WorldWideScience

Sample records for antibiotics antifungal

  1. Chemical modification of antifungal polyene macrolide antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Solovieva, S E; Olsufyeva, E N; Preobrazhenskaya, M N [G.F.Gause Institute of New Antibiotics, Russian Academy of Medical Sciences (Russian Federation)

    2011-02-28

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  2. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  3. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity.

  4. Fusarielin E, a new antifungal antibiotic from Fusarium sp.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new antifungal antibiotic, fusarielin E, was isolated from the marine-derived fungus Fusarium sp. Its structure was established on the basis of various NMR spectroscopic analyses and HR-FAB-MS. Fusarielin E displayed significant biological activity against Pyricularia oryzae.

  5. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23

    Indian Academy of Sciences (India)

    S K Augustine; S P Bhavsar; B P Kapadnis

    2005-03-01

    In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic.

  6. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  7. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer.

    Science.gov (United States)

    Grudzinski, Wojciech; Sagan, Joanna; Welc, Renata; Luchowski, Rafal; Gruszecki, Wieslaw I

    2016-01-01

    Amphotericin B is a popular antifungal antibiotic, a gold standard in treatment of systemic mycotic infections, due to its high effectiveness. On the other hand, applicability of the drug is limited by its considerable toxicity to patients. Biomembranes are a primary target of physiological activity of amphotericin B and both the pharmacologically desired and toxic side effects of the drug relay on its molecular organization in the lipid phase. In the present work, molecular organization, localization and orientation of amphotericin B, in a single lipid bilayer system, was analysed simultaneously, thanks to application of a confocal fluorescence lifetime imaging microscopy of giant unilamellar vesicles. The results show that the presence of sterols, in the lipid phase, promotes formation of supramolecular structures of amphotericin B and their penetration into the membrane hydrophobic core. The fact that such an effect is substantially less pronounced in the case of cholesterol than ergosterol, the sterol of fungal membranes, provides molecular insight into the selectivity of the drug. PMID:27620838

  8. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer

    Science.gov (United States)

    Grudzinski, Wojciech; Sagan, Joanna; Welc, Renata; Luchowski, Rafal; Gruszecki, Wieslaw I.

    2016-01-01

    Amphotericin B is a popular antifungal antibiotic, a gold standard in treatment of systemic mycotic infections, due to its high effectiveness. On the other hand, applicability of the drug is limited by its considerable toxicity to patients. Biomembranes are a primary target of physiological activity of amphotericin B and both the pharmacologically desired and toxic side effects of the drug relay on its molecular organization in the lipid phase. In the present work, molecular organization, localization and orientation of amphotericin B, in a single lipid bilayer system, was analysed simultaneously, thanks to application of a confocal fluorescence lifetime imaging microscopy of giant unilamellar vesicles. The results show that the presence of sterols, in the lipid phase, promotes formation of supramolecular structures of amphotericin B and their penetration into the membrane hydrophobic core. The fact that such an effect is substantially less pronounced in the case of cholesterol than ergosterol, the sterol of fungal membranes, provides molecular insight into the selectivity of the drug. PMID:27620838

  9. The antifungal activity of Natamycin : a novel mode of action of the polyene antibiotics

    NARCIS (Netherlands)

    te Welscher, Y.M.

    2010-01-01

    Fungal infections have recently become a growing threat to human health, especially in persons whose immune systems are compromised (for example transplant recipients or patients with HIV or cancer). Only a few effective antifungal agents are currently in use and a major problem is the increase of d

  10. Reversal by Calcium Ions of the Growth Inhibition of Debaryomyces nicotianae Caused by Antifungal Polyene Antibiotics1

    Science.gov (United States)

    Berdicevsky, Israela; Grossowicz, Nathan

    1972-01-01

    Only Debaryomyces nicotianae strain 77, of seven different yeast strains tested, was found to be resistant to heptamycin and other antifungal heptaenes when grown in a rich medium. This strain, however, like the other six, was completely susceptible to these antibiotics in a minimal medium. Addition of yeast extract to the minimal medium abolished the heptamycin effect; calcium ions fully duplicated the effect of yeast extract; Mg2+ and Mn2+ were also effective but less so than Ca2+. Ca2+ also counteracted the activity of the heptaenes ascosin and trichomycin. Complete reversal of the polyene inhibition by Ca2+ was obtained if the cation was added simultaneously with the antibiotic; addition of Ca2+ 2 hr after the polyene was without effect. Addition of Ca2+ in the absence of the polyene caused a slight, if any, growth stimulation of D. nicotianae 77. Cholesterol also counteracted polyene activity; this was due to the formation of a complex with the antibiotic which prevented the polyene from reaching the site of action—the cytoplasmic membrane. No evidence for complex formation between heptamycin and calcium was found. The importance of Ca2+ in membrane structure, as evidenced from heptaene studies, is discussed. PMID:4598328

  11. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  12. Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy

    OpenAIRE

    Gruszecki, Wieslaw I.; Luchowski, Rafał; Gagoś, Mariusz; Arczewska, Marta; Sarkar, Pabak; Hereć, Monika; Myśliwa-Kurdziel, Beata; Strzałka, Kazimierz; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-01-01

    Abstract Amphotericin B (AmB) is a life-saving polyene antibiotic used to treat deep-seated mycotic infections. Both the mode of therapeutic action as well as toxic side effects are directly dependent on molecular organization of the drug. Binding of AmB to lipid monolayers formed with dipalmitoylphosphatidylcholine, pure and containing 40 mol% cholesterol or ergosterol, the sterols of human and fungi respectively, has been examined by means of Fluorescence Lifetime Imaging Microsc...

  13. EVALUATION OF STRUCTURAL AND BIOCHEMICAL ALTERATIONS IN ASPERGILLUS TERREUS BY THE ACTION OF ANTIFUNGAL ANTIBIOTIC COMPOUND FROM STREPTOMYCES SP. JF714876

    Directory of Open Access Journals (Sweden)

    Babanagare Shankaravva S.

    2011-11-01

    Full Text Available Antifungal compound obtained by Streptomyces sp. JF714876 was examined for its effect on morphological and biochemical alteration in Aspergillus terreus. Microscopic observation revealed swelling of hyphae with deformation and distortion in mycelial structure in presence of moderate concentration of antifungal compound. At high concentration, the compound exhibited fungicidal action. Antifungal treated Aspergillus terreus showed changes in its biochemical content such as, protein, carbohydrates, peroxidase, catalase and amylase as compared to untreated.

  14. [Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal (corrected) activity in rhizospheric bacterium Pseudomonas chlororaphis 449].

    Science.gov (United States)

    Veselova, M a; Klein, Sh; Bass, I A; Lipasova, V A; Metlitskaia, A Z; Ovadis, M I; Chernin, L S; Khmel', I A

    2008-12-01

    Strain Pseudomonas chlororaphis 449, an antagonist of a broad spectrum of phytopathogenic microorganisms isolated from the maize rhizosphere, was shown to produce three phenazine antibiotics: phenazine-1-carboxylic acid (PCA), 2-hydroxylphenazine-1-carboxylic acid (2-OH-PCA), and 2-hydroxylphenazine (2-OH-PHZ). Two Quorum Sensing (QS) systems of regulation were identified: PhzIR and CsaI/R. Genes phzI and csaI were cloned and sequenced. Cells of strain 449 synthesize at least three types of AHL: N-butanoyl-L-homoserine lactone (C4-AHL), N-hexanoyl-L-homoserine lactone (C6-AHL), and N-(3-oxo-hexanoyl)-L-homoserine lactone (30C6-AHL). Transposon mutagenesis was used to generate mutants of strain 449 deficient in synthesis of phenazines, which carried inactivated phzA and phzB genes of the phenazine operon and gene phzO. Mutations phzA- and phzB-caused a drastic reduction in the antagonistic activity of bacteria toward phytopathogenic fungi. Both mutants lost the ability to protect cucumber and leguminous plants against phytopathogenic fungi Rhizoctonia solani and Sclerotinia sclerotiorum. These results suggest a significant role of phenazines in the antagonistic activity of P. chlororaphis 449. PMID:19178080

  15. Breeding high yield mutant strains producing antifungal antibiotic CA-SD07%新型抗真菌抗生素CA-SD07高产菌株的诱变育种初探

    Institute of Scientific and Technical Information of China (English)

    金建玲; 郝召; 王伟; 韩文志; 游哲荣; 李成志; 徐佩文

    2011-01-01

    Objective To screen high yield broad-spectrum antifungal antibiotic breeding CA-SD07 producing strain. Methods Two kinds of breeding methods ultraviolet radiation (UV) and high concentration of phosphate screening after ultraviolet radiation (UV+Pi) were conducted. Inhibition zone method, fermentation with flash shaking and with small fermentor were applied in screening high yield strains. Results 25 strains were isolated from UV group, 12 strains were isolated from UV+Pi group, during the first round flash shaking screening. The relative yield of antibiotic CA-SD07 of all these 37 strains increased by 50% or more than that of the original strain SD-07. 6 strains were screened during the second round flash shaking screening from the above 37 strains, their relative yield of antibiotic CA-SD07 increased by 100% or more than that of the original strain SD-07. Finally, 1 mutant strain was isolated by the fermentation characteristics: Its relative yield of antibiotic CA-SD07 stably increased by 100% or more than that of the original strain SD-07, and its fermentation period reduced more than 24 hours. Conclusion UV and UV+Pi got similar breeding results, high concentration phosphate screening did not significantly improve the antibiotic production of the isolated strains, but could improve the ratio of high antibiotic yield isolates to the whole ones. This suggested: In order to improve production of antibiotics, it needed improve the existing methods for high concentration phosphate screening.%目的 拟通过紫外线诱变结合耐高浓度磷酸盐筛选广谱抗真菌抗生素CA-SD07的高产菌株.方法 采用两种育种方式:紫外线诱变(UV),紫外线诱变后进行高浓度磷酸盐抗性筛选(UV+Pi).筛选方法采用抑菌圈法、摇瓶发酵和小型发酵罐发酵.结果 经过摇瓶初筛和复筛,从UV组和UV+Pi组共筛选到6株抗生素相对产量比原始菌株提高100%以上的高产菌.通过发酵罐发酵试验,选出1株抗

  16. Synthesis and Antifungal Activity of Musa Phytoalexins and Structural Analogs

    OpenAIRE

    Adriana Gallego; Gloria Cardona; Victor Arango; Yoni Rosero; Fernando Torres; Fernando Echeverri; Gustavo Escobar; Winston Quiñones

    2000-01-01

    Several perinaphthenone/phenylphenalenone compounds were synthesized to establish a relationship between structure and antifungal activity against Mycosphaerella fijiensis. Substitutions on the unsaturated carbonyl system or addition of a phenyl group reduced antibiotic activity.

  17. Synthesis and Antifungal Activity of Musa Phytoalexins and Structural Analogs

    Directory of Open Access Journals (Sweden)

    Adriana Gallego

    2000-07-01

    Full Text Available Several perinaphthenone/phenylphenalenone compounds were synthesized to establish a relationship between structure and antifungal activity against Mycosphaerella fijiensis. Substitutions on the unsaturated carbonyl system or addition of a phenyl group reduced antibiotic activity.

  18. 一种抗真菌抗生素的分离纯化及初步鉴定%Isolation, Purification and Preliminary Identification of A Kind of Antibiotic with High Antifungal Activity

    Institute of Scientific and Technical Information of China (English)

    万中义; 张亚妮; 李万德; 张志刚; 朱睍; 王开梅; 杨自文

    2011-01-01

    One actinomyces strain WS-23883 was isolated from soil sample collected in Wuzhishan Mountain area, Hainan province. The extraction of the fermentation broth was bioassayed with some plant disease pathogens; and it exhibited high antifungal activity. The compound with purity above 90% was obtained through macroporus resin column absorbtion method and preparative HPLC. The bioassay showed that the inhitition ratio was 100% at the concentrition of 20 μg/Ml. The UV absorption spectrum and mass spectrum showed that the compound was a tetraene macrolide antibiotic.%从海南五指山采集的土样中分离到一株放线菌,编号为WS-23883,其发酵提取物对多种植物病原真菌具有很强的抑制活性.对其产物进行提取精制及制备液相纯化,获得了纯度达90%以上的化合物.生测表明,在20 μg/mL浓度下该抗生素对多种植物病原真菌的抑制率达100%.根据活性产物紫外吸收光谱,可判断其为一多烯大环内酯类抗生素.质谱分析表明,活性化合物分子质量约667u,据此判断其为一四烯大环内酯类抗生素.

  19. Antifungal activity of multifunctional Fe3O4-Ag nanocolloids

    International Nuclear Information System (INIS)

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe3O4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe3O4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: →Synthesis of Fe3O4-Ag core-shell nanocolloids. →Antifungal activity of Fe3O4-Ag nanocolloids against Aspergillus glaucus isolates. →The MIC value for A. glaucus is 2000 μg/mL. →Antifungal activity is better or comparable with most prominent antibiotics.

  20. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  1. Antifungal antibiotic CA1189 produced by a Mangrove endophyte Streptomyces sp.A1626%红树林内生链霉菌A1626产生的抗真菌抗生素CA1189

    Institute of Scientific and Technical Information of China (English)

    褚以文; 李进军; 王辂; 余蓉

    2011-01-01

    Objective To purify and to identify an antifungal compound of an endophytic isolate Streptomyces sp. A1626, which was isolated from stems of Kandelia candel(Linn.) Druce, and to determine its antifungal activity. Methods Compound CA 1189 was separated and purified by solvent extraction, silica gel, RP-18 column chromatography. Its structure was elucidated on the basis of extensive spectroscopic analysis including UV, IR, MS,1D and 2D NMR experiments. Its in vitro antifungal activity was determined with micro-broth dilution assay. Results and Conclusion The potent antifungal compound CA 1189 is identical with benzoxazole derivative AJI9561.%目的 研究秋茄内生链霉菌菌株A1626产生的活性代谢产物.方法 发酵液经有机溶剂萃取、正相硅胶柱层析、C18柱制备色谱分离获得单体,通过紫外光谱、红外光谱、质谱、一维和二维核磁共振谱的测定解析,确证单体化合物的结构,采用微量液体稀释法对单体化合物的抗真菌活性进行测定.结果 与结论活性化合物CA1189属于苯并噁唑类,与文献报道的AYI9561结构一致,其抗真菌活性为首次报道.

  2. Antibiotics Quiz

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  3. Antifungal compounds from cyanobacteria.

    Science.gov (United States)

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-01

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  4. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  5. Antifungal activity of diethyldithiocarbamate.

    Science.gov (United States)

    Allerberger, F; Reisinger, E C; Söldner, B; Dierich, M P

    1989-10-01

    Sodium diethyldithiocarbamate (DTC) was evaluated for its ability to combat four different species of fungi in vitro. Using a microtiter-broth-dilution method we were able to demonstrate an antifungal activity against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus and Mucor mucedo in doses achievable by intravenous administration in man.

  6. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei T Chang; Meissner, Nicole; Oblad, John; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20′s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were de...

  7. Standardization of Antifungal Susceptibility Variables for a Semiautomated Methodology

    OpenAIRE

    Rodríguez-Tudela, Juan L.; Cuenca-Estrella, Manuel; Díaz-Guerra, Teresa M.; Mellado, Emilia

    2001-01-01

    Recently, the methodology that will serve as a basis of the standard for antifungal susceptibility testing of fermentative yeasts of the European Committee on Antibiotic Susceptibility Testing has been described. This procedure employs a spectrophotometric method for both inoculum adjustment and endpoint determination. However, the utilization of a spectrophotometer requires studies for standardization. The present work analyzes the following parameters: (i) accuracy of inoculum preparation, ...

  8. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei Tom Chang; Nicole eMeissner; John eOblad; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were d...

  9. Interaction of Common Azole Antifungals with P Glycoprotein

    OpenAIRE

    Wang, Er-jia; Lew, Karen; Casciano, Christopher N.; Clement, Robert P.; Johnson, William W.

    2002-01-01

    Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an interaction could both affect the disposition and ex...

  10. Peptide-based Antifungal Therapies against Emerging Infections

    OpenAIRE

    Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T; Mixson, A. J.

    2010-01-01

    Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Cur...

  11. Interaction of Common Azole Antifungals with P Glycoprotein

    Science.gov (United States)

    Wang, Er-jia; Lew, Karen; Casciano, Christopher N.; Clement, Robert P.; Johnson, William W.

    2002-01-01

    Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an interaction could both affect the disposition and exposure to azole antifungal therapeutics and partially explain the clinical drug interactions observed with some antifungals. Using a whole-cell assay in which the retention of a marker substrate is evaluated and quantified, we studied the abilities of the most widely prescribed orally administered azole antifungals to inhibit the function of this transporter. In a cell line presenting an overexpressed amount of the human P-gp transporter, itraconazole and ketoconazole inhibited P-gp function with 50% inhibitory concentrations (IC50s) of ∼2 and ∼6 μM, respectively. Cyclosporin A was inhibitory with an IC50 of 1.4 μM in this system. Uniquely, fluconazole had no effect in this assay, a result consistent with known clinical interactions. The effects of these azole antifungals on ATP consumption by P-gp (representing transport activity) were also assessed, and the Km values were congruent with the IC50s. Therefore, exposure of tissue to the azole antifungals may be modulated by human P-gp, and the clinical interactions of azole antifungals with other drugs may be due, in part, to inhibition of P-gp transport. PMID:11751127

  12. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  13. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A;

    2012-01-01

    In view of the alarming spread of antimicrobial resistance in the absence of new antibiotics, this study aimed at assessing the availability of potentially useful older antibiotics. A survey was performed in 38 countries among experts including hospital pharmacists, microbiologists, and infectious...... disease specialists in Europe, the United States, Canada, and Australia. An international expert panel selected systemic antibacterial drugs for their potential to treat infections caused by resistant bacteria or their unique value for specific criteria. Twenty-two of the 33 selected antibiotics were...... available in fewer than 20 of 38 countries. Economic motives were the major cause for discontinuation of marketing of these antibiotics. Fourteen of 33 antibiotics are potentially active against either resistant Gram-positive or Gram-negative bacteria. Urgent measures are then needed to ensure better...

  14. Antifungal therapy in European hospitals

    DEFF Research Database (Denmark)

    Zarb, P; Amadeo, B; Muller, A;

    2012-01-01

    The study aimed to identify targets for quality improvement in antifungal use in European hospitals and determine the variability of such prescribing. Hospitals that participated in the European Surveillance of Antimicrobial Consumption Point Prevalence Surveys (ESAC-PPS) were included. The WHO...... 40,878 (3.7%) antimicrobials. Antifungals were mainly (54.2%) administered orally. Hospital-acquired infections represented 44.5% of indications for antifungals followed by medical prophylaxis at 31.2%. The site of infection was not defined in 36.0% of cases but the most commonly targeted sites were...... respiratory (19.2%) and gastrointestinal (18.8%). The most used antifungal was fluconazole (60.5%) followed by caspofungin (10.5%). Antifungal-antibacterial combinations were frequently used (77.5%). The predominance of fluconazole use in participating hospitals could result in an increase in prevalence of...

  15. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2015-01-01

    Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

  16. Do antibiotics decrease effectiveness of oral contraceptives?

    Science.gov (United States)

    Cottet, C

    1996-09-01

    The number of accidental pregnancies occurring in oral contraceptive (OC) users who are concurrently taking certain antibiotics and antifungal agents exceeds the 1% failure rate associated with OCs, suggesting some form of drug interaction. Two mechanisms of action have been proposed to explain this phenomenon. First, drugs such as rifampin and griseofulvin induce liver enzymes that break down the estrogen and progestin contained in OCs, reducing plasma hormone levels. Second, changes in the intestinal bacterial flora induced by penicillin and tetracycline may reduce the gut's absorption of hormones, also compromising efficacy. Since rifampin and griseofulvin are the medications most frequently implicated in accidental pregnancies in OC users, the induction of liver enzymes is the more probable, potent cause of failure. Although the risk of pregnancy due to OC-antibiotic interactions is extremely small, OC users prescribed antibiotics should be warned to use condoms or spermicides until the antibiotics are discontinued. PMID:9006212

  17. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    OpenAIRE

    Deepa Gupta; Jain, D. K.

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antif...

  18. Topical antifungals for seborrhoeic dermatitis

    OpenAIRE

    Okokon, Enembe O; Verbeek, Jos H.; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

    2015-01-01

    Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in t...

  19. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  20. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  1. Polyene antibiotic that inhibits membrane transport proteins.

    Science.gov (United States)

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains. PMID:22733749

  2. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli.

    Science.gov (United States)

    Chung, Eu Jin; Lim, He Kyoung; Kim, Jin-Cheol; Choi, Gyung Ja; Park, Eun Jin; Lee, Myung Hwan; Chung, Young Ryun; Lee, Seon-Woo

    2008-02-01

    Using two forest soils, we previously constructed two fosmid libraries containing 113,700 members in total. The libraries were screened to select active antifungal clones using Saccharomyces cerevisiae as a target fungus. One clone from the Yuseong pine tree rhizosphere soil library, pEAF66, showed S. cerevisiae growth inhibition. Despite an intensive effort, active chemicals were not isolated. DNA sequence analysis and transposon mutagenesis of pEAF66 revealed 39 open reading frames (ORFs) and indicated that eight ORFs, probably in one transcriptional unit, might be directly involved in the expression of antifungal activity in Escherichia coli. The deduced amino acid sequences of eight ORFs were similar to those of the core genes encoding type II family polyketide synthases, such as the acyl carrier protein (ACP), ACP synthases, aminotransferase, and ACP reductase. The gene cluster involved in antifungal activity was similar in organization to the putative antibiotic production locus of Pseudomonas putida KT2440, although we could not select a similar active clone from the KT2440 genomic DNA library in E. coli. ORFs encoding ATP binding cassette transporters and membrane proteins were located at both ends of the antifungal gene cluster. Upstream ORFs encoding an IclR family response regulator and a LysR family response regulator were involved in the positive regulation of antifungal gene expression. Our results suggested the metagenomic approach as an alternative to search for novel antifungal antibiotics from unculturable soil bacteria. This is the first report of an antifungal gene cluster obtained from a soil metagenome using S. cerevisiae as a target fungus. PMID:18065615

  3. Antifungal therapy with an emphasis on biofilms

    OpenAIRE

    Pierce, Christopher G.; Srinivasan, Anand; Uppuluri, Priya; Anand K. Ramasubramanian; López-Ribot, José Luis

    2013-01-01

    Fungal infections are on the rise as advances in modern medicine prolong the lives of severely ill patients. Fungi are eukaryotic organisms and there are a limited number of targets for antifungal drug development; as a result the antifungal arsenal is exceedingly limited. Azoles, polyenes and echinocandins, constitute the mainstay of antifungal therapy for patients with life-threatening mycoses. One of the main factors complicating antifungal therapy is the formation of fungal biofilms, micr...

  4. Treating chromoblastomycosis with systemic antifungals.

    Science.gov (United States)

    Bonifaz, Alexandro; Paredes-Solís, Vanessa; Saúl, Amado

    2004-02-01

    Chromoblastomycosis is a subcutaneous mycosis for which there is no treatment of choice but rather, several treatment options, with low cure rates and many relapses. The choice of treatment should consider several conditions, such as the causal agent (the most common one being Fonsecaea pedrosoi ), extension of the lesions, clinical topography and health status of the patient. Most oral and systemic antifungals have been used; the best results have been obtained with itraconazole and terbinafine at high doses, for a mean of 6 - 12 months. In extensive and refractory cases, chemotherapy with oral antifungals may be associated with thermotherapy (local heat and/or cryosurgery). Limited or early cases may be managed with surgical methods, always associated with oral antifungal agents. It is important to determine the in vitro sensitivity of the major causal agents to the various drugs, by estimating the minimum inhibitory concentration, as well as drug tolerability and drug interactions.

  5. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.

    Science.gov (United States)

    Vanden Bossche, H; Marichal, P; Gorrens, J; Coene, M C; Willemsens, G; Bellens, D; Roels, I; Moereels, H; Janssen, P A

    1989-01-01

    Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.

  6. Use of antifungal drugs in hematology

    Directory of Open Access Journals (Sweden)

    Marcio Nucci

    2012-01-01

    Full Text Available Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the different antifungal agents. In this paper the principal antifungal agents used in hematologic patients will be discussed as will the clinical scenarios where these agents have been used.

  7. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  8. Antifungal activity of juniper extracts

    Science.gov (United States)

    Sawdust from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane or ethanol and the extracts tested for antifungal activity against four species of wood-rot fungi. These species studied represent the junipers with the greatest potential for co...

  9. Beyond Antibiotics?

    Directory of Open Access Journals (Sweden)

    LE Nicolle

    2006-01-01

    Full Text Available The AMMI Canada meeting in March 2006 hosted a symposium exploring the potential alternatives to antibiotics for the prevention and treatment of infection. Four papers summarizing talks from that session are published in this issue of the Journal (1-4. These reviews address the scientific underpinnings for a number of proposed concepts, and summarize the current status of clinical use. The approaches - probiotics, bacteriophage therapy, and manipulation of innate immunity - are all intriguing but are still removed from immediate practical applications.

  10. Advancements in Topical Antifungal Vehicles.

    Science.gov (United States)

    Kircik, Leon H

    2016-02-01

    The primary treatment for superficial fungal infections is antifungal topical formulations, and allylamines and azoles represent the two major classes of topical formulations that are used to treat these infections. The stratum corneum (SC) is composed of keratinocytes that are surrounded by a matrix of lipids. The efficacy of topically applied formulations depends on their ability to penetrate this lipid matrix, and the vehicle plays an integral role in the penetration of active molecule into skin. There are several challenges to formulating topical drugs, which include the biotransformation of the active molecules as they pass through the SC and the physical changes that occur to the vehicle itself when it is applied to the skin. This article will review current and emerging topical antifungal vehicles. PMID:26885798

  11. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    OpenAIRE

    SAHADEO PATIL; PANKAJ MAKNIKAR; SUSHILKUMAR WANKHADE; CHANDRAKIRAN UKESH; MAHENDRA RA

    2015-01-01

    Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obta...

  12. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  13. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  14. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  15. Evaluation of vaginal antifungal formulations in vivo.

    Science.gov (United States)

    McRipley, R. J.; Erhard, P. J.; Schwind, R. A.; Whitney, R. R.

    1979-01-01

    Relatively simple and rapid procedures have been developed for evaluating the local efficacy of vaginal antifungal agents in vivo in a vaginal candidiasis model in ovariectomized rats. The results of this investigation indicate that the model and methods described are quite suitable for screening potential antifungal substances and for assessing the chemotherapeutic effectiveness of new antifungal agents and formulations before carrying out clinical studies. PMID:392480

  16. Antifungal Activity of C-27 Steroidal Saponins

    OpenAIRE

    Yang, Chong-Ren; Zhang, Ying; Jacob, Melissa R.; Khan, Shabana I.; Zhang, Ying-Jun; Li, Xing-Cong

    2006-01-01

    As part of our search for new antifungal agents from natural resources, 22 C-27 steroidal saponins and 6 steroidal sapogenins isolated from several monocotyledonous plants were tested for their antifungal activity against the opportunistic pathogens Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and Aspergillus fumigatus. The results showed that the antifungal activity of the steroidal saponins was associated with their aglycone moieties and the number and struct...

  17. Antifungal Activity of Micafungin in Serum ▿

    OpenAIRE

    Ishikawa, Jun; Maeda, Tetsuo; Matsumura, Itaru; Yasumi, Masato; Ujiie, Hidetoshi; Masaie, Hiroaki; Nakazawa, Tsuyoshi; Mochizuki, Nobuo; Kishino, Satoshi; Kanakura, Yuzuru

    2009-01-01

    We have evaluated the antifungal activity of micafungin in serum by using the disk diffusion method with serum-free and serum-added micafungin standard curves. Serum samples from micafungin-treated patients have been shown to exhibit adequate antifungal activity, which was in proportion to both the applied dose and the actual concentration of micafungin measured by high-performance liquid chromatography. The antifungal activity of micafungin in serum was also confirmed with the broth microdil...

  18. Antibacterial and Antifungal Compounds from Marine Fungi

    OpenAIRE

    Lijian Xu; Wei Meng; Cong Cao; Jian Wang; Wenjun Shan; Qinggui Wang

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.

  19. Use of antifungal drugs in hematology

    OpenAIRE

    Marcio Nucci

    2012-01-01

    Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the dif...

  20. Relationship of Fungal Vaginitis Therapy to Prior Antibiotic Exposure

    OpenAIRE

    Glover, Douglas D.; Bryan Larsen

    2003-01-01

    Objective: To address the putative association of antibiotic use and subsequent yeast vaginitis in a population of non-pregnant women. Methods: Three hundred and sixteen women who received medical care in rural family medicine clinics enrolled in this study. Participants were pre-menopausal and non-pregnant and were followed until they used a course of antifungal therapy for vaginitis, became pregnant or moved from the catchment area. At entry subjects were free of vaginitis symptoms and had ...

  1. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  2. Antifungal saponins from Swartzia langsdorffii

    International Nuclear Information System (INIS)

    Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-β-D-(6'-methyl)-glucopyranosyl-28-O-β-D-glucopyranosyl-oleanate.Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

  3. Antifungal constituents of Melicope borbonica

    DEFF Research Database (Denmark)

    Simonsen, Henrik Toft; Adsersen, Anne; Bremner, Paul;

    2004-01-01

    Fractionation of extracts of the leaves of Melicope borbonica (syn. Euodia borbonica var. borbonica), a medicinal plant from the Réunion Island that is traditionally used for wound healing and other ailments, afforded an acetophenone (xanthoxylin) and two coumarins, scoparone and limettin......, as the major constituents. All three compounds exhibited moderate antifungal activity against Candida albicans and Penicillium expansum, in accordance with the traditional use of the plant. Moreover, 2,4,6-trimethoxyacetophenone (methylxanthoxylin), three other coumarins [7-(3-methyl-2-butenyloxy)-6...

  4. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  5. Active packaging with antifungal activities.

    Science.gov (United States)

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time.

  6. Active packaging with antifungal activities.

    Science.gov (United States)

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

  7. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    Directory of Open Access Journals (Sweden)

    SAHADEO PATIL

    2015-05-01

    Full Text Available Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obtained from cumin seeds using hydrodistillation technique and was later evaluated for the presence of major chemical constituents present in it using gas chromatography and mass spectrometry (GC-MS assay. The GC-MS assay revealed the abundance of γ-terpinene (35.42% followed by p-cymene (30.72%. The agar disc diffusion assay demonstrated highly potent antifungal effect against Candida species. Moreover, the combination of cumin essential oil (CEO with conventional antifungal drugs was found to reduce the individual MIC of antifungal drug suggesting the occurrence of synergistic interactions. Therefore, the therapy involving combinations of CEO and conventional antifungal drugs can be used for reducing the toxicity induced by antifungal drugs and at the same time enhancing their antifungal efficacy in controlling the infections caused due to Candida species.

  8. Antibacterial and antifungal potential of some polar solvent extracts of Ashwagandha (Solanaceae against the nosocomial pathogens

    Directory of Open Access Journals (Sweden)

    Premlata Singariya

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the antimicrobial (antibacterial and antifungal effects of hexane, toluene, isopropyl alcohol, acetone and ethanolic extracts of different parts (root and stem of Withania somnifera (RUBL-20668 in order to use it as a possible source for new antimicrobial substances against important human pathogens. The dried and powdered parts were successively extracted using Soxhlet assembly; then antibacterial and antifungal activities were investigated by both, disc diffusion and serial dilution methods. The extract of W. somnifera significantly inhibited some important bacteria (two Gram +ve and four Gram-ve bacteria: Staphylococcus aureus (Gram +ve, Bacillus subtilis (Gram +ve, Escherichia coli (Gram-ve, Raoultella planticola (Gram -ve, Pseudomonas aeruginosa (Gram-ve, Enterobactor aerogens (Gram-ve, one yeast Candida albicans and one fungi Aspergillus flavus, to varying degrees. Isopropyl alcohol, acetone and toluene extracts of W. somnifera showed highest activity against the pathogens. The inhibitory effect is very identical in magnitude and comparable with that of standard antibiotics. Gentamycin, the standard antibacterial drug used, was effective in inhibiting these bacteria. The effect on E. coli, R. planticola and S. aureus were comparable to that of gentamycin. Ketoconazole, the standard antifungal used, was effective against the fungi. The inhibitory effect is very identical in magnitude and comparable with that of standard antibiotics used.

  9. 21 CFR 333.250 - Labeling of antifungal drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of antifungal drug products. 333.250... Antifungal Drug Products § 333.250 Labeling of antifungal drug products. (a) Statement of identity. The... “antifungal.” (b) Indications. The labeling of the product states, under the heading “Indications,” the...

  10. Synthesis and antifungal activity of trichodermin derivatives

    Institute of Scientific and Technical Information of China (English)

    Jing Li Cheng; Yong Zhou; Jin Hao Zhao; Chu Long Zhang; Fu Cheng Lin

    2010-01-01

    A series of derivatives were synthesized from trichodermin(1)which was an antifungal metabolite produced by Trichoderma taxi sp.nov.Their structures were confirmed by 1H NMR,MS spectrum.Their antifungal activities were evaluated in vitro.The preliminary structure activity relationships(SAR)results indicated that the double bond,epoxide moiety and ester group were main pharmacophore elements,the stereochemistry of C4 position played a key role as well,and the compounds 1e-1g displayed stronger antifungal activity against Magnaporthe grisea than 1.

  11. Antifungal isopimaranes from Hypoestes serpens.

    Science.gov (United States)

    Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K

    2003-09-01

    Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis. PMID:12943772

  12. Antifungal properties of halofumarate esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  13. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  14. Strengthening Control of Antibiotics

    Institute of Scientific and Technical Information of China (English)

    EthelLu

    2005-01-01

    IT is a well-known fact that buy-ng guns is much easier than purchasing antibiotics in the United States. In China, however, the situation is different. According to a recent WHO survey,about 80 percent of Chinese inpatients take antibiotic medicines, and 58 percent of them are prescribed multifunctional antibiotics,

  15. Synthesis of Pyridazinonethiadiazoles as Possible Antifungal Agents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several 5-[1-aryl-1,4-dihydro-6-methylpyridazin-4-one-3-yl]-2-arylamino-1,3,4-thia diazoles were synthesized.The preliminary bio-active test shows that these compounds exhibit high antifungal activity.

  16. Antifungal susceptibility of Malassezia pachydermatis biofilm.

    Science.gov (United States)

    Figueredo, Luciana A; Cafarchia, Claudia; Otranto, Domenico

    2013-11-01

    Antifungal resistance has been associated with biofilm formation in many microorganisms, but not yet in Malassezia pachydermatis. This saprophytic yeast can cause otitis and dermatitis in dogs and has emerged as an important human pathogen, responsible for systemic infections in neonates in intensive care units. This study aims to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains, in both their planktonic and sessile forms, to fluconazole, miconazole, ketoconazole, itraconazole, posaconazole, terbinafine and voriconazole using the XTT assay and Clinical and Laboratory Standards Institute (CLSI) microdilution method. The minimum inhibitory concentration (MIC) values recorded for each drug were significantly higher for sessile cells relative to planktonic cells to the extent that ≥ 90% of M. pachydermatis strains in their sessile form were classified as resistant to all antifungal agents tested. Data suggest that M. pachydermatis biofilm formation is associated with antifungal resistance, paving the way towards investigating drug resistance mechanisms in Malassezia spp. PMID:23834283

  17. Early State Research on Antifungal Natural Products

    Directory of Open Access Journals (Sweden)

    Melyssa Negri

    2014-03-01

    Full Text Available Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

  18. Antifungal drugs and resistance: Current concepts

    OpenAIRE

    Pramod Kumar Nigam

    2015-01-01

    Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to the...

  19. Antifungal activities of some indole derivatives.

    Science.gov (United States)

    Xu, Hui; Wang, Qin; Yang, Wen-Bin

    2010-01-01

    Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal activities against the above-mentioned seven phytopathogenic fungi, and showed more potent activities than hymexazole, a commercial agricultural fungicide. PMID:20737910

  20. Antifungal properties of Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Souza Lúcia Kioko Hasimoto e

    2002-01-01

    Full Text Available Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in "in vitro" assays.

  1. Antifungal activity of five species of Polygala

    Directory of Open Access Journals (Sweden)

    Susana Johann

    2011-09-01

    Full Text Available Crude extracts and fractions of five species of Polygala - P. campestris, P. cyparissias, P. paniculata, P. pulchella and P. sabulosa - were investigated for their in vitro antifungal activity against opportunistic Candida species, Cryptococcus gattii and Sporothrix schenckii with bioautographic and microdilution assays. In the bioautographic assays, the major extracts were active against the fungi tested. In the minimal concentration inhibitory (MIC assay, the hexane extract of P. paniculata and EtOAc fraction of P. sabulosa showed the best antifungal activity, with MIC values of 60 and 30 µg/mL, respectively, against C. tropicalis, C. gattii and S. schenckii. The compounds isolated from P. sabulosa prenyloxycoumarin and 1,2,3,4,5,6-hexanehexol displayed antifungal activity against S. schenckii (with MICs of 125 µg/mL and 250 µg/mL, respectively and C. gattii (both with MICs of 250 µg/mL. Rutin and aurapten isolated from P. paniculata showed antifungal activity against C. gattii with MIC values of 60 and 250 µg/mL, respectively. In the antifungal screening, few of the isolated compounds showed good antifungal inhibition. The compound α-spinasterol showed broad activity against the species tested, while rutin had the best activity with the lowest MIC values for the microorganisms tested. These two compounds may be chemically modified by the introduction of a substitute group that would alter several physico-chemical properties of the molecule, such as hydrophobicity, electronic density and steric strain.

  2. Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics.

    Science.gov (United States)

    Qi, Jianzhao; Liu, Jin; Wan, Dan; Cai, You-Sheng; Wang, Yinghu; Li, Shunying; Wu, Pan; Feng, Xuan; Qiu, Guofu; Yang, Sheng-Ping; Chen, Wenqing; Deng, Zixin

    2015-09-01

    Polyoxin and nikkomycin are naturally occurring peptidyl nucleoside antibiotics with potent antifungal bioactivity. Both exhibit similar structural features, having a nucleoside skeleton and one or two peptidyl moieties. Combining the refactoring of the polyoxin producer Streptomyces aureochromogenes with import of the hydroxypyridylhomothreonine pathway of nikkomycin allows the targeted production of three designer nucleoside antibiotics designated as nikkoxin E, F, and G. These structures were determined by NMR and/or high resolution mass spectrometry. Remarkably, the introduction of an extra copy of the nikS gene encoding an ATP-dependent ligase significantly enhanced the production of the designer antibiotics. Moreover, all three nikkoxins displayed improved bioactivity against several pathogenic fungi as compared with the naturally-occurring antibiotics. These data provide a feasible model for high efficiency generation of nucleoside antibiotics related to polyoxins and nikkomycins in a polyoxin cell factory via synthetic biology strategy.

  3. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves

    International Nuclear Information System (INIS)

    The present study was designed to evaluate the antifungal activity of Azima tetracantha extracts and isolated compound (friedelin) against fungi. Antifungal activity was carried out using broth micro dilution method and fractions were collected using (silica gel) column chromatography. The antifungal activity of Azima tetracantha crude extracts and isolated compound (friedelin) were evaluated using the micro dilution method. Hexane extract showed some antifungal activity. The compound also exhibited antifungal activity against tested fungi. The lowest MIC against Trichophyton rubrum (296) was 62.5 micro g/ml and the MIC for Curvularia lunata was 62.5 micro g/ml. These results suggest that Friedelin is a promising antifungal agent. (authors)

  4. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  5. Ribosomal Antibiotics: Contemporary Challenges.

    Science.gov (United States)

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-01-01

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of "pathogen-specific antibiotics," in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification. PMID:27367739

  6. Antifungal drugs and resistance: Current concepts

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Nigam

    2015-04-01

    Full Text Available Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to these drugs. The main biochemical and molecular mechanisms that contribute to antifungal resistance include reduced uptake of the drug, an active transport out of the cell or modified drug metabolic degradation of the cell, changes in the interaction of the drug to the target site or other enzymes involved in the process by point mutations, overexpression of the target molecule, overproduction or mutation of the target enzyme, amplification and gene conversion (recombination, and increased cellular efflux and occurrence of biofilm. Although, there is considerable knowledge concerning the biochemical, genetic and clinical aspects of resistance to antifungal agents, expansion of our understanding of the mechanisms by which antifungal resistance emerges and spreads, quicker methods for the determination of resistance, targetting efflux pumps, especially ATP binding cassette (ABC transporters and heat shock protein 90, new drug delivery systems, optimizing therapy according to pharmacokinetic and pharmacodynamic characteristics, new classes of antifungal drugs that are active against azole-resistant isolates, and use of combinations of antifungal drugs or use of adjunctive immunostimulatory therapy and other modalities of treatment will clearly be important for future treatment strategies and in preventing development of resistance.

  7. DALI: Defining Antibiotic Levels in Intensive care unit patients: a multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic

    Directory of Open Access Journals (Sweden)

    Roberts Jason A

    2012-07-01

    Full Text Available Abstract Background The clinical effects of varying pharmacokinetic exposures of antibiotics (antibacterials and antifungals on outcome in infected critically ill patients are poorly described. A large-scale multi-centre study (DALI Study is currently underway describing the clinical outcomes of patients achieving pre-defined antibiotic exposures. This report describes the protocol. Methods DALI will recruit over 500 patients administered a wide range of either beta-lactam or glycopeptide antibiotics or triazole or echinocandin antifungals in a pharmacokinetic point-prevalence study. It is anticipated that over 60 European intensive care units (ICUs will participate. The primary aim will be to determine whether contemporary antibiotic dosing for critically ill patients achieves plasma concentrations associated with maximal activity. Secondary aims will compare antibiotic pharmacokinetic exposures with patient outcome and will describe the population pharmacokinetics of the antibiotics included. Various subgroup analyses will be conducted to determine patient groups that may be at risk of very low or very high concentrations of antibiotics. Discussion The DALI study should inform clinicians of the potential clinical advantages of achieving certain antibiotic pharmacokinetic exposures in infected critically ill patients.

  8. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  9. ENZYMATIC ACTIVITY AND ANTIBIOTIC RESISTANCE PROFILE OF LACTOBACILLUS PARACASEI SSP. PARACASEI-1 ISOLATED FROM REGIONAL YOGURTS OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    Ummay Honi

    2013-12-01

    Full Text Available Lactobacillus paracasei ssp. paracasei-1 was identified from traditional yogurts of Khulna region, Bangladesh and its enzyme and antibiotic resistance profiles were determined. A commercially available API Zym kit was employed to determine the activities of 19 different enzymes. We found that L. paracasei ssp. paracasei-1 showed strong activities for several enzymes, viz. leucine arylamidase, valine arylamidase, napthol-AS-BI-phosphohydrolase, β-galactosidase, α –Glucosidase, N-Acetyl- β- glucosaminidase while activities for other enzymes were absent. Antibiotic resistance profile was assessed by minimum inhibitory concentration (MIC test for 61 major antibiotics and 4 antifungal agents obtained from commercial sources in MRS Agar media. The strain generally showed resistance to gram negative spectrum antibiotic while it showed susceptibility towards β-lactam antibiotic to gram positive spectrum antibiotic. The findings provide the therapeutic basis of using L. paracasei ssp. paracasei-1 in finished food products.

  10. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves.

    OpenAIRE

    Duraipandiyan, V.; M Gnanasekar; S Ignacimuthu

    2010-01-01

    The present study was designed to evaluate the antifungal activity of Azima tetracantha extracts and isolated compound (friedelin) against fungi. Antifungal activity was carried out using broth microdilution method and fractions were collected using (silica gel) column chromatography. The antifungal activity of Azima tetracantha crude extracts and isolated compound (friedelin) were evaluated using the micro dilution method. Hexane extract showed some antifungal activity. The compound also exh...

  11. Antifungal drug discovery: the process and outcomes.

    Science.gov (United States)

    Calderone, Richard; Sun, Nuo; Gay-Andrieu, Francoise; Groutas, William; Weerawarna, Pathum; Prasad, Sridhar; Alex, Deepu; Li, Dongmei

    2014-01-01

    New data suggest that the global incidence of several types of fungal diseases have traditionally been under-documented. Of these, mortality caused by invasive fungal infections remains disturbingly high, equal to or exceeding deaths caused by drug-resistant tuberculosis and malaria. It is clear that basic research on new antifungal drugs, vaccines and diagnostic tools is needed. In this review, we focus upon antifungal drug discovery including in vitro assays, compound libraries and approaches to target identification. Genome mining has made it possible to identify fungal-specific targets; however, new compounds to these targets are apparently not in the antimicrobial pipeline. We suggest that 'repurposing' compounds (off patent) might be a more immediate starting point. Furthermore, we examine the dogma on antifungal discovery and suggest that a major thrust in technologies such as structural biology, homology modeling and virtual imaging is needed to drive discovery. PMID:25046525

  12. Design,Synthesis and Antifungal Activity of Novel Triazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    Chun Quan SHENG; Wan Nian ZHANG; Hai Tao JI; Yun Long SONG; Min ZHANG; You Jun ZHOU; Jia Guo LU; Jü ZHU

    2004-01-01

    Twenty-one 1-(1H-1,2,4-triazolyl)-2-(2,4-diflurophenyl)-3-(4-substituted-1- piperazinyl)-2-propanol derivatives were designed and synthesized,on the basis of the active site of lanosterol 14(-demethylase.In vitro antifungal activities showed that some of the target compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  13. 21 CFR 333.210 - Antifungal active ingredients.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the...

  14. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    OpenAIRE

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 ...

  15. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

    OpenAIRE

    Huh, Chang Ki; Hwang, Tae Yean

    2016-01-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear ...

  16. The future of antibiotics.

    Science.gov (United States)

    Spellberg, Brad

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on 'push' incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  17. Metagenomics and antibiotics.

    Science.gov (United States)

    Garmendia, L; Hernandez, A; Sanchez, M B; Martinez, J L

    2012-07-01

    Most of the bacterial species that form part of the biosphere have never been cultivated. In this situation, a comprehensive study of bacterial communities requires the utilization of non-culture-based methods, which have been named metagenomics. In this paper we review the use of different metagenomic techniques for understanding the effect of antibiotics on microbial communities, to synthesize new antimicrobial compounds and to analyse the distribution of antibiotic resistance genes in different ecosystems. These techniques include functional metagenomics, which serves to find new antibiotics or new antibiotic resistance genes, and descriptive metagenomics, which serves to analyse changes in the composition of the microbiota and to track the presence and abundance of already known antibiotic resistance genes in different ecosystems.

  18. In vitro antifungal susceptibility of coelomycete agents of black grain eumycetoma to eight antifungals

    NARCIS (Netherlands)

    Ahmed, Sarah Abdalla; de Hoog, G Sybren; Stevens, David A; Fahal, Ahmed H; van de Sande, Wendy W J

    2015-01-01

    Fungal mycetoma (eumycetoma) represents one of the most difficult infections to appropriately manage. The current recommended treatment is based on extensive surgical debridement combined with prolonged antifungal therapy with ketoconazole or itraconazole. Despite the different phylogenetic position

  19. Intravenous and oral itraconazole versus intravenous amphotericin B deoxycholate as empirical antifungal therapy for persistent fever in neutropenic patients with cancer who are receiving broad-spectrum antibacterial therapy - A randomized, controlled trial

    NARCIS (Netherlands)

    Boogaerts, M; Winston, DJ; Bow, EJ; Garber, G; Reboli, AC; Schwarer, AP; Novitzky, N; Boehme, A; Chwetzoff, E; De Beule, K

    2001-01-01

    Background: Amphotericin B deoxycholate is currently the standard empirical antifungal therapy in neutropenic patients with cancer who have persistent fever that does not respond to antibiotic therapy. However, this treatment often causes infusion-related and metabolic toxicities, which may be dose

  20. Effect of Prophylactic Antifungal Protocols on the Prognosis of Liver Transplantation: A Propensity Score Matching and Multistate Model Approach

    Science.gov (United States)

    Chen, Yi-Chan; Wang, Yu-Chao; Lee, Chen-Fang; Wu, Ting-Jun; Chou, Hong-Shiue; Chan, Kun-Ming; Lee, Wei-Chen

    2016-01-01

    Background. Whether routine antifungal prophylaxis decreases posttransplantation fungal infections in patients receiving orthotopic liver transplantation (OLT) remains unclear. This study aimed to determine the effectiveness of antifungal prophylaxis for patients receiving OLT. Patients and Methods. This is a retrospective analysis of a database at Chang Gung Memorial Hospital. We have been administering routine antibiotic and prophylactic antifungal regimens to recipients with high model for end-stage liver disease scores (>20) since 2009. After propensity score matching, 402 patients were enrolled. We conducted a multistate model to analyze the cumulative hazards, probability of fungal infections, and risk factors. Results. The cumulative hazards and transition probability of “transplantation to fungal infection” were lower in the prophylaxis group. The incidence rate of fungal infection after OLT decreased from 18.9% to 11.4% (p = 0.052); overall mortality improved from 40.8% to 23.4% (p < 0.001). In the “transplantation to fungal infection” transition, prophylaxis was significantly associated with reduced hazards for fungal infection (hazard ratio: 0.57, 95% confidence interval: 0.34–0.96, p = 0.033). Massive ascites, cadaver transplantation, and older age were significantly associated with higher risks for mortality. Conclusion. Prophylactic antifungal regimens in high-risk recipients might decrease the incidence of posttransplant fungal infections.

  1. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

    OpenAIRE

    Hao Wang; Shuang-Xi Ren; Ze-Yu He; De-Long Wang; Xiao-Nan Yan; Jun-Tao Feng; Xing Zhang

    2014-01-01

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which l...

  2. Impact of New Antifungal Breakpoints on Antifungal Resistance in Candida Species

    OpenAIRE

    Fothergill, Annette W.; Sutton, Deanna A.; McCarthy, Dora I.; Wiederhold, Nathan P.

    2014-01-01

    We reviewed our antifungal susceptibility data for micafungin, anidulafungin, fluconazole, and voriconazole against Candida species and compared resistance rates determined by the previous and recently revised CLSI antifungal breakpoints. With the new breakpoints, resistance was significantly increased for micafungin (from 0.8% to 7.6%), anidulafungin (from 0.9% to 7.3%), and voriconazole (from 6.1% to 18.4%) against Candida glabrata. Resistance was also increased for fluconazole against Cand...

  3. Antifungal and antibacterial activities of Taxus wallichiana Zucc.

    Science.gov (United States)

    Nisar, Muhammad; Khan, Inamullah; Ahmad, Bashir; Ali, Ihsan; Ahmad, Waqar; Choudhary, Muhammad Iqbal

    2008-04-01

    Current study was undertaken to evaluate the in vitro antifungal and antibacterial potential of methanol extract and subsequent fractions obtained after partitioning in organic solvents with variable polarity of the aerial parts of the tree Taxus wallichiana Zucc. Traditionally, this plant is often used in folk medicines in Pakistan for treating microbial infections. In order to rationalize the traditional use, methanol extracts of leaf, bark, and heartwood of Taxus wallichiana Zucc. were tested against six bacteria and six fungal strains using the Hole diffusion and macro-dilution methods. All extracts and fractions displayed significant antimicrobial effect. Only three fungal strains, Trichophyton longifusus, Microspoum canis, and Fusarium solani were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. In case of bacterial strains, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. Comparison results were carried out using imipinem, miconazole and amphotericin B as standard antibiotics. PMID:18343912

  4. Standardization of antifungal susceptibility variables for a semiautomated methodology.

    Science.gov (United States)

    Rodríguez-Tudela, J L; Cuenca-Estrella, M; Díaz-Guerra, T M; Mellado, E

    2001-07-01

    Recently, the methodology that will serve as a basis of the standard for antifungal susceptibility testing of fermentative yeasts of the European Committee on Antibiotic Susceptibility Testing has been described. This procedure employs a spectrophotometric method for both inoculum adjustment and endpoint determination. However, the utilization of a spectrophotometer requires studies for standardization. The present work analyzes the following parameters: (i) accuracy of inoculum preparation, (ii) correlation between optical density and CFU per milliliter, (iii) influence of the wavelength on the endpoint determination, and (iv) influence of the dimethyl sulfoxide concentration on the growth kinetics. The main results can be summarized as follows: (i) inoculum preparation following the methodology recommended by the National Committee for Clinical Laboratory Standards is an exact procedure; (ii) the relationship between optical density and CFU per milliliter is linear (coefficient of determination, r(2) = 0.84); (iii) MICs obtained by means of spectrophotometric readings at different wavelengths are identical (for amphotericin B, an intraclass correlation coefficient of 0.98 was obtained; for fluconazole, the intraclass correlation coefficient was 1); and (iv) a 2% concentration of dimethyl sulfoxide produces a significantly slower and lower growth curve of Candida spp. than other concentrations. PMID:11427562

  5. Cinnamaldehyde and its derivatives, a novel class of antifungal agents.

    Science.gov (United States)

    Shreaz, Sheikh; Wani, Waseem A; Behbehani, Jawad M; Raja, Vaseem; Irshad, Md; Karched, Maribasappa; Ali, Intzar; Siddiqi, Weqar A; Hun, Lee Ting

    2016-07-01

    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal. PMID:27259370

  6. Antifungal prophylaxis during neutropenia and immunodeficiency.

    OpenAIRE

    Lortholary, O; Dupont, B

    1997-01-01

    Fungal infections represent a major source of morbidity and mortality in patients with almost all types of immunodeficiencies. These infections may be nosocomial (aspergillosis) or community acquired (cryptococcosis), or both (candidiasis). Endemic mycoses such as histoplasmosis, coccidioidomycosis, and penicilliosis may infect many immunocompromised hosts in some geographic areas and thereby create major public health problems. With the wide availability of oral azoles, antifungal prophylact...

  7. Antifungal activity of ajoene derived from garlic.

    OpenAIRE

    Yoshida, S.(Department of Physics, Chiba University, 263-8522, Chiba, Japan); Kasuga, S; Hayashi, N; Ushiroguchi, T; Matsuura, H.; Nakagawa, S

    1987-01-01

    The antifungal activity of six fractions derived from garlic was investigated in an in vitro system. Ajoene had the strongest activity in these fractions. The growth of both Aspergillus niger and Candida albicans was inhibited by ajoene at less than 20 micrograms/ml.

  8. Evaluation of antifungal combination against Cryptococcus spp.

    Science.gov (United States)

    Reichert-Lima, Franqueline; Busso-Lopes, Ariane F; Lyra, Luzia; Peron, Isabela Haddad; Taguchi, Hideaki; Mikami, Yuzuru; Kamei, Katsuiko; Moretti, Maria Luiza; Schreiber, Angelica Z

    2016-09-01

    The second cause of death among systemic mycoses, cryptococcosis treatment represents a challenge since that 5-flucytosine is not currently available in Brazil. Looking for alternatives, this study evaluated antifungal agents, alone and combined, correlating susceptibility to genotypes. Eighty Cryptococcus clinical isolates were genotyped by URA5 gene restriction fragment length polymorphism. Antifungal susceptibility was assessed following CLSI-M27A3 for amphotericin (AMB), 5-flucytosine (5FC), fluconazole (FCZ), voriconazole (VRZ), itraconazole (ITZ) and terbinafine (TRB). Drug interaction chequerboard assay evaluated: AMB + 5FC, AMB + FCZ, AMB + TRB and FCZ + TRB. Molecular typing divided isolates into 14 C. deuterogattii (VGII) and C. neoformans isolates were found to belong to genotype VNI (n = 62) and VNII (n = 4). C. neoformans VNII was significantly less susceptible than VNI (P = 0.0407) to AMB; C. deuterogattii was significantly less susceptible than VNI and VNII to VRZ (P neoformans VNI for FCZ (P = 0.0170), ITZ (P neoformans genotype VNI isolates and all combinations showed 100% of synergism against genotype VNII isolates, suggesting the relevance of cryptococcal genotyping as it is widely known that the various genotypes (now species) have significant impact in antifungal susceptibilities and clinical outcome. In difficult-to-treat cryptococcosis, terbinafine and different antifungal combinations might be alternatives to 5FC. PMID:27135278

  9. Mystery unraveled about antifungal drug targets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A long-standing mystery about the functional roles of the N-terminal region of protein N-myristoyltransferase, an ideal target for antifungal drugs, was recently decoded, thanks to the threeyear joint efforts of researchers from the CAS Key Laboratory of Molecular Biology and their US colleagues at the DuPont Stine Haskell Research Center.

  10. Studies of antifungal activity of forsskalea tenacissima

    International Nuclear Information System (INIS)

    Antifungal activity of different extracts from Forsskalea tenacissima prepared by solvent-solvent extraction and vacuum liquid chromatography (VLC) was determined. Extracts were found to be active against Candida albicans, Trichophyton mentagrophyte, Allescheria boydii, Microsporum canis, Aspergillus niger, Drechslera rostrata, Nigrospora oryzae, Stachybotrys atra, Curvularia lunata, Trichophyton semii and Trichophyton schoenleinii. (author)

  11. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    Science.gov (United States)

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. PMID:27115756

  12. Development in research of antifungal antibioticsoriginated from microorganisms%微生物来源的抗真菌抗生素研究进展

    Institute of Scientific and Technical Information of China (English)

    顾觉奋; 倪孟祥; 李治川

    2001-01-01

    New antifungal antibiotics originated from microorganisms are continuously emerging.In this paper,the research,development,and clinical studies of newly developed antifungal antibiotics within last 2 years were reviewed in accordance with their target site,namely the cell membrane,cell wall,and protein synthesis of fungi.%新的微生物来源的抗真菌抗生素不断涌现。本文就近2年来研究及开发或进行临床试验的化合物,依据它们作用的靶向部位不同,按真菌细胞膜、细胞壁以及蛋白质合成3类进行概述。

  13. Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW(T), Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts.

    Science.gov (United States)

    Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai

    2016-06-29

    Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains. PMID:27267862

  14. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  15. Antibiotics for uncomplicated diverticulitis

    DEFF Research Database (Denmark)

    Shabanzadeh, Daniel M; Wille-Jørgensen, Peer

    2012-01-01

    Diverticulitis is an inflammatory complication to the very common condition diverticulosis. Uncomplicated diverticulitis has traditionally been treated with antibiotics with reference to the microbiology, extrapolation from trials on complicated intra-abdominal infections and clinical experience....

  16. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  17. Antibiotic induced meningitis.

    OpenAIRE

    1994-01-01

    Three patients with antibiotic induced meningitis, one following penicillin with seven episodes, are reported on--the first well documented description of penicillin induced meningitis. In this patient episodes of headache and nuchal rigidity appeared with and without CSF pleocytosis. Two patients had a total of five episodes of antibiotic induced meningitis after trimethoprim-sulphamethoxazole (co-trimoxazole) administration. The features common to all three patients were myalgia, confusion ...

  18. [Prophylactic antibiotics in neurosurgery].

    Science.gov (United States)

    Iacob, G; Iacob, Simona; Cojocaru, Inimioara

    2007-01-01

    Because of a low risk of infection (around 2-3%), prophylactic use of antibiotics in neurosurgery is a controversial issue. Some neurosurgeons consider that there are strong arguments against the use of antimicrobials (promotion of antibiotic-resistant strains of bacteria, superinfection and adverse drug reactions) and meticulous aseptic techniques could be more usefully than prophylactic antibiotics. On the other hand, despite of being rare, the consequences of a neurosurgical infection can be dramatic and may result in a rapid death, caused by meningitis, cerebritis, abscess formation or sepsis. Clinical studies emphasized that the most important factors influencing the choice of antibiotic prophylaxis in neurosurgery is the patient's immune status, virulence of the pathogens and the type of surgery ("clean contaminated"--procedure that crosses the cranial sinuses, "clean non-implant"--procedure that does not cross the cranial sinuses, CSF shunt surgery, skull fracture). Prophylaxis has become the standard of care for contaminated and clean-contaminated surgery, also for surgery involving insertion of artificial devices. The antibiotic (first/second generation of cephalosporins or vancomycin in allergic patients) should recover only the cutaneous possibly contaminating flora (S. aureus, S. epidermidis) and should be administrated 30' before the surgical incision, intravenously in a single dose. Most studies pointed that identification of the risk factors for infections, correct asepsis and minimal prophylactic antibiotic regimen, help neurosurgeons to improve patient care and to decrease mortality without selecting resistant bacteria. PMID:18293694

  19. [Analysis of antibiotic usage].

    Science.gov (United States)

    Balpataki, R; Balogh, J; Zelkó, R; Vincze, Z

    2001-01-01

    Economic analysis is founded on the assumption that resources are limited and that should be used in a way that maximizes the benefits gained. Pharmacoeconomics extends these assumptions to drug treatment. Therefore, a full pharmacoeconomic analysis must consider two or more alternative treatments and should be founded on measurement of incremental cost, incremental efficacy, and the value of successful outcome. Antibiotic policy based only on administrative restrictions is failed, instead of it disease formularies and infectologist consultation system are needed. Equally important are various programmes that encourage the cost-conscious use of the antibiotics chosen. Some of the methods evaluated in the literature include: streamlining from combination therapy to a single agent, early switching from parenteral to oral therapy, initiating treatment with oral agents, administering parenteral antibiotic at home from outset of therapy, and antibiotic streamlining programmes that are partnered with infectious disease physicians. The solution is the rational and adequate use of antibiotics, based on the modern theory and practice of antibiotic policy and infection control, that cannot be carried out without the activities of experts in this field. PMID:11769090

  20. Oral Antifungal Drugs in the Treatment of Dermatomycosis.

    Science.gov (United States)

    Tsunemi, Yuichiro

    2016-01-01

    Oral antifungal drugs are used primarily to treat tinea unguium; however, they are also useful for other types of tinea. For example, a combination of topical and oral antifungal drugs is effective in hyperkeratotic tinea pedis that is unresponsive to topical monotherapy. In cases of tinea facialis adjacent to the eyes, ears, or mouth, or widespread tinea corporis, or tinea cruris involving the complex skin folds of the external genitalia, it is difficult to apply topical drugs to all the lesions; therefore, oral antifungal drugs are necessary. Oral antifungal drugs are also useful not only for tinea but for widespread pityriasis versicolor and Malassezia folliculitis, candidal onychomycosis, and candidal paronychia and onychia. Topical antifungal drugs are in fact unsuitable for some mycoses. In tinea capitis, for example, irritation by topical drugs is likely to enhance inflammation; therefore, oral antifungal drug monotherapy is preferable. In interdigital tinea pedis with erosion or contact dermatitis, topical drugs are difficult to use because they tend to cause irritant dermatitis, resulting in exacerbation of the condition. In such cases, treatment should begin with a combination of topical corticosteroid therapy and oral antifungal drugs active against dermatophytes. Topical antifungal drugs are used after the complications resolve. A combination of topical and oral antifungal drugs can shorten the treatment period, thus improving patient adherence to topical treatment. Oral antifungal drugs are useful because of their wide range of applications in the treatment of dermatomycosis. PMID:27251319

  1. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  2. Study of the Antifungal Ability of Bacillus subtilis Strain PY-1 in Vitro and Identification of its Antifungal Substance (Iturin A)

    Institute of Scientific and Technical Information of China (English)

    Meng GONG; Jiang-Dong WANG; Jing ZHANG; Hao YANG; Xiao-Feng LU; Yan PEI; Jing-Qiu CHENG

    2006-01-01

    A Bacillus strain, denoted as PY- 1, was isolated from the vascular bundle of cotton. Biochemical,physiological and 16S rDNA sequence analysis proved that it should belong to Bacillus subtilis. The PY-1 strain showed strong ability against many common plant fungal pathogens in vitro. The antibiotics produced by this strain were stable in neutral and basic conditions, and not sensitive to high temperature. From the culture broth of PY- 1 strain, five antifungal compounds were isolated by acidic precipitation, methanol extraction, gel filtration and reverse-phase HPLC. Advanced identification was performed by mass spectrometry and nuclear magnetic resonance spectroscopy. These five antifungal compounds were proved to be the isomers of iturin A: A2, A3, A4, A6 and A7. In fast atom bombardment mass spectrometry/mass spectrometry collision-induced dissociation spectra, fragmentation ions from two prior linear acylium ions were observed, and the prior ion, Tyr-Asn-Gln-Pro-Asn-Ser-βAA-Asn-CO+, was first reported.

  3. From antidiabetic to antifungal: discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents.

    Science.gov (United States)

    Wu, Shanchao; Zhang, Yongqiang; He, Xiaomeng; Che, Xiaoying; Wang, Shengzheng; Liu, Yang; Jiang, Yan; Liu, Na; Dong, Guoqiang; Yao, Jianzhong; Miao, Zhenyuan; Wang, Yan; Zhang, Wannian; Sheng, Chunquan

    2014-12-01

    In an attempt to discover a new generation of triazole antifungal agents, a series of triazole-thiazolidinedione hybrids were designed and synthesized by molecular hybridization of the antifungal agent fluconazole and rosiglitazone (an antidiabetic). Most of the target compounds showed good to excellent inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds (Z)-5-(2,4-dichlorobenzylidene)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)thiazolidine-2,4-dione) (15 c), (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 j), and (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 r) were highly active against Candida albicans, with MIC80 values in the range of 0.03-0.15 μM. Moreover, compounds 15 j and 15 r were found to be effective against four fluconazole-resistant clinical isolates; these two compounds are particularly promising antifungal leads for further optimization. Molecular docking studies revealed that the hydrogen bonding interactions between thiazolidinedione and CYP51 from C. albicans are important for antifungal activity. This study also demonstrates the effectiveness of molecular hybridization in antifungal drug discovery. PMID:25196996

  4. ANTIFUNGAL ACTIVITIES OF CUNNINGHAMIA LANCEOLATA HEARTWOOD EXTRACTIVES

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2011-02-01

    Full Text Available Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1 The gas chromatography-mass spectrometry (GC-MS analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39% and the ethyl acetate extract (9.43%. (2 Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteus and two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.

  5. Antifungal activity of 10 Guadeloupean plants.

    Science.gov (United States)

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations. PMID:23280633

  6. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  7. A new antifungal coumarin from Clausena excavata.

    Science.gov (United States)

    Kumar, Ramashish; Saha, Aniruddha; Saha, Dipanwita

    2012-01-01

    A new γ-lactone coumarin, named as excavarin-A, showing antifungal activity was isolated from the leaves of Clausena excavata by bioassay guided fractionation method. The structure was elucidated by spectroscopic data analysis and identified as 7((2E)-4(4,5-dihydro-3-methylene-2-oxo-5-furanyl)-3-methylbut-2-enyloxy) coumarin. Minimum inhibitory concentration (MIC) was determined against fifteen fungal strains pathogenic against plants and human. The least MIC was recorded against the human pathogen, Candida tropicalis and the plant pathogens Rhizoctonia solani and Sclerotinia sclerotiorum. Antifungal activities against the human pathogens, Aspergillus fumigatus and Mucor circinelloides and plant pathogens, Colletotrichum gloeosporioides, Lasiodiplodia theobromae, Fusarium oxysporum and Rhizopus stolonifer were stronger than that of the standard antimicrobials. PMID:22088496

  8. Antifungal Drug Resistance - Concerns for Veterinarians

    Directory of Open Access Journals (Sweden)

    Bharat B. Bhanderi

    2009-10-01

    Full Text Available In the 1990s, there were increased incidences of fungal infectious diseases in human population which might be due to increase in immunosuppressive diseases. But the major concern was increase in prevalence of resistance to antifungal drugs which were reported both in the fungal isolates of human beings and that of animal origin. In both animals and human beings, resistance to antimicrobial agents has important implications for morbidity, mortality and health care costs, because resistant strains are responsible for bulk of infection in animals and human beings, and large number of antimicrobial classes offers more diverse range of resistance mechanisms to study and resistance determinants move into standard well-characterized strains that facilitates the detailed study of molecular mechanisms of resistance in microorganisms. Studies on resistance to antifungal agents has been lagging behind that of antibacterial resistance for several reasons, the foremost reason might be fungal agents were not recognized as important animal and human pathogens, until relatively in recent past. But the initial studies of antifungal drug resistance in the early 1980s, have accumulated a wealth of knowledge concerning the clinical, biochemical, and genetic aspects of this phenomenon. Presently, exploration of the molecular aspects for antifungal drug resistance has been undertaken. Recently, the focus was on several points like developing a more detailed understanding of the mechanisms of antimicrobial resistance, improved methods to detect resistance when it occurs, methods to prevent the emergence and spread of resistance and new antimicrobial options for the treatment of infections caused by resistant organisms. [Vet. World 2009; 2(5.000: 204-207

  9. ANTIFUNGAL ACTIVITY OF CORALLOCARPUS EPIGAEUS (HOOK. F.)

    OpenAIRE

    Vasantha K; Mohan V R

    2012-01-01

    In the present study, petroleum ether, hexane, chloroform, acetone and methanol extracts of leaf, stem and tuber of C. epigaeus were investigated for antifungal activity against Candida albicans, C. tropicalis, Aspergillus niger, A. flavus and A. versicolor by disc diffusion method. Methanol extract of C. epigaeus tuber exhibited maximum activity against most of the tested fungi. The petroleum ether and hexane extracts obtained from C. epigaeus stem was found to be active only against A. nige...

  10. Penetration of Candida Biofilms by Antifungal Agents

    OpenAIRE

    Al-Fattani, Mohammed A.; Douglas, L. Julia

    2004-01-01

    A filter disk assay was used to investigate the penetration of antifungal agents through biofilms containing single and mixed-species biofilms containing Candida. Fluconazole permeated all single-species Candida biofilms more rapidly than flucytosine. The rates of diffusion of either drug through biofilms of three strains of Candida albicans were similar. However, the rates of drug diffusion through biofilms of C. glabrata or C. krusei were faster than those through biofilms of C. parapsilosi...

  11. Early State Research on Antifungal Natural Products

    OpenAIRE

    Melyssa Negri; Tânia P. Salci; Cristiane S. Shinobu-Mesquita; Isis R. G. Capoci; Terezinha I. E. Svidzinski; Erika Seki Kioshima

    2014-01-01

    Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been cond...

  12. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei

    DEFF Research Database (Denmark)

    Honoré, Anders Hans; Aunsbjerg, Stina Dissing; Ebrahimi, Parvaneh;

    2016-01-01

    footprinting proved to be a supplement to bioassay-guided fractionation for investigation of antifungal properties of bacterial ferments. Additionally, three previously identified and three novel antifungal metabolites from Lb. paracasei and their potential precursors were detected and assigned using......Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive...... screening have identified compounds as antifungal. Although these are active, the compounds have been found in concentrations that are too low to account for the observed antifungal effect. It has been hypothesized that the formation of metabolites and consumption of nutrients during bacterial fermentations...

  13. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan Ascacio-Valds; Edgardo Burboa; Antonio F Aguilera-Carbo; Mario Aparicio; Ramn Prez-Schmidt; Ral Rodrguez; Cristbal N Aguilar

    2013-01-01

    Objective: To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica (E. antisyphilitica) Zucc in the wax extraction process. Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16, until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder. An aqueous solution was prepared and treated through ionic exchange liquid chromatography (Q XL) and gel permeation chromatography (G 25). The ellagitannin-rich fraction was thermogravimetrically evaluated (TGA and DTA) to test the thermo-stability of ellagic acid (monomeric unit). Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and, also mass spectroscopy was used to determine the molecular ion. Results: The principal functional groups of ellagitannin were determined, the molecular weight was 860.7 g/mol; and an effective antifungal activity against phytopathogenic fungi was demonstrated. Conclusions: It can be concluded that the new ellagitannin (860.7 g/mol) isolated from E. antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata, Fusarium oxyzporum, Colletotrichum gloeosporoides and Rhizoctnia solani.

  14. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan; Ascacio-Valdés; Edgardo; Burboa; Antonio; F; Aguilera-Carbo; Mario; Aparicio; Ramón; Pérez-Schmidt; Raúl; Rodríguez; Cristóbal; N; Aguilar

    2013-01-01

    Objective:To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica(E.antisyphilitica)Zucc in the wax extraction process.Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16,until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder.An aqueous solution was prepared and treated through ionic exchange liquid chromatography(Q XL)and gel permeation chromatography(G 25).The ellagitannin-rich fraction was thermogravimetrically evaluated(TGA and DTA)to test the thermo-stability of ellagic acid(monomeric unit).Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and.also mass spectroscopy was used to determine the molecular ion.Results:The principal functional groups of ellagitannin were determined,the molecular weight was 860.7 g/mol;and an effective antifungal activity against phytopathogenic fungi was demonstrated.Conclusions:It can be concluded that the new ellagitannin(860.7 g/mol)isolated from E.antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata,Fusarium oxyzporum,Colletotrichum gloeosporoides and Rhizoctnia solani.

  15. Antifungal activity of Terminalia superba (combretaceae

    Directory of Open Access Journals (Sweden)

    SIAKA Sohro

    2015-04-01

    Full Text Available The aim of the present study was to optimize the anticandidosic activities of Terminalia superba (TEKAM4 and the identification of major compounds present in the most active chromatographic fraction. The hydroethanolic extract TEKAM4-X0 was prepared by homogenization employing a blender. Two derivatives extracts of TEKAM4-X0 (X1-1 and X1-2 were obtained by a liquid/liquid partition of TEKAM4-X0 in a mixture of hexane and water (v/v. Three chromatographic fractions (F1, F2 and F3 from X1-2 were separated by means of Sephadex-LH20 gel filtration chromatography. All the extracts were incorporated to Sabouraud according to the agar slanted double dilution method. Ketoconazole was used as standards for antifungal assay. The entire fractions were tested on the previously prepared medium culture containing 1000 cells of C. albicans. Antifungal activity was determined by evaluating antifungal parameters values (MFC and IC50. Lastly, the structures of 2 isolated compounds were elucidated by combination of Flash chromatography and spectroscopic methods, including MS, and multiple stage RMN experiments.

  16. Econazole imprinted textiles with antifungal activity.

    Science.gov (United States)

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3μg/cm(2)) was reproducible and stable up to 4months storage at 25°C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8°C, which enabled a larger drug release at 32°C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. PMID:26883854

  17. Antifungal Efficacy of Myrtus communis Linn

    Directory of Open Access Journals (Sweden)

    Sadeghi Nejad

    2014-08-01

    Full Text Available Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro of the ethanolic extracts of Myrtus communis leaves as a growth inhibitor against 24 clinical isolates of Candida, including C. albicans, C. glabrata, and C. tropicalis also three species of Aspergillus, including A. niger, A. flavus, and A. terreus. Materials and Methods The ethanolic extract of myrtle leaves was prepared by maceration method and minimal inhibitory concentration (MIC of Myrtus communis leaves extract was determined by agar-well diffusion technique. Amphotericin B and clotrimazole were used as the positive control in this assay. Results The minimal inhibitory concentration (MICs values of Myrtus communis leaves extract ranged 0.625-5.0 µg/µL and 5-40 µg/µL against tested Candida spp. and Aspergillus spp., respectively. Conclusions Results revealed that the ethanolic extract of Myrtus communis leaves have antifungal potency against both pathogenic tested fungi, and it can be used as a natural antifungal agent.

  18. Preformed antifungal compounds in strawberry fruit and flower tissues

    OpenAIRE

    Terry, Leon A.; Joyce, Daryl C.; Adikaram, Nimal K. B.; Khambay, Bhupinder P. S.

    2004-01-01

    Antifungal activity against the pathogen, Botrytis cinerea, and a bioassay organism, Cladosporium cladosporioides, declined with advancing strawberry fruit maturity as shown by thin layer chromatography (TLC) bioassays. Preformed antifungal activity was also present in flower tissue. The fall in fruit antifungal compounds was correlated with a decline in natural disease resistance (NDR) against B. cinerea in-planta. Crude extracts of green stage I fruit (7 days after anthesi...

  19. Design, synthesis and antifungal activity of novel triazole derivatives

    Institute of Scientific and Technical Information of China (English)

    Qing lie Zhao; Yan Song; Hong Gang Hu; Shi Chong Yu; Qiu Ye Wu

    2007-01-01

    Twenty-three 1 -(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-(N-cycloproyl-N-substituted-amino)-2-propanols were designed and synthesized on the basis of the active site of lanosterol 14α-demethylase.In vitro antifungal activities showed that some of the title compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  20. Antifungal Susceptibility Testing of Ascomycetous Yeasts Isolated from Animals.

    Science.gov (United States)

    Álvarez-Pérez, Sergio; García, Marta E; Peláez, Teresa; Martínez-Nevado, Eva; Blanco, José L

    2016-08-01

    Recent studies suggest that antifungal resistance in yeast isolates of veterinary origin may be an underdiagnosed threat. We tested a collection of 92 ascomycetous yeast isolates that were obtained in Spain from birds, mammals and insects for antifungal susceptibility. MICs to amphotericin B and azoles were low, and no resistant isolates were detected. Despite these results, and given the potential role of animals as reservoirs of resistant strains, continuous monitoring of antifungal susceptibility in the veterinary setting is recommended. PMID:27216048

  1. Factors predicting prolonged empirical antifungal treatment in critically ill patients

    OpenAIRE

    Zein, Mohamed; Parmentier-Decrucq, Erika; Kalaoun, Amer; Bouton, Olivier; Wallyn, Frédéric; Baranzelli, Anne; Elmanser, Dia; Sendid, Boualem; Nseir, Saad

    2014-01-01

    Objective To determine the incidence, risk factors, and impact on outcome of prolonged empirical antifungal treatment in ICU patients. Methods Retrospective observational study performed during a one-year period. Patients who stayed in the ICU >48 h, and received empirical antifungal treatment were included. Patients with confirmed invasive fungal disease were excluded. Prolonged antifungal treatment was defined as percentage of days in the ICU with antifungals > median percentage in the whol...

  2. ANTIFUNGAL ACTIVITY OF SOME COLEUS SPECIES GROWING IN NILGIRIS

    OpenAIRE

    P Nilani; Duraisamy, B.; Dhanabal, P.S.; khan, Saleemullah; Suresh, B.; Shankar, V; Kavitha, K.Y.; Syamala, G.

    2006-01-01

    The in vitro antifungal activity of solvent extracts of Coleus forskohlii, Coleus blumei and Coleus barbatus were compared by testing against some pathogenic fungi like Aspergillus niger, Aspergillus fumigatus, Aspergillus ruantii, Proteus vulgaris and Candida albicans. The petroleum ether extract of Coleus forskohlii and Coleus barbatus exhibited significant antifungal activity against all the selected organisms. The extracts of Coleus blumei did not show any significant antifungal activity ...

  3. Emerging Threats in Antifungal-Resistant Fungal Pathogens

    OpenAIRE

    Sanglard, Dominique

    2016-01-01

    The use of antifungal drugs in the therapy of fungal diseases can lead to the development of antifungal resistance. Resistance has been described for virtually all antifungal agents in diverse pathogens, including Candida and Aspergillus species. The majority of resistance mechanisms have also been elucidated at the molecular level in these pathogens. Drug resistance genes and genome mutations have been identified. Therapeutic choices are limited for the control of fungal diseases, and it is ...

  4. Antifungals of acromyrmex, allomerus, and tetraponera ant- and cultivarassociated bacteria

    OpenAIRE

    Barke, Joerg

    2013-01-01

    The central purpose of this thesis is to test the utility of ant-microbe associations for discovering antifungal compounds with novel molecular (sub-) structures. Novel antifungals displaying reduced adverse side-effects, increased water-solubilities, and/or strong fungicidal properties would be helpful in medical science for responding to the rising prevalence of human mycoses and for solving problems with adverse side-effects in currently used antifungal drugs. Host-symbiont systems m...

  5. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  6. Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT-3

    OpenAIRE

    Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Lorne M. Golub

    2002-01-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextros...

  7. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance

    OpenAIRE

    Alcazar-Fuoli, Laura; Mellado, Emilia

    2013-01-01

    Ergosterol, the major sterol of fungal membranes, is essential for developmental growth and the main target of antifungals that are currently used to treat fatal fungal infections. Emergence of resistance to existing antifungals is a current problem and several secondary resistance mechanisms have been described in Aspergillus fumigatus clinical isolates. A full understanding of ergosterol biosynthetic control therefore appears to be essential for improvement of antifungal efficacy and to pre...

  8. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina;

    2014-01-01

    as their exposure to antibiotics. Data on outpatient prescribing of antimicrobials (ATC J01) in 2010 were obtained from a prescription database covering Aragón (northeastern Spain). The antimicrobial consumption at the individual level was analysed both according to the volume of DDD and the number of packages...... with highest consumption) were responsible for 21% of the total DDD consumed and received ≥6 packages per year. Elderly adults (≥60 years) and small children (0-9 years) were those exposed to the highest volume of antibiotics and with the most frequent exposure, respectively. Heavy users received a high...

  9. Overdosing on Antibiotics

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Du, a Beijing resident in her 60s, believes that an antibiotic is a panacea for the maladies of her now 6-year-old grand- daughter Guoguo. Du began to take care of her granddaugh- ter since the child was merely 2 months old, for the gid's parents were busy. She is comfortable with her caretaker duties except when the girl runs high fevers. Then, the anxious grandma will feed the girl antibiotics or take her to a private child clinic nearby for intravenous infusion.

  10. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02.

    Science.gov (United States)

    Huh, Chang Ki; Hwang, Tae Yean

    2016-03-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid. PMID:27069906

  11. Suppression of antibiotic resistance acquisition by combined use of antibiotics.

    Science.gov (United States)

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2015-10-01

    We analyzed the effect of combinatorial use of antibiotics with a trade-off relationship of resistance, i.e., resistance acquisition to one drug causes susceptibility to the other drug, and vice versa, on the evolution of antibiotic resistance. We demonstrated that this combinatorial use of antibiotics significantly suppressed the acquisition of resistance.

  12. [Antibiotical prophylaxy in gynecology].

    Science.gov (United States)

    Záhumenský, J; Menzlová, E; Zmrhal, J; Kučera, E

    2013-08-01

    Gynecological surgery is considered to be clear with possible contamination by gram-positive cocci from the skin, gram-negatives from the perineum or groins or polymicrobial biocenosis from vagina, depending on the surgical approach. Antibiotical prophylaxy enforces the natural mechanisms of immunity and helps to exclude present infection. There were presented many studies comparing useful effect of prophylaxis in gynecological surgery. The benefits of antibiotical prophylaxy before IUD insertion, before the cervical surgery and before hysteroscopies were not verified. On the other hand the prophylaxy of vaginal surgery including vaginal hysterectomy decreases the number of postoperative febrile complications. The positive influence of prophylaxis before the simple laparoscopy and laparoscopy without bowel injury or the opening of the vagina was not evidently verified. In abdominal hysterectomy the antibiotical prophylaxy decreases the incidence of postoperative complications significantly. The administration of 2 g of cefazolin can be recommended. In procedures taking more than 3 hours the repeated administration of cefazolin is suitable. New urogynecological procedures, using mesh implants, were not sufficiently evaluated as for postoperative infections and the posible antibiotical effect. The presence of implant in possibly non sterile area should be considered as high risc of postoperative complications. PMID:24040985

  13. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the i

  14. Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46.

    Science.gov (United States)

    Li, Rui-Fang; Lu, Zhi-Fang; Sun, Ya-Nan; Chen, Shi-Hua; Yi, Yan-Jie; Zhang, Hui-Ru; Yang, Shuo-Ye; Yu, Guang-Hai; Huang, Liang; Li, Chao-Nan

    2016-09-01

    Chromogranin A (CGA)-N46, a derived peptide of human chromogranin A, has antifungal activity. To further research the active domain of CGA-N46, a series of derivatives were designed by successively deleting amino acid from both terminus of CGA-N46, and the amino acid sequence of each derivative was analyzed by bioinformatic software. Based on the predicted physicochemical properties of the peptides, including half-life time in mammalian reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo), instability index, aliphatic index and grand average of hydropathicity (GRAVY), the secondary structure, net charge, the distribution of hydrophobic residues and hydrophilic residues, the final derivatives CGA-N15, CGA-N16, CGA-N12 and CGA-N8 were synthesized by solid-phase peptide synthesis. The results of bioinformatic analysis showed that CGA-N46 and its derivatives were α-helix, neutral or weak positive charge, hydrophilic, and CGA-N12 and CGA-N8 were more stable than the other derivatives. The results of circular dichroism confirmed that CGA-N46 and its derived peptides displayed α-helical structure in an aqueous solution and 30 mM sodium dodecylsulfate, but α-helical contents decreased in hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-N12 and CGA-N8 had higher antifungal activities than their mother peptide CGA-N46. Among of the derived peptides, CGA-N12 showed the least hemolytic activity. In conclusion, we have successfully identified the active domain of CGA-N46 with strong antifungal activity and weak hemolytic activity, which provides the possibility to develop a new class of antibiotics.

  15. Antifungal Effect of Streptomyces 702 Antifungal Monomer Component DZP8 on Rhizoctonia solani and Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia solani and on the mycelium growth, conidial formation, germination, appressorium formation of Magnaporthe grisea. The results showed that the antifungal monomer component DZP8 has strong antifungal effect on both the R. solani and M. grisea. The EC50 and EC90 of DZP8 were 1.81 and 3.35 μg/ml on Ft. solani respectively, and 37.01 and 136.21 μg/ml on M. grisea respectively. Under the treatment of 48.01 μg/ml DZP8, the sclerotium formation rate of R. solani was just 39.21%, the formation time delayed by 216 h and the dry weight decreased by 81.37% in comparison the con- trol; and 33.51 μg/ml DZP8 significantly inhibited the sclerotium germination. In the presence of 160.08 μg/ml DZP8, the sporulation of M. grisea was just 9.29% of control sample; 20.14 μg/ml DZP8 inhibited the conidial germination suppression rate by 95.16%, and the appressorium formation by 100%.

  16. A study of antibiotic prescribing

    DEFF Research Database (Denmark)

    Jaruseviciene, L.; Radzeviciene-Jurgute, R.; Jurgutis, A.;

    2012-01-01

    Background. Globally, general practitioners (GPs) write more than 90% of all antibiotic prescriptions. This study examines the experiences of Lithuanian and Russian GPs in antibiotic prescription for upper respiratory tract infections, including their perceptions of when it is not indicated...... to ensure correct antibiotic use. Further, GPs should be supported in enhancing their communication skills about antibiotic use with their patients and encouraged to implement a shared decision-making model in their practices. © Versita Sp. z o.o....

  17. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    Directory of Open Access Journals (Sweden)

    Barke Jörg

    2010-08-01

    Full Text Available Abstract Background Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. Results In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. Conclusions Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.

  18. Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Erika M. Stein

    2011-04-01

    Full Text Available The resistance of pathogens to commonly used antibiotics has enhanced morbidity and mortality and has triggered the search for new drugs. Several species of the red alga genus Laurencia are very interesting candidates as potential sources of natural products with pharmaceutical activity because they are known to produce a wide range of chemically interesting halogenated secondary metabolites. This is an initial report of the antifungal activities of the secondary metabolites of five species of Laurencia, collected in the state of Espírito Santo, against three strains of pathogenic fungi: Candida albicans (CA, Candida parapsilosis (CP, and Cryptococcus neoformans (CN. Minimum inhibitory concentrations (MIC of the algal extracts were determined by serial dilution method in RPMI 1640 Medium in 96-well plates according to the NCCLS and microbial growth was determined by absorbance at 492nm. A result showing maintenance or reduction of the inoculum was defined as fungistatic, while fungicidal action was no observed growth in the 10 µL fungistatic samples subcultured in Sabouraud Agar. Our results indicate that apolar extracts of Laurencia species possess antifungal properties and encourage continued research to find new drugs for therapy of infectious diseases in these algae.

  19. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2015-01-01

    Full Text Available The aim of the study was to isolate and characterize the lactic acid bacteria (LAB from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  20. Antifungal activity of beta-asarone from rhizomes of Acorus gramineus.

    Science.gov (United States)

    Lee, Jee Yeon; Lee, Jung Yeop; Yun, Bong-Sik; Hwang, Byung Kook

    2004-02-25

    An antifungal substance was isolated from the extract of Acorus gramineus using various chromatographic procedures. The antibiotic was identified as beta-asarone, cis-2,4,5-trimethoxy-1-propenylbenzene, on the basis of the high-resolution EI-mass, NMR, and UV spectral data. Beta-asarone completely inhibited mycelial growth of some plant pathogenic fungi, Cladosporium cucumerinum,Colletotrichum orbiculare, Magnaporthe grisea, and Pythium ultimum, in a range of 0.5-30 microg/mL. The growth of Bacillus subtilis, Erwinia carotovora subsp. carotovora, Ralstonia solanacearum, and Xanthomonas campestris pv. vesicatoria was slightly suppressed by beta-asarone. As the concentration of beta-asarone increased, M. grisea infection was drastically inhibited on rice leaves. Treatment with 500 microg/mL of beta-asarone also greatly suppressed lesion formation of Co. orbiculare on cucumber leaves. This is the first study to demonstrate in vitro and in vivo antifungal activity of beta-asarone against plant fungal pathogens M. grisea and C. orbiculare. PMID:14969530

  1. Fungal infections in marrow transplant recipients under antifungal prophylaxis with fluconazole

    Directory of Open Access Journals (Sweden)

    Oliveira J.S.R.

    2002-01-01

    Full Text Available Fungal infection is one of the most important causes of morbidity and mortality in bone marrow transplant (BMT recipients. The growing incidence of these infections is related to several factors including prolonged granulocytopenia, use of broad-spectrum antibiotics, conditioning regimens, and use of immunosuppression to avoid graft-versus-host disease (GvHD. In the present series, we report five cases of invasive mold infections documented among 64 BMT recipients undergoing fluconazole antifungal prophylaxis: 1 A strain of Scedosporium prolificans was isolated from a skin lesion that developed on day +72 after BMT in a chronic myeloid leukemic patient. 2 Invasive pulmonary aspergillosis (Aspergillus fumigatus was diagnosed on day +29 in a patient with a long period of hospitalization before being transplanted for severe aplastic anemia. 3 A tumoral lung lesion due to Rhizopus arrhizus (zygomycosis was observed in a transplanted patient who presented severe chronic GvHD. 4 A tumoral lesion due to Aspergillus spp involving the 7th, 8th and 9th right ribs and local soft tissue was diagnosed in a BMT patient on day +110. 5 A patient with a history of Ph1-positive acute lymphocytic leukemia exhibited a cerebral lesion on day +477 after receiving a BMT during an episode of severe chronic GvHD. At that time, blood and spinal fluid cultures yielded Fusarium sp. Opportunistic infections due to fungi other than Candida spp are becoming a major problem among BMT patients receiving systemic antifungal prophylaxis with fluconazole.

  2. Investigating the Antibiotic Resistance Problem.

    Science.gov (United States)

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  3. Antifungal and antiviral products of marine organisms.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  4. Antifungal activity of traditional medicinal plants from Tamil Nadu, India

    Institute of Scientific and Technical Information of China (English)

    Duraipandiyan V; Ignacimuthu S

    2011-01-01

    Objective:To assess the antifungal activity of hexane, ethyl acetate and methanol extracts of 45 medicinal plants and to determine the minimum inhibitory concentration for each extract against human pathogenic fungi. Methods:A total of 45 medicinal plants were collected from different places of Tamil Nadu and identified. Hexane, ethyl acetate and methanol extracts of 45 medicinal plants were assessed for antifungal susceptibility using broth microdilution method. Two known antifungal agents were used as positive controls. Results: Most of the extracts inhibited more than four fungal strains. From the evaluation we found that ethyl acetate extracts inhibited large number of fungal growth. Hexane extracts also nearly showed the same level of inhibition against fungal growth. Methanol extracts showed the minimum antifungal activity. Among the 45 plants tested, broad spectrum antifungal activity was detected in Albizzia procera (A. procera), Atalantia monophylla, Asclepias curassavica, Azima tetracantha, Cassia fistula (C. fistula), Cinnomomum verum, Costus speciosus (C. speciosus), Nymphaea stellata, Osbeckia chinensis, Piper argyrophyllum, Punica granatum, Tinospora cordifolia and Toddalia asiatica (T. asiatica). Promising antifungal activity was seen in A. procera, C. speciosus, C. fistula and T. asiatica. Conclusions:It can be concluded that the plant species assayed possess antifungal properties. Further phytochemical research is needed to identify the active principles responsible for the antifungal effects of some of these medicinal plants.

  5. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.

  6. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    Science.gov (United States)

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  7. Rapid determination of antifungal activity by flow cytometry.

    OpenAIRE

    Green, L.; Petersen, B.; Steimel, L; Haeber, P; Current, W

    1994-01-01

    We have developed a rapid assay of antifungal activity which utilizes flow cytometry to detect accumulation of a vital dye in drug-damaged fungal cells. Results of these studies suggest that flow cytometry may provide an improved, rapid method for determining and comparing the antifungal activities of compounds with differing modes of action.

  8. Synthesis of Novel Antifungal Triazole Compounds

    Institute of Scientific and Technical Information of China (English)

    Yong CHU; Ming Xia XU; Ding LU

    2004-01-01

    Based on our previous studies of 3D-QSAR, 38 novel objective compounds belonging to 4 series were designed and successfully synthesized directed by the idea of reconstructing the structure of non-pharmacophores while reserving essential ones in triazoles. In vitro pilot studies on their antifungal activities showed that most compounds have inhibitory effects on C.albicans and some inhibit S.cerevisiae also. The effects on C.albicans of 5 compounds are more potent than or equal to that of fluconazole or itraconazole.

  9. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  10. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  11. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  12. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents.

    Science.gov (United States)

    Chandrika, Nishad Thamban; Shrestha, Sanjib K; Ngo, Huy X; Garneau-Tsodikova, Sylvie

    2016-08-15

    The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested. PMID:27301676

  13. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.;

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... with the strongest antifungal activity were examined by the milk agar plate method with three different mould strains isolated from spoiled dairy products as target microorganisms and were compared with the antifungal effectiveness of standard antifungal strains Lactobacillus rhamnosus VT1 and Lb. plantarum DC 1246...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  14. Advances in synthetic approach to and antifungal activity of triazoles

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Sharma

    2011-05-01

    Full Text Available Several five membered ring systems, e.g., triazole, oxadiazole dithiazole and thiadiazole with three heteroatoms at symmetrical or asymmetrical positions have been studied because of their interesting pharmacological properties. In this article our emphasis is on synthetic development and pharmacological activity of the triazole moiety which exhibit a broad spectrum of pharmacological activity such as antifungal, antibacterial, anti-inflammatory and anticancer etc. Triazoles have increased our ability to treat many fungal infections, for example, candidiasis, cryptococcal meningitis, aspergillosis etc. However, mortality due to these infections even with antifungal therapy is still unacceptably high. Therefore, the development of new antifungal agents targeting specific fungal structures or functions is being actively pursued. Rapid developments in molecular mycology have led to a concentrated search for more target antifungals. Although we are entering a new era of antifungal therapy in which we will continue to be challenged by systemic fungal diseases, the options for treatment will have greatly expanded.

  15. Novel antifungal peptides from Ceylon spinach seeds.

    Science.gov (United States)

    Wang, H; Ng, T B

    2001-11-01

    Two novel antifungal peptides, designated alpha- and beta-basrubrins, respectively, were isolated from seeds of the Ceylon spinach Basella rubra. The purification procedure involved saline extraction, (NH(4))(2)SO(4) precipitation, ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose and FPLC-gel filtration on Superdex peptide column. alpha- and beta-basrubrins exhibited a molecular weight of 4.3 and 5 kDa, respectively. They inhibited translation in a rabbit reticulocyte system with an IC(50) value of 400 and 100 nM, respectively. alpha- and beta-basrubrin inhibited HIV-1 reverse transcriptase by (79.4 +/- 7.8)% and (54.6 +/- 3.6)%, respectively, at a concentration of 400 microM, and (10.56 +/- 0.92)% and (2.12 +/- 0.81)%, respectively, at a concentration of 40 microM. Both alpha- and beta-basrubrins exerted potent antifungal activity toward Botrytis cinerea, Mycosphaerella arachidicola, and Fusarium oxysporum. PMID:11688973

  16. Resistance to antifungals that target CYP51.

    Science.gov (United States)

    Parker, Josie E; Warrilow, Andrew G S; Price, Claire L; Mullins, Jonathan G L; Kelly, Diane E; Kelly, Steven L

    2014-10-01

    Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue. PMID:25320648

  17. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  18. Extended Perioperative Antibiotic Coverage in Conjunction with Intraoperative Bile Cultures Decreases Infectious Complications after Pancreaticoduodenectomy

    Science.gov (United States)

    Fathi, Amir H.; Jackson, Terence; Barati, Mehdi; Eghbalieh, Babak; Siegel, Kelly A.; Siegel, Christopher T.

    2016-01-01

    Background. Bile contamination from the digestive tract is a well-known risk factor for postoperative complications. Despite the literature concerning prevalence of bacterobilia and fungobilia in patients with biliary pathologies, there are no specific recommendations for perioperative antimicrobial coverage for biliary/pancreatic procedures. We evaluated the effect of at least 72 hours of perioperative broad spectrum antibiotic coverage on outcomes of pancreaticoduodenectomy (PD). Materials and Methods. A retrospective review of all patients at Case Medical Center of Case Western Reserve University undergoing PD procedure, from 2006 to 2011, was performed (n = 122). Perioperative data including demographics, comorbidities, biliary instrumentation, antibiotic coverage, culture results, and postoperative outcomes were analyzed. Propensity score matching method was used to match the patients according to duration of antibiotic coverage into two groups: 72 hours (A72) and 24 hours (A24). Results. Longer broad spectrum antibiotic coverage in group A72 resulted in significantly less surgical site infections after PD, compared to routine 24 hours of perioperative antibiotics in group A24. This study did not reveal a statistically significant decrease in postoperative fungal infections in patients receiving preoperative antifungals. Conclusion. Prolonged perioperative antibiotic therapy in conjunction with intraoperative bile cultures decreases the short-term infectious complications of PD, with no significant increase in Clostridium difficile colitis incidence. PMID:27147813

  19. Antibiotic Prophylaxis in Severe Acute Pancreatitis: Do We Need More Meta-Analytic Studies?

    Directory of Open Access Journals (Sweden)

    Raffaele Pezzilli

    2009-03-01

    Full Text Available Several guidelines on acute pancreatitis suggest that carbapenems should be used prophylactically and should be continued for 14 days, and that the development of infected necrosis should be assessed using fine-needle aspiration and the sample should be cultured for germ isolation and characterization [1]. In routine clinical practice, antibiotics are used to cure both extrapancreatic infections which appear during the course of acute pancreatitis and infected pancreatic necrosis and also as a prophylaxis in those patients who have pancreatic necrosis in order to prevent possible infection from the necrosis. In the treatment of extrapancreatic infections, the most used antibiotics were cephalosporins whereas carbapenems, glycopeptides and antifungal antibiotics were the most used antibiotics in the treatment of proven infected pancreatic necrosis [2]. Moreover, there are very few topics in pancreatology which cause as much debate as that regarding the utility of antibiotic prophylaxis in severe acute pancreatitis. There are very few human randomized studies and there are more meta-analyses published than studies published. Of course, the cost of a meta-analysis is much less than carrying out a study on the efficacy of antibiotics in severe acute pancreatitis.

  20. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  1. Pneumococcal resistance to antibiotics.

    OpenAIRE

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumo...

  2. Antibiotic Exposure and Juvenile Idiopathic Arthritis: A Case–Control Study

    Science.gov (United States)

    Scott, Frank I.; Haynes, Kevin; Putt, Mary E.; Rose, Carlos D.; Lewis, James D.; Strom, Brian L.

    2015-01-01

    BACKGROUND AND OBJECTIVE: Recent evidence has linked childhood antibiotic use and microbiome disturbance to autoimmune conditions. This study tested the hypothesis that antibiotic exposure was associated with newly diagnosed juvenile idiopathic arthritis (JIA). METHODS: We performed a nested case–control study in a population-representative medical records database from the United Kingdom. Children with newly diagnosed JIA were compared with age- and gender-matched control subjects randomly selected from general practices containing at least 1 case, excluding those with inflammatory bowel disease, immunodeficiency, or other systemic rheumatic diseases. Conditional logistic regression was used to examine the association between antibacterial antibiotics (including number of antibiotic courses and timing) and JIA after adjusting for significant confounders. RESULTS: Any antibiotic exposure was associated with an increased rate of developing JIA (adjusted odds ratio: 2.1 [95% confidence interval: 1.2–3.5]). This relationship was dose dependent (adjusted odds ratio over 5 antibiotic courses: 3.0 [95% confidence interval: 1.6–5.6]), strongest for exposures within 1 year of diagnosis, and did not substantively change when adjusting for number or type of infections. In contrast, nonbacterial antimicrobial agents (eg, antifungal, antiviral) were not associated with JIA. In addition, antibiotic-treated upper respiratory tract infections were more strongly associated with JIA than untreated upper respiratory tract infections. CONCLUSIONS: Antibiotics were associated with newly diagnosed JIA in a dose- and time-dependent fashion in a large pediatric population. Antibiotic exposure may play a role in JIA pathogenesis, perhaps mediated through alterations in the microbiome. PMID:26195533

  3. Comparative study on the effects of two antifungal drugs against Candida albicans by microcalorimetry and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qing-Lian [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Zhang, Juan [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Department of Stomatology, Hubei Provincial Maternal and Child Health Hospital, Wuhan 430070 (China); Xu, Zi-Qiang; Li, Ran [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Jiang, Feng-Lei, E-mail: fljiang@whu.edu.cn [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Liu, Yi [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Microcalorimetry is a fast, simple method to study the antibiotic property of drugs. Black-Right-Pointing-Pointer We noticed that the antibiotic effect of ITZ was slightly better than that of KTZ. Black-Right-Pointing-Pointer We perform the TEM to study the morphology changes of C. albicans cells. - Abstract: In this work, a multi-channel thermal activity monitor (TAM 2277) was applied to study the growth metabolism of Candida albicans (C. albicans) in vitro in the absence and presence of different concentrations of ketoconazole (KTZ) and itraconazole (ITZ). The results showed that the half inhibiting concentrations (IC{sub 50}) of C. albicans by KTZ and ITZ are 73.5 and 66.3 {mu}mol L{sup -1}, respectively. So the antibiotic effect of ITZ was slightly better than that of KTZ. The morphology of C. albicans cells both in the absence and presence of antifungal agents was examined by transmission electron microscopy (TEM). Our research also suggests that microcalorimetry is a fast, simple, non-invasive, non-destructive and more sensitive method, and can be easily performed to study the antibiotic property of different species of drugs on microorganism compared to other biological and clinical methods.

  4. Comparative study on the effects of two antifungal drugs against Candida albicans by microcalorimetry and transmission electron microscopy

    International Nuclear Information System (INIS)

    Highlights: ► Microcalorimetry is a fast, simple method to study the antibiotic property of drugs. ► We noticed that the antibiotic effect of ITZ was slightly better than that of KTZ. ► We perform the TEM to study the morphology changes of C. albicans cells. - Abstract: In this work, a multi-channel thermal activity monitor (TAM 2277) was applied to study the growth metabolism of Candida albicans (C. albicans) in vitro in the absence and presence of different concentrations of ketoconazole (KTZ) and itraconazole (ITZ). The results showed that the half inhibiting concentrations (IC50) of C. albicans by KTZ and ITZ are 73.5 and 66.3 μmol L−1, respectively. So the antibiotic effect of ITZ was slightly better than that of KTZ. The morphology of C. albicans cells both in the absence and presence of antifungal agents was examined by transmission electron microscopy (TEM). Our research also suggests that microcalorimetry is a fast, simple, non-invasive, non-destructive and more sensitive method, and can be easily performed to study the antibiotic property of different species of drugs on microorganism compared to other biological and clinical methods.

  5. Structures and Properties of Naturally Occurring Polyether Antibiotics

    Directory of Open Access Journals (Sweden)

    Jacek Rutkowski

    2013-01-01

    Full Text Available Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.

  6. Optimizing Antibiotic Use in Nursing Homes Through Antibiotic Stewardship.

    Science.gov (United States)

    Sloane, Philip D; Huslage, Kirk; Kistler, Christine E; Zimmerman, Sheryl

    2016-01-01

    Antibiotic stewardship is becoming a requirement for nursing homes. Programs should be interdisciplinary and multifaceted; should have support from nursing home administrators; and should aim to promote antibiotics only when needed, not just in case. Recommended components include use of evidence-based guidelines; ongoing monitoring of antibiotic prescriptions, cultures, and study results; monitoring of health outcomes; use of nursing home-specific antibiograms; regular reporting and feedback to medical providers and nurses; and education of residents and families. PMID:27621341

  7. Antifungal activities of Terminalia ivorensis A. Chev. bark extracts against Candida albicans and Aspergillus fumigatus.

    OpenAIRE

    Ouattara Sitapha; KPOROU KOUASSI ELISEE; Djaman Allico Joseph

    2013-01-01

    Abstract The present study was undertaken to evaluate in vitro antifungal activity of aqueous and hydroacoholic extracts from bark of Terminalia ivorensis A. Chev. (Combretaceae). In vitro antifungal activity of all the extracts was done by agar slant double dilution method. Candida albicans and Aspergillus fumigatus clinically important strains were used for the study. ketoconazole was used as standards for antifungal assay. Antifungal activity was determinated by evaluating of antifung...

  8. Antifungal Activity of Fruit Extracts of Different Water Chestnut Varieties

    Directory of Open Access Journals (Sweden)

    Mohammad ANOWAR RAZVY

    2011-03-01

    Full Text Available The antifungal activity of three varieties (red, green and wild of water chestnut fruit extracts was studied against a number of fungal species. A strong antifungal activity of ethanol and petroleum extract was found against the treated fungi resulting remarkable inhibition zone in comparison to both Dithane-M45 fungicide and control. It has also been evident that wild variety of water chestnut was comparatively more efficient in respect to antifungal activity compared to the red and green variety of the same plant.

  9. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Science.gov (United States)

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. PMID:26586600

  10. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    Science.gov (United States)

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications. PMID:20208435

  11. Antibiotic prevention of postcataract endophthalmitis

    DEFF Research Database (Denmark)

    Kessel, Line; Flesner, Per; Andresen, Jens;

    2015-01-01

    Endophthalmitis is one of the most feared complications after cataract surgery. The aim of this systematic review was to evaluate the effect of intracameral and topical antibiotics on the prevention of endophthalmitis after cataract surgery. A systematic literature review in the MEDLINE, CINAHL......, Cochrane Library and EMBASE databases revealed one randomized trial and 17 observational studies concerning the prophylactic effect of intracameral antibiotic administration on the rate of endophthalmitis after cataract surgery. The effect of topical antibiotics on endophthalmitis rate was reported by one...... with the use of intracameral antibiotic administration of cefazolin, cefuroxime and moxifloxacin, whereas no effect was found with the use of topical antibiotics or intracameral vancomycin. Endophthalmitis occurred on average in one of 2855 surgeries when intracameral antibiotics were used compared to one...

  12. Antibiotics for acute maxillary sinusitis

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Borisenko, Oleg V; Kovanen, Niina;

    2008-01-01

    with a pooled RR of 0.74 (95% CI 0.65 to 0.84) at 7 to 15 days follow up. None of the antibiotic preparations was superior to each other. AUTHORS' CONCLUSIONS: Antibiotics have a small treatment effect in patients with uncomplicated acute sinusitis in a primary care setting with symptoms for more than seven......BACKGROUND: Expert opinions vary on the appropriate role of antibiotics for sinusitis, one of the most commonly diagnosed conditions among adults in ambulatory care. OBJECTIVES: We examined whether antibiotics are effective in treating acute sinusitis, and if so, which antibiotic classes...... or antibiotics from different classes for acute maxillary sinusitis in adults. We included trials with clinically diagnosed acute sinusitis, whether or not confirmed by radiography or bacterial culture. DATA COLLECTION AND ANALYSIS: At least two review authors independently screened search results, extracted...

  13. ANTIFUNGAL ACTIVITY OF CORALLOCARPUS EPIGAEUS (HOOK. F.

    Directory of Open Access Journals (Sweden)

    Vasantha K

    2012-01-01

    Full Text Available In the present study, petroleum ether, hexane, chloroform, acetone and methanol extracts of leaf, stem and tuber of C. epigaeus were investigated for antifungal activity against Candida albicans, C. tropicalis, Aspergillus niger, A. flavus and A. versicolor by disc diffusion method. Methanol extract of C. epigaeus tuber exhibited maximum activity against most of the tested fungi. The petroleum ether and hexane extracts obtained from C. epigaeus stem was found to be active only against A. niger, A. flavus and A. versicolor. All the crude extracts exhibited activity against A. niger and A. flavus. The tuber extract of C. epigaeus showed higher inhibitory effect than leaf and stem. This kind of study could generate more such ideas for re-inventing and using herbs in combination to treat many more diseases.

  14. Antifungal steroid saponins from Dioscorea cayenensis.

    Science.gov (United States)

    Sautour, M; Mitaine-Offer, A-C; Miyamoto, T; Dongmo, A; Lacaille-Dubois, M-A

    2004-01-01

    From the rhizomes of Dioscorea cayenensis Lam.-Holl (Dioscoreaceae), the new 26- O- beta- D-glucopyranosyl-22-methoxy-3 beta,26-dihydroxy-25( R)-furost-5-en-3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 1) was isolated together with the known dioscin ( 2) and diosgenin 3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 3). Their structures were established on the basis of spectral data. Compound 2 exhibited antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis (MICs of 12.5, 12.5 and 25 micro g/mL, respectively) whereas 3 showed weak activity and 1 was inactive. PMID:14765305

  15. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  16. Anti-fungal activity of irradiated chitosan

    International Nuclear Information System (INIS)

    Anti-fungal activity of chitosan induced by irradiation has been investigated. Commercial chitosan samples of 8B (80% deacetylation) and l0B (99% deacetylation) were irradiated by γ-ray in dry condition. Highly deacethylated chitosan (10B) at low dose irradiation (75 kGy) was effective for inhibition of fungal growth. The sensitivities of Exobasidium vexans, Septoria chrysanthemum and Gibberella fujikuroi for the irradiated chitosan were different and the necessary concentrations of chitosan were 550, 350 and 250 μg/ml, respectively. For the plant growth, low deacethylation (chitosan 8B) and high dose (500 kGy) was effective and the growth of chrysanthemum was promoted by spraying the irradiated chitosan. (author)

  17. Probiotics as Antifungals in Mucosal Candidiasis.

    Science.gov (United States)

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections. PMID:26826375

  18. Antibiotics in otorhinolaryngology practice

    Directory of Open Access Journals (Sweden)

    Stefan-Mikić Sandra

    2002-01-01

    Full Text Available Introduction This study investigated utilization of antibacterial agents at the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman and at the Ear, Nose and Throat Clinic of the Clinical Center Novi Sad, in the period February - March 2001. Material and methods All antibacterial agents were classified as group J, regarding Anatomic-Therapeutic-Chemical Classification. Data on drug utilization were presented in Defined Daily Doses (DDD. Patients who were under observation were all treated with antibiotics. Results In regard to prescribed treatment in the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman, most outpatients were treated with macrolide antibiotics - in 26.21%; combination of penicillin and beta-lactamase inhibitors in 20.83% and pyranosides in 16.12%. At the Ear, Nose and Throat Clinic of the Clinical Center Novi Sad, macrolides and lincosamines were most frequently used - in 20.46%; cephalosporins in 19.87% and penicillins susceptible to beta-lactamase in 18.85%. It is extremely positive and in agreement with current pharmacotherapeutic principles that in both institutions peroral ampicillins have not been prescribed. Aminoglycosides have been prescribed in less than 1% of patients of the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman, whereas they were much more frequently prescribed at the Ear, Nose and Throat Clinic of the Clinical Center Novi Sad - in 11.25%. Although there is a positive postantibiotic effect in regard to these antibiotics and it is recommended to use them once a day, in both examined institutions aminoglycosides were given twice a day. In regard to bacterial identification it was done in 80.76% of patients of the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman, while in the Ear, Nose and Throat Clinic of the Clinical Center

  19. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  20. Antifungal Effect of (+-Pinoresinol Isolated from Sambucus williamsii

    Directory of Open Access Journals (Sweden)

    Bomi Hwang

    2010-05-01

    Full Text Available In this study, we investigated the antifungal activity and mechanism of action of (+-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH indicated that the (+-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV experiments. Therefore, the present study indicates that (+-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  1. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii.

    Science.gov (United States)

    Hwang, Bomi; Lee, Juneyoung; Liu, Qing-He; Woo, Eun-Rhan; Lee, Dong Gun

    2010-05-14

    In this study, we investigated the antifungal activity and mechanism of action of (+)-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+)-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+)-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the (+)-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV) experiments. Therefore, the present study indicates that (+)-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  2. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins.

    Science.gov (United States)

    Kfoury, Miriana; Lounès-Hadj Sahraoui, Anissa; Bourdon, Natacha; Laruelle, Frédéric; Fontaine, Joël; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-04-01

    Effects of the encapsulation in cyclodextrins (CDs) on the solubility, photostability and antifungal activities of some phenylpropanoids (PPs) were investigated. Solubility experiments were carried out to evaluate the effect of CDs on PPs aqueous solubility. Loading capacities and encapsulation efficiencies of freeze-dried inclusion complexes were determined. Moreover, photostability assays for both inclusion complexes in solution and solid state were performed. Finally, two of the most widespread phytopathogenic fungi, Fusarium oxysporum and Botrytis cinerea, were chosen to examine the antifungal activity of free and encapsulated PPs. Results showed that encapsulation in CDs significantly increased the solubility and photostability of studied PPs (by 2 to 17-fold and 2 to 44-fold, respectively). Free PPs revealed remarkable antifungal properties with isoeugenol showing the lowest half-maximal inhibitory concentration (IC50) values of mycelium growth and spore germination inhibition. Encapsulated PPs, despite their reduced antifungal activity, could be helpful to solve drawbacks such as solubility and stability.

  3. Research to Identify Effective Antifungal Agents, 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1991-09-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990). The objectives of the present study was to evaluate up to 10 candidate fungicides.

  4. Antifungal activity of fruit pulp extract from Bromelia pinguin.

    Science.gov (United States)

    Camacho-Hernández, I L; Chávez-Velázquez, J A; Uribe-Beltrán, M J; Ríos-Morgan, A; Delgado-Vargas, F

    2002-08-01

    The methanol extract of the fruit pulp of Bromelia pinguin was evaluated for its antifungal activity. The extract showed a significant activity against some Trichophyton strains, although Candida strains were generally insensitive.

  5. Antifungal activity of Bacillus sp. isolated from compost.

    Science.gov (United States)

    Czaczyk, K; Stachowiak, B; Trojanowska, K; Gulewicz, K

    2000-01-01

    Four strains of Bacillus isolated from lupine compost exhibited an antifungal activity against six plant fungal pathogens (Rhizoctonia solani, Bipolaris sorokiniana, Sclerotinia sclerotiorum, Trichothecium roseum, Fusarium solani, Fusarium oxysporum). It was significantly influenced by the composition of the cultivation media.

  6. Inhibition of Rat and Human Steroidogenesis by Triazole Antifungals

    Science.gov (United States)

    Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles (myclobutanil, propiconazole and triadimefon) that are known to modulate expression of cytochrome P450 (CYP) genes and e...

  7. Antibiotics and oral contraceptives.

    Science.gov (United States)

    Rubin, D F

    1981-04-01

    Dermatologists often prescribe oral tetracycline for the control of acne, primarily, and to a much lesser extent, for the treatment of cutaneous infections. A number of the patients taking tetracycline are also taking birth control pills. A recent article in the British Medical Journal (1980;1:293) indicates that this combination can lead to a failure of the (OC) oral contraceptive. Such failure had been associated with ampicillin as well. It is believed that the mechanism for this was the disturbance in normal gut flora, with consequent effects on bacterial hydrolysis of steroid conjugates. This would interrupt the enterohepatic circulation of contraceptive steroids, resulting in a less than normal concentration of circulating steroids. It was recommended that women taking low-dose OCs take extra precautions against pregnancy during any cycle in which antibiotics are given. In regard to our care of and responsibilities to our patients, and in an era when malpractice suits for all types of reasons are more common, it certainly behooves dermatologists to recognize and be concerned about this potential consequence of prescribing oral antibiotics. PMID:7212735

  8. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to cl

  9. Antifungal drug discovery through the study of invertebrate model hosts

    OpenAIRE

    Pukkila-Worley, R.; Holson, E.; Wagner, F.; Mylonakis, E.

    2009-01-01

    There is an urgent need for new antifungal agents that are both effective and non-toxic in the therapy of systemic mycoses. The model nematode Caenorhabditis elegans has been used both to elucidate evolutionarily conserved components of host-pathogen interactions and to screen large chemical libraries for novel antimicrobial compounds. Here we review the use of C. elegans models in drug discovery and discuss caffeic acid phenethyl ester, a novel antifungal agent identified using an in vivo sc...

  10. 7-Chloroquinolin-4-yl Arylhydrazone Derivatives: Synthesis and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Auri R. Duval

    2011-01-01

    Full Text Available Fifteen 7-chloro-4-arylhydrazonequinolines have been evaluated for their in vitro antifungal activity against eight oral fungi: Candida albicans, C. parapsilosis, C. lipolytica, C. tropicalis, C. famata, C. glabrata, Rhodutorula mucilaginosa, and R. glutinis. Several compounds exhibited minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC activities comparable with the first-line drug fluconazole. These results could be considered as an important starting point for the rational design of new antifungal agents.

  11. Recent advances in topical formulation carriers of antifungal agents

    OpenAIRE

    Eman Ahmed Bseiso; Maha Nasr; Omaima Sammour; Nabaweya A Abd El Gawad

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal inf...

  12. SCREENING OF ANTIFUNGAL EFFECTS OF PSEUDOCLITOCYBE CYATHIFORMIS Bull. (Singer)

    OpenAIRE

    Perihan Güler; Fatih Kutluer; Taşkın Erol; Erkan Eren; İlknur Kunduz; Hayriye Biçer

    2013-01-01

    In this study, antifungal activities of Pseudoclitocybe cyathiformis extracts with the help of acetone and chloroform against to Fusarium species (Fusarium culmorum and Fusarium moniliforme) were investigated. Pseudoclitocybe cyathiformis was dried at aseptic conditions and put thru extractions for 12 hours in solvents. Than the evaporator at 40°C and finally dried material stored at + 4°C.(Jonathan and Fasidi, 2003). Antifungal activities were measured by Disc Diffusion method (Stoke and Rid...

  13. Design, Synthesis and Evaluation of Macrocyclic Antifungal Peptides

    OpenAIRE

    Mulder, M.P.C.

    2012-01-01

    Fungi are increasingly recognised as major additional pathogens in already critically ill patients. Invasive fungal infections represent a growing threat and over the past two decades the incidence and diversity of fungal infections has increased enormously, especially among immunocompromised patients and patients hospitalized with serious underlying diseases. Resistance against and toxicity of the current antifungal agents underscores the urgent need for development of new antifungal compoun...

  14. Screening of Iranian plants for antifungal activity: Part 1

    Directory of Open Access Journals (Sweden)

    Amin Gh.R

    2002-07-01

    Full Text Available In this study, 250 species from 37 families of native Iranian plants were screened for in vitro antifungal activity against 19 fungal strains in vitro. Primarily, the crude extracts at concentration of 100μg/ml were tested. Of 250 extracts tested, 185(74% showed antifungal activity against at least one fungal strain. The outstanding species were Artemisia aucheri, Artemisia scoparia, Carthamus oxyacantha, Francoeuria undulate, Tripleurospermum disciform, and Xanthium spinosum.

  15. Antibiotics and antibiotic resistance: a bitter fight against evolution.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús

    2013-08-01

    One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.

  16. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora).

    Science.gov (United States)

    Wang, X; Bunkers, G J

    2000-12-20

    Two novel antifungal proteins were purified and characterized from cheeseweed (Malva parviflora). Both proteins, designated CW-1 and CW-2, are composed of two different subunits of 5000 and 3000 Da, respectively. These proteins possess very potent antifungal activities, and more interestingly the inhibition is fungicidal instead of fungistatic. At low salt condition, the IC(50) of CW-1 and CW-2 against Fusarium graminearum (Fg) is 2.5 ppm. At high salt condition which diminishes the antifungal activity of many antifungal proteins, both CW-1 and CW-2 still maintain potent activity against Fg with IC(50) of 10 ppm. The two subunits could be separated by gel filtration in the presence of 6 M urea, but their antifungal activity cannot be recovered after the removal of urea. Amino acid sequence analysis indicates that both subunits of CW-1 show homology to 2S albumin, whereas the two subunits of CW-2 have homology to vicilin protein from cotton. To our knowledge, this is the first report of isolation and characterization of heterologous antifungal proteins from any source.

  17. An antifungal peptide from Phaseolus vulgaris cv. brown kidney bean

    Institute of Scientific and Technical Information of China (English)

    Yau Sang Chan; Jack Ho Wong; Evandro Fei Fang; Wen Liang Pan; Tzi Bun Ng

    2012-01-01

    A 5.4-kDa antifungal peptide,with an N-terminal sequence highly homologous to defensins and inhibitory activity against Mycosphaerella arachidicola (IC5o=3 μM),Setospaeria turcica and Bipolaris maydis,was isolated from the seeds of Phaseolus vulgaris cv.brown kidney bean.The peptide was purified by employing a protocol that entailed adsorption on Affi-gel blue gel and Mono S and finally gel filtration on Superdex 75.The antifungal activity of the peptide against M.arachidicola was stable in the pH range 3-12 and in the temperature range 0℃ to 80℃.There was a slight reduction of the antifungal activity at pH 2 and 13,and the activity was indiscernible at pH 0,1,and 14.The activity at 90℃ and 100℃ was slightly diminished.Deposition of Congo red at the hyphal tips of M.arachidicola was induced by the peptide indicating inhibition of hyphal growth.The lack of antiproliferative activity of brown kidney bean antifungal peptide toward tumor cells,in contrast to the presence of such activity of other antifungal peptides,indicates that different domains are responsible for the antifungal and antiproliferative activities.

  18. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus.

    Science.gov (United States)

    Chamilos, G; Kontoyiannis, D P

    2005-12-01

    Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus. PMID:16488654

  19. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill. N.E. Brown: composition, cytotoxicity and antifungal activity

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Mesa-Arango

    2009-09-01

    Full Text Available Two essential oils of Lippia alba (Mill. N.E. Brown (Verbenacea, the carvone and citral chemotypes and 15 of their compounds were evaluated to determine cytotoxicity and antifungal activity. Cytotoxicity assays for both the citral and carvone chemotypes were carried out with tetrazolium-dye, which showed a dose-dependent cytotoxic effect against HeLa cells. Interestingly, this effect on the evaluated cells (HeLa and the non-tumoural cell line, Vero was lower than that of commercial citral alone. Commercial citral showed the highest cytotoxic activity on HeLa cells. The antifungal activity was evaluated against Candida parapsilosis, Candida krusei, Aspergillus flavus and Aspergillus fumigatus strains following the standard protocols, Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing and CLSI M38-A. Results demonstrated that the most active essential oil was the citral chemotype, with geometric means-minimal inhibitory concentration (GM-MIC values of 78.7 and 270.8 μg/mL for A. fumigatus and C. krusei, respectively. Commercial citral showed an antifungal activity similar to that of the citral chemotype (GM-MIC values of 62.5 μg/mL for A. fumigatus and 39.7 μg/mL for C. krusei. Although the citronellal and geraniol were found in lower concentrations in the citral chemotype, they had significant antifungal activity, with GM-MIC values of 49.6 μg/mL for C. krusei and 176.8 μg/mL for A. fumigatus.

  20. Isolation and antifungal and antioomycete activities of staurosporine from Streptomyces roseoflavus strain LS-A24.

    Science.gov (United States)

    Park, Hee Jin; Lee, Jung Yeop; Hwang, In Sun; Yun, Bong Sik; Kim, Beom Seok; Hwang, Byung Kook

    2006-04-19

    The actinomycete strain LS-A24 active against some plant fungal and oomycete pathogens was isolated from a soil sample of the Sunghwan Lake in Korea. The cell wall composition and spore shape of strain LS-A24 were LL-diaminopimelic acid and spiral type, respectively. On the basis of the physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, strain LS-A24 was identical to Streptomyces roseoflavus. An antifungal and antioomycete antibiotic was isolated from LS-A24 using various chromatographic procedures. The molecular formular of the antibiotic was determined to be C(28)H(26)N(4)O(3), and on the basis of the NMR data, the antibiotic was confirmed to be staurosporine, 2,3,10,11,12,13-hexahydro-10R-methoxy-9S-methyl-11R-methylamino-9S,13R-epoxy-1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-1-one. Staurosporine completely inhibited the mycelial growth of Colletotrichum orbiculare, Phytophthora capsici, Rhizoctonia solani, Botrytis cinerea, and Cladosporium cucumerinum with minimum inhibitory concentration (MIC) values of 1-50 microg/mL for MICs. Staurosporine also was active against Saccharomyces cerevisiae, Bacillus subtilis ssp. subtilis, and Xanthomonas vesicatoria. Staurosporine and the commercial fungicide metalaxyl inhibited the development of Phytophthora blight on pepper plants. However, the control efficacy of staurosporine against the Phytophthora disease was somewhat less than that of metalaxyl. This is the first study to isolate staurosporine from S. roseoflavus and demonstrate its in vitro and in vivo antioomycete activity against P. capsici. PMID:16608228

  1. Do we need new antibiotics?

    Science.gov (United States)

    Rolain, J-M; Abat, C; Jimeno, M-T; Fournier, P-E; Raoult, D

    2016-05-01

    For several years, alarmist articles both in mass media and in the scientific community have reported an increase in antibiotic resistance, even citing an inability to treat patients infected with multidrug-resistant bacteria (MDR) responsible for high mortality worldwide. In this review we summarize and discuss the key points associated with the reality of (i) the existence of pandrug-resistant bacteria, (ii) the increase of resistance worldwide, (iii) the link between resistance and death, and (iv) the need to develop new antibiotics. Data on antibiotic resistance in Europe for the main bacteria associated with invasive infections apparently demonstrate that apart from Klebsiella pneumoniae, which is resistant to carbapenems in three countries (Romania, Italy and Greece), the level of resistance to three or more classes of antibiotics (defined as MDR phenotype) has remained low and stable over the last 5 years and that therapeutic options exist both for reference antibiotics and for old antibiotics. The clinical outcome of patients infected by MDR bacteria remains controversial and death rates attributable to MDR bacteria versus non-MDR bacteria are still debated. The arsenal of antibiotics currently available (including 'old antibiotics') suffices for facing the waves of emergence of new bacterial resistance and should be considered as a World Heritage. This heritage should be managed in a non-profit model with international regulatory approval. PMID:27021418

  2. Antibiotic Prophylaxis in Pediatric Dentistry

    OpenAIRE

    Davydova N.V.; Suyetenkov D.Ye.; Firsova I.V.; Oleynikova N.M.

    2011-01-01

    Identify options for the indications for antibiotic prophylaxis in children's dental reception. The analysis of publications shows that the basis of current trends prevention of postoperative wound infection in pediatric surgery should be measures aimed at eliminating or reducing the influence of risk factors, as well as the use of antibiotic prophylaxis

  3. Antibiotic Prophylaxis in Pediatric Dentistry

    Directory of Open Access Journals (Sweden)

    Davydova N.V.

    2011-03-01

    Full Text Available Identify options for the indications for antibiotic prophylaxis in children's dental reception. The analysis of publications shows that the basis of current trends prevention of postoperative wound infection in pediatric surgery should be measures aimed at eliminating or reducing the influence of risk factors, as well as the use of antibiotic prophylaxis

  4. The Antibiotic Resistance Problem Revisited

    Science.gov (United States)

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  5. Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread

    OpenAIRE

    Black, Brenna A.; Zannini, Emanuele; Curtis, Jonathan M.; Gänzle, Michael G

    2013-01-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli...

  6. Ocorrência e diversidade estrutural de metabólitos fúngicos com atividade antibiótica Occurrence and structural diversity of fungal metabolites with antibiotic activity

    Directory of Open Access Journals (Sweden)

    Jacqueline Aparecida Takahashi

    2008-01-01

    Full Text Available Several reasons motivated the development of new generations of antibiotics, such as their high ability to develop resistance to virtually all kinds of anti-infective agents and the crescent market demand for new drugs to treat special demanding patients. After penicillin discovery, several antibiotics were developed from fungal metabolites, since antibacterial secondary metabolites consists on a fungal endogenous protective mechanism against natural competitors. The aim of this review is to present the structural diversity of antibacterial and antifungal metabolites produced by fungi, mentioning sources of fungal isolates, cultivation process and details on the scope of their antibiotic activity.

  7. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  8. Antibiotic prescribing for acute bronchitis

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2016-01-01

    INTRODUCTION: Acute bronchitis is a self-limiting infectious disease characterized by acute cough with or without sputum but without signs of pneumonia. About 90% of cases are caused by viruses. AREAS COVERED: Antibiotics for acute bronchitis have been associated with an approximately half......-day reduction in duration of cough. However, at follow-up there are no significant differences in overall clinical improvement inpatients treated with antibiotics compared with those receiving placebo. Despite this, antibiotics are administered to approximately two thirds of these patients. This review...... discusses the reason for this antibiotic overprescription. Other therapies targeted to control symptoms have also demonstrated a marginal or no effect. EXPERT COMMENTARY: Clinicians should be aware of the marginal effectiveness of antibiotic therapy. Some strategies like the use of rapid tests, delayed...

  9. Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011.

    Science.gov (United States)

    Asmundsdottir, Lena Ros; Erlendsdottir, Helga; Gottfredsson, Magnus

    2013-03-01

    Candidemia is often a life-threatening infection, with highly variable incidence among countries. We conducted a nationwide study of candidemia in Iceland from 2000 to 2011, in order to determine recent trends in incidence rates, fungal species distribution, antifungal susceptibility patterns, and concurrent antifungal consumption. A total of 208 infection episodes in 199 patients were identified. The average incidence during the 12 years was 5.7 cases/100,000 population/year, which was significantly higher than that from 1990 to 1999 (4.3/100,000/year; P = 0.02). A significant reduction in the use of blood cultures was noted in the last 3 years of the study, coinciding with the economic crisis in the country (P 60 years, and varied by gender. Age-specific incidence among males >80 years old was 28.6/100,000/year, and it was 8.3/100,000/year for females in this age group (P = 0.028). The 30-day survival rate among adult patients remained unchanged compared to that from 1990 to 1999 (70.4% versus 69.5%, P = 0.97). Candida albicans was the predominant species (56%), followed by C. glabrata (16%) and C. tropicalis (13%). The species distribution remained stable compared to that from previous decades. Fluconazole use increased 2.4-fold from 2000 to 2011, with no increase in resistance. In summary, the incidence of candidemia in Iceland has continued to increase but may have reached a steady state, and no increase in antifungal drug resistance has been noted. Decreased use of blood cultures toward the end of the study may have influenced detection rates.

  10. Antifungal prophylaxis in stem cell transplantation centers in Turkey

    Directory of Open Access Journals (Sweden)

    Hamdi Akan

    2011-12-01

    Full Text Available Objective: This study aimed to determine the current state of antifungal prophylaxis in Turkish stem cell transplantation (SCT centers. Materials and Methods: The were 38 active stem cell transplantation centers in Turkey, 28 of which were registered with the European Group for Blood and Marrow Transplantation (EBMT. Survey questionnaires were sent to the 28 EBMT centers in an effort to collect data on antifungal prophylaxis in different settings. In all, 24 of the centers completed the survey; 1 of the 24 centers was excluded from the study, as it was under construction at the time and was not performing transplantation.Results: In all, 15 (65% of the 23 centers were adult SCT centers, 7 (31% were pediatric SCT centers, and 1 center treated both adult and pediatric patients. All centers (23/23 performed both allogeneic and autologous transplants, 20 centers performed non-myeloablative transplants, 8 performed cord blood transplants, and 7 performed unrelated transplants. Primary antifungal prophylaxis was used at all 23 centers during allogeneic transplants, whereas 18 of the 23 centers used it during every autologous transplant and 2 of the 23 centers used it during autologous transplants on a per case basis. The most common drug used for prophylaxis was fluconazole (F (21/23, followed by itraconazole (I (3/23, amphotericin-B (2/23, and posaconazole (1/23. Among the 23 centers, 3 reported that for allogenic transplants they changed the antifungal prophylactic in cases of graft versus host disease (GVHD, and 12 of the 23 centers reported that they changed the antifungal prophylactic in case of nearby construction. All 23 centers performed secondary prophylaxis. Conclusion: Antifungal prophylaxis for hematopoetic SCT patients was the standard protocol in the 23 centers included in the study, usually with such azoles as F. The introduction of posaconazole in Turkey and the potential approval of voriconazole for antifungal prophylaxis will

  11. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    Science.gov (United States)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  12. Antifungal and molluscicidal saponins from Serjania salzmanniana.

    Science.gov (United States)

    Ekabo, O A; Farnsworth, N R; Henderson, T O; Mao, G; Mukherjee, R

    1996-04-01

    An investigation of Serjania salzmanniana for biologically active substances has led to the isolation of two novel saponins, salzmannianoside A (3-O-[[beta-D- glucopyranosyl-(1-->4)]-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L- arabinopyranosyl] gypsogenin) [3] and salzmannianoside B (3-O-[[beta-D-glucopyranosyl-(1-->4)]-[alpha-L- arabinopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)] -alpha-L-arabinopyranosyl] hederagenin) (4). Two known saponins, pulsatilla saponin D (3-O-[[beta-D- glucopyranosyl-(1-->4)]-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L- arabinopyranosyl] hederagenin) (1) and 3-O-[[beta-D-glucopyranosyl-(1-->4)]-[alpha-L-rhamnopyranosyl-(1-->2)]-a lpha-L- arabinopyranosyl] oleanolic acid (2) were also isolated from this plant. The structures of 3 and 4 were elucidated by FABMS and 2D NMR techniques. All these four saponins were mollusicidal, causing 70-100% mortality at 10 ppm against Biomphalaria alexandrina, a vector of Schistosoma mansoni in the Nile Valley. The saponins also showed antifungal activity against Cryptococcus neoformans and Candida albicans at minimal inhibitory concentrations of 8 and 16 micrograms/mL, respectively.

  13. MICROORGANISMS ANTIBIOTIC SENSITIVITY DETERMINATION IN URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    Shapovalova O.V.

    2016-06-01

    Full Text Available Introduction. Nowadays Urinary tract infections (UTI are considered to be the most common bacterial infections. Escherichia coli is the most frequently uropathogen. Other microorganisms of the genera Enterococcus, Klebsiella, Enterobacter, Proteus, Morganella, Citrobacter, Serratia, Pseudomonas, Streptococcus, Staphylococcus, Candida are also isolated with variable frequency. In recent years there has been a decreasing tendency of the causative agents of UTI sensitivity to various antibiotics, which causes growth of an inefficiency treatment risk. In connection with the above the investigations were carried out with the purpose to identify the actual causative agents of bacteriuria and their sensitivity to antibiotics and antifungal drugs. Materials and methods. Bacteriological examination of urine was performed at 42 patients of SI "Sytenko Institute of Spine and Joint Pathology, AMS of Ukraine" clinic. The bacteriological method for determining the number of bacteria in the test material, cultural and bacterioscopic methods for identifying microorganisms and disk-diffusion method for sensitivity of microorganisms to antibiotics determining were used. The clinical material for the study was an average portion of the morning urine or urine collected by catheter. The biological material collection and bacteriological examination was carried by quantitative method, the isolated microorganisms identification and their sensitivity to antibiotics determining was performed by standard methods in accordance with current guidelines. We used the following antibiotics group to determine the microorganisms sensitivity: penicillin, cephalosporin, karbapenems, tetracyclines, aminoglycoside, fluoroquinolones, oxazolidinones, macrolides, lincosamides, glycopeptides, antifungal antibiotics. Results and discussion. During the biological material study 55 isolates of bacterial and fungal pathogens were obtained. The microorganisms’ concentration in urine was in

  14. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  15. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  16. Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic.

    Science.gov (United States)

    Rakotoniriana, Erick Francisco; Chataigné, Gabrielle; Raoelison, Guy; Rabemanantsoa, Christian; Munaut, Françoise; El Jaziri, Mondher; Urveg-Ratsimamanga, Suzanne; Marchand-Brynaert, Jacqueline; Corbisier, Anne-Marie; Declerck, Stéphane; Quetin-Leclercq, Joëlle

    2012-05-01

    An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus. PMID:22524528

  17. Antifungal activity of ibuprofen against aspergillus species and its interaction with common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    LI Li-juan; CHEN Wei; XU Hui; WAN Zhe; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The incidence of invasive aspergillosis (IA) has increased in frequency in immunocompromised patients with a variety of diseases. The poor prognosis might be due to limited treatment option. This study aimed to evaluate antifungal activity of ibuprofen against clinical isolates of aspergillus species, as well as its interaction with azoles or with amphotericin B or with micafungin.Methods Antifungal activity of ibuprofen against 10 strains of Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus were tested with both disk diffusion assay and standard broth microdilution method. To determine whether ibuprofen combined with itraconazole, voriconazole, amphotericin B, or micafungin had interactive effects on aspergillus spp., we used both disk diffusion assay and Chequerboard method.Results As for disk diffusion method, ibuprofen produced a zone of growth inhibition with diameters of (20.1±3.9) mm at 48 hours of incubation. As for broth microdilution method, the minimal inhibitory concentration (MIC) ranges of ibuprofen against aspergillus spp. were 1000-2000 μg/ml, and the minimal fungicidal concentration (MFC) ranges of that was 2000-8000 μg/ml. For 2 of 5 isolates, when ibuprofen combined with itraconazole or voriconazole, the zones of growth inhibition were larger than those of the individual drug. The results of Chequerboard method showed that fractional inhibitory concentration index (FICI) ranges were 1.125-2.500.Conclusions Ibuprofen is active against aspergillus spp.. And ibuprofen does not affect the in vitro activity of itraconazole, voriconazole, amphotericin B or micafungin against aspergillus spp..

  18. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  19. Antibiotic resistance in wild birds.

    Science.gov (United States)

    Bonnedahl, Jonas; Järhult, Josef D

    2014-05-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further studies of the spatial and temporal distribution of resistant bacteria in wild birds, we can better assess their role and thereby help to mitigate the increasing global problem of antibiotic resistance. PMID:24697355

  20. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    Since the discovery and clinical application of antibiotics, pathogens and the human microbiota have faced a near continuous exposure to these selective agents. A well-established consequence of this exposure is the evolution of multidrug-resistant pathogens, which can become virtually untreatable....... Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years...... expand our understanding of the interplay between antibiotics and the microbiome....

  1. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  2. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  3. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.

  4. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    Science.gov (United States)

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  5. Antimycobacterial and Antifungal Activities of Selected Four Salvia Species

    Directory of Open Access Journals (Sweden)

    Nur Tan

    2016-03-01

    Full Text Available The content of essential oils of endemic Salvia cilicica was analyzed by GC-FID and GC-MS techniques. Spathulenol (23.8 %, caryophyllene oxide (14.9 % and hexadecanoic acid (10.3 % were identified as the major components in the oil of Salvia cilicica. Additionally, in this study ethanol extracts of the aerial parts and essential oils of four Salvia species ( S. cilicica, S. officinalis, S. fruticosa, S. tomentosa , as well as the roots of S. cilicica were investigated their antimycobacterial and antifungal activities including infectious diseases. The antimycobacterial activity was analyzed against three Mycobacterium tuberculosis (sensitive-, resistant-standard strains and multidrug resistance clinical isolate strains and the antifungal activity was compared with two dermotophytes (Microsporum gypseum and Trichophyton mentagrophytes var. erinacei and three Candida species by the broth microdilution method. The essentials oils of the four tested Salvia species showed high antimycobacterial and antifungal activity (MIC between 0.2-12.5 mcg/mL in comparison to the aerial parts and root extracts . The antifungal and antimycobacterial potential of the ethanol extracts and essential oils were introduced to determine whether, Salvia species can be used in phytotherapy against the yeasts, dermatophytes and M. tuberculosis. To the best of our knowledge this is the first study of S. cilicica about their antimycobacterial and antifungal activities and chemical composition of its essential oils.

  6. Antifungal susceptibilities of Candida species isolated from urine culture.

    Science.gov (United States)

    Toka Özer, Türkan; Durmaz, Süleyman; Yula, Erkan

    2016-09-01

    Candida spp. are the most common opportunistic mycosis worldwide. Although Candida albicans is the most common cause of urinary tract infections, the frequency of non-albicans Candida species is increasing with common use of antifungal in the prophylaxis and treatment. This may lead to difficulties in treatment. Antifungal tests should be applied with identification of species for effective treatment. In this study, identification of Candida species isolated from urine culture and investigation of susceptibility of these strains to amphotericin B, flucytosine, fluconazole, voriconazole was aimed. In this study, 58 Candida strains isolated from urine cultures at Osmaniye State Hospital between January 2012 and April 2013 were included. Urine culture and antifungal susceptibility tests were applied. Incidence rate of Candida spp. was determined as C. albicans (56.9%), Candida glabrata (20.6%), Candida tropicalis (10.3%), Candida parapsilosis (7%), Candida krusei (3.4%), Candida kefyr (1.8%). Most of the isolates were susceptible to amphotericin B, flucytosine, fluconazole, voriconazole. Twenty three (39.7%) Candida strains were isolated from internal medical branches and Intensive Care Unit and 12 (20.6%) from the Surgical Medical Branches. C. albicans and C. glabrata species were isolated most frequently as a candiduria factor in this hospital between January 2012 and April 2013. The analysis of antifungal susceptibility profile shows no significant resistance to antifungals.

  7. Antifungal susceptibility testing of yeast isolated from corneal infections

    Directory of Open Access Journals (Sweden)

    Mascaro Vera Lucia Degaspare Monte

    2003-01-01

    Full Text Available PURPOSE: To report the antifungal susceptibility profile of yeast isolates obtained from cases of keratitis. METHODS: Susceptibility testing of 15 yeast strains isolated from corneal infections to amphotericin B, fluconazole, itraconazole and ketoconazole was performed using the NCCLS broth microdilution assay. RESULTS: Most episodes of eye infections were caused by Candida albicans. The antifungal drugs tested showed the following minimal inhibitory concentration values against yeast isolates: 0.125-0.5 mg/ml for amphotericin B; 0.125->64.0 mg/ml for fluconazole; 0.015-1.0 mg/ml for itraconazole and 0.015-0.125 mg/ml for ketoconazole. Despite the fact that all Candida isolates were judged to be susceptible to azoles, one isolate showed a minimal inhibitory concentration value significantly higher than a 90% minimal inhibitory concentration of all tested isolates. Rhodotorula rubra was resistant to fluconazole and itraconazole. CONCLUSIONS: Despite the fact that most yeast isolates from corneal infections are usually susceptible to amphotericin B and azoles, they exhibit a wide range of minimal inhibitory concentration values for antifungal drugs. The identification of strains at species level and their susceptibility pattern to antifungal drugs should be considered before determining the concentration to be used in topical antifungal formulations in order to optimize therapeutic response in eye infections.

  8. Prophylactic antibiotics versus post- operative antibiotics in herniorraphy

    Directory of Open Access Journals (Sweden)

    Abedulla Khan Kayamkani

    2015-07-01

    Full Text Available Postoperative surgical site infections are a major source of illness.  Infection results in longer hospital stay and higher costs.  Uses of preoperative antibiotics have been standardized and are being used routinely in most clinical surgeries and include controversial areas like breast surgery and herniorraphy. Objective of the study is to find out the benefit of prophylactic use of antibiotics in the management of herniorraphy.This project was carried out in a multispeciality tertiary care teaching hospital from 1st-30th April in 2002. Group 1 patients were treated prophylactically half an hour before surgery with single dose of I.V. antibiotics (injection.  Ampicillin 1gm + injection.  Gentamicin 80mg. Group 2 patients were treated post surgery with capsule. Ampicillin 500mg 4 times a day for 7 days and injection. Gentamicin twice a day for first 4 days. In case of group 1 patients only one out of 20 patients (5% was infected.  Whereas in-group 2 patients 5 out of 20 patients (25% were infected. The cost of prophylactic antibiotic treatment was Rs. 25.56 per patient.  The postoperative antibiotic treatment cost was Rs. 220.4 per patient.  That means postoperative treatment is around 8.62 times costlier than prophylactic treatment.             From this study it is evident that prophylactic (preoperative treatment is better than postoperative treatment with antibiotics.

  9. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2014-01-01

    growing planktonic cells, voriconazole had limited antifungal activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the response...

  10. Antibiotic resistance: An ethical challenge.

    Science.gov (United States)

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  11. Use of Antibiotics in Children

    DEFF Research Database (Denmark)

    Pottegård, Anton; Broe, Anne; Aabenhus, Rune;

    2015-01-01

    Background: We aimed to describe the use of systemic antibiotics among children in Denmark. Methods: National data on drug use in Denmark were extracted from the Danish National Prescription Database. We used prescription data for all children in Denmark aged 0 to 11 years from January 1, 2000...... to December 31, 2012. Results: We obtained data on 5,884,301 prescriptions for systemic antibiotics issued to 1,206,107 children. The most used single substances were phenoxymethylpenicillin (45%), amoxicillin (34%) and erythromycin (6%). The highest incidence rate of antibiotic treatment episodes......–1. There was little evidence of heavy users. Conclusion: Prescribing rate of antibiotics to children in Denmark remained stable at a high level from 2000 to 2012. An increase in the use of broad-spectrum beta-lactam penicillin was noted, but otherwise the prescribing pattern adhered well to National guidelines...

  12. Evaluation of antifungal susceptibility testing in Candida isolates by Candifast and disk-diffusion method

    OpenAIRE

    Sidhartha Giri; Anupma Jyoti Kindo

    2014-01-01

    With the increase in invasive fungal infections due to Candida species and resistance to antifungal therapy, in vitro antifungal susceptibility testing is becoming an important part of clinical microbiology laboratories. Along with broth microdilution and disk diffusion method, various commercial methods are being increasingly used for antifungal susceptibility testing, especially in the developed world. In our study, we compared the antifungal susceptibility patterns of 39 isolates of Candid...

  13. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology

    OpenAIRE

    Ashbee, H. Ruth; Barnes, Rosemary A.; Johnson, Elizabeth M.; Richardson, Malcolm D.; Gorton, Rebecca; Hope, William W.

    2013-01-01

    The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics–pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the...

  14. Prophylactic antibiotics in orthopaedic surgery.

    Science.gov (United States)

    Prokuski, Laura; Clyburn, Terry A; Evans, Richard P; Moucha, Calin S

    2011-01-01

    The use of prophylactic antibiotics in orthopaedic surgery has been proven effective in reducing surgical site infections after hip and knee arthroplasty, spine procedures, and open reduction and internal fixation of fractures. To maximize the beneficial effect of prophylactic antibiotics, while minimizing any adverse effects, the correct antimicrobial agent must be selected, the drug must be administered just before incision, and the duration of administration should not exceed 24 hours.

  15. Systemic antibiotic therapy in periodontics

    OpenAIRE

    Anoop Kapoor; Ranjan Malhotra; Vishakha Grover; Deepak Grover

    2012-01-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, pr...

  16. SCREENING FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES IN SOME MARINE ALGAE FROM THE FUJIAN COAST OF CHINA WITH THREE DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    郑怡; 陈寅山; 卢海声

    2001-01-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlomphyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta (Laurenc/a okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae ) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  17. SCREENING FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES IN SOME MARINE ALGAE FROM THE FUJIAN COAST OF CHINA WITH THREE DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    郑怡; 陈寅山; 卢海声

    2001-01-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta (Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae ) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  18. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi.

    Science.gov (United States)

    Benyagoub, M; Willemot, C; Bélanger, R R

    1996-10-01

    Antifungal fatty acids produced by the biocontrol fungus Sporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi, Cladosporium cucumerinum, Fusarium oxysporum, and S. flocculosa, whose growth was decreased by 51, 33, and 5%, respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics from S. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture of S. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18:1 > 18:2 > 18:3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi as demonstrated by assessment of fluoresence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted to S. flocculosa. PMID:8898307

  19. [Self-medication with antibiotics in Poland

    NARCIS (Netherlands)

    Olczak, A.; Grzesiowski, P.; Hryniewicz, W.; Haaijer-Ruskamp, F.M.

    2006-01-01

    Antibiotic resistance, the important public health threat, depends on antibiotic overuse/misuse. Self-medication with antibiotics is of serious medical concern. The aim of the study, as a part of SAR project (Self-medication with antibiotic in Europe) was to survey the incidence of this phenomenon.

  20. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  1. Solid lipid nanoparticles for antifungal drugs delivery for topical applications.

    Science.gov (United States)

    Trombino, Sonia; Mellace, Silvia; Cassano, Roberta

    2016-09-01

    Systemic and local infections caused by fungi, in particular those concerning the skin and nails, are increasing. Various drugs are used for mycoses treatment such as amphotericin B, nystatin and ketoconazole, fluconazole, itraconazole and fluconazole, among others. Unfortunately, many of these antifungal agents can cause side effects such as allergic and severe skin reaction. With the aim to reduce these side effects and maximize the antifungal drug activity, various drug-delivery systems have been formulated and been investigated in the last few years. In this context, solid lipid nanoparticles are attracting great attention. The aim of this review is to highlight the role of solid lipid nanoparticles as carriers of antifungal drugs for topical applications. PMID:27582235

  2. Survey of small antifungal peptides with chemotherapeutic potential.

    Science.gov (United States)

    Desbois, Andrew P; Tschörner, David; Coote, Peter J

    2011-08-01

    Many cationic peptides with antimicrobial properties have been isolated from bacteria, fungi, plants, and animals. These peptides vary in molecular size, potency and spectra of activities. This report surveyed the literature to highlight the peptides that have antifungal activity and greatest potential for development as new therapeutic agents. Thus, to be included in the evaluation, each peptide had to fulfil the following criteria: (i) potent antifungal activity, (ii) no, or minimal, mammalian cell toxicity, (iii) of ≤25 amino acids in length, which minimises the costs of synthesis, reduces immunogenicity and enhances bioavailability and stability in vivo, (iv) minimal post-translational modifications (also reduces the production costs). The ~80 peptides that satisfied these criteria are discussed with respect to their structures, mechanisms of antimicrobial action and in vitro and in vivo toxicities. Certainly, some of these small peptides warrant further study and have potential for future exploitation as new antifungal agents. PMID:21470150

  3. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  4. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  5. Antifungal Effect of Chitosan as Ca(2+) Channel Blocker.

    Science.gov (United States)

    Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

    2016-06-01

    The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca(2+), whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca(2+) gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

  6. Antifungal Effect of Chitosan as Ca2+ Channel Blocker

    Science.gov (United States)

    Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

    2016-01-01

    The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca2+, whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca2+ gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

  7. Expedient antibiotics production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  8. DMPD: C-type lectin receptors in antifungal immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18160296 C-type lectin receptors in antifungal immunity. Willment JA, Brown GD. Tre...nds Microbiol. 2008 Jan;16(1):27-32. Epub 2007 Dec 21. (.png) (.svg) (.html) (.csml) Show C-type lectin receptors in anti...fungal immunity. PubmedID 18160296 Title C-type lectin receptors in antifungal immunity. Author

  9. In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus Isolates from Transplant and Nontransplant Patients

    OpenAIRE

    Steinbach, William J.; Singh, Nina; Miller, Jackie L.; Benjamin, Daniel K; Schell, Wiley A.; Heitman, Joseph; Perfect, John R.

    2004-01-01

    We performed in vitro antifungal checkerboard testing on 12 Aspergillus fumigatus clinical isolates (6 transplant recipients and 6 nontransplant patients) with three antifungal agents (amphotericin B, voriconazole, and caspofungin) and three immunosuppressants (FK506, cyclosporine, and rapamycin). We were not able to detect a difference in calcineurin inhibitor antifungal activity against isolates from transplant recipients and nontransplant patients.

  10. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  11. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  12. Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?

    LENUS (Irish Health Repository)

    Murphy, D M

    2010-03-01

    The macrolides are a class of antibiotics widely prescribed in infectious disease. More recently, there has been considerable interest in potential indications for these agents, in addition to their simple antibacterial indications, in a number of lung pathophysiologies.

  13. Antifungal activity of three mouth rinses--in vitro study.

    Science.gov (United States)

    Abirami, C P; Venugopal, Pankajalakshmi V

    2005-01-01

    Mouthrinses are nowadays routinely included in the home care oral hygiene maintenance besides dentifrice/tooth paste. Mouthrinses prevent bacterial attachment and prevent or slow down bacterial proliferation. Fungal organisms have now gained more importance due to increased incidence of AIDS/HIV. This has necessitated for mouthrinses to possess antifungal activity also. The mouthrinses used were Povidone iodine ( Wokadine), Thymol with Eucalyptol and Benzoic acid (Listerine) and fluoride with Triclosan (Colgate Plax), which were tested against oral isolates of different species of Candida. The agar diffusion test was used to evaluate the inhibitory activity of the mouthrinses and all of them exhibited antifungal activity especially against Candida albicans. PMID:16758789

  14. Recent advances in topical formulation carriers of antifungal agents.

    Science.gov (United States)

    Bseiso, Eman Ahmed; Nasr, Maha; Sammour, Omaima; Abd El Gawad, Nabaweya A

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles. PMID:26261140

  15. Antifungal activity of three mouth rinses--in vitro study.

    Science.gov (United States)

    Abirami, C P; Venugopal, Pankajalakshmi V

    2005-01-01

    Mouthrinses are nowadays routinely included in the home care oral hygiene maintenance besides dentifrice/tooth paste. Mouthrinses prevent bacterial attachment and prevent or slow down bacterial proliferation. Fungal organisms have now gained more importance due to increased incidence of AIDS/HIV. This has necessitated for mouthrinses to possess antifungal activity also. The mouthrinses used were Povidone iodine ( Wokadine), Thymol with Eucalyptol and Benzoic acid (Listerine) and fluoride with Triclosan (Colgate Plax), which were tested against oral isolates of different species of Candida. The agar diffusion test was used to evaluate the inhibitory activity of the mouthrinses and all of them exhibited antifungal activity especially against Candida albicans.

  16. Antifungal susceptibility profile of cryptic species of Aspergillus.

    Science.gov (United States)

    Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Cuenca-Estrella, Manuel

    2014-12-01

    The use of molecular tools has led to the description of new cryptic species among different Aspergillus species complexes. Their frequency in the clinical setting has been reported to be between 10 and 15%. The susceptibility to azoles and amphotericin B of many of these species is low, and some of them, such as Aspergillus calidoustus or Aspergillus lentulus, are considered multi-resistant. The changing epidemiology, the frequency of cryptic species, and the different susceptibility profiles make antifungal susceptibility testing an important tool to identify the optimal antifungal agent to treat the infections caused by these species.

  17. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Directory of Open Access Journals (Sweden)

    Erick A. Meneses

    2009-01-01

    Full Text Available The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM, dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1, (+-agathadiol (2 and epi-13-torulosol (3 were isolated as the main constituents from the active fractions.

  18. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Escuela de Quimica], e-mail: cmgarcia@unal.edu.co

    2009-07-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  19. ANTIFUNGAL ACTIVITY OF HYBANTHUS ENNEASPERMUS ON WET CLOTHES

    Directory of Open Access Journals (Sweden)

    Arumugam Napoleon

    2011-04-01

    Full Text Available During rainy season, when clothes are not properly dried they develop spots. In clothes the spots appear as black or greenish black in color and these spots or mildews were cultured and microscopically examined. It was identified as fungi, viz. Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus. Antifungal activities of different extracts of Hybanthus enneaspermus were screened. The antifungal activity was graded, based on the zone of inhibition. Among the three extracts used for the present studies, methanolic extract exhibited the maximum growth inhibition, followed by chloroform and petroleum ether extract.

  20. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    International Nuclear Information System (INIS)

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  1. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    A microhollow cathode based, direct-current, atmospheric pressure, He/O2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  2. Recent advances in topical formulation carriers of antifungal agents

    Directory of Open Access Journals (Sweden)

    Eman Ahmed Bseiso

    2015-01-01

    Full Text Available Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.

  3. Dielectrophoretic assay of bacterial resistance to antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Juliana [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Huebner, Yvonne [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hull, Judith C [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom)

    2003-07-21

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  4. Antibiotics: Use and misuse in pediatric dentistry

    Directory of Open Access Journals (Sweden)

    F C Peedikayil

    2011-01-01

    Full Text Available Antibiotics are commonly used in dentistry for prophylactic as well as for therapeutic purposes. Most often antibiotics are used in unwarranted situations, which may give rise to resistant bacterial strains. Dentists want to make their patients well and to prevent unpleasant complications. These desires, coupled with the belief that many oral problems are infectious, stimulate the prescribing of antibiotics. Good knowledge about the indications of antibiotics is the need of the hour in prescribing antibiotics for dental conditions.

  5. Antibiotics that target protein synthesis.

    Science.gov (United States)

    McCoy, Lisa S; Xie, Yun; Tor, Yitzhak

    2011-01-01

    The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine. PMID:21957007

  6. Candida urinary tract infection and Candida species susceptibilities to antifungal agents.

    Science.gov (United States)

    Osawa, Kayo; Shigemura, Katsumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2013-11-01

    The purpose of this study is to review Candida isolation from urine of urinary tract infection (UTI) patients over the recent 3 years at the Kobe University Hospital. We recorded the type of strain, the department where the patient was treated such as the intensive care unit (ICU), and combined isolation of Candida with other microorganisms. We investigated Candida isolation and susceptibilities to antifungal agents and analyzed the risk factors for combined isolation with other microorganisms. The most frequently isolated Candida was Candida albicans, which showed good (100%) susceptibilities to 5-fluorocytosine (5-FC) and fluconazole (FLCZ) but not to voriconazole (VRCZ), followed by C. glabrata. ICU was the greatest source of Candida-positive samples, and the most relevant underlying diseases of ICU patients were pneumonia followed by renal failure and post liver transplantation status. Combined isolation with other bacteria was seen in 27 cases (42.9%) in 2009, 25 (33.3%) in 2010 and 31 (31.3%) in 2011 and comparatively often seen in non-ICU patients. Other candidas than C. albicans showed significantly decreased susceptibility to FLCZ over these 3 years (P=0.004). One hundred (97.1%) of 103 ICU cases were given antibiotics at the time of Candida isolation, and the most often used antibiotics were cefazolin or meropenem. In conclusion, C. albicans was representatively isolated in Candida UTI and showed good susceptibilities to 5-FC, FLCZ and VRCZ, but other candidas than C. albicans showed significantly decreased susceptibility to FLCZ in the change of these 3 years.

  7. Preparation and Antifungal Activity of Spray-Dried Amphotericin B-loaded Nanospheres

    Directory of Open Access Journals (Sweden)

    Z Faezizadeh

    2011-12-01

    Full Text Available Background and the purpose of the study: Amphotericin B (AmB which is an appropriate antibiotic for the treatment of mycosis has many toxic effects including nephrotoxicity. Recently preparation of a new drug loaded nanoparticles for the reduction of toxicity and increase in the effectiveness of AmB has been reported. The objective of this study was to prepare and evaluate in vitro and in vivo efficacy of the spray-dried AmB-loaded nanospheres. Methods: AmB-loaded nanospheres was prepared by means of nanoprecipitation method. The spray-dried nanospheres was prepared by using aerosil and AmB entrapment efficacy was measured by HPLC method. Minimum inhibitory concentration (MIC of AmB-loaded nanospheres against Candida albicans (ATCC 90028 was determined by using microdilution method and its in vitro haemolytic effect and antifungal efficacy on infected rabbits was also analyzed. Results: The entrapment efficacy for AmB loaded nanospheres was 65.2% ± 3. The MIC of AmB-loaded nanospheres against C. albicans compared to the free antibiotic was lower significantly. Also, the AmB-loaded nanospheres found to be 9.5 times less toxic than free AmB on human red blood cells. In vivo testing indicated that AmB-loaded nanospheres have a stronger protective effect against candidiasis compared to the free AmB. Conclusion: Results of this study suggest that prepared spray-dried AmB-loaded nanospheres would be a good choice for the treatment of mycosis because of low toxicity and high stability and effectiveness.

  8. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  9. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Science.gov (United States)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  10. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    Science.gov (United States)

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Nobre Júnior, Hélio Vitoriano

    2016-06-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001). PMID:27021328

  11. [Neonatal Candida infections and the antifungal susceptibilities of the related Candida species].

    Science.gov (United States)

    Altuncu, Emel; Bilgen, Hülya; Cerikçioğlu, Nilgün; Ilki, Arzu; Ulger, Nurver; Bakır, Mustafa; Akman, Ipek; Ozek, Eren

    2010-10-01

    Among nosocomial infections in the newborns, the incidence of fungal infections has been rising over the last decades. Fluconazole has been a new option for treatment however, expanded use of the drug brought up the development of resistance. In this study, species of the Candida isolates from neonates with candida infections, their antifungal susceptibilities and the effectiveness of the therapy were evaluated. All the species of Candida isolates from blood, urine and sterile body fluids of 54 neonates and their antifungal susceptibilities were evaluated retrospectively over the 13-year period. Demographic characteristics, risk factors, infection foci, Candida species causing infection and their in vitro susceptibilities for fluconazole (FCZ) and amphotericin B (AMB) and treatment responses were analyzed. The antifungal susceptibility testing of isolates was performed by microdilution technique. The median birth weight and gestational age of the study groups were 1735 (660-3990) g and 33 (24-40) weeks, respectively. Among the patients, 19 (35%) were term, while 35 (65%) were preterm [Candida spp. were isolated mostly from blood samples (63%), followed by urine (46%), cerebrospinal fluid (CSF; 5%), peritoneal fluid (3%) and endotracheal aspirate (2%). Multifocal growth was determined in 10 (18%) cases. The isolated species were C.albicans (n =36) as being the most common isolate followed by C.parapsilosis (n = 12), C.tropicalis (n = 1), C.kefyr (n = 1), C.lusitaniae (n = 1), C.pelluculosa (n = 1) and Candida spp. (n = 2). Prior antibiotic use, long term hospitalization, total parenteral nutrition and use of lipid solutions, prematurity and catheter use were determined as the most frequently associated factors causing candidal infections. A congenital abnormality, mainly myeloschisis and hydrocephaly, was detected in 18 (33%) of the cases. Overall FCZ resistance rate was 5.5% and the rate of resistance according to the species was 2.8% for C.albicans and 11% for non

  12. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  13. Antibacterial and antifungal activity of liriodenine and related oxoaporphine alkaloids.

    Science.gov (United States)

    Hufford, C D; Sharma, A S; Oguntimein, B O

    1980-10-01

    Liriodenine was evaluated for its antibacterial and antifungal activity against several microorganisms. Other related oxoaporphine alkaloids also were evaluated. Attempts to prepare oxoaporphine alkaloids from N-acetylnoraporphines were unsuccessful, but an unexpected phenanthrene alkaloid was obtained. A novel N-demethylation reaction was noted when oxogaucine methiodide and liriodenine methiodide were treated with alumina. PMID:7420287

  14. ANTIFUNGAL ACTIVITY OF GEOTHERMAL FLUIDS FROM DIFFERENT REGIONS OF TURKEY

    Directory of Open Access Journals (Sweden)

    Ahmet Ali Var,

    2012-07-01

    Full Text Available Antifungal effects of geothermal fluids obtained from the Ankara, Afyon, Denizli, and Eskişehir regions of Turkey on white-rot (Trametes versicolor, MAD-697 and brown-rot (Coniophora puteana, FPRL 11E fungus (Basidiomycetes were studied. Fungal experiments were performed on kraft paper and Scots pine wood (Pinus sylvestris L.. We used non-concentrated geothermal water and concentrated geothermal water (via evaporation in ratios of 25%, 50%, and 75%. To evaluate the results, we measured the concentration of specific minerals in the geothermal fluids such as boron (B, arsenic (As, copper (Cu, sulfate (SO4, sodium (Na, chloride (Cl, fluoride (F, potassium (K, and ammonia (NH3. The highest antifungal effect was observed for a geothermal fluid from the Denizli region, followed by Ankara, Afyon, and Eskişehir, in decreasing order. Antifungal properties of GFs are thought to be associated with the type and amount of mineral substances. In addition, the antifungal effects increased with increasing concentrations of geothermal water.

  15. Antifungal activity of heartwood extracts from three Juniperus species

    Science.gov (United States)

    Heartwood samples from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane, ethanol and methanol and the hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi. These three species represent the ...

  16. In vitro antifungal activity of isavuconazole against Madurella mycetomatis

    NARCIS (Netherlands)

    W. Kloezen (Wendy); J.F. Meis (Jacques); I. Curfs-Breuker (Ilse); A.H. Fahal (Ahmed); W.W.J. van de Sande (Wendy)

    2012-01-01

    textabstractCurrently, therapy of black-grain mycetoma caused by Madurella mycetomatis consists of extensive debridement of the infected tissue combined with prolonged antifungal therapy with ketoconazole or itraconazole. In the present study, the in vitro activity of the new triazole isavuconazole

  17. In vitro antifungal activity of isavuconazole against Madurella mycetomatis.

    NARCIS (Netherlands)

    Kloezen, W.; Meis, J.F.G.M.; Curfs-Breuker, I.; Fahal, A.H.; Sande, W.W. van de

    2012-01-01

    Currently, therapy of black-grain mycetoma caused by Madurella mycetomatis consists of extensive debridement of the infected tissue combined with prolonged antifungal therapy with ketoconazole or itraconazole. In the present study, the in vitro activity of the new triazole isavuconazole toward M. my

  18. New small-size peptides possessing antifungal activity

    NARCIS (Netherlands)

    Garibotto, Francisco M.; Garro, Adriana D.; Masman, Marcelo F.; Rodriguez, Ana M.; Luiten, Paul G. M.; Raimondi, Marcela; Zacchino, Susana A.; Somlai, Csaba; Penke, Botond; Enriz, Ricardo D.

    2010-01-01

    The synthesis, in vitro evaluation, and conformational study of a new series of small-size peptides acting as antifungal agents are reported. In a first step of our study we performed a conformational analysis using Molecular Mechanics calculations. The electronic study was carried out using Molecul

  19. Therapeutic potential of antifungal plant and insect defensins

    NARCIS (Netherlands)

    Thevissen, K.; Kristensen, H.H.; Thomma, B.P.H.J.; Cammue, B.P.A.; François, I.E.J.A.

    2007-01-01

    To defend themselves against invading fungal pathogens, plants and insects largely depend on the production of a wide array of antifungal molecules, including antimicrobial peptides such as defensins. Interestingly, plant and insect defensins display antimicrobial activity not only against plant and

  20. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  1. In vitro antifungal activity of Schizozygia coffaeoides bail. (Apocynaceae) extracts.

    Science.gov (United States)

    Kariba, R M; Siboe, G M; Dossaji, S F

    2001-01-01

    Leaf extracts of Schizozygia coffaeoides were investigated for antifungal activity using the disc diffusion assay technique. Petroleum ether 40-60 degrees C, dichloromethane-ethyl acetate (1:1) and methanol extracts were fungitoxic to Trichophyton mentagrophytes, Microsporum gypseum, Cladosporium cucumerinum and Candida albicans. The extracts were fungistatic in action. PMID:11137346

  2. Prediction of Antifungal Activity of Gemini Imidazolium Compounds

    Directory of Open Access Journals (Sweden)

    Łukasz Pałkowski

    2015-01-01

    Full Text Available The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA, which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds.

  3. Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity.

    Science.gov (United States)

    Ngo, Huy X; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie

    2016-07-19

    Invasive fungal infections are on the rise due to an increased population of critically ill patients as a result of HIV infections, chemotherapies, and organ transplantations. Current antifungal drugs are helpful, but are insufficient in addressing the problem of drug-resistant fungal infections. Thus, there is a growing need for novel antimycotics that are safe and effective. The ebselen scaffold has been evaluated in clinical trials and has been shown to be safe in humans. This makes ebselen an attractive scaffold for facile translation from bench to bedside. We recently reported a library of ebselen-inspired ebsulfur analogues with antibacterial properties, but their antifungal activity has not been characterized. In this study, we repurposed ebselen, ebsulfur, and 32 additional ebsulfur analogues as antifungal agents by evaluating their antifungal activity against a panel of 13 clinically relevant fungal strains. The effect of induction of reactive oxygen species (ROS) by three of these compounds was evaluated. Their hemolytic and cytotoxicity activities were also determined using mouse erythrocytes and mammalian cells. The MIC values of these compounds were found to be in the range of 0.02-12.5 μg mL(-1) against the fungal strains tested. Notably, yeast cells treated with our compounds showed an accumulation of ROS, which may further contribute to the growth-inhibitory effect against fungi. This study provides new lead compounds for the development of antimycotic agents. PMID:27334363

  4. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin i

  5. Resistance of Candida albicans biofilms to antifungal agents in vitro.

    OpenAIRE

    Hawser, S. P.; Douglas, L J

    1995-01-01

    Biofilms formed by Candida albicans on small discs of catheter material were resistant to the action of five clinically important antifungal agents as determined by [3H]leucine incorporation and tetrazolium reduction assays. Fluconazole showed the greatest activity, and amphotericin B showed the least activity against biofilm cells. These findings were confirmed by scanning electron microscopy of the biofilms.

  6. [New developments in antifungal therapy: fluconazole, itraconazole, voriconazole, caspofungin

    NARCIS (Netherlands)

    Wout, J.W. van 't; Kuijper, E.J.; Verweij, P.E.; Kullberg, B.J.

    2004-01-01

    The azole antifungal voriconazole and the echinocandin caspofungin have recently become available for the treatment of invasive mycoses. Fluconazole remains the drug of choice for candidemia, except for infections with one of the resistent species such as Candida krusei and some strains of Candida g

  7. Echinocandins: A ray of hope in antifungal drug therapy

    Directory of Open Access Journals (Sweden)

    Grover Neeta

    2010-01-01

    Full Text Available Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall. Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis. The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.

  8. Antifungal metabolites from fungal endophytes of Pinus strobus

    DEFF Research Database (Denmark)

    Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan;

    2011-01-01

    The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated...

  9. Fungal Biotransformation of Tetracycline Antibiotics.

    Science.gov (United States)

    Shang, Zhuo; Salim, Angela A; Khalil, Zeinab; Bernhardt, Paul V; Capon, Robert J

    2016-08-01

    The commercial antibiotics tetracycline (3), minocycline (4), chlortetracycline (5), oxytetracycline (6), and doxycycline (7) were biotransformed by a marine-derived fungus Paecilomyces sp. to yield seco-cyclines A-H (9-14, 18 and 19) and hemi-cyclines A-E (20-24). Structures were assigned by detailed spectroscopic analysis, and in the case of 10 X-ray crystallography. Parallel mechanisms account for substrate-product specificity, where 3-5 yield seco-cyclines and 6 and 7 yield hemi-cyclines. The susceptibility of 3-7 to fungal biotransformation is indicative of an unexpected potential for tetracycline "degradation" (i.e., antibiotic resistance) in fungal genomes. Significantly, the fungal-derived tetracycline-like viridicatumtoxins are resistant to fungal biotransformation, providing chemical insights that could inform the development of new tetracycline antibiotics resistant to enzymatic degradation. PMID:27419475

  10. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  11. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility.

    Science.gov (United States)

    Mahmoudi, Shahram; Zaini, Farideh; Kordbacheh, Parivash; Safara, Mahin; Heidari, Mansour

    2016-08-01

    Sporotrichosis is a global subcutaneous fungal infection caused by the Sporothrix schenckii complex. Sporotrichosis is an uncommon infection in Iran, and there have been no phenotypic, molecular typing or antifungal susceptibility studies of Sporothrix species. This study aimed to identify nine Iranian isolates of the S. schenckii complex to the species level using colony morphology, carbohydrate assimilation tests, and PCR-sequencing of the calmodulin gene. The antifungal susceptibilities of these Sporothrix isolates to five antifungal agents (amphotericin B (AMB), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), and terbinafine (TRB)) were also evaluated according to the M27-A3 and M38-A2 protocols of the Clinical and Laboratory Standards Institute for yeast and mycelial phases, respectively. Five of seven clinical isolates were identified as S. schenckii, and two clinical and two environmental isolates were identified as S. globosa. This is the first report of S. globosa in Iran. There was significant agreement (73%) between the results of the phenotypic and genotypic identification methods. TRB and ITC were the most effective antifungals against the Sporothrix isolates. The minimum inhibitory concentration (MIC) values of TRB for the yeast and mycelial phases of S. schenckii differed significantly. There was also a significant difference in the minimum fungicidal concentration (MFC) values of AMB and TRB for the two phases. Considering the low efficacy of VRC and FLC and the wide MIC ranges of AMB (1-16 μg/ml and 1-8 μg/ml for yeast and mycelial forms, respectively) observed in the present study, in vitro antifungal susceptibility testing should be performed to determine appropriate therapeutic regimens.

  12. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility.

    Science.gov (United States)

    Mahmoudi, Shahram; Zaini, Farideh; Kordbacheh, Parivash; Safara, Mahin; Heidari, Mansour

    2016-08-01

    Sporotrichosis is a global subcutaneous fungal infection caused by the Sporothrix schenckii complex. Sporotrichosis is an uncommon infection in Iran, and there have been no phenotypic, molecular typing or antifungal susceptibility studies of Sporothrix species. This study aimed to identify nine Iranian isolates of the S. schenckii complex to the species level using colony morphology, carbohydrate assimilation tests, and PCR-sequencing of the calmodulin gene. The antifungal susceptibilities of these Sporothrix isolates to five antifungal agents (amphotericin B (AMB), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), and terbinafine (TRB)) were also evaluated according to the M27-A3 and M38-A2 protocols of the Clinical and Laboratory Standards Institute for yeast and mycelial phases, respectively. Five of seven clinical isolates were identified as S. schenckii, and two clinical and two environmental isolates were identified as S. globosa. This is the first report of S. globosa in Iran. There was significant agreement (73%) between the results of the phenotypic and genotypic identification methods. TRB and ITC were the most effective antifungals against the Sporothrix isolates. The minimum inhibitory concentration (MIC) values of TRB for the yeast and mycelial phases of S. schenckii differed significantly. There was also a significant difference in the minimum fungicidal concentration (MFC) values of AMB and TRB for the two phases. Considering the low efficacy of VRC and FLC and the wide MIC ranges of AMB (1-16 μg/ml and 1-8 μg/ml for yeast and mycelial forms, respectively) observed in the present study, in vitro antifungal susceptibility testing should be performed to determine appropriate therapeutic regimens. PMID:26933207

  13. Antibodies: an alternative for antibiotics?

    Science.gov (United States)

    Berghman, L R; Abi-Ghanem, D; Waghela, S D; Ricke, S C

    2005-04-01

    In 1967, the success of vaccination programs, combined with the seemingly unstoppable triumph of antibiotics, prompted the US Surgeon General to declare that "it was time to close the books on infectious diseases." We now know that the prediction was overly optimistic and that the fight against infectious diseases is here to stay. During the last 20 yr, infectious diseases have indeed made a staggering comeback for a variety of reasons, including resistance against existing antibiotics. As a consequence, several alternatives to antibiotics are currently being considered or reconsidered. Passive immunization (i.e., the administration of more or less pathogen-specific antibodies to the patient) prior to or after exposure to the disease-causing agent is one of those alternative strategies that was almost entirely abandoned with the introduction of chemical antibiotics but that is now gaining interest again. This review will discuss the early successes and limitations of passive immunization, formerly referred to as "serum therapy," the current use of antibody administration for prophylaxis or treatment of infectious diseases in agriculture, and, finally, recent developments in the field of antibody engineering and "molecular farming" of antibodies in various expression systems. Especially the potential of producing therapeutic antibodies in crops that are routine dietary components of farm animals, such as corn and soy beans, seems to hold promise for future application in the fight against infectious diseases. PMID:15844826

  14. Antibiotics and the burn patient.

    Science.gov (United States)

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518

  15. Antibiotic resistance pattern in uropathogens

    OpenAIRE

    Gupta V; Yadav A; Joshi R

    2002-01-01

    Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urina...

  16. ANTIBIOTIC THERAPY FOR ENT INFECTIONS

    Directory of Open Access Journals (Sweden)

    A. B. Turovsky

    2014-07-01

    Full Text Available The paper outlines basic principles of and new approaches to antibiotic therapy for ENT and upper respiratory tract infections, from point of view of the authors, on the basis of the data available in Russian and foreign literature.

  17. Antibiotic associated diarrhoea: Infectious causes

    Directory of Open Access Journals (Sweden)

    Ayyagari A

    2003-01-01

    Full Text Available Nearly 25% of antibiotic associated diarrhoeas (AAD is caused by Clostridium difficile, making it the commonest identified and treatable pathogen. Other pathogens implicated infrequently include Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp. and Salmonella spp. Most mild cases of AAD are due to non-infectious causes which include reduced break down of primary bile acids and decrease metabolism of carbohydrates, allergic or toxic effects of antibiotic on intestinal mucosa and pharmacological effect on gut motility. The antibiotics most frequently associated with C. difficile associated diarrhoea are clindamycin, cephalosporin, ampicillin and amoxicillin. Clinical presentation may vary from mild diarrhoea to severe colitis and pseudomembranous colitis associated with high morbidity and mortality. The most sensitive and specific diagnostic test for C. difficile infection is tissue culture assay for cytotoxicity of toxin B. Commercial ELISA kits are available. Though less sensitive, they are easy to perform and are rapid. Withdrawal of precipitating antibiotic is all that is needed for control of mild to moderate cases. For severe cases of AAD, oral metronidazole is the first line of treatment, and oral vancomycin is the second choice. Probiotics have been used for recurrent cases.

  18. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  19. Antibiotics, Formula Feeding Might Change Baby's 'Microbiome'

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_159392.html Antibiotics, Formula Feeding Might Change Baby's 'Microbiome' C-section birth ... microbiomes" are altered by cesarean births, antibiotics and formula feeding. "The microbiome is really important in how ...

  20. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Antibiotic Resistance Threats in the United States, 2013 Recommend on Facebook Tweet Share Compartir This report, Antibiotic resistance threats in the United States, 2013 gives a first- ...

  1. Antibiotic 'Report Card' Drills Guidelines into Dentists

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160702.html Antibiotic 'Report Card' Drills Guidelines Into Dentists Seeing their ... HealthDay News) -- Dentists are less likely to prescribe antibiotics for patients after seeing a "report card" on ...

  2. Antifungal activities of Terminalia ivorensis A. Chev. bark extracts against Candida albicans and Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Ouattara Sitapha

    2013-02-01

    The present study was undertaken to evaluate in vitro antifungal activity of aqueous and hydroacoholic extracts from bark of Terminalia ivorensis A. Chev. (Combretaceae. In vitro antifungal activity of all the extracts was done by agar slant double dilution method. Candida albicans and Aspergillus fumigatus clinically important strains were used for the study. ketoconazole was used as standards for antifungal assay. Antifungal activity was determinated by evaluating of antifungal parameters values which are MCF (minimal concentration fungicide and IC50 (Concentration for 50% of inhibition around each assay. Result showed that the antifungal activity was more pronounced against Aspergillus fumigatus than Candida albicans. The hydroalcoholic extract showed best antifungal activity than ketoconazole. Demonstration of antifungal activity of T. ivorensis provides the scientific basis for the use of this plant in the traditional treatment of diseases and may help to discover new chemical classes of antifungal substances that could serve as selective agents for infectious disease chemotherapy. Keywords: Terminalia ivorensis, antifungal activity, clinical strains, hydroalcoholic extract [J Intercult Ethnopharmacol 2013; 2(1.000: 49-52

  3. Squalamine: an aminosterol antibiotic from the shark.

    OpenAIRE

    Moore, K.S.; Wehrli, S; Roder, H; Rogers, M.; Forrest, J N; McCrimmon, D; Zasloff, M.

    1993-01-01

    In recent years, a variety of low molecular weight antibiotics have been isolated from diverse animal species. These agents, which include peptides, lipids, and alkaloids, exhibit antibiotic activity against environmental microbes and are thought to play a role in innate immunity. We report here the discovery of a broad-spectrum steroidal antibiotic isolated from tissues of the dogfish shark Squalus acanthias. This water-soluble antibiotic, which we have named squalamine, exhibits potent bact...

  4. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    1998-01-01

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  5. Antibiotic susceptibility profiles of oral pathogens

    NARCIS (Netherlands)

    Veloo, A. C. M.; Seme, K.; Raangs, E.; Rurenga, P.; Singadji, Z.; Wekema-Mulder, G.; van Winkelhoff, A. J.

    2012-01-01

    Periodontitis is a bacterial disease that can be treated with systemic antibiotics. The aim of this study was to establish the antibiotic susceptibility profiles of five periodontal pathogens to six commonly used antibiotics in periodontics. A total of 247 periodontal bacterial isolates were tested

  6. New business models for antibiotic innovation.

    Science.gov (United States)

    So, Anthony D; Shah, Tejen A

    2014-05-01

    The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.

  7. Influence of population density on antibiotic resistance

    NARCIS (Netherlands)

    Bruinsma, N; Hutchinson, JM; van den Bogaard, AE; Giamarellou, H; Degener, J; Stobberingh, EE

    2003-01-01

    Antibiotic consumption and population density as a measure of crowding in the community were related to the prevalence of antibiotic resistance of three cities in three different countries: St Johns in Newfoundland (Canada), Athens in Greece and Groningen in The Netherlands. Antibiotic consumption w

  8. Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?

    Directory of Open Access Journals (Sweden)

    Andrew J. Flewelling

    2013-12-01

    Full Text Available As the need for new and more effective antibiotics increases, untapped sources of biodiversity are being explored in an effort to provide lead structures for drug discovery. Endophytic fungi from marine macroalgae have been identified as a potential source of biologically active natural products, although data to support this is limited. To assess the antibiotic potential of temperate macroalgal endophytes we isolated endophytic fungi from algae collected in the Bay of Fundy, Canada and screened fungal extracts for the presence of antimicrobial compounds. A total of 79 endophytes were isolated from 7 species of red, 4 species of brown, and 3 species of green algae. Twenty of the endophytes were identified to the genus or species level, with the remaining isolates designated codes according to their morphology. Bioactivity screening assays performed on extracts of the fermentation broths and mycelia of the isolates revealed that 43 endophytes exhibited antibacterial activity, with 32 displaying antifungal activity. Endophytic fungi from Bay of Fundy macroalgae therefore represent a significant source of antibiotic natural products and warrant further detailed investigation.

  9. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    Science.gov (United States)

    Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.

    2014-12-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.

  10. Isolation, Phylogenetic Analysis and Antibiotic Activity Screening of Red Sea Sponge-Associated Actinobacteria

    KAUST Repository

    Yang, Chen

    2013-06-01

    Infectious disease has always been and will continue to be a heavy burden on human society worldwide. Terrestrial actinobacteria, notable as a source of antibiotics, have been well investigated in the past. In constrast, marine actinobacteria, especially sponge-associated species, have received much less attention and isolates are sparse. With the aim of studying and discovering novel marine actinobacteria, 11 different species of sponges were collected from the Central Red Sea in Saudi Arabia and cultured with three different types of media. 16S rRNA gene-sequencing revealed that among all 75 isolated bacterial strains 13 belonged to the order actinomycetales. These 13 actinomycetes fall into four different families and can be assigned to six different genera. Antibiotic activity tests using disc diffusion assay were performed against Gram-positive bacteria (Bacillus sp.), Gram-negative bacteria (Escherichia coli), fungi (Fusarium sp.) and West Nile virus NS3 protease. Nine strains presented different level of bioactivity against these pathogens. These findings provide evidence that actinomycetes are presented in marine sponges and that they have the potential to be good candidates in the search for new effective antibiotic, antifungal, and antiviral compounds.

  11. ANTI-FUNGAL POTENTIAL OF LEAVE EXTRACTS OF MURRAYA KOENIGII

    Directory of Open Access Journals (Sweden)

    Mishra Manoj Kumar

    2010-12-01

    Full Text Available Shade dried leaves of Murraya koenigii Linn. (Rutaceae was extracted successfully using soxhlet apparatus using petroleum ether (PE, benzene (BZ, chloroform (CF, acetone (AT, ethanol 95% (EN and water (AQ. Essential oil was also isolated from the fresh leaves. Qualitative phytochemical screening showed presence of essential oil, phenolic compounds, glycogides, amino acids, resins and alkaloids. The extracts and essential oil were tested against four fungi. Zone of Inhibition was measured using the Disc Diffusion Plate Method. DW extract has no antifungal activity. AT extract was most active against Aspergillus niger, BZ extract was most active against Alternaria solani and Helminthosporium solani. EN extract was most active against Penicillium notatum. The essential oil also possesses moderate antifungal activity.

  12. A Novel Infrared Radiant Glaze Exhibiting Antibacterialand Antifungal Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Infrared radiant powder was synthesized by conventional ceramic processing techniques by using Fe2O3, MnO2, CuO, Co2O3 and kaolin as raw materials. A novel infrared radiant glaze was developed by introducing the infrared radiant powder into glazing as a functional additive. Infrared radiant characteristics of the powder and the glaze were investigated. The optimum content of infrared radiant powder in glazing was ascertained to be 5%. The infrared radiant glaze exhibits significant antibacterial and antifungal functions due to the thermal effect of infrared radiation. Antibacterial percentages of the glaze reach 91%-100% when Escherichia coli, Staphylococcus aureus and Bacillus subtilis are used as model bacterium respectively, while antifungal percentage of the glaze exceeds 95% when Penicillum citrinum is used as model fungus.

  13. Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives.

    Science.gov (United States)

    Li, Rongchun; Guo, Zhanyong; Jiang, Pingan

    2010-09-01

    Three novel quaternary chitosan derivatives were successfully synthesized by reaction of chloracetyl chitosan (CACS) with pyridine (PACS), 4-(5-chloro-2-hydroxybenzylideneamino)-pyridine (CHPACS), and 4-(5-bromo-2-hydroxybenzylideneamino)-pyridine (BHPACS). The chemical structure of the prepared chitosan derivatives was confirmed by Fourier transform infrared (FT-IR) and (13)C nuclear magnetic resonance ((13)C NMR) and their antifungal activity against Cladosporium cucumerinum, Monilinia fructicola, Colletotrichum lagenarium, and Fusarium oxysporum was assessed. Comparing with the antifungal activity of chitosan, CACS, and PACS, CHPACS and BHPACS exhibited obviously better inhibitory effects, which should be related to the synergistic reaction of chitosan itself with the grafted 2-[4-(5-chloro-2-hydroxybenzylideneamino)-pyridyl]acetyl and 2-[4-(5-bromo-2-hydroxybenzylideneamino)-pyridyl]acetyl. PMID:20615498

  14. Synthesis, antifungal activity, and QSAR study of novel trichodermin derivatives.

    Science.gov (United States)

    Cheng, Jing-Li; Zheng, Min; Yao, Ting-Ting; Li, Xiao-Liang; Zhao, Jin-Hao; Xia, Min; Zhu, Guo-Nian

    2015-01-01

    In an attempt to discover more potential antifungal agents, in this study, 21 novel trichodermin derivatives containing conjugated oxime ester (5a-5u) were designed and synthesized and were screened for in vitro antifungal activity. The bioassay tests showed that some of them exhibited good inhibitory activity against the tested pathogenic fungi. Compound 5a exhibited better activity against Pyricularia oryzae and Sclerotonia sclerotiorum than trichodermin, and compound 5j showed particular activity against P.oryzae and Botrytis cinerea. The quantitative structure-activity relationship (QSAR) indicated that log P and hardness were two critical parameters for the biological activities. The result suggested that these would be potential lead compounds for the development of fungicides with further structure modification. PMID:25290081

  15. Conventional and alternative antifungal therapies to oral candidiasis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Anibal

    2010-12-01

    Full Text Available Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS. These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  16. TESTING ANTIFUNGAL ACTIVITY OF SOME ESSENTIAL OILS USING FLOW CYTOMETRY

    Directory of Open Access Journals (Sweden)

    Crina Saviuc

    2012-09-01

    Full Text Available The use of natural antifungal compounds has become a viable alternative for fighting fungal infections since high rates of resistance to synthetic antifungal compounds has emerged. Classical techniques aimed to routinely investigate fungal susceptibility are often limited when using natural essential oils, because of their instability and great volatility that may lead to false results. In this study, we report the results obtained by classical antimicrobial susceptibility testing techniques and flow cytometry regarding the effect of some volatile oils on different Candida clinical isolates. The obtained results revealed that flow cytometry is a very useful and precise technique in investigating the influence of essential oils on the fungal cells, surpassing the disadvantage of their volatility and thus reducing false results often obtained by using the classical methods.

  17. Purification of castamollin, a novel antifungal protein from Chinese chestnuts.

    Science.gov (United States)

    Wang, H X; Ng, T B

    2003-11-01

    A novel antifungal protein, designated castamollin, was isolated from Chinese chestnut (Castanea mollisima) seeds with a procedure involving ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-Sepharose and FPLC-gel filtration on Superdex 75. Castamollin possessed a novel N-terminal sequence demonstrating little similarity to N-terminal sequences of Castanea sativa chitinase. Castamollin exhibited a molecular mass of 37kDa in gel filtration and SDS-PAGE. It inhibited the activity of human immunodeficiency virus-1 reverse transcriptase with an IC(50) of 7microM and translation in a cell-free rabbit reticulocyte lysate system with an IC(50) of 2.7microM. Castamollin displayed antifungal activity against Botrytis cinerea, Mycosphaerella arachidicola, Physalospora piricola, and Coprinus comatus but was devoid of lectin activity.

  18. Antifungal activities of thiosemicarbazones and semicarbazones against mycotoxigenic fungi

    Directory of Open Access Journals (Sweden)

    Rojane de Oliveira Paiva

    2014-12-01

    Full Text Available Mycotoxigenic fungi can compromise the quality of food, exposing human and animal health at risk. The antifungal activity of eight thiosemicarbazones (1-8 and nine semicarbazones (9-17 was evaluated against Aspergillus flavus, A. nomius, A. ochraceus, A. parasiticus and Fusarium verticillioides. Thiosemicarbazones had MIC values of 125-500 µg/ml. The thiosemicarbazones 1 and 2 exerted fungistatic activity against Aspergillus spp., and thiosemicarbazone 2 exerted fungicidal activity against F. verticillioides. Compound 2 showed an iron chelating effect of 63%. The ergosterol content of A. parasiticus had a decrease of 28 and 71% for the 31.2 and 62.5 µg/ml concentrations of thiosemicarbazone 2 compared to the control. The obtained results of antifungal activity revealed that thiosemicarbazone class was more active when compared to semicarbazone class and, the thiosemicarbazone 2 was the most active compound, specially, against Aspergillus spp.

  19. Design, synthesis and antifungal activity of novel furancarboxamide derivatives.

    Science.gov (United States)

    Wen, Fang; Jin, Hong; Tao, Ke; Hou, Taiping

    2016-09-14

    Twenty-seven novel furancarboxamide derivatives with a diphenyl ether moiety were synthesized and evaluated for their antifungal activity against Rhizoctonia solani, Botrytis cirerea, Valsa mali and Sphaceloma ampelimum. Antifungal bioassay results indicated that most compounds had good or excellent fungicidal activities for R. solani and S. ampelimum at 20 mg L(-1). Among synthesized compounds, compound 18e showed a greater inhibitory effect against S. ampelimum, with half maximal effective concentration (EC50) values of 0.020 mg L(-1). This strong activity rivals currently used commercial fungicides, such as Boscalid and Carbendazim, and has great potential as a lead compound for future development of novel fungicides. PMID:27191618

  20. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  1. Conventional and alternative antifungal therapies to oral candidiasis.

    Science.gov (United States)

    Anibal, Paula Cristina; de Cássia Orlandi Sardi, Janaina; Peixoto, Iza Teixeira Alves; de Carvalho Moraes, Julianna Joanna; Höfling, José Francisco

    2010-10-01

    Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS). These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  2. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  3. Antibacterial and antifungal activities of benzimidazole and benzoxazole derivatives.

    OpenAIRE

    Elnima, E I; Zubair, M U; Al-Badr, A A

    1981-01-01

    The in vitro antibacterial and antifungal activities of six benzimidazole and benzoxazole derivatives were tested against standard strains and 59 clinical isolates. Of the six compounds, only compounds II and III (both benzoxazoles) were active, whereas the rest were devoid of any activity. Considerable growth inhibition of all of the standard strains, including fungi and gram-positive and gram-negative bacteria, resulted when they were treated with these compounds. Fifty-nine clinical isolat...

  4. Experimental evaluation of antifungal and antiseptic agents against Rhodotorula spp.

    Science.gov (United States)

    Preney, L; Théraud, M; Guiguen, C; Gangneux, J P

    2003-12-01

    We studied the susceptibility of 21 strains of Rhodotorula rubra and nine strains of R. glutinis to eight antifungals and tested eight antiseptic agents on one strain of R. rubra. The tested strains were susceptible to ketoconazole, 5-fluorocytosine, amphotericin B, and nystatin, intermediate to econazole and resistant to fluconazole, itraconazole and miconazole. After 5-min contact, six of the eight antiseptic agents tested showed a fungicidal activity on the tested R. rubra strain.

  5. ANTIFUNGAL ACTIVITY OF NEEM (Azadirachta indica: MELIACEAE) EXTRACTS AGAINST DERMATOPHYTES

    OpenAIRE

    Ospina Salazar, Daniel Iván; Hoyos Sánchez, Rodrigo Alberto; Fernando OROZCO SÁNCHEZ; Myrtha ARANGO ARTEAGA; Luisa Fernanda GÓMEZ LONDOÑO

    2015-01-01

    In order to assess the antifungal activity of methanolic extracts from neem tree (Azadirachta indica A. Juss.), several bioassays were conducted following M38-A2 broth microdilution method on 14 isolates of the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum. Neem extracts were obtained through methanol-hexane partitioning of mature green leaves and seed oil. Furthermore, high performance liquid chromatography (HPLC) analyses were...

  6. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    OpenAIRE

    Kanniah Rajasekaran; Jian Chen; BECNEL, JAMES J.; Natasha M. Agramonte; Bernier, Ulrich R.; Maia Tsikolia; Kemal Husnu Can Baser; Betul Demirci; David E. Wedge; Nurhayat Tabanca; Sampson, Blair J.; Hamidou F. Sakhanokho; James M. Spiers

    2013-01-01

    The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum...

  7. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL.

  8. Characterization of four new antifungal yanuthones from Aspergillus niger

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Holm, Dorte Koefoed; Knudsen, Peter Boldsen;

    2015-01-01

    identified three class I yanuthones originating from the polyketide 6-methylsalicylic acid (yanuthone K, L and M (1–3)) and a class II yanuthone, which was named yanuthone X2 (4). The four new compounds were tested toward the pathogenic yeast Candida albicans and all displayed antifungal activity. Yanuthone...... X2 represents the first example of a bioactive class II yanuthone, demonstrating the pharmaceutical potential of this class....

  9. Caerulomycin A- An antifungal compound isolated from marine actinomycetes.

    Digital Repository Service at National Institute of Oceanography (India)

    Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.B.; Mishra, P.D.; DeSouza, L.; Ranadive, P.

    cyanogriseus. Overall, Caerulomycin A was isolated from marine invertebrate-associated Actinoalloteichus sp. using optimized medium and fermentation conditions. Acknowledgements The authors are very grateful to Dr. Arun Balakrishnan, Senior Vice... Genetics Analysis Using Maximum Likelihood, Evolutionary Distance and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 [24] Antifungals Market to 2017—Generic Erosion of Major Polyenes...

  10. Antifungal methylphenone derivatives and 5-methylcoumarins from Mutisia friesiana.

    Science.gov (United States)

    Viturro, Carmen I; de la Fuente, Juana R; Maier, Marta S

    2003-01-01

    In addition to the known mutisicoumarin A, the aerial parts of the shrub Mutisia friesiana afforded five new methylphenones, two new 5-methylcoumarins and a new related chromone. Their structures were elucidated by spectroscopic methods 13C NMR data for mutisicoumarin A are reported for the first time. Mutisiphenones A and B and mutisicoumarin A showed antifungal activity against the phytopathogenic fungus Cladosporium cucumerinum. PMID:12939040

  11. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica.

    Science.gov (United States)

    Ioset, J R; Marston, A; Gupta, M P; Hostettmann, K

    2000-03-01

    In addition to the known cordiaquinones A and B, two novel meroterpenoid naphthoquinones, named cordiaquinones J and K, have been isolated from the roots of Cordia curassavica. Their structures were elucidated by spectrometric methods including EI, D/CI mass spectrometry, 1H, 13C and 2D-NMR experiments. The four naphthoquinones demonstrated antifungal activities against Cladosporium cucumerinum, Candida albicans and toxic properties against larvae of the yellow fever-transmitting mosquito Aedes aegypti. PMID:10724189

  12. SUSCEPTIBILITY OF CANDIDA SPECIES TO ANTIFUNGAL DRUGS IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Geeta M Vaghela

    2015-06-01

    Full Text Available Introduction: The increase in candidaemia is associated with high mortality. A shift has been observed in the relative frequency of each Candida spp. isolated from blood. Options of the antifungal drugs available for treatment of systemic and invasive candidiasis are restricted to polyenes, allylamines, azoles and recently developed echinocandin class of molecules. A rise in the incidence of antifungal resistance to Candida spp. has also been reported over the past decade. Studies on prevalence of infections and antifungal susceptibility testing are useful in deciding clinical strategies. Aims: To do species level identification and detect resistance, if any, among Indian clinical isolates of C. albicans. Methodology: From total 135 patients from a tertiary care hospital of Gujarat, Candida species were isolated from different clinical specimens. The growth of Candida on Sabouraud's dextrose agar was confirmed by Gram staining in which gram positive budding fungal cells were observed. Then its growth was examined for colony morphology on Sabouraud's dextrose agar and chlamydospore production on Corn meal tween 80 agar. Germ tube tests and other biochemical tests like sugar fermentation, sugar assimilation and urease test were performed to identify the species of Candida. Antifungal susceptibility testing was performed by NCCLS M44-A Disc diffusion method. Results: Out of total 135 samples, C. Albicans were isolated from 52 (38.5%. Among Non Albican Candid (NAC, Candida glabrata was 36 (26.7% followed by Candida tropicalis 25(18.5%. C. albicans was found resistant to Fluconazole, Itraconazole and Amphotericine B in 3.8%, 3.8% and 1.9% cases respectively. For NAC, resistance of Fluconazole, Itraconazole and Amphotericine B was found in 4.8%, 3.6% and 2.4% cases respectively. [Natl J Med Res 2015; 5(2.000: 122-126

  13. Antifungal Activity of Ellagic Acid In Vitro and In Vivo.

    Science.gov (United States)

    Li, Zhi-Jian; Guo, Xin; Dawuti, Gulina; Aibai, Silafu

    2015-07-01

    Ellagic acid (EA) has been shown to have antioxidant, antibacterial, and anti-inflammatory activities. In Uighur traditional medicine, Euphorbia humifusa Willd is used to treat fungal diseases, and recent studies suggest that it is the EA content which is responsible for its therapeutic effect. However, the effects of EA on antifungal activity have not yet been reported. This study aimed to investigate the inhibitory effect of EA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the National Committee for Clinical Laboratory Standards (M38-A and M27-A2) standard method in vitro. EA had a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 18.75 and 58.33 µg/ml. EA was also active against two Candida strains, with MICs between 25.0 and 75.0 µg/ml. It was inactive against Candida glabrata. The susceptibility of six species of dermatophytes to EA was comparable with that of the commercial antifungal, fluconazole. The most sensitive filamentous species was Trichophyton rubrum (MIC = 18.75 µg/ml). Studies on the mechanism of action using an HPLC-based assay and an enzyme linked immunosorbent assay showed that EA inhibited ergosterol biosynthesis and reduced the activity of sterol 14α-demethylase P450 (CYP51) in the Trichophyton rubrum membrane, respectively. An in vivo test demonstrated that topical administration of EA (4.0 and 8.0 mg/cm(2) ) significantly enhanced the cure rate in a guinea-pig infection model of Trichophyton rubrum. The results suggest that EA has the potential to be developed as a natural antifungal agent. PMID:25919446

  14. Caenorhabditis elegans-based Model Systems for Antifungal Drug Discovery

    OpenAIRE

    Cleo G Anastassopoulou; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2011-01-01

    The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of...

  15. In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus

    OpenAIRE

    Steinbach, William J.; Schell, Wiley A.; Blankenship, Jill R.; Onyewu, Chiatogu; Heitman, Joseph; Perfect, John R.

    2004-01-01

    The optimal treatment for invasive aspergillosis remains elusive, despite the increased efficacy of newer agents. The immunosuppressants cyclosporine (CY), tacrolimus (FK506), and sirolimus (formerly called rapamycin) exhibit in vitro and in vivo activity against Candida albicans, Cryptococcus neoformans, and Saccharomyces cerevisiae, including fungicidal synergy with azole antifungals. We report here that both FK506 and CY exhibit a clear in vitro positive interaction with caspofungin agains...

  16. Antifungal activity of different silver nanoparticles suspensions against Candida biofilms

    OpenAIRE

    Monteiro, D. R.; Silva, Sónia Carina; Negri, M.; Camargo, E. R.; Gorup, L. F.; Takamiya, A.; Oliveira, Rosário; Barbosa, D. B.; Henriques, Mariana

    2012-01-01

    Objective: The tolerance of Candida biofilms to conventional antifungal drugs has stimulated the search for new therapies that could prevent or treat Candida-associated denture stomatitis. The objectives of this study were (i) to assess the antibiofilm activity of different silver nanoparticles (SN) suspensions against Candida albicans and Candida glabrata biofilms and (ii) to evaluate the effect of these nanoparticles on the matrix composition and the structure of Candida biofilms. Metho...

  17. Antifungal and anthelmintic activities of Cleistopholis patens (Annonaceae).

    Science.gov (United States)

    Akendengué, Blandine; Champy, Pierre; Nzamba, Joseph; Roblot, François; Loiseau, Philippe M; Bories, Christian

    2009-08-01

    Basic CH2Cl2 extract of the trunk bark of Cleistopholis patens (Annonaceae) exhibited antifungal activities against Candida albicans, C. parapsilosis, and C. glabrata using an agar well-diffusion assay method. Bioassay-guided fractionation of the extract led to the isolation of 8-hydroxysampangine. The methanolic extract displayed anthelmintic activity against Rhabditis pseudoelongata. Purification of the neutral CH2Cl2 extract yielded bornyl-p-transcoumarate and bornyl-p-cis-coumarate.

  18. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  19. Two Novel Antifungal Saponins from Tibetan Herbal Medicine Clematis tangutica

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Antifungal assay-guided isolation of the ethanol extract of the aerial parts of Clematis tangutica yielded two novel triterpene saponins. Their structures were determined to be 3-O-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl ester (1) and 3-O-β-D- glucopyranosyl-(1→4)-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl ester (2) on the basis of spectral data and chemical reactions.

  20. Synthesis of Novel Pyrimethanil Grafted Chitosan Derivatives with Enhanced Antifungal Activity

    Science.gov (United States)

    Liu, Song; Xing, Ronge; Chen, Xiaolin

    2016-01-01

    In this study, three pyrimethanil grafted chitosan (PML-g-CS) derivatives were obtained. The structures of the conjugates were confirmed by FT-IR, 1H NMR, and EA. The grafting ratios were measured by HPLC. Antifungal properties of pyrimethanil grafted chitosan (PML-g-CS) derivatives against the plant pathogenic fungi Rhizoctonia solani and Gibberella zeae were investigated at concentrations of 100, 200, and 400 mg/L. The PML-g-CS derivatives showed enhanced antifungal activity in comparison with chitosan. The PML-g-CS-1 showed the best antifungal activity against R. solani, whose antifungal index was 58.32%. The PML-g-CS-2 showed the best antifungal activity against G. zeae, whose antifungal index was 53.48%. The conjugation of chitosan and pyrimethanil showed synergistic effect. The PML-g-CS derivatives we developed showed potential for further study and application in crop protection. PMID:27529072

  1. Innovative phytosynthesized silver nanoarchitectures with enhanced antifungal and antioxidant properties

    Science.gov (United States)

    Ortan, Alina; Fierascu, Irina; Ungureanu, Camelia; Fierascu, Radu Claudiu; Avramescu, Sorin Marius; Dumitrescu, Ovidiu; Dinu-Pirvu, Cristina Elena

    2015-12-01

    While in the early era of nanotechnology, nanoparticles of noble metals were obtained through expensive methods, using toxic chemical reagents, in the last decade attempts are made to obtain the desired chemical composition, size, morphology, and other properties by eco and green synthesis, using plants. The aim of this paper is to compare two extraction methods (hydroalcoholic extraction and microwave extraction) used to phytosynthesize silver nanoparticles, in terms of nanoparticle (NP) morphology, antioxidant, and antifungal action, using an European native plant, Anthriscus cerefolium (L.) Hoffm. The extracts and the obtained NPs were characterized by modern analytical techniques (GC-MS, UV-Vis, SEM, TEM) and by phytochemical assays (total flavonoids, total terpenoids and total phenolic content). The antifungal activity (evaluated using the Kirby-Bauer method, against Aspergillus niger and Penicillium hirsutum) and the antioxidant activity (determined by the DPPH assay and a chemiluminescence assay) revealed notable differences between the samples, differences due to the extraction procedure followed. Also, preliminary studies regarding the stability and the toxicity of the nanoparticles are presented. By using the microwave-assisted extraction, not only smaller particles (less than 10 nm) were obtained, but also with better antifungal and antioxidant properties than the ones obtained by classical extraction.

  2. Antifungal susceptibility testing method for resource constrained laboratories

    Directory of Open Access Journals (Sweden)

    Khan S

    2006-01-01

    Full Text Available Purpose: In resource-constrained laboratories of developing countries determination of antifungal susceptibility testing by NCCLS/CLSI method is not always feasible. We describe herein a simple yet comparable method for antifungal susceptibility testing. Methods: Reference MICs of 72 fungal isolates including two quality control strains were determined by NCCLS/CLSI methods against fluconazole, itraconazole, voriconazole, amphotericin B and cancidas. Dermatophytes were also tested against terbinafine. Subsequently, on selection of optimum conditions, MIC was determined for all the fungal isolates by semisolid antifungal agar susceptibility method in Brain heart infusion broth supplemented with 0.5% agar (BHIA without oil overlay and results were compared with those obtained by reference NCCLS/CLSI methods. Results: Comparable results were obtained by NCCLS/CLSI and semisolid agar susceptibility (SAAS methods against quality control strains. MICs for 72 isolates did not differ by more than one dilution for all drugs by SAAS. Conclusions: SAAS using BHIA without oil overlay provides a simple and reproducible method for obtaining MICs against yeast, filamentous fungi and dermatophytes in resource-constrained laboratories.

  3. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    Fungal infections have become a major problem in the hospital sector in the past decades due to the increased number of immune compromised patients susceptible to mycosis. Most human infections are believed to be associated with biofilm forming cells that are up to 1000-fold more tolerant to anti...... that complex sphingolipids were involved in fungicidal activity of LTX-109. The sphingolipids may therefore represent a unique antifungal target with therapeutic potential for future drug development....... to antimicrobial agents compared to their planktonic counterparts. Antifungal treatment of biofilms will therefore often result in treatment failure. Consequently, there is a basic requirement to understand the underlying tolerance mechanisms and to development of novel anti-biofilm treatment strategies. The focus...... of this thesis has been to explore the tolerance mechanisms of yeast biofilms to systemic antifungal agents and to identify the molecular target of a novel peptidomimetic with anti-biofilm activity. The genetic tractable S. cerevisiae was used as biofilm model system for the pathogenic Candida species...

  4. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species

    Directory of Open Access Journals (Sweden)

    Gerard Vilarem

    2010-09-01

    Full Text Available The essential oil of the aerial part (leaves, flowers and stem of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%, p-cymene (23.4% and p-mentha-1,8-diène (15.3%. The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

  5. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.

  6. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  7. Synthesis and Biological Evaluation of Hydrazone Derivatives as Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Bruna B. Casanova

    2015-05-01

    Full Text Available Emerging yeasts are among the most prevalent causes of systemic infections with high mortality rates and there is an urgent need to develop specific, effective and non-toxic antifungal agents to respond to this issue. In this study 35 aldehydes, hydrazones and hydrazines were obtained and their antifungal activity was evaluated against Candida species (C. parapsilosis, C. tropicalis, C. krusei, C. albicans, C. glabrata and C. lusitaneae and Trichosporon asahii, in an in vitro screening. The minimum inhibitory concentrations (MICs of the active compounds in the screening was determined against 10 clinical isolates of C. parapsilosis and 10 of T. asahii. The compounds 4-pyridin-2-ylbenzaldehyde] (13a and tert-butyl-(2Z-2-(3,4,5-trihydroxybenzylidinehydrazine carboxylate (7b showed the most promising MIC values in the range of 16–32 μg/mL and 8–16 μg/mL, respectively. The compounds’ action on the stability of the cell membrane and cell wall was evaluated, which suggested the action of the compounds on the fungal cell membrane. Cell viability of leukocytes and an alkaline comet assay were performed to evaluate the cytotoxicity. Compound 13a was not cytotoxic at the active concentrations. These results support the discovery of promising candidates for the development of new antifungal agents.

  8. Antifungal activity of topical microemulsion containing a thiophene derivative

    Directory of Open Access Journals (Sweden)

    Geovani Pereira Guimarães

    2014-06-01

    Full Text Available Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05 embedded in a microemulsion (ME. The minimum inhibitory concentration (MIC was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05 showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270-540 µg.mL-1 and good activity against C. neoformans (MIC = 17 µg.mL-1. Candida species were susceptible to ME-5CN05 (70-140 µg.mL-1, but C. neoformans was much more, presenting a MIC value of 2.2 µg.mL-1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans.

  9. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    OpenAIRE

    Seung-Bae Lee

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by ...

  10. Evaluation of antifungal activity of protease inhibitors from potato (Solanum tuberosum L.)

    OpenAIRE

    REISEROVÁ, Jana

    2014-01-01

    This diploma thesis is concerned on protease inhibitors isolated from potato (Solanum tuberosum L.) tubers and evaluation of their antifungal properties. Theoretical part of the thesis deals with protease inhibitors which have an antifungal effect. Tubers of potato cultivars Adéla, Ornella, Eurostarch - were used for protease inhibitors isolation. Antifungal activity of isolated protein fractions were evaluated versus fungi from genus Rhizoctonia and Fusarium that are important pathogens in a...

  11. In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties

    OpenAIRE

    Supattra Suwanmanee; Thitinan Kitisin; Natthanej Luplertlop

    2014-01-01

    Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC) and diameter zone of inhibition were...

  12. Exploring the Molecular Basis of Antifungal Synergies Using Genome-Wide Approaches

    OpenAIRE

    Agarwal, Ameeta K.; Tripathi, Siddharth K.; Xu, Tao; Jacob, Melissa R.; Li, Xing-Cong; Clark, Alice M.

    2012-01-01

    Drug resistance poses a significant challenge in antifungal therapy since resistance has been found for all known classes of antifungal drugs. The discovery of compounds that can act synergistically with antifungal drugs is an important strategy to overcome resistance. For such combination therapies to be effective, it is critical to understand the molecular basis for the synergism by examining the cellular effects exerted by the combined drugs. Genomic profiling technologies developed in the...

  13. Anti-fungal activities of medicinal plants extracts of Ivorian pharmacopoeia

    OpenAIRE

    Mathieu, Kra Adou Koffi; Marcel, Ahon Gnamien; Djè, Djo-Bi; Sitapha, Ouattara; Adama, Coulibaly; Joseph, Djaman Allico

    2014-01-01

    Aim: This study was to evaluate in vitro anti-fungal activity of aqueous and hydroethanolic from medicinal plants extracts collected in Côte d’Ivoire. Materials and Methods: Plants extracts were prepared by homogenization and separately incorporated to Sabouraud agar using the agar slanted double dilution method. Ketoconazole was used as standards for anti-fungal assay. The anti-fungal tests were performed by sowing 1000 cells of Candida albicans on the previously prepared medium culture. Ant...

  14. [Action of antibiotics as signalling molecules].

    Science.gov (United States)

    Bulgakova, V G; Vinogradova, K A; Orlova, T I; Kozhevin, P A; Polin, A N

    2014-01-01

    It was thought that antibiotics should be produced by soil microorganisms to inhibit the growth of competitors in natural habitats. Yet it has been shown that antibiotics at subinhibitory concentrations may have a role as signalling molecules providing cell-to-cell communication in bacteria in the environment. Antibiotics modulate gene transcription and regulate gene expression in microbial populations. Subinhibitory concentrations of antibiotics may cause a number of phenotypic and genotypic changes in microorganisms. These transcription changes are dependent on the interaction of antibiotics with macromolecular receptors such as ribosome or RNA-polymerase. Antibiotic signalling and quorum-sensing system are important regulatory mechanisms in bacteria. It was demonstrated that antibiotics interfered with quorum-sensing system.

  15. Biosynthesis of Enediyne Antitumor Antibiotics

    OpenAIRE

    Van Lanen, Steven G.; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been...

  16. Uncialamycin, a new enediyne antibiotic.

    Science.gov (United States)

    Davies, Julian; Wang, Hao; Taylor, Terry; Warabi, Kaoru; Huang, Xin-Hui; Andersen, Raymond J

    2005-11-10

    [structure: see text] Laboratory cultures of an undescribed streptomycete obtained from the surface of a British Columbia lichen produce uncialamycin (1), a new enediyne antibiotic. The structure of uncialamycin (1) has been elucidated by analysis of spectroscopic data. Uncialamycin (1) exhibits potent in vitro antibacterial activity against gram-positive and gram-negative human pathogens, including Burkholderia cepacia, a major cause of morbidity and mortality in patients with cystic fibrosis. PMID:16268546

  17. Minocycline: far beyond an antibiotic

    OpenAIRE

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-01-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic acti...

  18. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013).

    Science.gov (United States)

    Castanheira, Mariana; Messer, Shawn A; Rhomberg, Paul R; Pfaller, Michael A

    2016-06-01

    Among 1846 fungal clinical isolates from 31 countries, echinocandin resistance in Candida spp. ranged from 0.0% to 2.8% (highest for anidulafungin versus Candida glabrata), and fluconazole resistance was noted among 11.9% and 11.6% of the C. glabrata and Candida tropicalis, respectively. Two isolates of Aspergillus fumigatus displayed elevated MICs for itraconazole and carried cyp51a mutations encoding TR34 L98H. All Cryptococcus neoformans had azole MIC values below epidemiological cutoff values. The increasing resistance among certain species and more frequent reports of breakthrough infections in patients undergoing antifungal therapy highlights the importance of antifungal surveillance to guide therapy for patients with invasive fungal infections. PMID:27061369

  19. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  20. Antifungal activity ofOcimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi

    Institute of Scientific and Technical Information of China (English)

    Balakumar S; Rajan S; Thirunalasundari T; Jeeva S

    2011-01-01

    Objective:To assess antifungal activity ofOcimum sanctum leaves against dermatophytic fungi. Methods: Antifungal activity ofOcimum sanctum leaves was measured by38 A NCCLS method. Minimum inhibitory concentration(MIC) and minimum fungicidal concentration(MFC) of various extracts and fractions ofOcimum sanctum leaves were also determined.Results:Ocimum sanctum leaves possessed antifungal activity against clinically isolated dermatophytes at the concentration of200μg/mL.MICandMFC were high with water fraction (200 μg/mL) against dermatophytic fungi used.Conclusions:Ocimum sanctum has antifungal activity, and the leaf extracts may be a useful source for dermatophytic infections.

  1. Diversity and antifungal susceptibility of Norwegian Candida glabrata clinical isolates

    Science.gov (United States)

    Andersen, Kari-Mette; Kristoffersen, Anne Karin; Ingebretsen, André; Vikholt, Katharina Johnsen; Örtengren, Ulf Thore; Olsen, Ingar; Enersen, Morten; Gaustad, Peter

    2016-01-01

    Background Increasing numbers of immunocompromised patients have resulted in greater incidence of invasive fungal infections with high mortality. Candida albicans infections dominate, but during the last decade, Candida glabrata has become the second highest cause of candidemia in the United States and Northern Europe. Reliable and early diagnosis, together with appropriate choice of antifungal treatment, is needed to combat these challenging infections. Objectives To confirm the identity of 183 Candida glabrata isolates from different human body sites using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and VITEK®2, and to analyze isolate protein profiles and antifungal susceptibility. The minimum inhibitory concentration (MIC) of seven antifungal drugs was determined for the isolates to elucidate susceptibility. Design A total of 183 C. glabrata isolates obtained between 2002 and 2012 from Norwegian health-care units were analyzed. For species verification and differentiation, biochemical characterization (VITEK®2) and mass spectrometry (MALDI–TOF) were used. MIC determination for seven antifungal drugs was undertaken using E-tests®. Results Using VITEK®2, 92.9% of isolates were identified as C. glabrata, while all isolates (100%) were identified as C. glabrata using MALDI-TOF. Variation in protein spectra occurred for all identified C. glabrata isolates. The majority of isolates had low MICs to amphotericin B (≤1 mg/L for 99.5%) and anidulafungin (≤0.06 mg/L for 98.9%). For fluconazole, 18% of isolates had MICs >32 mg/L and 82% had MICs in the range ≥0.016 mg/L to ≤32 mg/L. Conclusions Protein profiles and antifungal susceptibility characteristics of the C. glabrata isolates were diverse. Clustering of protein profiles indicated that many azole resistant isolates were closely related. In most cases, isolates had highest susceptibility to amphotericin B and anidulafungin. The results confirmed previous observations of high

  2. [Identification and characterization of a Bacillus amyloliquefaciens with high antifungal activity].

    Science.gov (United States)

    Quan, Chun-shan; Wang, Jun-hua; Xu, Hong-tao; Fan, Sheng-di

    2006-02-01

    Plant disease can cause serious crop losses, and chemical control of disease is costly both to the environment and to the farmer. Some microorganism can produce the substance which has the preventing and exterminating functions to plant pathogens. These substances are valid to plant pathogens with only lower concentration, in addition the substances do not remain in soil and crops without being decomposed. If composization is performed with the microorganism, or the microorganism is mixed into compost, the functional compost having preventing and exterminating action will be made out and that can be more useful to environmental preservation. In order to screen antifungal bacteria for use in biological control, 200 compost samples were taken from different regions in China, over 10 bacterium with clear antifungal activity were isolated from composts, among them, strain Q-12 exhibited the highest antifungal activity which was strongly inhibits the growth of many plant pathogenic fungi such as Fusarium oxysporum and Rhizoctonia solan. According to the characteristics of morphology, physiology and biochemistry tests (API 50 CHB/E system) and the comparison of 16S rDNA sequence, the strain Q-12 was similar to B. subtilis and B. amyloliquefaciens. Some specific genes yyaR, yyaO and tetB, which have previously been shown to be effective for resolving these closely related taxa of the B. subtilis group, were analysed to clarify further the classification of Q-12, and two pairs of primers YyaR _ F/TetB _ R and YyaO _ F/TetB _ R were designed. From the analysis of fingerprints obtained with the two primers, strain Q-12 and B. amyloliquefaciens showed identical genomic fingerprints with primers YyaR _ F/TetB R, indicating their closely genetic relationship, and was identified as B. amyloliquefaciens. In the investigation of the culture condition, growth was carried out in a basal medium and gradually supplemented with the various ingredients to be investigated. The major

  3. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough.

    Science.gov (United States)

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Peyer, Lorenzo C; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    This study was undertaken to assess the antifungal performance of three different Lactobacillus species.Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species.However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions.

  4. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough.

    Science.gov (United States)

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Peyer, Lorenzo C; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    This study was undertaken to assess the antifungal performance of three different Lactobacillus species.Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species.However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions. PMID:26481620

  5. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    OpenAIRE

    Geoffrey Ivan Scott; Porter, Dwayne E.; R. Sean Norman; C. Hart Scott; Miguel Ignacio Uyaguari-Diaz; Keith eMaruya; Steve B. Weisberg; Fulton, Michael H.; Ed F. Wirth; Janet eMooore; Pennington , Paul L.; Daniel eSchlenk; Cobb, George P.; Denslow, Nancy D.

    2016-01-01

    ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs). CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CEC...

  6. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro;

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...... of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. Conclusions: Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little...... associated with antibiotic resistance strongly indicate the need for action....

  7. Antibacterial, antifungal, phytotoxic, antioxidant and hemagglutination activities of organic fractions of Arisaema tortuosum.

    Science.gov (United States)

    Azam, Sadiq; Saqib, Muhammad Shahab; Zar, Faisal; Ahmad, Bashir; Khan, Ibrar; Zeb, Zermina; Khan, Imran

    2016-05-01

    In the current study, the antimicrobial, phytotoxic, haemagglutination and antioxidant potential of crude methanolic extract (Crd. MeOH Ext.) and four organic fractions of Arisaema tortuosum was investigated. All fractions have been screened for antimicrobial properties against eight bacterial pathogens and six fungal pathogens using agar well diffusion and tube dilution method, respectively. Furthermore, the organic fractions were also screened for its phytotoxicity against Lemna minor. Haemagglutination was performed against all human blood groups while free radical scavenging activity was performed to investigate the antioxidant potential of A. tortuosum. Results obtained for antibacterial activity exhibited various degree of zone of inhibition and significant activity was observed for Pseudomonas aeruginosa (27.16±0.60) followed by Bacillus cereus (18.55±0.69) for Crd. MeOH Ext. and chloroform (CHCl3) fraction, respectively while some strains showed resistant at same concentration. Similarly, non-significant antifungal activity was observed for the plant extracts. However, the highest activity among the strains was observed for Alternaria alternata (22±1.24%) and Aspergillus niger (20±1.00%) for ethyl acetate (EtOAc) fraction and Crd. MeOH Ext., respectively. The plant extracts showed good phytotoxic activity with 77.06% inhibition for n-hexane fraction at 1000µg/mL. The result of Nitric Oxide (NO) reducing assay revealed that the plant has less antioxidant activity with 46.06% inhibition for CHCl(3) fraction at 900μg/mL. For haemagglutination assay, the result displayed no agglutination in all the testing concentration. Based on the current results, it can be concluded that A. tortuosum has significant antimicrobial and moderate phytotoxic potential and therefore can leads to antibiotics and herbicide production. PMID:27166544

  8. Antibacterial and Antifungal Activities of Gelatinose and non-Gelatinose Lichen Species

    Directory of Open Access Journals (Sweden)

    Valadbeigi

    2015-11-01

    Full Text Available Background Despite the wide diversity of the basic growth forms (crustose, squamulose, foliose, and fruticose, all lichens have a similar internal morphology. The bulk of the lichen’s body is formed from filaments of the fungal partner, and the relative density of these filaments defines the layers within the lichen. Objectives To continue and complete the previous study, this study was designed to assess the antibacterial and antifungal activity of different extractions of lichens. Materials and Methods Acetone, methanol and aqueous extractions of the lichens, including Acarospora strigata, Collema crispum, Placidium squamulosum, Physcia biziana, Lecanora prophetae-eliae and Ramalina farinacea, were evaluated in vitro against seven bacterial strains (Escherichia coli ATCC1652, Salmonella typhi ATCC1679, Proteus mirabilis ATCC2601, Staphylococcus aureus ATCC1885, Enterococcus faecalis ATCC2321, Staphylococcus epidermidis ATCC2405, and Bacillus cereus ATCC13061, and two fungi (Verticillium dahlia, Fusarium moniliforme. The antibacterial activity was estimated via disc diffusion method and the minimal inhibitory concentration (MIC was determined via broth tube dilution method. Results Among the six tested lichens, methanol extracts of P. squamulosum, P. biziana, and L. prophetae-eliae showed relatively high antibacterial activities and also the acetone extraction of L. prophetae-eliae showed antibacterial activity against S. epidermidis and B. cereus. The bacteria were more sensitive than the fungi. The methanol extract of P. squamulosum showed the highest antibacterial activity; besides, the least amount of MIC value was 250 mg/mL. Conclusions It seems that the tested lichens could be effective as antibiotics; especially, in terms of drug resistance, they can be proper substitutes; but, further studies are suggested.

  9. Evaluation of Antibacterial and Antifungal Properties of Alchornea laxiflora (Benth. Pax. & Hoffman

    Directory of Open Access Journals (Sweden)

    David A. Akinpelu

    2015-01-01

    Full Text Available Alchornea laxiflora leaf extract was tested against a range of microorganisms using standard microbiological methods for antimicrobial activities. The extract inhibited the growth of all the bacterial and 15 fungal isolates tested. The zones of inhibition exhibited against the test bacteria ranged between 12 mm and 24 mm and between 11 mm and 24 mm for the extract and the antibiotic streptomycin, respectively. The zones of inhibition observed against the fungal isolates by the extract ranged between 12 mm and 23 mm. The minimum inhibitory concentrations (MICs and the minimum bactericidal concentrations (MBCs exhibited by the extract against test bacteria ranged between 0.78 mg/mL–25 mg/mL and 1.56 mg/mL–25 mg/mL, respectively, while the MICs and minimum fungicidal concentrations (MFCs values for the test fungi ranged between 8.75 mg/mL–35.00 mg/mL and 8.75 mg/mL–35.00 mg/L, respectively. The preliminary phytochemical screening of the extract revealed the presence of alkaloids, tannins, flavonoids, saponins, and reducing sugars as major phytoconstituents in the extract. A. laxiflora leaf extract is a potent source of antibacterial and antifungal compounds; further studies on the extract are ongoing in our laboratories to elucidate the probable mechanism(s of action on bacteria and fungi found to be susceptible to the extract.

  10. Use of a temperature-sensitive, protoplast-forming Neurospora crassa strain for the detection of antifungal antibiotics.

    OpenAIRE

    Selitrennikoff, C P

    1983-01-01

    Protoplasts of the temperature-sensitive osmotic-1 mutant of Neurospora crassa grew and divided as cell wall-less cells when incubated under certain conditions at 37 degrees C. Each protoplast regenerated cell wall and formed a mycelium when the temperature was shifted to 22 degrees C. Cell wall regeneration, but not cell growth, was prevented by the inhibition of cell wall assembly functions. Thus, the inhibition of cell wall regeneration could serve as an indicator of the mode of action of ...

  11. Partial recovery of microbiomes after antibiotic treatment.

    Science.gov (United States)

    Raymond, Frédéric; Déraspe, Maxime; Boissinot, Maurice; Bergeron, Michel G; Corbeil, Jacques

    2016-09-01

    Antibiotics profoundly affect the gut microbiome and modulate microbial communities. We recently observed that antimicrobial drugs also impact the abundance and distribution of antibiotic resistance genes. In this addendum, we reanalyze our ∼1 trillion nucleotide shotgun metagenomic dataset to quantify comprehensive genomic differences at the sequence level before and after antibiotic treatment. We show that 7 day exposure to cefprozil leads to a statistically significant loss of metagenome sequences. Recovery of gut microbiomes 3 months after antibiotherapy was characterized by the emergence of new genome sequences not observed prior to antibiotic exposure. Participants with low initial gut microbiome diversity had an increased amount of sequences related to antibiotic resistance. Therefore, we suggest that while the taxonomical composition of microbiomes is partially affected by the antibiotic, the genomic content and population structure of bacterial communities is noticeably impacted. PMID:27494088

  12. Response to "Antibiotic Use and Resistance"

    DEFF Research Database (Denmark)

    Malo, Sara; Rabanaque, María José; Feja, Christina;

    2014-01-01

    As mentioned, antibiotic consumption in heavy users, especially in children, is really striking. Certainly, our results revealed an antibiotic use in this age group higher than published in previous studies, and in line with different reports repeatedly presenting the high antibiotic consumption...... existing in Spain compared with other European countries (1). Determinants involved in antibiotic prescribing are numerous and varied. It is true that therapeutic failures lead to repeated courses of antibiotic treatment. However, it is not probably the only reason. Frequent and high consumption...... of antibiotics, as observed in heavy users, could also be due to factors related to the GP, patient and parents' expectations or the influence exerted by the pharmaceutical industry (2). This article is protected by copyright. All rights reserved....

  13. Factors Affecting the Cost Effectiveness of Antibiotics

    Directory of Open Access Journals (Sweden)

    Steven Simoens

    2011-01-01

    Full Text Available In an era of spiraling health care costs and limited resources, policy makers and health care payers are concerned about the cost effectiveness of antibiotics. The aim of this study is to draw on published economic evaluations with a view to identify and illustrate the factors affecting the cost effectiveness of antibiotic treatment of bacterial infections. The findings indicate that the cost effectiveness of antibiotics is influenced by factors relating to the characteristics and the use of antibiotics (i.e., diagnosis, comparative costs and comparative effectiveness, resistance, patient compliance with treatment, and treatment failure and by external factors (i.e., funding source, clinical pharmacy interventions, and guideline implementation interventions. Physicians need to take into account these factors when prescribing an antibiotic and assess whether a specific antibiotic treatment adds sufficient value to justify its costs.

  14. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A...

  15. Antibiotic Resistance in Childhood with Pneumococcal Infection

    OpenAIRE

    Ali Gunes

    2013-01-01

    Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with me...

  16. Superbugs and antibiotics in the newborn

    OpenAIRE

    Alessandro Borghesi; Mauro Stronati

    2015-01-01

    Antibiotic resistance has become an urgent and global issue, with 700,000 deaths attributable to multidrug-resistance occurring each year worldwide. The overuse of antibiotics, both in animal industry and in clinical settings, and the generated selective pressure, are the main factors implicated in the emergence of resistant strains. The Centers for Disease Control and Prevention (CDC) have pointed out that more than half of hospital patients receive an antibiotic during their stay, and nearl...

  17. Coping with antibiotic resistance: contributions from genomics

    OpenAIRE

    Rossolini, Gian Maria; Thaller, Maria Cristina

    2010-01-01

    Antibiotic resistance is a public health issue of global dimensions with a significant impact on morbidity, mortality and healthcare-associated costs. The problem has recently been worsened by the steady increase in multiresistant strains and by the restriction of antibiotic discovery and development programs. Recent advances in the field of bacterial genomics will further current knowledge on antibiotic resistance and help to tackle the problem. Bacterial genomics and transcriptomics can inf...

  18. Antifungal activity of plant-based tinctures on Candida

    Directory of Open Access Journals (Sweden)

    Andreia Medeiros Rodrigues Cardoso

    2012-01-01

    Full Text Available Objective: To evaluate through determination of minimum inhibitory concentration (MIC the antifungal activity of Salvia officinalis (sage, Anacardium occidentale (cashew and Malva sylvestris (mallow tinctures on Candida albicans (ATCC 40227, C. tropicalis (ATCC 13803 and C. krusei (ATCC 40147. Material and methods: In 96-well microplates, 100 μl of Sabouraud-Dextrose broth doubly concentrated, 100 μl of the tested tinctures and 10 μl of fungal inoculums (1.5 x 106 organisms/ml were inserted. The products were diluted from initial concentration of 100 mg/ml until 0.78 mg/ml. MIC corresponded to the lowest dilution at which there was no visible fungal growth. Nystatin (100,000 UI/ml was used as control. Statistical analysis was performed by Kruskal-Wallis and Dunn tests (p < 0.05. Results: S. officinalis tincture did not inhibit the growth of C. albicans and C. tropicalis; MIC was 100 mg/ml for C. krusei. For A. occidentale, MIC was 100 mg/ml for C. albicans and C. krusei, and for C. tropicalis, there was no fungal inhibition. M. sylvestris tincture presented MIC at 25 mg/ml for C. krusei and 100 mg/ml for C. albicans and C. tropicalis. The best antifungal activity was showed by M. sylvestris tincture (p < 0.05. Conclusion: M. sylvestris tincture exhibited antifungal activity against all the tested strains at lower concentrations. S. officinalis tincture inhibited the action of C. krusei and A. occidentale tincture showed activity against C. albicans and C. tropicalis.

  19. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  20. Heterologous expression of new antifungal chitinase from wheat.

    Science.gov (United States)

    Singh, Arpita; Kirubakaran, S Isaac; Sakthivel, N

    2007-11-01

    Chitinases (EC 3.2.1.14) have been grouped into seven classes (class I-VII) on the basis of their structural properties. Chitinases expressed during plant-microbe interaction are involved in defense responses of host plant against pathogens. In the present investigation, chitinase gene from wheat has been subcloned and overexpressed in Escherichia coli BL-21 (DE3). Molecular phylogeny analyses of wheat chitinase indicated that it belongs to an acidic form of class VII chitinase (glycosyl hydrolase family 19) and shows 77% identity with other wheat chitinase of class IV and low level identity to other plant chitinases. The three-dimensional structural model of wheat chitinase showed the presence of 10 alpha-helices, 3 beta-strands, 21 loop turns and the presence of 6 cysteine residues that are responsible for the formation of 3 disulphide bridges. The active site residues (Glu94 and Glu103) may be suggested for its antifungal activity. Expression of chitinase (33 kDa) was confirmed by SDS-PAGE and Western hybridization analyses. The yield of purified chitinase was 20 mg/L with chitinase activity of 1.9 U/mg. Purified chitinase exerted a broad-spectrum antifungal activity against Colletotrichum falcatum (red rot of sugarcane) Pestalotia theae (leaf spot of tea), Rhizoctonia solani (sheath blight of rice), Sarocladium oryzae (sheath rot of rice) Alternaria sp. (grain discoloration of rice) and Fusarium sp. (scab of rye). Due to its innate antifungal potential wheat chitinase can be used to enhance fungal-resistance in crop plants. PMID:17697785

  1. Predictors of choice of initial antifungal treatment in intraabdominal candidiasis.

    Science.gov (United States)

    Lagunes, L; Borgatta, B; Martín-Gomez, M T; Rey-Pérez, A; Antonelli, M; Righi, E; Merelli, M; Brugnaro, P; Dimopoulos, G; Garnacho-Montero, J; Colombo, A L; Luzzati, R; Menichetti, F; Muñoz, P; Nucci, M; Scotton, G; Viscoli, C; Tumbarello, M; Bassetti, M; Rello, J

    2016-08-01

    Intraabdominal candidiasis (IAC) is the second most frequent form of invasive candidiasis, and is associated with high mortality rates. This study aims to identify current practices in initial antifungal treatment (IAT) in a real-world scenario and to define the predictors of the choice of echinocandins or azoles in IAC episodes. Secondary analysis was performed of a multinational retrospective cohort at 13 teaching hospitals in four countries (Italy, Greece, Spain and Brazil), over a 3-year period (2011-2013). IAC was identified in 481 patients, 323 of whom received antifungal therapy (classified as the treatment group). After excluding 13 patients given amphotericin B, the treatment group was further divided into the echinocandin group (209 patients; 64.7%) and the azole group (101 patients; 32.3%). Median APACHE II scores were significantly higher in the echinocandin group (p 0.013), but IAT did not differ significantly with regard to the Candida species involved. Logistic multivariate stepwise regression analysis, adjusted for centre effect, identified septic shock (adjusted OR (aOR) 1.54), APACHE II >15 (aOR 1.16) and presence in surgical ward at diagnosis (aOR 1.16) as the top three independent variables associated with an empirical echinocandin regimen. No differences in 30-day mortality were observed between groups. Echinocandin regimen was the first choice for IAT in patients with IAC. No statistical differences in mortality were observed between regimens, but echinocandins were administered to patients with more severe disease. Some disagreements were identified between current clinical guidelines and prescription of antifungals for IAC at the bedside, so further educational measures are required to optimize therapies. PMID:27432766

  2. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients.

    Science.gov (United States)

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  3. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m2/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m2/g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl2 and NaBH4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl2, however, NaBH4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m2/g for 7 nm and 269 m2/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H+ efflux of the Candida species than 15 nm sized gold nanoparticles.

  4. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    OpenAIRE

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  5. Antifungal activities of Hedychium essential oils and plant extracts against mycotoxigenic fungi

    Science.gov (United States)

    Plant-derived antifungal compounds are preferred to chemicals to reduce the risk of toxic effects on humans, livestock and the environment. Essential oil extracted from rhizomes and plant extracts of ornamental ginger lily (Hedychium spp.) were evaluated for their antifungal activity against two fu...

  6. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Science.gov (United States)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  7. Antifungal prophylaxis during treatment for haematological malignancies: are we there yet?

    NARCIS (Netherlands)

    Rogers, T.R.; Slavin, M.A.; Donnelly, J.P.

    2011-01-01

    Antifungal prophylaxis during treatment for haematological malignancies has been studied for 50 years, yet it has not been wholly effective even when using antifungal drugs that exhibit potent activity in vitro against a broad range of fungal pathogens. Trials have demonstrated that it can reduce th

  8. Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa

    OpenAIRE

    Mimee, Benjamin; Labbé, Caroline; Pelletier, René; Bélanger, Richard R.

    2005-01-01

    Flocculosin, a glycolipid isolated from the yeast-like fungus Pseudozyma flocculosa, was investigated for in vitro antifungal activity. The compound displayed antifungal properties against several pathogenic yeasts. Synergistic activity was observed between flocculosin and amphotericin B, and no significant cytotoxicity was demonstrated when tested against human cell lines.

  9. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides.

    NARCIS (Netherlands)

    Jiang, Z.; Kullberg, B.J.; Lee, H van der; Vasil, A.I.; Hale, J.D.; Mant, C.T.; Hancock, R.E.; Vasil, M.L.; Netea, M.G.; Hodges, R.S.

    2008-01-01

    We utilized a series of analogs of D-V13K (a 26-residue amphipathic alpha-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity

  10. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  11. Synthesis of quarternary ammonium salts with dithiocarbamate moiety and their antifungal activities against Helminthosporium oryzae

    Indian Academy of Sciences (India)

    Mandeep Singh; Anita Garg; Anjali Sidhu; Vineet Kumar

    2013-05-01

    Quaternary ammonium salts containing dithiocarbamate moiety were synthesized and evaluated for their antifungal activities against Helminthosporium oryzae. All the synthesized compounds showed moderate to promising fungitoxicity against the test. Some of the synthesized compounds inflicted antifungal activity greater than the standard fungicide.

  12. Antifungal activities of the leaves of three Pistacia species grown in Turkey.

    Science.gov (United States)

    Kordali, S; Cakir, A; Zengin, H; Duru, M E

    2003-02-01

    The crude extracts obtained from the leaves of Pistacia vera, Pistacia terebinthus and Pistacia lentiscus were tested for antifungal activities against three pathogenic agricultural fungi, Phythium ultimum, Rhizoctania solani and Fusarium sambucinum. The extracts significantly inhibited the growth of P. ultimum and R. solani. However, the antifungal activity was not observed against F. sambucinum. PMID:12628416

  13. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    Science.gov (United States)

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage.

  14. Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus Aucuparia).

    Science.gov (United States)

    Brunner, Ulrich

    1985-01-01

    The food preservative sorbic acid can be extracted from Eurasian mountain ash berries (commercially available) and used to show antifungal properties in microbiological investigations. Techniques for extraction, purification, ultraviolet analysis, and experiments displaying antifungal activity are described. A systematic search for similar…

  15. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    DEFF Research Database (Denmark)

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar;

    2003-01-01

    Antibiotic-resistant bacteria were first identified in the 1940s, but while new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. Today, the excessive use of antibiotics compounded by the paucity of new agents on the market has...... meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance...... of antibiotics in animals-whether therapeutic or as growth promoters-pales by comparison with human use, and that efforts should be concentrated on the misuse of antibiotics in people. Others warn of the dangers of unregulated and unnecessary use of antibiotics, especially growth promoters in animal husbandry...

  16. Antibiotic research and development: business as usual?

    Science.gov (United States)

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents. PMID:25673635

  17. Antibiotic treatments and microbes in the gut.

    Science.gov (United States)

    Macfarlane, Sandra

    2014-04-01

    Antibiotic therapies are important in combating disease-causing microorganisms and maintaining host health. It is widely accepted that exposure of the gut microbiota to antibiotics can lead to decreased susceptibility and the development of multi-drug-resistant disease-causing organisms, which can be a major clinical problem. It is also important to consider that antibiotics not only target pathogenic bacteria in the gut, but also can have damaging effects on the ecology of commensal species. This can reduce intrinsic colonization resistance and contribute to problems with antibiotic resistance, including lateral transfer of resistance genes. Our knowledge of the impact of antibiotic treatment on the ecology of the normal microbiota has been increased by recent advances in molecular methods and use of in vitro model systems to investigate the impact of antibiotics on the biodiversity of gut populations and the spread of antibiotic resistance. These highlight the need for more detailed structural and functional information on the long-term antibiotic-associated alterations in the gut microbiome, and spread of antibiotic resistance genes. This will be crucial for the development of strategies, such as targeted therapeutics, probiotics, prebiotics and synbiotics, to prevent perturbations in the gut microbiota, the restoration of beneficial species and improvements in host health.

  18. ANTIFUNGAL ACTIVITY OF SOME PLANT EXTRACT S AGAINST FUSARIUM SOLANI

    Directory of Open Access Journals (Sweden)

    S.K. BHARADWAJ

    2007-01-01

    Full Text Available The aqueous extracts of twenty plants were screened for their antifungal activity Fusarium solani, causal organism if Sudden Death Syndrome (SDS of Soybean (Glycine max wilt diseases, soft rot of potato. The maximum inhibitory effect was shown by leaf extracts of Camellia sinensis (67.17%, root extracts of Asparagus racemosus (54.43%. Some of the other plants showed moderate to intermediate inhibition against the mycelium growth of test fungi whcih varied in the following range Callistemon lanceolatus> Agegle marmelos> Azadirachta> Acacia catechu> Aloevera.

  19. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2012-01-01

    Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. PMID:22400016

  20. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

    OpenAIRE

    Al-Amiery, Ahmed A.; Abdul Amir H. Kadhum; Abu Bakar Mohamad

    2012-01-01

    Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using ...

  1. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2012-01-01

    Full Text Available Metal complexes of (Z-2-(pyrrolidin-2-ylidenehydrazinecarbothioamide (L with Cu(II, Co(II, and Ni(II chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.

  2. 3-Methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens.

    Science.gov (United States)

    Liu, S C; Oguntimein, B; Hufford, C D; Clark, A M

    1990-04-01

    Further examination of the active ethanolic extract of the root bark of Cleistopholis patens by using bioassay-directed fractionation resulted in the isolation of a new alkaloid, 3-methoxysampangine (compound I), together with three known alkaloids, eupolauridine (compound II), liriodenine (compound III), and eupolauridine N-oxide (compound IV). The proposed structure of compound I was based on its physicochemical properties and spectral data. 3-Methoxysampangine exhibited significant antifungal activity against Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. This is the first report of the isolation of liriodenine (compound III) from the root bark of C. patens. PMID:2188584

  3. Antifungal saponins from Swartzia langsdorffii; Saponinas antifungicas de Swartzia langsdorffii

    Energy Technology Data Exchange (ETDEWEB)

    Marqui, Sara Regina de; Lemos, Renata Brionizio; Santos, Luciana Avila; Castro-Gamboa, Ian; Cavalheiro, Alberto Jose; Bolzani, Vanderlan da Silva; Silva, Dulce Helena Siqueira [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: dhsilva@iq.unesp.br; Scorzoni, Liliana; Fusco-Almeida, Ana Maria; Mendes-Giannini, Maria Jose Soares [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Faculdade de Ciencias Farmaceuticas; Young, Maria Claudia Marx; Torres, Luce Maria Brandao [Inst. de Botanica, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2008-07-01

    Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-{beta}-D-(6'-methyl)-glucopyranosyl-28-O-{beta}-D-glucopyranosyl-oleanate. Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

  4. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  5. SYNTHESIS AND ANTIFUNGAL ACTIVITY OF SOME SUBSTITUTED BENZIMIDAZOLE ANALOGUES

    Directory of Open Access Journals (Sweden)

    Mehendale Nitin P

    2012-07-01

    Full Text Available In the present scheme, we have an attempt to synthesize some novel benzimidazole derivatives by substituting triazole moiety at N-1 position of benzimidazole by fusion reaction of benzimidazole-1-acetic acid with thiocarbohydrazide. The substituted triazole was refluxed with different aromatic carboxylic acid in the presence of POCl3 yield different benzimidazole derivatives, respectively. The synthesized compounds were characterized by IR, 1H-NMR and Mass spectroscopy. The compounds were screened for antifungal (Candida albicans and Aspergillus niger activities.

  6. An antifungal naphthoquinone, xanthones and secoiridoids from Swertia calycina.

    Science.gov (United States)

    Rodriguez, S; Wolfender, J L; Hakizamungu, E; Hostettmann, K

    1995-08-01

    A chemical and biological screening of 25 species of the Gentianaceae family has been undertaken. Both methanolic and dichloromethane extracts of Swertia calycina exhibited a strong antifungal activity against Cladosporium cucumerinum and Candida albicans. The compound responsible for this activity has been isolated and identified as 2-methoxy-1,4-naphthoquinone. It is the first naphthoquinone to be described in Gentianaceae species. LC-UV and LC-TSP-MS analysis of the crude extracts of Swertia calycina also allowed on-line identification of six known xanthones and secoiridoids. PMID:7480185

  7. Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots.

    Science.gov (United States)

    Gafner, S; Wolfender, J L; Nianga, M; Stoeckli-Evans, H; Hostettmann, K

    1996-07-01

    From a dichloromethane extract of Newbouldia laevis roots, four new (6-hydroxydehydroiso-alpha-lapachone, 7-hydroxydehydroiso-alpha-lapachone, 5,7-dihydroxydehydroiso-alpha-lapachone and 3-hydroxy-5-methoxydehydroiso-alpha-lapachone) and six known naphthoquinones have been isolated. Their structures were established by spectroscopic methods (UV, EI mass spectrometry, 1H and 13C NMR) and that of 7-hydroxydehydroiso-alpha-lapachone was confirmed by X-ray crystallography. All naphthoquinones showed antifungal activity against Cladosporium cucumerinum and Candida albicans, and activity against the bacteria Bacillus subtilis and Escherichia coli. PMID:9397206

  8. Chemistry and antifungal potential of Alantolides from Inula racemosa H

    Indian Academy of Sciences (India)

    Dalvir Kataria; K K Chahal

    2013-01-01

    Alantolactone and isoalantolactone were isolated from powdered roots of Inula racemosa H. using Soxhlet extraction followed by the column chromatography. Pyrazolines of alantolactone and isoalantolactone were synthesized using diazomethane, diazoethane and diazopropane. The structure elucidation of the compounds were carried out using IR and 1H NMR spectroscopic techniques. All the compounds were screened in vitro for their antifungal potential at various concentrations against Alternaria brassicae and Penicillium italicum using spore germination inhibition technique and against Rhizoctonia solani by poisoned food technique. All the compounds exhibited fairly good fungitoxicity against the test fungi with ED50 values of less than 500 g mL-1.

  9. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL. PMID:25817439

  10. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Directory of Open Access Journals (Sweden)

    Acosta-Torres LS

    2012-09-01

    Full Text Available Laura Susana Acosta-Torres,1 Irasema Mendieta,2 Rosa Elvira Nuñez-Anita,3 Marcos Cajero-Juárez,3 Víctor M Castaño41National School of Higher Education, School of Dentistry - Leon Unit, National Autonomus University of Mexico (UNAM, Leon, Guanajuato, 2Neurobiology Institute, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, 3Animal Biotechnology Laboratory, Faculty of Veterinary Medicine at San Nicolas de Hidalgo, Michoacán University, Michoacán, 4Molecular Materials Department, Applied Physics and Advanced Technology Center, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, MexicoBackground: Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work.Methods: Poly(methyl methacrylate [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay. Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles.Results: The results show that PMMA-silver nanoparticle discs

  11. Antifungal activity of natural and synthetic amides from Piper species

    International Nuclear Information System (INIS)

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 μg. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  12. Antiviral, antifungal and antiprotozoal agents in the cinema.

    Science.gov (United States)

    García-Sánchez, Jose Elias; García-Sánchez, E; Merino Marcos, M L

    2007-03-01

    Among the antimicrobial agents, antibacterials are the most frequently mentioned in cinematographic plots. Nevertheless, it is not uncommon to come across other antiviral agents, especially antiretrovirals and antiprotozoals. We analyzed the presence of antiviral and antifungal agents in different commercial films, both when they were merely mentioned in passing and when they played a major role in the film. This review essentially aims to address the historical portrayal of these agents in film and to list their appearances. The fictional treatments that appear in some films are not addressed.

  13. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    OpenAIRE

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  14. [Health economics and antibiotic therapy].

    Science.gov (United States)

    Leclercq, P; Bigdéli, M

    1995-01-01

    In the field of antibiotic therapy, particularly the methods of economic evaluation hold one's attention within the wide range of health economics' applications. Several tools allow a comparison of the outcomes of alternative strategies and thereby guide choices to the most appropriate solutions. After a brief recall of the methods classically used to evaluate health care strategy, the authors stress the importance and difficulty of fixing and applying a correct and satisfactory procedure for evaluation. An evaluation example of antibiotic therapy allows to illustrate the application of the principles confronting a field in which competition is intense and economic stakes stay large--a fact which naturally yields to seek after objective decision making criteria. The health care policies drawn by public authorities as well as the marketing strategies of the health sector trade are partly based on such evaluations. If these techniques are not intended for the practitioner in the first place, they should not be indifferent to him since they influence health authorities and thereby indirectly affect the therapeutic freedom of the physician. PMID:7481251

  15. Molecular modelling of betalactamic antibiotic

    Directory of Open Access Journals (Sweden)

    Elso Manuel Cruz Cruz

    2010-02-01

    Full Text Available Background: The antibacterial properties of a compound are the result of its molecular structure. To establish the structural and electronic characteristics makes possible to understand the mechanisms of its action and becomes paramount for the rational design new drugs. Objective: To model some of the molecular properties of betalactamic antibiotics and inhibitors of the betalactamases and to relate them with their pharmacological actions. Method: The molecular structures were optimized with PM3• semiempiric calculus. The structure of the betalactamic ring in the different compounds was compared. The molecular properties were calculated according to the Density Functional Theory at a B3LYP/6-31G(d level. The density of the atomic charges and the frontier orbitals were analyzed. Results There are variations in the calculated properties that make possible to define two groups of compounds: one for the monobactams and the inhibitors of the betalactamases, with less planarity in the ring and less reactivity and another one with the penicillins, cephalosporins and carbapenems, planer, more structurally stable and reactive. Conclusions: The modelled molecular properties of the betalactamic antibiotics and inhibitors of the betalactamases show agreement with its pharmacological action.

  16. Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans

    DEFF Research Database (Denmark)

    Cui, Jinhui; Ren, Biao; Tong, Yaojun;

    2015-01-01

    -drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time......Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi......-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections....

  17. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014.

    Directory of Open Access Journals (Sweden)

    HaiKuan Wang

    Full Text Available Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds.

  18. ANTIFUNGAL ACTIVITY ASSOCIATED WITH Psoralea corylifolia Linn. (BAKUCHI SEED AND CHEMICAL PROFILE CRUDE METHANOL SEED EXTRACT

    Directory of Open Access Journals (Sweden)

    A. BORATE

    2014-07-01

    Full Text Available Objective: Present study aims to evaluate antifungal efficacy of Bakuchi (Psoralea corylifolia seed extracts prepared in methanol solvents and the bakuchi oil. Bakuchi seed used in the formulations against skin related diseases and disorders in Ayurvedic system of medicine. Method: Antifungal assay was performed by agar well diffusion method against common fungal skin pathogens Candida albicans, Aspergillus niger and Malassezia furfur. Results: Bakuchi seeds extract in methanol was observed the most promising antifungal activity against the selected skin pathogens. The phytochemical and GC MS analysis confirmed the presence of several bioactive components including phenol derivatives as coumarin – psoralen, isopsoralen which might be accountable for its antifungal activity. Conclusion: The study has unveiled the antifungal potential of P. corylifolia seed extract.

  19. The effects of Paenibacillus polymyxa E681 on antifungal and crack remediation of cement paste.

    Science.gov (United States)

    Park, Sung-Jin; Park, Seung-Hwan; Ghim, Sa-Youl

    2014-10-01

    This study investigated the antifungal effects of cement paste containing Paenibacillus polymyxa E681 against Aspergillus niger, a deleterious fungus commonly found in cement buildings and structures. To test the antifungal effects, cement paste containing P. polymyxa E681 was neutralized by CO2 gas, and the fungal growth inhibition was examined according to the clear zone around the cement specimen. In addition to the antifungal effects of the cement paste added with bacteria, calcium crystal precipitation of P. polymyxa E681 was examined by qualitative and quantitative analyses. The cement paste containing P. polymyxa E681 showed strong antifungal effects but fusA mutant (deficient in fusaricidin synthesis) showed no antifungal activity. Crack sealing of the cement paste treated with P. polymyxa E681 was captured by light microscope showed fungal growth inhibition and crack repairing in cement paste. PMID:24824950

  20. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Marcussen, J.;

    2015-01-01

    to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile...... produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl......, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate...

  1. Detection and partial characterization of antifungal bioactivity from the secretions of the medicinal maggot, Lucilia sericata.

    Science.gov (United States)

    Evans, Rhys; Dudley, Ed; Nigam, Yamni

    2015-01-01

    The antibacterial properties of the excretions/secretions (ES) of the medicinal maggot, Lucilia sericata have long been known and the effectiveness of maggot debridement therapy in relation to the clearance of bacteria from the surface of wounds has been the source of much research over recent years. Less well known, however, are the antifungal properties of L. sericata ES. Here, we show by means of the colony forming unit assay and optical density assays, that L. sericata native ES possess significant antifungal properties and appears to possess a highly heat stable, freeze/thaw, and lyophilization resistant antifungal component. We also show that the antifungal activity present in the native ES consists of a number of antifungal components present in three fraction masses consisting of >10, 10-0.5, and <0.5 kDa, with the greatest level of activity being seen in the <0.5 kDa fraction.

  2. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

    OpenAIRE

    Khedr MA

    2015-01-01

    Mohammed A KhedrDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, EgyptAbstract: Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were sy...

  3. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  4. Superbugs and antibiotics in the newborn

    Directory of Open Access Journals (Sweden)

    Alessandro Borghesi

    2015-10-01

    Full Text Available Antibiotic resistance has become an urgent and global issue, with 700,000 deaths attributable to multidrug-resistance occurring each year worldwide. The overuse of antibiotics, both in animal industry and in clinical settings, and the generated selective pressure, are the main factors implicated in the emergence of resistant strains. The Centers for Disease Control and Prevention (CDC have pointed out that more than half of hospital patients receive an antibiotic during their stay, and nearly a third receive a broad-spectrum antibiotic. In neonatal units, previous antibiotic exposure to third-generation cephalosporin and carbapenem were identified as independent risk factors for infection caused by multi-drug resistant strains. While resistant ‘superbugs’ emerge, the arsenal to fight these microorganisms is progressively shrinking, as the number of newly discovered antibiotics approved by the Food and Drug administration each year is dropping. In face of global spread of antibiotic resistance and of the limited development of new drugs, policies and rules are under study by agencies (CDC, World Health Organization and governments, in order to: i facilitate and foster the discovery of new antibiotic compounds; ii develop new, alternative therapies able to potentiate or modulate the host immune response or to abrogate the resistance and virulence factors in the microorganisms; and iii prevent the emergence of resistance through antibiotic stewardship programs, educational programs, and reduction of antibiotic use in livestock; the field of neonatal medicine will need its own, newborn-tailored, antibiotic stewardship programs to be implemented in the NICUs. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai

  5. Optimizing antibiotic selection in treating COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Attiya Siddiqi

    2008-03-01

    Full Text Available Attiya Siddiqi, Sanjay SethiDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Veterans Affairs Western New York Health Care System and University of Buffalo, State University of New York, Buffalo, New York, USAAbstract: Our understanding of the etiology, pathogenesis and consequences of acute exacerbations of chronic obstructive pulmonary disease (COPD has increased substantially in the last decade. Several new lines of evidence demonstrate that bacterial isolation from sputum during acute exacerbation in many instances reflects a cause-effect relationship. Placebo-controlled antibiotic trials in exacerbations of COPD demonstrate significant clinical benefits of antibiotic treatment in moderate and severe episodes. However, in the multitude of antibiotic comparison trials, the choice of antibiotics does not appear to affect the clinical outcome, which can be explained by several methodological limitations of these trials. Recently, comparison trials with nontraditional end-points have shown differences among antibiotics in the treatment of exacerbations of COPD. Observational studies that have examined clinical outcome of exacerbations have repeatedly demonstrated certain clinical characteristics to be associated with treatment failure or early relapse. Optimal antibiotic selection for exacerbations has therefore incorporated quantifying the risk for a poor outcome of the exacerbation and choosing antibiotics differently for low risk and high risk patients, reserving the broader spectrum drugs for the high risk patients. Though improved outcomes in exacerbations with antibiotic choice based on such risk stratification has not yet been demonstrated in prospective controlled trials, this approach takes into account concerns of disease heterogeneity, antibiotic resistance and judicious antibiotic use in exacerbations.Keywords: COPD, exacerbation, bronchitis, antibiotics

  6. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Science.gov (United States)

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology. PMID:27462384

  7. Antifungal activity of heartwood extracts from three Juniperus species

    Directory of Open Access Journals (Sweden)

    Ibrahim Tumen

    2013-02-01

    Full Text Available Heartwood samples from three species of Juniperus (i.e., J. virginiana, J. occidentalis, and J. ashei were extracted with hexane, ethanol, and methanol. The hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi (i.e, Gloeophyllum trabeum, Postia placenta, Trametes versicolor, and Irpex lacteus. Ashe juniper (AJ gave the highest extract yields (6.60 to 11.27%, followed by Eastern red cedar (ERC (4.78 to 9.56%, and then Western juniper (WJ (4.26 to 7.32%. WJ contained the highest level of cedrol (over 60%, while AJ contained the highest level of thujopsene (over 30%. Methanol and ethanol gave the highest extract yields as well as slightly higher percentages of cedrol and widdrol. The juniper extracts were more effective against white-rot fungi than brown-rot fungi. The ethanol extracts had higher antifungal activity than the hexane extracts. The AJ extracts had the greatest bioactivity against the wood-rot fungi.

  8. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review

    Directory of Open Access Journals (Sweden)

    Lluís Palou

    2015-12-01

    Full Text Available According to their origin, major postharvest losses of citrus fruit are caused by weight loss, fungal diseases, physiological disorders, and quarantine pests. Cold storage and postharvest treatments with conventional chemical fungicides, synthetic waxes, or combinations of them are commonly used to minimize postharvest losses. However, the repeated application of these treatments has led to important problems such as health and environmental issues associated with fungicide residues or waxes containing ammoniacal compounds, or the proliferation of resistant pathogenic fungal strains. There is, therefore, an increasing need to find non-polluting alternatives to be used as part of integrated disease management (IDM programs for preservation of fresh citrus fruit. Among them, the development of novel natural edible films and coatings with antimicrobial properties is a technological challenge for the industry and a very active research field worldwide. Chitosan and other edible coatings formulated by adding antifungal agents to composite emulsions based on polysaccharides or proteins and lipids are reviewed in this article. The most important antifungal ingredients are selected for their ability to control major citrus postharvest diseases like green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, and include low-toxicity or natural chemicals such as food additives, generally recognized as safe (GRAS compounds, plant extracts, or essential oils, and biological control agents such as some antagonistic strains of yeasts or bacteria.

  9. Synthesis, Characterization, Antibacterial and Antifungal Evaluation of Novel Monosaccharide Esters

    Directory of Open Access Journals (Sweden)

    Yong Deng

    2012-07-01

    Full Text Available A novel series of 3-(2-furylacrylate monosaccharide esters Iaf and menthyloxycarbonyl monosaccharide esters IIaf were designed and synthesized. The chemical structures of the target compounds were confirmed by IR, 1H- and 13C-NMR and ESI-MS, and the target compounds were investigated for their in vitro antibacterial and antifungal activities. The antibacterial screening results showed that the 3-(2-furylacrylate monosaccharide ester derivatives Iaf were either inactive or only weakly active against the three Gram-positive bacterial strains tested, whereas the menthyloxycarbonyl monosaccharide ester derivatives IIaf exhibited higher levels of activity, with compound IIe being especially potent. The results of the antifungal screening revealed that compounds Ib, Ie, IIb and IIc displayed potent in vitro activities, whereas If and IIf showed promising activities against all of the microorganisms tested, with If exhibiting levels of activity deserving of further investigation.

  10. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  11. Distribution and antifungal susceptibility of Candida species causing nosocomial candiduria.

    Science.gov (United States)

    Ozhak-Baysan, Betil; Ogunc, Dilara; Colak, Dilek; Ongut, Gozde; Donmez, Levent; Vural, Tumer; Gunseren, Filiz

    2012-07-01

    The aim of the study was to investigate the distribution of Candida species isolated from urine specimens of hospitalized patients in Akdeniz University Hospital, Antalya, Turkey, as well as their susceptibilities to antifungal agents. A total of 100 patients who had nosocomial candiduria between March 2003 and May 2004 at the facility were included in the study. Organisms were identified by conventional methods and the use of API ID 32C strips. Susceptibilities of the isolates to amphotericin B were determined by Etest, whereas the minimum inhibitory concentration (MIC) values of these same strains to fluconazole, voriconazole and caspofungin were assessed using the broth microdilution method. The most common species recovered was C. albicans 44% of all yeasts, followed by C. tropicalis (20%), C. glabrata (18%), C. krusei (6%), C. famata (5%), C. parapsilosis (4%), C. kefyr (2%) and C. guilliermondii (1%). A total of nine (9%) of the isolates, including five C. krusei and four C. glabrata isolates were susceptible dose-dependent (SDD) to fluconazole. In constrast, only two C. glabrata and one C. krusei isolates were resistant to this antifungal. The voriconazole MICs for all Candida isolates were ≤0.5 μg/ml, except for one C. glabrata isolate with a MIC value of 2 μg/ml. Among all isolates, 94% were susceptible to amphotericin B with MIC values of Candida urinary tract infections.

  12. 56. Synthesis and Prokaryotic Expression of Insect Antifungal Gene (Thanatin)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thanatin of podisus maculiventr is one of the six Insect antifugal peptides that have been found in the recent years. It is an induced peptide composed of 21 amino acids not only exhibits a large antifungal spectrum, but shows antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria as well. The cDNA sequence was designed based on the amino acid sequence of Thanatin. The Thanatin gene was obtained through oligodeoxynucletides synthesis and PCR amplifying. The PCR product was cloned into the pGEM-T Easy vector by means of T-A pairing direct molecular cloning method. The synthesized thanatin gene was proved correct by DNA sequence analysis. The thanatin gene of 87 bp was subcloned into the pET-21 d vector through the linkage of the cohesive ends. The recombinant expression vector pET-21 d-th was constructed. The recombinant expression plasmid pET-21d-th was transformed into E.coli BL21(DE3) and the thanatin gene was expressed in fusion form when induced by IPTG. The transcript activity of the thanatin gene in induced cells was verified by two method of RT-PCR and Dot-blotting. We determined bio-activity of its expression product by agar plate assay. The results showed that the expression products of thanatin gene exhibit antifungal activity against the two pathogenic fungi: Aspergillus fumigatus and Tricholderma riricle.

  13. A novel antifungal protein of Bacillus subtilis B25.

    Science.gov (United States)

    Tan, Zhiqiong; Lin, Baoying; Zhang, Rongyi

    2013-01-01

    Bacillus subtilis B25 was isolated from banana rhizosphere soil. It has been confirmed for B25 to have stronger antagonism against Fusarium oxysporum f.sp.cubense, Additionally B25 has good inhibitory to plant pathogens, including Corynespora cassiicola, Alternaria solani, Botrytis cinerea and Colletotrichum gloeosporioides on potato dextrose agar (PDA) plates. The antagonistic substance can be extracted from cell-free culture broth supernatants by 70% (w/v) (NH4)2 SO4 saturation. Clear blank band was observed between the protein and a pathogen. The examination of antagonistic mechanism under light microscope showed that the antifungal protein of B25 appeared to inhibit pathogens by leading to mycelium and spores tumescence, distortion, abnormality. The isolation procedure comprised ion exchange chromatography on DEAE-Sephadex Fast Flow and gel filtration chromatography on SephadexG-100. The purified antifungal fraction showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The active fraction was identified by NanoLC-ESI-MS/MS The amino acid sequences of 17 peptides segments were obtained. The analysis of the protein suggested that it was a hypothetical protein (gi154685475), with a relative molecular mass of 38708.67 Da and isoelectric point (pI) of 5.63. PMID:24255843

  14. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  15. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Janine de Aquino Lemos

    2005-02-01

    Full Text Available Cryptococcal infection had an increased incidence in last years due to the explosion of acquired immune deficiency syndrome epidemic and by using new and effective immunosuppressive agents. The currently antifungal therapies used such as amphotericin B, fluconazole, and itraconazole have certain limitations due to side effects and emergence of resistant strains. So, a permanent search to find new drugs for cryptococcosis treatment is essential. Ocimum gratissimum, plant known as alfavaca (Labiatae family, has been reported earlier with in vitro activity against some bacteria and dermatophytes. In our work, we study the in vitro activity of the ethanolic crude extract, ethyl acetate, hexane, and chloroformic fractions, essential oil, and eugenol of O. gratissimum using an agar dilution susceptibility method towards 25 isolates of Cryptococcus neoformans. All the extracts of O. gratissimum studied showed activity in vitro towards C. neoformans. Based on the minimal inhibitory concentration values the most significant results were obtained with chloroformic fraction and eugenol. It was observed that chloroformic fraction inhibited 23 isolates (92% of C. neoformans at a concentration of 62.5 µg/ml and eugenol inhibited 4 isolates (16% at a concentration of 0.9 µg/ml. This screening may be the basis for the study of O. gratissimum as a possible antifungal agent.

  16. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans.

    Science.gov (United States)

    Lemos, Janine de Aquino; Passos, Xisto Sena; Fernandes, Orionalda de Fátima Lisboa; Paula, José Realino de; Ferri, Pedro Henrique; Souza, Lúcia Kioko Hasimoto E; Lemos, Aline de Aquino; Silva, Maria do Rosário Rodrigues

    2005-02-01

    Cryptococcal infection had an increased incidence in last years due to the explosion of acquired immune deficiency syndrome epidemic and by using new and effective immunosuppressive agents. The currently antifungal therapies used such as amphotericin B, fluconazole, and itraconazole have certain limitations due to side effects and emergence of resistant strains. So, a permanent search to find new drugs for cryptococcosis treatment is essential. Ocimum gratissimum, plant known as alfavaca (Labiatae family), has been reported earlier with in vitro activity against some bacteria and dermatophytes. In our work, we study the in vitro activity of the ethanolic crude extract, ethyl acetate, hexane, and chloroformic fractions, essential oil, and eugenol of O. gratissimum using an agar dilution susceptibility method towards 25 isolates of Cryptococcus neoformans. All the extracts of O. gratissimum studied showed activity in vitro towards C. neoformans. Based on the minimal inhibitory concentration values the most significant results were obtained with chloroformic fraction and eugenol. It was observed that chloroformic fraction inhibited 23 isolates (92%) of C. neoformans at a concentration of 62.5 microg/ml and eugenol inhibited 4 isolates (16%) at a concentration of 0.9 microg/ml. This screening may be the basis for the study of O. gratissimum as a possible antifungal agent. PMID:15867965

  17. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  18. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  19. Topical and oral antibiotics for acne vulgaris.

    Science.gov (United States)

    Del Rosso, James Q

    2016-06-01

    Antibiotics, both oral and topical, have been an integral component of the management of acne vulgaris (AV) for approximately 6 decades. Originally thought to be effective for AV due to their ability to inhibit proliferation of Propionibacterium acnes, it is now believed that at least some antibiotics also exert anti-inflammatory effects that provide additional therapeutic benefit. To add, an increase in strains of P acnes and other exposed bacteria that are less sensitive to antibiotics used to treat AV have emerged, with resistance directly correlated geographically with the magnitude of antibiotic use. Although antibiotics still remain part of the therapeutic armamentarium for AV treatment, current recommendations support the following when used to treat AV: 1) monotherapy use should be avoided; 2) use benzoyl peroxide concomitantly to reduce emergence of resistant P acnes strains; 3) oral antibiotics should be used in combination with a topical regimen for moderate-to-severe inflammatory AV; and 4) use oral antibiotics over a limited duration to achieve control of inflammatory AV with an exit plan in place to discontinue their use as soon as possible. When selecting an oral antibiotic to treat AV, potential adverse effects are important to consider. PMID:27416309

  20. [Modification of antibiotic resistance in microbial symbiosis].

    Science.gov (United States)

    Aznabaeva, L M; Usviatsov, B Ia; Bukharin, O V

    2010-01-01

    In antibiotic therapy it is necessary to use drugs active against the pathogen in its association with the host normal microflora. The aim of the study was to investigate modification of antibiotic resistance under conditions of the pathogen association with the representatives of the host normal microflora and to develop the microbiological criteria for determining effectiveness of antibacterials. Modification of microbial antibiotic resistance was investigated in 408 associations. Various changes in the antibiotic resistance of the strains were revealed: synergism, antagonism and indifference. On the basis of the results it was concluded that in the choice of the antibiotic active against Staphylococcus aureus and Streptococcus pyogenes the preference should be given to oxacillin, gentamicin and levomycetin, since the resistance of the pathogens to these antibiotics under the association conditions did not increase, which could contribute to their destruction, whereas the resistance of the normoflora increased or did not change, which was important for its retention in the biocenosis. The data on changeability of the antibiotic resistance of the microbial strains under the association conditions made it possible to develop microbiological criteria for determining effectiveness of antibiotics in the treatment of inflammatory diseases of microbial etiology (RF Patent No. 2231554). PMID:21033469

  1. Antibiotics: Pharmacists Can Make the Difference

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    In this podcast, a pharmacist counsels a frustrated father about appropriate antibiotic use and symptomatic relief options for his son's cold.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  2. Antibiotic RX in Hospitals: Proceed with Caution

    Centers for Disease Control (CDC) Podcasts

    2014-03-04

    This podcast is based on the March 2014 CDC Vital Signs report. Antibiotics save lives, but poor prescribing practices can put patients at risk for health problems. Learn how to protect patients by protecting antibiotics.  Created: 3/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/4/2014.

  3. Analysis of antibiotic consumption in burn patients.

    Science.gov (United States)

    Soleymanzadeh-Moghadam, Somayeh; Azimi, Leila; Amani, Laleh; Rastegar Lari, Aida; Alinejad, Faranak; Rastegar Lari, Abdolaziz

    2015-01-01

    Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used. The results indicated that P. aeruginosa is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR) microorganisms, but it can also decrease the cost of treatment. PMID:26124986

  4. Topical and oral antibiotics for acne vulgaris.

    Science.gov (United States)

    Del Rosso, James Q

    2016-06-01

    Antibiotics, both oral and topical, have been an integral component of the management of acne vulgaris (AV) for approximately 6 decades. Originally thought to be effective for AV due to their ability to inhibit proliferation of Propionibacterium acnes, it is now believed that at least some antibiotics also exert anti-inflammatory effects that provide additional therapeutic benefit. To add, an increase in strains of P acnes and other exposed bacteria that are less sensitive to antibiotics used to treat AV have emerged, with resistance directly correlated geographically with the magnitude of antibiotic use. Although antibiotics still remain part of the therapeutic armamentarium for AV treatment, current recommendations support the following when used to treat AV: 1) monotherapy use should be avoided; 2) use benzoyl peroxide concomitantly to reduce emergence of resistant P acnes strains; 3) oral antibiotics should be used in combination with a topical regimen for moderate-to-severe inflammatory AV; and 4) use oral antibiotics over a limited duration to achieve control of inflammatory AV with an exit plan in place to discontinue their use as soon as possible. When selecting an oral antibiotic to treat AV, potential adverse effects are important to consider.

  5. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  6. Antibiotic information application offers nurses quick support

    NARCIS (Netherlands)

    Wentzel, Jobke; Drie-Pierik, Regine; Nijdam, Lars; Geesing, Jos; Sanderman, Robbert; Gemert-Pijnen, van Julia E.W.C.

    2016-01-01

    Background Nurses can be crucial contributors to antibiotic stewardship programs (ASPs), interventions aimed at improving antibiotic use, but nurse empowerment in ASPs adds to their job complexity. Nurses work in complex settings with high cognitive loads, which ask for easily accessible information

  7. Antibiotic information application offers nurses quick support

    NARCIS (Netherlands)

    Wentzel, Jobke; van Drie-Pierik, Regine; Nijdam, Lars; Geesing, Jos; Sanderman, Robbert; van Gemert-Pijnen, Julia E. W. C.

    2016-01-01

    Background: Nurses can be crucial contributors to antibiotic stewardship programs (ASPs), interventions aimed at improving antibiotic use, but nurse empowerment in ASPs adds to their job complexity. Nurses work in complex settings with high cognitive loads, which ask for easily accessible informatio

  8. Antibiotic prophylaxis in craniotomy : a review

    NARCIS (Netherlands)

    Liu, Weiming; Ni, Ming; Zhang, Yuewei; Groen, Rob J. M.

    2014-01-01

    The effectiveness of antibiotic prophylaxis (AP) in craniotomies has been clarified through the accumulation of evidence and increased antibiotic knowledge. This paper focuses on the use of AP in craniotomies during different historical periods and collects highly relevant evidence on this issue. Th

  9. Antibiotic research and development: business as usual?

    NARCIS (Netherlands)

    Harbarth, S.; Theuretzbacher, U.; Hackett, J.; Hulscher, M.

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is

  10. Snort Sniffle Sneeze: No Antibiotics Please

    Centers for Disease Control (CDC) Podcasts

    2009-09-29

    Antibiotics aren't always the answer for sneezes or sore throats. This podcast discusses ways to feel better without antibiotics.  Created: 9/29/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2009.

  11. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    Full Text Available BACKGROUND: Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired. METHODOLOGY/PRINCIPAL FINDINGS: To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance. CONCLUSIONS/SIGNIFICANCE: Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  12. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  13. 2010~2012年我院深部抗真菌药使用情况分析%Analysis of deep antifungal drugs in Shidong hospital from 2010 to 2012

    Institute of Scientific and Technical Information of China (English)

    毛亚佩; 李婷; 卫英

    2014-01-01

    Objective To evaluate the utilization of deep antifungal drugs in our hospital,so as to provide evidence for the effective management of medication. Methods The defined daily dose (DDD) was used as the unit.The usage figure and consumption sum of deep antifungal drugs,DDC,DUI and AUD were analyzed in our hospital from 2010 to 2012. Results The kinds, usage figure and consumption sum of deep antifungal drugs were increasing over the 3 years.The consumption sum of Fluconazole was accounted for more than 70% of all deep antifungal drugs in three years.And the antibiotics use densities (AUD) of deep antifungal drugs presented clearly growing trend. Conclusion In order to promote the rational use of deep antifungal drugs,the causes should be further analyzed.%目的:对我院深部抗真菌药物的使用情况进行统计与评价,为临床合理用药和有效管理提供参考。方法使用限定日剂量(DDD)作为分析单位,计算累积DDDs,并以此为基础对2010~2012年我院(二级甲等)住院患者的深部抗真菌药物用药数量与金额、日均费用(DDC)、药物利用指数(DUI)、药物使用强度(AUD)进行统计计算。结果我院深部抗真菌药品种、使用数量和销售金额均呈逐年上升趋势。氟康唑是治疗深部真菌感染的主要药品。深部抗真菌药的用药强度逐年增长趋势明显。结论为促进抗菌药物合理应用,需进一步分析原因,加强监控。

  14. General principles of antibiotic resistance in bacteria.

    Science.gov (United States)

    Martinez, Jose L

    2014-03-01

    Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens. PMID:24847651

  15. The 'liaisons dangereuses' between iron and antibiotics.

    Science.gov (United States)

    Ezraty, Benjamin; Barras, Frédéric

    2016-05-01

    The decline in the rate of new antibiotic discovery is of growing concern, and new antibacterial strategies must now be explored. This review brings together research in two fields (metals in biology and antibiotics) in the hope that collaboration between scientists working in these two areas will lead to major advances in understanding and the development of new approaches to tackling microbial pathogens. Metals have been used as antiseptics for centuries. In this review, we focus on iron, an essential trace element that can nevertheless be toxic to bacteria. We review the many situations in which iron and antibiotics have combinatorial effects when used together. Understanding the molecular relationships between iron and antibiotics, from pure chemistry to gene reprogramming via biochemical competition, is important not only to increase basic knowledge, but also for the development of treatments against pathogens, with a view to optimizing antibiotic efficacy. PMID:26945776

  16. Innovation of novel antibiotics: an economic perspective.

    Science.gov (United States)

    McKellar, Michael R; Fendrick, A Mark

    2014-10-15

    Despite the public attention to antibiotic overuse and the specter of antimicrobial-resistant pathogens, current infections necessitate the use of antibiotics. Yet, patients and providers may not fully consider the societal cost associated with inappropriate antimicrobial use and subsequent resistance. Policies intended to limit use to minimize resistance must be balanced with the competing concern of underutilization. It is difficult to determine whether research and development incentives or reducing the costs of bringing new antibiotics through expedited review will be sufficient. Likely, the most effective method would be allowing higher prices for use deemed to be clinically appropriate. The ultimate policy goal is to ensure that antibiotics are used appropriately, with the right patients receiving the right medication at the right time, and that the world has a steady stream of future antibiotics to effectively treat the resistant organisms that will inevitably emerge.

  17. The 'liaisons dangereuses' between iron and antibiotics.

    Science.gov (United States)

    Ezraty, Benjamin; Barras, Frédéric

    2016-05-01

    The decline in the rate of new antibiotic discovery is of growing concern, and new antibacterial strategies must now be explored. This review brings together research in two fields (metals in biology and antibiotics) in the hope that collaboration between scientists working in these two areas will lead to major advances in understanding and the development of new approaches to tackling microbial pathogens. Metals have been used as antiseptics for centuries. In this review, we focus on iron, an essential trace element that can nevertheless be toxic to bacteria. We review the many situations in which iron and antibiotics have combinatorial effects when used together. Understanding the molecular relationships between iron and antibiotics, from pure chemistry to gene reprogramming via biochemical competition, is important not only to increase basic knowledge, but also for the development of treatments against pathogens, with a view to optimizing antibiotic efficacy.

  18. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  19. Biosynthesis of enediyne antitumor antibiotics.

    Science.gov (United States)

    Van Lanen, Steven G; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027. PMID:18397168

  20. Antibiotic resistance pattern in uropathogens

    Directory of Open Access Journals (Sweden)

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  1. Identification of Antibiotic Use Pattern as an Effort to Control Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Ivan S. Pradipta

    2012-03-01

    Full Text Available The objective of this study is to determine quantity and pattern of antibiotic use in hospitalized patients at one of Bandung’s private hospital that can give benefit in control of antibiotic resistance and procurement planning of antibiotic. Data of antibiotic consumption were obtained from hospital pharmacy department on February–September 2011. Data were processed using the ATC/DDD and DU90% method. There were 390,98 DDD/100 bed days and 381,34 DDD/100 bed days total of an-tbiotic use in 2009 and 2010. Thirty nine antibiotic were consumed in 2009 within 11 kind of antibiotics in DU90% segment (ceftriaxone, amoxicillin, cefotaxime, ciprofloxacin, levofloxacin, metronidazole, cefixime, doxycycline, thiamphenicol, cefodoxime, cefalexin and 44 antibiotic were consumed in 2010 within 18 kind of antibiotics in DU90% segment (ceftriaxone, ciprofloxacin, amoxicillin, cefixime, levofloxacin, cefadroxil, cefotaxime, metronidazole, thiamphenicol, doxycycline, clindamycin, chloramphenicol, amikacin, sulbactam, gentamycin, streptomycin, cefoperazone, canamycin. There were decline of antibiotic use that followed decline number of bed days/year in 2009–2010, but in both antibiotic kind and quantity of DU90% antibiotic group were increased.

  2. Antibiotics in Animal Feed Contribute to Drug-Resistant Germs

    Science.gov (United States)

    ... medlineplus/news/fullstory_158316.html Antibiotics in Animal Feed Contribute to Drug-Resistant Germs: Study Individual farm ... HealthDay News) -- Use of antibiotics in farm animal feed is helping drive the worldwide increase in antibiotic- ...

  3. INCIDENCE OF NON-CANDIDA ALBICANS IN PATIENTS WITH URINARY TRACT INFECTION WITH SPECIAL REFERENCE TO SPECIATIO N AND ANTIFUNGAL SUSCEPTIBILITY

    Directory of Open Access Journals (Sweden)

    Ragini Ananth

    2012-10-01

    Full Text Available ABSTRACT: BACKGROUND AND OBJECTIVES: Fungal urinary tract infections have become frequent, as a result of increased use of broad spec trum antibiotics, corticosteroids, immunosuppressive drugs and bladder catheters in acut e care settings. The associated risk factors which are seen in cases of candiduria are: antibiotic therapy, female gender, urinary catheterization, surgical procedure and extended hos pitalization. Candiduria has become a potential source of morbidity and mortality if untre ated. We undertook a prospective study to note the incidence of non-Candida albicans in patien ts with urinary tract infection with special reference to speciation, antifungal susceptibility an d the associated risk factors. METHODS: Candida species isolated from urine samples of patient s with urinary tract infection were subjected to speciation using standard yeast identif ication protocol and CHROM agar. Antifungal Susceptibility testing was done by the disc diffusio n method to amphotericin B and fluconazole. Clinical details and risk factors of the patients we re noted down. RESULTS: Among the 60 culture positive cases, six Candida species which wer e isolated are : C.tropicalis (66.66%, C.albicans (13.33%, C.parapsilosis (8.33%, C.glabr ata (6.66%, C.kefyr (3.33% and C.guilliermondii (1.66% The susceptibility pattern s howed, that of the 60 isolates, 40% were resistant to fluconazole. No resistance was seen to amphotericin B. CONCLUSION: Isolation of non-Candida albicans species was more than Candida a lbicans. Candida tropicalis was the predominant isolate. The following risk factors were noted: 43.33 % of the patients had diabetes mellitus, 30%had history of prolonged antib iotics (cephalosporin and aminoglycosides, 16.66% had underlying renal pathol ogy, 3.33% had post –renal transplant status, 1.66% were on steroids, 1.66%had pregnancy a nd 3.33% had no identifiable risk factors.20% patients had an indwelling catheter in them. The antifungal

  4. Systems, not pills: The options market for antibiotics seeks to rejuvenate the antibiotic pipeline.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2016-02-01

    Over the past decade, there has been a growing recognition of the increasing growth of antibiotic resistant bacteria and a relative decline in the production of novel antibacterial therapies. The combination of these two forces poses a potentially grave threat to global health, in both developed and developing countries. Current market forces do not provide appropriate incentives to stimulate new antibiotic development, thus we propose a new incentive mechanism: the Options Market for Antibiotics. This mechanism, modelled on the principle of financial call options, allows payers to buy the right, in early stages of development, to purchase antibiotics at a discounted price if and when they ever make it to market approval. This paper demonstrates the effect of such a model on the expected Net Present Value of a typical antibacterial project. As part of an integrated strategy to confront the impending antibiotic crisis, the Options Market for Antibiotics may effectively stimulate corporate and public investment into antibiotic research and development. PMID:26808335

  5. Systems, not pills: The options market for antibiotics seeks to rejuvenate the antibiotic pipeline.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2016-02-01

    Over the past decade, there has been a growing recognition of the increasing growth of antibiotic resistant bacteria and a relative decline in the production of novel antibacterial therapies. The combination of these two forces poses a potentially grave threat to global health, in both developed and developing countries. Current market forces do not provide appropriate incentives to stimulate new antibiotic development, thus we propose a new incentive mechanism: the Options Market for Antibiotics. This mechanism, modelled on the principle of financial call options, allows payers to buy the right, in early stages of development, to purchase antibiotics at a discounted price if and when they ever make it to market approval. This paper demonstrates the effect of such a model on the expected Net Present Value of a typical antibacterial project. As part of an integrated strategy to confront the impending antibiotic crisis, the Options Market for Antibiotics may effectively stimulate corporate and public investment into antibiotic research and development.

  6. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  7. Isolation and Purification of a Novel Deca-Antifungal Peptide from Potato (Solanum tuberosum L. cv. Jopung Against Candida albicans

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2012-03-01

    Full Text Available In a previous study, an antifungal protein, AFP-J, was purified from tubers of the potato (Solanum tuberosum cv. L Jopung and by gel filtration and HPLC. In this study, the functional peptide was characterized by partial acid digestion using HCl and HPLC. We obtained three peaks from the AFP-J, the first and third peaks were not active in the tested fungal strain. However, the second peak, which was named Potide-J, was active (MIC; 6.25 μg/mL against Candida albicans. The amino acid sequences were analyzed by automated Edman degradation, and the amino acid sequence of Potide-J was determined to be Ala-Val-Cys-Glu-Asn-Asp-Leu-Asn-Cys-Cys. Mass spectrometry showed that its molecular mass was 1083.1 Da. Finally, we confirmed that a disulfide bond was present between Cys3 and Cys9 or Cys10. Using this structure, Potide-J was synthesized via solid-phase methods. In these experiments, only the linear sequence was shown to display strong activity against Candida albicans. These results suggest that Potide-J may be an excellent candidate compound for the development of commercially applicable antibiotic agents.

  8. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    Science.gov (United States)

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  9. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases. PMID:26347324

  10. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes.

    Science.gov (United States)

    Roose-Amsaleg, Céline; Laverman, Anniet M

    2016-03-01

    Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.

  11. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Directory of Open Access Journals (Sweden)

    Marothi Yogyata

    2010-07-01

    Full Text Available Abstract Background Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of Escherichia coli found in the hospital effluent. Methods This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. Escherichia coli isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints. Results Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in

  12. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  13. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  14. Synthesis, Characterization and Antifungal Evaluation of Novel Thiochromanone Derivatives Containing Indole Skeleton.

    Science.gov (United States)

    Han, Xiao-Yan; Zhong, Yi-Fan; Li, Sheng-Bin; Liang, Guo-Chao; Zhou, Guan; Wang, Xiao-Ke; Chen, Bao-Hua; Song, Ya-Li

    2016-09-01

    Invasive fungal disease constitutes a growing health problem and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. In order to develop potent antifungal agents, a novel series of 6-alkyl-indolo[3,2-c]-2H-thiochroman derivatives were synthesized. Microdilution broth method was used to investigate antifungal activity of these compounds. Most of them showed good antifungal activity in vitro. Compound 4o showed the best antifungal activity, which (inhibition of Candida albicans and Cryptococcus neoformans) can be achieved at the concentration of 4 µg/mL. Compounds 4b (inhibition of Cryptococcus neoformans), 4j (inhibition of Cryptococcus neoformans), 4d (inhibition of Candida albicans) and 4h (inhibition of Candida albicans) also showed the best antifungal activity at the concentrations of 4 µg/mL. The molecular interactions between 4o and the N-myristoyltransferase of Candida albicans (PDB ID: 1IYL) were finally investigated through molecular docking. The results indicated that these thiochromanone derivatives containing indole skeleton could serve as promising leads for further optimization as novel antifungal agents. PMID:27373770

  15. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt.

    Science.gov (United States)

    Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knøchel, S

    2015-02-01

    Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated.

  16. Antimicrobial and Antifungal Activity of Pelargonium roseum Essential Oils

    Directory of Open Access Journals (Sweden)

    Gâlea Carmen

    2014-12-01

    Conclusion: The volatile oils exhibited considerable inhibitory effects against all the organisms under test, in some cases comparable with those of the reference antibiotics. There were no considerable differences between the antimicrobial activities of the oil obtained by distillation and commercially available Pelargonium oils.

  17. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  18. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Science.gov (United States)

    Wong, Sarah Sze Wah; Kao, Richard Yi Tsun; Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera; Seneviratne, Chaminda Jayampath

    2014-01-01

    Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2-1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

  19. Get Smart: Know When Antibiotics Work - Sinus Infection (Sinusitis)

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  20. Get Smart: Know When Antibiotics Work - Influenza (Flu)

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...