune response in humans suggest that anti-GD3 antibodies found in the melanoma patients were induced by immunization with O-AcGD3 and O-AcGD3 present in the MCV would serve as an antigen source for GD3-targeted

  17. Epitope grafting, re-creating a conformational Bet v 1 antibody epitope on the surface of the homologous apple allergen Mal d 1

    DEFF Research Database (Denmark)

    Holm, Jens; Ferreras, Mercedes; Ipsen, Henrik;

    2011-01-01

    Birch-allergic patients often experience oral allergy syndrome upon ingestion of vegetables and fruits, most prominently apple, that is caused by antibody cross-reactivity of the IgE antibodies in patients to proteins sharing molecular surface structures with the major birch pollen group 1 allergen...... scaffold molecule without loss of epitope functionality. Furthermore, we show that increasing surface similarity to Bet v 1 of Mal d 1 variants by substitution of 6-8 residues increased the ability to trigger basophil histamine release with blood from birch-allergic patients not responding to natural Mal d...

  18. A synthetic peptide derived from the animo acid sequence of canine parvovirus structural proteins which defines a B cell epitope and elicits antiviral antibody in BALB c mice.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractSynthetic peptides, recombinant fusion proteins and mouse monoclonal antibodies were used to delineate a B cell epitope of the VP'2 structural protein of canine parvovirus (CPV). Although this epitope is not preferentially recognized in the normal antibody response to CPV, virus-specific

  19. Comprehensive mapping infection-enhancing epitopes of dengue pr protein using polyclonal antibody against prM.

    Science.gov (United States)

    Luo, Yayan; Guo, Xiaolan; Yan, Huijun; Fang, Danyun; Zeng, Gucheng; Zhou, Junmei; Jiang, Lifang

    2015-07-01

    Dengue vaccine development is considered a global public health priority, but the antibody-dependent enhancement (ADE) issues have critically restricted vaccine development. Recent findings have demonstrated that pre-membrane (prM) protein was involved in dengue virus (DENV) infection enhancement. Although the importance of prM antibodies have been well characterized, only a few epitopes in DENV prM protein have ever been identified. In this study, we screened five potential linear epitopes located at positions pr1 (1-16aa), pr3 (13-28aa), pr4 (19-34aa), pr9 (49-64aa), and pr10 (55-70aa) in pr protein using peptide scanning and comprehensive bioinformatics analysis. Then, we found that only pr4 (19-34aa) could elicit high-titer antibodies in Balb/c mice, and this epitope could react with sera from DENV2-infected patients, suggesting that specific antibodies against epitope peptide pr4 were elicited in both DENV-infected mice and human. In addition, our data demonstrated that anti-pr4 sera showed limited neutralizing activity but significant ADE activity toward standard DENV serotypes and imDENV. Hence, it seems responsible to hypothesize that anti-pr4 serum was infection-enhancing antibody and pr4 was infection-enhancing epitope. In conclusion, we characterized a novel infection-enhancing epitope on dengue pr protein, a finding that may provide new insight into the pathogenesis of DENV infection and contribute to dengue vaccine design.

  20. Identification of a linear B-cell epitope on the avian leukosis virus P27 protein using monoclonal antibodies.

    Science.gov (United States)

    Li, Xiaofei; Qin, Liting; Zhu, Haibo; Sun, Yingjun; Cui, Xuezhi; Gao, Yadong; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2016-10-01

    Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can induce various clinical tumors. The capsid protein P27 is the group-specific antigen of ALV and has many viral antigen sites that are easy to detect. In this study, we produced a monoclonal antibody (mAb), 3A9, that is specific for the P27 protein. A series of partially overlapping peptides were screened to define (181)PPSAR(185) as the minimal linear epitope recognized by mAb 3A9. The identified epitope could be recognized by chicken anti-ALV and mouse anti-ALV P27 sera. The epitope was highly conserved among a number of ALV-A, ALV-B and ALV-J strains. MAb 3A9 might be a valuable tool for the development of new immunodiagnostic approaches for ALV, and the defined linear epitope might help further our understanding of the antigenic structure of the P27 protein.

  1. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J;

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected to...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation.......An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...

  2. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a K(D of ∼10 nM. Binding was inhibited in the presence of the -Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas as evidenced by single photon emission (SPECT imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.

  3. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  4. Discovery of functional antibodies targeting ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I; Gardener, Matthew J; Williams, Wendy A

    2015-04-01

    Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.

  5. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors

    Science.gov (United States)

    Yang, Kyung-Ae; Barbu, Mihaela; Halim, Marlin; Pallavi, Payal; Kim, Benjamin; Kolpashchikov, Dmitry M.; Pecic, Stevan; Taylor, Steven; Worgall, Tilla S.; Stojanovic, Milan N.

    2014-11-01

    Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed in situ with a nonspecific organometallic receptor. The method is general and enables broad clinical use of aptamers for the detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects.

  6. Analysis of risk epitopes of anti-neutrophil antibody MPO-ANCA in vasculitis in Japanese population.

    Science.gov (United States)

    Suzuki, Kazuo; Kobayashi, Shigeto; Yamazaki, Kazushige; Gondo, Masaaki; Tomizawa, Kazuo; Arimura, Yoshihiro; Nakabayashi, Kimimasa; Ozaki, Shoichi; Yoshida, Masaharu; Yoshida, Toshiharu; Tsusaka, Norimasa; Muso, Eri; Okazaki, Tomio; Hashimoto, Hiroshi

    2007-01-01

    Autoantibodies to myeloperoxidase (MPO) are a subset of anti-neutrophil cytoplasmic antibody (ANCA, MPO-ANCA) detected in the sera of some patients with primary systemic vasculitis. The titer of MPO-ANCA does not always reflect disease activity and this inconsistency may be attributable to differences in epitopic specificity by MPO-ANCA among various patients with vasculitis. Epitope analysis may also explain the occurrence of MPO-ANCA in different vasculitic syndromes. We screened the sera of 148 MPO-ANCA positive patients from six vasculitic syndromes: rapidly progressive gromerulonephritis (RPGN), microscopic polyangiitis (MPA), idiopathic crescentic glomerulonephritis (I-CrGN), classic polyangiitis nodosa (cPAN), Churg-Strauss syndrome (CSS), Kawasaki disease (KD); and from patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). The sera were collected by the Intractable Vasculitis Research Project Group in Japan. No serum showed epitopes La and Lb of light chain of MPO, and sera with 68.6% of patients showed a positive reaction to one or more epitopes in heavy chain of MPO. Analysis of binding level showed that RPGN, I-CrGN and MPA sera mainly reacted to the Ha epitope at the N-termimus of the MPO heavy chain, CSS sera reacted to Ha and the Hf epitope close to the C-terminus of the MPO heavy chain, KD reacted mainly to Hf, while SLE and RA sera reacted to all epitopes. These results suggest that MPO-ANCA recognizing specific regions of the N-terminus of the MPO H-chain confer an increased risk of vasculitis RPGN, I-CrGN, MPA and CSS. Furthermore, the epitopic specificity of MPO-ANCA differentiates vasculitic from non-vasculitic syndromes associated with MPO-ANCA positivity and differentiates in the cirtain type of vasculitis from various vasculitic syndromes. In particular, vasculitic syndromes associated with kidney involvement had similar epitopic reactivity which suggests that this pattern confers an increased risk of vasculitis.

  7. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Directory of Open Access Journals (Sweden)

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  8. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette;

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other...... preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious...

  9. Synthesis and comparison of antibody recognition of conjugates containing herpes simplex virus type 1 glycoprotein D epitope VII

    NARCIS (Netherlands)

    Mezo, G; de Oliveira, E; Krikorian, D; Feijlbrief, M; Jakab, A; Tsikaris, [No Value; Sakarellos, C; Welling-Wester, S; Andreu, D; Hudecz, F

    2003-01-01

    Synthetic oligopeptides comprising linear or continuous topographic B-cell epitope sequences of proteins might be considered as specific and small size antigens. It has been demonstrated that the strength and specificity of antibody binding could be altered by conjugation to macromolecules or by mod

  10. Proof of principle for epitope-focused vaccine design

    Science.gov (United States)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  11. Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide.

    Directory of Open Access Journals (Sweden)

    Alfred T Welzel

    Full Text Available Soluble non-fibrillar assemblies of amyloid-beta (Aβ and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD. Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ's conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody's nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody's lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted.

  12. Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide.

    Science.gov (United States)

    Welzel, Alfred T; Williams, Angela D; McWilliams-Koeppen, Helen P; Acero, Luis; Weber, Alfred; Blinder, Veronika; Mably, Alex; Bunk, Sebastian; Hermann, Corinna; Farrell, Michael A; Ehrlich, Hartmut J; Schwarz, Hans P; Walsh, Dominic M; Solomon, Alan; O'Nuallain, Brian

    2012-01-01

    Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ's conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody's nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody's lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted.

  13. Antibody recognition of Shiga toxins (Stxs: computational identification of the epitopes of Stx2 subunit A to the antibodies 11E10 and S2C4.

    Directory of Open Access Journals (Sweden)

    Yongjun Jiao

    Full Text Available We have recently developed a new method to predict the epitopes of the antigens that are recognized by a specific antibody. In this work, we applied the method to identify the epitopes of the Shiga toxin (Stx2 subunit A that were bound by two specific antibodies 11E10 and S2C4. The predicted epitopes of Stx2 binding to the antibody 11E10 resembles the recognition surface constructed by the regions of Stx2 identified experimentally. For the S2C4, our results indicate that the antibody recognizes the Stx2 at two different regions on the protein surface. The first region (residues 246-254: ARSVRAVNE is similar to the recognition region of the 11E10, while the second region is formed by two epitopes. The second region is particularly significant because it includes the amino acid sequence region that is diverse between Stx2 and other Stx (residues 176-188: QREFRQALSETAPV. This new recognition region is believed to play an important role in the experimentally observed selectivity of S2C4 to the Stx2.

  14. Characterization of periplasmic protein BP26 epitopes of Brucella melitensis reacting with murine monoclonal and sheep antibodies.

    Science.gov (United States)

    Qiu, Jinlang; Wang, Wenjing; Wu, Jingbo; Zhang, Hui; Wang, Yuanzhi; Qiao, Jun; Chen, Chuangfu; Gao, Goege F; Allain, Jean-Pierre; Li, Chengyao

    2012-01-01

    More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues ⁹³DRDLQTGGI¹⁰¹ (position 93 to 101) or residues ¹⁰⁴QPIYVYPD¹¹¹, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65-70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.

  15. Monoclonal antibodies against human immunodeficiency virus type 1 integrase: epitope mapping and differential effects on integrase activities in vitro.

    Science.gov (United States)

    Nilsen, B M; Haugan, I R; Berg, K; Olsen, L; Brown, P O; Helland, D E

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the integration of viral DNA into the host chromosome, an essential step in retroviral replication. As a tool to study the structure and function of this enzyme, monoclonal antibodies (MAbs) against HIV-1 IN were produced. Epitope mapping demonstrated that the 17 MAbs obtained could be divided into seven different groups, and the selection of MAbs representing these groups were tested for their effect on in vitro activities of IN. Four groups of MAbs recognized epitopes within the region of amino acids (aa) 1 to 16, 17 to 38, or 42 to 55 in and around the conserved HHCC motif near the N terminus of IN. MAbs binding to these epitopes inhibited end processing and DNA joining and either stimulated or had little effect on disintegration and reintegration activities of IN. Two MAbs binding to epitopes within the region of aa 56 to 102 in the central core or aa 186 to 250 in the C-terminal half of the protein showed only minor effects on the in vitro activities of IN. Three Mabs which recognized on epitope within the region of aa262 to 271 of HIV-1 IN cross-reacted with HIV-2 IN. MAbs binding to this epitope clearly inhibited end processing and DNA joining and stimulated or had little effect on disintegration. In contrast to the N-terminal-specific MAbs, these C-terminal-specific MAbs abolished reintegration activity of IN. PMID:8627677

  16. Production, Characterization and Use of Monoclonal Antibodies Recognizing IgY Epitopes Shared by Chicken, Turkey, Pheasant, Peafowl and Sparrow

    Directory of Open Access Journals (Sweden)

    Ajda Biček

    2004-01-01

    Full Text Available Chicken antibodies are not only a part of immune defense but are more and more popular commercial products in form of chicken polyclonal, monoclonal or recombinant antibodies. We produced and characterized mouse monoclonal antibodies (mAbs that recognize epitopes located on heavy or light chain of chicken immunoglobulin Y (chIgY shared also by some other Phasianidae birds. The use of mAbs 1F5 and 2F10 that recognize heavy chain on chIgY common epitopes was demonstrated on immunoglobulins of turkey, pheasant and peafowl. Chicken IgY light chain specific mAb 3E10 revealed the presence of common epitopes on immunoglobulins of turkey, pheasant and sparrow. Monoclonal antibody clone 1F5/3G2 was used to prepare horseradish peroxidase (HRP conjugate and immunoadsorbent column. Conjugated mAbs were demonstrated to be excellent secondary antibodies for diagnostics of certain infections in different avian species. Since they do not react with mammalian immunoglobulins using our mAbs as secondary antibodies in human serodiagnostics would minimize background staining that appears when using mouse detection system. In dot immunobinding assay (DIBA and immunoblot assay they recognized specific IgY antibodies against Mycoplasma synoviae, Mycoplasma gallisepticum and Newcastle disease virus in sera of infected or vaccinated birds. Immunoadsorption as a method for removal of IgY from samples in which Mycoplasma synoviae specific IgY was predominant immunoglobulin class enabled more exact demonstration of specific IgA and IgM antibodies. Herein we are presenting effective mAbs useful in diagnostics of avian and mammalian infections as well as in final steps of detection and purification of chicken antibodies and their subunits produced in vivo or in vitro as polyclonal, monoclonal or recombinant antibodies.

  17. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes.

    Science.gov (United States)

    Sukupolvi-Petty, Soila; Austin, S Kyle; Purtha, Whitney E; Oliphant, Theodore; Nybakken, Grant E; Schlesinger, Jacob J; Roehrig, John T; Gromowski, Gregory D; Barrett, Alan D; Fremont, Daved H; Diamond, Michael S

    2007-12-01

    Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.

  18. Antibodies recognizing Mycobacterium avium paratuberculosis epitopes cross-react with the beta-cell antigen ZnT8 in Sardinian type 1 diabetic patients.

    Directory of Open Access Journals (Sweden)

    Speranza Masala

    Full Text Available The environmental factors at play in the pathogenesis of type 1 diabetes (T1D remain enigmatic. Mycobacterium avium subspecies paratuberculosis (MAP is transmitted from dairy herds to humans through food contamination. MAP causes an asymptomatic infection that is highly prevalent in Sardinian T1D patients compared with type 2 diabetes (T2D and healthy controls. Moreover, MAP elicits humoral responses against several mycobacterial proteins. We asked whether antibodies (Abs against one of these proteins, namely MAP3865c, which displays a sequence homology with the β-cell protein zinc transporter 8 (ZnT8 could be cross-reactive with ZnT8 epitopes. To this end, Ab responses against MAP3865c were analyzed in Sardinian T1D, T2D and healthy subjects using an enzymatic immunoassay. Abs against MAP3865c recognized two immunodominant transmembrane epitopes in 52-65% of T1D patients, but only in 5-7% of T2D and 3-5% of healthy controls. There was a linear correlation between titers of anti-MAP3865c and anti-ZnT8 Abs targeting these two homologous epitopes, and pre-incubation of sera with ZnT8 epitope peptides blocked binding to the corresponding MAP3865c peptides. These results demonstrate that Abs recognizing MAP3865c epitopes cross-react with ZnT8, possibly underlying a molecular mimicry mechanism, which may precipitate T1D in MAP-infected individuals.

  19. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2009-07-01

    Full Text Available Abstract Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1 regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007, we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms. The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges

  20. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhou

    Full Text Available BACKGROUND: Human bocavirus species 1-4 (HBoV1-4 have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS: We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰, and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4. Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE: The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.

  1. Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation

    DEFF Research Database (Denmark)

    Willats, William George Tycho; Limberg, G.; Buchholt, H.C.;

    2000-01-01

    The structure of epitopes recognised by anti-pectin monoclonal antibodies (mAbs) has been investigated using a series of model lime-pectin samples with defined degrees and patterns of methyl esterification, a range of defined oligogalacturonides and enzymatic degradation of pectic polysaccharides....... In immuno-dot-assays, the anti-homogalacturonan (HG) mAbs JIM5 and JIM7 both bound to samples with a wide range of degrees of methyl esterification in preference to fully de-esterified samples. In contrast, the anti-HG phage display mAb PAM1 bound most effectively to fully de-esterified pectin...... occurs where specific but undefined methyl-esterification patterns are present on HG domains, although fully de-esterified HG samples contain sub-optimal JIM5 epitopes. The persistence of mAb binding to epitopes in pectic antigens, with 41% blockwise esterification (P41) and 43% random esterification (F...

  2. Mapping of epitopes on Poa p I and Lol p I allergens with monoclonal antibodies.

    Science.gov (United States)

    Lin, Z W; Ekramoddoullah, A K; Jaggi, K S; Dzuba-Fischer, J; Rector, E; Kisil, F T

    1990-01-01

    Allergen Poa p I isolated from the dialysed aqueous extract of Kentucky blue grass pollen by affinity chromatography with an anti-Lol p I murine monoclonal antibody (MAb) 290A-167 was previously shown to consist of a 35.8-kilodalton (kD) component with a pI of 6.4, designated as Poa p Ia, and a 33-kD component with a pI of 9.1, designated as Poa p Ib. The present study reports on the comparative antigenic analyses of these two components, using MAbs produced separately against Poa p I and Lol p I. Thus, anti-Poa p I MAbs 60 and 61 and anti-Lol p I MAb 290A-167 recognized Poa p Ia and Poa p Ib whereas anti-Poa p I MAbs 62, 63 and 64 and anti-Lol p I MAb 348A-6 recognized only Poa p Ia. The specificities of the MAbs were further resolved by comparing their respective abilities to inhibit the binding of 125I-Poa p I or 125I-Lol p I to the different MAbs prepared in the form of solid phase. These studies revealed that at least 4 distinct epitopes (designated as E1, E2, E3 and E4) were shared by both Poa p I and Lol p I. All 4 epitopes were present on Poa p Ia whereas only E1 and E3 were detected on Poa p Ib. E1 was recognized by MAbs 60 and 61, E2 by MAbs 62, 63 and 64, E3 by MAb 290A-167 and E4 by MAb 348A-6.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Understanding ForteBio's Sensors for High-Throughput Kinetic and Epitope Screening for Purified Antibodies and Yeast Culture Supernatant.

    Science.gov (United States)

    Yu, Yao; Mitchell, Scott; Lynaugh, Heather; Brown, Michael; Nobrega, R Paul; Zhi, Xiaoyong; Sun, Tingwan; Caffry, Isabelle; Cao, Yuan; Yang, Rong; Burnina, Irina; Xu, Yingda; Estep, Patricia

    2016-01-01

    Real-time and label-free antibody screening systems are becoming more popular because of the increasing output of purified antibodies and antibody supernatant from many antibody discovery platforms. However, the properties of the biosensor can greatly affect the kinetic and epitope binning results generated by these label-free screening systems. ForteBio human-specific ProA, anti-human IgG quantitation (AHQ), anti-human Fc capture (AHC) sensors, and custom biotinylated-anti-human Fc capture (b-AHFc) sensors were evaluated in terms of loading ability, regeneration, kinetic characterization, and epitope binning with both purified IgG and IgG supernatant. AHC sensors proved unreliable for kinetic or binning assays at times, whereas AHQ sensors showed poor loading and regeneration abilities. ProA sensors worked well with both purified IgG and IgG supernatant. However, the interaction between ProA sensors and the Fab region of the IgG with VH3 germline limited the application of ProA sensors, especially in the epitope binning experiment. In an attempt to generate a biosensor type that would be compatible with a variety of germlines and sample types, we found that the custom b-AHFc sensors appeared to be robust working with both purified IgG and IgG supernatant, with little evidence of sensor-related artifacts.

  4. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies1[S

    Science.gov (United States)

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A.; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M.; Tsimikas, Sotirios; Fischer, Michael B.; Witztum, Joseph L.; Lang, Irene M.; Binder, Christoph J.

    2015-01-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA+ MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE+ MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD. PMID:25525116

  5. A novel universal neutralizing monoclonal antibody against enterovirus 71 that targets the highly conserved "knob" region of VP3 protein.

    Directory of Open Access Journals (Sweden)

    Tanja K Kiener

    Full Text Available Hand, foot and mouth disease caused by enterovirus 71(EV71 leads to the majority of neurological complications and death in young children. While putative inactivated vaccines are only now undergoing clinical trials, no specific treatment options exist yet. Ideally, EV71 specific intravenous immunoglobulins could be developed for targeted treatment of severe cases. To date, only a single universally neutralizing monoclonal antibody against a conserved linear epitope of VP1 has been identified. Other enteroviruses have been shown to possess major conformational neutralizing epitopes on both the VP2 and VP3 capsid proteins. Hence, we attempted to isolate such neutralizing antibodies against conformational epitopes for their potential in the treatment of infection as well as differential diagnosis and vaccine optimization. Here we describe a universal neutralizing monoclonal antibody that recognizes a conserved conformational epitope of EV71 which was mapped using escape mutants. Eight escape mutants from different subgenogroups (A, B2, B4, C2, C4 were rescued; they harbored three essential mutations either at amino acid positions 59, 62 or 67 of the VP3 protein which are all situated in the "knob" region. The escape mutant phenotype could be mimicked by incorporating these mutations into reverse genetically engineered viruses showing that P59L, A62D, A62P and E67D abolish both monoclonal antibody binding and neutralization activity. This is the first conformational neutralization epitope mapped on VP3 for EV71.

  6. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope.

    Science.gov (United States)

    Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong

    2015-02-01

    Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine.

  7. G196 epitope tag system: a novel monoclonal antibody, G196, recognizes the small, soluble peptide DLVPR with high affinity

    Science.gov (United States)

    Tatsumi, Kasumi; Sakashita, Gyosuke; Nariai, Yuko; Okazaki, Kosuke; Kato, Hiroaki; Obayashi, Eiji; Yoshida, Hisashi; Sugiyama, Kanako; Park, Sam-Yong; Sekine, Joji; Urano, Takeshi

    2017-01-01

    The recognition specificity of monoclonal antibodies (mAbs) has made mAbs among the most frequently used tools in both basic science research and in clinical diagnosis and therapies. Precise determination of the epitope allows the development of epitope tag systems to be used with recombinant proteins for various purposes. Here we describe a new family of tag derived from the epitope recognized by a highly specific mAb G196. The minimal epitope was identified as the five amino acid sequence Asp-Leu-Val-Pro-Arg. Permutation analysis was used to characterize the binding requirements of mAb G196, and the variable regions of the mAb G196 were identified and structurally analyzed by X-ray crystallography. Isothermal titration calorimetry revealed the high affinity (Kd = 1.25 nM) of the mAb G196/G196-epitope peptide interaction, and G196-tag was used to detect several recombinant cytosolic and nuclear proteins in human and yeast cells. mAb G196 is valuable for developing a new peptide tagging system for cell biology and biochemistry research. PMID:28266535

  8. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.

    Directory of Open Access Journals (Sweden)

    Angel M Cuesta

    Full Text Available There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA, a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.

  9. Association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope and smoking status in Brazilian patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Michel Alexandre Yazbek

    2011-01-01

    Full Text Available INTRODUCTION: Epstein-Barr virus exposure appears to be an environmental trigger for rheumatoid arthritis that interacts with other risk factors. Relationships among anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status have been observed in patients with rheumatoid arthritis from different populations. OBJECTIVE: To perform an association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status in Brazilian patients with rheumatoid arthritis. METHODS: In a case-control study, 140 rheumatoid arthritis patients and 143 healthy volunteers who were matched for age, sex, and ethnicity were recruited. Anti-Epstein-Barr nuclear antigen-1 antibodies and anti-cyclic citrullinated peptide antibodies were examined using an enzyme-linked immunosorbent assay, and shared epitope alleles were identified by genotyping. Smoking information was collected from all subjects. A comparative analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status was performed in the patient group. Logistic regression analysis models were used to analyze the risk of rheumatoid arthritis. RESULTS: Anti-Epstein-Barr nuclear antigen-1 antibodies were not associated with anti-cyclic citrullinated peptide antibodies, shared epitope alleles, or smoking status. Anti-cyclic citrullinated peptide antibody positivity was significantly higher in smoking patients with shared epitope alleles (OR = 3.82. In a multivariate logistic regression analysis using stepwise selection, only anti-cyclic citrullinated peptide antibodies were found to be independently associated with rheumatoid arthritis (OR = 247.9. CONCLUSION: Anti-Epstein-Barr nuclear antigen-1 antibodies did not increase the risk of rheumatoid arthritis and were not associated with the rheumatoid arthritis risk factors studied. Smoking

  10. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Lavrsen, Kirstine; Madsen, Caroline B; Rasch, Morten G

    2013-01-01

    not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed...... is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies.......Protein glycosylation often changes during cancer development, resulting in the expression of cancer-associated carbohydrate antigens. In particular mucins such as MUC1 are subject to these changes. We previously identified an immunodominant Tn-MUC1 (GalNAc-α-MUC1) cancer-specific epitope...

  11. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope.

    Directory of Open Access Journals (Sweden)

    S Kyle Austin

    Full Text Available We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC' loop epitope on domain III (DIII of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC' loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development.

  12. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein.

    Science.gov (United States)

    Calvert, Amanda E; Kalantarov, Gavreel F; Chang, Gwong-Jen J; Trakht, Ilya; Blair, Carol D; Roehrig, John T

    2011-02-05

    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  13. Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody.

    Science.gov (United States)

    Malito, Enrico; Biancucci, Marco; Faleri, Agnese; Ferlenghi, Ilaria; Scarselli, Maria; Maruggi, Giulietta; Lo Surdo, Paola; Veggi, Daniele; Liguori, Alessia; Santini, Laura; Bertoldi, Isabella; Petracca, Roberto; Marchi, Sara; Romagnoli, Giacomo; Cartocci, Elena; Vercellino, Irene; Savino, Silvana; Spraggon, Glen; Norais, Nathalie; Pizza, Mariagrazia; Rappuoli, Rino; Masignani, Vega; Bottomley, Matthew James

    2014-12-02

    Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.

  14. Epitope Mapping of Antigenic MUC1 Peptides to Breast Cancer Antibody Fragment B27.29: A Heteronuclear NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Grinstead, Jeffrey S.; Schuman, Jason T.; Campbell, Ann P.

    2003-11-13

    MUC1 mucin is a breast cancer-associated transmembrane glycoprotein, of which the extracellular domain is formed by the repeating 20-amino acid sequence GVTSAPDTRPAPGSTAPPAH. In neoplastic breast tissue, the highly immunogenic sequence PDTRPAP (in bold above) is exposed. Antibodies raised directly against MUC1-expressing tumors offer unique access to this neoplastic state, as they represent immunologically relevant ''reverse templates'' of the tumor-associated mucin. In a previous study [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], 1H NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRPAP core epitope sequence on the recognition and binding of Mab B27.29, a monoclonal antibody raised against breast tumor cells. In the study presented here, isotope-edited NMR methods, including 15N and 13C relaxation measurements, were used to probe the recognition and binding of the PDTRPAP epitope sequence to Fab B27.29. Two peptides were studied: a one-repeat MUC1 16mer peptide of the sequence GVTSAPDTRPAPGSTA and a two-repeat MUC1 40mer peptide of the sequence (VTSAPDTRPAPGSTAPPAHG)2. 15N and 13C NMR relaxation parameters were measured for both peptides free in solution and bound to Fab B27.29. The 13CR T1 values best represent changes in the local correlation time of the peptide epitope upon binding antibody, and demonstrate that the PDTRPAP sequence is immobilized in the antibody-combining site. This result is also reflected in the appearance of the 15N- and 13C-edited HSQC spectra, where line broadening of the same peptide epitope resonances is observed. The PDTRPAP peptide epitope expands upon the peptide epitope identified previously in our group as PDTRP by homonuclear NMR experiments [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], and illustrates the usefulness of the heteronuclear NMR experiments. The implications of these results are discussed within the context of MUC1 breast

  15. Molecular Characterization of Two Monoclonal Antibodies against the Same Epitope on B-Cell Receptor Associated Protein 31.

    Science.gov (United States)

    Kim, Won-Tae; Shin, Saemina; Hwang, Hyo Jeong; Kim, Min Kyu; Jung, Han-Sung; Park, Hwangseo; Ryu, Chun Jeih

    2016-01-01

    Previously, we showed that B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum (ER) membrane chaperone, is also expressed on the cell surface by two monoclonal antibodies (MAbs) 297-D4 and 144-A8. Both MAbs recognize the same linear epitope on the C-terminal domain of BAP31, although they were independently established. Here, flow cytometric analysis showed that 144-A8 had additional binding properties to some cells, as compared to 297-D4. Quantitative antigen binding assays also showed that 144-A8 had higher antigen binding capacity than 297-D4. Affinity measurement revealed that 144-A8 had 1.54-fold higher binding affinity than 297-D4. Analysis of the heavy- and light-chain variable region sequences of two MAbs revealed that both MAbs belonged to the same heavy chain (Igh-V3660 VH3) and light chain subgroup (IGKV21) with just two amino acid differences in each framework region, indicating that both MAbs arise from the same germline origin. Seven amino acid differences were found between the complementarity determining regions (CDRs) of the two MAbs. Molecular modeling of the epitope-paratope complexes revealed that the epitope appeared to reside in closer proximity to the CDRs of 144-A8 than to those of 297-D4 with the stronger hydrogen bond interactions with the former than the latter. More interestingly, an additional hydrophobic interaction appeared to be established between the leucine residue of epitope and the paratope of 144-A8, due to the substitution of H-Tyr101 for H-Phe101 in 144-A8. Thus, the different binding specificity and affinity of 144-A8 appeared to be due to the different hydrogen bonds and hydrophobic interaction induced by the alterations of amino acids in CDRs of 144-A8. The results provide molecular insights into how the binding specificities and affinities of antibodies evolve with the same epitope in different microenvironments.

  16. Immune recognition surface construction of Mycobacterium tuberculosis epitope-specific antibody responses in tuberculosis patients identified by peptide microarrays

    Directory of Open Access Journals (Sweden)

    Davide Valentini

    2017-03-01

    Conclusions: These data reveal the heterogeneity of epitope-dependent humoral immune responses in TB patients, partly due to geographical setting. These findings expose a new avenue for mining clinically meaningful vaccine targets, diagnostic tools, and the development of immunotherapeutics in TB disease management or prevention.

  17. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    Directory of Open Access Journals (Sweden)

    Ema T Crooks

    2015-05-01

    Full Text Available Eliciting broad tier 2 neutralizing antibodies (nAbs is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs expressing trimers (trimer VLP sera and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera. All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs. Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype rendered 50% or 16.7% (n = 18 of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  18. Human Anti-Aβ IgGs Target Conformational Epitopes on Synthetic Dimer Assemblies and the AD Brain-Derived Peptide

    Science.gov (United States)

    Welzel, Alfred T.; Williams, Angela D.; McWilliams-Koeppen, Helen P.; Acero, Luis; Weber, Alfred; Blinder, Veronika; Mably, Alex; Bunk, Sebastian; Hermann, Corinna; Farrell, Michael A.; Ehrlich, Hartmut J.; Schwarz, Hans P.; Walsh, Dominic M.; Solomon, Alan; O’Nuallain, Brian

    2012-01-01

    Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer’s disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ’s conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody’s nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody’s lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted. PMID:23209707

  19. Epitope mapping of neutralizing monoclonal antibody in avian influenza A H5N1 virus hemagglutinin.

    Science.gov (United States)

    Ohkura, Takashi; Kikuchi, Yuji; Kono, Naoko; Itamura, Shigeyuki; Komase, Katsuhiro; Momose, Fumitaka; Morikawa, Yuko

    2012-02-03

    The global spread of highly pathogenic avian influenza A H5N1 viruses raises concerns about more widespread infection in the human population. Pre-pandemic vaccine for H5N1 clade 1 influenza viruses has been produced from the A/Viet Nam/1194/2004 strain (VN1194), but recent prevalent avian H5N1 viruses have been categorized into the clade 2 strains, which are antigenically distinct from the pre-pandemic vaccine. To understand the antigenicity of H5N1 hemagglutinin (HA), we produced a neutralizing monoclonal antibody (mAb12-1G6) using the pre-pandemic vaccine. Analysis with chimeric and point mutant HAs revealed that mAb12-1G6 bound to the loop (amino acid positions 140-145) corresponding to an antigenic site A in the H3 HA. mAb12-1G6 failed to bind to the mutant VN1194 HA when only 3 residues were substituted with the corresponding residues of the clade 2.1.3.2 A/Indonesia/5/05 strain (amino acid substitutions at positions Q142L, K144S, and S145P), suggesting that these amino acids are critical for binding of mAb12-1G6. Escape mutants of VN1194 selected with mAb12-1G6 carried a S145P mutation. Interestingly, mAb12-1G6 cross-neutralized clade 1 and clade 2.2.1 but not clade 2.1.3.2 or clade 2.3.4 of the H5N1 virus. We discuss the cross-reactivity, based on the amino acid sequence of the epitope.

  20. Arizona cypress (Cupressus arizonica) pollen allergens. Identification of cross-reactive periodate-resistant and -sensitive epitopes with monoclonal antibodies.

    Science.gov (United States)

    Barletta, B; Tinghino, R; Corinti, S; Afferni, C; Iacovacci, P; Mari, A; Pini, C; Di Felice, G

    1998-06-01

    Species of the Cupressaceae family are a worldwide cause of respiratory allergies. We used monoclonal antibodies (mAbs) to investigate the presence and the nature of cross-reacting epitopes shared by various components within Cupressus arizonica pollen extract (CaE) or by CaE and pollen extract from C. sempervirens (CsE). mAbs were produced in mice immunized with whole CaE (4A6 and 5E6) or with the major allergen components (2D5). Their reactivity was investigated by ELISA and immunoblotting before and after CaE periodate treatment. Cross-reactivity was evaluated by ELISA inhibition and immunoblotting. mAbs 2D5 and 4A6 recognized periodate-resistant epitopes, whereas the mAb 5E6 reacted with a periodate-sensitive determinant. The former mAbs recognized epitopes present on CaE major allergen and also shared by other components. mAb 5E6 showed a spread reactivity on CaE, with exclusion of the major allergen. When the three mAbs were tested with CsE, a restricted pattern of reactivity to mAbs 2D5 and 4A6 was obtained, whereas mAb 5E6 maintained a spread reactivity. The CaE major allergen is represented by two components recognized by human IgE and sharing common epitopes, as proven by mAbs reactivity. The use of these mAbs demonstrates that cross-reactivity within CaE components and between CaE and CsE is due to the presence of periodate-sensitive as well as -resistant epitopes.

  1. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  2. Molecular Characterization of Two Monoclonal Antibodies against the Same Epitope on B-Cell Receptor Associated Protein 31

    OpenAIRE

    Kim, Won-Tae; Shin, Saemina; Hwang, Hyo Jeong; Kim, Min Kyu; Jung, Han-Sung; Park, Hwangseo; RYU, CHUN JEIH

    2016-01-01

    Previously, we showed that B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum (ER) membrane chaperone, is also expressed on the cell surface by two monoclonal antibodies (MAbs) 297-D4 and 144-A8. Both MAbs recognize the same linear epitope on the C-terminal domain of BAP31, although they were independently established. Here, flow cytometric analysis showed that 144-A8 had additional binding properties to some cells, as compared to 297-D4. Quantitative antigen binding assa...

  3. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate

    DEFF Research Database (Denmark)

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong

    2012-01-01

    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other...... regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs......) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1-6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1-6 HCVcc...

  4. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus.

    Science.gov (United States)

    He, Wenqian; Tan, Gene S; Mullarkey, Caitlin E; Lee, Amanda J; Lam, Mannie Man Wai; Krammer, Florian; Henry, Carole; Wilson, Patrick C; Ashkar, Ali A; Palese, Peter; Miller, Matthew S

    2016-10-18

    The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising "universal" influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.

  5. The epitope and neutralization mechanism of AVFluIgG01, a broad-reactive human monoclonal antibody against H5N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Zhiliang Cao

    Full Text Available The continued spread of highly pathogenic avian influenza (HPAI H5N1 virus underscores the importance of effective antiviral approaches. AVFluIgG01 is a potent and broad-reactive H5N1-neutralizing human monoclonal antibody (mAb showing great potential for use either for therapeutic purposes or as a basis of vaccine development, but its antigenic epitope and neutralization mechanism have not been finely characterized. In this study, we first demonstrated that AVFluIgG01 targets a novel conformation-dependent epitope in the globular head region of H5N1 hemagglutinin (HA. By selecting mimotopes from a random peptide library in combination with computational algorithms and site-directed mutagenesis, the epitope was mapped to three conserved discontinuous sites (I-III that are located closely at the three-dimensional structure of HA. Further, we found that this HA1-specific human mAb can efficiently block both virus-receptor binding and post-attachment steps, while its Fab fragment exerts the post-attachment inhibition only. Consistently, AVFluIgG01 could inhibit HA-mediated cell-cell membrane fusion at a dose-dependent manner and block the acquisition of pH-induced protease sensitivity. These results suggest a neutralization mechanism of AVFluIgG01 by simultaneously blocking viral attachment to the receptors on host cells and interfering with HA conformational rearrangements associated with membrane fusion. The presented data provide critical information for developing novel antiviral therapeutics and vaccines against HPAI H5N1 virus.

  6. Characterization of monoclonal antibodies to histone 2B. Localization of epitopes and analysis of binding to chromatin.

    Science.gov (United States)

    Whitfield, W G; Fellows, G; Turner, B M

    1986-06-16

    Two mouse monoclonal IgM antibodies have been isolated which bind to histone 2B (H2B), as shown by protein blotting and immunostaining and by solid-phase radioimmunoassay (RIA). One of these (HBC-7) was specific for H2B by both techniques whereas the other (2F8) cross-reacted with histone H1 by RIA. Both antibodies failed to recognize H2B limit peptides from trypsin-digested chromatin and did not bind to Drosophila H2B, which differs extensively from vertebrate H2B only in the N-terminal region. These findings indicate that both antibodies recognize epitopes within the trypsin-sensitive, N-terminal region comprising residues 1-20. Binding of antibody HBC-7 was inhibited by in vitro ADP-ribosylation of H2B at glutamic acid residue 2. This strongly suggests that the epitope recognized by HBC-7 is located at the N-terminus of H2B, probably between residues 1 and 8. We have used solid-phase radioimmunoassay to investigate factors which influence the accessibility of this epitope in chromatin. Removal of H1 ('stripping') from high-molecular-mass chromatin had no effect on HBC-7 binding, nor was any difference observed between binding to stripped chromatin and to 146-base-pair (bp) core particles derived from it by nuclease digestion. These results suggest that accessibility of the N-terminal region of H2B is not influenced by H1 itself or by the size or conformation of linker DNA. In contrast, binding of antibody HBC-7 to 146-bp core particles derived from unstripped chromatin was reduced by up to 70%. Binding was restored by exposure of these core particles to the conditions used for stripping. Analysis of the protein content of core particle preparations from stripped and unstripped chromatin suggests that these findings may be attributable to redistribution of non-histone proteins during nuclease digestion. Pre-treatment of high-molecular-mass chromatin or 146-bp core particles with the intercalating dye ethidium bromide resulted in a severalfold increase in binding

  7. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer.

    Science.gov (United States)

    Kong, Leopold; Torrents de la Peña, Alba; Deller, Marc C; Garces, Fernando; Sliepen, Kwinten; Hua, Yuanzi; Stanfield, Robyn L; Sanders, Rogier W; Wilson, Ian A

    2015-10-01

    The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.

  8. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins

    Directory of Open Access Journals (Sweden)

    Jonathan Richard

    2016-10-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env recognized by antibody-dependent cellular cytotoxicity (ADCC-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV+ sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS. Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1.

  9. A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients.

    Science.gov (United States)

    Goh, Lucas Y H; Kam, Yiu-Wing; Metz, Stefan W; Hobson-Peters, Jody; Prow, Natalie A; McCarthy, Suzi; Smith, David W; Pijlman, Gorben P; Ng, Lisa F P; Hall, Roy A

    2015-09-15

    Chikungunya fever (CHIKF) has re-emerged as an arboviral disease that mimics clinical symptoms of other diseases such as dengue, malaria, as well as other alphavirus-related illnesses leading to problems with definitive diagnosis of the infection. Herein we describe the development and evaluation of a sensitive epitope-blocking ELISA (EB-ELISA) capable of specifically detecting anti-chikungunya virus (CHIKV) antibodies in clinical samples. The assay uses a monoclonal antibody (mAb) that binds an epitope on the E2 protein of CHIKV and does not exhibit cross-reactivity to other related alphaviruses. We also demonstrated the use of recombinant CHIK virus-like particles (VLPs) as a safe alternative antigen to infectious virions in the assay. Based on testing of 60 serum samples from patients in the acute or convalescent phase of CHIKV infection, the EB-ELISA provided us with 100% sensitivity, and exhibited 98.5% specificity when Ross River virus (RRV)- or Barmah Forest virus (BFV)-immune serum samples were included. This assay meets the public health demands of a rapid, robust, sensitive and specific, yet simple assay for specifically diagnosing CHIK-infections in humans.

  10. Antibodies Directed against a Peptide Epitope of a Klebsiella pneumoniae-Derived Protein Are Present in Ankylosing Spondylitis

    Science.gov (United States)

    Tinazzi, Elisa; Moretta, Francesca; D’Angelo, Salvatore; Olivieri, Ignazio; Lunardi, Claudio

    2017-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory arthritis of unknown origin. Its autoimmune origin has been suggested but never proven. Several reports have implicated Klebsiella pneumoniae as a triggering or perpetuating factor in AS; however, its role in the disease pathogenesis remains debated. Moreover, despite extensive investigations, a biomarker for AS has not yet been identified. To clarify these issues, we screened a random peptide library with pooled IgGs obtained from 40 patients with AS. A peptide (AS peptide) selected from the library was recognized by serum IgGs from 170 of 200 (85%) patients with AS but not by serum specimens from 100 healthy controls. Interestingly, the AS peptide shows a sequence similarity with several molecules expressed at the fibrocartilaginous sites that are primarily involved in the AS inflammatory process. Moreover, the peptide is highly homologous to a Klebsiella pneumoniae dipeptidase (DPP) protein. The antibody affinity purified against the AS peptide recognizes the autoantigens and the DPP protein. Furthermore, serum IgG antibodies against the Klebsiella DPP121-145 peptide epitope were detected in 190 of 200 patients with AS (95%), 3 of 200 patients with rheumatoid arthritis (1.5%) and only 1 of 100 (1%) patients with psoriatic arthritis. Such reactivity was not detected in healthy control donors. Our results show that antibodies directed against an epitope of a Klebsiella pneumoniae-derived protein are present in nearly all patients with AS. In the absence of serological biomarkers for AS, such antibodies may represent a useful tool in the diagnosis of the disease. PMID:28135336

  11. Shark IgNAR antibody mimotopes target a murine immunoglobulin through extended CDR3 loop structures.

    Science.gov (United States)

    Simmons, David P; Streltsov, Victor A; Dolezal, Olan; Hudson, Peter J; Coley, Andrew M; Foley, Michael; Proll, David F; Nuttall, Stewart D

    2008-04-01

    Mimotopes mimic the three-dimensional topology of an antigen epitope, and are frequently recognized by antibodies with affinities comparable to those obtained for the original antibody-antigen interaction. Peptides and anti-idiotypic antibodies are two classes of protein mimotopes that mimic the topology (but not necessarily the sequence) of the parental antigen. In this study, we combine these two classes by selecting mimotopes based on single domain IgNAR antibodies, which display exceptionally long CDR3 loop regions (analogous to a constrained peptide library) presented in the context of an immunoglobulin framework with adjacent and supporting CDR1 loops. By screening an in vitro phage-display library of IgNAR variable domains (V(NAR)s) against the target antigen monoclonal antibody MAb5G8, we obtained four potential mimotopes. MAb5G8 targets a linear tripeptide epitope (AYP) in the flexible signal sequence of the Plasmodium falciparum Apical Membrane Antigen-1 (AMA1), and this or similar motifs were detected in the CDR loops of all four V(NAR)s. The V(NAR)s, 1-A-2, -7, -11, and -14, were demonstrated to bind specifically to this paratope by competition studies with an artificial peptide and all showed enhanced affinities (3-46 nM) compared to the parental antigen (175 nM). Crystallographic studies of recombinant proteins 1-A-7 and 1-A-11 showed that the SYP motifs on these V(NAR)s presented at the tip of the exposed CDR3 loops, ideally positioned within bulge-like structures to make contact with the MAb5G8 antibody. These loops, in particular in 1-A-11, were further stabilized by inter- and intra- loop disulphide bridges, hydrogen bonds, electrostatic interactions, and aromatic residue packing. We rationalize the higher affinity of the V(NAR)s compared to the parental antigen by suggesting that adjacent CDR1 and framework residues contribute to binding affinity, through interactions with other CDR regions on the antibody, though of course definitive support of

  12. Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies.

    Science.gov (United States)

    Jegerlehner, Andrea; Wiesel, Melanie; Dietmeier, Klaus; Zabel, Franziska; Gatto, Dominique; Saudan, Philippe; Bachmann, Martin F

    2010-07-26

    Pre-existing immunity against vaccine carrier proteins has been reported to inhibit the immune response against antigens conjugated to the same carrier by a process termed carrier induced epitopic suppression (CIES). Hence understanding the phenomenon of CIES is of major importance for the development of conjugate vaccines. Virus-like particles (VLPs) are a novel class of potent immunological carriers which have been successfully used to enhance the antibody response to virtually any conjugated antigen. In the present study we investigated the impact of a pre-existing VLP-specific immune response on the development of antibody responses against a conjugated model peptide after primary, secondary and tertiary immunization. Although VLP-specific immune responses led to reduced peptide-specific antibody titers, we showed that CIES against peptide-VLP conjugates could be overcome by high coupling densities, repeated injections and/or higher doses of conjugate vaccine. Furthermore we dissected VLP-specific immunity by adoptively transferring VLP-specific antibodies, B-cells or T(helper) cells separately into naïve mice and found that the observed CIES against peptide-VLP conjugates was mainly mediated by carrier-specific antibodies.

  13. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes;

    2013-01-01

    BACKGROUND: Current immunological bioinformatic approaches focus on the prediction of allele-specific epitopes capable of triggering immunogenic activity. The prediction of major histocompatibility complex (MHC) class I epitopes is well studied, and various software solutions exist for this purpo...

  14. Generation and isolation of target-specific single-domain antibodies from shark immune repertoires.

    Science.gov (United States)

    Müller, Mischa Roland; O'Dwyer, Ronan; Kovaleva, Marina; Rudkin, Fiona; Dooley, Helen; Barelle, Caroline Jane

    2012-01-01

    The drive to exploit novel targets and biological pathways has lead to the expansion of classical antibody research into innovative fragment adaptations and novel scaffolds. The hope being that alternative or cryptic epitopes may be targeted, tissue inaccessibility may be overcome, and easier engineering options will facilitate multivalent, multi-targeting approaches. To this end, we have been isolating shark single domains to gain a greater understanding of their potential as therapeutic agents. Their unique shape, small size, inherent stability, and simple molecular architecture make them attractive candidates from a drug discovery perspective. Here we describe protocols to capture the immune repertoire of an immunized shark species and to build and select via phage-display target-specific IgNAR variable domains (VNARs).

  15. Identification of immunodominant CD4-restricted epitopes co-located with antibody binding sites in individuals vaccinated with ALVAC-HIV and AIDSVAX B/E.

    Directory of Open Access Journals (Sweden)

    Silvia Ratto-Kim

    Full Text Available We performed fine epitope mapping of the CD4+ responses in the ALVAC-HIV-AIDSVAX B/E prime-boost regimen in the Thai Phase III trial (RV144. Non-transformed Env-specific T cell lines established from RV144 vaccinees were used to determine the fine epitope mapping of the V2 and C1 responses and the HLA class II restriction. Data showed that there are two CD4+ epitopes contained within the V2 loop: one encompassing the α4β7 integrin binding site (AA179-181 and the other nested between two previously described genetic sieve signatures (AA169, AA181. There was no correlation between the frequencies of CD4+ fine epitope responses and binding antibody.

  16. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20.

    Science.gov (United States)

    Teeling, Jessica L; Mackus, Wendy J M; Wiegman, Luus J J M; van den Brakel, Jeroen H N; Beers, Stephen A; French, Ruth R; van Meerten, Tom; Ebeling, Saskia; Vink, Tom; Slootstra, Jerry W; Parren, Paul W H I; Glennie, Martin J; van de Winkel, Jan G J

    2006-07-01

    We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis.

  17. A major Sm epitope anchored to sequential oligopeptide carriers is a suitable antigenic substrate to detect anti-Sm antibodies.

    Science.gov (United States)

    Petrovas, C J; Vlachoyiannopoulos, P G; Tzioufas, A G; Alexopoulos, C; Tsikaris, V; Sakarellos-Daitsiotis, M; Sakarellos, C; Moutsopoulos, H M

    1998-11-01

    A sensitive, highly reproducible, solid-phase enzyme immunoassay (ELISA), was developed in order to investigate whether the synthetic heptapeptide PPGMRPP-a major epitope of the Sm autoantigen-anchored in five copies to a sequential oligopeptide carrier (SOC), [(PPGMRPP)5-SOC5] is a suitable antigenic substrate to identify anti-Sm/antibodies. Sera with different autoantibody specificities [45 anti-Sm, 40 anti-U1RNP, 40 anti-Ro (SSA)/La(SSB) positive, 21 Antinuclear antibody positive, but negative for antibodies to extractable nuclear antigens (ANA + /ENA - ) and 75 normal human sera, ANA negative] and 75 sera from patients with rheumatoid arthritis (RA) were tested for anti-(PPGMRPP)5-(SOC)5 reactivity in order to evaluate the specificity and sensitivity of the method to detect anti-Sm antibodies. RNA immunoprecipitation assays for the detection of anti-Sm and anti-U1RNP antibodies and counter immunoelectrophoresis (CIE) for the detection of anti-Ro(SSA) and anti-La(SSB) antibodies were used as reference techniques. The sensitivity of the method was 98% and the specificity was 68% for the determination of anti-Sm antibodies, while for the determination of anti-Sm and/or anti-U1RNP reactivity (antibodies to snRNPs) the corresponding values were 82% and 86%, respectively. In a comparison of the above assay with an ELISA, using Sm/U1RNP purified complex as immobilized antigen it was shown that the sensitivity of the anti-Sm/U1RNP ELISA in detecting anti-snRNPs was 74%; in addition sera with anti-Sm antibodies gave higher binding in the anti-(PPGMRPP)5-(SOC)5 ELISA compared with anti-Sm/U1RNP ELISA. Intra- and inter-assay precision was measured on four sera with reactivities extending into a wide range of absorbance values showed that the intra-assay coefficient of variation (CV%) ranged from 2.7 to 6 and the inter-assay CV% ranged from 9 to 14.5. These results indicate that the PPGMRPP peptide anchored to a pentameric SOC as a carrier is a suitable antigen for

  18. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    Science.gov (United States)

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors.

  19. Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.

  20. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane protein of feline infectious peritonitis virus.

    Science.gov (United States)

    Takano, Tomomi; Morioka, Hiroyuki; Gomi, Kohji; Tomizawa, Keisuke; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-04-01

    Feline infectious peritonitis virus (FIP virus: FIPV) causes a fatal disease in wild and domestic cats. The development of an FIP-preventive vaccine requires an antigen that does not induce antibody-dependent enhancement, and T helper (Th)1 activity plays an important role in protect against FIPV infection. In the present study, we identified synthetic peptides including Th1 and a linear immunodominant antibody-binding epitope in the S1 domain and M protein of FIPV. We also identified peptides that strongly induce Th1 activity from those derived from the structural proteins (S, M, and N proteins) of FIPV based on this and previous studies (Satoh et al. [19]). No Th1 epitope-containing peptide was identified in the peptides derived from the S1 domain of type I FIPV. In contrast, 7 Th1 epitope-containing peptides were identified in the S1 domain of type II FIPV, and no linear immunodominant antibody-binding epitope was contained in any of these peptides. Eleven Th1 epitope-containing peptides common to each serotype were identified in the M protein-derived peptides, and 2 peptides (M-11 and M-12) contained the linear immunodominant antibody-binding epitope. Of the peptides derived from the S, M, and N proteins of FIPV, those that induced significantly stronger Th1 activity than that of the FIPV antigen were rescreened, and 4 peptides were identified. When 3 of these peptides (M-9, I-S2-15, and II-S1-24) were selected and administered with CpG-ODNs to SPF cats, M-9 and II-S1-24 induced Th1 activity. Our results may provide important information for the development of a peptide-based vaccine against FIPV infection.

  1. Rifampicin-dependent antibodies bind a similar or identical epitope to glycoprotein IX-specific quinine-dependent antibodies

    NARCIS (Netherlands)

    Burgess, J K; Lopez, J A; Gaudry, L E; Chong, B H

    2000-01-01

    The drug-dependent antibody of a patient with rifampicin-induced thrombocytopenia was characterized using the antigen-capture enzyme-linked immunosorbent assay (MAIPA assay), flow cytometry, and immunoprecipitation. The antibody was found to bind glycoprotein (GP) Ib-IX but not GPIIb-IIIa because (1

  2. Tyrosine-phosphorylated Ehrlichia chaffeensis and Ehrlichia canis tandem repeat orthologs contain a major continuous cross-reactive antibody epitope in lysine-rich repeats.

    Science.gov (United States)

    McBride, Jere W; Zhang, Xiaofeng; Wakeel, Abdul; Kuriakose, Jeeba A

    2011-08-01

    A small subset of major immunoreactive proteins have been identified in Ehrlichia chaffeensis and Ehrlichia canis, including three molecularly and immunologically characterized pairs of immunoreactive tandem repeat protein (TRP) orthologs with major continuous species-specific epitopes within acidic tandem repeats (TR) that stimulate strong antibody responses during infection. In this study, we identified a fourth major immunoreactive TR-containing ortholog pair and defined a major cross-reactive epitope in homologous nonidentical 24-amino-acid lysine-rich TRs. Antibodies from patients and dogs with ehrlichiosis reacted strongly with recombinant TR regions, and epitopes were mapped to the N-terminal TR region (18 amino acids) in E. chaffeensis and the complete TR (24 amino acids) in E. canis. Two less-dominant epitopes were mapped to adjacent glutamate/aspartate-rich and aspartate/tyrosine-rich regions in the acidic C terminus of E. canis TRP95 but not in E. chaffeensis TRP75. Major immunoreactive proteins in E. chaffeensis (75-kDa) and E. canis (95-kD) whole-cell lysates and supernatants were identified with TR-specific antibodies. Consistent with other ehrlichial TRPs, the TRPs identified in ehrlichial whole-cell lysates and the recombinant proteins migrated abnormally slow electrophoretically a characteristic that was demonstrated with the positively charged TR and negatively charged C-terminal domains. E. chaffeensis TRP75 and E. canis TRP95 were immunoprecipitated with anti-pTyr antibody, demonstrating that they are tyrosine phosphorylated during infection of the host cell.

  3. Serum antibodies to 25 myelin oligodendrocyte glycoprotein epitopes in multiple sclerosis and neuromyelitis optica: clinical value for diagnosis and disease activity

    Institute of Scientific and Technical Information of China (English)

    XU Yan; ZHANG Yao; LIU Cai-yan; PENG Bin; WANG Jian-ming; ZHANG Xiao-jun; LI Hai-feng; CUI Li-ying

    2012-01-01

    Background Whether antibody to myelin oligodendrocyte glycoprotein (MOG) can be a diagnostic marker for multiple sclerosis (MS) is still controversial.Recent studies suggested that serum specific anti-MOG epitope antibody might be an MS specific marker.However,these studies did not include neuromyelitis optica (NMO) which might be proven to also have anti-MOG antibody.Hence,the present study was undertaken to investigate the clinical value of serum antibodies to 25 MOG epitopes in conventional MS (CMS) and NMO.Methods Serum anti-MOG epitope IgG was detected in 61 CMS patients,54 NMO patients,and 77 healthy controls,using enzyme-linked immunosorbent assay (ELISA).Results Anti-MOG27-38 IgG levels in both CMS and NMO patients were significantly higher than that in healthy controls (optical density (OD):0.64±0.38,0.48±0.23 vs.0.19±0.09; P=0.000).CMS and NMO patients in relapse stage had significantly higher anti-MOG27-38 IgG level than patients in remission stage (OD:0.55±0.14 vs.0.24±0.09,P=0.027).Conclusion Although serum anti-MOG epitope IgG could not differentiate MS from NMO,it may be a useful marker for monitoring disease activity.

  4. Epitopes of anti-RIFIN antibodies and characterization of rif-expressing Plasmodium falciparum parasites by RNA sequencing

    Science.gov (United States)

    Ch’ng, Jun-Hong; Sirel, Madle; Zandian, Arash; del Pilar Quintana, Maria; Chun Leung Chan, Sherwin; Moll, Kirsten; Tellgren-Roth, Asa; Nilsson, IngMarie; Nilsson, Peter; Qundos, Ulrika; Wahlgren, Mats

    2017-01-01

    Variable surface antigens of Plasmodium falciparum have been a major research focus since they facilitate parasite sequestration and give rise to deadly malaria complications. Coupled with its potential use as a vaccine candidate, the recent suggestion that the repetitive interspersed families of polypeptides (RIFINs) mediate blood group A rosetting and influence blood group distribution has raised the research profile of these adhesins. Nevertheless, detailed investigations into the functions of this highly diverse multigene family remain hampered by the limited number of validated reagents. In this study, we assess the specificities of three promising polyclonal anti-RIFIN antibodies that were IgG-purified from sera of immunized animals. Their epitope regions were mapped using a 175,000-peptide microarray holding overlapping peptides of the P. falciparum variable surface antigens. Through immunoblotting and immunofluorescence imaging, we show that different antibodies give varying results in different applications/assays. Finally, we authenticate the antibody-based detection of RIFINs in two previously uncharacterized non-rosetting parasite lines by identifying the dominant rif transcripts using RNA sequencing. PMID:28233866

  5. Generation and molecular characterization of a monoclonal antibody reactive with conserved epitope in sphingomyelinases D from Loxosceles spider venoms.

    Science.gov (United States)

    Dias-Lopes, C; Felicori, L; Rubrecht, L; Cobo, S; Molina, L; Nguyen, C; Galéa, P; Granier, C; Molina, F; Chávez-Olortegui, C

    2014-04-11

    We report the production of a neutralizing monoclonal antibody able to recognize the venoms of three major medically important species of Loxosceles spiders in Brazil. The mAb was produced by immunization of mice with a toxic recombinant L. intermedia sphingomyelinase D {SMases D isoform (rLiD1)} [1] and screened by enzyme-linked immunosorbent assay (ELISA) using L. intermedia, L. laeta and L. gaucho venoms as antigens. One clone (LiD1mAb16) out of seventeen anti-rLiD1 hybridomas was cross-reactive with the three whole Loxosceles venoms. 2D Western blot analysis indicated that LiD1mAb16 was capable of interacting with 34 proteins of 29-36kDa in L. intermedia, 33 in L. gaucho and 27 in L. laeta venoms. The results of immunoassays with cellulose-bound peptides revealed that the LiD1mAb16 recognizes a highly conserved linear epitope localized in the catalytic region of SMases D toxins. The selected mAb displayed in vivo protective activity in rabbits after challenge with rLiD1. These results show the potential usefulness of monoclonal antibodies for future therapeutic approaches and also opens up the perspective of utilization of these antibodies for immunodiagnostic assays in loxoscelism.

  6. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    Science.gov (United States)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  7. Chemical Characterization of N-Linked Oligosaccharide As the Antigen Epitope Recognized by an Anti-Sperm Auto-Monoclonal Antibody, Ts4.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yoshitake

    Full Text Available Ts4, an anti-sperm auto-monoclonal antibody, possesses immunoreactivity to the acrosomal region of mouse epididymal spermatozoa. In addition, the mAb shows specific immunoreactivity to reproduction-related regions such as testicular germ cells and early embryo. Our qualitative study previously showed that the antigen epitope for Ts4 contained a N-linked common oligosaccharide (OS chain on testicular glycoproteins as determined by Western blotting for testicular glycoproteins after treatment with several glycohydrolases. Since the distribution of the Ts4-epitope is unique, the OS chain in Ts4-epitope may have role(s in the reproductive process. The aim of this study was to clarify the molecular structure of the Ts4-epitope, particularly its OS moiety. Using Ts4 immunoprecipitation combined with liquid chromatography and multiple-stage mass spectrometry, the candidate carbohydrate structure in the Ts4-epitope is proposed to be N-linked fucosylated agalacto-biantennary with bisecting N-acetylglucosamine (GlcNAc or with N-acetylgalactosamine-GlcNAc motif. Further binding analyses using various lectins against the mouse testicular Ts4-immunoprecipitants revealed that Phaseolus vulgaris erythroagglutinin and Pisum sativum agglutinin showed positive staining of the bands corresponding to Ts4 reactive proteins. Moreover, the immunoreactivity of Ts4 against the testicular extract was completely abrogated after digestion with β-N-acetylglucosaminidase. These results show that the Ts4-epitope contains agalacto-biantennary N-glycan with bisecting GlcNAc carrying fucose residues.

  8. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    Science.gov (United States)

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  9. Measuring Single-Domain Antibody Interactions with Epitopes in Jet Fuel Using Microscale Thermophoresis

    Science.gov (United States)

    2015-01-01

    J. G. Renisio, J. J. Prompers, C. J. van Platerink, C. Cambillau, H. Darbonand, and L. G. Frenken. 2001. Thermal unfolding of a llama antibody...K. Srivastava, W. Haasnoot, et al. 2011. A broad set of different llama antibodies specific for a 16 kDa heat shock protein of Mycobacterium

  10. Human monoclonal HLA antibodies reveal interspecies crossreactive swine MHC class I epitopes relevant for xenotransplantation.

    NARCIS (Netherlands)

    Mulder, A.; Kardol, M.J.; Arn, J.S.; Eijsink, C.; Franke, M.E.; Schreuder, G.M.; Haasnoot, G.W.; Doxiadis, I.I.; Sachs, D.H.; Smith, D.M.; Claas, F.H.

    2010-01-01

    Crossreactivity of anti-HLA antibodies with SLA alleles may limit the use of pig xenografts in some highly sensitized patients. An understanding of the molecular basis for this crossreactivity may allow better selection of xenograft donors. We have tested 68 human monoclonal HLA class I antibodies (

  11. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in the spike 2 domain and the nucleocapsid protein of feline infectious peritonitis virus.

    Science.gov (United States)

    Satoh, Ryoichi; Furukawa, Tomoko; Kotake, Masako; Takano, Tomomi; Motokawa, Kenji; Gemma, Tsuyoshi; Watanabe, Rie; Arai, Setsuo; Hohdatsu, Tsutomu

    2011-02-17

    The antibody-dependent enhancement (ADE) of feline infectious peritonitis virus (FIPV) infection has been recognized in experimentally infected cats, and cellular immunity is considered to play an important role in preventing the onset of feline infectious peritonitis (FIP). In the present study, we synthesized eighty-one kinds of peptides derived from the spike (S)2 domain of type I FIPV KU-2 strain, the S2 domain of type II FIPV 79-1146 strain, and the nucleocapcid (N) protein of FIPV KU-2 strain. To detect the T helper (Th)1 epitope, peripheral blood mononuclear cells (PBMCs) obtained from FIPV-infected cats were cultured with each peptide, and Th1-type immune responses were measured using feline interferon (fIFN)-γ production as an index. To detect the linear immunodominant antibody-binding epitope, we investigated the reactivity of plasma collected from FIPV-infected cats against each peptide by ELISA. Four and 2 peptides containing Th1 epitopes were identified in the heptad repeat (HR)1 and inter-helical (IH) regions of the S2 domain of type I FIPV, respectively, and these were located on the N-terminal side of the regions. In the S2 domain of type II FIPV, 2, 3, and 2 peptides containing Th1 epitopes were identified in the HR1, IH, and HR2 regions, respectively, and these were mainly located on the C-terminal side of the regions. In the S2 domain of type I FIPV, 3 and 7 peptides containing linear immunodominant antibody-binding epitopes were identified in the IH and HR2 regions, respectively. In the S2 domain of type II FIPV, 4 peptides containing linear immunodominant antibody-binding epitopes were identified in the HR2 region. The Th1 epitopes in the S2 domain of type I and II FIPV were located in different regions, but the linear immunodominant antibody-binding epitopes were mostly located in the HR2 region. Eight peptides containing Th1 epitopes were identified in N protein, and 3 peptides derived from residues 81 to 100 and 137 to 164 showed strong

  12. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Rogier W Sanders

    2013-09-01

    Full Text Available A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1 vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs. One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs. Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM. We used several techniques, including ELISA and surface plasmon resonance (SPR, to determine the relationship between the ability of monoclonal antibodies (MAbs to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145. Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits. Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.

  13. Recognition of multiple antibody epitopes throughout Borrelia burgdorferi p66, a candidate adhesin, in patients with early or late manifestations of Lyme disease.

    Science.gov (United States)

    Ntchobo, H; Rothermel, H; Chege, W; Steere, A C; Coburn, J

    2001-03-01

    Antibody responses to p66, a candidate integrin ligand of Borrelia burgdorferi, were studied in 79 patients with early or late manifestations of Lyme disease. The central portion of p66 was previously shown to contain all of the information required for specific recognition of beta3-chain integrins, but work by others had suggested that the C-terminal portion of the protein contains a single surface-exposed, immunodominant loop. In examining antibody responses to full-length p66 and to three overlapping fragments of the protein, we found that the majority of Lyme disease patients had immunoglobulin M (IgM) and/or IgG responses to p66 and that, particularly early in the disease, epitopes throughout p66 were recognized. Among patients with later manifestations of the illness, antibody responses to the C-terminal portion of the protein were more prominent. These results demonstrate that Lyme disease patient sera recognize epitopes throughout p66.

  14. Sensitivity of HIV-1 to neutralization by antibodies against O-linked carbohydrate epitopes despite deletion of O-glycosylation signals in the V3 loop

    DEFF Research Database (Denmark)

    Hansen, J E; Jansson, B; Gram, G J

    1996-01-01

    It has been suggested that threonine or serine residues in the V3 loop of HIV-1 gp120 are glycosylated with the short-chain O-linked oligosaccharides Tn or sialosyl-Tn that function as epitopes for broadly neutralizing carbohydrate specific antibodies. In this study we examined whether mutation...... with deletions of O-glycosylation signals in the V3 loop displayed any decrease in sensitivity to anti-Tn or anti-sialosyl-Tn antibody. This indicates that these broadly specific neutralization epitopes are located outside the V3 loop of gp 120........ Additionally, one of these T-A mutants (T308A) also abrogated the signal for N-glycosylation at N306 inside the V3-loop. The mutant clones were compared with the wild type virus as to sensitivity to neutralization with monoclonal and polyclonal antibodies specific for the tip of the V3 loop of BRU or for the O...

  15. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Nicely, Nathan I; Wiehe, Kevin; Bonsignori, Mattia; Meyerhoff, R Ryan; Parks, Robert; Walkowicz, William E; Aussedat, Baptiste; Wu, Nelson R; Cai, Fangping; Vohra, Yusuf; Park, Peter K; Eaton, Amanda; Go, Eden P; Sutherland, Laura L; Scearce, Richard M; Barouch, Dan H; Zhang, Ruijun; Von Holle, Tarra; Overman, R Glenn; Anasti, Kara; Sanders, Rogier W; Moody, M Anthony; Kepler, Thomas B; Korber, Bette; Desaire, Heather; Santra, Sampa; Letvin, Norman L; Nabel, Gary J; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Alam, S Munir; Danishefsky, Samuel J; Haynes, Barton F

    2017-02-28

    Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.

  16. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  17. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

    Directory of Open Access Journals (Sweden)

    Pratima Kunwar

    Full Text Available A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i increasing the breadth of vaccine-induced responses or (ii increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8(+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8(+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS by three different methods (prevalence, entropy and conseq on clade-B and group-M sequence alignments. The majority of CD8(+ T cell responses were directed against variable epitopes (p<0.01. Interestingly, increasing breadth of CD8(+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009. Moreover, subjects possessing CD8(+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021. The association between viral control and the breadth of conserved CD8(+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215. The associations with viral control were independent of functional avidity of CD8(+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus

  18. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein.

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Deng

    Full Text Available Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV, yellow fever (YFV, West Nile (WNV, and Japanese encephalitis (JEV viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1-4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the (98DRXW(101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1-4, YFV, and WNV and confers protection from lethal challenge with DENV 1-4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans.

  19. High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity.

    Directory of Open Access Journals (Sweden)

    Yasmina Noubia Abdiche

    Full Text Available Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs. In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic

  20. Vaccine Focusing to Cross-Subtype HIV-1 gp120 Variable Loop Epitopes

    OpenAIRE

    Cardozo, Timothy; Wang, Shixia; Jiang, Xunqing; Kong, Xiang-Peng; Hioe, Catarina; Krachmarov, Chavdar

    2014-01-01

    We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross...

  1. Association of VH4-59 Antibody Variable Gene Usage with Recognition of an Immunodominant Epitope on the HIV-1 Gag Protein.

    Directory of Open Access Journals (Sweden)

    Valentine U Chukwuma

    Full Text Available The human antibody response against HIV-1 infection recognizes diverse antigenic subunits of the virion, and includes a high level of antibodies to the Gag protein. We report here the isolation and characterization of a subset of Gag-specific human monoclonal antibodies (mAbs that were prevalent in the antibody repertoire of an HIV-infected individual. Several lineages of Gag-specifc mAbs were encoded by a single antibody heavy chain variable region, VH4-59, and a representative antibody from this group designated mAb 3E4 recognized a linear epitope on the globular head of the p17 subunit of Gag. We found no evidence that mAb 3E4 exhibited any function in laboratory studies aimed at elucidating the immunologic activity, including assays for neutralization, Ab-dependent cell-mediated virus inhibition, or enhanced T cell reactivity caused by Gag-3E4 complexes. The findings suggest this immunodominant epitope in Gag protein, which is associated with VH4-59 germline gene usage, may induce a high level of B cells that encode binding but non-functional antibodies that occupy significant repertoire space following HIV infection. The studies define an additional specific molecular mechanism in the immune distraction activity of the HIV virion.

  2. Disruption of Membranes of Extracellular Vesicles Is Necessary for ELISA Determination of Urine AQP2: Proof of Disruption and Epitopes of AQP2 Antibodies

    Directory of Open Access Journals (Sweden)

    Masaaki Nameta

    2016-09-01

    Full Text Available Aquaporin-2 (AQP2 is present in urine extracellular vesicles (EVs and is a useful biomarker for water balance disorders. We previously found that pre-treatment of urine with alkali/detergent or storage at −25 °C is required for enzyme-linked immunosorbent assay (ELISA measurement. We speculated that disruptions of EVs membranes are necessary to allow for the direct contact of antibodies with their epitopes. Human urine EVs were prepared using an ultracentrifugation method. Urine EV samples were stored at different temperatures for a week. Electron microscopy showed abundant EVs with diameters of 20–100 nm, consistent with those of exosomes, in normal urine, whereas samples from alkali/detergent pre-treated urine showed fewer EVs with large swollen shapes and frequent membrane disruptions. The abundance and structures of EVs were maintained during storage at −80 °C, but were severely damaged at −25 °C. Binding and competitive inhibition assays showed that epitopes of monoclonal antibody and polyclonal antibody were the hydrophilic Loop D and C-terminus of AQP2, respectively, both of which are present on the inner surface of EVs. Thus, urine storage at −25 °C or pre-treatment with alkali/detergent disrupt EVs membranes and allow AQP2 antibodies to bind to their epitopes located inside EVs.

  3. Disruption of Membranes of Extracellular Vesicles Is Necessary for ELISA Determination of Urine AQP2: Proof of Disruption and Epitopes of AQP2 Antibodies

    Science.gov (United States)

    Nameta, Masaaki; Saijo, Yoko; Ohmoto, Yasukazu; Katsuragi, Kiyonori; Yamamoto, Keiko; Yamamoto, Tadashi; Ishibashi, Kenichi; Sasaki, Sei

    2016-01-01

    Aquaporin-2 (AQP2) is present in urine extracellular vesicles (EVs) and is a useful biomarker for water balance disorders. We previously found that pre-treatment of urine with alkali/detergent or storage at −25 °C is required for enzyme-linked immunosorbent assay (ELISA) measurement. We speculated that disruptions of EVs membranes are necessary to allow for the direct contact of antibodies with their epitopes. Human urine EVs were prepared using an ultracentrifugation method. Urine EV samples were stored at different temperatures for a week. Electron microscopy showed abundant EVs with diameters of 20–100 nm, consistent with those of exosomes, in normal urine, whereas samples from alkali/detergent pre-treated urine showed fewer EVs with large swollen shapes and frequent membrane disruptions. The abundance and structures of EVs were maintained during storage at −80 °C, but were severely damaged at −25 °C. Binding and competitive inhibition assays showed that epitopes of monoclonal antibody and polyclonal antibody were the hydrophilic Loop D and C-terminus of AQP2, respectively, both of which are present on the inner surface of EVs. Thus, urine storage at −25 °C or pre-treatment with alkali/detergent disrupt EVs membranes and allow AQP2 antibodies to bind to their epitopes located inside EVs. PMID:27681727

  4. Limited naturally occurring escape in broadly neutralizing antibody epitopes in hepatitis C glycoprotein E2 and constrained sequence usage in acute infection.

    Science.gov (United States)

    Rodrigo, Chaturaka; Walker, Melanie R; Leung, Preston; Eltahla, Auda A; Grebely, Jason; Dore, Gregory J; Applegate, Tanya; Page, Kimberly; Dwivedi, Sunita; Bruneau, Julie; Morris, Meghan D; Cox, Andrea L; Osburn, William; Kim, Arthur Y; Schinkel, Janke; Shoukry, Naglaa H; Lauer, Georg M; Maher, Lisa; Hellard, Margaret; Prins, Maria; Luciani, Fabio; Lloyd, Andrew R; Bull, Rowena A

    2017-04-01

    Broadly neutralizing antibodies have been associated with spontaneous clearance of the hepatitis C infection as well as viral persistence by immune escape. Further study of neutralizing antibody epitopes is needed to unravel pathways of resistance to virus neutralization, and to identify conserved regions for vaccine design. All reported broadly neutralizing antibody (BNAb) epitopes in the HCV Envelope (E2) glycoprotein were identified. The critical contact residues of these epitopes were mapped onto the linear E2 sequence. All publicly available E2 sequences were then downloaded and the contact residues within the BNAb epitopes were assessed for the level of conservation, as well as the frequency of occurrence of experimentally-proven resistance mutations. Epitopes were also compared between two sequence datasets obtained from samples collected at well-defined time points from acute (180days) infections, to identify any significant differences in residue usage. The contact residues for all BNAbs were contained within 3 linear regions of the E2 protein sequence. An analysis of 1749 full length E2 sequences from public databases showed that only 10 out of 29 experimentally-proven resistance mutations were present at a frequency >5%. Comparison of subtype 1a viral sequences obtained from samples collected during acute or chronic infection revealed significant differences at positions 610 and 655 with changes in residue (p<0.05), and at position 422 (p<0.001) with a significant difference in variability (entropy). The majority of experimentally-described escape variants do not occur frequently in nature. The observed differences between acute and chronically isolated sequences suggest constraints on residue usage early in infection.

  5. Inhibition of Hepatitis C Virus-Like Particle Binding to Target Cells by Antiviral Antibodies in Acute and Chronic Hepatitis C

    Science.gov (United States)

    Steinmann, Daniel; Barth, Heidi; Gissler, Bettina; Schürmann, Peter; Adah, Mohammed I.; Gerlach, J. Tilman; Pape, Gerd R.; Depla, Erik; Jacobs, Dirk; Maertens, Geert; Patel, Arvind H.; Inchauspé, Geneviève; Liang, T. Jake; Blum, Hubert E.; Baumert, Thomas F.

    2004-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic viral hepatitis worldwide. The study of antibody-mediated virus neutralization has been hampered by the lack of an efficient and high-throughput cell culture system for the study of virus neutralization. The HCV structural proteins have been shown to assemble into noninfectious HCV-like particles (HCV-LPs). Similar to serum-derived virions, HCV-LPs bind and enter human hepatocytes and hepatoma cell lines. In this study, we developed an HCV-LP-based model system for a systematic functional analysis of antiviral antibodies from patients with acute or chronic hepatitis C. We demonstrate that cellular HCV-LP binding was specifically inhibited by antiviral antibodies from patients with acute or chronic hepatitis C in a dose-dependent manner. Using a library of homologous overlapping envelope peptides covering the entire HCV envelope, we identified an epitope in the N-terminal E2 region (SQKIQLVNTNGSWHI; amino acid positions 408 to 422) as one target of human antiviral antibodies inhibiting cellular particle binding. Using a large panel of serum samples from patients with acute and chronic hepatitis C, we demonstrated that the presence of antibodies with inhibition of binding activity was not associated with viral clearance. In conclusion, antibody-mediated inhibition of cellular HCV-LP binding represents a convenient system for the functional characterization of human anti-HCV antibodies, allowing the mapping of envelope neutralization epitopes targeted by naturally occurring antiviral antibodies. PMID:15308699

  6. Antibody therapeutics targeting ion channels: are we there yet?

    Science.gov (United States)

    Sun, Han; Li, Min

    2013-02-01

    The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases.

  7. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress

    NARCIS (Netherlands)

    Fox, Julie M.; Long, Feng; Edeling, Melissa A.; Lin, Hueylie; van Duijl-Richter, Mareike K. S.; Fong, Rachel H.; Kahle, Kristen M.; Smit, Jolanda M.; Jin, Jing; Simmons, Graham; Doranz, Benjamin J.; Crowe, James E.; Fremont, Daved H.; Rossmann, Michael G.; Diamond, Michael S.

    2015-01-01

    We screened a panel of mouse and human monoclonal antibodies (MAbs) against chikungunya virus and identified several with inhibitory activity against multiple alphaviruses. Passive transfer of broadly neutralizing MAbs protected mice against infection by chikungunya, Mayaro, and O'nyong'nyong alphav

  8. Structure and function of the sigma-70 subunit of Escherichia coli RNA polymerase. Monoclonal antibodies: localization of epitopes by peptide mapping and effects on transcription.

    Science.gov (United States)

    Strickland, M S; Thompson, N E; Burgess, R R

    1988-07-26

    Murine monoclonal antibodies reactive with the major sigma subunit (sigma-70) of Escherichia coli RNA polymerase were obtained by standard hybridoma techniques. Western blot analyses established that seven antibodies had unique specificities after various chemical and enzymatic methods were used to fragment sigma. Peptides were purified by HPLC using size-exclusion, reverse-phase, or ion-exchange chromatography. The epitopes for six of these antibodies have been localized to specific peptides. These peptides were further characterized by amino acid composition and N-terminal sequencing. Sigma, which has a molecular weight of 70.2K, runs as 83K on SDS gels in this study. This anomalous behavior has been localized to the very acidic N-terminal half of the molecule. One antibody is unable to bind to native sigma. Two others do not bind well to sigma when it is contained in holoenzyme, indicating that their epitopes are in regions of sigma which are inaccessible in the holoenzyme complex. All three of these antibodies fail to inhibit in vitro transcription by holoenzyme. The other four antibodies all can inhibit in vitro transcription.

  9. Heavy chain-only IgG2b llama antibody effects near-pan HIV-1 neutralization by recognizing a CD4-induced epitope that includes elements of coreceptor- and CD4-binding sites.

    Science.gov (United States)

    Acharya, Priyamvada; Luongo, Timothy S; Georgiev, Ivelin S; Matz, Julie; Schmidt, Stephen D; Louder, Mark K; Kessler, Pascal; Yang, Yongping; McKee, Krisha; O'Dell, Sijy; Chen, Lei; Baty, Daniel; Chames, Patrick; Martin, Loïc; Mascola, John R; Kwong, Peter D

    2013-09-01

    The conserved HIV-1 site of coreceptor binding is protected from antibody-directed neutralization by conformational and steric restrictions. While inaccessible to most human antibodies, the coreceptor site has been shown to be accessed by antibody fragments. In this study, we used X-ray crystallography, surface plasmon resonance, and pseudovirus neutralization to characterize the gp120-envelope glycoprotein recognition and HIV-1 neutralization of a heavy chain-only llama antibody, named JM4. We describe full-length IgG2b and IgG3 versions of JM4 that target the coreceptor-binding site and potently neutralize over 95% of circulating HIV-1 isolates. Contrary to established trends that show improved access to the coreceptor-binding region by smaller antibody fragments, the single-domain (VHH) version of JM4 neutralized less well than the full-length IgG2b version of JM4. The crystal structure at 2.1-Å resolution of VHH JM4 bound to HIV-1 YU2 gp120 stabilized in the CD4-bound state by the CD4-mimetic miniprotein, M48U1, revealed a JM4 epitope that combined regions of coreceptor recognition (including the gp120 bridging sheet, V3 loop, and β19 strand) with gp120 structural elements involved in recognition of CD4 such as the CD4-binding loop. The structure of JM4 with gp120 thus defines a novel CD4-induced site of vulnerability involving elements of both coreceptor- and CD4-binding sites. The potently neutralizing JM4 IgG2b antibody that targets this newly defined site of vulnerability adds to the expanding repertoire of broadly neutralizing antibodies that effectively neutralize HIV-1 and thereby potentially provides a new template for vaccine development and target for HIV-1 therapy.

  10. A novel mouse monoclonal antibody targeting ErbB2 suppresses breast cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Seiji [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan); Matsushita, Hirohisa; Ohbayashi, Hirokazu [Department of Research and Development, Nichirei Biosciences Inc., Tokyo 104-8402 (Japan); Semba, Kentaro [Department of Life Science and Medical Bio-Science, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan)

    2009-07-03

    Overexpression of ErbB2 in breast cancer is associated with increased recurrence and worse prognosis. Accumulating evidences suggest that molecular targeted therapy is a promising anticancer strategy. In this study, we produced a novel anti-ErbB2 monoclonal antibody, 6G10, that recognized an epitope distinct from the trastuzumab binding site. 6G10 induced aggregation of BT474 breast cancer cells and inhibited proliferation of various breast cancer cell lines including BT474. A growth inhibition assay showed that 6G10 had EC{sub 50} values comparable to trastuzumab, indicating that the drugs have a similar level of potency. Furthermore, intraperitoneal administration of 6G10 completely inhibited the growth of xenografted tumors derived from BT474 and SK-BR-3 cells. These data suggested that 6G10 has great therapeutic potential and could be administered to patients alternatively, or synergistically, with trastuzumab.

  11. Intramolecular epitope spreading in Heymann nephritis.

    Science.gov (United States)

    Shah, Pallavi; Tramontano, Alfonso; Makker, Sudesh P

    2007-12-01

    Immunization with megalin induces active Heymann nephritis, which reproduces features of human idiopathic membranous glomerulonephritis. Megalin is a complex immunological target with four discrete ligand-binding domains (LBDs) that may contain epitopes to which pathogenic autoantibodies are directed. Recently, a 236-residue N-terminal fragment, termed "L6," that spans the first LBD was shown to induce autoantibodies and severe disease. We used this model to examine epitope-specific contributions to pathogenesis. Sera obtained from rats 4 weeks after immunization with L6 demonstrated reactivity only with the L6 fragment on Western blot, whereas sera obtained after 8 weeks demonstrated reactivity with all four recombinant fragments of interest (L6 and LBDs II, III, and IV). We demonstrated that the L6 immunogen does not contain the epitopes responsible for the reactivity to the LBD fragments. Therefore, the appearance of antibodies directed at LBD fragments several weeks after the primary immune response suggests intramolecular epitope spreading. In vivo, we observed a temporal association between increased proteinuria and the appearance of antibodies to LBD fragments. These data implicate B cell epitope spreading in antibody-mediated pathogenesis of active Heymann nephritis, a model that should prove valuable for further study of autoimmune dysregulation.

  12. Comprehensive mapping of functional epitopes on dengue virus glycoprotein E DIII for binding to broadly neutralizing antibodies 4E11 and 4E5A by phage display.

    Science.gov (United States)

    Frei, Julia C; Kielian, Margaret; Lai, Jonathan R

    2015-11-01

    Here we investigated the binding of Dengue virus envelope glycoprotein domain III (DIII) by two broadly neutralizing antibodies (bNAbs), 4E11 and 4E5A. There are four serotypes of Dengue virus (DENV-1 to -4), whose DIII sequences vary by up to 49%. We used combinatorial alanine scanning mutagenesis, a phage display approach, to map functional epitopes (those residues that contribute most significantly to the energetics of antibody-antigen interaction) on these four serotypes. Our results showed that 4E11, which binds strongly to DENV-1, -2, and -3, and moderately to DENV-4, recognized a common conserved core functional epitope involving DIII residues K310, L/I387, L389, and W391. There were also unique recognition features for each serotype, suggesting that 4E11 has flexible recognition requirements. Similar scanning studies for the related bNAb 4E5A, which binds more tightly to DENV-4, identified broader functional epitopes on DENV-1. These results provide useful information for immunogen and therapeutic antibody design.

  13. Discovery of a junctional epitope antibody that stabilizes IL-6 and gp80 protein:protein interaction and modulates its downstream signaling

    Science.gov (United States)

    Adams, Ralph; Burnley, Rebecca J.; Valenzano, Chiara R.; Qureshi, Omar; Doyle, Carl; Lumb, Simon; del Carmen Lopez, Maria; Griffin, Robert; McMillan, David; Taylor, Richard D.; Meier, Chris; Mori, Prashant; Griffin, Laura M.; Wernery, Ulrich; Kinne, Jörg; Rapecki, Stephen; Baker, Terry S.; Lawson, Alastair D. G.; Wright, Michael; Ettorre, Anna

    2017-01-01

    Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the “junctional epitope” nature of VHH6, a camelid single domain antibody recognizing the IL-6–gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions. PMID:28134246

  14. Prevalence of antibodies to the repeat epitope of the circumsporozoite protein of Plasmodium vivax in San Luis Potosi, Mexico.

    Science.gov (United States)

    Mota, J; Coreño, O; Cochrane, A H; Ramos, C

    1996-01-01

    The prevalence of antibodies against the repeat epitope of the circumsporozoite protein (cs) of the standard (PV210) and variant (PVK247) strain of Plasmodium vivax was determined by ELISA in 1170 sera from individual residents of seven localities of the Region Huasteca of San Luis Potosi, Mexico. The capture antigens were the synthetic peptides DDAAD and (ANGAGNQPG) that correspond to the repeats of the PV210 and PVK247 cs proteins, respectively. Of the analyzed serum samples, 34.1% (400/1170) were positive with one or both of these antigens. Of the sera, 18.2% (214/1170) reacted with the DDAAD peptide and 6.6% (78/1170) were positive with the variant synthetic peptide. Additionally, 9.2% (108/1170) of the samples reacted with both peptides. A sample of 10% of positive sera for the variant cs repeat (18/78) was tested with the cs repeat peptide of P. malariae/P. brasilianum (NAAG); almost all of them (16/18, 89%) being positive. These results confirm that the transmission of the variant strain of P. vivax is a common phenomenon in endemic regions in Latin America, as well as in other tropical regions of the world. These findings may have implications for the development of aP. vivax vaccine since that based on the standard cs repeat only would not be universally protective.

  15. Tumor targeting of radiolabeled antibodies using HYNIC chelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Chung, Wee Sup; Woo, Kwang Sun; Choi, Tae Hyun; Chung, Hye Kyung; Lee, Myung Jin; Kim, So Yeon; Jung, Jae Ho; Choi, Chang Woon; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Darwati, Siti [National Nuclear Energy Agency, Tangerang (Indonesia)

    2004-07-01

    There is an increasing interest in the use of labeled antibodies for diagnosis of cancers as well as for therapy. Various radiolabeling methods have been used in order to obtain better tumor specific targeting for detection and therapy. It was generally used to tumor targeted immunotherapy and immunodetection that lym-1, mouse monoclonal antibody, was specific binding to surface antigen of Raji. The 3E8 antibody was produced from humanized anti-TAG-72 monoclonal antibody (AKA) by amino acid change in 95-99 residues of heavy chain complementary determinant regions (HCDRs) 3 using phage displayed library technology. In this study, we are investigating the usefulness of HYNIC chelate as a bifunctional chelating agent in radioimmunodetecton of tumor. Two types of antibodies, Lym-1 and 3E8, were used for the conjugation with HYNIC chelate. Lym-1 and 3E8 are specific antibodies to surface antigen of Non-Hogkin's lymphoma and TAG-72 antigen of colorectal carcinoma, respectively. We prepare HYNIC-antibody conjugates, determine radiolabeling yield with {sup 99m}Tc and evaluate tumor targeting in tumor bearing nude mice model.

  16. A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice

    Science.gov (United States)

    Zhang, Li; Wang, Jin; Xu, Aizhang; Zhong, Conghao; Lu, Wuguang; Deng, Li; Li, Rongxiu

    2016-01-01

    The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases. PMID:27658047

  17. Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies.

    Science.gov (United States)

    Mourad, W; Mécheri, S; Peltre, G; David, B; Hébert, J

    1988-11-15

    The use of mAb allowed us to further analyze the cross-reactivity between purified Dac g I and Lol p I, the major allergens of Dactylis glomerata (cocksfoot) and Lolium perenne (Rye grass), respectively. It was first shown, using IEF, followed by immunoprinting, that serum IgE antibodies from most grass-sensitive patients recognize both Dac g I and Lol p I. Second, three different anti-Lol p I mAb, 290A-167, 348A-6, and 539A-6, and one anti-Dac g I mAb, P3B2 were all shown to react with Dac g I and Lol p I, indicating that the two molecules share common epitopes. Epitope specificity of the mAb was determined by competitive binding inhibition of a given labeled mAb to solid phase fixed Dac g I or Lol p I by the mAb. The results indicated that the four mAb are directed against four different and non-overlapping epitopes present on both allergens. Using double-binding RIA, our data strongly suggest that the common epitopes are not repetitive on both molecules. In addition to their similar physicochemical characteristics, such as isolectric points and m.w., Dac g I and Lol p I share four identical epitopes. Binding inhibition of human IgE to Lol p I and Dac g I by the mAb was also assessed. The results indicated that each mAb was able to inhibit such reactions to variable degree but no additive inhibition was observed when two mAb of different specificities were used in combination, suggesting that the human IgE binding site is partially shared by each epitope recognized by the four mAb.

  18. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Prentoe, Jannick;

    2011-01-01

    The E2 glycoprotein of hepatitis C virus (HCV) mediates viral attachment and entry into target hepatocytes and elicits neutralizing antibodies in infected patients. To characterize the structural and functional basis of HCV neutralization, we generated a novel panel of 78 monoclonal antibodies...... infection at an early postattachment step. Receptor binding studies demonstrated that H77.39 inhibited binding of soluble E2 protein to both CD81 and SR-B1, J6.36 blocked attachment to SR-B1 and modestly reduced binding to CD81, and H77.16 blocked attachment to SR-B1 only. Using yeast surface display, we....... Collectively, these studies help to define the structural and functional complexity of antibodies against HCV E2 protein with neutralizing potential....

  19. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  20. Characterization of an immunodominant cancer-specific O-glycopeptide epitope in murine podoplanin (OTS8)

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Schjoldager, Katrine T; Cló, Emiliano

    2010-01-01

    of the nature and timing of induction of auto-antibodies to distinct O-glycopeptide epitopes induced by cancer. The results demonstrate that truncated O-glycopeptides constitute highly distinct antibody epitopes with great potential as targets for biomarkers and immunotherapeutics.......Auto-antibodies induced by cancer represent promising sensitive biomarkers and probes to identify immunotherapeutic targets without immunological tolerance. Surprisingly few epitopes for such auto-antibodies have been identified to date. Recently, a cancer-specific syngeneic murine monoclonal...... antibody 237, developed to a spontaneous murine fibrosarcoma, was shown to be directed to murine podoplanin (OTS8) with truncated Tn O-glycans. Our understanding of such cancer-specific auto-antibodies to truncated glycoforms of glycoproteins is limited. Here we have investigated immunogenicity...

  1. Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity.

    Science.gov (United States)

    Sanabria-Ayala, Víctor; Belmont, Iaraset; Abraham, Landa

    2015-01-01

    Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity. Afterward, they were used to screen a library of phage-displayed dodecapeptides; as a result, 41 phage mimotope clones were isolated and grouped according to their amino acid sequence, finding the consensus A1 (VPTXPI), A2 (VPTXXI), B (LTPGQ), and D (DPLPR). Antibodies against selected phage mimotope clones were obtained by rabbit's immunization; these ones clearly recognized TTPI by both Western blot and ELISA. However, only the mimotope PDTS16 (DSVTPTSVMAVA) clone, which belongs to the VPTXXI consensus, raised antibodies capable of inhibiting the TTPI catalytic activity in 45 %. Anti-PDTS16 antibodies were confronted to several synthetic peptides that encompass the 1/3NH2TTPI, and they only recognized three, which share the motif FDTLQK belonging to the helix-α1 in TTPI. This suggests that this motif is the main part of the epitope recognized by anti-PDTS16 antibodies and revealed its importance for TTPI catalysis.

  2. Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31.

    Directory of Open Access Journals (Sweden)

    Won-Tae Kim

    Full Text Available When located in the endoplasmic reticulum (ER membrane, B-cell receptor associated protein 31 (BAP31 is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs, 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs, but not to surface molecules on mouse embryonic stem cells (mESCs. Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31. We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while α-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.

  3. Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31.

    Science.gov (United States)

    Kim, Won-Tae; Choi, Hong Seo; Hwang, Hyo Jeong; Jung, Han-Sung; Ryu, Chun Jeih

    2015-01-01

    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while α-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.

  4. The HIV glycan shield as a target for broadly neutralizing antibodies.

    Science.gov (United States)

    Doores, Katie J

    2015-12-01

    The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.

  5. Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue.

    Science.gov (United States)

    Korzeniowska-Kowal, Agnieszka; Kochman, Agata; Gamian, Elżbieta; Lis-Nawara, Anna; Lipiński, Tomasz; Seweryn, Ewa; Ziółkowski, Piotr; Gamian, Andrzej

    2015-01-01

    Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia) and tumor tissue (ganglioneuroma). Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is a new marker

  6. Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue.

    Directory of Open Access Journals (Sweden)

    Agnieszka Korzeniowska-Kowal

    Full Text Available Lipopolysaccharide (LPS, the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia and tumor tissue (ganglioneuroma. Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is

  7. Proteomic characterization of Helicobacter pylori CagA antigen recognized by child serum antibodies and its epitope mapping by peptide array.

    Directory of Open Access Journals (Sweden)

    Junko Akada

    Full Text Available Serum antibodies against pathogenic bacteria play immunologically protective roles, and can be utilized as diagnostic markers of infection. This study focused on Japanese child serum antibodies against Helicobacter pylori, a chronically-infected gastric bacterium which causes gastric cancer in adults. Serological diagnosis for H. pylori infection is well established for adults, but it needs to be improved for children. Serum samples from 24 children, 22 H. pylori (Hp-positive and 2 Hp-negative children, were used to catalogue antigenic proteins of a Japanese strain CPY2052 by two-dimensional electrophoresis followed by immunoblot and LC-MS/MS analysis. In total, 24 proteins were identified as candidate antigen proteins. Among these, the major virulence factor, cytotoxin-associated gene A protein (CagA was the most reactive antigen recognized by all the Hp-positive sera even from children under the age of 3 years. The major antigenic part of CagA was identified in the middle region, and two peptides containing CagA epitopes were identified using a newly developed peptide/protein-combined array chip method, modified from our previous protein chip method. Each of the epitopes was found to contain amino acid residue(s unique to East Asian CagA. Epitope analysis of CagA indicated importance of the regional CagA antigens for serodiagnosis of H. pylori infection in children.

  8. Molecular characterization of monoclonal antibodies that inhibit acetylcholinesterase by targeting the peripheral site and backdoor region.

    Directory of Open Access Journals (Sweden)

    Yves Bourne

    Full Text Available The inhibition properties and target sites of monoclonal antibodies (mAbs Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE, have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis.

  9. Novel information on the epitope of an inverse agonist monoclonal antibody provides insight into the structure of the TSH receptor.

    Directory of Open Access Journals (Sweden)

    Chun-Rong Chen

    Full Text Available The TSH receptor (TSHR comprises an extracellular leucine-rich domain (LRD linked by a hinge region to the transmembrane domain (TMD. Insight into the orientation of these components to each other is required for understanding how ligands activate the receptor. We previously identified residue E251 at the LRD-hinge junction as contributing to coupling TSH binding with receptor activation. However, a single residue cannot stabilize the LRD-hinge unit. Therefore, based on the LRD crystal structure we selected for study four other potential LRD-hinge interface charged residues. Alanine substitutions of individual residues K244, E247, K250 and R255 (as well as previously known E251A did not affect TSH binding or function. However, the cumulative mutation of these residues in varying permutations, primarily K250A and R255A when associated with E251A, partially uncoupled TSH binding and function. These data suggest that these three residues, spatially very close to each other at the LRD base, interact with the hinge region. Unexpectedly and most important, monoclonal antibody CS-17, a TSHR inverse agonist whose epitope straddles the LRD-hinge, was found to interact with residues K244 and E247 at the base of the convex LRD surface. These observations, together with the functional data, exclude residues K244 and E247 from the TSHR LRD-hinge interface. Further, for CS-17 accessibility to K244 and E247, the concave surface of the TSHR LRD must be tilted forwards towards the hinge region and plasma membrane. Overall, these data provide insight into the mechanism by which ligands either activate the TSHR or suppress its constitutive activity.

  10. Monoclonal antibody to a conserved epitope on proteins encoded by Babesia bigemina and present on the surface of intact infected erythrocytes.

    Science.gov (United States)

    Shompole, S; Perryman, L E; Rurangirwa, F R; McElwain, T F; Jasmer, D P; Musoke, A J; Wells, C W; McGuire, T C

    1995-09-01

    To define Babesia bigemina-specific antigens on the surface of infected erythrocytes, monoclonal antibodies (MAbs) were identified by live-cell immunofluorescence. As determined by live-cell immunofluorescence, two MAbs made to the Mexico strain reacted with the Mexico strain and three Kenya strains, while three MAbs made to the Kenya-Ngong strain reacted with the Kenya strains but not the Mexico strain. Binding of MAb 44.18 (made to the Mexico strain) to a strain-common epitope was confirmed by immunoelectron microscopy and by surface-specific immunoprecipitation of [35S]methionine-labeled proteins (200, 28, and 16 kDa in size), which also demonstrated that the MAb recognized an epitope on proteins encoded by B. bigemina. In immunoblots, the MAb bound to predominant antigens with sizes of 200 and 220 kDa in erythrocyte lysates infected with strains from Puerto Rico, St. Croix, Texcoco (Mexico), Kenya, and Mexico. Major antigens with sizes of 200 and 220 kDa were isolated from a MAb 44.18 affinity matrix. Calf serum antibodies to these isolated antigens bound to erythrocytes infected with either the Mexico or Kenya strains as determined by live-cell immunofluorescence, allowing the conclusion that at least one conserved surface epitope was recognized. Calf serum antibodies identified major labeled proteins with sizes of 200 and 72 kDa by surface-specific immunoprecipitation, and infected erythrocytes sensitized with these antibodies were phagocytized by cultured bovine peripheral blood monocytes. These results provide a rationale for evaluating antigens identified by MAb 44.18 individually and as components of subunit vaccines.

  11. Epitope reactions can be gauged by relative antibody discriminating specificity (RADS values supported by deletion, substitution and cysteine bridge formation analyses: potential uses in pathogenesis studies

    Directory of Open Access Journals (Sweden)

    Falconar Andrew K I

    2012-07-01

    Full Text Available Abstract Background Epitope-mapping of infectious agents is essential for pathogenesis studies. Since polyclonal antibodies (PAbs and monoclonal antibodies (MAbs are always polyspecific and can react with multiple epitopes, it is important to distinguish between specific and non-specific reactions. Relative antibody discriminating specificity (RADS values, obtained from their relative ELISA reactions with L-amino acid peptides prepared in the natural versus reverse orientations (x-fold absorbance natural/absorbance reverse = RADS value may be valuable for this purpose. PAbs generated against the dengue type-2 virus (DENV-2 nonstructural-1 (NS1 glycoprotein candidate vaccine also reacted with both DENV envelope (E glycoproteins and blood-clotting proteins. New xKGSx/xSGKx amino acid motifs were identified on DENV-2 glycoproteins, HIV-1 gp41 and factor IXa. Their potential roles in DENV and HIV-1 antibody-enhanced replication (AER and auto-immunity were assessed. In this study, a RADS values were determined for MAbs and PAbs, generated in congeneic (H2: class II mice against DENV NS1 glycoprotein epitopes, to account for their cross-reaction patterns, and b MAb 1G5.3 reactions with xKGSx/xSGKx motifs present in the DENV-4 NS1, E and HIV-1 glycoproteins and factor IXa were assessed after the introduction of amino acid substitutions, deletions, or intra-/inter-cysteine (C-C bridges. Results MAbs 1H7.4, 5H4.3, 3D1.4 and 1G5.3 had high (4.23- to 16.83-fold RADS values against single epitopes on the DENV-2 NS1 glycoprotein, and MAb 3D1.4 defined the DENV complex-conserved LX1 epitope. In contrast, MAbs 1G5.4-A1-C3 and 1C6.3 had low (0.47- to 1.67-fold RADS values against multiple epitopes. PAb DENV complex-reactions occurred through moderately-high (2.77- and 3.11-fold RADS values against the LX1 epitope. MAb 1G5.3 reacted with xSGKx motifs present in DENV-4 NS1 and E glycoproteins, HIV-1 gp41 and factor IXa, while natural C-C bridge formations or

  12. Evaluation of a conserved HA274-288 epitope to detect antibodies to highly pathogenic avian influenza virus H5N1 in Indonesian commercial poultry.

    Science.gov (United States)

    Wawegama, Nadeeka K; Tarigan, Simson; Indriani, Risa; Selleck, Paul; Adjid, Rm Abdul; Syafriati, Tati; Hardiman; Durr, Peter A; Ignjatovic, Jagoda

    2016-08-01

    A peptide enzyme linked immunosorbent assay (ELISA) based on an epitope in the haemagglutinin (HA) of avian influenza virus H5N1, amino acid positions 274-288 (HA274-288) was evaluated for detection of H5N1-specific antibodies. An optimized ELISA based on the tetrameric form of the HA274-288 epitope designated MP15 gave low background with non-immune chicken sera and detected vaccinated and infected birds. The HA274-288 epitope was highly conserved in Indonesian H5N1 strains and antibody responses were detected in the majority of the vaccinated chickens regardless of the H5N1 strain used for vaccination. The HA274-288 epitope was also conserved in the majority of H5N1 strains from the neighbouring Asian region, and other H5 subtypes potentially allowing for a wider use of the MP15 ELISA in H5N1 vaccinated and infected flocks. The MP15 ELISA results correlated significantly with haemagglutination inhibition (HI) test results and test sensitivity and specificity were 87% and 92%, respectively. The MP15 ELISA titres were significantly higher than the HI titres in all immune sera allowing for sera to be tested at a single dilution of 1:400 which is of advantage in routine surveillance. The study indicated that the MP15 ELISA is potentially useful for serological detection of H5N1 vaccinated or infected poultry and to have some advantages over the standard HI test for routine monitoring of flocks' immunity after vaccination.

  13. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  14. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  15. Neutralization of tier-2 viruses and epitope profiling of plasma antibodies from human immunodeficiency virus type 1 infected donors from India.

    Directory of Open Access Journals (Sweden)

    Raiees Andrabi

    Full Text Available Broadly cross neutralizing antibodies (NAbs are generated in a group of HIV-1 infected individuals during the natural infection, but little is known about their prevalence in patients infected with viral subtypes from different geographical regions. We tested here the neutralizing efficiency of plasma antibodies from 80 HIV-1 infected antiretroviral drug naive patients against a panel of subtype-B and C tier 2 viruses. We detected cross-neutralizing antibodies in approximately 19-27% of the plasma, however the subtype-C specific neutralization efficiency predominated (p = 0.004. The neutralizing activity was shown to be exclusively mediated by the immunoglobulin G (IgG fraction in the representative plasma samples. Epitope mapping of three, the most cross-neutralizing plasma (CNP AIIMS206, AIIMS239 and AIIMS249 with consensus-C overlapping envelope peptides revealed ten different binding specificities with only V3 and IDR being common. The V3 and IDR were highly antigenic regions but no correlation between their reciprocal Max50 binding titers and neutralization was observed. In addition, the neutralizing activity of CNP was not substantially reduced by V3 and gp41 peptides except a modest contribution of MPER peptide. The MPER was rarely recognized by plasma antibodies though antibody depletion and competition experiments demonstrated MPER dependent neutralization in two out of three CNP. Interestingly, the binding specificity of one of the CNP (AIIMS206 overlapped with broadly neutralizing mAb 2F5 epitope. Overall, the data suggest that, despite the low immunogenicity of HIV-1 MPER, the antibodies directed to this region may serve as crucial reagents for HIV-1 vaccine design.

  16. Neutralization of tier-2 viruses and epitope profiling of plasma antibodies from human immunodeficiency virus type 1 infected donors from India.

    Science.gov (United States)

    Andrabi, Raiees; Bala, Manju; Kumar, Rajesh; Wig, Naveet; Hazarika, Anjali; Luthra, Kalpana

    2012-01-01

    Broadly cross neutralizing antibodies (NAbs) are generated in a group of HIV-1 infected individuals during the natural infection, but little is known about their prevalence in patients infected with viral subtypes from different geographical regions. We tested here the neutralizing efficiency of plasma antibodies from 80 HIV-1 infected antiretroviral drug naive patients against a panel of subtype-B and C tier 2 viruses. We detected cross-neutralizing antibodies in approximately 19-27% of the plasma, however the subtype-C specific neutralization efficiency predominated (p = 0.004). The neutralizing activity was shown to be exclusively mediated by the immunoglobulin G (IgG) fraction in the representative plasma samples. Epitope mapping of three, the most cross-neutralizing plasma (CNP) AIIMS206, AIIMS239 and AIIMS249 with consensus-C overlapping envelope peptides revealed ten different binding specificities with only V3 and IDR being common. The V3 and IDR were highly antigenic regions but no correlation between their reciprocal Max50 binding titers and neutralization was observed. In addition, the neutralizing activity of CNP was not substantially reduced by V3 and gp41 peptides except a modest contribution of MPER peptide. The MPER was rarely recognized by plasma antibodies though antibody depletion and competition experiments demonstrated MPER dependent neutralization in two out of three CNP. Interestingly, the binding specificity of one of the CNP (AIIMS206) overlapped with broadly neutralizing mAb 2F5 epitope. Overall, the data suggest that, despite the low immunogenicity of HIV-1 MPER, the antibodies directed to this region may serve as crucial reagents for HIV-1 vaccine design.

  17. Antibody therapeutics targeting ion channels:are we there yet?

    Institute of Scientific and Technical Information of China (English)

    Han SUN; Min LI

    2013-01-01

    The combination of technological advances,genomic sequences and market success is catalyzing rapid development of antibodybased therapeutics.Cell surface receptors and ion channel proteins are well known drug targets,but the latter has seen less success.The availability of crystal structures,better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases.

  18. Specific targeting of tumor cells by lyophilisomes functionalized with antibodies

    NARCIS (Netherlands)

    van Bracht, Etienne; Stolle, Sarah; Hafmans, Theo G.; Boerman, Otto C.; Oosterwijk, Egbert; van Kuppevelt, Toin H.; Daamen, Willeke F.

    2014-01-01

    Lyophilisomes are a novel class of proteinaceous biodegradable nano/micro drug delivery capsules prepared by freezing, annealing and Iyophilization. In the present study, lyophilisomes were functionalized for active targeting by antibody conjugation in order to obtain a selective drug-carrier system

  19. Immune Epitope Database and Analysis Resource (IEDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — This repository contains antibody/B cell and T cell epitope information and epitope prediction and analysis tools for use by the research community worldwide. Immune...

  20. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity.

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    Full Text Available The paralytic disease botulism is caused by botulinum neurotoxins (BoNT, multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC of BoNT serotype A (BoNT/A was targeted for generation of monoclonal antibodies (mAbs that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS. Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10-11 M to 3.53×10-8 M (mean KD 5.38×10-9 M and median KD 1.53×10-9 M, as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10-9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.

  1. Transcytosis-blocking abs elicited by an oligomeric immunogen based on the membrane proximal region of HIV-1 gp41 target non-neutralizing epitopes.

    Science.gov (United States)

    Matoba, Nobuyuki; Griffin, Tagan A; Mittman, Michele; Doran, Jeffrey D; Alfsen, Annette; Montefiori, David C; Hanson, Carl V; Bomsel, Morgane; Mor, Tsafrir S

    2008-05-01

    CTB-MPR(649-684), a translational fusion protein consisting of cholera toxin B subunit (CTB) and residues 649 684 of gp41 membrane proximal region (MPR), is a candidate vaccine aimed at blocking early steps of HIV-1 mucosal transmission. Bacterially produced CTB MPR(649-684) was purified to homogeneity by two affinity chromatography steps. Similar to gp41 and derivatives thereof, the MPR domain can specifically and reversibly self-associate. The affinities of the broadly-neutralizing monoclonal Abs 4E10 and 2F5 to CTB MPR(649-684) were equivalent to their nanomolar affinities toward an MPR peptide. The fusion protein's affinity to GM1 ganglioside was comparable to that of native CTB. Rabbits immunized with CTB-MPR(649-684) raised only a modest level of anti-MPR(649-684) Abs. However, a prime-boost immunization with CTB-MPR(649-684) and a second MPR(649-684)-based immunogen elicited a more productive anti-MPR(649-684) antibody response. These Abs strongly blocked the epithelial transcytosis of a primary subtype B HIV-1 isolate in a human tight epithelial model, expanding our previously reported results using a clade D virus. The Abs recognized epitopes at the N-terminal portion of the MPR peptide, away from the 2F5 and 4E10 epitopes and were not effective in neutralizing infection of CD4+ cells. These results indicate distinct vulnerabilities of two separate interactions of HIV-1 with human cells - Abs against the C-terminal portion of the MPR can neutralize CD4+-dependent infection, while Abs targeting the MPR's N-terminal portion can effectively block galactosyl ceramide dependent transcytosis. We propose that Abs induced by MPR(649-684)-based immunogens may provide broad protective value independent of infection neutralization.

  2. Production and Purification of Polyclonal Antibodies.

    Science.gov (United States)

    Nakazawa, Masami; Mukumoto, Mari; Miyatake, Kazutaka

    2016-01-01

    Polyclonal antibodies consist of a mixture of antibodies produced by multiple B-cell clones that have differentiated into antibody-producing plasma cells in response to an immunogen. Polyclonal antibodies raised against an antigen recognize multiple epitopes on a target molecule, which results in a signal amplification in indirect immunoassays including immune-electron microscopy. In this chapter, we present a basic procedure to generate polyclonal antibodies in rabbits.

  3. Human CD8(+) T Cells Target Multiple Epitopes in Respiratory Syncytial Virus Polymerase.

    Science.gov (United States)

    Burbulla, Daniel; Günther, Patrick S; Peper, Janet K; Jahn, Gerhard; Dennehy, Kevin M

    2016-06-01

    Respiratory syncytial virus (RSV) infection is a serious health problem in young children, immunocompromised patients, and the elderly. The development of novel prevention strategies, such as a vaccine to RSV, is a high priority. One strategy is to design a peptide-based vaccine that activates appropriate CD8(+) T-cell responses. However, this approach is limited by the low number of RSV peptide epitopes defined to date that activate CD8(+) T cells. We aimed to identify peptide epitopes that are presented by common human leukocyte antigen types (HLA-A*01, -A*02, and -B*07). We identify one novel HLA-A*02-restricted and two novel HLA-A*01-restricted peptide epitopes from RSV polymerase. Peptide-HLA multimer staining of specific T cells from healthy donor peripheral blood mononuclear cell, the memory phenotype of such peptide-specific T cells ex vivo, and functional IFNγ responses in short-term stimulation assays suggest that these peptides are recognized during RSV infection. Such peptides are candidates for inclusion into a peptide-based RSV vaccine designed to stimulate defined CD8(+) T-cell responses.

  4. IGHV1-69-Encoded Antibodies Expressed in Chronic Lymphocytic Leukemia React with Malondialdehyde-Acetaldehyde Adduct, an Immunodominant Oxidation-Specific Epitope

    DEFF Research Database (Denmark)

    Que, Xuchu; Widhopf Ii, George F; Amir, Shahzada

    2013-01-01

    with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which...... specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library...

  5. GABARAPL1 antibodies: target one protein, get one free!

    Science.gov (United States)

    Le Grand, Jaclyn Nicole; Chakrama, Fatima Zahra; Seguin-Py, Stéphanie; Fraichard, Annick; Delage-Mourroux, Régis; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël

    2011-11-01

    Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.

  6. Antibodies against Proinsulin and Homologous MAP Epitopes Are Detectable in Hashimoto's Thyroiditis Sardinian Patients, an Additional Link of Association.

    Directory of Open Access Journals (Sweden)

    Magdalena Niegowska

    Full Text Available Hashimoto's thyroiditis (HT is the prevailing organ-specific autoimmune disease in Sardinia, often complicated with other autoimmune disorders, most commonly type 1 diabetes (T1D. While numerous studies describe levels of anty-thyroid antibodies (Abs in T1D patients, few papers evaluate the status of anti-islet autoimmunity in subjects affected by HT. Previously, we portrayed Mycobacterium avium subspecies paratuberculosis (MAP as an environmental factor strongly associated with both diseases. In this study, we analyzed plasma of Sardinian HT patients (n=177 and healthy controls (HCs; n=175 for the presence of Abs against proinsulin and MAP-derived homologous epitopes: MAP1,4αgbp157-173/PI64-80 were recognized by 5,08% and 18,64% of HT vs 0,57% and 7,43% of HCs (AUC=0,6 for both; p<0,0003 and 0,002, respectively, whereas the prevalence of Abs against MAP2404c70-85/PI46-61 peptides was higher but not significant in patients when compared to HCs. In women (n=152, Abs against MAP1,4αgbp157-173 were detected in 12,50% of HT vs 2,75% of HCs (AUC=0,63; p<0,0002, while positivity to its human homolog PI64-80 was observed in 16,42% of HT vs 6,42% of HCs (AUC=0,61; p<0,001. In men (n=25, a significant anti-PI46-61 Abs levels were detected in 4% of HT vs none of the HCs (AUC=0,7; p<0,003. Age-related analyses revealed the highest prevalence between 31-40 years old (45,83% in the total study population and among males (33,33%; in contrast, women had a higher seroreactivity between 51-60 years (42,11%. A further follow-up and determination of anti-islet Abs levels is needed to evaluate the association of immune responses directed against the MAP/PI homologous peptides with progression to overt diabetes in HT subjects.

  7. Antibodies against Proinsulin and Homologous MAP Epitopes Are Detectable in Hashimoto's Thyroiditis Sardinian Patients, an Additional Link of Association.

    Science.gov (United States)

    Niegowska, Magdalena; Paccagnini, Daniela; Burrai, Carlo; Palermo, Mario; Sechi, Leonardo A

    2015-01-01

    Hashimoto's thyroiditis (HT) is the prevailing organ-specific autoimmune disease in Sardinia, often complicated with other autoimmune disorders, most commonly type 1 diabetes (T1D). While numerous studies describe levels of anty-thyroid antibodies (Abs) in T1D patients, few papers evaluate the status of anti-islet autoimmunity in subjects affected by HT. Previously, we portrayed Mycobacterium avium subspecies paratuberculosis (MAP) as an environmental factor strongly associated with both diseases. In this study, we analyzed plasma of Sardinian HT patients (n=177) and healthy controls (HCs; n=175) for the presence of Abs against proinsulin and MAP-derived homologous epitopes: MAP1,4αgbp157-173/PI64-80 were recognized by 5,08% and 18,64% of HT vs 0,57% and 7,43% of HCs (AUC=0,6 for both; p<0,0003 and 0,002, respectively), whereas the prevalence of Abs against MAP2404c70-85/PI46-61 peptides was higher but not significant in patients when compared to HCs. In women (n=152), Abs against MAP1,4αgbp157-173 were detected in 12,50% of HT vs 2,75% of HCs (AUC=0,63; p<0,0002), while positivity to its human homolog PI64-80 was observed in 16,42% of HT vs 6,42% of HCs (AUC=0,61; p<0,001). In men (n=25), a significant anti-PI46-61 Abs levels were detected in 4% of HT vs none of the HCs (AUC=0,7; p<0,003). Age-related analyses revealed the highest prevalence between 31-40 years old (45,83%) in the total study population and among males (33,33%); in contrast, women had a higher seroreactivity between 51-60 years (42,11%). A further follow-up and determination of anti-islet Abs levels is needed to evaluate the association of immune responses directed against the MAP/PI homologous peptides with progression to overt diabetes in HT subjects.

  8. Epitope characterization and variable region sequence of f1-40, a high-affinity monoclonal antibody to botulinum neurotoxin type a (Hall strain.

    Directory of Open Access Journals (Sweden)

    Miles C Scotcher

    Full Text Available BACKGROUND: Botulism, an often fatal neuroparalytic disease, is caused by botulinum neurotoxins (BoNT which consist of a family of seven serotypes (A-H produced by the anaerobic bacterium Clostridium botulinum. BoNT, considered the most potent biological toxin known, is a 150 kDa protein consisting of a 100 kDa heavy-chain (Hc and a 50 kDa light-chain (Lc. F1-40 is a mouse-derived, IgG1 monoclonal antibody that binds the light chain of BoNT serotype A (BoNT/A and is used in a sensitive immunoassay for toxin detection. We report the fine epitope mapping of F1-40 and the deduced amino acid sequence of the variable regions of the heavy and light chains of the antibody. METHODS AND FINDINGS: To characterize the binding epitope of F1-40, three complementary experimental approaches were selected. Firstly, recombinant peptide fragments of BoNT/A light-chain were used in Western blots to identify the epitope domains. Secondly, a peptide phage-display library was used to identify the specific amino acid sequences. Thirdly, the three-dimensional structure of BoNT/A was examined in silico, and the amino acid sequences determined from the phage-display studies were mapped onto the three-dimensional structure in order to visualize the epitope. F1-40 was found to bind a peptide fragment of BoNT/A, designated L1-3, which spans from T125 to L200. The motif QPDRS was identified by phage-display, and was mapped to a region within L1-3. When the three amino acids Q138, P139 and D140 were all mutated to glycine, binding of F1-40 to the recombinant BoNT/A light chain peptide was abolished. Q-138, P-139 and D-140 form a loop on the external surface of BoNT/A, exposed to solvent and accessible to F1-40 binding. CONCLUSIONS: The epitope of F1-40 was localized to a single exposed loop (ss4, ss5 on the Lc of BoNT. Furthermore amino acids Q138, P139 and D140 forming the tip of the loop appear critical for binding.

  9. Structural Analysis of Human and Macaque Monoclonal Antibodies 2909 and 2.5B: Implications for the Configuration of the Quaternary Neutralizing Epitope of HIV-1 gp120

    Energy Technology Data Exchange (ETDEWEB)

    B Spurrier; J Sampson; M Totrov; H Li; T ONeal; C Williams; J Robinson; M Gorny; S Zolla-Pazner; X Kong

    2011-12-31

    The quaternary neutralizing epitope (QNE) of HIV-1 gp120 is preferentially expressed on the trimeric envelope spikes of intact HIV virions, and QNE-specific monoclonal antibodies (mAbs) potently neutralize HIV-1. Here, we present the crystal structures of the Fabs of human mAb 2909 and macaque mAb 2.5B. Both mAbs have long beta hairpin CDR H3 regions >20 {angstrom} in length that are each situated at the center of their respective antigen-binding sites. Computational analysis showed that the paratopes include the whole CDR H3, while additional CDR residues form shallow binding pockets. Structural modeling suggests a way to understand the configuration of QNEs and the antigen-antibody interaction for QNE mAbs. Our data will be useful in designing immunogens that may elicit potent neutralizing QNE Abs.

  10. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  11. Epitope Mapping of Ibalizumab, a Humanized Anti-CD4 Monoclonal Antibody with Anti-HIV-1 Activity in Infected Patients▿

    Science.gov (United States)

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D.

    2010-01-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell. PMID:20463063

  12. Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients.

    Science.gov (United States)

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D

    2010-07-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.

  13. A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease.

    Directory of Open Access Journals (Sweden)

    Suganya Selvarajah

    Full Text Available The mosquito-borne alphavirus, chikungunya virus (CHIKV, has recently reemerged, producing the largest epidemic ever recorded for this virus, with up to 6.5 million cases of acute and chronic rheumatic disease. There are currently no licensed vaccines for CHIKV and current anti-inflammatory drug treatment is often inadequate. Here we describe the isolation and characterization of two human monoclonal antibodies, C9 and E8, from CHIKV infected and recovered individuals. C9 was determined to be a potent virus neutralizing antibody and a biosensor antibody binding study demonstrated it recognized residues on intact CHIKV VLPs. Shotgun mutagenesis alanine scanning of 98 percent of the residues in the E1 and E2 glycoproteins of CHIKV envelope showed that the epitope bound by C9 included amino-acid 162 in the acid-sensitive region (ASR of the CHIKV E2 glycoprotein. The ASR is critical for the rearrangement of CHIKV E2 during fusion and viral entry into host cells, and we predict that C9 prevents these events from occurring. When used prophylactically in a CHIKV mouse model, C9 completely protected against CHIKV viremia and arthritis. We also observed that when administered therapeutically at 8 or 18 hours post-CHIKV challenge, C9 gave 100% protection in a pathogenic mouse model. Given that targeting this novel neutralizing epitope in E2 can potently protect both in vitro and in vivo, it is likely to be an important region both for future antibody and vaccine-based interventions against CHIKV.

  14. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  15. Mechanisms of resistance to HER family targeting antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Kruser, Tim J. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States); Wheeler, Deric L., E-mail: dlwheeler@wisc.edu [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States)

    2010-04-15

    The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.

  16. Epitope mapping from real time kinetic studies – Role of cross-linked disulphides and incidental interacting regions in affinity measurements: Study with human chorionic gonadotropin and monoclonal antibodies

    Indian Academy of Sciences (India)

    Nonavinakere Seetharam Srilatha; P Tamil Selvi; Gundlupet Satyanarayana Murthy

    2005-06-01

    Real time kinetic studies were used to map conformational epitopes in human chorionic gonadotropin (hCG) for two monoclonal antibodies (MAbs). The epitopes were identified in the regions (5–14 and 55–62). The association rate constant (+1) was found to be altered by chemical modification of hCG, and the ionic strength of the reaction medium. Based on these changes, we propose the presence of additional interactions away from the epitope-paratope region in the hCG-MAb reaction. We have identified such incidental interacting regions (IIRs) in hCG to be the loop region 35–47 and 60–84. The IIRs contribute significantly towards the of the interaction. Therefore, in a macromolecular interaction of hCG and its MAb, is determined not only by epitopeparatope interaction but also by the interaction of the nonepitopic-nonparatopic IIRs. However, the specificity of the interaction resides exclusively with the epitope-paratope pair.

  17. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies

    NARCIS (Netherlands)

    Niederfellner, G.; Lammens, A.; Mundigl, O.; Georges, G.J.; Schaefer, W.; Schwaiger, M.; Franke, A.; Wiechmann, K.; Jenewein, S.; Slootstra, J.W.; Timmerman, P.; Brännström, A.; Lindstrom, F.; Mössner, E.; Umana, P.; Hopfner, K.P.; Klein, C.

    2011-01-01

    CD20 is a cell-surface marker of normal and malignant B cells. Rituximab, a monoclonal antibody targeting CD20, has improved the treatment of malignant lymphomas. Therapeutic CD20 antibodies are classified as either type I or II based on different mechanisms of killing malignant B cells. To reveal t

  18. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma.

    Science.gov (United States)

    Fattore, Luigi; Malpicci, Debora; Marra, Emanuele; Belleudi, Francesca; Noto, Alessia; De Vitis, Claudia; Pisanu, Maria Elena; Coluccia, Pierpaolo; Camerlingo, Rosa; Roscilli, Giuseppe; Ribas, Antoni; Di Napoli, Arianna; Torrisi, Maria Rosaria; Aurisicchio, Luigi; Ascierto, Paolo Antonio; Mancini, Rita; Ciliberto, Gennaro

    2015-09-22

    Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma.

  19. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma

    Science.gov (United States)

    Fattore, Luigi; Malpicci, Debora; Marra, Emanuele; Belleudi, Francesca; Noto, Alessia; De Vitis, Claudia; Pisanu, Maria Elena; Coluccia, Pierpaolo; Camerlingo, Rosa; Roscilli, Giuseppe; Ribas, Antoni; Di Napoli, Arianna; Torrisi, Maria Rosaria; Aurisicchio, Luigi; Ascierto, Paolo Antonio; Mancini, Rita; Ciliberto, Gennaro

    2015-01-01

    Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma. PMID:26208478

  20. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.

  1. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    Science.gov (United States)

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146.

  2. Phage displaying peptides mimic schistosoma antigenic epitopes selected by rat natural antibodies and protective immunity induced by their immunization in mice

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Xin-Yuan Yi; Xian-Ping Li; Dong-Ming Zhou; McReynolds Larry; Xian-Fang Zeng

    2005-01-01

    AIM: To obtain the short peptides mimic antigenic epitopes selected by rat natural antibodies to schistosomes, and to explore their immunoprotection against schistosomiasis in mice.METHODS: Adults worm antigens (AWA) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked transferred immunoblotting methods with normal SD rat sera (NRS). The killing effects on schistosomula with fresh and heat-inactivated sera from SD rats were observed. Then the purified IgG from sera of SD rats was used to biopan a phage random peptide library and 20 randomly selected positive clones were detected by ELISA and 2 of them were sequenced.Sixty female mice were immunized thrice with positive phage clones (0, 2nd, 4th wk). Each mouse was challenged with 40 cercariae, and all mice were killed 42 d after challenge. The worms and the liver eggs were counted. RESULTS: NRS could specifically react to the molecules of 75 000, 47 000, 34 500 and 23 000 of AWA. Sera from SD rats showed that the mortality rate of schistosomula was 76.2%, and when the sera were heat-inactivated in vitro, the mortality rate was decreased to 41.0% after being cultured for 48 h. The specific phages bound to IgG were enriched about 300-folds after three rounds of biopanning. Twenty clones were detected by ELISA, 19 of them bound to the specific IgG of rat sera. Immunization with these epitopes was carried out in mice. Compared with the control groups, the mixture of two mimic peptides could induce 34.9% (P = 0.000) worm reduction and 67.6% (P = 0.000) total liver egg reduction in mice. Two different mimic peptides could respectively induce 31.0% (P = 0.001), 14.5% (P = 0.074) worm reduction and 61.2% (P = 0.000), 35.7% (P = 0.000) total liver egg reduction. The specific antibody could be induced by immunization of the mimic peptides, and the antibody titer in immunized mice reached more than 1:6 400 as detected by ELISA.CONCLUSION: Specific peptides mimic antigenic

  3. Mapping an epitope in EBNA‐1 that is recognized by monoclonal antibodies to EBNA‐1 that cross‐react with dsDNA

    Science.gov (United States)

    Yadav, Pragya; Carr, Matthew T.; Yu, Ruby; Mumbey‐Wafula, Alice

    2016-01-01

    Abstract Introduction The Epstein Barr Virus (EBV) has been associated with the autoimmune disease, Systemic Lupus Erythematosus (SLE). EBV nuclear antigen‐I (EBNA‐1) is the major nuclear protein of EBV. We previously generated an IgG monoclonal antibody (MAb) to EBNA‐1, 3D4, and demonstrated that it cross‐reacts with double stranded DNA (dsDNA) and binds the 148 amino acid viral binding site (VBS) in the carboxyl region of EBNA‐1. The aim of the present study was to characterize another antibody to EBNA‐1 that cross‐reacts with dsDNA, compare its immunoglobulin genes to 3D4, and finely map the epitope in EBNA‐1 that is recognized by these cross‐reactive antibodies. Methods We generated an IgM MAb to EBNA‐1, 16D2, from EBNA‐1 injected mice and demonstrated by ELISA that it cross‐reacts with dsDNA and binds the 148 amino acid VBS. We sequenced the variable heavy and light chain genes of 3D4 and 16D2 and compared V gene usage. To more finely map the epitope in EBNA‐1 recognized by these MAbs, we examined their binding by ELISA to 15 overlapping peptides spanning the 148 amino acid domain. Results Sequence analysis revealed that 3D4 and 16D2 utilize different VH and VL genes but identical JH and Jk regions with minimal junctional diversity. This accounts for similarities in their CDR3 regions and may explain their similar dual binding specificity. Epitope mapping revealed 3D4 and 16D2 bind the same peptide in the VBS. Based on the crystal structure of EBNA‐1, we observed that this peptide resides at the base of an exposed proline rich loop in EBNA‐1. Conclusion We have demonstrated that two MAbs that bind EBNA‐1 and cross‐react with dsDNA, recognize the same peptide in the VBS. This peptide may serve as a mimetope for dsDNA and may be of diagnostic and therapeutic value in SLE. PMID:27621818

  4. Production of a monoclonal antibody by in vitro immunization that recognizes a native chondroitin sulfate epitope in the embryonic chick limb and heart.

    Science.gov (United States)

    Capehart, A A; Wienecke, M M; Kitten, G T; Solursh, M; Krug, E L

    1997-11-01

    We report the production of a monoclonal antibody (d1C4) by in vitro immunization that has immunoreactivity with a native chondroitin sulfate epitope in embryonic chick limb and heart. Murine lymphocytes were stimulated by direct exposure to unfixed, unsolubilized precartilage mesenchymal aggregates in high-density micromass culture derived from Stage 22-23 chick limb buds. Specificity of d1C4 reactivity was demonstrated by sensitivity of immunohistochemical staining to pretreatment with chondroitinase ABC or AC, preferential immunoreactivity with chondroitin-6-sulfate glycosaminoglycan (CS-C GAG) in ELISA, and competition of immunohistochemical staining with CS-C GAG. Immunohistochemical analysis of the expression of the d1C4 epitope revealed a striking localization of immunoreactivity in the extracellular matrix (ECM) of precartilage aggregates of chick limb mesenchyme in high-density micromass culture by 16 hr and the prechondrogenic limb core at Stage 23 in vivo. Immunoreactivity in both cultured limb mesenchyme and the embryonic limb continued through differentiation of prechondrogenic condensations into cartilage tissue. In the developing chick heart, d1C4 staining was found throughout the ECM of atrioventricular cushion tissue by Stage 25, but was localized to mesenchyme adjacent to the myocardium in the outflow tract cushions. There was an abrupt demarcation between d1C4-reactive intracardiac mesenchyme and unreactive extracardiac mesenchyme of the dorsal mesocardium in the Stage 22 embryo. This study demonstrates the efficacy of in vitro immunization of lymphocytes for the production of MAbs to native ECM constituents, such as CS-GAGs. Immunohistochemical data utilizing d1C4 suggest that CS-GAGs bearing this epitope may be important in early morphogenetic events leading to cartilage differentiation in the limb and valvuloseptal morphogenesis in the heart.

  5. Therapeutic antibodies: market considerations, disease targets and bioprocessing.

    Science.gov (United States)

    Elvin, John G; Couston, Ruairidh G; van der Walle, Christopher F

    2013-01-02

    Antibodies are well established in mainstream clinical practice and present an exciting area for collaborative research and development in industry and academia alike. In this review, we will provide an overview of the current market and an outlook to 2015, focussing on whole antibody molecules while acknowledging the next generation scaffolds containing variable fragments. The market will be discussed in the context of disease targets, particularly in the areas of oncology and immune disorders which generate the greatest revenue by a wide margin. Emerging targets include central nervous system disorders which will also stimulate new delivery strategies. It is becoming increasingly apparent that a better understanding of bioprocessing is required in order to optimize the steps involved in the preparation of a protein prior to formulation. The latter is outside the scope of this review and nor is it our intention to discuss protein delivery and pharmacokinetics. The challenges that lie ahead include the discovery of new disease targets and the development of robust bioprocessing operations.

  6. Analysis of Conformational B-Cell Epitopes in the Antibody-Antigen Complex Using the Depth Function and the Convex Hull.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available The prediction of conformational b-cell epitopes plays an important role in immunoinformatics. Several computational methods are proposed on the basis of discrimination determined by the solvent-accessible surface between epitopes and non-epitopes, but the performance of existing methods is far from satisfying. In this paper, depth functions and the k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each layer of the protein, we compute relative solvent accessibility and four different types of depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth, to analyze the location of epitopes on different layers of the proteins. We found that conformational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic residues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of exposed non-epitopes. The average depths (obtained by four methods for epitopes are significantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test. Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful in building a predictor for epitopes.

  7. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    Science.gov (United States)

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  8. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  9. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    Science.gov (United States)

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future.

  10. Sensitivity of HIV-1 to neutralization by antibodies against O-linked carbohydrate epitopes despite deletion of O-glycosylation signals in the V3 loop

    DEFF Research Database (Denmark)

    Hansen, J E; Jansson, B; Gram, G J

    1996-01-01

    . Additionally, one of these T-A mutants (T308A) also abrogated the signal for N-glycosylation at N306 inside the V3-loop. The mutant clones were compared with the wild type virus as to sensitivity to neutralization with monoclonal and polyclonal antibodies specific for the tip of the V3 loop of BRU or for the O......It has been suggested that threonine or serine residues in the V3 loop of HIV-1 gp120 are glycosylated with the short-chain O-linked oligosaccharides Tn or sialosyl-Tn that function as epitopes for broadly neutralizing carbohydrate specific antibodies. In this study we examined whether mutation...... of such threonine or serine residues could decrease the sensitivity to infectivity inhibition by Tn or sialosyl-Tn specific antibodies. All potentially O-glycosylated threonine and serine residues in the V3 loop of cloned HIV-1 BRU were mutagenized to alanine thus abrogating any O-glycosylation at these sites...

  11. Identification of a linear epitope recognized by a monoclonal antibody directed to the heterogeneous nucleoriboprotein A2

    DEFF Research Database (Denmark)

    Tronstrøm, Julie; Dragborg, Anette H.; Hansen, Paul Robert;

    2014-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder, characterized by progressive joint destruction and disability. Classical autoantibodies of RA are rheumatoid factors and citrulline antibodies. Patients positive for these autoantibodies are usually associated with a progressive disease...... to as RA33. In the absence of citrulline antibodies, RA33 antibodies have been suggested to be associated with a milder disease course. In this study we screened the reactivity of a monoclonal antibody to RA33-derived peptides by modified enzyme-linked immunosorbent assays (ELISA). Terminally truncated...

  12. Broadly Neutralizing Antibodies for HIV Eradication.

    Science.gov (United States)

    Stephenson, Kathryn E; Barouch, Dan H

    2016-02-01

    Passive transfer of antibodies has long been considered a potential treatment modality for infectious diseases, including HIV. Early efforts to use antibodies to suppress HIV replication, however, were largely unsuccessful, as the antibodies that were studied neutralized only a relatively narrow spectrum of viral strains and were not very potent. Recent advances have led to the discovery of a large portfolio of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes and are also substantially more potent. These antibodies target multiple different epitopes on the HIV envelope, thus allowing for the development of antibody combinations. In this review, we discuss the application of broadly neutralizing antibodies (bNAbs) for HIV treatment and HIV eradication strategies. We highlight bNAbs that target key epitopes, such as the CD4 binding site and the V2/V3-glycan-dependent sites, and we discuss several bNAbs that are currently in the clinical development pipeline.

  13. A novel reactive epitope-based antigen targeted by serum autoantibodies in oligoarticular and polyarticular juvenile idiopathic arthritis and development of an electrochemical biosensor.

    Science.gov (United States)

    Araujo, Galber R; Fujimura, Patricia T; Vaz, Emília R; Silva, Tamiris A; Rodovalho, Vinícius R; Britto-Madurro, Ana Graci; Madurro, João M; Fonseca, João E; Silva, Carlos H M; Santos, Paula S; Mourão, Ana F; Canhão, Helena; Goulart, Luiz R; Gonçalves, João; Ueira-Vieira, Carlos

    2016-05-01

    Currently, there are no specific markers for juvenile idiopathic arthritis (JIA) diagnosis, which is based on clinical symptoms and some blood tests for diseases' exclusion. Aiming to select new epitope-based antigens (mimotopes) that could recognize circulating autoantibodies in most JIA forms, we screened a phage displayed random peptide library against IgG antibodies purified from serum of JIA patients. ELISA assay was carried out to confirm immunoreactivity of selected peptides against sera IgG antibodies from JIA patients, healthy children and patients with other autoimmune diseases. The mimotope PRF+1 fused to phage particles was able to efficiently discriminate JIA patients from controls, and for this reason was chosen to be chemically synthesized for validation in a larger sample size. The synthetic peptide was immobilized onto bioelectrodes' surface for antibody detection by electrochemical analyses through differential pulse voltammetry. The PRF+1 synthetic peptide has efficiently discriminated JIA patients from control groups (p0.84; sensitivity=61%; specificity=91%). The electrochemical platform proved to be fast, low cost and effective in detecting anti-PRF+1 antibodies from JIA patients compared to healthy controls (p=0.0049). Our study describes a novel and promising epitope-based biomarker for JIA diagnosis that can become a useful tool for screening tests, which was successfully incorporated onto an electrochemical biosensor and could be promptly used in field diagnostics.

  14. Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes.

    Directory of Open Access Journals (Sweden)

    Noor Haliza Hasan

    Full Text Available A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e protein of avian influenza virus (AIV as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb and chicken antibodies (cAbs recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.

  15. Antibody responses to mycobacterial and self heat shock protein 65 in autoimmune arthritis: epitope specificity and implication in pathogenesis.

    Science.gov (United States)

    Kim, Hong Ro; Kim, Eugene Y; Cerny, Jan; Moudgil, Kamal D

    2006-11-15

    Many autoimmune diseases are believed to involve primarily T cell-mediated effector mechanisms. There is increasing realization, however, that Abs may also play a vital role in the propagation of T cell-driven disorders. In this study, on the rat adjuvant-induced arthritis (AA) model of human rheumatoid arthritis, we examined the characteristics of serum Ab response to mycobacterial heat shock protein (hsp) 65 (Bhsp65), self (rat) hsp65 (Rhsp65), and linear peptides spanning these two molecules. The AA-resistant WKY (RT.1(l)) rat responded to the heat-killed Mycobacterium tuberculosis immunization with a rapid burst of Abs to both Bhsp65 and Rhsp65. These Abs reacted with numerous peptide epitopes; however, this response was reduced to a few epitopes with time. On the contrary, the susceptible Lewis (RT.1(l)) rat developed a relatively lower Ab response to Bhsp65, and Abs to Rhsp65 did not appear until the recovery from the disease. The Ab response in Lewis rats diversified with progression of AA, and there was an intriguing overlap between the repertoire of Bhsp65-reactive B and T cells during the recovery phase of AA. Nonetheless, subsets of the repertoire of the late Abs in both rat strains became focused on the same epitope regions of Bhsp65 and Rhsp65. The functional relevance of these Abs was evident from the results showing that sera from recovery phase Lewis or WKY rats, but not that of naive rats, afforded protection against subsequent AA. These results are of significance in further understanding of the role of humoral immunity in the pathogenesis of autoimmune arthritis.

  16. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope.

    Directory of Open Access Journals (Sweden)

    Merima Bublin

    Full Text Available Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1, carp (Cyp c 1 and rainbow trout (Onc m 1 parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.

  17. Generation and characterization of recombinant human antibodies specific for native laminin epitopes. Potential application in cancer therapy. Cancer Immunol. Immunother

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Russell, Stephen J.

    2001-01-01

    of human-derived antibody fragments able to modulate laminin-regulated biological functions would allow the development of new strategies to improve treatment of cancer patients. In this report, we explore the use of phage display technology to isolate human anti-laminin antibody fragments. A library...

  18. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  19. The thyroxine-containing thyroglobulin peptide (aa 2549-2560) is a target epitope in iodide-accelerated spontaneous autoimmune thyroiditis.

    Science.gov (United States)

    Kolypetri, Panayota; Carayanniotis, Karen; Rahman, Shofiur; Georghiou, Paris E; Magafa, Vassiliki; Cordopatis, Paul; Carayanniotis, George

    2014-07-01

    Enhanced iodide ingestion is known to accelerate the incidence and severity of spontaneous autoimmune thyroiditis [iodide-accelerated spontaneous autoimmune thyroiditis (ISAT)] in NOD.H2(h4) mice. CD4+ cells are required for the development and maintenance of ISAT, but their target epitopes remain unknown. In this study, we show that the previously identified thyroglobulin (Tg) T cell epitope p2549-2560 containing thyroxine at position 2553 (T4p2553) induces thyroiditis as well as strong specific T and B cell responses in NOD.H2(h4) mice. In ISAT, activated CD4+ T cells specific for T4p2553 are detected before the disease onset in thyroid-draining cervical lymph nodes only in mice placed on an iodide-rich diet and not in age-matched controls. In addition, selective enrichment of CD4+ IFN-γ+ T4p2553-specific cells is observed among cervical lymph node cells and intrathyroidal lymphocytes. T4p2553 was equally detectable on dendritic cells obtained ex vivo from cervical lymph node cells of NaI-fed or control mice, suggesting that the iodide-rich diet contributes to the activation of autoreactive cells rather than the generation of the autoantigenic epitope. Furthermore, spontaneous T4p2553-specific IgG are not detectable within the strong Tg-specific autoantibody response. To our knowledge, these data identify for the first time a Tg T cell epitope as a spontaneous target in ISAT.

  20. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo.

    Science.gov (United States)

    Williams, Katherine L; Wahala, Wahala M P B; Orozco, Susana; de Silva, Aravinda M; Harris, Eva

    2012-07-20

    The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mice. We demonstrate that EDIII-depleted human DENV-immune serum was protective against homologous DENV infection in vivo. Although EDIII-depleted DENV-immune mouse serum demonstrated decreased neutralization potency in vitro, reduced protection in some organs, and enhanced disease in vivo, administration of increased volumes of EDIII-depleted serum abrogated these effects. These data indicate that anti-EDIII antibodies contribute to protection and minimize enhancement when present, but can be replaced by neutralizing antibodies targeting other epitopes on the dengue virion.

  1. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design.

    Science.gov (United States)

    Montero, Marinieve; van Houten, Nienke E; Wang, Xin; Scott, Jamie K

    2008-03-01

    Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.

  2. Anti-MrkA Monoclonal Antibodies Reveal Distinct Structural and Antigenic Features of MrkA

    Science.gov (United States)

    Wang, Qun; Chen, Yan; Cvitkovic, Romana; Pennini, Meghan E.; Chang, Chew shun; Pelletier, Mark; Bonnell, Jessica; Wu, Herren; Dall’Acqua, William F.; Stover, C. Kendall; Xiao, Xiaodong

    2017-01-01

    Antibody therapy against antibiotics resistant Klebsiella pneumoniae infections represents a promising strategy, the success of which depends critically on the ability to identify appropriate antibody targets. Using a target-agnostic strategy, we recently discovered MrkA as a potential antibody target and vaccine antigen. Interestingly, the anti-MrkA monoclonal antibodies isolated through phage display and hybridoma platforms all recognize an overlapping epitope, which opens up important questions including whether monoclonal antibodies targeting different MrkA epitopes can be generated and if they possess different protective profiles. In this study we generated four anti-MrkA antibodies targeting different epitopes through phage library panning against recombinant MrkA protein. These anti-MrkA antibodies elicited strong in vitro and in vivo protections against a multi-drug resistant Klebsiella pneumoniae strain. Furthermore, mutational and epitope analysis suggest that the two cysteine residues may play essential roles in maintaining a MrkA structure that is highly compacted and exposes limited antibody binding/neutralizing epitopes. These results suggest the need for further in-depth understandings of the structure of MrkA, the role of MrkA in the pathogenesis of Klebsiella pneumoniae and the protective mechanism adopted by anti-MrkA antibodies to fully explore the potential of MrkA as an efficient therapeutic target and vaccine antigen. PMID:28107434

  3. B-cell epitopes in NTS-DBL1α of PfEMP1 recognized by human antibodies in Rosetting Plasmodium falciparum.

    Science.gov (United States)

    Albrecht, Letusa; Angeletti, Davide; Moll, Kirsten; Blomqvist, Karin; Valentini, Davide; D'Alexandri, Fabio Luiz; Maurer, Markus; Wahlgren, Mats

    2014-01-01

    Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.

  4. Targeting BCL1 lymphoma with anti-idiotype antibodies: biodistribution kinetics of directly labeled antibodies and bispecific antibody-targeted bivalent haptens.

    Science.gov (United States)

    Manetti, C; Rouvier, E; Gautherot, E; Loucif, E; Barbet, J; Le Doussal, J M

    1997-06-11

    The mouse BCL1 lymphoma model has been used for evaluating immunotherapy with anti-idiotype (anti-Id) antibodies, including Id immunisation, IgG therapy and bispecific (Bs) antibody-targeted cytotoxicity. Here, we provide quantitative data on the targeting of small (25 +/- 12 mg) intrasplenic BCL1 tumours, using anti-Id IgG, F(ab')2 and anti-Id x anti-hapten BsF(ab')2 covalently labelled with 125iodine, as well as noncovalent complexes of BsF(ab')2 and 125I-labelled bivalent hapten. The results are the following: 1) up to 115% of the injected dose per gram (% ID/g) of spleen can be localised in the first hour, corresponding to approximately 600% ID/g of tumour; 2) localisation is specific for cell-surface Id; 3) optimal doses can overcome circulating Id; 4) circulating Id markedly increases the catabolism of IgG, thus impairing tumour localisation; 5) bivalent reagents are internalised by the target cells; 6) iodine covalently bound to bivalent antibodies [IgG, F(ab')2] is rapidly (T(1/2): 6-9 hr) released from the tumour; in contrast, the bivalent hapten is retained for a longer time (T(1/2): 25 hr); and 7) in the absence of bivalent hapten, the monovalent BsF(ab')2 is not rapidly internalised and dissociates from tumour cell-surface Id. Our results suggest that monovalent anti-Id, lacking Fc, can efficiently be targeted to the BCL1 tumour surface. For radioimmunotherapy, the intracellular targeting of catabolism-resistant 125I-labelled bivalent hapten provides optimal tissue selectivity.

  5. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  6. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  7. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade.

    Science.gov (United States)

    Xue, Wei; Metheringham, Rachael L; Brentville, Victoria A; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M; Durrant, Lindy G

    2016-06-01

    Checkpoint blockade has demonstrated promising antitumor responses in approximately 10-40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

  8. Epitope identification for a panel of anti-Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids

    Energy Technology Data Exchange (ETDEWEB)

    Reuhs, B.L.; Stephens, S.B.; Geller, D.P.; Kim, J.S.; Glenn, J.; Przytycki, J.; Ojanen-Reuhs, T.

    1999-11-01

    In two published reports using monoclonal antibodies (MAbs) generated against whole cells, Olsen et al. showed that strain-specific antigens on the surface of cultured cells of Sinorhyzobium meliloti were diminished or absent in the endophytic cells (bacteroids) recovered from alfalfa nodules, whereas two common antigens were not affected by bacterial differentiation. The nature of the antigens, however, were not determined in those studies. For this report, the epitopes for five of the anti-S. meliloti MAbs were identified by polyacrylamide gel electrophoresis-immunoblot analyses of the polysaccharides extracted from S. meliloti and Sinorhizobium fridii. This showed that the strain-specific MAbs recognized K antigens, whereas the strain-cross-reactive MAbs recognized the lipopolysaccharide (LPS) core. The MAbs were then used in the analysis of the LPS and K antigens extracted from S. meliloti bacteroids, which had been recovered from the root nodules of alfalfa, and the results supported the findings of Olsen et al. The size range of the K antigens from bacteroids of S. meliloti NRG247 on polyacrylamide gels was altered, and the epitope was greatly diminished in abundance compared to those from the cultured cells, and no K antigens were detected in the S. meliloti NRG185 bacteroid extract. In contrast to the K antigens, the LPS core appeared to be similar in both cultured cells and bacteroids, although a higher proportion of the LPS fractionated into the organic phase during the phenol-water extraction of the bacteroid polysaccharides. Importantly, immunoblot analysis with an anti-LPS MAb showed that smooth LPS production was modified in the bacteroids.

  9. Availability of the B beta(15-21) epitope on cross-linked human fibrin and its plasmic degradation products

    Science.gov (United States)

    Chen, F.; Haber, E.; Matsueda, G. R.

    1992-01-01

    The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.

  10. Crystallographic Identification of Lipid as an Integral Component of the Epitope of HIV Broadly Neutralizing Antibody 4E10.

    Science.gov (United States)

    Irimia, Adriana; Sarkar, Anita; Stanfield, Robyn L; Wilson, Ian A

    2016-01-19

    Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.

  11. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  12. Redefining an epitope of a malaria vaccine candidate, with antibodies against the N-terminal MSA-2 antigen of Plasmodium harboring non-natural peptide bonds.

    Science.gov (United States)

    Lozano, José Manuel; Guerrero, Yuly Andrea; Alba, Martha Patricia; Lesmes, Liliana Patricia; Escobar, José Oswaldo; Patarroyo, Manuel Elkin

    2013-10-01

    The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-2(21-40) peptide primary structure's genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main agent causing malaria), structurally defined probes based on non-natural peptide-bond isosteres were thus designed. Thus, two peptide mimetics were obtained (so-called reduced amide pseudopeptides), in which naturally made amide bonds of the (30)FIN(32)-binding motif of MSA-2 were replaced with ψ-[CH2-NH] methylene amide isostere bonds, one between the F-I and the second between I-N amino acid pairs, respectively, coded as ψ-128 ψ-130. These peptide mimetics were used to produce poly- and monoclonal antibodies in Aotus monkeys and BALB/c mice. Parent reactive mice-derived IgM isotype cell clones were induced to Ig isotype switching to IgG sub-classes by controlled in vitro immunization experiments. These mature isotype immunoglobulins revealed a novel epitope in the MSA-2(25-32) antigen and two polypeptides of rodent malaria species. Also, these antibodies' functional activity against malaria was tested by in vitro assays, demonstrating high efficacy in controlling infection and evidencing neutralizing capacity for the rodent in vivo malaria infection. The neutralizing effect of antibodies induced by site-directed designed peptide mimetics on Plasmodium's biological development make these pseudopeptides a valuable tool for future development of immunoprophylactic strategies for controlling malarial infection.

  13. Physical Characteristics of a Citrullinated Pro-Filaggrin Epitope Recognized by Anti-Citrullinated Protein Antibodies in Rheumatoid Arthritis Sera

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole;

    2016-01-01

    whether biotin labelling influence antibody recognition. The full-length cyclic pro-filaggrin peptide and a linear form with a N-terminal biotin, was recognized to the same level, whereas, a notable difference in ACPA reactivity to the linear peptides with a C-terminal biotin was found, probably due...... amino acid in position 4 C-terminal to citrulline. Collectively, peptide structure, length, the presence of charged amino acids and biotin labelling markedly influence antibody reactivity. In relation to the clinical diagnostics of ACPA, these findings may reflect the differences in diagnostic assays...

  14. A Comparison of Epitope Repertoires Associated with Myasthenia Gravis in Humans and Nonhuman Hosts

    Directory of Open Access Journals (Sweden)

    Kerrie Vaughan

    2012-01-01

    Full Text Available Here we analyzed the molecular targets associated with myasthenia gravis (MG immune responses, enabled by an immune epitope database (IEDB inventory of approximately 600 MG-related epitopes derived from 175 references. The vast majority of epitopes were derived from the α-subunit of human AChR suggesting that other MG-associated autoantigens should be investigated further. Human α-AChR was mostly characterized in humans, whereas reactivity primarily to T. californica AChR was examined in animal models. While the fine specificity of T-cell response was similar in the two systems, substantial antibody reactivity to the C-terminus was detected in the nonhuman system, but not in humans. Further analysis showed that the reactivity of nonhuman hosts to the C-terminus was eliminated when data were restricted to hosts tested in the context of autoimmune disease (spontaneous or induced, demonstrating that the epitopes recognized in humans and animals were shared when disease was present. Finally, we provided data subsets relevant to particular applications, including those associated with HLA typing or restriction, sets of epitopes recognized by monoclonal antibodies, and epitopes associated with modulation of immunity or disease. In conclusion, this analysis highlights gaps, differences, and similarities in the epitope repertoires of humans and animal models.

  15. A General Method to Discover Epitopes from Sera.

    Directory of Open Access Journals (Sweden)

    Kurt Whittemore

    Full Text Available Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell epitope mapping approaches have been widely pursued, though success has not been consistent. Antibody mixtures in immune sera have been used as handles for biologically relevant antigens, but these and other experimental approaches have proven resource intensive and time consuming. In addition, these methods are often tailored to individual diseases or a specific proteome, rather than providing a universal platform. Most of these methods are not able to identify the specific antibody's epitopes from unknown antigens, such as un-annotated neo antigens in cancer. Alternatively, a peptide library comprised of sequences unrestricted by naturally-found protein space provides for a universal search for mimotopes of an antibody's epitope. Here we present the utility of such a non-natural random sequence library of 10,000 peptides physically addressed on a microarray for mimotope discovery without sequence information of the specific antigen. The peptide arrays were probed with serum from an antigen-immunized rabbit, or alternatively probed with serum pre-absorbed with the same immunizing antigen. With this positive and negative screening scheme, we identified the library-peptides as the mimotopes of the antigen. The unique library peptides were successfully used to isolate antigen-specific antibodies from complete immune serum. Sequence analysis of these peptides revealed the epitopes in the immunized antigen. We present this method as an inexpensive, efficient method for identifying mimotopes of any antibody's targets. These mimotopes should be useful in defining both components of the

  16. Physical characteristics of a citrullinated pro-filaggrin epitope recognized by anti-citrullinated protein antibodies in rheumatoid arthritis sera

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole

    2016-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease of complex etiology. A characteristic feature of a subset of RA is the presence of anti-citrullinated protein antibodies (ACPA), which correlate with a progressive disease course. In this study, we employed streptavidin capture enzyme...

  17. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies.

    NARCIS (Netherlands)

    N.M.C. Bleumink-Pluym; A.D.M.E. Osterhaus (Albert); M.C. Horzinek; B.A.M. van der Zeijst (Ben); H.G.M. Niesters (Bert)

    1987-01-01

    textabstractSixteen monoclonal antibodies (Mcabs) were prepared against infectious bronchitis virus strain M41, all of them reacting with the peplomer protein. One of them, Mcab 13, was able to neutralize the virus and to inhibit hemagglutination. Competition binding assays allowed the definition of

  18. Immune epitope database analysis resource

    DEFF Research Database (Denmark)

    Kim, Yohan; Ponomarenko, Julia; Zhu, Zhanyang

    2012-01-01

    The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide...... and can also be downloaded as software packages....

  19. Identification of an immunodominant epitope in glycoproteins B and G of herpes simplex viruses (HSVs) using synthetic peptides as antigens in assay of antibodies to HSV in herpes simplex encephalitis patients.

    Science.gov (United States)

    Bhullar, S S; Chandak, N H; Baheti, N N; Purohit, H J; Taori, G M; Daginawala, H F; Kashyap, R S

    2014-01-01

    Herpes simplex encephalitis (HSE) is a severe viral infection of the central nervous system (CNS). Assay of antibody response is widely used in diagnostics of HSE. The aim of this study was to identify an immunodominant epitope determining the antibody response to herpes simplex viruses (HSVs) in cerebrospinal fluid (CSF) of HSE patients. The synthetic peptides that resembled type-common as well as type-specific domains of glycoproteins B (gB) and G (gG) of these viruses were evaluated for binding with IgM and IgG antibodies in CSF samples from HSE and non-HSE patients in ELISA. The QLHDLRF peptide, derived from gB of HSV was found to be an immunodominant epitope in the IgM and IgG antibody response. The patients with confirmed and suspected HSE showed in ELISA against this peptide 26% and 23% positivities for IgM, 43% and 37% positivities for IgG and 17% and 15% for both IgM and IgG antibodies, respectively. The total positivities of 86% and 75% for both IgM and IgG antibodies were obtained in the patients with confirmed and suspected HSE, respectively. These results demonstrate that a synthetic peptide-based diagnostics of HSE can be an efficient and easily accessible alternative. This is the first report describing the use of synthetic peptides derived from HSVs in diagnostics of HSE using patientsʹ CSF samples.

  20. Phage displaying epitope of Candida albicans HSP90 and serodiagnosis

    Institute of Scientific and Technical Information of China (English)

    杨琼; 王丽; 卢大宁; 邢沈阳; 尹东; 朱筱娟

    2004-01-01

    @@ Recently, the frequent use of immunosuppressants and chemotherapeutic drugs for cancers has caused an increase in the frequency of life-threatening systemic candidiasis.1 Studies by Matthews et al2 indicated HSP90 fragments are major targets for the immune system in infection due to C. albicans, and anti-epitope LKVIRK of HSP90 antibody is a serological marker for diagnosis of invasive candidiasis. Cloning and sequencing HSP90 antigen revealed that the linear epitope LKVIRK, localized near the C-terminus of the 47 kDa protein which circulates in the sera of patients with invasive candidiasis, as a heat-stable breakdown product of large more heat-labile antigen HSP90.2 In this study, epitope LKVIRK was displayed on the surface of phage fd to develop a new serological test for systemic candidiasis.

  1. Preparation of a polyclonal antibody that recognizes a unique galactoseβ1-4fucose disaccharide epitope.

    Science.gov (United States)

    Takeuchi, Tomoharu; Nishiyama, Kazusa; Saito, Saori; Tamura, Mayumi; Fuwa, Takashi J; Nishihara, Shoko; Takahashi, Hideyo; Natsugari, Hideaki; Arata, Yoichiro; Kasai, Ken-ichi

    2015-08-14

    Galactoseβ1-4fucose (Galβ1-4Fuc) is a unique disaccharide unit that has been found only in the N-glycans of protostomia. We demonstrated that this unit has a role as an endogenous ligand for Caenorhabditis elegans galectins. This unit is also recognized by fungal and mammalian galectins possibly as a non-self glycomarker. In order to clarify its biological function, we made a polyclonal antibody using (Galβ1-4Fuc)n-BSA as the antigen, which was prepared by crosslinking Galβ1-4Fuc-O-(CH2)2-SH and BSA. The binding specificity of the antibody was analyzed by frontal affinity chromatography, and it was confirmed that it recognizes naturally occurring N-glycans containing the Galβ1-4Fuc unit linked to the reducing-end GlcNAc via α1-6 linkage. By western blotting analysis, the antibody was also found to bind to (Galβ1-4Fuc)n-BSA but not to BSA or asialofetuin, which has N-glycan chains containing Galβ1-4GlcNAc. Western blotting experiments also revealed presence of stained proteins in crude extracts of C. elegans, the parasitic nematode Ascaris suum, and the allergenic mite Dermatophagoides pteronyssinus, while those from Drosophila melanogaster, Mus musculus, and the allergenic mites Dermatophagoides farinae and Tyrophagus putrescentiae were negative. This antibody should be a very useful tool for research on the distribution of the Galβ1-4Fuc disaccharide unit in glycans in a wide range of organisms.

  2. Epitope mapping by epitope excision, hydrogen/deuterium exchange, and peptide-panning techniques combined with in silico analysis.

    Science.gov (United States)

    Clementi, Nicola; Mancini, Nicasio; Criscuolo, Elena; Cappelletti, Francesca; Clementi, Massimo; Burioni, Roberto

    2014-01-01

    The fine characterization of protective B cell epitopes plays a pivotal role in the development of novel vaccines. The development of epitope-based vaccines, in fact, cannot be possible without a clear definition of the antigenic regions involved in the binding between the protective antibody (Ab) and its molecular target. To achieve this result, different epitope-mapping approaches have been widely described (Clementi et al. Drug Discov Today 18(9-10):464-471, 2013). Nowadays, the best way to characterize an Ab bound region is still the resolution of Ab-antigen (Ag) co-crystal structure. Unfortunately, the crystallization approaches are not always feasible. However, different experimental strategies aimed to predict Ab-Ag interaction and followed by in silico analysis of the results may be good surrogate approaches to achieve this result. Here, we review few experimental techniques followed by the use of "basic" informatics tools for the analysis of the results.

  3. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes.

    Science.gov (United States)

    Deepa, Sarama S; Yamada, Shuhei; Fukui, Shigeyuki; Sugahara, Kazuyuki

    2007-06-01

    Twelve octasaccharide fractions were obtained from chondroitin sulfate C derived from shark cartilage after hyaluronidase digestion. Their sugar and sulfate composition was assigned by matrix-assisted laser desorption ionization time of flight mass spectrometry. The sequences were determined at low picomole amounts by a combination of enzymatic digestions with high-performance liquid chromatography, and were composed of disaccharide building units including O [GlcUAbeta1-3GalNAc], C [GlcUAbeta1-3GalNAc(6S)], A [GlcUAbeta1-3GalNAc(4S)], and/or D [GlcUA(2S)beta1-3GalNAc(6S)], where 2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate, respectively. As many as 24 different sequences including minor ones were revealed, exhibiting a high degree of structural diversity reflecting the enormous heterogeneity of the parent polysaccharides. Nineteen of them were novel, with the other four reported previously as unsaturated counterparts obtained after digestion with chondroitinase. Microarrays of these structurally defined octasaccharide fractions were prepared using low picomole amounts of their lipid-derivatives to investigate the binding specificity of four commercial anti-chondroitin sulfate antibodies CS-56, MO-225, 2H6, and LY111. The results revealed that multiple unique sequences were recognized by each antibody, which implies that the common conformation shared by the multiple primary sequences in the intact chondroitin sulfate chains is important as an epitope for each monoclonal antibody. Comparison of the specificity of the tested antibodies indicates that CS-56 and MO-225 specifically recognize octasaccharides containing an A-D tetrasaccharide sequence, whereas 2H6 and LY111 require a hexasaccharide as a minimum size for their binding, and prefer sequences with A- and C-units such as C-C-A-C (2H6) or C-C-A-O, C-C-A-A, and C-C-A-C (LY111) for strong binding but require no D-unit.

  4. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops.

    Science.gov (United States)

    van der Woning, Bas; De Boeck, Gitte; Blanchetot, Christophe; Bobkov, Vladimir; Klarenbeek, Alex; Saunders, Michael; Waelbroeck, Magali; Laeremans, Toon; Steyaert, Jan; Hultberg, Anna; De Haard, Hans

    2016-01-01

    The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins.

  5. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages.

    Science.gov (United States)

    Hua, Chun-Zhen; Hu, Wei-Lin; Shang, Shi-Qiang; Li, Jian-Ping; Hong, Li-Quan; Yan, Jie

    2015-12-16

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children influenzae.

  6. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes.

    Science.gov (United States)

    Liao, Shih-Fen; Liang, Chi-Hui; Ho, Ming-Yi; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S-Y; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-08-20

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.

  7. Potential for novel MUC1 glycopeptide-specific antibody in passive cancer immunotherapy

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Wandall, Hans H; Pedersen, Anders Elm

    2013-01-01

    MUC1 is an important target for antibodies in passive cancer immunotherapy. Antibodies against mucin glycans or mucin peptide backbone alone may give rise to cross reactivity with normal tissues. Therefore, attempts to identify antibodies against cancer-specific MUC1 glycopeptide epitopes havebeen...... made. We recently demonstrated that a monoclonal antibody against the immunodominant Tn-MUC1 (GalNAc-α-MUC1) antigen induced ADCC in breast cancer cell lines, suggesting the feasibility of targeting combined glycopeptide epitopes in future passive cancer immunotherapy....

  8. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    Directory of Open Access Journals (Sweden)

    Liu Wen-Xin

    2010-09-01

    Full Text Available Abstract Background Differential diagnose of Japanese encephalitis virus (JEV infection from other flavivirus especially West Nile virus (WNV and Dengue virus (DV infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the PrM/M protein, we designed a set of 20 partially overlapping fragments spanning the whole PrM, fused them with GST, and expressed them in an expression vector. Linear epitope M14 (105VNKKEAWLDSTKATRY120 was detected by enzyme-linked immunosorbent assay (ELISA. By removing amino acid residues individually from the carboxy and amino terminal of peptide M14, we confirmed that the minimal unit of the linear epitope of PrM/M was M14-13 (108KEAWLDSTKAT118. This epitope was highly conserved across different JEV strains. Moreover, this epitope did not cross-react with WNV-positive and DENV-positive sera. Conclusion Epitope M14-13 was a JEV specific lineal B-cell epitpe. The results may provide a useful basis for the development of epitope-based virus specific diagnostic clinical techniques.

  9. IL-8 as antibody therapeutic target in inflammatory diseases

    DEFF Research Database (Denmark)

    Skov, Lone; Beurskens, Frank J; Zachariae, Claus O C

    2008-01-01

    IL-8 is a chemokine that has been implicated in a number of inflammatory diseases involving neutrophil activation. HuMab 10F8 is a novel fully human mAb against IL-8, which binds a discontinuous epitope on IL-8 overlapping the receptor binding site, and which effectively neutralizes IL-8-dependent...... human neutrophil activation and migration. We investigated whether interference in the cytokine network by HuMab 10F8 might benefit patients suffering from palmoplantar pustulosis, a chronic inflammatory skin disease. Treatment of patients with HuMab 10F8 was well tolerated and significantly reduced...

  10. Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma.

    Science.gov (United States)

    Bidlingmaier, Scott; He, Jiang; Wang, Yong; An, Feng; Feng, Jinjin; Barbone, Dario; Gao, Dongwei; Franc, Ben; Broaddus, V Courtney; Liu, Bin

    2009-02-15

    The prognosis for patients diagnosed with mesothelioma is generally poor, and currently available treatments are usually ineffective. Therapies that specifically target tumor cells hold much promise for the treatment of cancers that are resistant to current approaches. We have previously selected phage antibody display libraries on mesothelioma cell lines to identify a panel of internalizing human single chain (scFv) antibodies that target mesothelioma-associated, clinically represented cell surface antigens and further exploited the internalizing function of these scFvs to specifically deliver lethal doses of liposome-encapsulated small molecule drugs to both epithelioid and sarcomatous subtypes of mesothelioma cells. Here, we report the identification of MCAM/MUC18/CD146 as the surface antigen bound by one of the mesothelioma-targeting scFvs using a novel cloning strategy based on yeast surface human proteome display. Immunohistochemical analysis of mesothelioma tissue microarrays confirmed that MCAM is widely expressed by both epithelioid and sarcomatous types of mesothelioma tumor cells in situ but not by normal mesothelial cells. In addition, quantum dot-labeled anti-MCAM scFv targets primary meosthelioma cells in tumor fragment spheroids cultured ex vivo. As the first step in evaluating the therapeutic potential of MCAM-targeting antibodies, we performed single-photon emission computed tomography studies using the anti-MCAM scFv and found that it recognizes mesothelioma organotypic xenografts in vivo. The combination of phage antibody library selection on tumor cells and rapid target antigen identification by screening the yeast surface-displayed human proteome could be a powerful method for mapping the targetable tumor cell surface epitope space.

  11. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions

    DEFF Research Database (Denmark)

    Bjerggaard, Christian; Fog, Jacob U; Hastrup, Hanne

    2004-01-01

    are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615...... deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2......-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites...

  12. Targeting of the Dopamine Transporter Involves Discrete Epitopes in the Distal C Terminus But Does Not Require Canonical PDZ Domain Interactions

    DEFF Research Database (Denmark)

    Bjerggaard(Vægter), Christian; Fog, Jacob Ulrik; Hastrup, Hanne

    2004-01-01

    are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615...... deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2......-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites...

  13. Identification of mono- and disulfated N-acetyl-lactosaminyl Oligosaccharide structures as epitopes specifically recognized by humanized monoclonal antibody HMOCC-1 raised against ovarian cancer.

    Science.gov (United States)

    Shibata, Toshiaki K; Matsumura, Fumiko; Wang, Ping; Yu, Shinyi; Chou, Chi-Chi; Khoo, Kay-Hooi; Kitayama, Kazuko; Akama, Tomoya O; Sugihara, Kazuhiro; Kanayama, Naohiro; Kojima-Aikawa, Kyoko; Seeberger, Peter H; Fukuda, Minoru; Suzuki, Atsushi; Aoki, Daisuke; Fukuda, Michiko N

    2012-02-24

    A humanized monoclonal antibody raised against human ovarian cancer RMG-I cells and designated as HMOCC-1 (Suzuki, N., Aoki, D., Tamada, Y., Susumu, N., Orikawa, K., Tsukazaki, K., Sakayori, M., Suzuki, A., Fukuchi, T., Mukai, M., Kojima-Aikawa, K., Ishida, I., and Nozawa, S. (2004) Gynecol. Oncol. 95, 290-298) was characterized for its carbohydrate epitope structure. Specifically, a series of co-transfections was performed using mammalian expression vectors encoding specific glycosyltransferases and sulfotransferases. These experiments identified one sulfotransferase, GAL3ST3, and one glycosyltransferase, B3GNT7, as required for HMOCC-1 antigen formation. They also suggested that the sulfotransferase CHST1 regulates the abundance and intensity of HMOCC-1 antigen. When HEK293T cells were co-transfected with GAL3ST3 and B3GNT7 expression vectors, transfected cells weakly expressed HMOCC-1 antigen. When cells were first co-transfected with GAL3ST3 and B3GNT7 and then with CHST1, the resulting cells strongly expressed HMOCC-1 antigen. However, when cells were transfected with a mixture of GAL3ST3 and CHST1 before or after transfection with B3GNT7, the number of antigen-positive cells decreased relative to the number seen with only GAL3ST3 and B3GNT7, suggesting that CHST1 plays a regulatory role in HMOCC-1 antigen formation. Because these results predicted that HMOCC-1 antigens are SO(3) → 3Galβ1 → 4GlcNAcβ1 → 3(±SO(3) → 6)Galβ1 → 4GlcNAc, we chemically synthesized mono- and disulfated and unsulfated oligosaccharides. Immunoassays using these oligosaccharides as inhibitors showed the strongest activity by disulfated tetrasaccharide, weak but positive activity by monosulfated tetrasaccharide at the terminal galactose, and no activity by nonsulfated tetrasaccharides. These results establish the HMOCC-1 epitope, which should serve as a useful reagent to further characterize ovarian cancer.

  14. Fully human IgG and IgM antibodies directed against the carcinoembryonic antigen (CEA Gold 4 epitope and designed for radioimmunotherapy (RIT of colorectal cancers

    Directory of Open Access Journals (Sweden)

    Pugnière Martine

    2004-10-01

    Full Text Available Abstract Background Human monoclonal antibodies (MAbs are needed for colon cancer radioimmunotherapy (RIT to allow for repeated injections. Carcinoembryonic antigen (CEA being the reference antigen for immunotargeting of these tumors, we developed human anti-CEA MAbs. Methods XenoMouse®-G2 animals were immunized with CEA. Among all the antibodies produced, two of them, VG-IgG2κ and VG-IgM, were selected for characterization in vitro in comparison with the human-mouse chimeric anti-CEA MAb X4 using flow cytometry, surface plasmon resonance, and binding to radiolabeled soluble CEA and in vivo in human colon carcinoma LS174T bearing nude mice. Results Flow cytometry analysis demonstrated binding of MAbs on CEA-expressing cells without any binding on NCA-expressing human granulocytes. In a competitive binding assay using five reference MAbs, directed against the five Gold CEA epitopes, VG-IgG2κ and VG-IgM were shown to be directed against the Gold 4 epitope. The affinities of purified VG-IgG2κ and VG-IgM were determined to be 0.19 ± 0.06 × 108 M-1 and 1.30 ± 0.06 × 108 M-1, respectively, as compared with 0.61 ± 0.05 × 108 M-1 for the reference MAb X4. In a soluble phase assay, the binding capacities of VG-IgG2κ and VG-IgM to soluble CEA were clearly lower than that of the control chimeric MAb X4. A human MAb concentration of about 10-7 M was needed to precipitate approximatively 1 ng 125I-rhCEA as compared with 10-9 M for MAb X4, suggesting a preferential binding of the human MAbs to solid phase CEA. In vivo, 24 h post-injection, 125I-VG-IgG2κ demonstrated a high tumor uptake (25.4 ± 7.3%ID/g, close to that of 131I-X4 (21.7 ± 7.2%ID/g. At 72 h post-injection, 125I-VG-IgG2κ was still concentrated in the tumor (28.4 ± 11.0%ID/g whereas the tumor concentration of 131I-X4 was significantly reduced (12.5 ± 4.8%ID/g. At no time after injection was there any accumulation of the radiolabeled MAbs in normal tissues. A pertinent analysis of

  15. Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Michelle Cummins

    2014-05-01

    Full Text Available Ricin is a potent glycoprotein toxin that is structurally composed of two subunits joined via a disulfide bond: a ~30 kDa subunit A (RTA and a ~32 kDa subunit B (RTB. There are fears of ricin being used as a weapon for warfare and terrorism and, as such, there is an increasing need for the development of immunodiagnostic reagents targeted towards this toxin. This article describes the production and characterization of a panel of six ricin-specific monoclonal IgG antibodies (mAbs, previously selected based upon their ability to inhibit ricin-mediated killing of cultured cells. Subsequent epitope binding analysis using the surface plasmon resonance (SPR array biosensor (ProteOn XPR36 indicated three distinct, non-competitive binding epitopes (“bins”. The association (ka and dissociation (kd rate constants and binding affinities (KD of each of the mAbs to ricin were also determined by SPR using Biacore T100 instrument. Affinities (KD ranged from 0.1 nM to 9 nM. We present the coding sequences of the variable domains of the six mAbs, the expression, kinetic and cytotoxicity assays for two recombinant Fab (rFab fragments and demonstrate a rFab affinity improvement by chain-shuffling. Together, these antibodies and constituent rFabs represent a panel of reagents for high-affinity recognition of ricin with potential national security biosensor applications.

  16. Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody

    NARCIS (Netherlands)

    van Montfort, Thijs; Thomas, Adri A M; Krawczyk, Przemek M; Berkhout, Ben; Sanders, Rogier W; Paxton, William A

    2015-01-01

    Ab-neutralized HIV-1 can be captured by dendritic cells (DCs), which subsequently transfer infectious HIV-1 to susceptible CD4(+) T cells. In this study, we examined the capacity of early Abs, as well as recently identified broadly neutralizing Abs (bNAbs) targeting different envelope glycoprotein (

  17. Bispecific engineered antibody domains (nanoantibodies that interact noncompetitively with an HIV-1 neutralizing epitope and FcRn.

    Directory of Open Access Journals (Sweden)

    Rui Gong

    Full Text Available Libraries based on an isolated human immunoglobulin G1 (IgG1 constant domain 2 (CH2 have been previously diversified by random mutagenesis. However, native isolated CH2 is not very stable and the generation of many mutations could lead to an increase in immunogenicity. Recently, we demonstrated that engineering an additional disulfide bond and removing seven N-terminal residues results in an engineered antibody domain (eAd (m01s with highly increased stability and enhanced binding to human neonatal Fc receptor (FcRn (Gong et al, JBC, 2009 and 2011. We and others have also previously shown that grafting of the heavy chain complementarity region 3 (CDR-H3 (H3 onto cognate positions of the variable domain leads to highly diversified libraries from which a number of binders to various antigens have been selected. However, grafting of H3s to non-cognate positions in constant domains results in additional residues at the junctions of H3s and the CH2 framework. Here we describe a new method based on multi-step PCR that allows the precise replacement of loop FG (no changes in its flanking sequences by human H3s from another library. Using this method and limited mutagenesis of loops BC and DE we generated an eAd phage-displayed library. Panning of this library against an HIV-1 gp41 MPER peptide resulted in selection of a binder, m2a1, which neutralized HIV-1 isolates from different clades with modest activity and retained the m01s capability of binding to FcRn. This result provides a proof of concept that CH2-based antigen binders that also mimic to certain extent other functions of full-size antibodies (binding to FcRn can be generated; we have previously hypothesized that such binders can be made and coined the term nanoantibodies (nAbs. Further studies in animal models and in humans will show how useful nAbs could be as therapeutics and diagnostics.

  18. Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor*

    OpenAIRE

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J.; Madjidi, Azadeh; Jacob E Corn; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M.; Allan, Bernard B.

    2013-01-01

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the ext...

  19. Development of a Blocking ELISA Using a Monoclonal Antibody to a Dominant Epitope in Non-Structural Protein 3A of Foot-and-Mouth Disease Virus, as a Matching Test for a Negative-Marker Vaccine

    Science.gov (United States)

    Fu, Yuanfang; Li, Pinghua; Cao, Yimei; Wang, Na; Sun, Pu; Shi, Qian; Ji, Xincheng; Bao, Huifang; Li, Dong; Chen, Yingli; Bai, Xingwen; Ma, Xueqing; Zhang, Jing; Lu, Zengjun; Liu, Zaixin

    2017-01-01

    Foot-and-mouth disease (FMD) is a devastating animal disease. Strategies for differentiation of infected from vaccinated animals (DIVA) remain very important for controlling disease. Development of an epitope-deleted marker vaccine and accompanying diagnostic method will improve the efficiency of DIVA. Here, a monoclonal antibody (Mab) was found to recognize a conserved “AEKNPLE” epitope spanning amino acids 109–115 of non-structural protein (NSP) 3A of foot-and-mouth disease virus (FMDV; O/Tibet/CHA/99 strain), which could be deleted by a reverse-genetic procedure. In addition, a blocking ELISA was developed based on this Mab against NSP 3A, which could serve as a matching test for a negative-marker vaccine. The criterion of this blocking ELISA was determined by detecting panels of sera from different origins. The serum samples with a percentage inhibition (PI) equal or greater than 50% were considered to be from infected animals, and those with <50% PI were considered to be from non-infected animals. This test showed similar performance when compared with other 2 blocking ELISAs based on an anti-NSP 3B Mab. This is the first report of the DIVA test for an NSP antibody based on an Mab against the conserved and predominant “AEKNPLE” epitope in NSP 3A of FMDV. PMID:28107470

  20. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein.

    Science.gov (United States)

    Chen, Edwin; Salinas, Nichole D; Huang, Yining; Ntumngia, Francis; Plasencia, Manolo D; Gross, Michael L; Adams, John H; Tolia, Niraj Harish

    2016-05-31

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifs in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. The identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.

  1. Automated Detection of Conformational Epitopes Using Phage Display Peptide Sequences

    Directory of Open Access Journals (Sweden)

    Surendra S Negi

    2009-01-01

    Full Text Available Background: Precise determination of conformational epitopes of neutralizing antibodies represents a key step in the rational design of novel vaccines. A powerful experimental method to gain insights on the physical chemical nature of conformational epitopes is the selection of linear peptides that bind with high affinities to a monoclonal antibody of interest by phage display technology. However, the structural characterization of conformational epitopes from these mimotopes is not straightforward, and in the past the interpretation of peptide sequences from phage display experiments focused on linear sequence analysis to find a consensus sequence or common sequence motifs.Results: We present a fully automated search method, EpiSearch that predicts the possible location of conformational epitopes on the surface of an antigen. The algorithm uses peptide sequences from phage display experiments as input, and ranks all surface exposed patches according to the frequency distribution of similar residues in the peptides and in the patch. We have tested the performance of the EpiSearch algorithm for six experimental data sets of phage display experiments, the human epidermal growth factor receptor-2 (HER-2/neu, the antibody mAb Bo2C11 targeting the C2 domain of FVIII, antibodies mAb 17b and mAb b12 of the HIV envelope protein gp120, mAb 13b5 targeting HIV-1 capsid protein and 80R of the SARS coronavirus spike protein. In all these examples the conformational epitopes as determined by the X-ray crystal structures of the antibody-antigen complexes, were found within the highest scoring patches of EpiSearch, covering in most cases more than 50% residues of experimental observed conformational epitopes. Input options of the program include mapping of a single peptide or a set of peptides on the antigen structure, and the results of the calculation can be visualized on our interactive web server.Availability: Users can access the EpiSearch from our web

  2. Unusual Naturally Occurring Humoral and Cellular Mutated Epitopes of Hepatitis B Virus in a Chronically Infected Argentine Patient with Anti-HBs Antibodies

    Science.gov (United States)

    Cuestas, María L.; Mathet, Verónica L.; Ruiz, Vanesa; Minassian, María L.; Rivero, Cintia; Sala, Andrea; Corach, Daniel; Alessio, Analía; Pozzati, Marcia; Frider, Bernardo; Oubiña, José R.

    2006-01-01

    Serum hepatitis B virus (HBV) DNA was extracted from a chronically infected patient with cocirculation of hepatitis B surface antigen (HBsAg) and anti-HBs antibodies. Direct PCR and clone-derived sequences of the S and overlapped P genes were obtained. DNA sequences and phylogenetic analysis ascribed this isolate to genotype A (serotype adw2). Five of six HBV DNA clones exhibited point mutations inside and outside the major hydrophilic region, while the sixth clone exhibited a genotype A “wild-type” amino acid sequence. Observed replacements included both humoral and/or cellular (major histocompatibility complex class I [MHC-I] and MHC-II) HBV mutated epitopes, such as S45A, P46H, L49H, C107R, T125A, M133K, I152F, P153T, T161S, G185E, A194T, G202R, and I213L. None of these mutants were individually present within a given clone. The I213L replacement was the only one observed in the five clones carrying nonsynonymous mutations in the S gene. Some of the amino acid substitutions are reportedly known to be responsible for the emergence of immune escape mutants. C107R replacement prevents disulfide bonding, thus disrupting the first loop of the HBsAg. Circulation of some of these mutants may represent a potential risk for the community, since neither current hepatitis B vaccines nor hyperimmune hepatitis B immune globulin are effectively prevent the liver disease thereto associated. Moreover, some of the recorded HBsAg variants may influence the accuracy of the results obtained with currently used diagnostic tests. PMID:16757620

  3. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor.

    Science.gov (United States)

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J; Madjidi, Azadeh; Corn, Jacob E; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M; Allan, Bernard B

    2013-12-13

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.

  4. Insights into the molecular basis of a bispecific antibody's target selectivity

    OpenAIRE

    Mazor, Yariv; Hansen, Anna; Yang, Chunning; Partha S Chowdhury; Wang, Jihong; Stephens, Geoffrey; Wu, Herren; Dall’Acqua, William F.

    2015-01-01

    Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote effi...

  5. Generation and epitope mapping of a monoclonal antibody against nucleoprotein of Ebola virus%埃博拉病毒NP蛋白的单克隆抗体制备及抗原肽的定位

    Institute of Scientific and Technical Information of China (English)

    王晓杜; 刘阳; 王皓婷; 史子学; 赵凡凡; 魏建超; 邵东华; 马志永

    2012-01-01

    Ebola virus(EBOV)causes highly lethal hemorrhagic fever in humans and nonhuman primates and has a significant impact on public health.The nucleoprotein(NP)of EBOV(EBOV-NP)plays a central role in virus replication and has been used as a target molecule for disease diagnosis.In this study,we generated a monoclonal antibody(MAb)against EBOV-NP and mapped the epitope motif required for recognition by the MAb.The MAb generated via immunization of mice with prokaryotically expressed recombinant NP of the Zaire Ebola virus(ZEBOV-NP)was specific to ZEBOV-NP and able to recognize ZEBOV-NP expressed in prokaryotic and eukaryotic cells.The MAb cross-reacted with the NP of the Reston Ebola virus(REBOV),the Cote-d'Ivoire Ebola virus(CIEBOV)and the Bundibugyo Ebola virus(BEBOV)but not with the NP of the Sudan Ebola virus(SEBOV)or the Marburg virus(MARV).The minimal epitope sequence required for recognition by the MAb was the motif PPLESD,which is located between amino acid residues 583 and 588 at the C-terminus of ZEBOV-NP and well conserved among all 16 strains of ZEBOV,CIEBOV and BEBOV deposited in GenBank.The epitope motif is conserved in four out of five strains of REBOV.%埃博拉病毒(Ebola virus,EBOV)是一种能导致人类及脊椎动物出血热的致死性病毒,对公共卫生具有较严重的危害.EBOV的NP蛋白在病毒复制中具有重要作用,也是诊断该病重要的靶蛋白.文中原核表达重组扎伊尔型EBOV的NP蛋白,重组蛋白免疫bal/c小鼠,制备了一株小鼠抗EBOV-NP的单克隆抗体.利用Western blotting方法,该抗体能特异识别真核表达和原核表达的重组EBOV-NP,并能同莱斯顿型(Reston Ebola virus,REBOV)、科特迪瓦型(Cote-d'Ivoire Ebola virus,CIEBOV)和本迪布焦型(Bundibugyo Ebola virus,BEBOV)埃博拉病毒产生交叉反应,而不与苏丹型(the Sudan Ebola virus,SEBOV)和马堡型(the Marburg virus,MARV)埃博拉病毒产生反应.利用突变PCR和Western blotting方法,定位了该抗体识别

  6. Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Obmolova, Galina; Teplyakov, Alexey; Malia, Thomas J.; Wunderler, Nicole; Kwok, Deborah; Barone, Linda; Sweet, Raymond; Ort, Tatiana; Scully, Michael; Gilliland, Gary L. (Janssen)

    2017-03-01

    CD27 is a T and B cell co-stimulatory protein of the TNF receptor superfamily dependent on the availability of the TNF-like ligand CD70. Two anti-CD27 neutralizing monoclonal antibodies were obtained from mouse hybridoma and subsequently humanized and optimized for binding the target. The two antibodies are similar in terms of their CD27-binding affinity and ability to block NF-κB signaling, however their clearance rates in monkeys are very different. The pharmacokinetics profiles could be epitope dependent. To identify the epitopes, we determined the crystal structure of the ternary complex between CD27 and the Fab fragments of these non-competing antibodies. The structure reveals the binding modes of the antibodies suggesting that their mechanisms of action are distinctly different and provides a possible explanation of the in vivo data.

  7. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C.

    Science.gov (United States)

    Strokappe, Nika; Szynol, Agnieszka; Aasa-Chapman, Marlèn; Gorlani, Andrea; Forsman Quigley, Anna; Hulsik, David Lutje; Chen, Lei; Weiss, Robin; de Haard, Hans; Verrips, Theo

    2012-01-01

    Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120(Ds2)), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B'/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides.

  8. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Science.gov (United States)

    Dowall, S. D.; Graham, V. A.; Corbin-Lickfett, K.; Empig, C.; Schlunegger, K.; Bruce, C. B.; Easterbrook, L.; Hewson, R.

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus. PMID:25815346

  9. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Directory of Open Access Journals (Sweden)

    S. D. Dowall

    2015-01-01

    Full Text Available Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus.

  10. Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin

    NARCIS (Netherlands)

    Vossenaar, E.R.; Despres, N.; Lapointe, E.; Heijden, A.G. van der; Lora, M.; Senshu, T.; Venrooij, W.J.W. van; Menard, H.A.

    2004-01-01

    Antibodies directed to the Sa antigen are highly specific for rheumatoid arthritis ( RA) and can be detected in approximately 40% of RA sera. The antigen, a doublet of protein bands of about 50 kDa, is present in placenta and in RA synovial tissue. Although it has been stated that the Sa antigen is

  11. In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor

    Directory of Open Access Journals (Sweden)

    Vahid Bayrami

    2016-12-01

    Full Text Available The insulin-like growth factor-1 receptor (IGF-1R is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct epitopes on IGF-1R, might be an effective strategy to inhibit IGF-1R pathway in cancer. In this study, new linear B cell epitopes for the extracellular domains of IGF-1R were predicted by in silico methods using a combination of linear B cell epitope prediction web servers such as ABCpred, Bepired, BCPREDs, Bcepred and Elliprro. Moreover, Discotope, B-pred and PEPOP web server tools were employed to predict new conformational B cell epitopes. In contrast to previously reported epitopes from extracellular region of the IGF-1R, we predicted new linear P8: (RQPQDGYLYRHNYCSK and conformational Pc4: (HYYYAGVCVPACPPNTYRFE, Ppc6: (KMCPSTGKRENNESAPDNDT and Ppc20: (ANILSAESSDSEFMQEPSGFI epitopes. These epitopes are useful for further study as peptide antigens to actively immune host animals to develop new MAbs. Furthermore, the epitopes can be used in peptide-based cancer vaccines design.

  12. Peptide Targeted by Human Antibodies Associated with HIV Vaccine-Associated Protection Assumes a Dynamic α-Helical Structure

    Science.gov (United States)

    Dominguez, Lorenzo; Goger, Michael; Battacharya, Shibani; deCamp, Allan C.; Gilbert, Peter B.; Berman, Phillip W.; Cardozo, Timothy

    2017-01-01

    The only evidence of vaccine-induced protection from HIV acquisition in humans was obtained in the RV144 HIV vaccine clinical trial. One immune correlate of risk in RV144 was observed to be higher titers of vaccine-induced antibodies (Abs) reacting with a 23-mer non-glycosylated peptide with the same amino acid sequence as a segment in the second variable (V2) loop of the MN strain of HIV. We used NMR to analyze the dynamic 3D structure of this peptide. Distance restraints between spatially proximate inter-residue protons were calculated from NOE cross peak intensities and used to constrain a thorough search of all possible conformations of the peptide. α–helical folding was strongly preferred by part of the peptide. A high-throughput structure prediction of this segment in all circulating HIV strains demonstrated that α–helical conformations are preferred by this segment almost universally across all subtypes. Notably, α–helical conformations of this segment of the V2 loop cluster cross-subtype-conserved amino acids on one face of the helix and the variable amino acid positions on the other in a semblance of an amphipathic α–helix. Accordingly, some Abs that protected against HIV in RV144 may have targeted a specific, conserved α–helical peptide epitope in the V2 loop of HIV’s surface envelope glycoprotein. PMID:28107435

  13. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2 predicts novel potential therapeutic epitopes.

    Directory of Open Access Journals (Sweden)

    Xiaohong Deng

    Full Text Available Overexpression of human epidermal growth factor receptor 2 (HER2 is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2 contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.

  14. Using llama derived single domain antibodies to target botulinum neurotoxins

    Science.gov (United States)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  15. Recognition of zinc transporter 8 and MAP3865c homologous epitopes by Hashimoto's thyroiditis subjects from Sardinia: a common target with type 1 diabetes?

    Directory of Open Access Journals (Sweden)

    Speranza Masala

    Full Text Available Mycobacterium avium subspecies paratuberculosis (MAP asymptomatic infection has been previously linked to Type 1 diabetes (T1D and Multiple Sclerosis. An association between MAP infection and Hashimoto's thyroiditis (HT was also proposed only in a case report. This study aimed to investigate the robustness of the latter association, testing a large cohort of HT and healthy control (HCs subjects, all from Sardinia. Prevalence of anti-MAP3865c Abs was assessed by indirect enzyme-linked immunosorbent assay (ELISA. Moreover, given that human ZnT8 is specifically expressed in the pancreatic β-cells, in the follicle epithelial cells and in the parafollicular cells of the thyroid gland, we also tested ZnT8 epitopes homologues to the MAP3865c immunodominant peptides previously identified. Indeed, Abs targeting MAP3865c and ZnT8 homologous regions display similar frequencies in patients and controls, thus suggesting that Abs recognizing these epitopes could be cross-reactive. A statistically significant difference was found between HT patients and HCs when analyzing the humoral response mounted against MAP3865c/ZnT8 homologues epitopes. To our knowledge, this is the first report, which provides statistically significant evidence sustaining the existence of an association between MAP sero-reactivity and HT. Further studies are required to investigate the relevance of MAP to HT, aimed at deciphering if this pathogen can be at play in triggering this autoimmune disease. Likewise, genetic polymorphism of the host, and other environmental factors need to be investigated.

  16. Expression and immunoreactivity of HCV/HBV epitopes

    Institute of Scientific and Technical Information of China (English)

    Xin-Yu Xiong; Xiao Liu; Yuan-Ding Chen

    2005-01-01

    AIM: To develop the epitope-based vaccines to prevent Hepatitis C virus (HCV)/Hepatitis B virus (HBV) infections.METHODS: The HCV core epitopes C1 STNPKPQRKTKRNTNRRPQD (residuals aa2-21) and C2 VKFPGGGQIVGGVYLLPRR (residuals aa22-40), envelope epitope E GHRMAWDMMMNWSP (residuals aa315-328) and HBsAg epitope S CTTPAQGNSMFPSCCCTKPTDGNC (residuals aa124-147) were displayed in five different sites of the flock house virus capsid protein as a vector, and expressed in E. coli cells (pET-3 system).Immunoreactivity of the epitopes with anti-HCV and anti-HBV antibodies in the serum from hepatitis C and hepatitis B patients were determined.RESULTS: The expressed chimeric protein carrying the HCV epitopes C1, C2, E (two times), L3C1-I2E-L1C2-L2E could react with anti-HCV antibodies. The expressed chimeric protein carrying the HBV epitopes S, I3S could react with anti-HBs antibodies. The expressed chimeric proteins carrying the HCV epitopes C1, C2, E plus HBV epitope S, L3C1-I2E-L1C2-L2E-I3S could react with antiHCV and anti-HBs antibodies.CONCLUSION: These epitopes have highly specific and sensitive immunoreaction and are useful in the development of epitope-based vaccines.

  17. Epitope of titin A-band-specific monoclonal antibody Tit1 5 H1.1 is highly conserved in several Fn3 domains of the titin molecule. Centriole staining in human, mouse and zebrafish cells

    Directory of Open Access Journals (Sweden)

    Mikelsaar Aavo-Valdur

    2012-09-01

    Full Text Available Abstract Background Previously we have reported on the development of a new mouse anti-titin monoclonal antibody, named MAb Titl 5 H1.1, using the synthetic peptide N-AVNKYGIGEPLESDSVVAK-C which corresponds to an amino acid sequence in the A-region of the titin molecule as immunogen. In the human skeletal muscles, MAb Titl 5 H1.1 reacts specifically with titin in the A-band of the sarcomere and in different non-muscle cell types with nucleus and cytoplasm, including centrioles. In this report we have studied the evolutionary aspects of the binding of MAb Tit1 5 H1.1 with its target antigen (titin. Results We have specified the epitope area of MAb Tit1 5 H1.1 by subpeptide mapping to the hexapeptide N-AVNKYG-C. According to protein databases this amino acid sequence is located in the COOH-terminus of several different Fn3 domains of the A-region of titin molecule in many organisms, such as human being, mouse, rabbit, zebrafish (Danio rerio, and even in sea squirt (Ciona intestinalis. Our immunohisto- and cytochemical studies with MAb Tit1 5 H1.1 in human, mouse and zebrafish tissues and cell cultures showed a striated staining pattern in muscle cells and also staining of centrioles, cytoplasm and nuclei in non-muscle cells. Conclusions The data confirm that titin can play, in addition to the known roles in striated muscle cells also an important role in non-muscle cells as a centriole associated protein. This phenomenon is highly conserved in the evolution and is related to Fn3 domains of the titin molecule. Using titin A-band-specific monoclonal antibody MAb Tit1 5 H1.1 it was possible to locate titin in the sarcomeres of skeletal muscle cells and in the centrioles, cytoplasm and nuclei of non-muscle cells in phylogenetically so distant organisms as Homo sapiens, Mus musculus and zebrafish (Danio rerio.

  18. Enhancing exposure of HIV-1 neutralization epitopes through mutations in gp41.

    Directory of Open Access Journals (Sweden)

    Catherine A Blish

    2008-01-01

    Full Text Available BACKGROUND: The generation of broadly neutralizing antibodies is a priority in the design of vaccines against HIV-1. Unfortunately, most antibodies to HIV-1 are narrow in their specificity, and a basic understanding of how to develop antibodies with broad neutralizing activity is needed. Designing methods to target antibodies to conserved HIV-1 epitopes may allow for the generation of broadly neutralizing antibodies and aid the global fight against AIDS by providing new approaches to block HIV-1 infection. Using a naturally occurring HIV-1 Envelope (Env variant as a template, we sought to identify features of Env that would enhance exposure of conserved HIV-1 epitopes. METHODS AND FINDINGS: Within a cohort study of high-risk women in Mombasa, Kenya, we previously identified a subtype A HIV-1 Env variant in one participant that was unusually sensitive to neutralization. Using site-directed mutagenesis, the unusual neutralization sensitivity of this variant was mapped to two amino acid mutations within conserved sites in the transmembrane subunit (gp41 of the HIV-1 Env protein. These two mutations, when introduced into a neutralization-resistant variant from the same participant, resulted in 3- to >360-fold enhanced neutralization by monoclonal antibodies specific for conserved regions of both gp41 and the Env surface subunit, gp120, >780-fold enhanced neutralization by soluble CD4, and >35-fold enhanced neutralization by the antibodies found within a pool of plasmas from unrelated individuals. Enhanced neutralization sensitivity was not explained by differences in Env infectivity, Env concentration, Env shedding, or apparent differences in fusion kinetics. Furthermore, introduction of these mutations into unrelated viral Env sequences, including those from both another subtype A variant and a subtype B variant, resulted in enhanced neutralization susceptibility to gp41- and gp120-specific antibodies, and to plasma antibodies. This enhanced

  19. Autoantibodies to Multiple Epitopes on the Non-Collagenous-1 Domain of Type VII Collagen Induce Blisters.

    Science.gov (United States)

    Vorobyev, Artem; Ujiie, Hideyuki; Recke, Andreas; Buijsrogge, Jacqueline J A; Jonkman, Marcel F; Pas, Hendri H; Iwata, Hiroaki; Hashimoto, Takashi; Kim, Soo-Chan; Hoon Kim, Jong; Groves, Richard; Samavedam, Unni; Gupta, Yask; Schmidt, Enno; Zillikens, Detlef; Shimizu, Hiroshi; Ludwig, Ralf J

    2015-06-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disease of the skin and mucous membranes, characterized by autoantibodies against type VII collagen (COL7), a major component of anchoring fibrils. Different clinical EBA phenotypes are described, including mechanobullous and inflammatory variants. Most EBA patients' sera react with epitopes located within the non-collagenous 1 (NC1) domain of human COL7. However, it has remained unclear whether antibody binding to these different epitopes is pathogenically relevant. To address this issue, we generated recombinant proteins covering the entire NC1 domain. IgG reactivity with these proteins was analyzed in sera of 69 EBA patients. Most recognized clusters of epitopes throughout the NC1 domain. No correlation was detected between antibody specificity and clinical phenotype. To study the pathogenicity of antibodies specific to different NC1 subdomains, rabbit antibodies were generated. All these antibodies caused dermal-epidermal separation ex vivo. Antibodies against two of these subdomains were injected into mice carrying null mutations of mouse COL7 and the human COL7 transgene and induced subepidermal blisters. We here document that autoantibodies to COL7, independent of the targeted epitopes, induce blisters both ex vivo and in vivo. In addition, using COL7-humanized mice, we provide in vivo evidence of pathogenicity of autoantibodies binding to human COL7.

  20. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  1. TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets

    Directory of Open Access Journals (Sweden)

    Trudy Straetemans

    2012-01-01

    Full Text Available Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2 and MAGE-A3243-258/HLA-DP4 (MA3/DP4. We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.

  2. Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins.

    Science.gov (United States)

    Barro, Francisco; Iehisa, Julio C M; Giménez, María J; García-Molina, María D; Ozuna, Carmen V; Comino, Isabel; Sousa, Carolina; Gil-Humanes, Javier

    2016-03-01

    Gluten proteins are responsible for the viscoelastic properties of wheat flour but also for triggering pathologies in susceptible individuals, of which coeliac disease (CD) and noncoeliac gluten sensitivity may affect up to 8% of the population. The only effective treatment for affected persons is a strict gluten-free diet. Here, we report the effectiveness of seven plasmid combinations, encompassing RNAi fragments from α-, γ-, ω-gliadins, and LMW glutenin subunits, for silencing the expression of different prolamin fractions. Silencing patterns of transgenic lines were analysed by gel electrophoresis, RP-HPLC and mass spectrometry (LC-MS/MS), whereas gluten immunogenicity was assayed by an anti-gliadin 33-mer monoclonal antibody (moAb). Plasmid combinations 1 and 2 downregulated only γ- and α-gliadins, respectively. Four plasmid combinations were highly effective in the silencing of ω-gliadins and γ-gliadins, and three of these also silenced α-gliadins. HMW glutenins were upregulated in all but one plasmid combination, while LMW glutenins were downregulated in three plasmid combinations. Total protein and starch contents were unaffected regardless of the plasmid combination used. Six plasmid combinations provided strong reduction in the gluten content as measured by moAb and for two combinations, this reduction was higher than 90% in comparison with the wild type. CD epitope analysis in peptides identified in LC-MS/MS showed that lines from three plasmid combinations were totally devoid of CD epitopes from the highly immunogenic α- and ω-gliadins. Our findings raise the prospect of breeding wheat species with low levels of harmful gluten, and of achieving the important goal of developing nontoxic wheat cultivars.

  3. Intracellular Targeting of CEA Results in Th1-Type Antibody Responses Following Intradermal Genetic Vaccination by a Needle-Free Jet Injection Device

    Directory of Open Access Journals (Sweden)

    Susanne Johansson

    2007-01-01

    Full Text Available The route and method of immunization, as well as the cellular localization of the antigen, can influence the generation of an immune response. In general, intramuscular immunization results in Th1 responses, whereas intradermal delivery of DNA by gene gun immunization often results in more Th2 responses. Here we investigate how altering the cellular localization of the tumor antigen CEA (carcinoembryonic antigen affects the quality and amplitude of DNA vaccine-induced antibody responses in mice following intradermal delivery of DNA by a needle-free jet injection device (Biojector. CEA was expressed either in a membrane-bound form (wild-type CEA or in two truncated forms (CEA6 and CEA66 with cytoplasmic localization, where CEA66 was fused to a promiscuous T-helper epitope from tetanus toxin. Repeated intradermal immunization of BALB/c mice with DNA encoding wild-type CEA produced high antibody titers of a mixed IgG1/IgG2a ratio. In contrast, utilizing the DNA construct that resulted in intracellular targeting of CEA led to a reduced capacity to induce CEA-specific antibodies, but instead induced a Th1-biased immune response.

  4. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.

    Directory of Open Access Journals (Sweden)

    Xiaolin Wen

    Full Text Available Respiratory syncytial virus (RSV and human metapneumovirus (HMPV are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1 is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections.

  5. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    Science.gov (United States)

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  6. Identification and characterization of novel B-cell epitopes within EBV latent membrane protein 2 (LMP2).

    Science.gov (United States)

    Xue, Xiangyang; Zhu, Shanli; Li, Wenshu; Chen, Jun; Ou, Qin; Zheng, Meixia; Gong, Wenci; Zhang, Lifang

    2011-06-01

    The purpose of this study was to screen and identify the linear B-cell epitopes of Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2). The secondary structure and surface properties of EBV LMP2A protein were analyzed. In combination with hydrophilicity, accessibility, flexibility, and antigenicity analysis, and average antigenicity index (AI) of epitope peptide investigation, three peptides were selected as potential candidates of linear B-cell epitopes. The peptides were 199-209 (RIEDPPFNSLL), 318-322 (TLNLT), and 381-391 (KSLSSTEFIPN). The fragments encoding potential B-cell epitopes were cloned and overexpressed in an E. coli system. The immune sera of these fusion proteins were collected from BALB/c mice by subcutaneously immunizing them three times. Western blotting results showed that these epitope recombinant proteins could be recognized by the serum antibodies against the whole LMP2 from nasopharyngeal carcinoma (NPC). Indirect ELISA measuring individual sera from 196 NPC patients, 44 infectious mononucleosis (IM) patients, 253 healthy adults, and 61 healthy children, indicated that NPC patients had significantly higher reactivity to these epitope-fused proteins compared with IM and healthy individuals (p EBV prototype strain, B95-8 cells. IFA results confirmed that specific antibodies induced by epitope peptide-fused proteins recognized intracellular regions of LMP2A. These results demonstrated that these three predictive epitopes not only were immunodominant B-cell epitopes of LMP2A, but also may be potential targets for applications in the design of diagnostic tools.

  7. In vitro neutralization of prions with PrP(Sc)-specific antibodies.

    Science.gov (United States)

    Taschuk, Ryan; Van der Merwe, Jacques; Marciniuk, Kristen; Potter, Andrew; Cashman, Neil; Griebel, Philip; Napper, Scott

    2015-01-01

    Prion diseases reflect the misfolding of a self-protein (PrP(C)) into an infectious, pathological isomer (PrP(Sc)). By targeting epitopes uniquely exposed by misfolding, our group developed PrP(Sc)-specific vaccines to 3 disease specific epitopes (DSEs). Here, antibodies induced by individual DSE vaccines are evaluated for their capacity to neutralize prions in vitro. For both purified antibodies and immunoreactive sera, the PrP(Sc)-specific antibodies were equally effective in neutralizing prions. Further, there was no significant increase in neutralizing activity when multiple DSEs were targeted within an assay. At a low antibody concentration, the PrP(Sc)-specific antibodies matched the neutralization achieved by an antibody that may act via both PrP(C) and PrP(Sc). At higher doses, however, this pan-specific antibody was more effective, potentially due to a combined deactivation of PrP(Sc) and depletion of PrP(C).

  8. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2016-01-01

    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer. PMID:27667400

  9. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    Directory of Open Access Journals (Sweden)

    Staalsoe Trine

    2004-09-01

    Full Text Available Abstract Background The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA binding parasites express trypsin-resistant variant surface antigens (VSA that bind female-specific antibodies induced as a result of pregnancy associated malaria (PAM. Methods Fluorescence activated cell sorting (FACS was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG that bind to the surface of infected erythrocytes. P. falciparum clone FCR3 cultures were used to assay surface IgG binding before and after selection of the parasite for adhesion to CSA. The effect of proteolytic digestion of parasite erythrocyte surface antigens on surface IgG binding and adhesion to CSA and hyaluronic acid (HA was also studied. Results P. falciparum infected erythrocytes selected for adhesion to CSA were found to express trypsin-resistant VSA that are the target of naturally acquired antibodies from pregnant women living in a malaria endemic region of Ghana. However in vitro adhesion to CSA and HA was relatively trypsin sensitive. An improved labelling technique for the detection of VSA expressed by CSA binding isolates has also been described. Conclusion The VSA expressed by CSA binding P. falciparum isolates are currently considered potential targets for a vaccine against PAM. This study identifies discordance between the trypsin sensitivity of CSA binding and surface recognition of CSA selected parasites by serum IgG from malaria exposed pregnant women. Thus, the complete molecular

  10. Antibodies to autoantigen targets in myasthenia and their value in clinical practice

    Directory of Open Access Journals (Sweden)

    S. I. Dedaev

    2014-01-01

    Full Text Available Myasthenia gravis is a classic autoimmune disease, which clinical manifestations in the form of weakness and abnormal muscle fatigue, due to the damaging effect of polyclonal antibodies to different structures of the neuromuscular synapse and muscles. The study of autoimmune substrate with myasthenia is routine in many clinics dealing with the problems of neuromuscular pathology, and the identification of high concentration of serum antibodies to a number of antigenic structures is the gold standard in diagnosis.Determination of serum antibodies to various autoimmune targets is an important tool in clinical practice. The majority of patients shows the high concentration of antibodies to AchR that gives the opportunity to use it as an important diagnostic criterion. The specificity of changes in the concentration of AchR-antibodies due to pathogenetic treatment allows to objectify the suppression of autoimmune aggression and evaluate the reliability of remission. However, the absence of AchR-antibodies when there are clear clinical and electromyography signs of myasthenia gravis suggests an autoimmune attack against a number of other targets, the most studied of which is the MuSK. On the contrary, patients with myasthenia gravis associated with thymoma, almost always have a higher level of AchR-antibodies. The presence of thymoma is accompanied by the generation of antibodies to titin and RyR, which is also observed in persons with late-onset myasthenia without thymoma. High concentration of antibodies to these structures can be interpreted as a reliable sign of thymoma in patients younger than 60 years.

  11. Novel O-linked glycans containing 6'-sulfo-Gal/GalNAc of MUC1 secreted from human breast cancer YMB-S cells: possible carbohydrate epitopes of KL-6(MUC1) monoclonal antibody.

    Science.gov (United States)

    Seko, Akira; Ohkura, Takashi; Ideo, Hiroko; Yamashita, Katsuko

    2012-02-01

    Human serum Krebs von den Lugen-6 (KL-6) antigen is a MUC1 glycoprotein (KL-6/MUC1) recognized by anti-KL-6 monoclonal antibody (KL-6/mAb) and has been utilized as a diagnostic marker for interstitial pneumonia. KL-6/mAb is thought to recognize the specific glycopeptides sequence of MUC1, but the precise glycan structure of the epitope is unclear. In this study, we determined the carbohydrate structures of KL-6/MUC1 to search the carbohydrate epitopes for KL-6/mAb. KL-6/MUC1 was purified from the culture medium of human breast cancer YMB-S cells by KL-6/mAb-affinity chromatography; the O-linked glycan structures were determined in combination with paper electrophoresis, several lectin column chromatographies, sialidase digestion and methanolysis. KL-6/MUC1 contained core 1 and extended core 1 glycans modified with one or two sialic acid/sulfate residues. Based on these structures, several synthetic glycans binding to anti-KL-6/mAb were compared with one another by surface plasmon resonance. Sequentially, related radiolabeled oligosaccharides were enzymatically synthesized and analyzed for binding to a KL-6/mAb-conjugated affinity column. 3'-sialylated, 6'-sulfated LNnT [Neu5Acα2-3(SO(3)(-)-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc], 3'-sialylated, 6-sulfated core 1 [Neu5Acα2-3Galβ1-3(SO(3)(-)-6)GalNAc] and disulfated core 1 SO(3)(-)-3Galβ1-3(SO(3)(-)-6)GalNAc exhibited substantial affinity for KL-6/mAb, and 3'-sulfated core 1 derivatives [SO(3)(-)-3Galβ1-3(±Neu5Acα2-6)GalNAc] and 3'-sialylated core 1 weakly interacted with KL-6/mAb. These results indicated that the possible carbohydrate epitopes of KL-6/mAb involve not only 3'-sialylated core 1 but also novel core 1 and extended core 1 with sulfate and sialic acid residues. Epitope expressing changes with suppression or over-expression of the Gal6ST (Gal 6-O-sulfotransferase) gene, suggesting that Gal6ST is involved in the biosynthesis of the unique epitopes of KL-6/mAb.

  12. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  13. Tumour antigen targeted monoclonal antibodies incorporating a novel multimerisation domain significantly enhance antibody dependent cellular cytotoxicity against colon cancer.

    Science.gov (United States)

    Jain, Ajay; Poonia, Bhawna; So, Edward C; Vyzasatya, Ravi; Burch, Erin E; Olsen, Henrik S; Mérigeon, Emmanuel Y; Block, David S; Zhang, Xiaoyu; Schulze, Dan H; Hanna, Nader N; Twadell, William S; Yfantis, Harris G; Chan, Siaw L; Cai, Ling; Strome, Scott E

    2013-10-01

    Tumour antigen targeted antibodies (mAbs) can induce natural killer (NK) cells to kill tumours through antibody dependent cellular cytotoxicity (ADCC) upon engagement of NK cell expressed FcγRIIIa. FcγRIIIa polymorphisms partially dictate the potency of the ADCC response. The high affinity FcγRIIIa-158-valine (V) polymorphism is associated with more potent ADCC response than the low affinity FcγRIIIa-158-phenylalanine (F) polymorphism. Because approximately 45% of patients are homozygous for the FcγRIIIa-158-F polymorphism (FF genotype), their ability to mount ADCC is impaired. We investigated whether a novel mAb capable of binding multiple antigen specific targets and engaging multiple low affinity FcγRIIIa receptors could further enhance ADCC against colon cancer in vitro. Specifically, we generated a novel anti-epidermal growth factor receptor (EGFR) antibody (termed a stradobody) consisting of an unmodified Fab sequence and two Immunoglobulin G, subclass 1 (IgG1) Fc domains separated by an isoleucine zipper domain and the 12 amino-acid IgG2 hinge. The stradobody framework induced multimerisation and was associated with increased binding to the EGFR and FcγRIIIa. From a functional perspective, when compared to an unmodified anti-EGFR mAb with a sequence identical to cetuximab (a commercially available anti-EGFR mAb), stradobodies significantly enhanced ADCC. These effects were observed using both KRAS wild type HT29 and KRAS mutant SW480 colon cancer cells as targets, and by NK cells obtained from healthy donors and a cohort of patients with colon cancer. These data suggest that high avidity cross-linking of multiple tumour surface antigens and multiple NK cell associated FcγRIIIa molecules can enhance ADCC and partially overcome impaired ADCC by FF genotype individuals in vitro.

  14. A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies.

    Directory of Open Access Journals (Sweden)

    Ryan N Gutenkunst

    Full Text Available A promising direction in drug development is to exploit the ability of natural killer cells to kill antibody-labeled target cells. Monoclonal antibodies and drugs designed to elicit this effect typically bind cell-surface epitopes that are overexpressed on target cells but also present on other cells. Thus it is important to understand adhesion of cells by antibodies and similar molecules. We present an equilibrium model of such adhesion, incorporating heterogeneity in target cell epitope density, nonspecific adhesion forces, and epitope immobility. We compare with experiments on the adhesion of Jurkat T cells to bilayers containing the relevant natural killer cell receptor, with adhesion mediated by the drug alefacept. We show that a model in which all target cell epitopes are mobile and available is inconsistent with the data, suggesting that more complex mechanisms are at work. We hypothesize that the immobile epitope fraction may change with cell adhesion, and we find that such a model is more consistent with the data, although discrepancies remain. We also quantitatively describe the parameter space in which binding occurs. Our model elaborates substantially on previous work, and our results offer guidance for the refinement of therapeutic immunoadhesins. Furthermore, our comparison with data from Jurkat T cells also points toward mechanisms relating epitope immobility to cell adhesion.

  15. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Timo Heidt

    Full Text Available BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111Indium ((111In via bifunctional DTPA ( = (111In-LIBS/(111In-control. Autoradiography after incubation with (111In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2, 4010 ± 630 DLU/mm(2 and 4520 ± 293 DLU/mm(2 produced a significantly higher ligand uptake compared to (111In-control (2101 ± 76 DLU/mm(2, 1181 ± 96 DLU/mm(2 and 1866 ± 246 DLU/mm(2 indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2 vs. 17390 ± 7470 DLU/mm(2; P<0.05. These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01. CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of

  16. A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2014-07-01

    Full Text Available Detailed knowledge of cell-surface proteins for isolating well-defined populations of human pluripotent stem cells (hPSCs would significantly enhance their characterization and translational potential. Through a chemoproteomic approach, we developed a cell-surface proteome inventory containing 496 N-linked glycoproteins on human embryonic (hESCs and induced PSCs (hiPSCs. Against a backdrop of human fibroblasts and 50 other cell types, >100 surface proteins of interest for hPSCs were revealed. The >30 positive and negative markers verified here by orthogonal approaches provide experimental justification for the rational selection of pluripotency and lineage markers, epitopes for cell isolation, and reagents for the characterization of putative hiPSC lines. Comparative differences between the chemoproteomic-defined surfaceome and the transcriptome-predicted surfaceome directly led to the discovery that STF-31, a reported GLUT-1 inhibitor, is toxic to hPSCs and efficient for selective elimination of hPSCs from mixed cultures.

  17. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy.

    Science.gov (United States)

    Fresquet, Maryline; Jowitt, Thomas A; Gummadova, Jennet; Collins, Richard; O'Cualain, Ronan; McKenzie, Edward A; Lennon, Rachel; Brenchley, Paul E

    2015-02-01

    Phospholipase A2 receptor 1 (PLA2R) is a target autoantigen in 70% of patients with idiopathic membranous nephropathy. We describe the location of a major epitope in the N-terminal cysteine-rich ricin domain of PLA2R that is recognized by 90% of human anti-PLA2R autoantibodies. The epitope was sensitive to reduction and SDS denaturation in the isolated ricin domain and the larger fragment containing the ricin, fibronectin type II, first and second C-type lectin domains (CTLD). However, in nondenaturing conditions the epitope was protected against reduction in larger fragments, including the full-length extracellular region of PLA2R. To determine the composition of the epitope, we isolated immunoreactive tryptic fragments by Western blotting and analyzed them by mass spectrometry. The identified peptides were tested as inhibitors of autoantibody binding to PLA2R by surface plasmon resonance. Two peptides from the ricin domain showed strong inhibition, with a longer sequence covering both peptides (31-mer) producing 85% inhibition of autoantibody binding to PLA2R. Anti-PLA2R antibody directly bound this 31-mer peptide under nondenaturing conditions and binding was sensitive to reduction. Analysis of PLA2R and the PLA2R-anti-PLA2R complex using electron microscopy and homology-based representations allowed us to generate a structural model of this major epitope and its antibody binding site, which is independent of pH-induced conformational change in PLA2R. Identification of this major PLA2R epitope will enable further therapeutic advances for patients with idiopathic membranous nephropathy, including antibody inhibition therapy and immunoadsorption of circulating autoantibodies.

  18. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases.

    Science.gov (United States)

    Lai, Yuping; Dong, Chen

    2016-04-01

    Inflammatory cytokines are key regulators of immune responses. Persistent and excessive production of inflammatory cytokines underscores the development of autoimmune diseases. Therefore, neutralizing inflammatory cytokines or antagonizing their receptor function is considered as a useful therapeutic strategy to treat autoimmune diseases. To achieve the success of such a strategy, understanding of the complex actions of these cytokines and cytokine networks is required. In this review we focus on four inflammatory cytokines--tumor necrosis factor α (TNFα), interleukin-6 (IL-6), IL-23 and IL-17--and dissect how the dysregulation of these cytokines regulates autoimmune diseases. On the basis of pre-clinical and clinical data, we specifically discuss the therapeutic rationale for targeting these cytokines and describe the potential adverse effects.

  19. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    Science.gov (United States)

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  20. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice.

    Science.gov (United States)

    Jiang, Liping; Fan, Rongjun; Sun, Shiyang; Fan, Peihu; Su, Weiheng; Zhou, Yan; Gao, Feng; Xu, Fei; Kong, Wei; Jiang, Chunlai

    2015-11-27

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.

  1. Self-assembled Nanoparticles based on Folic Acid Modiifed Carboxymethyl Chitosan Conjugated with Targeting Antibody

    Institute of Scientific and Technical Information of China (English)

    HU Zhengyu; ZHENG Hua; LI Dan; XIONG Xiong; TAN Mingyuan; HUANG Dan; GUO Xing; ZHANG Xueqiong; YAN Han

    2016-01-01

    Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia (AML). Moreover, methotrexate (MTX) was chosen as model drug and encapsulate within folic acid modified carboxymethyl chitosan (FA-CMCS) nanoparticles through self-assembling. The chemical structure, morphology, release and targeting of nanoparticles were characterized by routine detection. It is demonstrated that the mean diameter is about 150 nm, the release rate increases with the decreasing of pH, the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2, and nanoparticles can effectively bind onto HL60 cells in vitro. The experimental results indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potential pH-sensitive drug delivery system with leukemic targeting properties.

  2. INH 表位多肽疫苗抗体间接 ELISA 测定方法的建立及优化%Establishment and Optimization of INH Epitope Peptide Vaccine for Detection of Antibody

    Institute of Scientific and Technical Information of China (English)

    张玲玲; 韩吉龙; 刘善博; 杨博辉; 岳耀敬; 冯瑞林; 李红峰; 郭婷婷; 袁超; 牛春娥; 刘建斌; 孙晓萍

    2016-01-01

    In this study ,an indirect ELISA method was established to detect inhibin hormone (INH) epitope peptide vaccine antibody ,it would provide oretical reference for the determination of Fine‐wool sheep after active immune body INH epitope peptide vaccine antibody .On the basis of the predecessors ,using indirect ELISA method to determinate serum IN H epitope peptide an‐tibody levels of sheep ,and through control different experimental conditions to look for the best experimental conditions .Through explorating the experimental conditions ,finally ,the testing experiment conditions were determined ,which was blocked solution with skimmed milk powder , IN H and GnIH synthetic peptides dilution degrees for 20 000 times ,the optimum reaction time was 60 min ,the best color action time was 15 min .In this experiment ,a kind of method to detec‐tion antibody in the body after INH active immune sheep was built ,it would provide a reference for future research .%本试验在间接ELISA的基础上建立了一种检测抑制素(inhibit hormone ,INH)表位多肽疫苗抗体的方法并对ELISA试剂盒进行优化,为今后测定主动免疫后细毛羊体内INH表位多肽疫苗抗体提供理论参考。在前人研究的基础上,采用间接ELISA法测定血清中INH表位多肽疫苗抗体的含量,通过对不同试验条件的控制摸索出最佳试验条件,即以脱脂奶粉为封闭液,IN H及 GnIH 以表位多肽疫苗抗体稀释度为20000倍,最佳反应时间60 min ,最佳显色时间为15 min。本试验建立了一种检测细毛羊体内IN H及GnIH抗体的方法,为今后对IN H表位多肽疫苗抗体的研究提供了参考。

  3. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA

    DEFF Research Database (Denmark)

    Ditlev, Sisse B; Florea, Raluca; Nielsen, Morten A

    2014-01-01

    adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes...... called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA....

  4. Immunoinformatics Approach in Designing Epitope-based Vaccine Against Meningitis-inducing Bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b)

    Science.gov (United States)

    Zahroh, Hilyatuz; Ma’rup, Ahmad; Tambunan, Usman Sumo Friend; Parikesit, Arli Aditya

    2016-01-01

    Meningitis infection is one of the major threats during Hajj season in Mecca. Meningitis vaccines are available, but their uses are limited in some countries due to religious reasons. Furthermore, they only give protection to certain serogroups, not to all types of meningitis-inducing bacteria. Recently, research on epitope-based vaccines has been developed intensively. Such vaccines have potential advantages over conventional vaccines in that they are safer to use and well responded to the antibody. In this study, we developed epitope-based vaccine candidates against various meningitis-inducing bacteria, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b. The epitopes were selected from their protein of polysaccharide capsule. B-cell epitopes were predicted by using BCPred, while T-cell epitope for major histocompatibility complex (MHC) class I was predicted using PAProC, TAPPred, and Immune Epitope Database. Immune Epitope Database was also used to predict T-cell epitope for MHC class II. Population coverage and molecular docking simulation were predicted against previously generated epitope vaccine candidates. The best candidates for MHC class I- and class II-restricted T-cell epitopes were MQYGDKTTF, MKEQNTLEI, ECTEGEPDY, DLSIVVPIY, YPMAMMWRNASNRAI, TLQMTLLGIVPNLNK, ETSLHHIPGISNYFI, and SLLYILEKNAEMEFD, which showed 80% population coverage. The complexes of class I T-cell epitopes–HLA-C*03:03 and class II T-cell epitopes–HLA-DRB1*11:01 showed better affinity than standards as evaluated from their ΔGbinding value and the binding interaction between epitopes and HLA molecules. These peptide constructs may further be undergone in vitro and in vivo testings for the development of targeted vaccine against meningitis infection. PMID:27812281

  5. Use of synthetic peptides to represent surface-exposed epitopes defined by neutralizing dengue complex- and flavivirus group-reactive monoclonal antibodies on the native dengue type-2 virus envelope glycoprotein.

    Science.gov (United States)

    Falconar, Andrew K I

    2008-07-01

    The reactions of neutralizing monoclonal antibodies (mAbs) that defined dengue virus (DENV) complex, flavivirus subgroup or group neutralizing epitopes were tested against synthetic peptide sequences from domains I, II and III of the envelope (E) glycoproteins of different DENV-2 genotypes/strains. The DENV complex-reactive mAb identified the surface-exposed 304-GKFKV/IVKEIA-313 peptides and the DENV complex-conserved 393-KKGSSIGQ/KM-401 peptides in domain III, which were located adjacently in the native glycoprotein. Both flavivirus group-reactive mAbs reacted most strongly with fusion sequence peptides from domain II when they contained a cysteine (C) by glycine (G) substitution (underlined) (101-WGNGGGLFG-109) to represent the native rotated C side chain. The 393-401 sequence represents a newly identified epitope, present as a highly flexible coil located between the 385 and 393 cell-binding sequence and the 401 and 413 sequence involved in the E glycoprotein homo-trimer formation. The 101-109 sequence containing 105-C by G substitution and the 393-401 sequence are good candidates for diagnostic assays and cross-protection experiments.

  6. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer.

    Science.gov (United States)

    NoeDominguez-Romero, Allan; Zamora-Alvarado, Rubén; Servín-Blanco, Rodolfo; Pérez-Hernández, Erendira G; Castrillon-Rivera, Laura E; Munguia, Maria Elena; Acero, Gonzalo; Govezensky, Tzipe; Gevorkian, Goar; Manoutcharian, Karen

    2014-01-01

    The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer.

  7. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species.

  8. Straightforward selection of broadly neutralizing single-domain antibodies targeting the conserved CD4 and coreceptor binding sites of HIV-1 gp120.

    Science.gov (United States)

    Matz, Julie; Kessler, Pascal; Bouchet, Jérôme; Combes, Olivier; Ramos, Oscar Henrique Pereira; Barin, Francis; Baty, Daniel; Martin, Loïc; Benichou, Serge; Chames, Patrick

    2013-01-01

    Few broadly neutralizing antibodies targeting determinants of the HIV-1 surface envelope glycoprotein (gp120) involved in sequential binding to host CD4 and chemokine receptors have been characterized. While these epitopes show low diversity among various isolates, HIV-1 employs many strategies to evade humoral immune response toward these sensitive sites, including a carbohydrate shield, low accessibility to these buried cavities, and conformational masking. Using trimeric gp140, free or bound to a CD4 mimic, as immunogens in llamas, we selected a panel of broadly neutralizing single-domain antibodies (sdAbs) that bind to either the CD4 or the coreceptor binding site (CD4BS and CoRBS, respectively). When analyzed as monomers or as homo- or heteromultimers, the best sdAb candidates could not only neutralize viruses carrying subtype B envelopes, corresponding to the Env molecule used for immunization and selection, but were also efficient in neutralizing a broad panel of envelopes from subtypes A, C, G, CRF01_AE, and CRF02_AG, including tier 3 viruses. Interestingly, sdAb multimers exhibited a broader neutralizing activity spectrum than the parental sdAb monomers. The extreme stability and high recombinant production yield combined with their broad neutralization capacity make these sdAbs new potential microbicide candidates for HIV-1 transmission prevention.

  9. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    Science.gov (United States)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  10. A novel llama antibody targeting Fn14 exhibits anti-metastatic activity in vivo.

    Science.gov (United States)

    Trebing, Johannes; Lang, Isabell; Chopra, Martin; Salzmann, Steffen; Moshir, Mahan; Silence, Karen; Riedel, Simone S; Siegmund, Daniela; Beilhack, Andreas; Otto, Christoph; Wajant, Harald

    2014-01-01

    Expression of fibroblast growth factor (FGF)-inducible 14 (Fn14), a member of the tumor necrosis factor receptor superfamily, is typically low in healthy adult organisms, but strong Fn14 expression is induced in tissue injury and tissue remodeling. High Fn14 expression is also observed in solid tumors, which is why this receptor is under consideration as a therapeutic target in oncology. Here, we describe various novel mouse-human cross-reactive llama-derived recombinant Fn14-specific antibodies (5B6, 18D1, 4G5) harboring the human IgG1 Fc domain. In contrast to recombinant variants of the established Fn14-specific antibodies PDL192 and P4A8, all three llama-derived antibodies efficiently bound to the W42A and R56P mutants of human Fn14. 18D1 and 4G5, but not 5B6, efficiently blocked TNF-like weak inducer of apoptosis(TWEA K) binding at low concentrations (0.2–2 μg/ml). Oligomerization and Fcγ receptor (FcγR) binding converted all antibodies into strong Fn14 agonists. Variants of 18D1 with enhanced and reduced antibody-dependent cell-mediated cytotoxicity (ADCC) activity were further analyzed in vivo with respect to their effect on metastasis. In a xenogeneic model using human colon carcinoma cancer cells, both antibody variants were effective in reducing metastasis to the liver. In contrast, only the 18D1 variant with enhanced ADCC activity, but not its ADCC-defective counterpart, suppressed lung metastasis in the RE NCA model. In sum, this suggests that Fn14 targeting might primarily act by triggering of antibody effector functions, but also by blockade of TWEA K-Fn14 interaction in some cases

  11. N-terminal residues of an HIV-1 gp41 membrane-proximal external region antigen influence broadly neutralizing 2F5-like antibodies

    Institute of Scientific and Technical Information of China (English)

    Dezhi Li; Jie Liu; Li Zhang; Tianshu Xu; Junheng Chen; Liping Wang; Qi Zhao

    2015-01-01

    The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.

  12. N-terminal residues of an HIV-1 gp41 membrane-proximal external region antigen influence broadly neutralizing 2F5-like antibodies.

    Science.gov (United States)

    Li, Dezhi; Liu, Jie; Zhang, Li; Xu, Tianshu; Chen, Junheng; Wang, Liping; Zhao, Qi

    2015-12-01

    The Human immunodeficiency virus type 1 (HIV-1) gp41 membrane proximal external region (MPER) is targeted by broadly neutralizing antibodies (e.g. 2F5, 4E10, Z13e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However, these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope (amino acids (aa) 662-667 in the MPER) but also several other residues (aa 652-655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.

  13. Insights into the molecular basis of a bispecific antibody's target selectivity.

    Science.gov (United States)

    Mazor, Yariv; Hansen, Anna; Yang, Chunning; Chowdhury, Partha S; Wang, Jihong; Stephens, Geoffrey; Wu, Herren; Dall'Acqua, William F

    2015-01-01

    Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote efficient target selectivity, and report the substantial roles played by the affinity of the individual arms, overall avidity and valence. More particularly, various monovalent bispecific IgGs composed of an anti-CD70 moiety paired with variants of the anti-CD4 mAb ibalizumab were tested for preferential binding and selective depletion of CD4(+)/CD70(+) T cells over cells expressing only one of the target antigens that resulted from antibody dependent cell-mediated cytotoxicity. Variants exhibiting reduced CD4 affinity showed a greater degree of target selectivity, while the overall efficacy of the bispecific molecule was not affected.

  14. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    Science.gov (United States)

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  15. Progress in the development of therapeutic antibodies targeting prion proteins and β-amyloid peptides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.

  16. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2) predicts novel potential therapeutic epitopes

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming;

    2014-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer...... for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available....

  17. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement.

    Science.gov (United States)

    Imai, Masaki; Ohta, Rieko; Varela, Juan C; Song, Hongbin; Tomlinson, Stephen

    2007-10-01

    Complement inhibitors expressed on tumor cells provide a hindrance to the therapeutic efficacy of some monoclonal antibodies (mAb). We investigated a novel strategy to overwhelm complement inhibitor activity and amplify complement activation on tumor cells. The C3-binding domain of human complement receptor 2 (CR2; CD21) was linked to the complement-activating Fc region of human IgG1 (CR2-Fc), and the ability of the construct to target and amplify complement deposition on tumor cells was investigated. CR2 binds C3 activation fragments, and CR2-Fc targeted tumor cells by binding to C3 initially deposited by a tumor-specific antibody. Complement deposition on Du145 cells (human prostate cancer cell line) and anti-MUC1 mAb-mediated complement-dependent lysis of Du145 cells were significantly enhanced by CR2-Fc. Anti-MUC1 antibody-dependent cell-mediated cytotoxicity of Du145 by human peripheral blood mononuclear cells was also significantly enhanced by CR2-Fc in both the presence and the absence of complement. Radiolabeled CR2-Fc targeted to s.c. Du145 tumors in nude mice treated with anti-MUC1 mAb, validating the targeting strategy in vivo. A metastatic model was used to investigate the effect of CR2-Fc in a therapeutic paradigm. Administration of CR2-Fc together with mAb therapy significantly improved long-term survival of nude mice challenged with an i.v. injection of EL4 cells. The data show that CR2-Fc enhances the therapeutic efficacy of antibody therapy, and the construct may provide particular benefits under conditions of limiting antibody concentration or low tumor antigen density.

  18. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer

    Science.gov (United States)

    Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang

    2014-05-01

    Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.

  19. Generation of monospecific antibodies based on affinity capture of polyclonal antibodies.

    Science.gov (United States)

    Hjelm, Barbara; Forsström, Björn; Igel, Ulrika; Johannesson, Henrik; Stadler, Charlotte; Lundberg, Emma; Ponten, Fredrik; Sjöberg, Anna; Rockberg, Johan; Schwenk, Jochen M; Nilsson, Peter; Johansson, Christine; Uhlén, Mathias

    2011-11-01

    A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.

  20. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications.

    Science.gov (United States)

    Jones, Russell G A; Martino, Angela

    2016-01-01

    Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma

  1. Generation and epitope analysis of human monoclonal antibody isotypes with specificity for the timothy grass major allergen Phl p 5a

    DEFF Research Database (Denmark)

    Hecker, J.; Diethers, A.; Seismann, H.;

    2011-01-01

    of the antibodies with the allergen was assessed. Applicability in allergy diagnostics was confirmed by establishment of artificial human sera. Functionality of both antibodies was further demonstrated in receptor binding studies and mediator release assays using humanised rat basophil leukaemia cells (RBL-SX38...

  2. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence

    Science.gov (United States)

    Mazor, Yariv; Sachsenmeier, Kris F.; Yang, Chunning; Hansen, Anna; Filderman, Jessica; Mulgrew, Kathy; Wu, Herren; Dall’Acqua, William F.

    2017-01-01

    Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected. PMID:28067257

  3. A Strategy for Screening Monoclonal Antibodies for Arabidopsis Flowers

    Science.gov (United States)

    Shi, Qian; Zhou, Lian; Wang, Yingxiang; Ma, Hong

    2017-01-01

    The flower is one of the most complex structures of angiosperms and is essential for sexual reproduction. Current studies using molecular genetic tools have made great advances in understanding flower development. Due to the lack of available antibodies, studies investigating the localization of proteins required for flower development have been restricted to use commercial antibodies against known antigens such as GFP, YFP, and FLAG. Thus, knowledge about cellular structures in the floral organs is limited due to the scarcity of antibodies that can label cellular components. To generate monoclonal antibodies that can facilitate molecular studies of the flower, we constructed a library of monoclonal antibodies against antigenic proteins from Arabidopsis inflorescences and identified 61 monoclonal antibodies. Twenty-four of these monoclonal antibodies displayed a unique band in a western blot assay in at least one of the examined tissues. Distinct cellular distribution patterns of epitopes were detected by these 24 antibodies by immunofluorescence microscopy in a flower section. Subsequently, a combination of immunoprecipitation and mass spectrometry analysis identified potential targets for three of these antibodies. These results provide evidence for the generation of an antibody library using the total plant proteins as antigens. Using this method, the present study identified 61 monoclonal antibodies and 24 of them were efficiently detecting epitopes in both western blot experiments and immunofluorescence microscopy. These antibodies can be applied as informative cellular markers to study the biological mechanisms underlying floral development in plants. PMID:28293248

  4. Tumour-targeting properties of antibodies specific to MMP-1A, MMP-2 and MMP-3

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffen, Stefanie; Frey, Katharina; Stutz, Irene; Roesli, Christoph; Neri, Dario [Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zuerich, Zuerich (Switzerland)

    2010-08-15

    Matrix metalloproteinases (MMPs), a group of more than 20 zinc-containing endopeptidases, are upregulated in many diseases, but several attempts to use radiolabelled MMP inhibitors for imaging tumours have proved unsuccessful in mouse models, possibly due to the limited specificity of these agents or their unfavourable pharmacokinetic profiles. In principle, radiolabelled monoclonal antibodies could be considered for the selective targeting and imaging of individual MMPs. We cloned, produced and characterized high-affinity monoclonal antibodies specific to murine MMP-1A, MMP-2 and MMP-3 in SIP (small immunoprotein) miniantibody format using biochemical and immunochemical methods. We also performed comparative biodistribution analysis of their tumour-targeting properties at three time points (3 h, 24 h, 48 h) in mice bearing subcutaneous F9 tumours using radioiodinated protein preparations. The clinical stage L19 antibody, specific to the alternatively spliced EDB domain of fibronectin, was used as reference tumour-targeting agent for in vivo studies. All anti-MMP antibodies and SIP(L19) strongly stained sections of F9 tumours when assessed by immunofluorescence methods. In biodistribution experiments, SIP(SP3), specific to MMP-3, selectively accumulated at the tumour site 24 and 48 h after intravenous injection, but was rapidly cleared from other organs. By contrast, SIP(SP1) and SIP(SP2), specific to MMP-1A and MMP-2, showed no preferential accumulation at the tumour site. Antibodies specific to MMP-3 may serve as vehicles for the efficient and selective delivery of imaging agents or therapeutic molecules to sites of disease. (orig.)

  5. FluKB: A Knowledge-Based System for Influenza Vaccine Target Discovery and Analysis of the Immunological Properties of Influenza Viruses

    DEFF Research Database (Denmark)

    Simon, Christian; Kudahl, Ulrich Johan; Sun, Jing

    2015-01-01

    FluKB is a knowledge-based system focusing on data and analytical tools for influenza vaccine discovery. The main goal of FluKB is to provide access to curated influenza sequence and epitope data and enhance the analysis of influenza sequence diversity and the analysis of targets of immune......-cell vaccine targets and assessment of neutralizing antibody coverage. FluKB supports the discovery of vaccine targets and the analysis of viral diversity and its implications for vaccine discovery as well as potential T-cell breadth and antibody cross neutralization involving multiple strains. Flu...... responses. FluKB consists of more than 400,000 influenza protein sequences, known epitope data (357 verified T-cell epitopes, 685 HLA binders, and 16 naturally processed MHC ligands), and a collection of 28 influenza antibodies and their structurally defined B-cell epitopes. FluKB was built using amodular...

  6. In Vitro Characterization of Human Cytomegalovirus-Targeting Therapeutic Monoclonal Antibodies LJP538 and LJP539

    Science.gov (United States)

    Patel, Hetalkumar D.; Nikitin, Pavel; Gesner, Thomas; Lin, James J.; Barkan, David T.; Ciferri, Claudio; Carfi, Andrea; Akbarnejad Yazdi, Tahmineh; Skewes-Cox, Peter; Wiedmann, Brigitte; Jarousse, Nadine; Zhong, Weidong; Feire, Adam

    2016-01-01

    Human cytomegalovirus (HCMV) infection is usually benign in healthy individuals but can cause life-threatening disease in those with compromised immune systems. Approved drugs available to treat HCMV disease, including ganciclovir, cidofovir, and foscarnet, have significant toxicities that limit their use in certain patient populations. LJP538 and LJP539 are human monoclonal antibodies that are being evaluated as immunoglobulin therapeutics. The antibodies target glycoproteins gB and the gH/gL/UL128/UL130/UL131a pentameric complex, respectively. Here we present an in vitro characterization of these antibodies. We show that LJP538 and LJP539 are more potent than a marketed immunoglobulin at inhibiting HCMV infection of various cell lines relevant to pathogenesis. We find that LJP538 and LJP539 are active against a panel of clinical isolates in vitro and demonstrate minor-to-moderate synergy in combination. Passage of HCMV in the presence of LJP538 or LJP539 alone resulted in resistance-associated mutations that mapped to the target genes. However, no loss of susceptibility to the combination of antibodies was observed for >400 days in culture. Finally, the binding regions of LJP538 and LJP539 are conserved among clinical isolates. Taken together, these data support the use of LJP538 and LJP539 in combination for clinical trials in HCMV patients. PMID:27270290

  7. Role of antibodies in developing drugs that target G-protein-coupled receptor dimers.

    Science.gov (United States)

    Hipser, Chris; Bushlin, Ittai; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-01-01

    G-protein-coupled receptors are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that G-protein-coupled receptors form dimers, and various studies have shown that dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological implications of dimerization in vivo have not been well explored because detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific G-protein-coupled receptor dimers. Such antibodies could be used as tools for characterization of heteromer-specific function; as reagents for their purification, tissue localization, and regulation in vivo; and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for G-protein-coupled receptor heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of G-protein-coupled receptor-dimer pharmacology.

  8. Properties of a general PK/PD model of antibody-ligand interactions for therapeutic antibodies that bind to soluble endogenous targets.

    Science.gov (United States)

    Davda, Jasmine P; Hansen, Ryan J

    2010-01-01

    Antibodies that target endogenous soluble ligands are an important class of biotherapeutic agents. While much focus has been placed on characterization of antibody pharmacokinetics, less emphasis has been given to characterization of antibody effects on their soluble targets. We describe here the properties of a generalized mechanism-based PK/PD model used to characterize the in vivo interaction of an antibody and an endogenous soluble ligand. The assumptions and properties of the model are explored, and situations are described when deviations from the basic assumptions may be necessary. This model is most useful for in vivo situations where both antibody and ligand levels are available following drug administration. For a given antibody exposure, the extent and duration of suppression of free ligand is impacted by the apparent affinity of the interaction, as well as by the rate of ligand turnover. The applicability of the general equilibrium model of in vivo antibody-ligand interaction is demonstrated with an anti-Aß antibody.

  9. The characteristics of human antibody targeting the Epidermal Growth Factor Receptor in vivo for radioimmunotherapy in a small animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung; Choi, Tae Hyun; Kim, Byoung Soo; Cheon, Gi Jeong [Korea Institue of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Kwang Won; Chang, Ki Hwan; Shin, Yong Won; Ryoo, Kyung Hwan; Shin, Yong Nam; Kim, Se Ho [Green Cross Corp., Yongin (Korea, Republic of)

    2010-05-15

    The identification of epidermal growth factor receptor (EGFR) as an oncogene has led to the development of anticancer therapeutics directed against EGFR, including Erbitux for colon cancer. Many therapeutic approaches are aimed at the EGFR. Erbitux is example of monoclonal antibody inhibitors. The monoclonal antibodies block the extracellular ligand binding domain. EGFR4-2, IgG human monoclonal antibody, has been developed on the basis of human antibody gene library in Green Cross Corp. Small animal imaging is useful for preclinical evaluation of radiolabeled antibody to see biodistribution and targeting ability at serial time points in same animals

  10. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is

  11. Rapid Identification of Novel Immunodominant Proteins and Characterization of a Specific Linear Epitope of Campylobacter jejuni

    Science.gov (United States)

    Hoppe, Sebastian; Bier, Frank F.; Nickisch-Rosenegk, Markus v.

    2013-01-01

    Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium’s pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify

  12. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.;

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitop...... that is specifically associated with a plant cell separation process that results in complete cell detachment....

  13. Sub-domains of ricin's B subunit as targets of toxin neutralizing and non-neutralizing monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Anastasiya Yermakova

    Full Text Available The B subunit (RTB of ricin toxin is a galactose (Gal-/N-acetylgalactosamine (GalNac-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD, although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs. All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicity assay and to partially (or completely block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB's high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB's sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin.

  14. Diverse antigenic site targeting of influenza hemagglutinin in the murine antibody recall response to A(H1N1)pdm09 virus.

    Science.gov (United States)

    Wilson, Jason R; Guo, Zhu; Tzeng, Wen-Pin; Garten, Rebecca J; Xiyan, Xu; Blanchard, Elisabeth G; Blanchfield, Kristy; Stevens, James; Katz, Jacqueline M; York, Ian A

    2015-11-01

    Here we define the epitopes on HA that are targeted by a group of 9 recombinant monoclonal antibodies (rmAbs) isolated from memory B cells of mice, immunized by infection with A(H1N1)pdm09 virus followed by a seasonal TIV boost. These rmAbs were all reactive against the HA1 region of HA, but display 7 distinct binding footprints, targeting each of the 4 known antigenic sites. Although the rmAbs were not broadly cross-reactive, a group showed subtype-specific cross-reactivity with the HA of A/South Carolina/1/18. Screening these rmAbs with a panel of human A(H1N1)pdm09 virus isolates indicated that naturally-occurring changes in HA could reduce rmAb binding, HI activity, and/or virus neutralization activity by rmAb, without showing changes in recognition by polyclonal antiserum. In some instances, virus neutralization was lost while both ELISA binding and HI activity were retained, demonstrating a discordance between the two serological assays traditionally used to detect antigenic drift.

  15. Development of antibody-based c-Met inhibitors for targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Lee D

    2015-02-01

    Full Text Available Dongheon Lee, Eun-Sil Sung, Jin-Hyung Ahn, Sungwon An, Jiwon Huh, Weon-Kyoo You Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea Abstract: Signaling pathways mediated by receptor tyrosine kinases (RTKs and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics. Keywords: hepatocyte growth factor, ligands, receptor tyrosine kinase, signaling pathway, therapeutic agent

  16. FluKB: A Knowledge-Based System for Influenza Vaccine Target Discovery and Analysis of the Immunological Properties of Influenza Viruses

    DEFF Research Database (Denmark)

    Simon, Christian; Kudahl, Ulrich Johan; Sun, Jing;

    2015-01-01

    FluKB is a knowledge-based system focusing on data and analytical tools for influenza vaccine discovery. The main goal of FluKB is to provide access to curated influenza sequence and epitope data and enhance the analysis of influenza sequence diversity and the analysis of targets of immune...... responses. FluKB consists of more than 400,000 influenza protein sequences, known epitope data (357 verified T-cell epitopes, 685 HLA binders, and 16 naturally processed MHC ligands), and a collection of 28 influenza antibodies and their structurally defined B-cell epitopes. FluKB was built using amodular...

  17. Participation of L3T4 in T cell activation in the absence of class II major histocompatibility complex antigens. Inhibition by anti-L3T4 antibodies is a function both of epitope density and mode of presentation of anti-receptor antibody

    DEFF Research Database (Denmark)

    Owens, T; Fazekas de St Groth, B

    1987-01-01

    The recognition of many class II major histocompatibility complex (MHC)-associated antigens by T cells requires the participation of the L3T4 molecule. It has been proposed that this molecule acts to stabilize low affinity binding to antigen in association with MHC and thereby increases the avidity...... two monoclonal antibodies, KJ16-133.18 and F23.1, that recognize a determinant encoded by the T cell receptor V beta 8 gene family. These antibodies were used to select two clones of T cells with surface phenotype Thy-1.2+, L3T4+, Lyt-2-, KJ16-133.18+, F23.1+, IA-, IE-. One of these clones (E9.D4...... the formation of TCR complexes and so prevent activation. However, by increasing the epitope density of the activating ligand, the avidity of the T cell/ligand interaction can be increased sufficiently to prevent this disruption.(ABSTRACT TRUNCATED AT 400 WORDS)...

  18. Neutralization epitopes on HIV pseudotyped with HTLV-I: Conservation of carbohydrate Epitopes

    DEFF Research Database (Denmark)

    Sørensen, A M; Nielsen, C; Arendrup, M

    1994-01-01

    for pseudotypes to escape neutralization by the immune system in vivo. Previous reports have suggested that carbohydrate structures may be conserved neutralization epitopes on retroviruses. In this study, the neutralizing capacity of lectins and anti-carbohydrate monoclonal antibodies was found to block infection...... by cell-free pseudotypes in CD4-negative cells. We suggest that although viral cofactors might expand the tropism of HIV in vivo, HIV and HTLV-I seem to induce common carbohydrate neutralization epitopes....

  19. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas;

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...... to those obtained for capecitabine plus lapatinib (48%), continuing trastuzumab in combination with capecitabine (48%), pertuzumab plus trastuzumab (24%), and neratinib (24%). Strategies combining multiple HER2-directed therapies might yield additive or synergistic effects and lead to improved outcome...

  20. Targeting medullary thyroid carcinomas with bispecific antibodies and bivalent haptens. Results and clinical perspectives.

    Science.gov (United States)

    Rouvier, E; Gautherot, E; Meyer, P; Barbet, J

    1997-01-01

    The present article reviews the clinical trials that have been performed in recurrent medullary thyroid carcinoma patients with the Affinity Enhancement System. This technique uses bispecific antibodies to target radiolabelled bivalent haptens to tumour cells. Its sensitivity in the detection of known tumour sites is high (90%) and this technique also achieves good sensitivity (61%) in the detection of occult disease as revealed by abnormal thyrocalcitonin blood levels. Due to its high targeting capacity, this technique is now considered for use as a therapeutic agent in medullary thyroid carcinoma patients.

  1. Epitope Mapping of Ibalizumab, a Humanized Anti-CD4 Monoclonal Antibody with Anti-HIV-1 Activity in Infected Patients▿

    OpenAIRE

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D.

    2010-01-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients...

  2. Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1

    Directory of Open Access Journals (Sweden)

    George K. Lewis

    2015-09-01

    Full Text Available The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion by antibodies that protect only by potent Fc-mediated effector function.

  3. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    Science.gov (United States)

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity.

  4. Extracorporeal adsorption therapy: A Method to improve targeted radiation delivered by radiometal-labeled monoclonal antibodies.

    Energy Technology Data Exchange (ETDEWEB)

    Nemecek, Eneida R.; Green, Damian J.; Fisher, Darrell R.; Pagal, John M.; Lin, Yukang; Gopal, A. K.; Durack, Lawrence D.; Rajendran, Joseph G.; Wilbur, D. S.; Nilsson, Rune; Sandberg, Bengt; Press, Oliver W.

    2008-04-01

    Many investigators have demonstrated the ability to treat hematologic malignancies with radiolabeled monoclonal antibodies targeting hematopoietic antigens such as anti-CD20 and anti-CD45. [1-5] Although the remission rates achieved with radioimmunotherapy (RIT) are relatively high, many patients subsequently relapse presumably due to suboptimal delivery of enough radiation to eradicate the malignancy. The dose-response of leukemia and lymphoma to radiation has been proven. Substantial amounts of radiation can be delivered by RIT if followed by hematopoietic cell transplantation to rescue the bone marrow from myeloablation.[ref] However, the maximum dose of RIT that can be used is still limited by toxicity to normal tissues affected by nonspecific delivery of radiation. Efforts to improve RIT focus on improving the therapeutic ratios of radiation in target versus non-target tissues by removing the fraction of radioisotope that fails to bind to target tissues and circulates freely in the bloodstream perfusing non-target tissues. Our group and others have explored several alternatives for removal of unbound circulating antibody. [refs] One such method, extracorporeal adsorption therapy (ECAT) consists of removing unbound antibody by a method similar to plasmapheresis after critical circulation time and distribution of antibody into target tissues have been achieved. Preclinical studies of ECAT in murine xenograft models demonstrated significant improvement in therapeutic ratios of radioactivity. Chen and colleagues demonstrated that a 2-hour ECAT procedure could remove 40 to 70% of the radioactivity from liver, lung and spleen. [ref] Although isotope concentration in the tumor was initially unaffected, a 50% decrease was noted approximately 36 hours after the procedure. This approach was also evaluated in a limited phase I pilot study of patients with refractory B-cell lymphoma. [ref] After radiographic confirmation of tumor localization of a test dose of anti-CD20

  5. Site-specific modification of ED-B-targeting antibody using intein-fusion technology

    Directory of Open Access Journals (Sweden)

    Greven Simone

    2011-07-01

    Full Text Available Abstract Background A promising new approach in cancer therapy is the use of tumor specific antibodies coupled to cytotoxic agents. Currently these immunoconjugates are prepared by rather unspecific coupling chemistries, resulting in heterogeneous products. As the drug load is a key parameter for the antitumor activity, site-specific strategies are desired. Expressed protein ligation (EPL and protein trans-splicing (PTS are methods for the specific C-terminal modification of a target protein. Both include the expression as an intein fusion protein, followed by the exchange of the intein for a functionalized moiety. Results A full-length IgG specific for fibronectin ED-B was expressed as fusion protein with an intein (Mxe GyrA or Npu DnaE attached to each heavy chain. In vitro protocols were established to site-specifically modify the antibodies in high yields by EPL or PTS, respectively. Although reducing conditions had to be employed during the process, the integrity or affinity of the antibody was not affected. The protocols were used to prepare immunoconjugates containing two biotin molecules per antibody, attached to the C-termini of the heavy chains. Conclusion Full-length antibodies can be efficiently and site-specifically modified at the C-termini of their heavy chains by intein-fusion technologies. The described protocols can be used to prepare immunoconjugates of high homogeneity and with a defined drug load of two. The attachment to the C-termini is expected to retain the affinity and effector functions of the antibodies.

  6. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    Full Text Available Botulinum neurotoxin (BoNT potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP to link biotinylated molecules to glycophorin A (GPA on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.

  7. Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, Jason S.; Correia, Bruno E.; Chen, Man; Yang, Yongping; Graham, Barney S.; Schief, William R.; Kwong, Peter D. (UWASH); (NIH)

    2012-06-28

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.

  8. Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification.

    Science.gov (United States)

    Kohli, Rahul M; Maul, Robert W; Guminski, Amy F; McClure, Rhonda L; Gajula, Kiran S; Saribasak, Huseyin; McMahon, Moira A; Siliciano, Robert F; Gearhart, Patricia J; Stivers, James T

    2010-12-24

    Nucleic acid cytidine deaminases of the activation-induced deaminase (AID)/APOBEC family are critical players in active and innate immune responses, playing roles as target-directed, purposeful mutators. AID specifically deaminates the host immunoglobulin (Ig) locus to evolve antibody specificity, whereas its close relative, APOBEC3G (A3G), lethally mutates the genomes of retroviral pathogens such as HIV. Understanding the basis for the target-specific action of these enzymes is essential, as mistargeting poses significant risks, potentially promoting oncogenesis (AID) or fostering drug resistance (A3G). AID prefers to deaminate cytosine in WRC (W = A/T, R = A/G) motifs, whereas A3G favors deamination of CCC motifs. This specificity is largely dictated by a single, divergent protein loop in the enzyme family that recognizes the DNA sequence. Through grafting of this substrate-recognition loop, we have created enzyme variants of A3G and AID with altered local targeting to directly evaluate the role of sequence specificity on immune function. We find that grafted loops placed in the A3G scaffold all produced efficient restriction of HIV but that foreign loops in the AID scaffold compromised hypermutation and class switch recombination. Local targeting, therefore, appears alterable for innate defense against retroviruses by A3G but important for adaptive antibody maturation catalyzed by AID. Notably, AID targeting within the Ig locus is proportionally correlated to its in vitro ability to target WRC sequences rather than non-WRC sequences. Although other mechanisms may also contribute, our results suggest that local sequence targeting by AID/APOBEC3 enzymes represents an elegant example of co-evolution of enzyme specificity with its target DNA sequence.

  9. Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins.

    Directory of Open Access Journals (Sweden)

    Ekaterina Dadachova

    2006-11-01

    Full Text Available BACKGROUND: The HIV epidemic is a major threat to health in the developing and western worlds. A modality that targets and kills HIV-1-infected cells could have a major impact on the treatment of acute exposure and the elimination of persistent reservoirs of infected cells. The aim of this proof-of-principle study was to demonstrate the efficacy of a therapeutic strategy of targeting and eliminating HIV-1-infected cells with radiolabeled antibodies specific to viral proteins in vitro and in vivo. METHODS AND FINDINGS: Antibodies to HIV-1 envelope glycoproteins gp120 and gp41 labeled with radioisotopes bismuth 213 ((213Bi and rhenium 188 ((188Re selectively killed chronically HIV-1-infected human T cells and acutely HIV-1-infected human peripheral blood mononuclear cells (hPBMCs in vitro. Treatment of severe combined immunodeficiency (SCID mice harboring HIV-1-infected hPBMCs in their spleens with a (213Bi- or (188Re-labeled monoclonal antibody (mAb to gp41 resulted in a 57% injected dose per gram uptake of radiolabeled mAb in the infected spleens and in a greater than 99% elimination of HIV-1-infected cells in a dose-dependent manner. The number of HIV-1-infected thymocytes decreased 2.5-fold in the human thymic implant grafts of SCID mice treated with the (188Re-labeled antibody to gp41 compared with those treated with the (188Re-control mAb. The treatment did not cause acute hematologic toxicity in the treated mice. CONCLUSIONS: The current study demonstrates the effectiveness of HIV-targeted radioimmunotherapy and may provide a novel treatment option in combination with highly active antiretroviral therapy for the eradication of HIV.

  10. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery

    Science.gov (United States)

    Mulvey, J. Justin; Villa, Carlos H.; McDevitt, Michael R.; Escorcia, Freddy E.; Casey, Emily; Scheinberg, David A.

    2013-10-01

    Single-walled carbon nanotubes (SWNTs) can deliver imaging agents or drugs to tumours and offer significant advantages over approaches based on antibodies or other nanomaterials. In particular, the nanotubes can carry a substantial amount of cargo (100 times more than a monoclonal antibody), but can still be rapidly eliminated from the circulation by renal filtration, like a small molecule, due to their high aspect ratio. Here we show that SWNTs can target tumours in a two-step approach in which nanotubes modified with morpholino oligonucleotide sequences bind to cancer cells that have been pretargeted with antibodies modified with oligonucleotide strands complementary to those on the nanotubes. The nanotubes can carry fluorophores or radioisotopes, and are shown to selectively bind to cancer cells in vitro and in tumour-bearing xenografted mice. The binding process is also found to lead to antigen capping and internalization of the antibody-nanotube complexes. The nanotube conjugates were labelled with both alpha-particle and gamma-ray emitting isotopes, at high specific activities. Conjugates labelled with alpha-particle-generating 225Ac were found to clear rapidly, thus mitigating radioisotope toxicity, and were shown to be therapeutically effective in vivo.

  11. Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface

    Science.gov (United States)

    Rujas, Edurne; Caaveiro, Jose M. M.; Partida-Hanon, Angélica; Gulzar, Naveed; Morante, Koldo; Apellániz, Beatriz; García-Porras, Miguel; Bruix, Marta; Tsumoto, Kouhei; Scott, Jamie K.; Jiménez, M. Ángeles; Nieva, José L.

    2016-01-01

    The mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671–687). The MPER-N-TMD helix projects beyond the tip of the heavy-chain complementarity determining region 3 loop, indicating that the antibody sits parallel to the plane of the membrane in binding the native epitope. Biophysical, biochemical and mutational analyses demonstrated that strengthening the affinity of 10E8 for the TMD helix in a membrane environment, correlated with its neutralizing potency. Our research clarifies the molecular mechanisms underlying broad neutralization of HIV-1 by 10E8, and the structure of its natural epitope. The conclusions of our research will guide future vaccine-design strategies targeting MPER. PMID:27905530

  12. Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Robbins, Justin B.; Stanfield, Robyn L.; Burton, Dennis R.; Wilson, Ian A.; Law, Mansun (Scripps)

    2012-10-29

    Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-{angstrom} resolution reveal that the epitope is a {beta}-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu{sup 413} and Trp{sup 420} on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn{sup 415} on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.

  13. Antibody reactivity to conserved linear epitopes of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)

    DEFF Research Database (Denmark)

    Staalsø, T; Khalil, E A; Elhassan, I M;

    1998-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of protein antigens are involved in adhesion of P. falciparum infected erythrocytes to the capillary endothelium of the host. Antibodies to variable regions of these proteins, measured by agglutination, correlates with clini......The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of protein antigens are involved in adhesion of P. falciparum infected erythrocytes to the capillary endothelium of the host. Antibodies to variable regions of these proteins, measured by agglutination, correlates...

  14. Novel antigen design for the generation of antibodies to G-protein-coupled receptors.

    Science.gov (United States)

    Larsson, K; Hofström, C; Lindskog, C; Hansson, M; Angelidou, P; Hökfelt, T; Uhlén, M; Wernérus, H; Gräslund, T; Hober, S

    2011-07-29

    Antibodies are important tools for the study of G-protein-coupled receptors, key proteins in cellular signaling. Due to their large hydrophobic membrane spanning regions and often very short loops exposed on the surface of the cells, generation of antibodies able to recognize the receptors in the endogenous environment has been difficult. Here, we describe an antigen-design method where the extracellular loops and N-terminus are combined to a single antigen for generation of antibodies specific to three selected GPCRs: NPY5R, B2ARN and GLP1R. The design strategy enabled straightforward antigen production and antibody generation. Binding of the antibodies to intact receptors was analyzed using flow cytometry and immunofluorescence based confocal microscopy on A-431 cells overexpressing the respective GPCR. The antibody-antigen interactions were characterized using epitope mapping, and the antibodies were applied in immunohistochemical staining of human tissues. Most of the antibodies showed specific binding to their respective overexpressing cell line but not to the non-transfected cells, thus indicating binding to their respective target receptor. The epitope mapping showed that sub-populations within the purified antibody pool recognized different regions of the antigen. Hence, the genetic combination of several different epitopes enables efficient generation of specific antibodies with potential use in several applications for the study of endogenous receptors.

  15. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    Science.gov (United States)

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  16. Structural basis of potent Zika-dengue virus antibody cross-neutralization.

    Science.gov (United States)

    Barba-Spaeth, Giovanna; Dejnirattisai, Wanwisa; Rouvinski, Alexander; Vaney, Marie-Christine; Medits, Iris; Sharma, Arvind; Simon-Lorière, Etienne; Sakuntabhai, Anavaj; Cao-Lormeau, Van-Mai; Haouz, Ahmed; England, Patrick; Stiasny, Karin; Mongkolsapaya, Juthathip; Heinz, Franz X; Screaton, Gavin R; Rey, Félix A

    2016-08-01

    Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.

  17. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137

    Directory of Open Access Journals (Sweden)

    Li SY

    2013-09-01

    Full Text Available Shi-Yan Li, Yizhen Liu Cancer Research Institute, Scott and White Healthcare, Temple, TX, USA Abstract: Knowledge of how the immune system recognizes and attempts to control cancer growth and development has improved dramatically. The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. Until recently, metastatic melanoma was a disease with limited treatment options and a poor prognosis. CD137 (also known as 4-1BB a member of the tumor necrosis factor (TNF receptor superfamily, is an activation-induced T cell costimulator molecule. Growing evidence indicates that anti-CD137 monoclonal antibodies possess strong antitumor properties, the result of their powerful capability to activate CD8+ T cells, to produce interferon (IFN-γ, and to induce cytolytic markers. Combination therapy of anti-CD137 with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Of importance, targeting CD137 eliminates established tumors, and the fact that anti-CD137 therapy acts in concert with other anticancer agents and/or radiation therapy to eradicate nonimmunogenic and weakly immunogenic tumors is an additional benefit. Currently, BMS-663513, a humanized anti-CD137 antibody, is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, ovarian cancer, and B-cell malignancies. In this review, we discuss the basis of the therapeutic potential of targeting CD137 in cancer treatment, focusing in particular, on BMS-663513 as an immune costimulatory monoclonal antibody for melanoma immunotherapy. Keywords: anti-CD137 monoclonal antibodies, immune costimulator molecule, BMS-663513

  18. Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, J.; Hand, P.H.; Greiner, J.W.; Colcher, D.; Shrivastav, S.; Carrasquillo, J.A.; Reynolds, J.C.; Larson, S.M.; Raubitschek, A. (National Cancer Institute, NIH, Bethesda, MD (USA))

    1990-02-01

    Tumor targeting by monoclonal antibodies (MAbs) can be enhanced by (a) increasing the percentage of injected dose taken up by the tumor and/or (b) increasing the tumor:nontumor ratios. Several groups have demonstrated that one can increase tumor to nontumor ratios by the use of antibody fragments or the administration of second antibodies. Several other modalities are also possible: (a) the use of recombinant interferons to up-regulate the expression of specific tumor associated antigens such as carcinoembryonic antigen or TAG-72 on the surface of carcinoma cells and thus increase MAb tumor binding has proved successful in both in vitro and in vivo studies; (b) the intracavitary administration of MAbs. Recent studies have demonstrated that when radiolabeled B72.3 is administered i.p. to patients with carcinoma of the peritoneal cavity, it localizes tumor masses with greater efficiency than does concurrent i.v. administered antibody. Studies involving the comparative pharmacology of intracavitary administration of radiolabeled MAb in patients and several animal models will be discussed; (c) it has been reported that prior exposure of hepatoma to external beam radiation will increase radiolabeled MAb tumor targeting. We and others have not been able to duplicate this phenomenon with a human colon cancer xenograft model and radiolabeled MAbs to two different colon carcinoma associated antigens. The possible reasons for these differences will be discussed; (d) the cloning and expression of recombinant MAbs with human constant regions and subsequent size modification constructs will also undoubtedly alter the pharmacology of MAb tumor binding in both diagnostic and therapeutic applications. 66 references.

  19. Characterization and specificity of the linear epitope of the enterovirus 71 VP2 protein

    Directory of Open Access Journals (Sweden)

    Kiener Tanja K

    2012-02-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 has emerged as a major causative agent of hand, foot and mouth disease in the Asia-Pacific region over the last decade. Hand, foot and mouth disease can be caused by different etiological agents from the enterovirus family, mainly EV71 and coxsackieviruses, which are genetically closely related. Nevertheless, infection with EV71 may occasionally lead to high fever, neurologic complications and the emergence of a rapidly fatal syndrome of pulmonary edema associated with brainstem encephalitis. The rapid progression and high mortality of severe EV71 infection has highlighted the need for EV71-specific diagnostic and therapeutic tools. Monoclonal antibodies are urgently needed to specifically detect EV71 antigens from patient specimens early in the infection process. Furthermore, the elucidation of viral epitopes will contribute to the development of targeted therapeutics and vaccines. Results We have identified the monoclonal antibody 7C7 from a screen of hybridoma cells derived from mice immunized with the EV71-B5 strain. The linear epitope of 7C7 was mapped to amino acids 142-146 (EDSHP of the VP2 capsid protein and was characterized in detail. Mutational analysis of the epitope showed that the aspartic acid to asparagine mutation of the EV71 subgenogroup A (BrCr strain did not interfere with antibody recognition. In contrast, the serine to threonine mutation at position 144 of VP2, present in recently emerged EV71-C4 China strains, abolished antigenicity. Mice injected with this virus strain did not produce any antibodies against the VP2 protein. Immunofluorescence and Western blotting confirmed that 7C7 specifically recognized EV71 subgenogroups and did not cross-react to Coxsackieviruses 4, 6, 10, and 16. 7C7 was successfully used as a detection antibody in an antigen-capture ELISA assay. Conclusions Detailed mapping showed that the VP2 protein of Enterovirus 71 contains a single, linear, non

  20. Growth impairment of small-cell cancer by targeting provasopressin with MAG-1 antibody

    Directory of Open Access Journals (Sweden)

    William George North

    2014-02-01

    Full Text Available AbstractPreviously we demonstrated that human small-cell lung cancer (SCLC seems to universally express the vasopressin gene, and this leads to the presence of a cell-surface marker representing the entire prohormone precursor. In this study we show this marker can be targeted with MAG-1, a mouse monoclonal antibody against a C-terminal moiety on provasopressin. In vitro targeting of cell lines derived from primary and recurrent disease demonstrates attachment of antibody to the cell surface followed by internalization. In vivo targeting with 99Tc-labeled Fab fragments of MAG-1 shows selective attachment to xenografts. In vivo treatment of tumors from classical cell line, NCI H345, with either ~1.65 µCi (~1.65 mg/kg bw of 90 Yttrium-labeled MAG-1, or ~1.65 mg/kg bw native MAG-1, delivered every second day for 6 days produced similar reductions in the growth rate to ~50% (p

  1. Intracellular uptake and catabolism of anti-IgM antibodies and bi-specific antibody-targeted hapten by B-lymphoma cells.

    Science.gov (United States)

    Manetti, C; Le Doussal, J M; Rouvier, E; Gruaz-Guyon, A; Barbet, J

    1995-10-09

    The efficiency of radioimmunotherapy with iodine-labelled antibodies is often limited by intracellular internalisation and catabolism after initial binding to the cellular targets. We have developed a technique called affinity enhancement system (AES) which uses bi-specific antibodies to target radiolabelled bivalent haptens to cells. This targeting method has been applied successfully to tumour imaging in colorectal cancer patients and is now considered for therapy. We have investigated the potential of this technique to target iodine radioisotopes by comparing it to targeting with covalently iodine-labelled antibodies in a rapidly internalising antigenic system, the surface IgM of a B-lymphoma cell line. A 5-fold increase in the intracellular retention time of activity as compared to 125I-labelled F(ab')2 or IgG was observed. The radiolabelled hapten did not undergo any catabolism after internalisation. Resistance to cellular proteases and failure of recognition of the hapten by amino acid transporter systems may be potential explanations for these observations. This should make non-covalent targeting, particularly the AES, a method of choice to target modulating antigens for the therapy of malignant hemopathies.

  2. Targeting apoptosis: preclinical and early clinical experience with mapatumumab, an agonist monoclonal antibody targeting TRAIL-R1.

    Science.gov (United States)

    Moretto, Patricia; Hotte, Sébastien J

    2009-03-01

    In spite of the advances in survival with chemotherapy and radiotherapy, many cancer patients continue to experience failure with treatments. Advances in molecular oncology and the development of numerous targeted therapies, used by themselves or in combination with at present available treatments such as chemotherapy and radiation, will hopefully improve the fate of these patients. It has been well understood for many years now that deregulation of apoptosis is a major hallmark of cancer cells. Mapatumumab, a fully human agonistic monoclonal antibody to TNF-related apoptosis-inducing ligand receptor 1, has been developed to induce apoptosis in cancer cells although having minimal effects on normal cells. This paper reviews the preclinical and early clinical data of this exciting new agent and discusses options for future development of mapatumumab, mostly in combinations with other therapies.

  3. Diagnosis of Herpes Simplex Encephalitis by ELISA Using Antipeptide Antibodies Against Type-Common Epitopes of Glycoprotein B of Herpes Simplex Viruses.

    Science.gov (United States)

    Bhullar, Shradha S; Chandak, Nitin H; Baheti, Neeraj N; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S