WorldWideScience

Sample records for antibiotics antifungal

  1. Chemical modification of antifungal polyene macrolide antibiotics

    Science.gov (United States)

    Solovieva, S. E.; Olsufyeva, E. N.; Preobrazhenskaya, M. N.

    2011-02-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  2. Chemical modification of antifungal polyene macrolide antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Solovieva, S E; Olsufyeva, E N; Preobrazhenskaya, M N [G.F.Gause Institute of New Antibiotics, Russian Academy of Medical Sciences (Russian Federation)

    2011-02-28

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  3. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity.

  4. Fusarielin E, a new antifungal antibiotic from Fusarium sp.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new antifungal antibiotic, fusarielin E, was isolated from the marine-derived fungus Fusarium sp. Its structure was established on the basis of various NMR spectroscopic analyses and HR-FAB-MS. Fusarielin E displayed significant biological activity against Pyricularia oryzae.

  5. Antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus

    OpenAIRE

    Grabova A. Yu.; Dragovoz I. V.; Zelena L. B.; Tkachuk D. M.; Avdeeva L. V.

    2016-01-01

    Aim. To research the antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus. Methods. Deferred antagonism method, PCR, qRT-PCR, MALDI-TOF mass spectrometry. Results. It was revealed that Bacillus sp. strains C6 and Lg37s out of five tested strains had the highest antifungal activity. Based on the molecular genetic methods, it was shown that the expression of genes of lipopeptide antibiotics, related to the fengycin family, occurred in all these strains...

  6. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23

    Indian Academy of Sciences (India)

    S K Augustine; S P Bhavsar; B P Kapadnis

    2005-03-01

    In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic.

  7. Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis.

    Science.gov (United States)

    Kumar, Ajay; Saini, Pragati; Shrivastava, J N

    2009-01-01

    Among different bacterial cultures, a potent Bacillus subtilis MTCC-8114 was isolated from garden soil samples which showed 16 and 14 mm inhibition zones by spot inoculation method and 24 and 22 mm inhibition zones by well agar diffusion method against test fungi i.e. Microsporum fulvum and Trichophyton species. Among four media tested, the maximum growth and antibiotic production was found in trypticase soya broth (TSB) medium at 37 degrees C, pH-7 and 48 h of incubation. The Rf value (0.64) by Thin Layer Chromatography (TLC) technique and UV and FTIR spectral data of the active antifungal compound, indicated that the isolated compound belongs to peptide antifungal antibiotic group. MIC value of antifungal antibiotic was 135 and 145 microg/ml.

  8. [The possibility of using the mycelial wastes from the production of antifungal antibiotics as additives to lubricating oils].

    Science.gov (United States)

    Belakhov, V V; Shenin, Iu D

    1997-01-01

    Antiwear and antitear properties of mycelial waste from production of antifungal antibiotics i.e. levorin, nystatin, mycoheptin, amphotericin B and griseofulvin were studied. It was shown that the waste mycelium from griseofulvin production had the best antiwear and antitear characteristics due to a higher percentage of phosphorus and sulphur in it as compared to the mycelial waste from production of the other antibiotics.

  9. In vitro and in vivo studies of ambruticin (W7783): new class of antifungal antibiotics.

    Science.gov (United States)

    Ringel, S M

    1978-05-01

    Ambruticin is a cyclopropyl-pyran acid, representing a new class of antibiotics. It has a relatively broad antifungal spectrum in vitro and is highly active against dimorphic as well as filamentous organisms. Of 24 strains of dermatophytic fungi tested, the majority were susceptible to ambruticin at 0.049 mug/ml or less. The minimal inhibitory concentration for the systemic fungi Histoplasma capsulatum and Blastomyces dermatitidis was 0.049 to 0.39 mug/ml. Ambruticin is fungicidal for metabolizing cells of Microsporum fulvum and does not cause cell leakage of 260-nm absorbing material. The antibiotic is effective orally as well as topically in guinea pigs experimentally infected with Trichophyton mentagrophytes. In mice, a single oral dose of 75 mg/kg produced peak serum levels of 45 mug/ml in 1 h with a serum half-life of 3.1 h. Excretion of the antibiotic is principally by the biliary route.

  10. Antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus

    Directory of Open Access Journals (Sweden)

    Grabova A. Yu.

    2016-02-01

    Full Text Available Aim. To research the antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus. Methods. Deferred antagonism method, PCR, qRT-PCR, MALDI-TOF mass spectrometry. Results. It was revealed that Bacillus sp. strains C6 and Lg37s out of five tested strains had the highest antifungal activity. Based on the molecular genetic methods, it was shown that the expression of genes of lipopeptide antibiotics, related to the fengycin family, occurred in all these strains. At the same time, the gene expression of cyclolipopeptide iturin was found in the Bacillus sp. strains C6 and Lg37s. It was determined that Bacillus sp. C6 strain had the highest level of expression of the fengycin operon`s genes, whereas the lowest level was observed in Bacillus sp. C10 strain. By means of MALDI-TOF mass spectrometry, the presence of fengycins in the cell-free cultural fluid of Bacillus sp. C6 strain was detected. Conclusion. The direct correlation between the level of antifungal activity and the fengycin synthetases expression has not been disclosed. A higher level of antagonism detected for two Bacillus strains is more likely associated with the expression and subsequent synthesis of fengycin and iturin.

  11. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  12. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer

    Science.gov (United States)

    Grudzinski, Wojciech; Sagan, Joanna; Welc, Renata; Luchowski, Rafal; Gruszecki, Wieslaw I.

    2016-01-01

    Amphotericin B is a popular antifungal antibiotic, a gold standard in treatment of systemic mycotic infections, due to its high effectiveness. On the other hand, applicability of the drug is limited by its considerable toxicity to patients. Biomembranes are a primary target of physiological activity of amphotericin B and both the pharmacologically desired and toxic side effects of the drug relay on its molecular organization in the lipid phase. In the present work, molecular organization, localization and orientation of amphotericin B, in a single lipid bilayer system, was analysed simultaneously, thanks to application of a confocal fluorescence lifetime imaging microscopy of giant unilamellar vesicles. The results show that the presence of sterols, in the lipid phase, promotes formation of supramolecular structures of amphotericin B and their penetration into the membrane hydrophobic core. The fact that such an effect is substantially less pronounced in the case of cholesterol than ergosterol, the sterol of fungal membranes, provides molecular insight into the selectivity of the drug. PMID:27620838

  13. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    Science.gov (United States)

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  14. The antifungal activity of Natamycin : a novel mode of action of the polyene antibiotics

    NARCIS (Netherlands)

    te Welscher, Y.M.

    2010-01-01

    Fungal infections have recently become a growing threat to human health, especially in persons whose immune systems are compromised (for example transplant recipients or patients with HIV or cancer). Only a few effective antifungal agents are currently in use and a major problem is the increase of d

  15. Reversal by Calcium Ions of the Growth Inhibition of Debaryomyces nicotianae Caused by Antifungal Polyene Antibiotics1

    Science.gov (United States)

    Berdicevsky, Israela; Grossowicz, Nathan

    1972-01-01

    Only Debaryomyces nicotianae strain 77, of seven different yeast strains tested, was found to be resistant to heptamycin and other antifungal heptaenes when grown in a rich medium. This strain, however, like the other six, was completely susceptible to these antibiotics in a minimal medium. Addition of yeast extract to the minimal medium abolished the heptamycin effect; calcium ions fully duplicated the effect of yeast extract; Mg2+ and Mn2+ were also effective but less so than Ca2+. Ca2+ also counteracted the activity of the heptaenes ascosin and trichomycin. Complete reversal of the polyene inhibition by Ca2+ was obtained if the cation was added simultaneously with the antibiotic; addition of Ca2+ 2 hr after the polyene was without effect. Addition of Ca2+ in the absence of the polyene caused a slight, if any, growth stimulation of D. nicotianae 77. Cholesterol also counteracted polyene activity; this was due to the formation of a complex with the antibiotic which prevented the polyene from reaching the site of action—the cytoplasmic membrane. No evidence for complex formation between heptamycin and calcium was found. The importance of Ca2+ in membrane structure, as evidenced from heptaene studies, is discussed. PMID:4598328

  16. Analytical studies on ascosin, candicidin and levorin multicomponent antifungal antibiotic complexes. The stereostructure of ascosin A2

    Science.gov (United States)

    Szczeblewski, Paweł; Laskowski, Tomasz; Kubacki, Bartosz; Dziergowska, Marta; Liczmańska, Magda; Grynda, Jakub; Kubica, Paweł; Kot-Wasik, Agata; Borowski, Edward

    2017-01-01

    In the class of polyene macrolides, there is a subgroup of aromatic heptaenes, which exhibit the highest antifungal activity within this type of antibiotics. Yet, due to their complex nature, aromatic heptaenes were not extensively studied and their potential as drugs is currently underexploited. Moreover, there are many inconsistencies in the literature regarding the composition and the structures of the individual components of the aromatic heptaene complexes. Inspired by one of such cases, herein we conducted the analytical studies on ascosin, candicidin and levorin using HPLC-DAD-(ESI)Q-TOF techniques. The resulting chromatograms and the molecular masses of the individual components of these three complexes strongly indicated that the major components of ascosin, candicidin and levorin are structurally identical. In order to validate these results, the main component of previously structurally uncharacterized ascosin was derivatized, isolated and subjected to 2D NMR studies. The resulting structure of the ascosin’s main component, herein named ascosin A2, was shown to be identical with the earlier reported structures of the main components of candicidin and levorin complexes: candicidin D and levorin A2. In the end, all the structural knowledge regarding these three antibiotic complexes was gathered, systematized and completed, and the new nomenclature was proposed.

  17. Analytical studies on ascosin, candicidin and levorin multicomponent antifungal antibiotic complexes. The stereostructure of ascosin A2

    Science.gov (United States)

    Szczeblewski, Paweł; Laskowski, Tomasz; Kubacki, Bartosz; Dziergowska, Marta; Liczmańska, Magda; Grynda, Jakub; Kubica, Paweł; Kot-Wasik, Agata; Borowski, Edward

    2017-01-01

    In the class of polyene macrolides, there is a subgroup of aromatic heptaenes, which exhibit the highest antifungal activity within this type of antibiotics. Yet, due to their complex nature, aromatic heptaenes were not extensively studied and their potential as drugs is currently underexploited. Moreover, there are many inconsistencies in the literature regarding the composition and the structures of the individual components of the aromatic heptaene complexes. Inspired by one of such cases, herein we conducted the analytical studies on ascosin, candicidin and levorin using HPLC-DAD-(ESI)Q-TOF techniques. The resulting chromatograms and the molecular masses of the individual components of these three complexes strongly indicated that the major components of ascosin, candicidin and levorin are structurally identical. In order to validate these results, the main component of previously structurally uncharacterized ascosin was derivatized, isolated and subjected to 2D NMR studies. The resulting structure of the ascosin’s main component, herein named ascosin A2, was shown to be identical with the earlier reported structures of the main components of candicidin and levorin complexes: candicidin D and levorin A2. In the end, all the structural knowledge regarding these three antibiotic complexes was gathered, systematized and completed, and the new nomenclature was proposed. PMID:28065932

  18. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  19. Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida spp.: In Vitro Study on Clinical and Food-Borne Isolates.

    Science.gov (United States)

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta

    2017-01-01

    Candida spp. cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. As a result of the increasing antibiotic resistance among pathogenic yeasts, the interest in alternative agents of antifungal activity is growing. This study evaluated the antimicrobial activity of selected essential oils (EOs) against Candida clinical and food-borne strains, including antibiotic-resistant isolates, in relation to yeast cell surface hydrophobicity (CSH). Candida strains showed different range of susceptibility to tea tree, thyme, peppermint, and clove oils, and peppermint oil demonstrated the lowest anticandidal activity with minimal inhibitory concentrations (MICs) of 0.03-8.0% v/v. MIC values for thyme and clove oils ranged from 0.03% to 0.25% v/v, and for tea tree oil-from 0.12% to 2.0% v/v. The exception was Candida tropicalis food-borne strain, the growth of which was inhibited after application of EOs at concentration of 8% v/v. Due to diverse yeast susceptibility to EOs, isolates were divided into five clusters in a principal component analysis model, each containing both clinical and food-borne strains. Hydrophobic properties of yeast were also diversified, and 37% of clinical and 50% of food-borne strains exhibited high hydrophobicity. The study indicates high homology of clinical and food-borne Candida isolates in relation to their susceptibility to anticandidal agents and hydrophobic properties. The susceptibility of yeasts to EOs could be partially related to their CSH. High antifungal activity of examined EOs, also against antibiotic-resistant isolates, indicates their usefulness as agents preventing the development of Candida strains of different origin.

  20. Antifungal agents. 5. Chemical modification of antibiotics from Polyangium cellulosum var. fulvum. Alcohol, ketone, aldehyde, and oxime analogues of ambruticin.

    Science.gov (United States)

    Connor, D T; von Strandtmann, M

    1979-09-01

    Alcohol, ketone, aldehyde, and oxime analogues of ambruticin (1) were prepared. The analogues were tested against Histoplasma capsulatum, Microsporum fulvum, Candida albicans, and Streptococcus pyogenes. Structure-activity relationships are described. Increasing the bulk of substituent at C1 and C5 reduces antifungal activity.

  1. Antibióticos antifúngicos produzidos por actinomicetos do Brasil e sua determinação preliminar nos meios experimentais Antifungal antibiotics produced by Brazilian actinomycetes and its preliminary determination in experimental media

    Directory of Open Access Journals (Sweden)

    Keidi Ujikawa

    2003-06-01

    Full Text Available Várias amostras de solo do Brasil foram semeadas em placas de ágar e diversas cepas de actinomicetos produtoras de antibióticos antifúngicos foram isoladas. Foram desenvolvidos meios para eliciação da biossíntese dos antibióticos e métodos para determinação rápida do seu rendimento. Ao todo, foram isoladas 41 cepas de actinomicetos aeróbios produtoras de metabólitos antifúngicos. Destes, 11 (26,8% eram macrolídeos tetraênicos, 13 (31,7% macrolídeos pentaênicos, 1 (2,4%, macrolídeo oxopentaênico, 1 (2,4% macrolídeo hexaênico e 6 (14,6% macrolídeos heptaênicos. Os antibióticos antifúngicos produzidos pelas restantes 9 cepas ativas (21,9% não eram poliênicos. Os poliênicos mais utilizados atualmente na clínica são do tipo tetraênico (nistatina e heptaênico (anfotericina B. Um meio à base de leite de soja favoreceu extraordinariamente a eliciação da biossíntese de polienos por algumas cepas, enquanto que para outras não houve favorecimento e para outras foi prejudicial. Os rendimentos obtidos atingiram cerca de 6000 U de antibióticos poliênicos por mL.Various Brazilian soil samples were seeded in agar plates and several strains of antifungal antibiotic producing actinomycetes were isolated. Antibiotic biosynthesis elicitation media were developed and methods for determination of yields were studied. A total of 41 antifungal antibiotic producing strains of aerobic actinomycetes resulted. Among the antibiotics produced, 11 (26.8% were grouped as macrolide tetraenes, 13 (31.7% as pentaenes, 1 (2.4% as oxo pentaene, 1 (2.4% as hexaene and 6 (14.6% as heptaenes. Several of these strains also produced antibacterial antibiotics, like polyether antibiotics. The remaining 9 active strains (21.9% produced non polyene type of antifungals. A medium based on soybean milk favored extraordinarily the elicitation of polyenes biosynthesis by some native strains, while with other strains, this was not favored, while with

  2. EVALUATION OF STRUCTURAL AND BIOCHEMICAL ALTERATIONS IN ASPERGILLUS TERREUS BY THE ACTION OF ANTIFUNGAL ANTIBIOTIC COMPOUND FROM STREPTOMYCES SP. JF714876

    Directory of Open Access Journals (Sweden)

    Babanagare Shankaravva S.

    2011-11-01

    Full Text Available Antifungal compound obtained by Streptomyces sp. JF714876 was examined for its effect on morphological and biochemical alteration in Aspergillus terreus. Microscopic observation revealed swelling of hyphae with deformation and distortion in mycelial structure in presence of moderate concentration of antifungal compound. At high concentration, the compound exhibited fungicidal action. Antifungal treated Aspergillus terreus showed changes in its biochemical content such as, protein, carbohydrates, peroxidase, catalase and amylase as compared to untreated.

  3. [Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal (corrected) activity in rhizospheric bacterium Pseudomonas chlororaphis 449].

    Science.gov (United States)

    Veselova, M a; Klein, Sh; Bass, I A; Lipasova, V A; Metlitskaia, A Z; Ovadis, M I; Chernin, L S; Khmel', I A

    2008-12-01

    Strain Pseudomonas chlororaphis 449, an antagonist of a broad spectrum of phytopathogenic microorganisms isolated from the maize rhizosphere, was shown to produce three phenazine antibiotics: phenazine-1-carboxylic acid (PCA), 2-hydroxylphenazine-1-carboxylic acid (2-OH-PCA), and 2-hydroxylphenazine (2-OH-PHZ). Two Quorum Sensing (QS) systems of regulation were identified: PhzIR and CsaI/R. Genes phzI and csaI were cloned and sequenced. Cells of strain 449 synthesize at least three types of AHL: N-butanoyl-L-homoserine lactone (C4-AHL), N-hexanoyl-L-homoserine lactone (C6-AHL), and N-(3-oxo-hexanoyl)-L-homoserine lactone (30C6-AHL). Transposon mutagenesis was used to generate mutants of strain 449 deficient in synthesis of phenazines, which carried inactivated phzA and phzB genes of the phenazine operon and gene phzO. Mutations phzA- and phzB-caused a drastic reduction in the antagonistic activity of bacteria toward phytopathogenic fungi. Both mutants lost the ability to protect cucumber and leguminous plants against phytopathogenic fungi Rhizoctonia solani and Sclerotinia sclerotiorum. These results suggest a significant role of phenazines in the antagonistic activity of P. chlororaphis 449.

  4. AN OVERVIEW ON ANTIFUNGAL THERAPY

    OpenAIRE

    Karki, Nirmal K.; Ahmed, Azhar; Charde, Rita; Charde, Manoj; Gandhare, Bhushan

    2011-01-01

    The number of fungi causing systemic disease is growing and the number of systemic diseases caused by fungi is increasing. The currently available antifungal agents for the treatment of systemic mycoses include polyene antibiotics (Amphotericin B), fluoropyrimidine (Flu cytosine), and Nystatin andazole group of drugs (Ketoconazole, Fluconazole, and Itraconazole). Novel drug delivery systems for antifungal therapy, based on the type of formulation are classified as Liposomes Nanocochleates, Na...

  5. Polyene antibiotic that inhibits membrane transport proteins

    NARCIS (Netherlands)

    Te Welscher, Y.M.; van Leeuwen, M.R.; de Kruijff, B.; Dijksterhuis, J.; Breukink, E.

    2012-01-01

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific inter

  6. Resistance to Antibiotics and Antifungal Medicinal Products: Can Complementary and Alternative Medicine Help Solve the Problem in Common Infection Diseases? The Introduction of a Dutch Research Consortium

    Directory of Open Access Journals (Sweden)

    Esther T. Kok

    2015-01-01

    Full Text Available The increase of antibiotic resistance worldwide, rising numbers of deaths and costs associated with this, and the fact that hardly any new antimicrobial drugs have been developed during the last decade have increased the interest in Complementary and Alternative Medicine (CAM therapeutic interventions, if proven safe and effective. Observational studies on clinical CAM practices demonstrate positive effects of treatment of infections with CAM therapies (clinical effects, patient satisfaction in combination with small percentages of antibiotics prescription. However, Cochrane reviews and other studies demonstrate that in most instances the quality of clinical trials on CAM treatment of infections is currently too low to provide sufficient evidence. Therefore a Dutch consortium on (in vitro and clinical scientific research on CAM and antibiotic resistance has been formed. The aim and objective of the consortium is to establish an enduring partnership and to develop expertise to further develop and investigate safe and effective CAM treatments for infectious diseases of humans (and animals. A first ongoing project on the development of safe and effective biobased CAM antimycotics in women with (recurrent vaginal candidiasis infection is introduced.

  7. Antifungal antibiotic CA1189 produced by a Mangrove endophyte Streptomyces sp.A1626%红树林内生链霉菌A1626产生的抗真菌抗生素CA1189

    Institute of Scientific and Technical Information of China (English)

    褚以文; 李进军; 王辂; 余蓉

    2011-01-01

    Objective To purify and to identify an antifungal compound of an endophytic isolate Streptomyces sp. A1626, which was isolated from stems of Kandelia candel(Linn.) Druce, and to determine its antifungal activity. Methods Compound CA 1189 was separated and purified by solvent extraction, silica gel, RP-18 column chromatography. Its structure was elucidated on the basis of extensive spectroscopic analysis including UV, IR, MS,1D and 2D NMR experiments. Its in vitro antifungal activity was determined with micro-broth dilution assay. Results and Conclusion The potent antifungal compound CA 1189 is identical with benzoxazole derivative AJI9561.%目的 研究秋茄内生链霉菌菌株A1626产生的活性代谢产物.方法 发酵液经有机溶剂萃取、正相硅胶柱层析、C18柱制备色谱分离获得单体,通过紫外光谱、红外光谱、质谱、一维和二维核磁共振谱的测定解析,确证单体化合物的结构,采用微量液体稀释法对单体化合物的抗真菌活性进行测定.结果 与结论活性化合物CA1189属于苯并噁唑类,与文献报道的AYI9561结构一致,其抗真菌活性为首次报道.

  8. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  9. Antibiotic Safety

    Science.gov (United States)

    ... are not effectively treated with an antibiotic • Viral gastroenteritis Bacterial infections should be treated with antibiotics. Some ... you antibiotics for a viral infection. Antibiotics kill bacteria, not viruses. • T ake all of your prescribed ...

  10. Triazole antifungals: a review.

    Science.gov (United States)

    Peyton, L R; Gallagher, S; Hashemzadeh, M

    2015-12-01

    Invasive fungal infections and systemic mycosis, whether from nosocomial infection or immunodeficiency, have been on an upward trend for numerous years. Despite advancements in antifungal medication, treatment in certain patients can still be difficult for reasons such as impaired organ function, limited administration routes or poor safety profiles of the available antifungal medications. The growing number of invasive fungal species becoming resistant to current antifungal medications is of appreciable concern. Triazole compounds containing one or more 1,2,4-triazole rings have been shown to contain some of the most potent antifungal properties. Itracon-azole and fluconazole were some of the first triazoles synthesized, but had limitations associated with their use. Second-generation triazoles such as voriconazole, posa-conazole, albaconazole, efinaconazole, ravuconazole and isavuconazole are all derivatives of either itraconazole or fluconazole, and designed to overcome the deficiencies of their parent drugs. The goal of this manuscript is to review antifungal agents derived from triazole.

  11. Antifungal compounds from cyanobacteria.

    Science.gov (United States)

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  12. Antibiotics Quiz

    Science.gov (United States)

    ... on the Farm Get Smart About Antibiotics Week Antibiotics Quiz Recommend on Facebook Tweet Share Compartir Try ... right of the answer you think is correct. Antibiotic Quiz Widget Copy the code for this widget, ...

  13. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  14. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  15. The role of the multidisciplinary team in antifungal stewardship.

    Science.gov (United States)

    Agrawal, Samir; Barnes, Rosemary; Brüggemann, Roger J; Rautemaa-Richardson, Riina; Warris, Adilia

    2016-11-01

    There are a variety of challenges faced in the management of invasive fungal diseases (IFD), including high case-fatality rates, high cost of antifungal drugs and development of antifungal resistance. The diagnostic challenges and poor outcomes associated with IFD have resulted in excessive empirical use of antifungals in various hospital settings, exposing many patients without IFD to potential drug toxicities as well as causing spiralling antifungal drug costs. Further complexity arises as different patient groups show marked variation in their risk for IFD, fungal epidemiology, sensitivity and specificity of diagnostic tests and the pharmacokinetics and pharmacodynamics of antifungal drugs. To address these issues and to ensure optimal management of IFD, specialist knowledge and experience from a range of backgrounds is required, which extends beyond the remit of most antibiotic stewardship programmes. The first step in the development of any antifungal stewardship (AFS) programme is to build a multidisciplinary team encompassing the necessary expertise in the management of IFD to develop and implement the AFS programme. The specific roles of the key individuals within the AFS team and the importance of collaboration are discussed in this article.

  16. Antifungal pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    Lepak, Alexander J; Andes, David R

    2014-11-10

    Successful treatment of infectious diseases requires choice of the most suitable antimicrobial agent, comprising consideration of drug pharmacokinetics (PK), including penetration into infection site, pathogen susceptibility, optimal route of drug administration, drug dose, frequency of administration, duration of therapy, and drug toxicity. Antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) studies consider these variables and have been useful in drug development, optimizing dosing regimens, determining susceptibility breakpoints, and limiting toxicity of antifungal therapy. Here the concepts of antifungal PK/PD studies are reviewed, with emphasis on methodology and application. The initial sections of this review focus on principles and methodology. Then the pharmacodynamics of each major antifungal drug class (polyenes, flucytosine, azoles, and echinocandins) is discussed. Finally, the review discusses novel areas of pharmacodynamic investigation in the study and application of combination therapy.

  17. Antifungal activity of diethyldithiocarbamate.

    Science.gov (United States)

    Allerberger, F; Reisinger, E C; Söldner, B; Dierich, M P

    1989-10-01

    Sodium diethyldithiocarbamate (DTC) was evaluated for its ability to combat four different species of fungi in vitro. Using a microtiter-broth-dilution method we were able to demonstrate an antifungal activity against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus and Mucor mucedo in doses achievable by intravenous administration in man.

  18. Antibiotic Agents

    Science.gov (United States)

    ... Superbugs and Drugs" Home | Contact Us General Background: Antibiotic Agents What is an antibacterial and how are ... with the growth and reproduction of bacteria. While antibiotics and antibacterials both attack bacteria, these terms have ...

  19. Peptide-based Antifungal Therapies against Emerging Infections

    OpenAIRE

    Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T; Mixson, A. J.

    2010-01-01

    Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Cur...

  20. Antifungal adjuvants: Preserving and extending the antifungal arsenal.

    Science.gov (United States)

    Butts, Arielle; Palmer, Glen E; Rogers, P David

    2017-02-17

    As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.

  1. Antifungal therapy in European hospitals

    DEFF Research Database (Denmark)

    Zarb, P; Amadeo, B; Muller, A;

    2012-01-01

    respiratory (19.2%) and gastrointestinal (18.8%). The most used antifungal was fluconazole (60.5%) followed by caspofungin (10.5%). Antifungal-antibacterial combinations were frequently used (77.5%). The predominance of fluconazole use in participating hospitals could result in an increase in prevalence...

  2. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2015-01-01

    Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

  3. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A

    2012-01-01

    disease specialists in Europe, the United States, Canada, and Australia. An international expert panel selected systemic antibacterial drugs for their potential to treat infections caused by resistant bacteria or their unique value for specific criteria. Twenty-two of the 33 selected antibiotics were...... available in fewer than 20 of 38 countries. Economic motives were the major cause for discontinuation of marketing of these antibiotics. Fourteen of 33 antibiotics are potentially active against either resistant Gram-positive or Gram-negative bacteria. Urgent measures are then needed to ensure better...

  4. Novel approaches to antifungal prophylaxis.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis

    2004-06-01

    Antifungal prophylaxis represents a significant advance in the management of patients at risk from fungal infections in a variety of settings. Identification of patients at the highest risk and the utilisation of safe and effective drugs maximises the benefits of prophylaxis. Situations in which antifungal prophylaxis has been shown to be useful are bone marrow transplantation, liver and lung transplantation, surgical and neonatal intensive care units, secondary prophylaxis of fungal infections associated with HIV and neutropenia associated haematological malignancies and their treatment. New antifungal agents, such as the echinocandins and the new azoles, are available and have a potential role in antifungal prophylaxis. Future studies should evaluate which strategy is more useful; prophylaxis or pre-emptive therapy.

  5. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    Numerous opportunities are available in primary care for alleviating the crisis of increasing antibiotic resistance. Preventing patients from developing an acute respiratory infection (ARI) will obviate any need for antibiotic use downstream. Hygiene measures such as physical barriers and hand...... wrong. Shared decision making might be a solution, as it enables clinician and patient to participate jointly in making a health decision, having discussed the options together with the evidence for their harms as well as benefits. Furthermore, GPs' diagnostic uncertainty - often leading...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....

  6. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  7. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  8. AN OVERVIEW OF AZOLE ANTIFUNGALS

    Directory of Open Access Journals (Sweden)

    Pratibha Shivaji Gavarkar*, Rahul Shivaji Adnaik, and Shrinivas Krishna Mohite

    2013-11-01

    Full Text Available Fungal infections in critically ill or immunosuppressed patients were increasing in incidence in the human population over the last 1-2 decades. There were few advances in antifungal therapy and, until recently, there were few choices from which to select a treatment for systemic mycoses. However, in the past decade, there have been several developments in this area. Antifungal agents are sufficiently diverse in activity, toxicity, and drug interaction potential. Azoles are synthetic and semi-synthetic compounds. They have a broad spectrum of activity. Triazole antifungals are active to treat an array of fungal pathogens, whereas imidazoles are used almost exclusively in the treatment of superficial mycoses and vaginal candidiasis. Despite the advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. The present review aims to explore the pharmacology, pharmacokinetics, spectrum of activity, safety, toxicity and potential for drug–drug interactions of the azole antifungal agents.

  9. Penetratin and derivatives acting as antifungal agents

    NARCIS (Netherlands)

    Masman, Marcelo F.; Rodriguez, Ana M.; Raimondi, Marcela; Zacchino, Susana A.; Luiten, Paul G. M.; Somlai, Csaba; Kortvelyesi, Tamas; Penke, Botond; Enriz, Ricardo D.

    2009-01-01

    The synthesis, in vitro evaluation, and conformational study of RQIKTWFQNRRMKWKK-NH(2) (penetratin) and related derivatives acting as antifungal agents are reported. Penetratin and some of its derivatives displayed antifungal activity against the human opportunistic pathogenic standardized ATCC stra

  10. Special Issue: Novel Antifungal Drug Discovery

    Directory of Open Access Journals (Sweden)

    Maurizio Del Poeta

    2016-12-01

    Full Text Available This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.

  11. Treating chromoblastomycosis with systemic antifungals.

    Science.gov (United States)

    Bonifaz, Alexandro; Paredes-Solís, Vanessa; Saúl, Amado

    2004-02-01

    Chromoblastomycosis is a subcutaneous mycosis for which there is no treatment of choice but rather, several treatment options, with low cure rates and many relapses. The choice of treatment should consider several conditions, such as the causal agent (the most common one being Fonsecaea pedrosoi ), extension of the lesions, clinical topography and health status of the patient. Most oral and systemic antifungals have been used; the best results have been obtained with itraconazole and terbinafine at high doses, for a mean of 6 - 12 months. In extensive and refractory cases, chemotherapy with oral antifungals may be associated with thermotherapy (local heat and/or cryosurgery). Limited or early cases may be managed with surgical methods, always associated with oral antifungal agents. It is important to determine the in vitro sensitivity of the major causal agents to the various drugs, by estimating the minimum inhibitory concentration, as well as drug tolerability and drug interactions.

  12. ANTIFUNGAL PROPHYLAXIS IN IMMUNOCOMPROMISED PATIENTS

    Directory of Open Access Journals (Sweden)

    Lourdes Vazquez

    2016-09-01

    Full Text Available Invasive fungal infections (IFIs represent significant complications in patients with hematological malignancies. Chemoprevention of IFIs may be important in this setting, but most antifungal drugs have demonstrated poor efficacy, particularly in the prevention of invasive aspergillosis. Antifungal prophylaxis in hematological patients is currently regarded as the gold standard in situations with a high risk of infection, such as acute leukemia, myelodysplastic syndromes, and autologous or allogeneic hematopoietic stem cell transplantation. Over the years, various scientific societies have established a series of recommendations for antifungal prophylaxis based on prospective studies performed with different drugs. However, the prescription of each agent must be personalized, adapting its administration to the characteristics of individual patients and taking into account possible interactions with concomitant medication.

  13. Antibiotic-Associated Diarrhea

    Science.gov (United States)

    Antibiotic-associated diarrhea Overview By Mayo Clinic Staff Antibiotic-associated diarrhea refers to passing loose, watery stools ... after taking medications used to treat bacterial infections (antibiotics). Most often, antibiotic-associated diarrhea is mild and ...

  14. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.

    Science.gov (United States)

    Vanden Bossche, H; Marichal, P; Gorrens, J; Coene, M C; Willemsens, G; Bellens, D; Roels, I; Moereels, H; Janssen, P A

    1989-01-01

    Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.

  15. Antifungal constituents of Melicope borbonica

    DEFF Research Database (Denmark)

    Simonsen, Henrik Toft; Adsersen, Anne; Bremner, Paul

    2004-01-01

    , as the major constituents. All three compounds exhibited moderate antifungal activity against Candida albicans and Penicillium expansum, in accordance with the traditional use of the plant. Moreover, 2,4,6-trimethoxyacetophenone (methylxanthoxylin), three other coumarins [7-(3-methyl-2-butenyloxy)-6...

  16. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  17. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Cost References Español: Datos breves Facts about Antibiotic Resistance Antibiotic resistance is one of the world’s most pressing public ... antibiotic use is a key strategy to control antibiotic resistance. Antibiotic resistance in children and older adults are ...

  18. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  19. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  20. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  1. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity

    Science.gov (United States)

    Moreno-Martinez, Elena; Vallieres, Cindy; Holland, Sara L.; Avery, Simon V.

    2015-01-01

    There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone. PMID:26573415

  2. In vitro analysis of antifungal impregnated polymethylmethacrylate bone cement.

    Science.gov (United States)

    Silverberg, David; Kodali, Pradeep; Dipersio, Joseph; Acus, Raymond; Askew, Michael

    2002-10-01

    Fungal infection is a rare but devastating complication of total joint arthroplasty. Many patients require removal of the components and resection arthroplasty for cure; however, revision arthroplasty with medicated polymethylmethacrylate bone cement may be used to salvage the joint. Some studies have documented the efficacy of mixing antibiotics with polymethylmethacrylate, but the efficacy of antifungal drugs when mixed with polymethylmethacrylate is unknown. An in vitro agar diffusion method was used in the current study to investigate this potential, and several clinically important conclusions resulted: (1) after incorporation into bone cement, fluconazole and amphotericin B remained active whereas 5-flucytosine did not, (2) inhibitory activity improved with greater drug concentrations, and (3) more drug eluted from Palacos R than Simplex P cement.

  3. Antifungal Streptomyces spp. Associated with the Infructescences of Protea spp. in South Africa

    Science.gov (United States)

    Human, Zander R.; Moon, Kyuho; Bae, Munhyung; de Beer, Z. Wilhelm; Cha, Sangwon; Wingfield, Michael J.; Slippers, Bernard; Oh, Dong-Chan; Venter, Stephanus N.

    2016-01-01

    Common saprophytic fungi are seldom present in Protea infructescences, which is strange given the abundance of mainly dead plant tissue in this moist protected environment. We hypothesized that the absence of common saprophytic fungi in Protea infructescences could be due to a special symbiosis where the presence of microbes producing antifungal compounds protect the infructescence. Using a culture based survey, employing selective media and in vitro antifungal assays, we isolated antibiotic producing actinomycetes from infructescences of Protea repens and P. neriifolia from two geographically separated areas. Isolates were grouped into three different morphological groups and appeared to be common in the Protea spp. examined in this study. The three groups were supported in 16S rRNA and multi-locus gene trees and were identified as potentially novel Streptomyces spp. All of the groups had antifungal activity in vitro. Streptomyces sp. Group 1 had inhibitory activity against all tested fungi and the active compound produced by this species was identified as fungichromin. Streptomyces spp. Groups 2 and 3 had lower inhibition against all tested fungi, while Group 3 showed limited inhibition against Candida albicans and Sporothrix isolates. The active compound for Group 2 was also identified as fungichromin even though its production level was much lower than Group 1. The antifungal activity of Group 3 was linked to actiphenol. The observed antifungal activity of the isolated actinomycetes could contribute to protection of the plant material against common saprophytic fungi, as fungichromin was also detected in extracts of the infructescence. The results of this study suggest that the antifungal Streptomyces spp. could play an important role in defining the microbial population associated with Protea infructescences. PMID:27853450

  4. Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa

    Directory of Open Access Journals (Sweden)

    Zander Human

    2016-11-01

    Full Text Available Common saprophytic fungi are seldom present in Protea infructescences, which is strange given the abundance of mainly dead plant tissue in this moist protected environment. We hypothesized that the absence of common saprophytic fungi in Protea infructescences could be due to a special symbiosis where the presence of microbes producing antifungal compounds protect the infructescence. Using a culture based survey, employing selective media and in vitro antifungal assays, we isolated antibiotic producing actinomycetes from infructescences of Protea repens and P. neriifolia from two geographically separated areas. Isolates were grouped into three different morphological groups and appeared to be common in the Protea spp. examined in this study. The three groups were supported in 16S rRNA and multi-locus gene trees and were identified as potentially novel Streptomyces spp. All of the groups had antifungal activity in vitro. Streptomyces sp. Group 1 had inhibitory activity against all tested fungi and the active compound produced by this species was identified as fungichromin. Streptomyces spp. Groups 2 and 3 had lower inhibition against all tested fungi, while Group 3 showed limited inhibition against Candida albicans and Sporothrix isolates. The active compound for Group 2 was also identified as fungichromin even though its production level was much lower than Group 1. The antifungal activity of Group 3 was linked to actiphenol. The observed antifungal activity of the isolated actinomycetes could contribute to protection of the plant material against common saprophytic fungi, as fungichromin was also detected in extracts of the infructescence. The results of this study suggest that the antifungal Streptomyces spp. could play an important role in defining the microbial population associated with Protea infructescences.

  5. Active packaging with antifungal activities.

    Science.gov (United States)

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time.

  6. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    Directory of Open Access Journals (Sweden)

    SAHADEO PATIL

    2015-05-01

    Full Text Available Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obtained from cumin seeds using hydrodistillation technique and was later evaluated for the presence of major chemical constituents present in it using gas chromatography and mass spectrometry (GC-MS assay. The GC-MS assay revealed the abundance of γ-terpinene (35.42% followed by p-cymene (30.72%. The agar disc diffusion assay demonstrated highly potent antifungal effect against Candida species. Moreover, the combination of cumin essential oil (CEO with conventional antifungal drugs was found to reduce the individual MIC of antifungal drug suggesting the occurrence of synergistic interactions. Therefore, the therapy involving combinations of CEO and conventional antifungal drugs can be used for reducing the toxicity induced by antifungal drugs and at the same time enhancing their antifungal efficacy in controlling the infections caused due to Candida species.

  7. Antibacterial and antifungal potential of some polar solvent extracts of Ashwagandha (Solanaceae against the nosocomial pathogens

    Directory of Open Access Journals (Sweden)

    Premlata Singariya

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the antimicrobial (antibacterial and antifungal effects of hexane, toluene, isopropyl alcohol, acetone and ethanolic extracts of different parts (root and stem of Withania somnifera (RUBL-20668 in order to use it as a possible source for new antimicrobial substances against important human pathogens. The dried and powdered parts were successively extracted using Soxhlet assembly; then antibacterial and antifungal activities were investigated by both, disc diffusion and serial dilution methods. The extract of W. somnifera significantly inhibited some important bacteria (two Gram +ve and four Gram-ve bacteria: Staphylococcus aureus (Gram +ve, Bacillus subtilis (Gram +ve, Escherichia coli (Gram-ve, Raoultella planticola (Gram -ve, Pseudomonas aeruginosa (Gram-ve, Enterobactor aerogens (Gram-ve, one yeast Candida albicans and one fungi Aspergillus flavus, to varying degrees. Isopropyl alcohol, acetone and toluene extracts of W. somnifera showed highest activity against the pathogens. The inhibitory effect is very identical in magnitude and comparable with that of standard antibiotics. Gentamycin, the standard antibacterial drug used, was effective in inhibiting these bacteria. The effect on E. coli, R. planticola and S. aureus were comparable to that of gentamycin. Ketoconazole, the standard antifungal used, was effective against the fungi. The inhibitory effect is very identical in magnitude and comparable with that of standard antibiotics used.

  8. Antifungal drug resistance to azoles and polyenes.

    Science.gov (United States)

    Masiá Canuto, Mar; Gutiérrez Rodero, Félix

    2002-09-01

    There is an increased awareness of the morbidity and mortality associated with fungal infections caused by resistant fungi in various groups of patients. Epidemiological studies have identified risk factors associated with antifungal drug resistance. Selection pressure due to the continuous exposure to azoles seems to have an essential role in developing resistance to fluconazole in Candida species. Haematological malignancies, especially acute leukaemia with severe and prolonged neutropenia, seem to be the main risk factors for acquiring deep-seated mycosis caused by resistant filamentous fungi, such us Fusarium species, Scedosporium prolificans, and Aspergillus terreus. The still unacceptably high mortality rate associated with some resistant mycosis indicates that alternatives to existing therapeutic options are needed. Potential measures to overcome antifungal resistance ranges from the development of new drugs with better antifungal activity to improving current therapeutic strategies with the present antifungal agents. Among the new antifungal drugs, inhibitors of beta glucan synthesis and second-generation azole and triazole derivatives have characteristics that render them potentially suitable agents against some resistant fungi. Other strategies including the use of high doses of lipid formulations of amphotericin B, combination therapy, and adjunctive immune therapy with cytokines are under investigation. In addition, antifungal control programmes to prevent extensive and inappropriate use of antifungals may be needed.

  9. An antifungal protein from ginger rhizomes.

    Science.gov (United States)

    Wang, Hexiang; Ng, Tzi Bun

    2005-10-14

    There are very few reports on antifungal proteins from rhizomes and there is none from the family of Zingiberaceae. An antifungal protein with a novel N-terminal sequence was isolated from ginger rhizomes utilizing a protocol that involved ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, and fast protein liquid chromatography on Superdex 75. The protein was unadsorbed on DEAE-cellulose and adsorbed on Affi-gel blue gel. It exhibited an apparent molecular mass of 32kDa and exerted antifungal activity toward various fungi including Botrytis cinerea, Fusarium oxysporum, Mycosphaerella arachidicola, and Physalospora piricola.

  10. Antifungal properties of halofumarate esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  11. The "in vitro" antifungal activity evaluation of propolis G12 ethanol extract on Cryptococcus neoformans.

    Science.gov (United States)

    Fernandes, Fabrício Freitas; Dias, Amanda Latercia Tranches; Ramos, Cíntia Lacerda; Ikegaki, Masaharu; de Siqueira, Antonio Martins; Franco, Marília Caixeta

    2007-01-01

    Cryptococcosis is a worldwide disease caused by the etiological agent Cryptococcus neoformans. It affects mainly immunocompromised humans. It is relatively rare in animals only affecting those that have received prolonged antibiotic therapy. The propolis is a resin that can present several biological properties, including antibacterial, antifungal and antiviral activities. The standard strain C. neoformans ATTC 90112 was used to the antifungal evaluation. The tests were realized with propolis ethanol extract (PEE) G12 in concentrations from 0.1 to 1.6 mg mL-1. The evaluation of MIC and MFC were done according to DUARTE (2002)5. The inhibitory effect of PEE G12 on the fungal growing was seen at the concentration of 0.2 mg mL-1 and 1.6 mg mL-1 was considered a fungicidal one.

  12. Early State Research on Antifungal Natural Products

    Directory of Open Access Journals (Sweden)

    Melyssa Negri

    2014-03-01

    Full Text Available Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

  13. Antifungal properties of Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Souza Lúcia Kioko Hasimoto e

    2002-01-01

    Full Text Available Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in "in vitro" assays.

  14. Antifungal activity of five species of Polygala

    Directory of Open Access Journals (Sweden)

    Susana Johann

    2011-09-01

    Full Text Available Crude extracts and fractions of five species of Polygala - P. campestris, P. cyparissias, P. paniculata, P. pulchella and P. sabulosa - were investigated for their in vitro antifungal activity against opportunistic Candida species, Cryptococcus gattii and Sporothrix schenckii with bioautographic and microdilution assays. In the bioautographic assays, the major extracts were active against the fungi tested. In the minimal concentration inhibitory (MIC assay, the hexane extract of P. paniculata and EtOAc fraction of P. sabulosa showed the best antifungal activity, with MIC values of 60 and 30 µg/mL, respectively, against C. tropicalis, C. gattii and S. schenckii. The compounds isolated from P. sabulosa prenyloxycoumarin and 1,2,3,4,5,6-hexanehexol displayed antifungal activity against S. schenckii (with MICs of 125 µg/mL and 250 µg/mL, respectively and C. gattii (both with MICs of 250 µg/mL. Rutin and aurapten isolated from P. paniculata showed antifungal activity against C. gattii with MIC values of 60 and 250 µg/mL, respectively. In the antifungal screening, few of the isolated compounds showed good antifungal inhibition. The compound α-spinasterol showed broad activity against the species tested, while rutin had the best activity with the lowest MIC values for the microorganisms tested. These two compounds may be chemically modified by the introduction of a substitute group that would alter several physico-chemical properties of the molecule, such as hydrophobicity, electronic density and steric strain.

  15. Strengthening Control of Antibiotics

    Institute of Scientific and Technical Information of China (English)

    EthelLu

    2005-01-01

    IT is a well-known fact that buy-ng guns is much easier than purchasing antibiotics in the United States. In China, however, the situation is different. According to a recent WHO survey,about 80 percent of Chinese inpatients take antibiotic medicines, and 58 percent of them are prescribed multifunctional antibiotics,

  16. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  17. Systemic antibiotics in periodontics.

    Science.gov (United States)

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  18. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina;

    2014-01-01

    with highest consumption) were responsible for 21% of the total DDD consumed and received ≥6 packages per year. Elderly adults (≥60 years) and small children (0-9 years) were those exposed to the highest volume of antibiotics and with the most frequent exposure, respectively. Heavy users received a high...... proportion of antibiotics not recommended as first choice in primary health care. In conclusion, heavy antibiotic users consisted mainly of children and old adults. Inappropriate overuse of antibiotics (high quantity, high frequency, and inappropriate antibiotic choice) leads to a substantial risk...

  19. Antibiotic resistance in Chlamydiae.

    Science.gov (United States)

    Sandoz, Kelsi M; Rockey, Daniel D

    2010-09-01

    There are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance. Although antibiotic resistance has not emerged in chlamydiae pathogenic to humans, several lines of evidence suggest they are capable of expressing significant resistant phenotypes. The adept ability of chlamydiae to evolve to antibiotic resistance in vitro is demonstrated by contemporary examples of mutagenesis, recombination and genetic transformation. The isolation of tetracycline-resistant Chlamydia suis strains from pigs also emphasizes their adaptive ability to acquire antibiotic resistance genes when exposed to significant selective pressure.

  20. Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics.

    Science.gov (United States)

    Qi, Jianzhao; Liu, Jin; Wan, Dan; Cai, You-Sheng; Wang, Yinghu; Li, Shunying; Wu, Pan; Feng, Xuan; Qiu, Guofu; Yang, Sheng-Ping; Chen, Wenqing; Deng, Zixin

    2015-09-01

    Polyoxin and nikkomycin are naturally occurring peptidyl nucleoside antibiotics with potent antifungal bioactivity. Both exhibit similar structural features, having a nucleoside skeleton and one or two peptidyl moieties. Combining the refactoring of the polyoxin producer Streptomyces aureochromogenes with import of the hydroxypyridylhomothreonine pathway of nikkomycin allows the targeted production of three designer nucleoside antibiotics designated as nikkoxin E, F, and G. These structures were determined by NMR and/or high resolution mass spectrometry. Remarkably, the introduction of an extra copy of the nikS gene encoding an ATP-dependent ligase significantly enhanced the production of the designer antibiotics. Moreover, all three nikkoxins displayed improved bioactivity against several pathogenic fungi as compared with the naturally-occurring antibiotics. These data provide a feasible model for high efficiency generation of nucleoside antibiotics related to polyoxins and nikkomycins in a polyoxin cell factory via synthetic biology strategy.

  1. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  2. Antibiotics and Breastfeeding.

    Science.gov (United States)

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant.

  3. Epidemiology and antifungal resistance in invasive candidiasis

    Directory of Open Access Journals (Sweden)

    Rodloff AC

    2011-04-01

    Full Text Available Abstract The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC. At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients

  4. DALI: Defining Antibiotic Levels in Intensive care unit patients: a multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic

    Directory of Open Access Journals (Sweden)

    Roberts Jason A

    2012-07-01

    Full Text Available Abstract Background The clinical effects of varying pharmacokinetic exposures of antibiotics (antibacterials and antifungals on outcome in infected critically ill patients are poorly described. A large-scale multi-centre study (DALI Study is currently underway describing the clinical outcomes of patients achieving pre-defined antibiotic exposures. This report describes the protocol. Methods DALI will recruit over 500 patients administered a wide range of either beta-lactam or glycopeptide antibiotics or triazole or echinocandin antifungals in a pharmacokinetic point-prevalence study. It is anticipated that over 60 European intensive care units (ICUs will participate. The primary aim will be to determine whether contemporary antibiotic dosing for critically ill patients achieves plasma concentrations associated with maximal activity. Secondary aims will compare antibiotic pharmacokinetic exposures with patient outcome and will describe the population pharmacokinetics of the antibiotics included. Various subgroup analyses will be conducted to determine patient groups that may be at risk of very low or very high concentrations of antibiotics. Discussion The DALI study should inform clinicians of the potential clinical advantages of achieving certain antibiotic pharmacokinetic exposures in infected critically ill patients.

  5. Resistance to antibiotics

    OpenAIRE

    1999-01-01

    The antibiotics represent the most important therapeutic arsenal in the fight against pathogen microorganisms. Even in the beginning of their use, there was registered bacterial resistance, phenomenon thatbecame an alarming subject in the last decades. There are some types of resistance to antibiotics that are influenced by many factors. The resistance term can be used as microbiological resistance and clinical resistance. The resistance to antibiotics can be a natural phenomenon or a gained ...

  6. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-03-01

    Full Text Available Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents.

  7. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  8. Demographics of antibiotic persistence

    DEFF Research Database (Denmark)

    Steiner, Ulrich; Kollerova, Silvia; Jouvet, Lionel

    2016-01-01

    Persister cells, cells that can survive antibiotic exposure but lack heritable antibiotic resistance, are assumed to play a crucial role for the evolution of antibiotic resistance. Persistence is a stage associated with reduced metabolic activity. Most previous studies have been done on batch...... cultures, rather than the individual level. Here, we used individual level bacteria data to confirm previous studies in how fast cells switch into a persistence stage, but our results challenge the fundamental idea that persistence comes with major costs of reduced growth (cell elongation) and division due...... even play a more prominent role for the evolution of resistance and failures of medical treatment by antibiotics as currently assumed....

  9. Design,Synthesis and Antifungal Activity of Novel Triazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    Chun Quan SHENG; Wan Nian ZHANG; Hai Tao JI; Yun Long SONG; Min ZHANG; You Jun ZHOU; Jia Guo LU; Jü ZHU

    2004-01-01

    Twenty-one 1-(1H-1,2,4-triazolyl)-2-(2,4-diflurophenyl)-3-(4-substituted-1- piperazinyl)-2-propanol derivatives were designed and synthesized,on the basis of the active site of lanosterol 14(-demethylase.In vitro antifungal activities showed that some of the target compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  10. Human mycoses and advances in antifungal therapy.

    Science.gov (United States)

    Fromtling, R A

    2001-04-01

    The 11th Focus on Fungal Infections meeting was held in Washington, D.C., U.S.A., March 1416, 2001. At the conference, there were well-attended sessions that focused on the pathogenesis and therapy of fungal disease. This report focuses on new information on fungal incidence and pathogenesis as well as on the in vitro and clinical experience of established antifungal drugs (fluconazole, itraconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine) and the newer antifungal compounds approved for use (e.g., caspofungin) and in development (the new-generation azoles: voriconazole, posaconazole, ravuconazole, and the candins, micafungin and anidulafungin).

  11. Antifungal agents in neonates: issues and recommendations.

    Science.gov (United States)

    Almirante, Benito; Rodríguez, Dolors

    2007-01-01

    Fungal infections are responsible for considerable morbidity and mortality in the neonatal period, particularly among premature neonates. Four classes of antifungal agents are commonly used in the treatment of fungal infections in pediatric patients: polyene macrolides, fluorinated pyrimidines, triazoles, and echinocandins. Due to the paucity of pediatric data, many recommendations for the use of antifungal agents in this population are derived from the experience in adults. The purpose of this article was to review the published data on fungal infections and antifungal agents, with a focus on neonatal patients, and to provide an overview of the differences in antifungal pharmacology in neonates compared with adults. Pharmacokinetic data suggest dosing differences in children versus adult patients with some antifungals, but not all agents have been fully evaluated. The available pharmacokinetic data on the amphotericin B deoxycholate formulation in neonates exhibit considerable variability; nevertheless, the dosage regimen suggested in the neonatal population is similar to that used in adults. More pharmacokinetic information is available on the liposomal and lipid complex preparations of amphotericin B and fluconazole, and it supports their use in neonates; however, the optimal dosage and duration of therapy is difficult to establish. All amphotericin-B formulations, frequently used in combination with flucytosine, are useful for treating disseminated fungal infections and Candida meningitis in neonates. Fluconazole, with potent in vitro activity against Cryptococcus neoformans and almost all Candida spp., has been used in neonates with invasive candidiasis at dosages of 6 mg/kg/day, and for antifungal prophylaxis in high-risk neonates. There are limited data on itraconazole, voriconazole, and posaconazole use in neonates. Caspofungin, which is active against Candida spp. and Aspergillus spp., requires higher doses in children relative to adults, and dosing is

  12. ENZYMATIC ACTIVITY AND ANTIBIOTIC RESISTANCE PROFILE OF LACTOBACILLUS PARACASEI SSP. PARACASEI-1 ISOLATED FROM REGIONAL YOGURTS OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    Ummay Honi

    2013-12-01

    Full Text Available Lactobacillus paracasei ssp. paracasei-1 was identified from traditional yogurts of Khulna region, Bangladesh and its enzyme and antibiotic resistance profiles were determined. A commercially available API Zym kit was employed to determine the activities of 19 different enzymes. We found that L. paracasei ssp. paracasei-1 showed strong activities for several enzymes, viz. leucine arylamidase, valine arylamidase, napthol-AS-BI-phosphohydrolase, β-galactosidase, α –Glucosidase, N-Acetyl- β- glucosaminidase while activities for other enzymes were absent. Antibiotic resistance profile was assessed by minimum inhibitory concentration (MIC test for 61 major antibiotics and 4 antifungal agents obtained from commercial sources in MRS Agar media. The strain generally showed resistance to gram negative spectrum antibiotic while it showed susceptibility towards β-lactam antibiotic to gram positive spectrum antibiotic. The findings provide the therapeutic basis of using L. paracasei ssp. paracasei-1 in finished food products.

  13. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    OpenAIRE

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 ...

  14. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods, antibi

  15. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus.

    Directory of Open Access Journals (Sweden)

    Ryan F Seipke

    Full Text Available Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.

  16. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus.

    Science.gov (United States)

    Seipke, Ryan F; Barke, Jörg; Brearley, Charles; Hill, Lionel; Yu, Douglas W; Goss, Rebecca J M; Hutchings, Matthew I

    2011-01-01

    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.

  17. Replacement for antibiotics: Lysozyme

    Science.gov (United States)

    Antibiotics have been fed at subtherapeutic levels to swine as growth promoters for more than 60 years, and the majority of swine produced in the U.S. receive antibiotics in their feed at some point in their production cycle. These compounds benefit the producers by minimizing production losses by ...

  18. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  19. Metagenomics and antibiotics.

    Science.gov (United States)

    Garmendia, L; Hernandez, A; Sanchez, M B; Martinez, J L

    2012-07-01

    Most of the bacterial species that form part of the biosphere have never been cultivated. In this situation, a comprehensive study of bacterial communities requires the utilization of non-culture-based methods, which have been named metagenomics. In this paper we review the use of different metagenomic techniques for understanding the effect of antibiotics on microbial communities, to synthesize new antimicrobial compounds and to analyse the distribution of antibiotic resistance genes in different ecosystems. These techniques include functional metagenomics, which serves to find new antibiotics or new antibiotic resistance genes, and descriptive metagenomics, which serves to analyse changes in the composition of the microbiota and to track the presence and abundance of already known antibiotic resistance genes in different ecosystems.

  20. Lipid-based antifungal agents: current status.

    Science.gov (United States)

    Arikan, S; Rex, J H

    2001-03-01

    Immunocompromised patients are well known to be predisposed to developing invasive fungal infections. These infections are usually difficult to diagnose and more importantly, the resulting mortality rate is high. The limited number of antifungal agents available and their high rate of toxicity are the major factors complicating the issue. However, the development of lipid-based formulations of existing antifungal agents has opened a new era in antifungal therapy. The best examples are the lipid-based amphotericin B preparations, amphotericin B lipid complex (ABLC; Abelcet), amphotericin B colloidal dispersion (ABCD; Amphotec or Amphocil), and liposomal amphotericin B (AmBisome). These formulations have shown that antifungal activity is maintained while toxicity is reduced. This progress is followed by the incorporation of nystatin into liposomes. Liposomal nystatin formulation is under development and studies of it have provided encouraging data. Finally, lipid-based formulations of hamycin, miconazole, and ketoconazole have been developed but remain experimental. Advances in technology of liposomes and other lipid formulations have provided promising new tools for management of fungal infections.

  1. Antibiotic Resistance Questions and Answers

    Science.gov (United States)

    ... on the Farm Get Smart About Antibiotics Week Antibiotic Resistance Questions and Answers Language: English Español (Spanish) ... a los antibióticos Questions about Bacteria, Viruses, and Antibiotics Q: What are bacteria and viruses? A: Bacteria ...

  2. Effect of Prophylactic Antifungal Protocols on the Prognosis of Liver Transplantation: A Propensity Score Matching and Multistate Model Approach

    Science.gov (United States)

    Chen, Yi-Chan; Wang, Yu-Chao; Lee, Chen-Fang; Wu, Ting-Jun; Chou, Hong-Shiue; Chan, Kun-Ming; Lee, Wei-Chen

    2016-01-01

    Background. Whether routine antifungal prophylaxis decreases posttransplantation fungal infections in patients receiving orthotopic liver transplantation (OLT) remains unclear. This study aimed to determine the effectiveness of antifungal prophylaxis for patients receiving OLT. Patients and Methods. This is a retrospective analysis of a database at Chang Gung Memorial Hospital. We have been administering routine antibiotic and prophylactic antifungal regimens to recipients with high model for end-stage liver disease scores (>20) since 2009. After propensity score matching, 402 patients were enrolled. We conducted a multistate model to analyze the cumulative hazards, probability of fungal infections, and risk factors. Results. The cumulative hazards and transition probability of “transplantation to fungal infection” were lower in the prophylaxis group. The incidence rate of fungal infection after OLT decreased from 18.9% to 11.4% (p = 0.052); overall mortality improved from 40.8% to 23.4% (p < 0.001). In the “transplantation to fungal infection” transition, prophylaxis was significantly associated with reduced hazards for fungal infection (hazard ratio: 0.57, 95% confidence interval: 0.34–0.96, p = 0.033). Massive ascites, cadaver transplantation, and older age were significantly associated with higher risks for mortality. Conclusion. Prophylactic antifungal regimens in high-risk recipients might decrease the incidence of posttransplant fungal infections.

  3. Antibiotic prophylaxis in otolaryngologic surgery

    Directory of Open Access Journals (Sweden)

    Ottoline, Ana Carolina Xavier

    2013-01-01

    Full Text Available Aim: Antibiotic prophylaxis aims to prevent infection of surgical sites before contamination or infection occurs. Prolonged antibiotic prophylaxis does not enhance the prevention of surgical infection and is associated with higher rates of antibiotic-resistant microorganisms. This review of the literature concerning antibiotic prophylaxis, with an emphasis on otolaryngologic surgery, aims to develop a guide for the use of antibiotic prophylaxis in otolaryngologic surgery in order to reduce the numbers of complications stemming from the indiscriminate use of antibiotics.

  4. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    NARCIS (Netherlands)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This

  5. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  6. Antibiotics for uncomplicated diverticulitis

    DEFF Research Database (Denmark)

    Shabanzadeh, Daniel M; Wille-Jørgensen, Peer

    2012-01-01

    Diverticulitis is an inflammatory complication to the very common condition diverticulosis. Uncomplicated diverticulitis has traditionally been treated with antibiotics with reference to the microbiology, extrapolation from trials on complicated intra-abdominal infections and clinical experience....

  7. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  8. Antibiotic Precautions in Athletes

    OpenAIRE

    Fayock, Kristopher; Voltz, Matthew; Sandella, Bradley; Close, Jeremy; Lunser, Matthew; Okon, Joshua

    2014-01-01

    Context: Antibiotics are the mainstay of treatment for bacterial infections in patients of all ages. Athletes who maximally train are at risk for illness and various infections. Routinely used antibiotics have been linked to tendon injuries, cardiac arrhythmias, diarrhea, photosensitivity, cartilage issues, and decreased performance. Evidence Acquisition: Relevant articles published from 1989 to 2012 obtained through searching MEDLINE and OVID. Also, the Food and Drug Administration website w...

  9. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  10. An antifungal peptide from the coconut.

    Science.gov (United States)

    Wang, H X; Ng, T B

    2005-12-01

    A chromatographic procedure consisting of ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose, and gel filtration by fast performance liquid chromatography on Supedex 75 was utilized to isolate a 10 kDa antifungal peptide from coconut flesh. The peptide was unadsorbed on DEAE-cellulose, but adsorbed on Affi-gel blue gel and CM-cellulose. It displayed antifungal activity against Fusarium oxysporum, Mycosphaerella arachidicola and Physalospora piricola. The IC50 values of its inhibitory activities on mycelial growth in M. arachidicola and HIV-1 reverse transcriptase activity were respectively 1.2 and 52.5 microM.

  11. Antifungal Efficacy of Myrtus communis Linn

    OpenAIRE

    Sadeghi Nejad; Erfani Nejad; Yusef Naanaie; Zarrin

    2014-01-01

    Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae) is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro) of the ethanolic extracts of Myrtus communis leaves as a g...

  12. Antifungal Drug Resistance - Concerns for Veterinarians

    Directory of Open Access Journals (Sweden)

    Bharat B. Bhanderi

    2009-10-01

    Full Text Available In the 1990s, there were increased incidences of fungal infectious diseases in human population which might be due to increase in immunosuppressive diseases. But the major concern was increase in prevalence of resistance to antifungal drugs which were reported both in the fungal isolates of human beings and that of animal origin. In both animals and human beings, resistance to antimicrobial agents has important implications for morbidity, mortality and health care costs, because resistant strains are responsible for bulk of infection in animals and human beings, and large number of antimicrobial classes offers more diverse range of resistance mechanisms to study and resistance determinants move into standard well-characterized strains that facilitates the detailed study of molecular mechanisms of resistance in microorganisms. Studies on resistance to antifungal agents has been lagging behind that of antibacterial resistance for several reasons, the foremost reason might be fungal agents were not recognized as important animal and human pathogens, until relatively in recent past. But the initial studies of antifungal drug resistance in the early 1980s, have accumulated a wealth of knowledge concerning the clinical, biochemical, and genetic aspects of this phenomenon. Presently, exploration of the molecular aspects for antifungal drug resistance has been undertaken. Recently, the focus was on several points like developing a more detailed understanding of the mechanisms of antimicrobial resistance, improved methods to detect resistance when it occurs, methods to prevent the emergence and spread of resistance and new antimicrobial options for the treatment of infections caused by resistant organisms. [Vet. World 2009; 2(5.000: 204-207

  13. Antifungal Efficacy of Myrtus communis Linn

    Directory of Open Access Journals (Sweden)

    Sadeghi Nejad

    2014-08-01

    Full Text Available Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro of the ethanolic extracts of Myrtus communis leaves as a growth inhibitor against 24 clinical isolates of Candida, including C. albicans, C. glabrata, and C. tropicalis also three species of Aspergillus, including A. niger, A. flavus, and A. terreus. Materials and Methods The ethanolic extract of myrtle leaves was prepared by maceration method and minimal inhibitory concentration (MIC of Myrtus communis leaves extract was determined by agar-well diffusion technique. Amphotericin B and clotrimazole were used as the positive control in this assay. Results The minimal inhibitory concentration (MICs values of Myrtus communis leaves extract ranged 0.625-5.0 µg/µL and 5-40 µg/µL against tested Candida spp. and Aspergillus spp., respectively. Conclusions Results revealed that the ethanolic extract of Myrtus communis leaves have antifungal potency against both pathogenic tested fungi, and it can be used as a natural antifungal agent.

  14. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan; Ascacio-Valdés; Edgardo; Burboa; Antonio; F; Aguilera-Carbo; Mario; Aparicio; Ramón; Pérez-Schmidt; Raúl; Rodríguez; Cristóbal; N; Aguilar

    2013-01-01

    Objective:To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica(E.antisyphilitica)Zucc in the wax extraction process.Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16,until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder.An aqueous solution was prepared and treated through ionic exchange liquid chromatography(Q XL)and gel permeation chromatography(G 25).The ellagitannin-rich fraction was thermogravimetrically evaluated(TGA and DTA)to test the thermo-stability of ellagic acid(monomeric unit).Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and.also mass spectroscopy was used to determine the molecular ion.Results:The principal functional groups of ellagitannin were determined,the molecular weight was 860.7 g/mol;and an effective antifungal activity against phytopathogenic fungi was demonstrated.Conclusions:It can be concluded that the new ellagitannin(860.7 g/mol)isolated from E.antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata,Fusarium oxyzporum,Colletotrichum gloeosporoides and Rhizoctnia solani.

  15. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan Ascacio-Valds; Edgardo Burboa; Antonio F Aguilera-Carbo; Mario Aparicio; Ramn Prez-Schmidt; Ral Rodrguez; Cristbal N Aguilar

    2013-01-01

    Objective: To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica (E. antisyphilitica) Zucc in the wax extraction process. Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16, until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder. An aqueous solution was prepared and treated through ionic exchange liquid chromatography (Q XL) and gel permeation chromatography (G 25). The ellagitannin-rich fraction was thermogravimetrically evaluated (TGA and DTA) to test the thermo-stability of ellagic acid (monomeric unit). Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and, also mass spectroscopy was used to determine the molecular ion. Results: The principal functional groups of ellagitannin were determined, the molecular weight was 860.7 g/mol; and an effective antifungal activity against phytopathogenic fungi was demonstrated. Conclusions: It can be concluded that the new ellagitannin (860.7 g/mol) isolated from E. antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata, Fusarium oxyzporum, Colletotrichum gloeosporoides and Rhizoctnia solani.

  16. Econazole imprinted textiles with antifungal activity.

    Science.gov (United States)

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections.

  17. Antifungal activity of Terminalia superba (combretaceae

    Directory of Open Access Journals (Sweden)

    SIAKA Sohro

    2015-04-01

    Full Text Available The aim of the present study was to optimize the anticandidosic activities of Terminalia superba (TEKAM4 and the identification of major compounds present in the most active chromatographic fraction. The hydroethanolic extract TEKAM4-X0 was prepared by homogenization employing a blender. Two derivatives extracts of TEKAM4-X0 (X1-1 and X1-2 were obtained by a liquid/liquid partition of TEKAM4-X0 in a mixture of hexane and water (v/v. Three chromatographic fractions (F1, F2 and F3 from X1-2 were separated by means of Sephadex-LH20 gel filtration chromatography. All the extracts were incorporated to Sabouraud according to the agar slanted double dilution method. Ketoconazole was used as standards for antifungal assay. The entire fractions were tested on the previously prepared medium culture containing 1000 cells of C. albicans. Antifungal activity was determined by evaluating antifungal parameters values (MFC and IC50. Lastly, the structures of 2 isolated compounds were elucidated by combination of Flash chromatography and spectroscopic methods, including MS, and multiple stage RMN experiments.

  18. ANTIFUNGAL ACTIVITY OF SOME COLEUS SPECIES GROWING IN NILGIRIS

    OpenAIRE

    Nilani, P.; Duraisamy, B.; Dhanabal, P.S.; khan, Saleemullah; Suresh, B.; Shankar, V.; Kavitha, K.Y.; Syamala, G.

    2006-01-01

    The in vitro antifungal activity of solvent extracts of Coleus forskohlii, Coleus blumei and Coleus barbatus were compared by testing against some pathogenic fungi like Aspergillus niger, Aspergillus fumigatus, Aspergillus ruantii, Proteus vulgaris and Candida albicans. The petroleum ether extract of Coleus forskohlii and Coleus barbatus exhibited significant antifungal activity against all the selected organisms. The extracts of Coleus blumei did not show any significant antifungal activity ...

  19. Antifungal activity of some coleus species growing in nilgiris.

    Science.gov (United States)

    Nilani, P; Duraisamy, B; Dhanabal, P S; Khan, Saleemullah; Suresh, B; Shankar, V; Kavitha, K Y; Syamala, G

    2006-07-01

    The in vitro antifungal activity of solvent extracts of Coleus forskohlii, Coleus blumei and Coleus barbatus were compared by testing against some pathogenic fungi like Aspergillus niger, Aspergillusfumigatus, Aspergillus ruantii, Proteus vulgaris and Candida albicans. The petroleum ether extract of Coleus forskohlii and Coleus barbatus exhibited significant antifungal activity against all the selected organisms. The extracts of Coleus blumei did not show any significant antifungal activity against the selected organisms.

  20. Design, synthesis and antifungal activity of novel triazole derivatives

    Institute of Scientific and Technical Information of China (English)

    Qing lie Zhao; Yan Song; Hong Gang Hu; Shi Chong Yu; Qiu Ye Wu

    2007-01-01

    Twenty-three 1 -(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-(N-cycloproyl-N-substituted-amino)-2-propanols were designed and synthesized on the basis of the active site of lanosterol 14α-demethylase.In vitro antifungal activities showed that some of the title compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  1. Antifungal Poly(lactic acid Films Containing Thymol and Carvone

    Directory of Open Access Journals (Sweden)

    Boonruang Kanchana

    2016-01-01

    Full Text Available The goal of this study was to develop antifungal poly(lactic acid films for food packaging applications. The antifungal compounds, thymol and R-(--carvone were incorporated into poly(lactic acid (PLA-based polymer at 10, 15 and 20% by weight. Film converting process consists of three steps including melt blending, sheet extrusion and biaxial stretching. The incorporation of antifungal compounds into the polymer matrix resulted in decreased Tg and Tm, increased gas permeabilility, reduced tensile strength and increased elongation at break of the antifungal PLA films.

  2. Antibiotics after rattlesnake envenomation.

    Science.gov (United States)

    LoVecchio, Frank; Klemens, Jane; Welch, Sharon; Rodriguez, Ron

    2002-11-01

    To record the outcome, with regard to infection rate, of patients with rattlesnake bites (RSBs) who do not receive prophylactic antibiotics, a prospective observational study was performed of patients with RSBs treated at our institution during a consecutive 18-month period. The inclusion criteria were RSBs envenomation. Fifty-six consecutive patients (Median age: 32.8 years [range 4-67 years]) were enrolled. One patient was excluded because of presentation 38 h after envenomation and two patients failed to complete the required follow-up. One patient received a dose of antibiotics before transfer. Antibiotics were discontinued upon arrival. Of the total 56 RSB patients, 34 (61%) RSBs involved the upper extremity and 22 (39%) involved the lower extremity. Six patients (11%) applied ice and two (4%) used a tourniquet before evaluation. The mean arrival time was 2.7 h (Range antibiotics from their primary care physicians at 7-10 day follow-up, with no cases (0%) of documented infection. Prophylactic antibiotics are not indicated in patients with rattlesnake bites.

  3. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  4. Tetracycline Antibiotics and Resistance.

    Science.gov (United States)

    Grossman, Trudy H

    2016-04-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.

  5. Clinicomycological Profile and Antifungal Sensitivity Pattern of Commonly Used Azoles in Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Mahesh Mathur

    2015-06-01

    Conclusions: This study highlighted the increasing resistance of the antifungals, which is responsible for the treatment failure in dermatophye infections. Keywords: antifungal resistance; dermatophyte; epidemiology.

  6. Overdosing on Antibiotics

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Du, a Beijing resident in her 60s, believes that an antibiotic is a panacea for the maladies of her now 6-year-old grand- daughter Guoguo. Du began to take care of her granddaugh- ter since the child was merely 2 months old, for the gid's parents were busy. She is comfortable with her caretaker duties except when the girl runs high fevers. Then, the anxious grandma will feed the girl antibiotics or take her to a private child clinic nearby for intravenous infusion.

  7. Optimization of Antifungal Extracts from Ficus hirta Fruits Using Response Surface Methodology and Antifungal Activity Tests

    Directory of Open Access Journals (Sweden)

    Chuying Chen

    2015-10-01

    Full Text Available The fruits of Ficus hirta (FH display strong antifungal activity against Penicillium italicum and Penicillium digitatum. In order to optimize the extraction conditions of antifungal extracts from FH fruit, various extraction parameters, such as ethanol concentration, extraction time, solvent to solid ratio and temperature, were chosen to identify their effects on the diameters of inhibition zones (DIZs against these two Penicillium molds. Response surface methodology (RSM was applied to obtain the optimal combination of these parameters. Results showed that the optimal extraction parameters for maximum antifungal activity were: 90% (v/v ethanol concentration, 65 min extraction time, 31 mL/g solvent to solid ratio and 51 °C temperature. Under the abovementioned extraction conditions, the experimental DIZs values obtained experimentally were 57.17 ± 0.75 and 39.33 ± 0.82 mm, which were very close to the values of 57.26 and 39.29 mm predicted by the model. Further, nine kinds of phytopathogens were tested in vitro to explore the antifungal activity of the FH extracts. It was found for the first time that the FH extracts showed significant inhibition on the growth of P. italicum, A. citri, P. vexans, P. cytosporella and P. digitatum.

  8. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Science.gov (United States)

    This review article proposes a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal ...

  9. Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46.

    Science.gov (United States)

    Li, Rui-Fang; Lu, Zhi-Fang; Sun, Ya-Nan; Chen, Shi-Hua; Yi, Yan-Jie; Zhang, Hui-Ru; Yang, Shuo-Ye; Yu, Guang-Hai; Huang, Liang; Li, Chao-Nan

    2016-09-01

    Chromogranin A (CGA)-N46, a derived peptide of human chromogranin A, has antifungal activity. To further research the active domain of CGA-N46, a series of derivatives were designed by successively deleting amino acid from both terminus of CGA-N46, and the amino acid sequence of each derivative was analyzed by bioinformatic software. Based on the predicted physicochemical properties of the peptides, including half-life time in mammalian reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo), instability index, aliphatic index and grand average of hydropathicity (GRAVY), the secondary structure, net charge, the distribution of hydrophobic residues and hydrophilic residues, the final derivatives CGA-N15, CGA-N16, CGA-N12 and CGA-N8 were synthesized by solid-phase peptide synthesis. The results of bioinformatic analysis showed that CGA-N46 and its derivatives were α-helix, neutral or weak positive charge, hydrophilic, and CGA-N12 and CGA-N8 were more stable than the other derivatives. The results of circular dichroism confirmed that CGA-N46 and its derived peptides displayed α-helical structure in an aqueous solution and 30 mM sodium dodecylsulfate, but α-helical contents decreased in hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-N12 and CGA-N8 had higher antifungal activities than their mother peptide CGA-N46. Among of the derived peptides, CGA-N12 showed the least hemolytic activity. In conclusion, we have successfully identified the active domain of CGA-N46 with strong antifungal activity and weak hemolytic activity, which provides the possibility to develop a new class of antibiotics.

  10. Bibliometric analysis of literature on antifungal triazole resistance: 1980 – 2015

    Science.gov (United States)

    Sweileh, Waleed M.; Sawalha, Ansam F.; Al-Jabi, Samah; Zyoud, Sa’ed H.

    2017-01-01

    Background Triazole antifungal agents play an important role in the treatment of a wide range of fungal infections. Little is known about antifungal triazole drug resistance when compared to antibiotic resistance. Therefore, this study was carried out to give a bibliometric overview of literature on triazole antifungal drug resistance. Methods Keywords related to triazole drug class and resistance were used in a search query in the Scopus search engine. The time span was set from 1980 to 2015. Data pertaining to growth of publications, the most active countries and institutions, the most cited articles, and mapping of molecular mechanisms of resistance were analyzed. Results A total of 1648 journal articles were retrieved with an average of 20.46 citations per article. Annual growth of triazole resistance showed an increasing pattern during the study period. The United States of America (n=446; 27.06%) ranked first in productivity followed by the United Kingdom (UK) (n=176; 10.68%), and China (n=133; 8.07%). Radboud University Nijmegen Medical Centre (n=69, 4.19%) in the Netherlands ranked first in productivity, while the journal Antimicrobial Agents and Chemotherapy ranked first (n=255; 15.47%) in publishing articles on triazole resistance. Mapping mechanisms of resistance showed that efflux pump and mutations in target enzyme are major mechanisms described in resistance to triazoles. Conclusion There was a growth of publications on triazole resistance in the past two decades with the bulk of publications on triazole resistance in Candida species. The data presented here will serve as baseline information for future comparative purposes. PMID:28331838

  11. Antifungal and antiviral products of marine organisms.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  12. Progress in antibacterial and antifungal chemotherapy.

    Science.gov (United States)

    Fromtling, R A

    2000-08-01

    The European Society of Clinical Microbiology and Infectious Diseases sponsored the 10th European Congress on Clinical Microbiology and Infectious Diseases in Stockholm, Sweden, May 28-31, 2000. At the ECMID, well-attended sessions were held which focused on the pathogenesis and therapy of viral, bacterial and fungal diseases. This report focuses on new information on resistance to antibacterial agents, including data from recent surveillance studies, and the in vitro and investigational clinical activity of new antibacterial (moxifloxacin, telithromycin) and antifungal (fluconazole, itraconazole, voriconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine and the candins) drugs.

  13. Nylon-3 polymers with selective antifungal activity.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Hayouka, Zvi; Chakraborty, Saswata; Falk, Shaun P; Weisblum, Bernard; Masters, Kristyn S; Gellman, Samuel H

    2013-04-10

    Host-defense peptides inhibit bacterial growth but show little toxicity toward mammalian cells. A variety of synthetic polymers have been reported to mimic this antibacterial selectivity; however, achieving comparable selectivity for fungi is more difficult because these pathogens are eukaryotes. Here we report nylon-3 polymers based on a novel subunit that display potent antifungal activity (MIC = 3.1 μg/mL for Candida albicans ) and favorable selectivity (IC10 > 400 μg/mL for 3T3 fibroblast toxicity; HC10 > 400 μg/mL for hemolysis).

  14. Synthesis of Novel Antifungal Triazole Compounds

    Institute of Scientific and Technical Information of China (English)

    Yong CHU; Ming Xia XU; Ding LU

    2004-01-01

    Based on our previous studies of 3D-QSAR, 38 novel objective compounds belonging to 4 series were designed and successfully synthesized directed by the idea of reconstructing the structure of non-pharmacophores while reserving essential ones in triazoles. In vitro pilot studies on their antifungal activities showed that most compounds have inhibitory effects on C.albicans and some inhibit S.cerevisiae also. The effects on C.albicans of 5 compounds are more potent than or equal to that of fluconazole or itraconazole.

  15. Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata.

    NARCIS (Netherlands)

    Galván, I.; Mir-Rashed, N.; Jessulat, M.; Atanya, M.; Golshani, A.; Boekhout, T.; Durst, T.; Petit, P.; Amiguet, V.T.; Summerbell, R.C.; Cruz, I.; Arnason, J.T.; Smith, M.L.

    2008-01-01

    Bioassay-guided fractionation of Chimaphila umbellata (L.) W. Bart (Pyrolaceae) ethanol extracts led to the identification of 2,7-dimethyl-1,4-naphthoquinone (chimaphilin) as the principal antifungal component. The structure of chimaphilin was confirmed by 1H and 13C NMR spectroscopy. The antifungal

  16. Antifungal activity of traditional medicinal plants from Tamil Nadu, India

    Institute of Scientific and Technical Information of China (English)

    Duraipandiyan V; Ignacimuthu S

    2011-01-01

    Objective:To assess the antifungal activity of hexane, ethyl acetate and methanol extracts of 45 medicinal plants and to determine the minimum inhibitory concentration for each extract against human pathogenic fungi. Methods:A total of 45 medicinal plants were collected from different places of Tamil Nadu and identified. Hexane, ethyl acetate and methanol extracts of 45 medicinal plants were assessed for antifungal susceptibility using broth microdilution method. Two known antifungal agents were used as positive controls. Results: Most of the extracts inhibited more than four fungal strains. From the evaluation we found that ethyl acetate extracts inhibited large number of fungal growth. Hexane extracts also nearly showed the same level of inhibition against fungal growth. Methanol extracts showed the minimum antifungal activity. Among the 45 plants tested, broad spectrum antifungal activity was detected in Albizzia procera (A. procera), Atalantia monophylla, Asclepias curassavica, Azima tetracantha, Cassia fistula (C. fistula), Cinnomomum verum, Costus speciosus (C. speciosus), Nymphaea stellata, Osbeckia chinensis, Piper argyrophyllum, Punica granatum, Tinospora cordifolia and Toddalia asiatica (T. asiatica). Promising antifungal activity was seen in A. procera, C. speciosus, C. fistula and T. asiatica. Conclusions:It can be concluded that the plant species assayed possess antifungal properties. Further phytochemical research is needed to identify the active principles responsible for the antifungal effects of some of these medicinal plants.

  17. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    Science.gov (United States)

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  18. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.

  19. Suppression of antibiotic resistance acquisition by combined use of antibiotics.

    Science.gov (United States)

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2015-10-01

    We analyzed the effect of combinatorial use of antibiotics with a trade-off relationship of resistance, i.e., resistance acquisition to one drug causes susceptibility to the other drug, and vice versa, on the evolution of antibiotic resistance. We demonstrated that this combinatorial use of antibiotics significantly suppressed the acquisition of resistance.

  20. Fungal infections in marrow transplant recipients under antifungal prophylaxis with fluconazole

    Directory of Open Access Journals (Sweden)

    Oliveira J.S.R.

    2002-01-01

    Full Text Available Fungal infection is one of the most important causes of morbidity and mortality in bone marrow transplant (BMT recipients. The growing incidence of these infections is related to several factors including prolonged granulocytopenia, use of broad-spectrum antibiotics, conditioning regimens, and use of immunosuppression to avoid graft-versus-host disease (GvHD. In the present series, we report five cases of invasive mold infections documented among 64 BMT recipients undergoing fluconazole antifungal prophylaxis: 1 A strain of Scedosporium prolificans was isolated from a skin lesion that developed on day +72 after BMT in a chronic myeloid leukemic patient. 2 Invasive pulmonary aspergillosis (Aspergillus fumigatus was diagnosed on day +29 in a patient with a long period of hospitalization before being transplanted for severe aplastic anemia. 3 A tumoral lung lesion due to Rhizopus arrhizus (zygomycosis was observed in a transplanted patient who presented severe chronic GvHD. 4 A tumoral lesion due to Aspergillus spp involving the 7th, 8th and 9th right ribs and local soft tissue was diagnosed in a BMT patient on day +110. 5 A patient with a history of Ph1-positive acute lymphocytic leukemia exhibited a cerebral lesion on day +477 after receiving a BMT during an episode of severe chronic GvHD. At that time, blood and spinal fluid cultures yielded Fusarium sp. Opportunistic infections due to fungi other than Candida spp are becoming a major problem among BMT patients receiving systemic antifungal prophylaxis with fluconazole.

  1. Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Erika M. Stein

    2011-04-01

    Full Text Available The resistance of pathogens to commonly used antibiotics has enhanced morbidity and mortality and has triggered the search for new drugs. Several species of the red alga genus Laurencia are very interesting candidates as potential sources of natural products with pharmaceutical activity because they are known to produce a wide range of chemically interesting halogenated secondary metabolites. This is an initial report of the antifungal activities of the secondary metabolites of five species of Laurencia, collected in the state of Espírito Santo, against three strains of pathogenic fungi: Candida albicans (CA, Candida parapsilosis (CP, and Cryptococcus neoformans (CN. Minimum inhibitory concentrations (MIC of the algal extracts were determined by serial dilution method in RPMI 1640 Medium in 96-well plates according to the NCCLS and microbial growth was determined by absorbance at 492nm. A result showing maintenance or reduction of the inoculum was defined as fungistatic, while fungicidal action was no observed growth in the 10 µL fungistatic samples subcultured in Sabouraud Agar. Our results indicate that apolar extracts of Laurencia species possess antifungal properties and encourage continued research to find new drugs for therapy of infectious diseases in these algae.

  2. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2015-01-01

    Full Text Available The aim of the study was to isolate and characterize the lactic acid bacteria (LAB from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  3. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils.

    Science.gov (United States)

    Cannas, Sara; Usai, Donatella; Tardugno, Roberta; Benvenuti, Stefania; Pellati, Federica; Zanetti, Stefania; Molicotti, Paola

    2016-01-01

    Essential oils (EOs) are known and used for their biological, antibacterial, antifungal and antioxidant properties. Numerous studies have shown that EOs exhibit a large spectrum of biological activities in vitro. The incidence of drug-resistant pathogens and the toxicity of antibiotics have drawn attention to the antimicrobial activity of natural products, encouraging the development of alternative treatments. The aim of this study was to analyse the phytochemical and the cytotoxic characteristic of 36 EOs; we then evaluated the antimicrobial activity of the less-toxic EOs on Gram-positive, Gram-negative and fungi strains. The results showed low cytotoxicity in seven EOs and good activity against Gram-negative and Candida spp. strains. Based on our results, EOs could be proposed as a novel group of therapeutic agents. Further experiments are necessary to confirm their pharmacological effectiveness, and to determine potential toxic effects and the mechanism of their activity in in vivo models.

  4. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the i

  5. Mission Critical: Preventing Antibiotic Resistance

    Science.gov (United States)

    ... Button Past Emails CDC Features Mission Critical: Preventing Antibiotic Resistance Recommend on Facebook Tweet Share Compartir Can you ... spp. So, what can we do to prevent antibiotic resistance in healthcare settings? Patients, healthcare providers, healthcare facility ...

  6. Antibiotic-Resistant Gonorrhea (ARG)

    Science.gov (United States)

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet ... Page Surveillance Trends and Treatment Challenges Laboratory Issues Antibiotic resistance (AR) is the ability of bacteria to ...

  7. Antibiotics and Pregnancy: What's Safe?

    Science.gov (United States)

    Healthy Lifestyle Pregnancy week by week Is it safe to take antibiotics during pregnancy? Answers from Roger W. Harms, M. ... 2014 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/expert-answers/antibiotics-and-pregnancy/ ...

  8. Advances in synthetic approach to and antifungal activity of triazoles

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Sharma

    2011-05-01

    Full Text Available Several five membered ring systems, e.g., triazole, oxadiazole dithiazole and thiadiazole with three heteroatoms at symmetrical or asymmetrical positions have been studied because of their interesting pharmacological properties. In this article our emphasis is on synthetic development and pharmacological activity of the triazole moiety which exhibit a broad spectrum of pharmacological activity such as antifungal, antibacterial, anti-inflammatory and anticancer etc. Triazoles have increased our ability to treat many fungal infections, for example, candidiasis, cryptococcal meningitis, aspergillosis etc. However, mortality due to these infections even with antifungal therapy is still unacceptably high. Therefore, the development of new antifungal agents targeting specific fungal structures or functions is being actively pursued. Rapid developments in molecular mycology have led to a concentrated search for more target antifungals. Although we are entering a new era of antifungal therapy in which we will continue to be challenged by systemic fungal diseases, the options for treatment will have greatly expanded.

  9. The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum.

    Science.gov (United States)

    Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2012-12-01

    The primary mechanism underlying antagonism among microorganisms is the production of antagonistic substances called antibiotics that inhibit the growth of pathogens. In this study, the antagonistic substances produced by the Bacillus amyloliquefaciens strain NJN-6 that had antifungal activity against Fusarium oxysporum were extracted and identified. The active antifungal substance was extracted from dried leavening with ultrasound-assisted extraction (UAE), using n -butanol as the extractant. HPLC/ESI-MS was performed to investigate the components of the extracts. The results of the study showed that the antimicrobial substances consisted of three homologues of the iturin A family with molecular weights of 1043, 1057 and 1071 Da and of two homologues of the fengycin family with molecular weights of 1477 and 1491 Da. The effects of ultrasonic treatment time, extraction time and extractant volume, three major methodological parameters, were also studied to determine the optimal conditions for extraction. Compared with traditional extraction techniques, UAE is a simple, cheap and environmentally friendly method that represents a new option for the isolation and identification of lipopeptides and other active compounds. These antifungal substances extracted and identified from Bacillus amyloliquefaciens NJN-6 will help us to understand its biocontrol mechanism against Fusarium oxysporum.

  10. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    Directory of Open Access Journals (Sweden)

    Barke Jörg

    2010-08-01

    Full Text Available Abstract Background Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. Results In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. Conclusions Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.

  11. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    DEFF Research Database (Denmark)

    Leibovici, Leonard; Paul, Mical; Garner, Paul

    2016-01-01

    be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized......Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies...

  12. Antibiotic prevention of postcataract endophthalmitis

    DEFF Research Database (Denmark)

    Kessel, Line; Flesner, Per; Andresen, Jens;

    2015-01-01

    of 485 surgeries when intracameral antibiotics were not used. The relative risk (95% CI) of endophthalmitis was reduced to 0.12 (0.08; 0.18) when intracameral antibiotics were used. The difference was highly significant (p therapy is the best choice for preventing...... endophthalmitis after cataract surgery. We did not find evidence to conclude that topical antibiotic therapy prevents endophthalmitis....

  13. Investigating the Antibiotic Resistance Problem.

    Science.gov (United States)

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  14. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  15. Selective sweeps in Cryptocercus woodroach antifungal proteins.

    Science.gov (United States)

    Velenovsky, Joseph F; Kalisch, Jessica; Bulmer, Mark S

    2016-10-01

    We identified the antifungal gene termicin in three species of Cryptocercus woodroaches. Cryptocercus represents the closest living cockroach lineage of termites, which suggests that the antifungal role of termicin evolved prior to the divergence of termites from other cockroaches. An analysis of Cryptocercus termicin and two β-1,3-glucanase genes (GNBP1 and GNBP2), which appear to work synergistically with termicin in termites, revealed evidence of selection in these proteins. We identified the signature of past selective sweeps within GNBP2 from Cryptocercus punctulatus and Cryptocercus wrighti. The signature of past selective sweeps was also found within termicin from Cryptocercus punctulatus and Cryptocercus darwini. Our analysis further suggests a phenotypically identical variant of GNBP2 was maintained within Cryptocercus punctulatus, Cryptocercus wrighti, and Cryptocercus darwini while synonymous sites diverged. Cryptocercus termicin and GNBP2 appear to have experienced similar selective pressure to that of their termite orthologues in Reticulitermes. This selective pressure may be a result of ubiquitous entomopathogenic fungal pathogens such as Metarhizium. This study further reveals the similarities between Cryptocercus woodroaches and termites.

  16. When and How to Take Antibiotics

    Science.gov (United States)

    ... Contact Us General Background: When & How to take Antibiotics When should you take antibiotics? What is the proper dosage? How safe are antibiotics? How does a physician decide which antibiotic to ...

  17. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  18. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  19. Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; DeSouza, L.; Kamat, T.; Rodrigues, C.; Naik, C.G.

    is reported to be a broad spectrum antibiotic especially against Gram positive-bacteria. The present study consists report on Gram-positive bacteria, its activity against Gram-negative bacteria and on its antifungal properties. Primarily, citrinin is a...). Previous Fig. 1—Time course of biomass accumulation and citrinin production during growth of Penicillium chrysogenum in PDB medium. Table 1—Antibacterial activity of citrinin Bacterial pathogens Gram stain Streptomycin (100µg.disc-1...

  20. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  1. Molecular mechanisms of antibiotic resistance.

    Science.gov (United States)

    Blair, Jessica M A; Webber, Mark A; Baylay, Alison J; Ogbolu, David O; Piddock, Laura J V

    2015-01-01

    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.

  2. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA nanoparticles in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Tang X

    2014-11-01

    Full Text Available Xiaolong Tang,1,2,* He Zhu,3,* Ledong Sun,4,* Wei Hou,2 Shuyu Cai,1 Rongbo Zhang,1 Feng Liu5 1Stem Cell Engineering Research Center, School of Medicine, Anhui University of Science and Technology, Huainan, People’s Republic of China; 2State Key Laboratory of Virology, Life Sciences College, Wuhan University, Wuhan, Hubei, People’s Republic of China; 3Institute of Skin Damage and Repair, General Hospital of Beijing Military Command, Beijing, People’s Republic of China; 4Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 5Department of Anesthesiology, Children’s Hospital, Chongqing Medical University; Key Laboratory of Child Development and Disorders of the Ministry of Education, Chongqing, People’s Republic of China *These authors contributed equally to this work Background: Amphotericin B (AMB is a polyene antibiotic with broad spectrum antifungal activity, but its clinical toxicities and poor solubility limit the wide application of AMB in clinical practice. Recently, new drug-loaded nanoparticles (NPs – diblock copolymer D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide (PLGA-TPGS – have received special attention for their reduced toxicity, and increased effectiveness of drug has also been reported. This study aimed to develop AMB-loaded PLGA-TPGS nanoparticles (AMB-NPs and evaluate their antifungal effects in vitro and in vivo.Methods: AMB-NPs were prepared with a modified nanoprecipitation method and then characterized in terms of physical characteristics, in vitro drug release, stability, drug-encapsulation efficiency, and toxicity. Finally, the antifungal activity of AMB-NPs was investigated in vitro and in vivo.Results: AMB-NPs were stable and spherical, with an average size of around 110 nm; the entrapment efficacy was closed to 85%, and their release exhibited a typically biphasic pattern. The actual

  3. Reviving old antibiotics.

    Science.gov (United States)

    Theuretzbacher, Ursula; Van Bambeke, Françoise; Cantón, Rafael; Giske, Christian G; Mouton, Johan W; Nation, Roger L; Paul, Mical; Turnidge, John D; Kahlmeter, Gunnar

    2015-08-01

    In the face of increasing antimicrobial resistance and the paucity of new antimicrobial agents it has become clear that new antimicrobial strategies are urgently needed. One of these is to revisit old antibiotics to ensure that they are used correctly and to their full potential, as well as to determine whether one or several of them can help alleviate the pressure on more recent agents. Strategies are urgently needed to 're-develop' these drugs using modern standards, integrating new knowledge into regulatory frameworks and communicating the knowledge from the research bench to the bedside. Without a systematic approach to re-developing these old drugs and rigorously testing them according to today's standards, there is a significant risk of doing harm to patients and further increasing multidrug resistance. This paper describes factors to be considered and outlines steps and actions needed to re-develop old antibiotics so that they can be used effectively for the treatment of infections.

  4. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    Science.gov (United States)

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  5. Prescribing antibiotics in general practice:

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Pedersen, Line Bjørnskov; Plejdrup Hansen, Malene

    the GPs’ prescribing behaviour is influenced by selected factors. Method The study consists of a register-based study and a questionnaire study. The register-based study is based on data from the Register of Medicinal Product Statistics (prescribed antibiotics), Statistics Denmark (socio-demographic data......Objectives The majority of antibiotics are prescribed from general practice. The use of broad-spectrum antibiotics increases the risk of development of bacteria resistant to antibiotic treatment. In spite of guidelines aiming to minimize the use of broad-spectrum antibiotics we see an increase...... in the use of these agents. The overall aim of the project is to explore factors influencing the decision process and the prescribing behaviour of the GPs when prescribing antibiotics. We will study the impact of microbiological testing on the choice of antibiotic. Furthermore the project will explore how...

  6. Extended Perioperative Antibiotic Coverage in Conjunction with Intraoperative Bile Cultures Decreases Infectious Complications after Pancreaticoduodenectomy

    Science.gov (United States)

    Fathi, Amir H.; Jackson, Terence; Barati, Mehdi; Eghbalieh, Babak; Siegel, Kelly A.; Siegel, Christopher T.

    2016-01-01

    Background. Bile contamination from the digestive tract is a well-known risk factor for postoperative complications. Despite the literature concerning prevalence of bacterobilia and fungobilia in patients with biliary pathologies, there are no specific recommendations for perioperative antimicrobial coverage for biliary/pancreatic procedures. We evaluated the effect of at least 72 hours of perioperative broad spectrum antibiotic coverage on outcomes of pancreaticoduodenectomy (PD). Materials and Methods. A retrospective review of all patients at Case Medical Center of Case Western Reserve University undergoing PD procedure, from 2006 to 2011, was performed (n = 122). Perioperative data including demographics, comorbidities, biliary instrumentation, antibiotic coverage, culture results, and postoperative outcomes were analyzed. Propensity score matching method was used to match the patients according to duration of antibiotic coverage into two groups: 72 hours (A72) and 24 hours (A24). Results. Longer broad spectrum antibiotic coverage in group A72 resulted in significantly less surgical site infections after PD, compared to routine 24 hours of perioperative antibiotics in group A24. This study did not reveal a statistically significant decrease in postoperative fungal infections in patients receiving preoperative antifungals. Conclusion. Prolonged perioperative antibiotic therapy in conjunction with intraoperative bile cultures decreases the short-term infectious complications of PD, with no significant increase in Clostridium difficile colitis incidence. PMID:27147813

  7. Comparative study on the effects of two antifungal drugs against Candida albicans by microcalorimetry and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qing-Lian [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Zhang, Juan [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Department of Stomatology, Hubei Provincial Maternal and Child Health Hospital, Wuhan 430070 (China); Xu, Zi-Qiang; Li, Ran [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Jiang, Feng-Lei, E-mail: fljiang@whu.edu.cn [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Liu, Yi [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Microcalorimetry is a fast, simple method to study the antibiotic property of drugs. Black-Right-Pointing-Pointer We noticed that the antibiotic effect of ITZ was slightly better than that of KTZ. Black-Right-Pointing-Pointer We perform the TEM to study the morphology changes of C. albicans cells. - Abstract: In this work, a multi-channel thermal activity monitor (TAM 2277) was applied to study the growth metabolism of Candida albicans (C. albicans) in vitro in the absence and presence of different concentrations of ketoconazole (KTZ) and itraconazole (ITZ). The results showed that the half inhibiting concentrations (IC{sub 50}) of C. albicans by KTZ and ITZ are 73.5 and 66.3 {mu}mol L{sup -1}, respectively. So the antibiotic effect of ITZ was slightly better than that of KTZ. The morphology of C. albicans cells both in the absence and presence of antifungal agents was examined by transmission electron microscopy (TEM). Our research also suggests that microcalorimetry is a fast, simple, non-invasive, non-destructive and more sensitive method, and can be easily performed to study the antibiotic property of different species of drugs on microorganism compared to other biological and clinical methods.

  8. Screening of Iranian plants for antifungal activity: Part 2

    Directory of Open Access Journals (Sweden)

    "Amin Gh.R

    2002-08-01

    Full Text Available In this study, 278 species from 37 families of native Iranian plants were screened for in vitro antifungal activity against 19 fungal strains. Initially, the crude extracts in concentration of 100 μg/ml were tested. Among 278 plant extracts, 201(71.27% of them showed antifungal activity against at least one fungal strain. A wide range of total extracts of different species were shown to have potentially noticeable antifungal effects. The outstanding species were: Mentha longifolia, Saliva multicaulis, Thymus transcaspicus, Zataria multiflora, Glycyrrhiza glabra, Hulthemia persica, Heracleum persicum, Pimpinella anisum, Pragnos ferulacea, Pragnos uloptera, and Viola odorata.

  9. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei

    DEFF Research Database (Denmark)

    Honoré, Anders Hans; Aunsbjerg, Stina Dissing; Ebrahimi, Parvaneh

    2016-01-01

    Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive....... The antifungal properties were assessed by measuring mold growth of two Penicillium strains on cell-free ferments of three strains of Lactobacillus paracasei pre-fermented in a chemically defined medium. Exometabolomic profiling was performed by reversed-phase liquid chromatography in combination with mass...

  10. Antifungal Treatment in Stem Cell Transplantation Centers in Turkey.

    Science.gov (United States)

    Akan, Hamdi; Atilla, Erden

    2016-03-05

    Despite the development of various guidelines, the approach to antifungal treatment in stem cell transplantation centers differs according to country or even between centers. This led to the development of another survey that aims to understand the antifungal treatment policies of Turkish stem cell transplantation centers. Although there has been an increasing trend towards the use of diagnostic-based treatments in Turkey in the last few years, empirical treatment is still the main approach. The practices of the stem cell transplantation centers reflect the general trends and controversies in this area, while there is a considerable use of antifungal combination therapy.

  11. Caerulomycin A- An antifungal compound isolated from marine actinomycetes.

    Digital Repository Service at National Institute of Oceanography (India)

    Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.B.; Mishra, P.D.; DeSouza, L.; Ranadive, P.

    krusei GO3FlucR 0.78 - 1.56 0.313 - 0.625 64 NT: Not Tested. 4. Discussion The global antifungal market was estimated at $9.4 billion in 2010 and is expected to grow at a rate of 1.9% during 2010-2017. The major class of antifungal compound includes... Genetics Analysis Using Maximum Likelihood, Evolutionary Distance and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 [24] Antifungals Market to 2017—Generic Erosion of Major Polyenes...

  12. Can agricultural fungicides accelerate the discovery of human antifungal drugs?

    Science.gov (United States)

    Myung, Kyung; Klittich, Carla J R

    2015-01-01

    Twelve drugs from four chemical classes are currently available for treatment of systemic fungal infections in humans. By contrast, more than 100 structurally distinct compounds from over 30 chemical classes have been developed as agricultural fungicides, and these fungicides target many modes of action not represented among human antifungal drugs. In this article we introduce the diverse aspects of agricultural fungicides and compare them with human antifungal drugs. We propose that the information gained from the development of agricultural fungicides can be applied to the discovery of new mechanisms of action and new antifungal agents for the management of human fungal infections.

  13. Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Latifa A. Al_husnan

    2016-12-01

    Full Text Available Five strains of Streptomyces, namely S, N, W, E and C (designations should be mentioned in detail here isolated from the rhizosphere soil cultivated with palm Alajua (date, pressed dates, AlMedina city, Saudi Arabia, were induced to produce antibiotics. Antimicrobial activities were determined on solid medium supplemented with starch. The detection was based on the formation of transparent zones around colonies. The results indicated that isolates had antibacterial activities against Staphylococcus aureus, Bacillus cereus, B. subtilis, Pseudomonas aeruginosa and also showed antifungal activity against Candida albicans and Aspergillus niger. DNA extracted from five isolates was used as template for 16s rDNA gene amplification. The expected PCR size was 1.5 kbp;1.6 kbp; 1.25 kbp; 1.25kbp and 1.0 k bp for S, N, W, E and C isolates respectively using universal 16s rDNA gene primers using direct PCR. The isolates varied morphologically on the basis of spore color, aerial and substrate mycelium formation, and production of diffusible pigment. Isolates were tested under a microscope by using slide culture technique. The results indicate that the soil of this region is source of Streptomyces having antibacterial and antifungal activity and thus better utilization of these microorganisms as biological control agents.

  14. Structures and Properties of Naturally Occurring Polyether Antibiotics

    Directory of Open Access Journals (Sweden)

    Jacek Rutkowski

    2013-01-01

    Full Text Available Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.

  15. Isobolographic Analysis of Pharmacodynamic Interactions between Antifungal Agents and Ciprofloxacin against Candida albicans and Aspergillus fumigatus▿

    OpenAIRE

    Stergiopoulou, Theodouli; Meletiadis, Joseph; Sein, Tin; Papaioannidou, Paraskevi; Tsiouris, Ioannis; Roilides, Emmanuel; Walsh, Thomas J.

    2008-01-01

    Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Assessment of pharmacodynamic interactions between antifungal and antibacterial agents is complicated by the absence of a common antifungal end point for both agents. Ciprofloxacin has no intrinsic antifungal activity but may interact with antifungal agents, since it inhibits DNA gyrase (topoisomerase II), which is abundant in fungi. We therefore employed isobolographic analysis ada...

  16. EFFECT OF EXTRACTION METHODS ON ANTIFUNGAL ACTIVITY OF SEA CUCUMBER (Stichopus japonicus

    Directory of Open Access Journals (Sweden)

    Amir Husni

    2014-05-01

    Both SM and CS exhibited their highest antifungal activity when extracted by HRE with 70% ethanol and by HRE with water, respectively, while their highest yields were obtained when extracted by PSE with water. SM has more antifungal than potassium sorbate but weaker than propyl paraben, while CS has more antifungal than the two antifungal agents. Keywords: Antifungal, heat reflux extraction, pressurized solvent extraction, Stichopus japonicus

  17. Probiotics as Antifungals in Mucosal Candidiasis.

    Science.gov (United States)

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections.

  18. An antifungal peptide from baby lima bean.

    Science.gov (United States)

    Wang, H X; Ng, T B

    2006-12-01

    A 6-kDa antifungal peptide with inhibitory activity on mycelial growth in Fusarium oxysporum, Mycosphaerella arachidicola, and Physalospora piricola was isolated from baby lima beans. The peptide suppressed growth in M. arachidicola with an IC(50) of 0.87 muM and inhibited activity of HIV-1 reverse transcriptase with an IC(50) of 4 muM. The peptide exhibited an N-terminal amino acid sequence similar to those of leguminous defensins. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on carboxymethyl (CM)-cellulose, and gel filtration by fast protein liquid chromatography on Superdex 75. The peptide was unadsorbed on DEAE-cellulose and Affi-gel blue gel but was adsorbed on CM-cellulose.

  19. Pomegranin, an antifungal peptide from pomegranate peels.

    Science.gov (United States)

    Guo, Guang; Wang, He Xiang; Ng, Tzi Bun

    2009-01-01

    A new antifungal peptide designated as pomegranin, with an N-terminal sequence resembling that of rice disease resistance NB-S-LRR-like protein, was isolated from fresh pomegranate peels by ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, and gel filtration by fast protein liquid chromatography on Superdex 75. Pomegranin was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel. It exhibited a molecular mass of 11 kDa in both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It inhibited mycelial growth in the fungi Botrytis cinerea and Fusarium oxysporum with an IC(50) of 2 microM and 6.1 microM, respectively. It was devoid of hemagglutinating, ribonuclease, deoxyribonuclease and protease inhibitory activities.

  20. Antifungal susceptibilities of bloodstream isolates of Candida species from nine hospitals in Korea: application of new antifungal breakpoints and relationship to antifungal usage.

    Directory of Open Access Journals (Sweden)

    Eun Jeong Won

    Full Text Available We applied the new clinical breakpoints (CBPs of the Clinical and Laboratory Standards Institute (CLSI to a multicenter study to determine the antifungal susceptibility of bloodstream infection (BSI isolates of Candida species in Korea, and determined the relationship between the frequency of antifungal-resistant Candida BSI isolates and antifungal use at hospitals. Four hundred and fifty BSI isolates of Candida species were collected over a 1-year period in 2011 from nine hospitals. The susceptibilities of the isolates to four antifungal agents were determined using the CLSI M27 broth microdilution method. By applying the species-specific CBPs, non-susceptibility to fluconazole was found in 16.4% (70/428 of isolates, comprising 2.6% resistant and 13.8% susceptible-dose dependent isolates. However, non-susceptibility to voriconazole, caspofungin, or micafungin was found in 0% (0/370, 0% (0/437, or 0.5% (2/437 of the Candida BSI isolates, respectively. Of the 450 isolates, 72 (16.0% showed decreased susceptibility to fluconazole [minimum inhibitory concentration (MIC ≥4 μg/ml]. The total usage of systemic antifungals varied considerably among the hospitals, ranging from 190.0 to 7.7 defined daily dose per 1,000 patient days, and fluconazole was the most commonly prescribed agent (46.3%. By Spearman's correlation analysis, fluconazole usage did not show a significant correlation with the percentage of fluconazole resistant isolates at hospitals. However, fluconazole usage was significantly correlated with the percentage of fluconazole non-susceptible isolates (r = 0.733; P = 0.025 or the percentage of isolates with decreased susceptibility to fluconazole (MIC ≥4 μg/ml (r = 0.700; P = 0.036 at hospitals. Our work represents the first South Korean multicenter study demonstrating an association between antifungal use and antifungal resistance among BSI isolates of Candida at hospitals using the new CBPs of the CLSI.

  1. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews.

  2. Inhibition of Rat and Human Steroidogenesis by Triazole Antifungals

    Science.gov (United States)

    Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles (myclobutanil, propiconazole and triadimefon) that are known to modulate expression of cytochrome P450 (CYP) genes and e...

  3. Antifungal activity of fruit pulp extract from Bromelia pinguin.

    Science.gov (United States)

    Camacho-Hernández, I L; Chávez-Velázquez, J A; Uribe-Beltrán, M J; Ríos-Morgan, A; Delgado-Vargas, F

    2002-08-01

    The methanol extract of the fruit pulp of Bromelia pinguin was evaluated for its antifungal activity. The extract showed a significant activity against some Trichophyton strains, although Candida strains were generally insensitive.

  4. Antifungal activity of Bacillus sp. isolated from compost.

    Science.gov (United States)

    Czaczyk, K; Stachowiak, B; Trojanowska, K; Gulewicz, K

    2000-01-01

    Four strains of Bacillus isolated from lupine compost exhibited an antifungal activity against six plant fungal pathogens (Rhizoctonia solani, Bipolaris sorokiniana, Sclerotinia sclerotiorum, Trichothecium roseum, Fusarium solani, Fusarium oxysporum). It was significantly influenced by the composition of the cultivation media.

  5. Taxonomy and antifungal susceptibility of clinically important Rasamsonia species

    DEFF Research Database (Denmark)

    Houbraken, J.; Giraud, S.; Meijer, M.

    2013-01-01

    In recent years, Geosmithia argillacea has been increasingly reported in humans and animals and can be considered an emerging pathogen. The taxonomy of Geosmithia was recently studied, and Geosmithia argillacea and related species were transferred to the new genus Rasamsonia. The diversity among...... a set of Rasamsonia argillacea strains, including 28 clinical strains, was studied, and antifungal susceptibility profiles were generated. Data obtained from morphological studies and from phylogenetic analyses of internal transcribed spacer (ITS) and partial _-tubulin and calmodulin sequences revealed...... was the least active of the antifungals tested. The phenotypically similar species R. brevistipitata and R. cylindrospora had different antifungal susceptibility profiles, and this indicates that correct species identification is important to help guide appropriate antifungal therapy....

  6. Antifungal Effect of (+-Pinoresinol Isolated from Sambucus williamsii

    Directory of Open Access Journals (Sweden)

    Bomi Hwang

    2010-05-01

    Full Text Available In this study, we investigated the antifungal activity and mechanism of action of (+-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH indicated that the (+-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV experiments. Therefore, the present study indicates that (+-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  7. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  8. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii.

    Science.gov (United States)

    Hwang, Bomi; Lee, Juneyoung; Liu, Qing-He; Woo, Eun-Rhan; Lee, Dong Gun

    2010-05-14

    In this study, we investigated the antifungal activity and mechanism of action of (+)-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+)-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+)-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the (+)-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV) experiments. Therefore, the present study indicates that (+)-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  9. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins.

    Science.gov (United States)

    Kfoury, Miriana; Lounès-Hadj Sahraoui, Anissa; Bourdon, Natacha; Laruelle, Frédéric; Fontaine, Joël; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-04-01

    Effects of the encapsulation in cyclodextrins (CDs) on the solubility, photostability and antifungal activities of some phenylpropanoids (PPs) were investigated. Solubility experiments were carried out to evaluate the effect of CDs on PPs aqueous solubility. Loading capacities and encapsulation efficiencies of freeze-dried inclusion complexes were determined. Moreover, photostability assays for both inclusion complexes in solution and solid state were performed. Finally, two of the most widespread phytopathogenic fungi, Fusarium oxysporum and Botrytis cinerea, were chosen to examine the antifungal activity of free and encapsulated PPs. Results showed that encapsulation in CDs significantly increased the solubility and photostability of studied PPs (by 2 to 17-fold and 2 to 44-fold, respectively). Free PPs revealed remarkable antifungal properties with isoeugenol showing the lowest half-maximal inhibitory concentration (IC50) values of mycelium growth and spore germination inhibition. Encapsulated PPs, despite their reduced antifungal activity, could be helpful to solve drawbacks such as solubility and stability.

  10. Combination antifungal therapy: a critical review of the evidence.

    Science.gov (United States)

    Ostrosky-Zeichner, L

    2008-05-01

    Invasive fungal infections have extremely high rates of morbidity and mortality, particularly in immunocompromised hosts. Combination antifungal therapy is conceptually attractive as a life-saving measure. However, in-vitro and in-vivo evidence is often conflicting and clinical trials in this area are limited. Most clinical studies show similar outcomes for combination antifungal therapy when compared to monotherapy, although secondary endpoints and sub-analyses often show advantages for the combinations in endpoints such as culture sterilisation. The logistics of large clinical trials of combination therapy are highly complex. Combination of antifungals with immune modulators is an exciting new research area. Until more data are available, clinicians should approach combination antifungal therapy with caution.

  11. THE ANTIFUNGAL AND ANTIBACTERIAL ACTIVITY OF TWO PLANTS FROM ASTEMCEAE

    OpenAIRE

    2015-01-01

    In this study, we have found that, Chlysanthemum coronarium has shownantifungal and antibacterial activity, but Inula viscosa didn't show any antifungalor antibacterial activity.Key words: Chrysanthemum coronarium; Inula viscosa; antifungal andantibacterial activities.

  12. Antibiotics for acute maxillary sinusitis

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Borisenko, Oleg V; Kovanen, Niina;

    2008-01-01

    BACKGROUND: Expert opinions vary on the appropriate role of antibiotics for sinusitis, one of the most commonly diagnosed conditions among adults in ambulatory care. OBJECTIVES: We examined whether antibiotics are effective in treating acute sinusitis, and if so, which antibiotic classes...... or antibiotics from different classes for acute maxillary sinusitis in adults. We included trials with clinically diagnosed acute sinusitis, whether or not confirmed by radiography or bacterial culture. DATA COLLECTION AND ANALYSIS: At least two review authors independently screened search results, extracted...... with a pooled RR of 0.74 (95% CI 0.65 to 0.84) at 7 to 15 days follow up. None of the antibiotic preparations was superior to each other. AUTHORS' CONCLUSIONS: Antibiotics have a small treatment effect in patients with uncomplicated acute sinusitis in a primary care setting with symptoms for more than seven...

  13. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  14. Antifungal activity of propolis against Fonsecaea pedrosoi, a chromoblastomycosis agent

    OpenAIRE

    2011-01-01

    Chromoblastomycosis is a subcutaneous mycosis caused by dematiaceous fungi, being Fonsecaea pedrosoi the main etiologic agent in Brazil. Propolis is a resinous material collected by honeybees, with variable composition and pharmacological properties, including antifungal activity. The antifungal activity of ethanolic extracts of propolis (EEP) obtained from different municipalities of the state of Rio Grande do Sul, Brazil, against F. pedrosoi strains was assessed. The EEP showed MIC values b...

  15. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  16. Antileishmanial, antimicrobial and antifungal activities of some new aryl azomethines.

    Science.gov (United States)

    Al-Kahraman, Yasser M S A; Madkour, Hassan M F; Ali, Dildar; Yasinzai, Masoom

    2010-01-28

    A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  17. 7-Chloroquinolin-4-yl Arylhydrazone Derivatives: Synthesis and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Auri R. Duval

    2011-01-01

    Full Text Available Fifteen 7-chloro-4-arylhydrazonequinolines have been evaluated for their in vitro antifungal activity against eight oral fungi: Candida albicans, C. parapsilosis, C. lipolytica, C. tropicalis, C. famata, C. glabrata, Rhodutorula mucilaginosa, and R. glutinis. Several compounds exhibited minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC activities comparable with the first-line drug fluconazole. These results could be considered as an important starting point for the rational design of new antifungal agents.

  18. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy

    Science.gov (United States)

    Pereira, Cláudia R.; Azevedo, Nuno F.; Lourenço, Anália; Henriques, Mariana; Pereira, Maria O.

    2017-01-01

    The polymicrobial nature of ventilator-associated pneumonia (VAP) is now evident, with mixed bacterial-fungal biofilms colonizing the VAP endotracheal tube (ETT) surface. The microbial interplay within this infection may contribute for enhanced pathogenesis and exert impact towards antimicrobial therapy. Consequently, the high mortality/morbidity rates associated to VAP and the worldwide increase in antibiotic resistance has promoted the search for novel therapeutic strategies to fight VAP polymicrobial infections. Under this scope, this work aimed to assess the activity of mono- vs combinational antimicrobial therapy using one antibiotic (Polymyxin B; PolyB) and one antifungal (Amphotericin B; AmB) agent against polymicrobial biofilms of Pseudomonas aeruginosa and Candida albicans. The action of isolated antimicrobials was firstly evaluated in single- and polymicrobial cultures, with AmB being more effective against C. albicans and PolyB against P. aeruginosa. Mixed planktonic cultures required equal or higher antimicrobial concentrations. In biofilms, only PolyB at relatively high concentrations could reduce P. aeruginosa in both monospecies and polymicrobial populations, with C. albicans displaying only punctual disturbances. PolyB and AmB exhibited a synergistic effect against P. aeruginosa and C. albicans mixed planktonic cultures, but only high doses (256 mg L-1) of PolyB were able to eradicate polymicrobial biofilms, with P. aeruginosa showing loss of cultivability (but not viability) at 2 h post-treatment, whilst C. albicans only started to be inhibited after 14 h. In conclusion, combination therapy involving an antibiotic and an antifungal agent holds an attractive therapeutic option to treat severe bacterial-fungal polymicrobial infections. Nevertheless, optimization of antimicrobial doses and further clinical pharmacokinetics/pharmacodynamics and toxicodynamics studies underpinning the optimal use of these drugs are urgently required to improve therapy

  19. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora).

    Science.gov (United States)

    Wang, X; Bunkers, G J

    2000-12-20

    Two novel antifungal proteins were purified and characterized from cheeseweed (Malva parviflora). Both proteins, designated CW-1 and CW-2, are composed of two different subunits of 5000 and 3000 Da, respectively. These proteins possess very potent antifungal activities, and more interestingly the inhibition is fungicidal instead of fungistatic. At low salt condition, the IC(50) of CW-1 and CW-2 against Fusarium graminearum (Fg) is 2.5 ppm. At high salt condition which diminishes the antifungal activity of many antifungal proteins, both CW-1 and CW-2 still maintain potent activity against Fg with IC(50) of 10 ppm. The two subunits could be separated by gel filtration in the presence of 6 M urea, but their antifungal activity cannot be recovered after the removal of urea. Amino acid sequence analysis indicates that both subunits of CW-1 show homology to 2S albumin, whereas the two subunits of CW-2 have homology to vicilin protein from cotton. To our knowledge, this is the first report of isolation and characterization of heterologous antifungal proteins from any source.

  20. An antifungal peptide from Phaseolus vulgaris cv. brown kidney bean

    Institute of Scientific and Technical Information of China (English)

    Yau Sang Chan; Jack Ho Wong; Evandro Fei Fang; Wen Liang Pan; Tzi Bun Ng

    2012-01-01

    A 5.4-kDa antifungal peptide,with an N-terminal sequence highly homologous to defensins and inhibitory activity against Mycosphaerella arachidicola (IC5o=3 μM),Setospaeria turcica and Bipolaris maydis,was isolated from the seeds of Phaseolus vulgaris cv.brown kidney bean.The peptide was purified by employing a protocol that entailed adsorption on Affi-gel blue gel and Mono S and finally gel filtration on Superdex 75.The antifungal activity of the peptide against M.arachidicola was stable in the pH range 3-12 and in the temperature range 0℃ to 80℃.There was a slight reduction of the antifungal activity at pH 2 and 13,and the activity was indiscernible at pH 0,1,and 14.The activity at 90℃ and 100℃ was slightly diminished.Deposition of Congo red at the hyphal tips of M.arachidicola was induced by the peptide indicating inhibition of hyphal growth.The lack of antiproliferative activity of brown kidney bean antifungal peptide toward tumor cells,in contrast to the presence of such activity of other antifungal peptides,indicates that different domains are responsible for the antifungal and antiproliferative activities.

  1. An antifungal peptide from Phaseolus vulgaris cv. brown kidney bean.

    Science.gov (United States)

    Chan, Yau Sang; Wong, Jack Ho; Fang, Evandro Fei; Pan, Wen Liang; Ng, Tzi Bun

    2012-04-01

    A 5.4-kDa antifungal peptide, with an N-terminal sequence highly homologous to defensins and inhibitory activity against Mycosphaerella arachidicola (IC(50)= 3 μM), Setospaeria turcica and Bipolaris maydis, was isolated from the seeds of Phaseolus vulgaris cv. brown kidney bean. The peptide was purified by employing a protocol that entailed adsorption on Affi-gel blue gel and Mono S and finally gel filtration on Superdex 75. The antifungal activity of the peptide against M. arachidicola was stable in the pH range 3-12 and in the temperature range 0°C to 80°C. There was a slight reduction of the antifungal activity at pH 2 and 13, and the activity was indiscernible at pH 0, 1, and 14. The activity at 90°C and 100°C was slightly diminished. Deposition of Congo red at the hyphal tips of M. arachidicola was induced by the peptide indicating inhibition of hyphal growth. The lack of antiproliferative activity of brown kidney bean antifungal peptide toward tumor cells, in contrast to the presence of such activity of other antifungal peptides, indicates that different domains are responsible for the antifungal and antiproliferative activities.

  2. Antifungal effect and mechanism of garlic oil on Penicillium funiculosum.

    Science.gov (United States)

    Li, Wen-Ru; Shi, Qing-Shan; Liang, Qing; Huang, Xiao-Mo; Chen, Yi-Ben

    2014-10-01

    Garlic oil is a kind of fungicide, but little is known about its antifungal effects and mechanism. In this study, the chemical constituents, antifungal activity, and effects of garlic oil were studied with Penicillium funiculosum as a model strain. Results showed that the minimum fungicidal concentrations (MFCs, v/v) were 0.125 and 0.0313 % in agar medium and broth medium, respectively, suggesting that the garlic oil had a strong antifungal activity. The main ingredients of garlic oil were identified as sulfides, mainly including disulfides (36 %), trisulfides (32 %) and monosulfides (29 %) by gas chromatograph-mass spectrometer (GC/MS), which were estimated as the dominant antifungal factors. The observation results by transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that garlic oil could firstly penetrate into hyphae cells and even their organelles, and then destroy the cellular structure, finally leading to the leakage of both cytoplasm and macromolecules. Further proteomic analysis displayed garlic oil was able to induce a stimulated or weakened expression of some key proteins for physiological metabolism. Therefore, our study proved that garlic oil can work multiple sites of the hyphae of P. funiculosum to cause their death. The high antifungal effects of garlic oil makes it a broad application prospect in antifungal industries.

  3. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to cl

  4. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill. N.E. Brown: composition, cytotoxicity and antifungal activity

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Mesa-Arango

    2009-09-01

    Full Text Available Two essential oils of Lippia alba (Mill. N.E. Brown (Verbenacea, the carvone and citral chemotypes and 15 of their compounds were evaluated to determine cytotoxicity and antifungal activity. Cytotoxicity assays for both the citral and carvone chemotypes were carried out with tetrazolium-dye, which showed a dose-dependent cytotoxic effect against HeLa cells. Interestingly, this effect on the evaluated cells (HeLa and the non-tumoural cell line, Vero was lower than that of commercial citral alone. Commercial citral showed the highest cytotoxic activity on HeLa cells. The antifungal activity was evaluated against Candida parapsilosis, Candida krusei, Aspergillus flavus and Aspergillus fumigatus strains following the standard protocols, Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing and CLSI M38-A. Results demonstrated that the most active essential oil was the citral chemotype, with geometric means-minimal inhibitory concentration (GM-MIC values of 78.7 and 270.8 μg/mL for A. fumigatus and C. krusei, respectively. Commercial citral showed an antifungal activity similar to that of the citral chemotype (GM-MIC values of 62.5 μg/mL for A. fumigatus and 39.7 μg/mL for C. krusei. Although the citronellal and geraniol were found in lower concentrations in the citral chemotype, they had significant antifungal activity, with GM-MIC values of 49.6 μg/mL for C. krusei and 176.8 μg/mL for A. fumigatus.

  5. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.) N.E. Brown: composition, cytotoxicity and antifungal activity.

    Science.gov (United States)

    Mesa-Arango, Ana Cecilia; Montiel-Ramos, Jehidys; Zapata, Bibiana; Durán, Camilo; Betancur-Galvis, Liliana; Stashenko, Elena

    2009-09-01

    Two essential oils of Lippia alba (Mill.) N.E. Brown (Verbenacea), the carvone and citral chemotypes and 15 of their compounds were evaluated to determine cytotoxicity and antifungal activity. Cytotoxicity assays for both the citral and carvone chemotypes were carried out with tetrazolium-dye, which showed a dose-dependent cytotoxic effect against HeLa cells. Interestingly, this effect on the evaluated cells (HeLa and the non-tumoural cell line, Vero) was lower than that of commercial citral alone. Commercial citral showed the highest cytotoxic activity on HeLa cells. The antifungal activity was evaluated against Candida parapsilosis, Candida krusei, Aspergillus flavus and Aspergillus fumigatus strains following the standard protocols, Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing and CLSI M38-A. Results demonstrated that the most active essential oil was the citral chemotype, with geometric means-minimal inhibitory concentration (GM-MIC) values of 78.7 and 270.8 microg/mL for A. fumigatus and C. krusei, respectively. Commercial citral showed an antifungal activity similar to that of the citral chemotype (GM-MIC values of 62.5 microg/mL for A. fumigatus and 39.7 microg/mL for C. krusei). Although the citronellal and geraniol were found in lower concentrations in the citral chemotype, they had significant antifungal activity, with GM-MIC values of 49.6 microg/mL for C. krusei and 176.8 microg/mL for A. fumigatus.

  6. Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011.

    Science.gov (United States)

    Asmundsdottir, Lena Ros; Erlendsdottir, Helga; Gottfredsson, Magnus

    2013-03-01

    Candidemia is often a life-threatening infection, with highly variable incidence among countries. We conducted a nationwide study of candidemia in Iceland from 2000 to 2011, in order to determine recent trends in incidence rates, fungal species distribution, antifungal susceptibility patterns, and concurrent antifungal consumption. A total of 208 infection episodes in 199 patients were identified. The average incidence during the 12 years was 5.7 cases/100,000 population/year, which was significantly higher than that from 1990 to 1999 (4.3/100,000/year; P = 0.02). A significant reduction in the use of blood cultures was noted in the last 3 years of the study, coinciding with the economic crisis in the country (P 60 years, and varied by gender. Age-specific incidence among males >80 years old was 28.6/100,000/year, and it was 8.3/100,000/year for females in this age group (P = 0.028). The 30-day survival rate among adult patients remained unchanged compared to that from 1990 to 1999 (70.4% versus 69.5%, P = 0.97). Candida albicans was the predominant species (56%), followed by C. glabrata (16%) and C. tropicalis (13%). The species distribution remained stable compared to that from previous decades. Fluconazole use increased 2.4-fold from 2000 to 2011, with no increase in resistance. In summary, the incidence of candidemia in Iceland has continued to increase but may have reached a steady state, and no increase in antifungal drug resistance has been noted. Decreased use of blood cultures toward the end of the study may have influenced detection rates.

  7. Antibiotics and antibiotic resistance: a bitter fight against evolution.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús

    2013-08-01

    One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.

  8. The Antibiotic Resistance Problem Revisited

    Science.gov (United States)

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  9. Macrocyclic trichothecenes as antifungal and anticancer compounds.

    Science.gov (United States)

    de Carvalho, Maira Peres; Weich, Herbert; Abraham, Wolf-Rainer

    2016-01-01

    Trichothecenes are sesquiterpenoid metabolites produced by fungi and species of the plant genus Baccharis, family Asteraceae. They comprise a tricyclic core with an epoxide at C-12 and C-13 and can be grouped into non-macrocyclic and macrocyclic compounds. While many of these compounds are of concern in agriculture, the macrocyclic metabolites have been evaluated as antiviral, anti-cancer, antimalarial and antifungal compounds. Some known cytotoxic responses on eukaryotic cells include inhibition of protein, DNA and RNA syntheses, interference with mitochondrial function, effects on cell division and membranes. These targets however have been elucidated essentially employing non-macrocyclic trichothecenes and only one or two closely related macrocyclic compounds. For several macrocyclic trichothecenes high selectivity against fungal species and against cancer cell lines have been reported suggesting that the macrocycle and its stereochemistry are of crucial importance regarding biological activity and selectivity. This review is focused on compounds belonging to the macrocyclic type, where a cyclic diester or triester ring binds to the trichothecane moiety at C-4 and C- 15 leading to natural products belonging to the groups of satratoxins, verrucarins, roridins, myrotoxins and baccharinoids. Their biological activities, cytotoxic mechanisms and structure-activity relationships (SAR) are discussed. From the reported data it becomes evident that even small changes in the molecules can lead to pronounced effects on biological activity or selectivity against cancer cells lines. Understanding the underlying mechanisms may help to design highly specific drugs for cancer therapy.

  10. Antifungal and molluscicidal saponins from Serjania salzmanniana.

    Science.gov (United States)

    Ekabo, O A; Farnsworth, N R; Henderson, T O; Mao, G; Mukherjee, R

    1996-04-01

    An investigation of Serjania salzmanniana for biologically active substances has led to the isolation of two novel saponins, salzmannianoside A (3-O-[[beta-D- glucopyranosyl-(1-->4)]-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L- arabinopyranosyl] gypsogenin) [3] and salzmannianoside B (3-O-[[beta-D-glucopyranosyl-(1-->4)]-[alpha-L- arabinopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)] -alpha-L-arabinopyranosyl] hederagenin) (4). Two known saponins, pulsatilla saponin D (3-O-[[beta-D- glucopyranosyl-(1-->4)]-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L- arabinopyranosyl] hederagenin) (1) and 3-O-[[beta-D-glucopyranosyl-(1-->4)]-[alpha-L-rhamnopyranosyl-(1-->2)]-a lpha-L- arabinopyranosyl] oleanolic acid (2) were also isolated from this plant. The structures of 3 and 4 were elucidated by FABMS and 2D NMR techniques. All these four saponins were mollusicidal, causing 70-100% mortality at 10 ppm against Biomphalaria alexandrina, a vector of Schistosoma mansoni in the Nile Valley. The saponins also showed antifungal activity against Cryptococcus neoformans and Candida albicans at minimal inhibitory concentrations of 8 and 16 micrograms/mL, respectively.

  11. Antifungal activity of plant extracts against dermatophytes.

    Science.gov (United States)

    Ali-Shtayeh, M S; Abu Ghdeib, S I

    1999-01-01

    The aqueous extracts (15 micrograms ml-1 medium) of 22 plants used in folkloric medicine in Palestine were investigated for their antifungal activity and minimum inhibitory concentrations (MICs) against nine isolates of Microsporum canis, Trichophyton mentagrophytes and Trichophyton violaceum. The extract of the different plant species reduced colony growth of the three dermatophytes by 36 to 100% compared with the control treatment. Antimycotic activity of the extract against the three dermatophytes varied significantly (P Inula viscosa, J. regia and P. lentiscus against T. mentagrophytes; and Asphodelus luteus, A. arvensis, C. spinosa, Clematis cirrhosa, I. viscosa, J. regia, P. lentiscus, Plumbago europea, Ruscus aculeatus, Retema raetam and Salvia fruticosa against T. violaceum. The MICs of these most active plants ranged from 0.6 to 40 micrograms ml-1. The three dermatophytes differed significantly with regard to their susceptibility to plant extracts. Trichophyton violaceum was the most susceptible being completely inhibited by 50% of the extracts followed by M. canis and T. mentagrophytes which were completely inhibited by only 23 and 14% of the extracts, respectively.

  12. Antifungal prophylaxis in stem cell transplantation centers in Turkey

    Directory of Open Access Journals (Sweden)

    Hamdi Akan

    2011-12-01

    Full Text Available Objective: This study aimed to determine the current state of antifungal prophylaxis in Turkish stem cell transplantation (SCT centers. Materials and Methods: The were 38 active stem cell transplantation centers in Turkey, 28 of which were registered with the European Group for Blood and Marrow Transplantation (EBMT. Survey questionnaires were sent to the 28 EBMT centers in an effort to collect data on antifungal prophylaxis in different settings. In all, 24 of the centers completed the survey; 1 of the 24 centers was excluded from the study, as it was under construction at the time and was not performing transplantation.Results: In all, 15 (65% of the 23 centers were adult SCT centers, 7 (31% were pediatric SCT centers, and 1 center treated both adult and pediatric patients. All centers (23/23 performed both allogeneic and autologous transplants, 20 centers performed non-myeloablative transplants, 8 performed cord blood transplants, and 7 performed unrelated transplants. Primary antifungal prophylaxis was used at all 23 centers during allogeneic transplants, whereas 18 of the 23 centers used it during every autologous transplant and 2 of the 23 centers used it during autologous transplants on a per case basis. The most common drug used for prophylaxis was fluconazole (F (21/23, followed by itraconazole (I (3/23, amphotericin-B (2/23, and posaconazole (1/23. Among the 23 centers, 3 reported that for allogenic transplants they changed the antifungal prophylactic in cases of graft versus host disease (GVHD, and 12 of the 23 centers reported that they changed the antifungal prophylactic in case of nearby construction. All 23 centers performed secondary prophylaxis. Conclusion: Antifungal prophylaxis for hematopoetic SCT patients was the standard protocol in the 23 centers included in the study, usually with such azoles as F. The introduction of posaconazole in Turkey and the potential approval of voriconazole for antifungal prophylaxis will

  13. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  14. Ocorrência e diversidade estrutural de metabólitos fúngicos com atividade antibiótica Occurrence and structural diversity of fungal metabolites with antibiotic activity

    Directory of Open Access Journals (Sweden)

    Jacqueline Aparecida Takahashi

    2008-01-01

    Full Text Available Several reasons motivated the development of new generations of antibiotics, such as their high ability to develop resistance to virtually all kinds of anti-infective agents and the crescent market demand for new drugs to treat special demanding patients. After penicillin discovery, several antibiotics were developed from fungal metabolites, since antibacterial secondary metabolites consists on a fungal endogenous protective mechanism against natural competitors. The aim of this review is to present the structural diversity of antibacterial and antifungal metabolites produced by fungi, mentioning sources of fungal isolates, cultivation process and details on the scope of their antibiotic activity.

  15. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... Us General Background: What can be done about Antibiotic Resistance? What can I do? Are antibacterial agents, such ... regulated? Is there any international action on the antibiotic resistance issue? Can the effectiveness of existing antibiotics be ...

  16. Empirical antifungal therapy in patients with neutropenia and persistent or recurrent fever of unknown origin.

    Science.gov (United States)

    Martino, Rodrigo; Viscoli, Claudio

    2006-01-01

    Persistent or recurrent fever of unexplained origin (PFUO) in neutropenic patients receiving antibiotic therapy is commonly treated with empirical antifungal therapy (EAFT). EAFT was established as an adequate management of PFUO around 20 years ago with conventional amphotericin B deoxycholate (c-AmB), despite its high rate of infusional and systemic toxicities. In recent years, EAFT trials for PFUO have used less toxic agents, such as the lipid formulations of AmB, the new azoles, and the echinocandin, caspofungin. In clinical trials, the lipid formulations of AmB [especially liposomal AmB (L-AmB)] provided similar efficacy with lower toxicity but at a much higher cost. Although rarely used in clinical practice, fluconazole is equivalent to c-AmB, provided patients at high risk of Aspergillus infections are excluded. Intravenous itraconazole was shown to be equivalent to c-AmB, with a lower toxicity. Voriconazole did not meet non-inferiority criteria when compared with L-AmB. Caspofungin was shown to be non-inferior to L-AmB and more effective in treating baseline invasive fungal infections. To date, alternatives to AmB have shown less toxicity, but improved efficacy is less clear. This is probably because of the weakness of the indication and to the consequent difficulty in establishing objective and reproducible endpoints for comparisons. The new challenge for physicians in this field is probably presumptive antifungal therapy, an approach based on patient risk-group stratification for developing invasive candidiasis or aspergillosis and/or the use of new diagnostic techniques to identify patients at a very early stage of infection.

  17. A Class 1 Histone Deacetylase with Potential as an Antifungal Target

    Directory of Open Access Journals (Sweden)

    Ingo Bauer

    2016-11-01

    Full Text Available Histone deacetylases (HDACs remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus. Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans. Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes.

  18. A Class 1 Histone Deacetylase with Potential as an Antifungal Target.

    Science.gov (United States)

    Bauer, Ingo; Varadarajan, Divyavaradhi; Pidroni, Angelo; Gross, Silke; Vergeiner, Stefan; Faber, Birgit; Hermann, Martin; Tribus, Martin; Brosch, Gerald; Graessle, Stefan

    2016-11-01

    Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes.

  19. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    Science.gov (United States)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  20. Antifungal activity of ibuprofen against aspergillus species and its interaction with common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    LI Li-juan; CHEN Wei; XU Hui; WAN Zhe; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The incidence of invasive aspergillosis (IA) has increased in frequency in immunocompromised patients with a variety of diseases. The poor prognosis might be due to limited treatment option. This study aimed to evaluate antifungal activity of ibuprofen against clinical isolates of aspergillus species, as well as its interaction with azoles or with amphotericin B or with micafungin.Methods Antifungal activity of ibuprofen against 10 strains of Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus were tested with both disk diffusion assay and standard broth microdilution method. To determine whether ibuprofen combined with itraconazole, voriconazole, amphotericin B, or micafungin had interactive effects on aspergillus spp., we used both disk diffusion assay and Chequerboard method.Results As for disk diffusion method, ibuprofen produced a zone of growth inhibition with diameters of (20.1±3.9) mm at 48 hours of incubation. As for broth microdilution method, the minimal inhibitory concentration (MIC) ranges of ibuprofen against aspergillus spp. were 1000-2000 μg/ml, and the minimal fungicidal concentration (MFC) ranges of that was 2000-8000 μg/ml. For 2 of 5 isolates, when ibuprofen combined with itraconazole or voriconazole, the zones of growth inhibition were larger than those of the individual drug. The results of Chequerboard method showed that fractional inhibitory concentration index (FICI) ranges were 1.125-2.500.Conclusions Ibuprofen is active against aspergillus spp.. And ibuprofen does not affect the in vitro activity of itraconazole, voriconazole, amphotericin B or micafungin against aspergillus spp..

  1. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    Science.gov (United States)

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  2. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.

  3. Antifungal activity of essential oils against selected terverticillate penicillia.

    Science.gov (United States)

    Felšöciová, Soňa; Kačániová, Miroslava; Horská, Elena; Vukovič, Nenad; Hleba, Lukáš; Petrová, Jana; Rovná, Katarina; Stričík, Michal; Hajduová, Zuzana

    2015-01-01

    The aim of this study was to screen 15 essential oils of selected plant species, viz. Lavandula angustifolia, Carum carvi, Pinus mungo var. pulmilio, Mentha piperita, Chamomilla recutita L., Pinus sylvestris, Satureia hortensis L., Origanum vulgare L., Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Thymus vulgaris L., Origanum vulgare L. for antifungal activity against five Penicillium species: Penicillium brevicompactum, Penicillium citrinum, Penicillium crustosum, Penicillium expansum and Penicillium griseofulvum. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against Penicillium fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: Pimpinella anisum, Chamomilla recutita L., Thymus vulgaris, Origanum vulgare L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be Origanum vulgare L. and Pimpinella anisum. The lowest level of antifungal activity was demonstrated by the oils Pinus mungo var. pulmilio, Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Rosmarinus officinalis.

  4. New targets and delivery systems for antifungal therapy.

    Science.gov (United States)

    Walsh, T J; Viviani, M A; Arathoon, E; Chiou, C; Ghannoum, M; Groll, A H; Odds, F C

    2000-01-01

    Development of new approaches for treatment of invasive fungal infections encompasses new delivery systems for approved and investigational compounds, as well as exploiting the cell membrane, cell wall and virulence factors as putative antifungal targets. Novel delivery systems consisting of cyclodextrins, cochleates, nanoparticles/nanospheres and long circulating ('stealth') liposomes, substantially modulate the pharmacokinetics of existing compounds, and may also be useful to enhance the delivery of antifungal agents to sites of infection. Further insights into the structure-activity relationship of the antifungal triazoles that target the biosynthesis of ergosterol in the fungal cell membrane have led to the development of highly potent broad spectrum agents, including posaconazole, ravuconazole and voriconazole. Similarly, a novel generation of cell-wall active semisynthetic echinocandin 1,3 beta-glucan inhibitors (caspofungin, FK463, and VER-002) has entered clinical development. These agents have potent and broad-spectrum activity against Candida spp, and potentially useful activity against Aspergillus spp. and Pneumocystis carinii. The ongoing convergence of the fields of molecular pathogenesis, antifungal pharmacology and vaccine development will afford the opportunity to develop novel targets to complement the existing antifungal armamentarium.

  5. Antifungal susceptibilities of Candida species isolated from urine culture.

    Science.gov (United States)

    Toka Özer, Türkan; Durmaz, Süleyman; Yula, Erkan

    2016-09-01

    Candida spp. are the most common opportunistic mycosis worldwide. Although Candida albicans is the most common cause of urinary tract infections, the frequency of non-albicans Candida species is increasing with common use of antifungal in the prophylaxis and treatment. This may lead to difficulties in treatment. Antifungal tests should be applied with identification of species for effective treatment. In this study, identification of Candida species isolated from urine culture and investigation of susceptibility of these strains to amphotericin B, flucytosine, fluconazole, voriconazole was aimed. In this study, 58 Candida strains isolated from urine cultures at Osmaniye State Hospital between January 2012 and April 2013 were included. Urine culture and antifungal susceptibility tests were applied. Incidence rate of Candida spp. was determined as C. albicans (56.9%), Candida glabrata (20.6%), Candida tropicalis (10.3%), Candida parapsilosis (7%), Candida krusei (3.4%), Candida kefyr (1.8%). Most of the isolates were susceptible to amphotericin B, flucytosine, fluconazole, voriconazole. Twenty three (39.7%) Candida strains were isolated from internal medical branches and Intensive Care Unit and 12 (20.6%) from the Surgical Medical Branches. C. albicans and C. glabrata species were isolated most frequently as a candiduria factor in this hospital between January 2012 and April 2013. The analysis of antifungal susceptibility profile shows no significant resistance to antifungals.

  6. IPC synthase as a useful target for antifungal drugs.

    Science.gov (United States)

    Sugimoto, Yuichi; Sakoh, Hiroki; Yamada, Koji

    2004-12-01

    Inositol phosphorylceramide (IPC) synthase is a common and essential enzyme in fungi and plants, which catalyzes the transfer of phosphoinositol to the C-1 hydroxy of ceramide to produce IPC. This reaction is a key step in fungal sphingolipid biosynthesis, therefore the enzyme is a potential target for the development of nontoxic therapeutic antifungal agents. Natural products with a desired biological activity, aureobasidin A (AbA), khafrefungin, and galbonolide A, have been reported. AbA, a cyclic depsipeptide containing 8 amino acids and a hydroxyl acid, is a broad spectrum antifungal with strong activity against many pathogenic fungi such as Candida spp., Cryptococcus neoformans, and some Aspergillus spp. Khafrefungin, an aldonic acid ester with a C22 long alkyl chain, has antifungal activity against C. albicans, Cr. Neoformans, and Saccharomyces cerevisiae. Galbonolide A is a 14-membered macrolide with fungicidal activity against clinically important strains, and is especially potent against Cr. neoformans. These classes of natural products are potent and specific antifungal agents. We review current progress in the development of IPC synthase inhibitors with antifungal activities, and present structure-activity relationships (SAR), physicochemical and structural properties, and synthetic methodology for chemical modification.

  7. Antimycobacterial and Antifungal Activities of Selected Four Salvia Species

    Directory of Open Access Journals (Sweden)

    Nur Tan

    2016-03-01

    Full Text Available The content of essential oils of endemic Salvia cilicica was analyzed by GC-FID and GC-MS techniques. Spathulenol (23.8 %, caryophyllene oxide (14.9 % and hexadecanoic acid (10.3 % were identified as the major components in the oil of Salvia cilicica. Additionally, in this study ethanol extracts of the aerial parts and essential oils of four Salvia species ( S. cilicica, S. officinalis, S. fruticosa, S. tomentosa , as well as the roots of S. cilicica were investigated their antimycobacterial and antifungal activities including infectious diseases. The antimycobacterial activity was analyzed against three Mycobacterium tuberculosis (sensitive-, resistant-standard strains and multidrug resistance clinical isolate strains and the antifungal activity was compared with two dermotophytes (Microsporum gypseum and Trichophyton mentagrophytes var. erinacei and three Candida species by the broth microdilution method. The essentials oils of the four tested Salvia species showed high antimycobacterial and antifungal activity (MIC between 0.2-12.5 mcg/mL in comparison to the aerial parts and root extracts . The antifungal and antimycobacterial potential of the ethanol extracts and essential oils were introduced to determine whether, Salvia species can be used in phytotherapy against the yeasts, dermatophytes and M. tuberculosis. To the best of our knowledge this is the first study of S. cilicica about their antimycobacterial and antifungal activities and chemical composition of its essential oils.

  8. An antifungal defensin from Phaseolus vulgaris cv. 'Cloud Bean'.

    Science.gov (United States)

    Wu, Xiangli; Sun, Jian; Zhang, Guoqing; Wang, Hexiang; Ng, Tzi Bun

    2011-01-15

    An antifungal peptide with a defensin-like sequence and exhibiting a molecular mass of 7.3kDa was purified from dried seeds of Phaseolus vulgaris 'Cloud Bean'. The isolation procedure entailed anion exchange chromatography on DEAE-cellulose, affinity chromatography an Affi-gel blue gel, cation exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. Although the antifungal peptide was unadsorbed on DEAE-cellulose, it was adsorbed on both Affi-gel blue gel and SP-Sepharose. The antifungal peptide exerted antifungal activity against Mycosphaerella arachidicola with an IC(50) value of 1.8 μM. It was also active against Fusarium oxysporum with an IC(50) value of 2.2 μM. It had no inhibitory effect on HIV-1 reverse transcriptase when tested up to 100 μM. Proliferation of L1210 mouse leukemia cells and MBL2 lymphoma cells was inhibited by the antifungal peptide with an IC(50) of 10 μM and 40 μM, respectively.

  9. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    2013-08-01

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  10. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  11. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes.

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  12. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  13. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2014-01-01

    growing planktonic cells, voriconazole had limited antifungal activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the response...

  14. A novel inclusion complex (β-CD/ABP-dHC-cecropin A) with antibiotic propertiess for use as an anti-Agrobacterium additive in transgenic poplar rooting medium.

    Science.gov (United States)

    Zhang, Jiaxin; Li, Jianfeng; Movahedi, Ali; Sang, Ming; Xu, Chen; Xu, Junjie; Wei, Zhiheng; Yin, Tongming; Zhuge, Qiang

    2015-12-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous effort to develop novel antibiotics with new modes of action.We recently reported that ABP-dHC-cecropin A exhibited strong antibacterial and antifungal activity, making it a candidate antibiotic substitute. In this study, β-cyclodextrin (β-CD) combined with ABP-dHC-cecropin A enhanced the physical and chemical properties of ABP-dHC-cecropin A but did not significantly decrease its antibacterial activity. Thus, β-CD/ABP-dHC-cecropin A should be considered a novel antibacterial drug. We used β-CD/ABP-dHC-cecropin A as an anti-Agrobacterium compound to supplementtransgenic poplar medium. Sideeffects of the inclusion complex had little impact on plantgrowth. Thus, β-CD/ABP-dHC-cecropin A may be used as traditional antibiotics forpoplar transplantation with greater antibbacterial effects.

  15. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    2015-12-01

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  16. Antibiotic prescribing for acute bronchitis

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2016-01-01

    INTRODUCTION: Acute bronchitis is a self-limiting infectious disease characterized by acute cough with or without sputum but without signs of pneumonia. About 90% of cases are caused by viruses. AREAS COVERED: Antibiotics for acute bronchitis have been associated with an approximately half...... discusses the reason for this antibiotic overprescription. Other therapies targeted to control symptoms have also demonstrated a marginal or no effect. EXPERT COMMENTARY: Clinicians should be aware of the marginal effectiveness of antibiotic therapy. Some strategies like the use of rapid tests, delayed...

  17. Systemic antibiotic therapy in periodontics.

    Science.gov (United States)

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-09-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  18. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  19. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  20. Antifungal compounds from the rhizome and roots of Ferula hermonis.

    Science.gov (United States)

    Al-Ja'fari, Abdel-Hadi; Vila, Roser; Freixa, Blanca; Costa, Joan; Cañigueral, Salvador

    2013-06-01

    The antifungal activity of hexane, dichloromethane, methanol and aqueous extracts from the rhizome and root of Ferula hermonis was assayed in vitro by the agar disk diffusion method against a panel of human opportunistic and pathogenic fungi. Among them, the hexane and dichloromethane extracts showed the highest activity particularly against the dermatophytes Microsporum gypseum and Tricophyton mentagrophytes as well as the yeast Candida lactis-condensi. Activity-guided fractionation of both extracts using an agar overlay bioautographic method led to the isolation of two antifungal compounds which were identified as the daucane aryl esters jaeschkeanadiol p-hydroxybenzoate (ferutinin) and jaeschkeanadiol benzoate (teferidin). Determination of minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of both compounds evidenced a stronger antifungal activity for ferutinin than for teferidin. Particularly, T. mentagrophytes was the most sensitive strain with MIC and MFC values ranging from 8 to 256 µg/mL.

  1. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  2. The biology and chemistry of antifungal agents: a review.

    Science.gov (United States)

    Kathiravan, Muthu K; Salake, Amol B; Chothe, Aparna S; Dudhe, Prashik B; Watode, Rahul P; Mukta, Maheshwar S; Gadhwe, Sandeep

    2012-10-01

    In recent years their has been an increased use of antifungal agents and has resulted in the development of resistance to drugs. Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates. Different types of mechanisms contribute to the development of resistance to antifungals. This has given raise to search for a new heterocycle with distinct action or multitargeted combination therapy. This review addresses the areas such as the underlying mechanisms, eight different targets such as ergosterol synthesis, chitin synthesis, ergosterol disruptors, glucan synthesis, squalene epoxidase, nucleic acid synthesis, protein synthesis, microtubules synthesis. The clinically employed drugs along with the current research work going on worldwide on different heterocycles are discussed. In recent advances various heterocycles including imidazole, benzimidazole etc., twenty three scaffolds and their lead identification are discussed.

  3. Antifungal Constituents from the Roots of Piper dilatatum Rich.

    Directory of Open Access Journals (Sweden)

    Ruilan Alves dos Santos

    2013-01-01

    Full Text Available The compounds (+-(7S,8R-epoxy-5,6-didehydrokavain (1, flavokavain B (2, β-sitosterol (3, and stigmasterol (4 are reported here as chemical constituents of Piper dilatatum Rich. (Piperaceae. Their structures were determined on the basis of their spectroscopic data (1H and 13C NMR, MS, and IR. The antifungal activities of pyrone 1 (1 μg and chalcone 2 (100 μg were determined by means of direct bioautography against Cladosporium cladosporioides and C. sphaerospermum. Results indicate P. dilatatum as a candidate for the development of novel antifungal phytotherapic products as well as point out pyrone 1 as a promising hit compound in the quest for novel antifungal agents.

  4. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  5. Antifungal prophylaxis following reduced-intensity stem cell transplantation.

    Science.gov (United States)

    Kami, M; Murashige, N; Tanaka, Y; Narimatsu, H

    2006-12-01

    Reduced-intensity stem cell transplantation (RIST) has been developed to be a novel curative option for advanced hematologic diseases. Its minimal toxicity allows for transplantation in patients with advanced age or with organ dysfunction. Young patients without comorbidity can undergo RIST as outpatients. However, fungal infection remains an important complication in RIST. Given the poor prognosis of fungal infection, prophylaxis is critical in its management. The prophylactic strategy is recently changing with the development of RIST. Hospital equipment is important for fungal prophylaxis; however, the median day for the development of fungal infection is day 100, when most RIST patients are followed as outpatients. The focus of fungal management after RIST needs to shift from in-hospital equipment to oral antifungals. Various antifungals have recently been developed and introduced for clinical use. A major change in antifungal management will probably occur within several years.

  6. Antifungal Applications of Ag-Decorated Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    C. A. Zamperini

    2013-01-01

    Full Text Available Pure hydroxyapatite (HA and hydroxyapatite decorated with silver (HA@Ag nanoparticles were synthesized and characterized. The antifungal effect of HA@Ag nanoparticles in a distilled water solution was evaluated against Candida albicans. The origin of the antifungal activity of the HA@Ag is also discussed. The results obtained showed that the HA nanorod morphology remained the same with Ag ions decorations on the HA structure which were deposited in the form of nanospheres. Interaction where occurred between the structure and its defect density variation in the interfacial HA@Ag and intrafacial HA region with the fungal medium resulted in antifungal activity. The reaction mechanisms involved oxygen and water adsorption which formed an active complex cluster. The decomposition and desorption of the final products as well as the electron/hole recombination process have an important role in fungicidal effects.

  7. Prophylactic antibiotics versus post- operative antibiotics in herniorraphy

    Directory of Open Access Journals (Sweden)

    Abedulla Khan Kayamkani

    2015-07-01

    Full Text Available Postoperative surgical site infections are a major source of illness.  Infection results in longer hospital stay and higher costs.  Uses of preoperative antibiotics have been standardized and are being used routinely in most clinical surgeries and include controversial areas like breast surgery and herniorraphy. Objective of the study is to find out the benefit of prophylactic use of antibiotics in the management of herniorraphy.This project was carried out in a multispeciality tertiary care teaching hospital from 1st-30th April in 2002. Group 1 patients were treated prophylactically half an hour before surgery with single dose of I.V. antibiotics (injection.  Ampicillin 1gm + injection.  Gentamicin 80mg. Group 2 patients were treated post surgery with capsule. Ampicillin 500mg 4 times a day for 7 days and injection. Gentamicin twice a day for first 4 days. In case of group 1 patients only one out of 20 patients (5% was infected.  Whereas in-group 2 patients 5 out of 20 patients (25% were infected. The cost of prophylactic antibiotic treatment was Rs. 25.56 per patient.  The postoperative antibiotic treatment cost was Rs. 220.4 per patient.  That means postoperative treatment is around 8.62 times costlier than prophylactic treatment.             From this study it is evident that prophylactic (preoperative treatment is better than postoperative treatment with antibiotics.

  8. Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans.

    Science.gov (United States)

    Chudzik, Barbara; Tracz, Izabela B; Czernel, Grzegorz; Fiołka, Marta J; Borsuk, Grzegorz; Gagoś, Mariusz

    2013-08-16

    Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus used for more than 50 years in the treatment of acute systemic fungal infections. It exhibits a broad spectrum of activity against fungal and protozoan pathogens with relatively rare resistance. The aim of this study was to prepare and evaluate the utility of the AmB-Cu(2+) complex as a potential compound with a high fungicidal activity at lower concentrations, compared with conventional AmB. It was hypothesized that insertion of copper ions into fungal cell membranes, together with the AmB-Cu(2+) complex bypassing the natural homeostatic mechanisms of this element, may contribute to the increased fungicidal activity of AmB. The analysis of results indicates the increased antifungal activity of the AmB-Cu(2+) complex against Candida albicans in comparison with the pure AmB and Fungizone. Additionally, it was stated that the increased antifungal activity of the AmB-Cu(2+) complex is not the sum of the toxic effects of AmB and Cu(2+) ions, but is a result of the unique structure of this compound.

  9. SCREENING FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES IN SOME MARINE ALGAE FROM THE FUJIAN COAST OF CHINA WITH THREE DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    郑怡; 陈寅山; 卢海声

    2001-01-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta (Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae ) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  10. SCREENING FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES IN SOME MARINE ALGAE FROM THE FUJIAN COAST OF CHINA WITH THREE DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    郑怡; 陈寅山; 卢海声

    2001-01-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlomphyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta (Laurenc/a okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae ) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  11. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  12. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  13. Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins

    OpenAIRE

    Kuhn, D M; T. George; CHANDRA, J; P. K. Mukherjee; Ghannoum, M A

    2002-01-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have ac...

  14. DMPD: C-type lectin receptors in antifungal immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18160296 C-type lectin receptors in antifungal immunity. Willment JA, Brown GD. Tre...nds Microbiol. 2008 Jan;16(1):27-32. Epub 2007 Dec 21. (.png) (.svg) (.html) (.csml) Show C-type lectin receptors in anti...fungal immunity. PubmedID 18160296 Title C-type lectin receptors in antifungal immunity. Author

  15. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India

    Directory of Open Access Journals (Sweden)

    Partha Bhattacharjee

    2016-06-01

    Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should to be performed to achieve better clinical result and to select an appropriate and effective antifungal therapy. High resistance to antifungal agents is an alarming sign to the healthcare professionals.

  16. Antibacterial and antifungal metal based triazole Schiff bases.

    Science.gov (United States)

    Chohan, Zahid H; Hanif, Muhammad

    2013-10-01

    A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.

  17. Plant antifungal proteins and their applications in agriculture.

    Science.gov (United States)

    Yan, Juan; Yuan, Su-Su; Jiang, Luan-Luan; Ye, Xiu-Juan; Ng, Tzi Bun; Wu, Zu-Jian

    2015-06-01

    Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.

  18. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Directory of Open Access Journals (Sweden)

    Erick A. Meneses

    2009-01-01

    Full Text Available The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM, dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1, (+-agathadiol (2 and epi-13-torulosol (3 were isolated as the main constituents from the active fractions.

  19. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Escuela de Quimica], e-mail: cmgarcia@unal.edu.co

    2009-07-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  20. Antifungal susceptibility profile of cryptic species of Aspergillus.

    Science.gov (United States)

    Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Cuenca-Estrella, Manuel

    2014-12-01

    The use of molecular tools has led to the description of new cryptic species among different Aspergillus species complexes. Their frequency in the clinical setting has been reported to be between 10 and 15%. The susceptibility to azoles and amphotericin B of many of these species is low, and some of them, such as Aspergillus calidoustus or Aspergillus lentulus, are considered multi-resistant. The changing epidemiology, the frequency of cryptic species, and the different susceptibility profiles make antifungal susceptibility testing an important tool to identify the optimal antifungal agent to treat the infections caused by these species.

  1. ANTIFUNGAL ACTIVITY OF HYBANTHUS ENNEASPERMUS ON WET CLOTHES

    Directory of Open Access Journals (Sweden)

    Arumugam Napoleon

    2011-04-01

    Full Text Available During rainy season, when clothes are not properly dried they develop spots. In clothes the spots appear as black or greenish black in color and these spots or mildews were cultured and microscopically examined. It was identified as fungi, viz. Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus. Antifungal activities of different extracts of Hybanthus enneaspermus were screened. The antifungal activity was graded, based on the zone of inhibition. Among the three extracts used for the present studies, methanolic extract exhibited the maximum growth inhibition, followed by chloroform and petroleum ether extract.

  2. Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines

    Directory of Open Access Journals (Sweden)

    Masoom Yasinzai

    2010-01-01

    Full Text Available A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  3. In Vitro antifungal potency of plant extracts against five phytopathogens

    Directory of Open Access Journals (Sweden)

    Ashwani Tapwal

    2011-12-01

    Full Text Available The antifungal activity of aqueous extract of Cannabis sativa, Parthenium hysterophorus, Urtica dioeca, Polystichum squarrosum and Adiantum venustum was investigated against Alternaria solani, Alternaria zinniae, Curvularia lunata, Rhizoctonia solani and Fusarium oxysporum at different concentrations (5, 10, 15 and 20%. At 20%, maximum antifungal potential was observed with the extracts of C. sativa, which recorded excellent inhibitory activity against C. lunata (100%, A. zinniae (59.68%, followed by leaf extract of P. hysterophorus (50% against A. solani. The application of botanical extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.

  4. Antifungal activity of three mouth rinses--in vitro study.

    Science.gov (United States)

    Abirami, C P; Venugopal, Pankajalakshmi V

    2005-01-01

    Mouthrinses are nowadays routinely included in the home care oral hygiene maintenance besides dentifrice/tooth paste. Mouthrinses prevent bacterial attachment and prevent or slow down bacterial proliferation. Fungal organisms have now gained more importance due to increased incidence of AIDS/HIV. This has necessitated for mouthrinses to possess antifungal activity also. The mouthrinses used were Povidone iodine ( Wokadine), Thymol with Eucalyptol and Benzoic acid (Listerine) and fluoride with Triclosan (Colgate Plax), which were tested against oral isolates of different species of Candida. The agar diffusion test was used to evaluate the inhibitory activity of the mouthrinses and all of them exhibited antifungal activity especially against Candida albicans.

  5. Recent advances in topical formulation carriers of antifungal agents.

    Science.gov (United States)

    Bseiso, Eman Ahmed; Nasr, Maha; Sammour, Omaima; Abd El Gawad, Nabaweya A

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.

  6. Recent advances in topical formulation carriers of antifungal agents

    Directory of Open Access Journals (Sweden)

    Eman Ahmed Bseiso

    2015-01-01

    Full Text Available Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.

  7. A study of antibiotic prescribing

    DEFF Research Database (Denmark)

    Jaruseviciene, L.; Radzeviciene-Jurgute, R.; Jurgutis, A.;

    2012-01-01

    Background. Globally, general practitioners (GPs) write more than 90% of all antibiotic prescriptions. This study examines the experiences of Lithuanian and Russian GPs in antibiotic prescription for upper respiratory tract infections, including their perceptions of when it is not indicated...... clinically or pharmacologically. Methods. 22 Lithuanian and 29 Russian GPs participated in five focus group discussions. Thematic analysis was used to analyse the data. Results. We identified four main thematic categories: patients' faith in antibiotics as medication for upper respiratory tract infections...... for upper respiratory tract infections. Conclusions. Understanding the nature of physician-patient interaction is critical to the effective pursuit of clinically grounded antibiotic use as this study undertaken in Lithuania and the Russian Federation has shown. Both physicians and patients must be targeted...

  8. Antibiotic resistance: An ethical challenge.

    Science.gov (United States)

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  9. Antibiotics, the pill, and pregnancy.

    OpenAIRE

    Mastrantonio, M; Minhas, H; Gammon, A.

    1999-01-01

    OBJECTIVES: To establish if advice concerning risks of pregnancy when taking oral contraceptive pill and antibiotics is being offered. METHOD: A retrospective audit of notes of 100 female patients aged 15-39 who were prescribed antibiotics. RESULTS: Documentation of use of contraception was noted in 3% of patients. Advice concerning risks and further precautions was noted in this 3% but not in any other records. CONCLUSION: The audit identified a gap in documentation and/or clinical practice ...

  10. Prophylactic antibiotics in orthopaedic surgery.

    Science.gov (United States)

    Prokuski, Laura; Clyburn, Terry A; Evans, Richard P; Moucha, Calin S

    2011-01-01

    The use of prophylactic antibiotics in orthopaedic surgery has been proven effective in reducing surgical site infections after hip and knee arthroplasty, spine procedures, and open reduction and internal fixation of fractures. To maximize the beneficial effect of prophylactic antibiotics, while minimizing any adverse effects, the correct antimicrobial agent must be selected, the drug must be administered just before incision, and the duration of administration should not exceed 24 hours.

  11. Expedient antibiotics production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  12. Antibiotic utilisation for hospitalised paediatric patients

    NARCIS (Netherlands)

    Luinge, K; Kimpen, JLL; van Houten, M.A.

    1998-01-01

    Antibiotics are among the most commonly prescribed drugs in paediatrics. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies a

  13. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    Directory of Open Access Journals (Sweden)

    Arjuna Nishantha ELLEPOLA

    2015-08-01

    Full Text Available AbstractPost-antifungal effect (PAFE of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candidamay undergo a brief exposure to antifungal drugs.Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated.Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively.Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively.Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans.

  14. Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces.

    Science.gov (United States)

    Chen, Shawn; Kinney, William A; Van Lanen, Steven

    2017-04-01

    Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.

  15. Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?

    LENUS (Irish Health Repository)

    Murphy, D M

    2010-03-01

    The macrolides are a class of antibiotics widely prescribed in infectious disease. More recently, there has been considerable interest in potential indications for these agents, in addition to their simple antibacterial indications, in a number of lung pathophysiologies.

  16. Candida urinary tract infection and Candida species susceptibilities to antifungal agents.

    Science.gov (United States)

    Osawa, Kayo; Shigemura, Katsumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2013-11-01

    The purpose of this study is to review Candida isolation from urine of urinary tract infection (UTI) patients over the recent 3 years at the Kobe University Hospital. We recorded the type of strain, the department where the patient was treated such as the intensive care unit (ICU), and combined isolation of Candida with other microorganisms. We investigated Candida isolation and susceptibilities to antifungal agents and analyzed the risk factors for combined isolation with other microorganisms. The most frequently isolated Candida was Candida albicans, which showed good (100%) susceptibilities to 5-fluorocytosine (5-FC) and fluconazole (FLCZ) but not to voriconazole (VRCZ), followed by C. glabrata. ICU was the greatest source of Candida-positive samples, and the most relevant underlying diseases of ICU patients were pneumonia followed by renal failure and post liver transplantation status. Combined isolation with other bacteria was seen in 27 cases (42.9%) in 2009, 25 (33.3%) in 2010 and 31 (31.3%) in 2011 and comparatively often seen in non-ICU patients. Other candidas than C. albicans showed significantly decreased susceptibility to FLCZ over these 3 years (P=0.004). One hundred (97.1%) of 103 ICU cases were given antibiotics at the time of Candida isolation, and the most often used antibiotics were cefazolin or meropenem. In conclusion, C. albicans was representatively isolated in Candida UTI and showed good susceptibilities to 5-FC, FLCZ and VRCZ, but other candidas than C. albicans showed significantly decreased susceptibility to FLCZ in the change of these 3 years.

  17. Dielectrophoretic assay of bacterial resistance to antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Juliana [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Huebner, Yvonne [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hull, Judith C [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom)

    2003-07-21

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  18. Antifungal property of quaternized chitosan and its derivatives.

    Science.gov (United States)

    Sajomsang, Warayuth; Gonil, Pattarapond; Saesoo, Somsak; Ovatlarnporn, Chitchamai

    2012-01-01

    Five water-soluble chitosan derivatives were carried out by quaternizing either iodomethane or N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat188) as a quaternizing agent under basic condition. The degree of quaternization (DQ) ranged between 28±2% and 90±2%. The antifungal activity was evaluated by using disc diffusion method, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) methods against Trichophyton rubrum (T. rubrum), Trichophyton mentagrophyte (T. mentagrophyte), and Microsporum gypseum (M. gypseum) at pH 7.2. All quaternized chitosans and its derivatives showed more effective against T. rubrum than M. gypseum and T. mentagrophyte. The MIC and MFC values were found to range between 125-1000 μg/mL and 500-4000 μg/mL, respectively against all fungi. Our results indicated that the quaternized N-(4-N,N-dimethylaminocinnamyl) chitosan chloride showed highest antifungal activity against T. rubrum and M. gypseum compared to other quaternized chitosan derivatives. The antifungal activity tended to increase with an increase in molecular weight, degree of quaternization and hydrophobic moiety against T. rubrum. However, the antifungal activity was depended on type of fungal as well as chemical structure of the quaternized chitosan derivatives.

  19. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    Science.gov (United States)

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.

  20. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  1. [Yeasts in domestic animals: species identification and susceptibility to antifungals].

    Science.gov (United States)

    Hamal, Petr; Koukalová, Dagmar

    2010-02-01

    Yeasts frequently colonize various kinds of domestic animals, but may also cause serious diseases. The aim of this study was to identify yeast isolates collected from dogs, cows and pigs, and to determine their in vitro antifungal susceptibility. Fifty-six yeast isolates from dogs (n = 24), cows (n = 20), and pigs (n = 12) were investigated. Appearance of colonies grown on Sabouraud agar, micromorphology on rice agar, as well as assimilation and fermentation of various carbon and nitrogen sources were evaluated. Susceptibility to six antifungals (flucytosine, amphotericin B, miconazole, ketoconazole, itraconazole and fluconazole) was determined semiquantitatively using the commercially available Fungitest kit (Bio-Rad Laboratories). Ten yeast species were identified in dogs with relatively even distribution. On the other hand, cow and pig were clearly dominated by Candida krusei (from 7 species) and Candida rugosa (from 5 species), respectively. Further, most of yeast isolates exhibited good susceptibility to the antifungals tested particularly to amphotericin B, ketoconazole and itraconazole. Based on results, it can be concluded that significant differences in the species spectrum and distribution were documented between groups of yeasts from dogs, cows and pigs. This is probably due to different environmental conditions and the endogenous origin of the yeast isolates. Mostly good susceptibility to systemic antifungals should positively influence the therapy of diseases caused by yeasts in veterinary medicine.

  2. New small-size peptides possessing antifungal activity

    NARCIS (Netherlands)

    Garibotto, Francisco M.; Garro, Adriana D.; Masman, Marcelo F.; Rodriguez, Ana M.; Luiten, Paul G. M.; Raimondi, Marcela; Zacchino, Susana A.; Somlai, Csaba; Penke, Botond; Enriz, Ricardo D.

    2010-01-01

    The synthesis, in vitro evaluation, and conformational study of a new series of small-size peptides acting as antifungal agents are reported. In a first step of our study we performed a conformational analysis using Molecular Mechanics calculations. The electronic study was carried out using Molecul

  3. Successful management of renal mucormycosis with antifungal therapy and drainage

    Directory of Open Access Journals (Sweden)

    Sudheer K Devana

    2016-01-01

    Full Text Available We report a case of isolated extensive renal mucormycosis in an immunocompetent adult, who was successfully managed conservatively without surgical debridement. To the best of our knowledge, this is the first case where antifungal therapy alone was sufficient even with such an extensive involvement.

  4. Therapeutic potential of antifungal plant and insect defensins

    NARCIS (Netherlands)

    Thevissen, K.; Kristensen, H.H.; Thomma, B.P.H.J.; Cammue, B.P.A.; François, I.E.J.A.

    2007-01-01

    To defend themselves against invading fungal pathogens, plants and insects largely depend on the production of a wide array of antifungal molecules, including antimicrobial peptides such as defensins. Interestingly, plant and insect defensins display antimicrobial activity not only against plant and

  5. Echinocandins: A ray of hope in antifungal drug therapy

    Directory of Open Access Journals (Sweden)

    Grover Neeta

    2010-01-01

    Full Text Available Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall. Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis. The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.

  6. [New developments in antifungal therapy: fluconazole, itraconazole, voriconazole, caspofungin

    NARCIS (Netherlands)

    Wout, J.W. van 't; Kuijper, E.J.; Verweij, P.E.; Kullberg, B.J.

    2004-01-01

    The azole antifungal voriconazole and the echinocandin caspofungin have recently become available for the treatment of invasive mycoses. Fluconazole remains the drug of choice for candidemia, except for infections with one of the resistent species such as Candida krusei and some strains of Candida g

  7. [Neonatal Candida infections and the antifungal susceptibilities of the related Candida species].

    Science.gov (United States)

    Altuncu, Emel; Bilgen, Hülya; Cerikçioğlu, Nilgün; Ilki, Arzu; Ulger, Nurver; Bakır, Mustafa; Akman, Ipek; Ozek, Eren

    2010-10-01

    Among nosocomial infections in the newborns, the incidence of fungal infections has been rising over the last decades. Fluconazole has been a new option for treatment however, expanded use of the drug brought up the development of resistance. In this study, species of the Candida isolates from neonates with candida infections, their antifungal susceptibilities and the effectiveness of the therapy were evaluated. All the species of Candida isolates from blood, urine and sterile body fluids of 54 neonates and their antifungal susceptibilities were evaluated retrospectively over the 13-year period. Demographic characteristics, risk factors, infection foci, Candida species causing infection and their in vitro susceptibilities for fluconazole (FCZ) and amphotericin B (AMB) and treatment responses were analyzed. The antifungal susceptibility testing of isolates was performed by microdilution technique. The median birth weight and gestational age of the study groups were 1735 (660-3990) g and 33 (24-40) weeks, respectively. Among the patients, 19 (35%) were term, while 35 (65%) were preterm [Candida spp. were isolated mostly from blood samples (63%), followed by urine (46%), cerebrospinal fluid (CSF; 5%), peritoneal fluid (3%) and endotracheal aspirate (2%). Multifocal growth was determined in 10 (18%) cases. The isolated species were C.albicans (n =36) as being the most common isolate followed by C.parapsilosis (n = 12), C.tropicalis (n = 1), C.kefyr (n = 1), C.lusitaniae (n = 1), C.pelluculosa (n = 1) and Candida spp. (n = 2). Prior antibiotic use, long term hospitalization, total parenteral nutrition and use of lipid solutions, prematurity and catheter use were determined as the most frequently associated factors causing candidal infections. A congenital abnormality, mainly myeloschisis and hydrocephaly, was detected in 18 (33%) of the cases. Overall FCZ resistance rate was 5.5% and the rate of resistance according to the species was 2.8% for C.albicans and 11% for non

  8. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    Science.gov (United States)

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Nobre Júnior, Hélio Vitoriano

    2016-06-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).

  9. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  10. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Rex, John H; Pappas, Peter G; Hamill, Richard J; Larsen, Robert A; Horowitz, Harold W; Powderly, William G; Hyslop, Newton; Kauffman, Carol A; Cleary, John; Mangino, Julie E; Lee, Jeannette

    2003-10-01

    Candida bloodstream isolates (n = 2,000) from two multicenter clinical trials carried out by the National Institute of Allergy and Infectious Diseases Mycoses Study Group between 1995 and 1999 were tested against amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFG) using the NCCLS M27-A2 microdilution method. All drugs were tested in the NCCLS-specified RPMI 1640 medium except for AMB, which was tested in antibiotic medium 3. A sample of isolates was also tested in RPMI 1640 supplemented to 2% glucose and by using the diluent polyethylene glycol (PEG) in lieu of dimethyl sulfoxide for those drugs insoluble in water. Glucose supplementation tended to elevate the MIC, whereas using PEG tended to decrease the MIC. Trailing growth occurred frequently with azoles. Isolates were generally susceptible to AMB, 5FC, and FLU. Rates of resistance to ITR approached 20%. Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.

  11. Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus.

    Science.gov (United States)

    Ross, Claudia; Opel, Viktoria; Scherlach, Kirstin; Hertweck, Christian

    2014-12-01

    Fungi-bacteria interactions can impact the course of fungal infection and biotechnological use. The mucoralean fungus Rhizopus microsporus, traditionally used in food fermentations (tempe and sufu), is frequently accompanied by Burkholderia gladioli pv. cocovenenans. When producing tempe bongkrek, the bacterial contamination can lead to lethal food-related intoxications caused by the respiratory toxin bongkrekic acid. To unveil the metabolic potential of the fungus-associated bacterium, we sequenced its genome, assigned secondary metabolite biosynthesis gene clusters and monitored the metabolic profile under various growth conditions. In addition to the bongkrekic acid biosynthesis gene cluster we found gene clusters coding for the biosynthesis of toxoflavin and a complex polyketide. The orphan polyketide synthase gene cluster was activated under conditions that emulate tempe production, which enabled isolation and structure elucidation of four members of the enacyloxin family of antibiotics, out of which one is new. Moreover, we found that the fungus positively influences the growth of the bacteria and dramatically increases bongkrekic acid production in stationary culture, which inhibits the growth of the fungus. These results showcase the context-dependent formation of antifungal and antibacterial agents at the fungal-bacterial interface, which may also serve as a model for scenarios observed in mixed infections.

  12. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility.

    Science.gov (United States)

    Mahmoudi, Shahram; Zaini, Farideh; Kordbacheh, Parivash; Safara, Mahin; Heidari, Mansour

    2016-08-01

    Sporotrichosis is a global subcutaneous fungal infection caused by the Sporothrix schenckii complex. Sporotrichosis is an uncommon infection in Iran, and there have been no phenotypic, molecular typing or antifungal susceptibility studies of Sporothrix species. This study aimed to identify nine Iranian isolates of the S. schenckii complex to the species level using colony morphology, carbohydrate assimilation tests, and PCR-sequencing of the calmodulin gene. The antifungal susceptibilities of these Sporothrix isolates to five antifungal agents (amphotericin B (AMB), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), and terbinafine (TRB)) were also evaluated according to the M27-A3 and M38-A2 protocols of the Clinical and Laboratory Standards Institute for yeast and mycelial phases, respectively. Five of seven clinical isolates were identified as S. schenckii, and two clinical and two environmental isolates were identified as S. globosa. This is the first report of S. globosa in Iran. There was significant agreement (73%) between the results of the phenotypic and genotypic identification methods. TRB and ITC were the most effective antifungals against the Sporothrix isolates. The minimum inhibitory concentration (MIC) values of TRB for the yeast and mycelial phases of S. schenckii differed significantly. There was also a significant difference in the minimum fungicidal concentration (MFC) values of AMB and TRB for the two phases. Considering the low efficacy of VRC and FLC and the wide MIC ranges of AMB (1-16 μg/ml and 1-8 μg/ml for yeast and mycelial forms, respectively) observed in the present study, in vitro antifungal susceptibility testing should be performed to determine appropriate therapeutic regimens.

  13. Economic considerations of antifungal prophylaxis in patients undergoing surgical procedures

    Directory of Open Access Journals (Sweden)

    Maria Adriana Cataldo

    2011-01-01

    Full Text Available Maria Adriana Cataldo, Nicola PetrosilloSecond Infectious Diseases Division, National Institute for Infectious Diseases, “Lazzaro Spallanzani”, Rome, ItalyAbstract: Fungi are a frequent cause of nosocomial infections, with an incidence that has increased significantly in recent years, especially among critically ill patients who require intensive care unit (ICU admission. Among ICU patients, postsurgical patients have a higher risk of Candida infections in the bloodstream. In consideration of the high incidence of fungal infections in these patients, their strong impact on mortality rate, and of the difficulties in Candida diagnosis, some experts suggest the use of antifungal prophylaxis in critically ill surgical patients. A clinical benefit from this strategy has been demonstrated, but the economic impact of the use of antifungal prophylaxis in surgical patients has not been systematically evaluated, and its cost–benefit ratio has not been defined. Whereas the costs associated with treating fungal infections are very high, the cost of antifungal drugs varies from affordable (ie, the older azoles to expensive (ie, echinocandins, polyenes, and the newer azoles. Adverse drug-related effects and the possibly increased incidence of fluconazole resistance and of isolates other than Candida albicans must also be taken into account. From the published studies of antifungal prophylaxis in surgical patients, a likely economic benefit of this strategy could be inferred, but its usefulness and cost–benefits should be evaluated in light of local data, because the available evidence does not permit general recommendations.Keywords: antifungal prophylaxis, cost-effectiveness, economics, surgery, fungal infection 

  14. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  15. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Science.gov (United States)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  16. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  17. Detection of antibiotic residues in poultry meat.

    Science.gov (United States)

    Sajid, Abdul; Kashif, Natasha; Kifayat, Nasira; Ahmad, Shabeer

    2016-09-01

    The antibiotic residues in poultry meat can pose certain hazards to human health among them are sensitivity to antibiotics, allergic reactions, mutation in cells, imbalance of intestinal micro biota and bacterial resistance to antibiotics. The purpose of the present paper was to detect antibiotic residue in poultry meat. During the present study a total of 80 poultry kidney and liver samples were collected and tested for detection of different antibiotic residues at different pH levels Eschericha coli at pH 6, 7 and Staphyloccocus aureus at pH 8 & 9. Out of 80 samples only 4 samples were positive for antibiotic residues. The highest concentrations of antibiotic residue found in these tissues were tetracycline (8%) followed by ampicilin (4%), streptomycine (2%) and aminoglycosides (1%) as compared to other antibiotics like sulfonamides, neomycine and gentamycine. It was concluded that these microorganism at these pH levels could be effectively used for detection of antibiotic residues in poultry meat.

  18. Antibiotic drugs targeting bacterial RNAs

    Directory of Open Access Journals (Sweden)

    Weiling Hong

    2014-08-01

    Full Text Available RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.

  19. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.

  20. Antibiotic Policies in the Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Nese Saltoglu

    2003-08-01

    Full Text Available The antimicrobial management of patients in the Intensive Care Units are complex. Antimicrobial resistance is an increasing problem. Effective strategies for the prevention of antimicrobial resistance in ICUs have focused on limiting the unnecessary use of antibiotics and increasing compliance with infection control practices. Antibiotic policies have been implemented to modify antibiotic use, including national or regional formulary manipulations, antibiotic restriction forms, care plans, antibiotic cycling and computer assigned antimicrobial therapy. Moreover, infectious diseases consultation is a simple way to limit antibiotic use in ICU units. To improve rational antimicrobial using a multidisiplinary approach is suggested. [Archives Medical Review Journal 2003; 12(4.000: 299-309

  1. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  2. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...

  3. Isobolographic analysis of pharmacodynamic interactions between antifungal agents and ciprofloxacin against Candida albicans and Aspergillus fumigatus.

    Science.gov (United States)

    Stergiopoulou, Theodouli; Meletiadis, Joseph; Sein, Tin; Papaioannidou, Paraskevi; Tsiouris, Ioannis; Roilides, Emmanuel; Walsh, Thomas J

    2008-06-01

    Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Assessment of pharmacodynamic interactions between antifungal and antibacterial agents is complicated by the absence of a common antifungal end point for both agents. Ciprofloxacin has no intrinsic antifungal activity but may interact with antifungal agents, since it inhibits DNA gyrase (topoisomerase II), which is abundant in fungi. We therefore employed isobolographic analysis adapted to incorporate a nonactive agent in order to analyze the potential in vitro interaction between the fluoroquinolone ciprofloxacin and several representative antifungal agents against Candida albicans and Aspergillus fumigatus strains by using a microdilution checkerboard technique. In agreement with earlier in vitro studies, conventional fractional inhibitory concentration index analysis was unable to detect interactions between ciprofloxacin and antifungal agents. However, isobolographic analysis revealed significant pharmacodynamic interactions between antifungal agents and ciprofloxacin against C. albicans and A. fumigatus strains. Amphotericin B demonstrated concentration-dependent interactions for both species, with synergy (interaction indices, 0.14 to 0.81) observed at ciprofloxacin concentrations of Isobolographic analysis may help to elucidate the pharmacodynamic interactions between antifungal and non-antifungal agents and to develop better management strategies against invasive candidiasis and aspergillosis.

  4. Synthesis and antifungal activity of derivatives of 2- and 3-benzofurancarboxylic acids.

    Science.gov (United States)

    Hejchman, Elzbieta; Ostrowska, Kinga; Maciejewska, Dorota; Kossakowski, Jerzy; Courchesne, William E

    2012-11-01

    We found that amiodarone has potent antifungal activity against a broad range of fungi, potentially defining a new class of antimycotics. Investigations into its molecular mechanisms showed amiodarone mobilized intracellular Ca2+, which is thought to be an important antifungal characteristic of its fungicidal activity. Amiodarone is a synthetic drug based on the benzofuran ring system, which is contained in numerous compounds that are both synthetic and isolated from natural sources with antifungal activity. To define the structural components responsible for antifungal activity, we synthesized a series of benzofuran derivatives and tested them for the inhibition of growth of two pathogenic fungi, Cryptococcus neoformans and Aspergillus fumigatus, to find new compounds with antifungal activity. We found several derivatives that inhibited fungal growth, two of which had significant antifungal activity. We were surprised to find that calcium fluxes in cells treated with these derivatives did not correlate directly with their antifungal effects; however, the derivatives did augment the amiodarone-elicited calcium flux into the cytoplasm. We conclude that antifungal activity of these new compounds includes changes in cytoplasmic calcium concentration. Analyses of these benzofuran derivatives suggest that certain structural features are important for antifungal activity. Antifungal activity drastically increased on converting methyl 7-acetyl-6-hydroxy-3-methyl-2-benzofurancarboxylate (2b) into its dibromo derivative, methyl 7-acetyl-5-bromo-6-hydroxy-3-bromomethyl-2-benzofurancarboxylate (4).

  5. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  6. Antibiotic associated diarrhoea: Infectious causes

    Directory of Open Access Journals (Sweden)

    Ayyagari A

    2003-01-01

    Full Text Available Nearly 25% of antibiotic associated diarrhoeas (AAD is caused by Clostridium difficile, making it the commonest identified and treatable pathogen. Other pathogens implicated infrequently include Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp. and Salmonella spp. Most mild cases of AAD are due to non-infectious causes which include reduced break down of primary bile acids and decrease metabolism of carbohydrates, allergic or toxic effects of antibiotic on intestinal mucosa and pharmacological effect on gut motility. The antibiotics most frequently associated with C. difficile associated diarrhoea are clindamycin, cephalosporin, ampicillin and amoxicillin. Clinical presentation may vary from mild diarrhoea to severe colitis and pseudomembranous colitis associated with high morbidity and mortality. The most sensitive and specific diagnostic test for C. difficile infection is tissue culture assay for cytotoxicity of toxin B. Commercial ELISA kits are available. Though less sensitive, they are easy to perform and are rapid. Withdrawal of precipitating antibiotic is all that is needed for control of mild to moderate cases. For severe cases of AAD, oral metronidazole is the first line of treatment, and oral vancomycin is the second choice. Probiotics have been used for recurrent cases.

  7. Use of antibiotics in children

    DEFF Research Database (Denmark)

    Pottegård, Anton; Broe, A.; Aabenhus, R.

    2015-01-01

    -1. There was little evidence of heavy users. Conclusion: Prescribing rate of antibiotics to children in Denmark remained stable at a high level from 2000 to 2012. An increase in the use of broad-spectrum beta-lactam penicillin was noted, but otherwise the prescribing pattern adhered well to National guidelines...

  8. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  9. Origins and evolution of antibiotic resistance.

    Science.gov (United States)

    Davies, Julian; Davies, Dorothy

    2010-09-01

    Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.

  10. Antibiotic 'Report Card' Drills Guidelines into Dentists

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160702.html Antibiotic 'Report Card' Drills Guidelines Into Dentists Seeing their ... HealthDay News) -- Dentists are less likely to prescribe antibiotics for patients after seeing a "report card" on ...

  11. Antibiotic Resistance in Human Chronic Periodontitis Microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    2014-01-01

    Background: Patients with chronic periodontitis (CP) may yield multiple species of putative periodontal bacterial pathogens that vary in their antibiotic drug susceptibility. This study determines the occurrence of in vitro antibiotic resistance among selected subgingival periodontal pathogens in pa

  12. Conventional and alternative antifungal therapies to oral candidiasis.

    Science.gov (United States)

    Anibal, Paula Cristina; de Cássia Orlandi Sardi, Janaina; Peixoto, Iza Teixeira Alves; de Carvalho Moraes, Julianna Joanna; Höfling, José Francisco

    2010-10-01

    Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS). These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  13. Conventional and alternative antifungal therapies to oral candidiasis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Anibal

    2010-12-01

    Full Text Available Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS. These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  14. Purification of castamollin, a novel antifungal protein from Chinese chestnuts.

    Science.gov (United States)

    Wang, H X; Ng, T B

    2003-11-01

    A novel antifungal protein, designated castamollin, was isolated from Chinese chestnut (Castanea mollisima) seeds with a procedure involving ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-Sepharose and FPLC-gel filtration on Superdex 75. Castamollin possessed a novel N-terminal sequence demonstrating little similarity to N-terminal sequences of Castanea sativa chitinase. Castamollin exhibited a molecular mass of 37kDa in gel filtration and SDS-PAGE. It inhibited the activity of human immunodeficiency virus-1 reverse transcriptase with an IC(50) of 7microM and translation in a cell-free rabbit reticulocyte lysate system with an IC(50) of 2.7microM. Castamollin displayed antifungal activity against Botrytis cinerea, Mycosphaerella arachidicola, Physalospora piricola, and Coprinus comatus but was devoid of lectin activity.

  15. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  16. THE IMPACT OF ANTIFUNGALS ON TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    Mircea Radu Mihu

    2014-03-01

    Full Text Available Fungi are increasingly recognized as major pathogens in immunocompromised individuals. The most common invasive fungal infections are caused by Candida spp., Aspergillus spp. and Cryptococcus spp. Amphotericin B has remained the cornerstone of therapy against many fulminant fungal infections but its use is limited by its multitude of side effects. Echinocandins are a newer class of antifungal drugs with activity against Candida spp. and Aspergillus spp. and constitutes an alternative to amphotericin B due to superior patient tolerability and fewer side effects. Due to their excellent bioavailability and oral availability, azoles continue to be heavily used for simple, such as fluconazole for candidal vaginitis, and complex diseases, such as voriconazole for aspergilloisis. The objective of this paper is to present current knowledge regarding the multiple interactions between the broad spectrum antifungals and the innate immune response, primarily focusing on the toll-like receptors.

  17. A Novel Infrared Radiant Glaze Exhibiting Antibacterialand Antifungal Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Infrared radiant powder was synthesized by conventional ceramic processing techniques by using Fe2O3, MnO2, CuO, Co2O3 and kaolin as raw materials. A novel infrared radiant glaze was developed by introducing the infrared radiant powder into glazing as a functional additive. Infrared radiant characteristics of the powder and the glaze were investigated. The optimum content of infrared radiant powder in glazing was ascertained to be 5%. The infrared radiant glaze exhibits significant antibacterial and antifungal functions due to the thermal effect of infrared radiation. Antibacterial percentages of the glaze reach 91%-100% when Escherichia coli, Staphylococcus aureus and Bacillus subtilis are used as model bacterium respectively, while antifungal percentage of the glaze exceeds 95% when Penicillum citrinum is used as model fungus.

  18. The antibiotics relo in bacteria resistance

    OpenAIRE

    Santana, Vinicius Canato; CESUMAR

    2007-01-01

    The paper explains how antibiotics help us to combat bacteriosis, and also presents a brief historical report about the emergence of the antibiotic era with the discovery of penicillin. It introduces the problem of bacteria resistance, and brings the concept of antibiotics and its that produce these substance, and brings the concept of antibiotics and its main function. It questions about the self-defense of the organisms that produce these substances. relates the bacteria structures attacked...

  19. Acquired antibiotic resistance genes: an overview.

    OpenAIRE

    Hoek, Angela H.A.M. van; Dik eMevius; Beatriz eGuerra; Peter eMullany; Adam Paul Roberts; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of anti...

  20. Squalamine: an aminosterol antibiotic from the shark.

    OpenAIRE

    1993-01-01

    In recent years, a variety of low molecular weight antibiotics have been isolated from diverse animal species. These agents, which include peptides, lipids, and alkaloids, exhibit antibiotic activity against environmental microbes and are thought to play a role in innate immunity. We report here the discovery of a broad-spectrum steroidal antibiotic isolated from tissues of the dogfish shark Squalus acanthias. This water-soluble antibiotic, which we have named squalamine, exhibits potent bact...

  1. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  2. Persistence of histoplasma in adrenals 7 years after antifungal therapy

    Directory of Open Access Journals (Sweden)

    Deepak Kothari

    2013-01-01

    Full Text Available Adrenal histoplasmosis is an uncommon cause for adrenal insufficiency. The duration of treatment for adrenal histoplasmosis is not clear. Existing treatment regimens advocate antifungals given for periods ranging from 6 months to 2 years. We report here a rare case who showed persistence of histoplasma in adrenal biopsy 7 years after being initially treated with itraconazole for 9 months. This calls for a prolonged therapy with regular review of adrenal morphology and histology in these patients.

  3. Antibacterial and antifungal activities of benzimidazole and benzoxazole derivatives.

    OpenAIRE

    Elnima, E I; Zubair, M U; Al-Badr, A A

    1981-01-01

    The in vitro antibacterial and antifungal activities of six benzimidazole and benzoxazole derivatives were tested against standard strains and 59 clinical isolates. Of the six compounds, only compounds II and III (both benzoxazoles) were active, whereas the rest were devoid of any activity. Considerable growth inhibition of all of the standard strains, including fungi and gram-positive and gram-negative bacteria, resulted when they were treated with these compounds. Fifty-nine clinical isolat...

  4. SUSCEPTIBILITY OF CANDIDA SPECIES TO ANTIFUNGAL DRUGS IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Geeta M Vaghela

    2015-06-01

    Full Text Available Introduction: The increase in candidaemia is associated with high mortality. A shift has been observed in the relative frequency of each Candida spp. isolated from blood. Options of the antifungal drugs available for treatment of systemic and invasive candidiasis are restricted to polyenes, allylamines, azoles and recently developed echinocandin class of molecules. A rise in the incidence of antifungal resistance to Candida spp. has also been reported over the past decade. Studies on prevalence of infections and antifungal susceptibility testing are useful in deciding clinical strategies. Aims: To do species level identification and detect resistance, if any, among Indian clinical isolates of C. albicans. Methodology: From total 135 patients from a tertiary care hospital of Gujarat, Candida species were isolated from different clinical specimens. The growth of Candida on Sabouraud's dextrose agar was confirmed by Gram staining in which gram positive budding fungal cells were observed. Then its growth was examined for colony morphology on Sabouraud's dextrose agar and chlamydospore production on Corn meal tween 80 agar. Germ tube tests and other biochemical tests like sugar fermentation, sugar assimilation and urease test were performed to identify the species of Candida. Antifungal susceptibility testing was performed by NCCLS M44-A Disc diffusion method. Results: Out of total 135 samples, C. Albicans were isolated from 52 (38.5%. Among Non Albican Candid (NAC, Candida glabrata was 36 (26.7% followed by Candida tropicalis 25(18.5%. C. albicans was found resistant to Fluconazole, Itraconazole and Amphotericine B in 3.8%, 3.8% and 1.9% cases respectively. For NAC, resistance of Fluconazole, Itraconazole and Amphotericine B was found in 4.8%, 3.6% and 2.4% cases respectively. [Natl J Med Res 2015; 5(2.000: 122-126

  5. Experimental evaluation of antifungal and antiseptic agents against Rhodotorula spp.

    Science.gov (United States)

    Preney, L; Théraud, M; Guiguen, C; Gangneux, J P

    2003-12-01

    We studied the susceptibility of 21 strains of Rhodotorula rubra and nine strains of R. glutinis to eight antifungals and tested eight antiseptic agents on one strain of R. rubra. The tested strains were susceptible to ketoconazole, 5-fluorocytosine, amphotericin B, and nystatin, intermediate to econazole and resistant to fluconazole, itraconazole and miconazole. After 5-min contact, six of the eight antiseptic agents tested showed a fungicidal activity on the tested R. rubra strain.

  6. Antifungal and anthelmintic activities of Cleistopholis patens (Annonaceae).

    Science.gov (United States)

    Akendengué, Blandine; Champy, Pierre; Nzamba, Joseph; Roblot, François; Loiseau, Philippe M; Bories, Christian

    2009-08-01

    Basic CH2Cl2 extract of the trunk bark of Cleistopholis patens (Annonaceae) exhibited antifungal activities against Candida albicans, C. parapsilosis, and C. glabrata using an agar well-diffusion assay method. Bioassay-guided fractionation of the extract led to the isolation of 8-hydroxysampangine. The methanolic extract displayed anthelmintic activity against Rhabditis pseudoelongata. Purification of the neutral CH2Cl2 extract yielded bornyl-p-transcoumarate and bornyl-p-cis-coumarate.

  7. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL.

  8. Antifungal activity of antifungal drugs, as well as drug combinations against Exophiala dermatitidis.

    Science.gov (United States)

    Sun, Yi; Liu, Wei; Wan, Zhe; Wang, Xiaohong; Li, Ruoyu

    2011-02-01

    To evaluate the in vitro efficacy of common antifungal drugs, as well as the interactions of caspofungin with voriconazole, amphotericin B, or itraconazole against the pathogenic black yeast Exophiala dermatitidis from China, the minimal inhibitory concentrations (MICs) of terbinafine, voriconazole, itraconazole, amphotericin B, fluconazole, and caspofungin against 16 strains of E. dermatitidis were determined by using CLSI broth microdilution method (M38-A2). The minimal fungicidal concentrations (MFCs) were also determined. Additionally, the interactions of caspofungin with voriconazole, amphotericin B, itraconazole or fluconazole, that of terbinafine with itraconazole, or that of fluconazole with amphotericin B were assessed by using the checkerboard technique. The fractional inhibitory concentration index (FICI) was used to categorize drug interactions as following, synergy, FICI ≤ 0.5; indifference, FICI > 0.5 and ≤4.0; or antagonism, FICI > 4.0. The MIC ranges of terbinafine, voriconazole, itraconazole, amphotericin B, fluconazole, and caspofungin against E. dermatitidis were 0.06-0.125 mg/l, 0.25-1.0 mg/l, 1.0-2.0 mg/l, 1.0-2.0 mg/l, 16-64 mg/l, and 32-64 mg/l, respectively. The in vitro interactions of caspofungin with voriconazole, amphotericin B, and itraconazole showed synergic effect against 10/16(62.5%), 15/16(93.75%), and 16/16(100%) isolates, while that of caspofungin with fluconazole showed indifference. Besides, the interaction of terbinafine with itraconazole as well as that of fluconazole with amphotericin B showed indifference. Terbinafine, voriconazole, itraconazole, and amphotericin B have good activity against E. dermatitidis. The combinations of caspofungin with voriconazole, amphotericin B or itraconazole present synergic activity against E. dermatitidis. These results provide the basis for novel options in treating various E. dermatitidis infections.

  9. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    1998-01-01

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  10. Delivery of antibiotics with polymeric particles.

    Science.gov (United States)

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2014-11-30

    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  11. Antibiotic susceptibility profiles of oral pathogens

    NARCIS (Netherlands)

    Veloo, A. C. M.; Seme, K.; Raangs, E.; Rurenga, P.; Singadji, Z.; Wekema-Mulder, G.; van Winkelhoff, A. J.

    2012-01-01

    Periodontitis is a bacterial disease that can be treated with systemic antibiotics. The aim of this study was to establish the antibiotic susceptibility profiles of five periodontal pathogens to six commonly used antibiotics in periodontics. A total of 247 periodontal bacterial isolates were tested

  12. Influence of population density on antibiotic resistance

    NARCIS (Netherlands)

    Bruinsma, N; Hutchinson, JM; van den Bogaard, AE; Giamarellou, H; Degener, J; Stobberingh, EE

    2003-01-01

    Antibiotic consumption and population density as a measure of crowding in the community were related to the prevalence of antibiotic resistance of three cities in three different countries: St Johns in Newfoundland (Canada), Athens in Greece and Groningen in The Netherlands. Antibiotic consumption w

  13. Response to "Antibiotic Use and Resistance"

    DEFF Research Database (Denmark)

    Malo, Sara; Rabanaque, María José; Feja, Christina;

    2014-01-01

    As mentioned, antibiotic consumption in heavy users, especially in children, is really striking. Certainly, our results revealed an antibiotic use in this age group higher than published in previous studies, and in line with different reports repeatedly presenting the high antibiotic consumption ...

  14. New business models for antibiotic innovation.

    Science.gov (United States)

    So, Anthony D; Shah, Tejen A

    2014-05-01

    The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.

  15. In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties

    Directory of Open Access Journals (Sweden)

    Supattra Suwanmanee

    2014-01-01

    Full Text Available Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC and diameter zone of inhibition were determined in each extract against ten fungal strains, and fluconazole was used as a positive control. The cytotoxicity of crude extracts on in vitro human skin fibroblast (HSF cell models was determined by MTT assay. Of the ten crude extracts, Psidium guajava L. exhibited the highest antifungal activity, diameter zone of inhibition, and percentage HSF cell viability. Although all extracts exhibited antifungal activity, Psidium guajava L. had the greatest potential for developing antifungal treatments.

  16. New and emerging antifungal agents: impact on respiratory infections.

    Science.gov (United States)

    Feldmesser, Marta

    2003-01-01

    Fungal pathogens are increasingly important causes of respiratory disease, yet the number of antifungal agents available for clinical use is limited. Use of amphotericin B deoxycholate is hampered by severe toxicity. Triazole agents currently available have significant drug interactions; fluconazole has a limited spectrum of activity and itraconazole was, until recently, available only in oral formulations with limited bioavailability. The development of resistance to all three agents is increasingly being recognized and some filamentous fungi are resistant to the action of all of these agents. In the past few years, new antifungal agents and new formulations of existing agents have become available.The use of liposomal amphotericin B preparations is associated with reduced, but still substantial, rates of nephrotoxicity and infusion-related reactions. An intravenous formulation of itraconazole has been introduced, and several new triazole agents have been developed, with the view of identifying agents that have enhanced potency, broader spectra of action and improved pharmacodynamic properties. One of these, voriconazole, has completed large-scale clinical trials. In addition, caspofungin, the first of a new class of agents, the echinocandins, which inhibit cell wall glucan synthesis, was approved for use in the US in 2001 as salvage therapy for invasive aspergillosis. It is hoped that the availability of these agents will have a significant impact on the morbidity and mortality of fungal respiratory infections. However, at the present time, our ability to assess their impact is limited by the problematic nature of conducting trials for antifungal therapy.

  17. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species

    Directory of Open Access Journals (Sweden)

    Gerard Vilarem

    2010-09-01

    Full Text Available The essential oil of the aerial part (leaves, flowers and stem of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%, p-cymene (23.4% and p-mentha-1,8-diène (15.3%. The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

  18. Antifungal and Antibacterial Metabolites from a French Poplar Type Propolis

    Science.gov (United States)

    Boisard, Séverine; Le Ray, Anne-Marie; Landreau, Anne; Kempf, Marie; Cassisa, Viviane; Flurin, Catherine; Richomme, Pascal

    2015-01-01

    During this study, the in vitro antifungal and antibacterial activities of different extracts (aqueous and organic) obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains: Candida albicans, C. glabrata, and Aspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains including Staphylococcus aureus. Organic extracts showed a significant antifungal activity against C. albicans and C. glabrata (MIC80 between 16 and 31 µg/mL) but only a weak activity towards A. fumigatus (MIC80 = 250 µg/mL). DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially against S. aureus (SA) and several of its methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains (MIC100 30–97 µg/mL). A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study. PMID:25873978

  19. An overview of antifungal peptides derived from insect.

    Science.gov (United States)

    Faruck, Mohammad Omer; Yusof, Faridah; Chowdhury, Silvia

    2016-06-01

    Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.

  20. Innovative phytosynthesized silver nanoarchitectures with enhanced antifungal and antioxidant properties

    Science.gov (United States)

    Ortan, Alina; Fierascu, Irina; Ungureanu, Camelia; Fierascu, Radu Claudiu; Avramescu, Sorin Marius; Dumitrescu, Ovidiu; Dinu-Pirvu, Cristina Elena

    2015-12-01

    While in the early era of nanotechnology, nanoparticles of noble metals were obtained through expensive methods, using toxic chemical reagents, in the last decade attempts are made to obtain the desired chemical composition, size, morphology, and other properties by eco and green synthesis, using plants. The aim of this paper is to compare two extraction methods (hydroalcoholic extraction and microwave extraction) used to phytosynthesize silver nanoparticles, in terms of nanoparticle (NP) morphology, antioxidant, and antifungal action, using an European native plant, Anthriscus cerefolium (L.) Hoffm. The extracts and the obtained NPs were characterized by modern analytical techniques (GC-MS, UV-Vis, SEM, TEM) and by phytochemical assays (total flavonoids, total terpenoids and total phenolic content). The antifungal activity (evaluated using the Kirby-Bauer method, against Aspergillus niger and Penicillium hirsutum) and the antioxidant activity (determined by the DPPH assay and a chemiluminescence assay) revealed notable differences between the samples, differences due to the extraction procedure followed. Also, preliminary studies regarding the stability and the toxicity of the nanoparticles are presented. By using the microwave-assisted extraction, not only smaller particles (less than 10 nm) were obtained, but also with better antifungal and antioxidant properties than the ones obtained by classical extraction.

  1. New constitutive latex osmotin-like proteins lacking antifungal activity.

    Science.gov (United States)

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.

  2. Synthesis and Biological Evaluation of Hydrazone Derivatives as Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Bruna B. Casanova

    2015-05-01

    Full Text Available Emerging yeasts are among the most prevalent causes of systemic infections with high mortality rates and there is an urgent need to develop specific, effective and non-toxic antifungal agents to respond to this issue. In this study 35 aldehydes, hydrazones and hydrazines were obtained and their antifungal activity was evaluated against Candida species (C. parapsilosis, C. tropicalis, C. krusei, C. albicans, C. glabrata and C. lusitaneae and Trichosporon asahii, in an in vitro screening. The minimum inhibitory concentrations (MICs of the active compounds in the screening was determined against 10 clinical isolates of C. parapsilosis and 10 of T. asahii. The compounds 4-pyridin-2-ylbenzaldehyde] (13a and tert-butyl-(2Z-2-(3,4,5-trihydroxybenzylidinehydrazine carboxylate (7b showed the most promising MIC values in the range of 16–32 μg/mL and 8–16 μg/mL, respectively. The compounds’ action on the stability of the cell membrane and cell wall was evaluated, which suggested the action of the compounds on the fungal cell membrane. Cell viability of leukocytes and an alkaline comet assay were performed to evaluate the cytotoxicity. Compound 13a was not cytotoxic at the active concentrations. These results support the discovery of promising candidates for the development of new antifungal agents.

  3. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.

  4. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  5. Antifungal susceptibility testing method for resource constrained laboratories

    Directory of Open Access Journals (Sweden)

    Khan S

    2006-01-01

    Full Text Available Purpose: In resource-constrained laboratories of developing countries determination of antifungal susceptibility testing by NCCLS/CLSI method is not always feasible. We describe herein a simple yet comparable method for antifungal susceptibility testing. Methods: Reference MICs of 72 fungal isolates including two quality control strains were determined by NCCLS/CLSI methods against fluconazole, itraconazole, voriconazole, amphotericin B and cancidas. Dermatophytes were also tested against terbinafine. Subsequently, on selection of optimum conditions, MIC was determined for all the fungal isolates by semisolid antifungal agar susceptibility method in Brain heart infusion broth supplemented with 0.5% agar (BHIA without oil overlay and results were compared with those obtained by reference NCCLS/CLSI methods. Results: Comparable results were obtained by NCCLS/CLSI and semisolid agar susceptibility (SAAS methods against quality control strains. MICs for 72 isolates did not differ by more than one dilution for all drugs by SAAS. Conclusions: SAAS using BHIA without oil overlay provides a simple and reproducible method for obtaining MICs against yeast, filamentous fungi and dermatophytes in resource-constrained laboratories.

  6. Pyridine-grafted chitosan derivative as an antifungal agent.

    Science.gov (United States)

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry.

  7. How can we improve antibiotic prescribing in primary care?

    NARCIS (Netherlands)

    Dyar, Oliver J.; Beović, Bojana; Vlahović-Palčevski, Vera; Verheij, Theo; Pulcini, Céline

    2016-01-01

    Antibiotic stewardship is a necessity given the worldwide antimicrobial resistance crisis. Outpatient antibiotic use represents around 90% of total antibiotic use, with more than half of these prescriptions being either unnecessary or inappropriate. Efforts to improve antibiotic prescribing need to

  8. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void?

    Science.gov (United States)

    Brown, David

    2015-12-01

    Concern over antibiotic resistance is growing, and new classes of antibiotics, particularly against Gram-negative bacteria, are needed. However, even if the scientific hurdles can be overcome, it could take decades for sufficient numbers of such antibiotics to become available. As an interim solution, antibiotic resistance could be 'broken' by co-administering appropriate non-antibiotic drugs with failing antibiotics. Several marketed drugs that do not currently have antibacterial indications can either directly kill bacteria, reduce the antibiotic minimum inhibitory concentration when used in combination with existing antibiotics and/or modulate host defence through effects on host innate immunity, in particular by altering inflammation and autophagy. This article discusses how such 'antibiotic resistance breakers' could contribute to reducing the antibiotic resistance problem, and analyses a priority list of candidates for further investigation.

  9. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis

    Science.gov (United States)

    Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  10. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    OpenAIRE

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M.

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expressio...

  11. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis.

    Science.gov (United States)

    Scorzoni, Liliana; de Paula E Silva, Ana C A; Marcos, Caroline M; Assato, Patrícia A; de Melo, Wanessa C M A; de Oliveira, Haroldo C; Costa-Orlandi, Caroline B; Mendes-Giannini, Maria J S; Fusco-Almeida, Ana M

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  12. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    OpenAIRE

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of d...

  13. Isolation, Phylogenetic Analysis and Antibiotic Activity Screening of Red Sea Sponge-Associated Actinobacteria

    KAUST Repository

    Yang, Chen

    2013-06-01

    Infectious disease has always been and will continue to be a heavy burden on human society worldwide. Terrestrial actinobacteria, notable as a source of antibiotics, have been well investigated in the past. In constrast, marine actinobacteria, especially sponge-associated species, have received much less attention and isolates are sparse. With the aim of studying and discovering novel marine actinobacteria, 11 different species of sponges were collected from the Central Red Sea in Saudi Arabia and cultured with three different types of media. 16S rRNA gene-sequencing revealed that among all 75 isolated bacterial strains 13 belonged to the order actinomycetales. These 13 actinomycetes fall into four different families and can be assigned to six different genera. Antibiotic activity tests using disc diffusion assay were performed against Gram-positive bacteria (Bacillus sp.), Gram-negative bacteria (Escherichia coli), fungi (Fusarium sp.) and West Nile virus NS3 protease. Nine strains presented different level of bioactivity against these pathogens. These findings provide evidence that actinomycetes are presented in marine sponges and that they have the potential to be good candidates in the search for new effective antibiotic, antifungal, and antiviral compounds.

  14. Screening of Actinomycete Isolates from Niche Habitats in Manipur for Antibiotic Activity

    Directory of Open Access Journals (Sweden)

    Debananda S. Ningthoujam

    2009-01-01

    Full Text Available Problem statement: The exhaustion of the usual terrestrial sources and the rise of resistant pathogens dictate the search for novel actinomycetes and new antibiotics. In this context, niche habitats such as caves, pristine forests, lakes, rivers, and other wetlands, high salt environments, marine ecosystems and endophytic niches are promising targets for survey of bioactive actinomycetes. Approach: Actinomycetes were isolated from several niche habitats in Manipur, India, on selective media such as SCNA and Chitin agar with or without antibiotics. Selected isolates were subjected to antimicrobial activity screening by Kirby-Bauer method. Results: 172 lake sediment (SCNA, LS1 series, 35 lake sediment (CA, LSCH series, 120 river (NRP, NRB and..series, 39 forest (AML series, 35 cave (KC1 series, 101 salt spring (NH, N3S and .. series, 46 Shirui jungle (SJ series and 66 Shirui hill (SH series actinomycetes isolates were obtained. Of 99 randomly selected isolates screened, 37 had antimicrobial activities against 1 or more indicator strains: 32 against Gram positive bacteria and 8 against Gram negative bacteria; 10 actinomycete strains were antimycotic and 3 had broad-spectrum antibiotic activities. About 18 potent antibacterial, 1 anti pseudomonas, 1 exclusively antifungal and 3 broad-spectrum antimicrobial actinomycetes were chosen for further studies. Conclusion: Niche habitats in Manipur especially wetlands show great promise for discovery of bioactive actinomycetes.

  15. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production.

    Science.gov (United States)

    Fazius, Felicitas; Zaehle, Christoph; Brock, Matthias

    2013-05-01

    Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.

  16. Biochemical studies on the Natamycin antibiotic produced by Streptomyces lydicus: Fermentation, extraction and biological activities

    Directory of Open Access Journals (Sweden)

    H.M. Atta

    2015-07-01

    Full Text Available Natamycin “polyene” antibiotic was isolated from the fermentation broth of a Streptomyces strain No. AZ-55. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain AZ-55 was identified as Streptomyces lydicus. It is active in vitro against some microbial pathogens viz: Staphylococcus aureus, NCTC 7447; Bacillus subtilis, NCTC 1040; Bacillus pumilus, NCTC 8214 ; Micrococcus luteus, ATCC 9341; Escherichia coli, NCTC 10416; Klebsiella pneumonia, NCIMB 9111; Salmonella typhi and Pseudomonas aeruginosa, ATCC 10145; S. cerevisiae, ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger, IMI 31276; Aspergillus fumigatus, ATCC 16424; Fusarium oxysporum; Alternaria alternata and Rhizoctonia solani. The active metabolite was extracted using chloroform (1:1, v/v at pH 7.0. The separation of the active ingredient of the antifungal agent and its purification were performed using both thin layer chromatography (TLC and column chromatography (CC techniques. The physico-chemical characteristics of the purified antibiotic viz. color, melting point, solubility, elemental analysis (C, H, N, O and S and spectroscopic characteristics (UV absorbance and IR, mass & NMR spectra have been investigated. This analysis indicates a suggested empirical formula of C33H47NO13. The chemical structural analysis with spectroscopic characteristics confirmed that the compound produced by S. lydicus, AZ-55 is Natamycin “polyene” antibiotic.

  17. Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?

    Directory of Open Access Journals (Sweden)

    Andrew J. Flewelling

    2013-12-01

    Full Text Available As the need for new and more effective antibiotics increases, untapped sources of biodiversity are being explored in an effort to provide lead structures for drug discovery. Endophytic fungi from marine macroalgae have been identified as a potential source of biologically active natural products, although data to support this is limited. To assess the antibiotic potential of temperate macroalgal endophytes we isolated endophytic fungi from algae collected in the Bay of Fundy, Canada and screened fungal extracts for the presence of antimicrobial compounds. A total of 79 endophytes were isolated from 7 species of red, 4 species of brown, and 3 species of green algae. Twenty of the endophytes were identified to the genus or species level, with the remaining isolates designated codes according to their morphology. Bioactivity screening assays performed on extracts of the fermentation broths and mycelia of the isolates revealed that 43 endophytes exhibited antibacterial activity, with 32 displaying antifungal activity. Endophytic fungi from Bay of Fundy macroalgae therefore represent a significant source of antibiotic natural products and warrant further detailed investigation.

  18. Surface modeling of soil antibiotics.

    Science.gov (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints.

  19. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance

    OpenAIRE

    Nishant A. Dafale; Uttam P. Semwal; Rupak K. Rajput; Singh, G. N.

    2016-01-01

    Antibiotics are the chemotherapeutic agents that kill or inhibit the pathogenic microorganisms. Resistance of microorganism to antibiotics is a growing problem around the world due to indiscriminate and irrational use of antibiotics. In order to overcome the resistance problem and to safely use antibiotics, the correct measurement of potency and bioactivity of antibiotics is essential. Microbiological assay and high performance liquid chromatography (HPLC) method are used to quantify the pote...

  20. Antifungal activity ofOcimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi

    Institute of Scientific and Technical Information of China (English)

    Balakumar S; Rajan S; Thirunalasundari T; Jeeva S

    2011-01-01

    Objective:To assess antifungal activity ofOcimum sanctum leaves against dermatophytic fungi. Methods: Antifungal activity ofOcimum sanctum leaves was measured by38 A NCCLS method. Minimum inhibitory concentration(MIC) and minimum fungicidal concentration(MFC) of various extracts and fractions ofOcimum sanctum leaves were also determined.Results:Ocimum sanctum leaves possessed antifungal activity against clinically isolated dermatophytes at the concentration of200μg/mL.MICandMFC were high with water fraction (200 μg/mL) against dermatophytic fungi used.Conclusions:Ocimum sanctum has antifungal activity, and the leaf extracts may be a useful source for dermatophytic infections.

  1. A technique for detecting antifungal activity of proteins separated by polyacrylamide gel electrophoresis.

    Science.gov (United States)

    De Bolle, M F; Goderis, I J; Terras, F R; Cammue, B P; Broekaert, W F

    1991-06-01

    A technique was developed for the detection of antifungal activity of proteins after discontinuous polyacrylamide gel electrophoresis under native conditions. The antifungal activity is detected as growth inhibition zones in a homogeneous fungal lawn, grown in an agar layer spread on top of the polyacrylamide gel. The position of proteins with antifungal activity can be determined on a diffusion blot prepared from the same gel. The technique is illustrated for three antifungal plant proteins, i.e. alpha-purothionin, Urtica dioica agglutinin, and tobacco chitinase.

  2. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough.

    Science.gov (United States)

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Peyer, Lorenzo C; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    This study was undertaken to assess the antifungal performance of three different Lactobacillus species.Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species.However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions.

  3. Antibiotic resistance in cancer patients.

    Science.gov (United States)

    Gudiol, Carlota; Carratalà, Jordi

    2014-08-01

    Bacterial infection is one of the most frequent complications in cancer patients and hematopoietic stem cell transplant recipients. In recent years, the emergence of antimicrobial resistance has become a significant problem worldwide, and cancer patients are among those affected. Treatment of infections due to multidrug-resistant (MDR) bacteria represents a clinical challenge, especially in the case of Gram-negative bacilli, since the therapeutic options are often very limited. As the antibiotics active against MDR bacteria present several disadvantages (limited clinical experience, higher incidence of adverse effects, and less knowledge of the pharmacokinetics of the drug), a thorough acquaintance with the main characteristics of these drugs is mandatory in order to provide safe treatment to cancer patients with MDR bacterial infections. Nevertheless, the implementation of antibiotic stewardship programs and infection control measures is the cornerstone for controlling the development and spread of these MDR pathogens.

  4. [Action of antibiotics as signalling molecules].

    Science.gov (United States)

    Bulgakova, V G; Vinogradova, K A; Orlova, T I; Kozhevin, P A; Polin, A N

    2014-01-01

    It was thought that antibiotics should be produced by soil microorganisms to inhibit the growth of competitors in natural habitats. Yet it has been shown that antibiotics at subinhibitory concentrations may have a role as signalling molecules providing cell-to-cell communication in bacteria in the environment. Antibiotics modulate gene transcription and regulate gene expression in microbial populations. Subinhibitory concentrations of antibiotics may cause a number of phenotypic and genotypic changes in microorganisms. These transcription changes are dependent on the interaction of antibiotics with macromolecular receptors such as ribosome or RNA-polymerase. Antibiotic signalling and quorum-sensing system are important regulatory mechanisms in bacteria. It was demonstrated that antibiotics interfered with quorum-sensing system.

  5. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24.

    Science.gov (United States)

    Grover, Minakshi; Nain, Lata; Singh, Shashi Bala; Saxena, Anil Kumar

    2010-02-01

    Bacillus subtilis strain RP24, isolated from rhizoplane of field grown pigeon pea, exhibited in vitro antagonism against a wide range of phytopathogenic fungi. An attempt was made to partially purify and characterize the diffusible antifungal metabolite/s produced by the strain RP24 and its negative mutant (NM) in potato dextrose medium. High performance liquid chromatography (HPLC) of partially purified extract of RP24 showed the presence of lipopeptide antibiotic iturin as a major peak that was comparable to that of standard iturin A (5.230 min) from Sigma-Aldrich whereas the corresponding peak was absent in extract of NM. The structure was further confirmed by liquid chromatographic mass spectrometric (LCMS) analysis as iturin A. LCMS analysis also showed the presence of surfactin and fengycin besides iturin A. Amplification of the lpa-14 (encodes the 4'-phosphopantetheinyl transferase required for the maturation of template enzyme of iturin A) and ituD (encodes a putative malonyl coenzyme A transacylase, whose disruption results in a specific deficiency in iturin A production) genes of iturin operon of strain RP24 was carried out and the sequences obtained were compared with the existing database of NCBI. The sequences of lpa-14 and ituD gene of RP24 showed 98% and 97% homology with lpa-14 and ituD genes of B. subtilis in the existing database. The results indicated that strain RP24 harbors iturin operon in its genome and a chemical mutation in this operon might have resulted in loss of antifungal activity in the negative mutant.

  6. Bacterial vaccines and antibiotic resistance

    OpenAIRE

    Henriques-Normark, Birgitta; Normark, Staffan

    2014-01-01

    Spread of antibiotic resistance is mediated by clonal lineages of bacteria that besides being resistant also possess other properties promoting their success. Some vaccines already in use, such as the pneumococcal conjugate vaccines, have had an effect on these successful clones, but at the same time have allowed for the expansion and resistance evolution of previously minor clones not covered by the vaccine. Since resistance frequently is horizontally transferred it will be difficult to gene...

  7. Phytochemical Analysis and Modulation of Antibiotic Activity by Luehea paniculata Mart. & Zucc. (Malvaceae) in Multiresistant Clinical Isolates of Candida Spp.

    Science.gov (United States)

    Calixto Júnior, João T.; Morais, Selene M.; Martins, Clécio G.; Vieira, Larissa G.; Morais-Braga, Maria Flaviana B.; Carneiro, Joara N. P.; Machado, Antonio J. P.; Menezes, Irwin R. A.; Tintino, Saulo R.; Coutinho, Henrique D. M.

    2015-01-01

    The high incidence of fungal infections has led to the continuous search for new drugs. Extracts of Luehea paniculata, a tree of multiple medicinal uses, were evaluated for anti-Candida activity, as well as its modulator potential of the Fluconazole antibiotic. Chemical prospecting of ethanol extracts of leaf and bark was carried out, the quantification of total phenols and flavonoids, characterized by the HPLC-DAD technique. The rosmarinic acid and the vitexin flavonoid were observed as major constituents in ELELP and ESWELP, respectively. Antioxidant activity was also evaluated by the method of scavenging the free radical DPPH, and quercetin was used as standard, obtaining IC50 values: 0.341 (mg/mL) for ELELP and 0.235 (mg/mL) for ESWELP. The microdilution assay was performed for antifungal activity against strains of Candida albicans, C. krusei, and C. tropicalis and showed minimum inhibitory concentrations values ≥1024 μg/mL. In the modulator action of extracts on Fluconazole against multiresistant clinical isolates of Candida (subinhibitory concentration minimum of 128 μg/mL), a significant synergism was observed, indicating that the extracts potentiated the antifungal effect against C. tropicalis, where antioxidant flavonoids could be responsible. This is the first report about modifying activity of the antibiotic action of a species of the genus Luehea. PMID:25821822

  8. Phytochemical analysis and modulation of antibiotic activity by Luehea paniculata Mart. & Zucc. (Malvaceae) in multiresistant clinical isolates of Candida spp.

    Science.gov (United States)

    Calixto Júnior, João T; Morais, Selene M; Martins, Clécio G; Vieira, Larissa G; Morais-Braga, Maria Flaviana B; Carneiro, Joara N P; Machado, Antonio J P; Menezes, Irwin R A; Tintino, Saulo R; Coutinho, Henrique D M

    2015-01-01

    The high incidence of fungal infections has led to the continuous search for new drugs. Extracts of Luehea paniculata, a tree of multiple medicinal uses, were evaluated for anti-Candida activity, as well as its modulator potential of the Fluconazole antibiotic. Chemical prospecting of ethanol extracts of leaf and bark was carried out, the quantification of total phenols and flavonoids, characterized by the HPLC-DAD technique. The rosmarinic acid and the vitexin flavonoid were observed as major constituents in ELELP and ESWELP, respectively. Antioxidant activity was also evaluated by the method of scavenging the free radical DPPH, and quercetin was used as standard, obtaining IC50 values: 0.341 (mg/mL) for ELELP and 0.235 (mg/mL) for ESWELP. The microdilution assay was performed for antifungal activity against strains of Candida albicans, C. krusei, and C. tropicalis and showed minimum inhibitory concentrations values ≥1024 μg/mL. In the modulator action of extracts on Fluconazole against multiresistant clinical isolates of Candida (subinhibitory concentration minimum of 128 μg/mL), a significant synergism was observed, indicating that the extracts potentiated the antifungal effect against C. tropicalis, where antioxidant flavonoids could be responsible. This is the first report about modifying activity of the antibiotic action of a species of the genus Luehea.

  9. Evaluation of Antibacterial and Antifungal Properties of Alchornea laxiflora (Benth. Pax. & Hoffman

    Directory of Open Access Journals (Sweden)

    David A. Akinpelu

    2015-01-01

    Full Text Available Alchornea laxiflora leaf extract was tested against a range of microorganisms using standard microbiological methods for antimicrobial activities. The extract inhibited the growth of all the bacterial and 15 fungal isolates tested. The zones of inhibition exhibited against the test bacteria ranged between 12 mm and 24 mm and between 11 mm and 24 mm for the extract and the antibiotic streptomycin, respectively. The zones of inhibition observed against the fungal isolates by the extract ranged between 12 mm and 23 mm. The minimum inhibitory concentrations (MICs and the minimum bactericidal concentrations (MBCs exhibited by the extract against test bacteria ranged between 0.78 mg/mL–25 mg/mL and 1.56 mg/mL–25 mg/mL, respectively, while the MICs and minimum fungicidal concentrations (MFCs values for the test fungi ranged between 8.75 mg/mL–35.00 mg/mL and 8.75 mg/mL–35.00 mg/L, respectively. The preliminary phytochemical screening of the extract revealed the presence of alkaloids, tannins, flavonoids, saponins, and reducing sugars as major phytoconstituents in the extract. A. laxiflora leaf extract is a potent source of antibacterial and antifungal compounds; further studies on the extract are ongoing in our laboratories to elucidate the probable mechanism(s of action on bacteria and fungi found to be susceptible to the extract.

  10. Antifungal agents. 4. Chemical modification of antibiotics from Polyangium cellulosum var. fulvum. Ester and amide analogues of ambruticin.

    Science.gov (United States)

    Connor, D T; von Strandtmann, M

    1979-09-01

    A series of ester and amide analogues of ambruticin (1) was prepared. The analogues were tested against Histoplasma capsulatum, Microsporum fulvum, Candida albicans and Streptococcus pyogenes. Structure-activity relationships are described.

  11. Chemoreactive Natural Products that Afford Resistance Against Disparate Antibiotics and Toxins.

    Science.gov (United States)

    Du, Lin; You, Jianlan; Nicholas, Kenneth M; Cichewicz, Robert H

    2016-03-18

    Microorganisms use chemical inactivation strategies to circumvent toxicity caused by many types of antibiotics. Yet in all reported cases, this approach is limited to enzymatically facilitated mechanisms that each target narrow ranges of chemically related scaffolds. The fungus-derived shikimate analogues, pericoxide and pericosine A, were identified as chemoreactive natural products that attenuate the antagonistic effects of several synthetic and naturally derived antifungal agents. Experimental and computational studies suggest that pericoxide and pericosine A readily react via SN 2' mechanisms against a variety of nucleophilic substances under both in vitro aqueous and in situ co-culture conditions. Many of the substitution products from this reaction were highly stable and exhibited diminished toxicities against environmental fungal isolates, including the Tolypocladium sp. strain that produced pericoxide and pericosine A.

  12. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism.

  13. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    Science.gov (United States)

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-03-02

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions.

  14. Antifungal activity of plant-based tinctures on Candida

    Directory of Open Access Journals (Sweden)

    Andreia Medeiros Rodrigues Cardoso

    2012-01-01

    Full Text Available Objective: To evaluate through determination of minimum inhibitory concentration (MIC the antifungal activity of Salvia officinalis (sage, Anacardium occidentale (cashew and Malva sylvestris (mallow tinctures on Candida albicans (ATCC 40227, C. tropicalis (ATCC 13803 and C. krusei (ATCC 40147. Material and methods: In 96-well microplates, 100 μl of Sabouraud-Dextrose broth doubly concentrated, 100 μl of the tested tinctures and 10 μl of fungal inoculums (1.5 x 106 organisms/ml were inserted. The products were diluted from initial concentration of 100 mg/ml until 0.78 mg/ml. MIC corresponded to the lowest dilution at which there was no visible fungal growth. Nystatin (100,000 UI/ml was used as control. Statistical analysis was performed by Kruskal-Wallis and Dunn tests (p < 0.05. Results: S. officinalis tincture did not inhibit the growth of C. albicans and C. tropicalis; MIC was 100 mg/ml for C. krusei. For A. occidentale, MIC was 100 mg/ml for C. albicans and C. krusei, and for C. tropicalis, there was no fungal inhibition. M. sylvestris tincture presented MIC at 25 mg/ml for C. krusei and 100 mg/ml for C. albicans and C. tropicalis. The best antifungal activity was showed by M. sylvestris tincture (p < 0.05. Conclusion: M. sylvestris tincture exhibited antifungal activity against all the tested strains at lower concentrations. S. officinalis tincture inhibited the action of C. krusei and A. occidentale tincture showed activity against C. albicans and C. tropicalis.

  15. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  16. [Recommendations of antifungal treatment in patients with low grade immunosuppression].

    Science.gov (United States)

    Barberán, J; Mensa, J; Fariñas, C; Llinares, P; Serrano, R; Menéndez, R; Agustí, C; Gobernado, M; Azanza, J R; García Rodríguez, J A

    2008-06-01

    Because of the relevance that the systemic mycoses has acquired in non-highly immunocompromised patients, the treatment difficulties they have due to the increase of the non-albicans Candida species and the need to have a better and more rational use of the new antifungal agents (voriconazole, posaconazole, caspofungin, anidulafungin and micafungin), an experts' panel on infectious diseases in representation of the Spanish Society of Chemotherapy, Spanish Society of Internal Medicine, and Spanish Society of Pneumology and Thoracic Surgery has met in order to make a few recommendations based on the scientific evidence in an effort to improve their efficiency.

  17. ANTIFUNGAL ACTIVITY OF SOME PLANT EXTRACT S AGAINST FUSARIUM SOLANI

    Directory of Open Access Journals (Sweden)

    S.K. BHARADWAJ

    2007-01-01

    Full Text Available The aqueous extracts of twenty plants were screened for their antifungal activity Fusarium solani, causal organism if Sudden Death Syndrome (SDS of Soybean (Glycine max wilt diseases, soft rot of potato. The maximum inhibitory effect was shown by leaf extracts of Camellia sinensis (67.17%, root extracts of Asparagus racemosus (54.43%. Some of the other plants showed moderate to intermediate inhibition against the mycelium growth of test fungi whcih varied in the following range Callistemon lanceolatus> Agegle marmelos> Azadirachta> Acacia catechu> Aloevera.

  18. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Directory of Open Access Journals (Sweden)

    Acosta-Torres LS

    2012-09-01

    Full Text Available Laura Susana Acosta-Torres,1 Irasema Mendieta,2 Rosa Elvira Nuñez-Anita,3 Marcos Cajero-Juárez,3 Víctor M Castaño41National School of Higher Education, School of Dentistry - Leon Unit, National Autonomus University of Mexico (UNAM, Leon, Guanajuato, 2Neurobiology Institute, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, 3Animal Biotechnology Laboratory, Faculty of Veterinary Medicine at San Nicolas de Hidalgo, Michoacán University, Michoacán, 4Molecular Materials Department, Applied Physics and Advanced Technology Center, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, MexicoBackground: Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work.Methods: Poly(methyl methacrylate [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay. Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles.Results: The results show that PMMA-silver nanoparticle discs

  19. Chemistry and antifungal potential of Alantolides from Inula racemosa H

    Indian Academy of Sciences (India)

    Dalvir Kataria; K K Chahal

    2013-01-01

    Alantolactone and isoalantolactone were isolated from powdered roots of Inula racemosa H. using Soxhlet extraction followed by the column chromatography. Pyrazolines of alantolactone and isoalantolactone were synthesized using diazomethane, diazoethane and diazopropane. The structure elucidation of the compounds were carried out using IR and 1H NMR spectroscopic techniques. All the compounds were screened in vitro for their antifungal potential at various concentrations against Alternaria brassicae and Penicillium italicum using spore germination inhibition technique and against Rhizoctonia solani by poisoned food technique. All the compounds exhibited fairly good fungitoxicity against the test fungi with ED50 values of less than 500 g mL-1.

  20. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi.

    Science.gov (United States)

    Rautenbach, Marina; Troskie, Anscha M; Vosloo, Johan A; Dathe, Margitta E

    2016-11-01

    The tyrocidines and analogues are cyclic decapeptides produced by Brevibacillus parabrevis with a conserved sequence of cyclo(D-Phe(1)-Pro(2)-X(3)-x(4)-Asn(5)-Gln(6)-X(7)-Val(8)-X(9)-Leu(10)) with Trp(3,4)/Phe(3,4) in the aromatic dipeptide unit, Lys(9)/Orn(9) as their cationic residue and Tyr (tyrocidines), Trp (tryptocidines) or Phe (phenicidines) in position 7. Previous studies indicated they have a broad antifungal spectrum with the peptides containing a Tyr residue in position 7 being more active than those with a Phe or Trp residue in this position. Detailed analysis of antifungal inhibition parameters revealed that Phe(3)-D-Phe(4) in the aromatic dipeptide unit lead to more consistent activity against the three filamentous fungi in this study. These peptides exhibited high membrane activity and fast leakage kinetics against model membranes emulating fungal membranes, with selectivity towards ergosterol containing membranes. More fluid membranes and doping of liposomes with the sphingolipid, glucosylceramide, led to a decreased permeabilising activity. Peptide-induced uptake of membrane impermeable dyes was observed in hyphae of both Fusarium solani and Botrytis cinerea, with uptake more pronounced at the hyphal growth tips that are known to contain ergosterol-sphigolipid rich lipid rafts. Tyrocidine interaction with these rafts may lead to the previously observed fungal hyperbranching. However, the leakage of model membranes and Bot. cinerea did not correlate directly with the antifungal inhibition parameters, indicating another target or mode of action. Proteinase K treatment of target fungi had a minimal influence or even improved the tyrocidine activity, ruling out a mannoprotein target in the fungal cell wall. β-glucanase treatment of Bot. cinerea did not significantly affect the tyrocidine activity, but there was a significant loss in activity towards the β-glucanase treated F. solani. This study showed the tyrocidine antifungal membrane activity is

  1. Pleurostrin, an antifungal peptide from the oyster mushroom.

    Science.gov (United States)

    Chu, K T; Xia, Lixin; Ng, T B

    2005-11-01

    A 7kDa peptide, with inhibitory activity on mycelial growth in the fungi Fusaerium oxysporum, Mycosphaerella arachidicola and Physalospora piricola, was isolated from fresh fruiting bodies of the oyster mushroom. The isolation procedure entailed extraction with an aqueous buffer, ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel and gel filtration by fast protein liquid chromatography on Superdex 75. The protein was unadsorbed on DEAE-cellulose and adsorbed on Affi-gel blue gel. It demonstrated an N-terminal sequence different from known antifungal proteins and peptides.

  2. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  3. Antifungal saponins from Swartzia langsdorffii; Saponinas antifungicas de Swartzia langsdorffii

    Energy Technology Data Exchange (ETDEWEB)

    Marqui, Sara Regina de; Lemos, Renata Brionizio; Santos, Luciana Avila; Castro-Gamboa, Ian; Cavalheiro, Alberto Jose; Bolzani, Vanderlan da Silva; Silva, Dulce Helena Siqueira [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: dhsilva@iq.unesp.br; Scorzoni, Liliana; Fusco-Almeida, Ana Maria; Mendes-Giannini, Maria Jose Soares [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Faculdade de Ciencias Farmaceuticas; Young, Maria Claudia Marx; Torres, Luce Maria Brandao [Inst. de Botanica, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2008-07-01

    Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-{beta}-D-(6'-methyl)-glucopyranosyl-28-O-{beta}-D-glucopyranosyl-oleanate. Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

  4. Antiviral, antifungal and antiprotozoal agents in the cinema.

    Science.gov (United States)

    García-Sánchez, Jose Elias; García-Sánchez, E; Merino Marcos, M L

    2007-03-01

    Among the antimicrobial agents, antibacterials are the most frequently mentioned in cinematographic plots. Nevertheless, it is not uncommon to come across other antiviral agents, especially antiretrovirals and antiprotozoals. We analyzed the presence of antiviral and antifungal agents in different commercial films, both when they were merely mentioned in passing and when they played a major role in the film. This review essentially aims to address the historical portrayal of these agents in film and to list their appearances. The fictional treatments that appear in some films are not addressed.

  5. In Vitro Investigation of Antifungal Activities of Actinomycetes against Microsporum gypseum

    Directory of Open Access Journals (Sweden)

    Naser Keikha

    2013-02-01

    Conclusion: The findings of the present research show that terrigenous actinomycetes have an antifungal effect upon Microsporum gypseum. So, one hopes that-in future-rather than administering antifungal chemicals that have side-effects, dermatophytic infections can be cured by applying these actinomycetes.

  6. The application of phenotypic microarray analysis to anti-fungal drug development.

    Science.gov (United States)

    Greetham, Darren; Lappin, David F; Rajendran, Ranjith; O'Donnell, Lindsay; Sherry, Leighann; Ramage, Gordon; Nile, Christopher

    2017-03-01

    Candida albicans metabolic activity in the presence and absence of acetylcholine was measured using phenotypic microarray analysis. Acetylcholine inhibited C. albicans biofilm formation by slowing metabolism independent of biofilm forming capabilities. Phenotypic microarray analysis can therefore be used for screening compound libraries for novel anti-fungal drugs and measuring antifungal resistance.

  7. Synthesis of quarternary ammonium salts with dithiocarbamate moiety and their antifungal activities against Helminthosporium oryzae

    Indian Academy of Sciences (India)

    Mandeep Singh; Anita Garg; Anjali Sidhu; Vineet Kumar

    2013-05-01

    Quaternary ammonium salts containing dithiocarbamate moiety were synthesized and evaluated for their antifungal activities against Helminthosporium oryzae. All the synthesized compounds showed moderate to promising fungitoxicity against the test. Some of the synthesized compounds inflicted antifungal activity greater than the standard fungicide.

  8. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  9. [Research on antifungal activity of flowers and leaves of Inula viscosa (Asteraceae)].

    Science.gov (United States)

    Cafarchia, C; De Laurentis, N; Milillo, M A; Losacco, V; Puccini, V

    1999-12-01

    The authors carried out a preliminary screening about the in vitro antifungal activity of some extracts of flowers and leaves of Inula viscosa obtained with different solvents. All extracts showed antifungal activity against dermatophytes and Candida species. The best results were obtained with Inula viscosa flowers extracts. These results may be ascribed to the different flavonoids and different flavonoid concentrations in our samples.

  10. Antifungal activities of the leaves of three Pistacia species grown in Turkey.

    Science.gov (United States)

    Kordali, S; Cakir, A; Zengin, H; Duru, M E

    2003-02-01

    The crude extracts obtained from the leaves of Pistacia vera, Pistacia terebinthus and Pistacia lentiscus were tested for antifungal activities against three pathogenic agricultural fungi, Phythium ultimum, Rhizoctania solani and Fusarium sambucinum. The extracts significantly inhibited the growth of P. ultimum and R. solani. However, the antifungal activity was not observed against F. sambucinum.

  11. Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus Aucuparia).

    Science.gov (United States)

    Brunner, Ulrich

    1985-01-01

    The food preservative sorbic acid can be extracted from Eurasian mountain ash berries (commercially available) and used to show antifungal properties in microbiological investigations. Techniques for extraction, purification, ultraviolet analysis, and experiments displaying antifungal activity are described. A systematic search for similar…

  12. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    Science.gov (United States)

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage.

  13. Antibacterial, antifungal, phytotoxic, and genotoxic properties of two complexes of Ag(I) with sulfachloropyridazine (SCP): X-ray diffraction of [Ag(SCP)]n.

    Science.gov (United States)

    Mosconi, Natalia; Giulidori, Cecilia; Velluti, Francesca; Hure, Estela; Postigo, Agustina; Borthagaray, Graciela; Back, Davi Fernando; Torre, María H; Rizzotto, Marcela

    2014-06-01

    We report the synthesis, characterization, antibacterial and antifungal activities, phytotoxicity, and genotoxicity of two new complexes of silver(I) with sulfachloropyridazine (SCP), one of which is heteroleptic with SCP and SCN(-) ligands (Ag-SCP-SCN), the other of which is homoleptic (Ag-SCP); furthermore, the crystal structure of the homoleptic complex is disclosed. The heterocyclic N atom nearest to the Cl atom and the N(sulfonamide) atom could be coordination sites for the silver ion in the Ag-SCP-SCN complex. The Ag-SCP complex is a polymeric compound with metal-metal bonds, and the heterocyclic and sulfonamide N atoms are points of coordination for Ag(I) . Both complexes showed activity against all the tested bacteria, and in the cases of Escherichia coli and Pseudomonas aeruginosa, the action was better than that of SCP. In all cases, both silver-SCP complexes showed better antifungal activity than SCP, which was inactive against the tested fungi. Notably, the activity against P. aeruginosa, a nosocomial multidrug-resistant pathogen, was better than that of the reference antibiotic cefotaxim. Both silver-sulfa complexes displayed moderate activity against the tested yeast, especially for C. neoformans, which is an important fact considering the incidence of cryptococcosis, mainly in immune-deficient patients. No chromosomal aberrations were observed with the Allium cepa test, which is auspicious for further study of these complexes as potential drugs.

  14. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy.

    Science.gov (United States)

    Lee, Sie Huey; Teo, Jeanette; Heng, Desmond; Ng, Wai Kiong; Zhao, Yanli; Tan, Reginald B H

    2016-04-01

    Respiratory lung infections due to multidrug-resistant (MDR) superbugs are on a global upsurge and have very grim clinical outcomes. Their MDR profile makes therapeutic options extremely limited. Although a highly toxic antibiotic, colistin, is favored today as a "last-line" therapeutic against these hard-to-treat MDR pathogens, it is fast losing its effectiveness. This work therefore seeks to identify and tailor-make useful combination regimens (that are potentially rotatable and synergistic) as attractive alternative strategies to address the rising rates of drug resistance. Three potentially rotatable ternary dry powder inhaler constructs (each involving colistin and 2 other different-classed antibiotics chosen from rifampicin, meropenem, and tigecycline) were identified (with distinct complementary killing mechanisms), coformulated via spray drying, evaluated on their aerosol performance using a Next-Generation Impactor and tested for their efficacies against a number of MDR pathogens. The powder particles were of respirable size (d50, 3.1 ± 0.3 μm-3.4 ± 0.1 μm) and predominantly crumpled in morphology. When dispersed via a model dry powder inhaler (Aerolizer(®)) at 60 L/min, the powders showed concomitant in vitro deposition with fine particle fractions of ∼53%-70%. All formulations were successfully tested in the laboratory to be highly effective against the MDR pathogens. In addition, a favorable synergistic interaction was detected across all 3 formulations when tested against MDR Pseudomonas aeruginosa.

  15. Insights into antibiotic resistance through metagenomic approaches.

    Science.gov (United States)

    Schmieder, Robert; Edwards, Robert

    2012-01-01

    The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches.

  16. Antibiotic Prescription in Danish General Practice

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Plejdrup Hansen, Malene; Pedersen, Line Bjørnskov

    2016-01-01

    are increasing. 2. Method The study consists of a registry study and a questionnaire study. The registry study is based on data from the Register of Medicinal Product Statistics (prescribed antibiotics), Statistics Denmark (socio-demographic data) and the Danish Microbiology Database (performed MDM). The project......1. Background & Aim The overall aim of the project is to describe antibiotic consumption in Danish general practice with emphasis on specific types of antibiotics. The project will shed light on the impact of microbiological diagnostic methods (MDM) on the choice of antibiotic and the project...... will explore how the GPs prescription behaviour is influenced by selected factors. Antibiotics are essential when treating potentially lethal infections. An increasing development of resistant bacteria is considered one of the primary threats to public health. The majority of antibiotics (90%) are prescribed...

  17. New antibiotic therapies for acne and rosacea.

    Science.gov (United States)

    Mays, Rana Majd; Gordon, Rachel A; Wilson, Janice M; Silapunt, Sirunya

    2012-01-01

    Acne and rosacea compromise a substantial portion of the dermatology clinical practice. Over the past century, many treatment modalities have been introduced with antibiotics playing a major role. Today, both oral and topical antibiotics are used in the management of acne and rosacea, with several novel formulations and/or combination regimens recently introduced. The latest studies suggest anti-inflammatory actions to be the most likely mechanism of antibiotics in acne and rosacea, shifting the focus to subantimicrobial-dose oral antibiotics and/or topical antibiotic regimens as the preferred first-line agents. Here we will discuss the most recent oral and topical antibiotic therapies available for treatment of acne and rosacea, with special focus on efficacy data, indication, dosing, and mechanism of action.

  18. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014.

    Directory of Open Access Journals (Sweden)

    HaiKuan Wang

    Full Text Available Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds.

  19. Antifungal activity of essential oils from leaves and flowers of Inula viscosa (Asteraceae) by Apulian region.

    Science.gov (United States)

    Cafarchia, C; De Laurentis, N; Milillo, M A; Losacco, V; Puccini, V

    2002-12-01

    Some essential oils from several plants (Artemisia verlotorum, Lavandula augustifolia, Ocimum gratissimum) have proved to have acaricidal, antifungal and antibacterial activity. Inula viscosa Ait. (Asteraceae), a plant growing spontaneously in the Mediterranean area, is currently used by popular medicine for its therapeutic effects. Flavonoids, azulenes, sesquiterpenes, and essential oils have been isolated and identified from its leaves. This paper reports the results of the composition and antifungal activity in vitro against dermatophytes and Candida spp. of the four essential oils obtained by steam distillation of the leaves, flowers, whole plant and whole plants without flower extracts of I. viscosa. All the extracts proved to have a significant antifungal activity against dermatophytes even at low concentrations (0.01 mg/ml). The leaf extracts exhibited the greatest antifungal efficacy. The high concentration of the sesquiterpene (carboxyeudesmadiene), occurring in the leaf extracts, may explain its greater antifungal activity.

  20. MICROORGANISMS ANTIBIOTIC SENSITIVITY DETERMINATION IN URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    Shapovalova O.V.

    2016-06-01

    Full Text Available Introduction. Nowadays Urinary tract infections (UTI are considered to be the most common bacterial infections. Escherichia coli is the most frequently uropathogen. Other microorganisms of the genera Enterococcus, Klebsiella, Enterobacter, Proteus, Morganella, Citrobacter, Serratia, Pseudomonas, Streptococcus, Staphylococcus, Candida are also isolated with variable frequency. In recent years there has been a decreasing tendency of the causative agents of UTI sensitivity to various antibiotics, which causes growth of an inefficiency treatment risk. In connection with the above the investigations were carried out with the purpose to identify the actual causative agents of bacteriuria and their sensitivity to antibiotics and antifungal drugs. Materials and methods. Bacteriological examination of urine was performed at 42 patients of SI "Sytenko Institute of Spine and Joint Pathology, AMS of Ukraine" clinic. The bacteriological method for determining the number of bacteria in the test material, cultural and bacterioscopic methods for identifying microorganisms and disk-diffusion method for sensitivity of microorganisms to antibiotics determining were used. The clinical material for the study was an average portion of the morning urine or urine collected by catheter. The biological material collection and bacteriological examination was carried by quantitative method, the isolated microorganisms identification and their sensitivity to antibiotics determining was performed by standard methods in accordance with current guidelines. We used the following antibiotics group to determine the microorganisms sensitivity: penicillin, cephalosporin, karbapenems, tetracyclines, aminoglycoside, fluoroquinolones, oxazolidinones, macrolides, lincosamides, glycopeptides, antifungal antibiotics. Results and discussion. During the biological material study 55 isolates of bacterial and fungal pathogens were obtained. The microorganisms’ concentration in urine was in

  1. Proteasome inhibitory activity of thiazole antibiotics

    OpenAIRE

    Pandit, Bulbul; Bhat, Uppoor; Andrei L Gartel

    2011-01-01

    Thiopeptides are sulfur containing highly modified macrocyclic antibiotics with a central pyridine/tetrapyridine/dehydropiperidine ring with up to three thiazole substituents on positions 2, 3 and 6. Thiazole antibiotics with central pyridine nucleus have a macrocyclic loop connecting thiazole rings at position 2 and 3 described as ring A. In addition antibiotics with central tetrahydropyridine nucleus have a quinaldic acid macrocycle also connected to thiazole on position 2 described as ring...

  2. Priorities for antibiotic resistance surveillance in Europe

    DEFF Research Database (Denmark)

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies...... to the various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... of antibiotic resistance....

  3. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  4. Antifungal susceptibilities of non-Aspergillus filamentous fungi causing invasive infection in Australia: support for current antifungal guideline recommendations.

    Science.gov (United States)

    Halliday, Catriona L; Chen, Sharon C-A; Kidd, Sarah E; van Hal, Sebastian; Chapman, Belinda; Heath, Christopher H; Lee, Andie; Kennedy, Karina J; Daveson, Kathryn; Sorrell, Tania C; Morrissey, C Orla; Marriott, Deborah J; Slavin, Monica A

    2016-10-01

    Antifungal susceptibilities of non-Aspergillus filamentous fungal pathogens cannot always be inferred from their identification. Here we determined, using the Sensititre(®) YeastOne(®) YO10 panel, the in vitro activities of nine antifungal agents against 52 clinical isolates of emergent non-Aspergillus moulds representing 17 fungal groups in Australia. Isolates comprised Mucorales (n = 14), Scedosporium/Lomentospora spp. (n = 18) and a range of hyaline hyphomycetes (n = 9) and other dematiaceous fungi (n = 11). Excluding Verruconis gallopava, echinocandins demonstrated poor activity (MICs generally >8 mg/L) against these moulds. Lomentospora prolificans (n = 4) and Fusarium spp. (n = 6) demonstrated raised MICs to all antifungal drugs tested, with the lowest being to voriconazole and amphotericin B (AmB), respectively (geometric mean MICs of 3.4 mg/L and 2.2 mg/L, respectively). All Scedosporium apiospermum complex isolates (n = 14) were inhibited by voriconazole concentrations of ≤0.25 mg/L, followed by posaconazole and itraconazole at ≤1 mg/L. Posaconazole and AmB were the most active agents against the Mucorales, with MIC90 values of 1 mg/L and 2 mg/L, respectively, for Rhizopus spp. For dematiaceous fungi, all isolates were inhibited by itraconazole and posaconazole concentrations of ≤0.5 mg/L (MIC90, 0.12 mg/L and 0.25 mg/L, respectively), but voriconazole and AmB also had in vitro activity (MIC90, 0.5 mg/L and 1 mg/L, respectively). Differences in antifungal susceptibility within species and between species within genera support the need for testing individual patient isolates to guide therapy. The Sensititre(®) YeastOne(®) offers a practical alternative to the reference methodology for susceptibility testing of moulds.

  5. Antibiotics and antibiotic resistance in agroecosystems: Cultural methods and gaps in knowledge

    Science.gov (United States)

    Varying cultural methodologies are used in assessment of antibiotic resistance in environmental samples. Culture based methods commonly involve isolation of target bacteria on general or selective media, and assessing growth in response to specific concentrations of antibiotics. Though time consumin...

  6. Bactericidal antibiotics induce programmed metabolic toxicity

    Directory of Open Access Journals (Sweden)

    Aislinn D. Rowan

    2016-03-01

    Full Text Available The misuse of antibiotics has led to the development and spread of antibiotic resistance in clinically important pathogens. These resistant infections are having a significant impact on treatment outcomes and contribute to approximately 25,000 deaths in the U.S. annually. If additional therapeutic options are not identified, the number of annual deaths is predicted to rise to 317,000 in North America and 10,000,000 worldwide by 2050. Identifying therapeutic methodologies that utilize our antibiotic arsenal more effectively is one potential way to extend the useful lifespan of our current antibiotics. Recent studies have indicated that modulating metabolic activity is one possible strategy that can impact the efficacy of antibiotic therapy. In this review, we will address recent advances in our knowledge about the impacts of bacterial metabolism on antibiotic effectiveness and the impacts of antibiotics on bacterial metabolism. We will particularly focus on two studies, Lobritz, et al. (PNAS, 112(27: 8173-8180 and Belenky et al. (Cell Reports, 13(5: 968–980 that together demonstrate that bactericidal antibiotics induce metabolic perturbations that are linked to and required for bactericidal antibiotic toxicity.

  7. Antibiotic treatments and microbes in the gut.

    Science.gov (United States)

    Macfarlane, Sandra

    2014-04-01

    Antibiotic therapies are important in combating disease-causing microorganisms and maintaining host health. It is widely accepted that exposure of the gut microbiota to antibiotics can lead to decreased susceptibility and the development of multi-drug-resistant disease-causing organisms, which can be a major clinical problem. It is also important to consider that antibiotics not only target pathogenic bacteria in the gut, but also can have damaging effects on the ecology of commensal species. This can reduce intrinsic colonization resistance and contribute to problems with antibiotic resistance, including lateral transfer of resistance genes. Our knowledge of the impact of antibiotic treatment on the ecology of the normal microbiota has been increased by recent advances in molecular methods and use of in vitro model systems to investigate the impact of antibiotics on the biodiversity of gut populations and the spread of antibiotic resistance. These highlight the need for more detailed structural and functional information on the long-term antibiotic-associated alterations in the gut microbiome, and spread of antibiotic resistance genes. This will be crucial for the development of strategies, such as targeted therapeutics, probiotics, prebiotics and synbiotics, to prevent perturbations in the gut microbiota, the restoration of beneficial species and improvements in host health.

  8. Distribution and antifungal susceptibility of Candida species causing nosocomial candiduria.

    Science.gov (United States)

    Ozhak-Baysan, Betil; Ogunc, Dilara; Colak, Dilek; Ongut, Gozde; Donmez, Levent; Vural, Tumer; Gunseren, Filiz

    2012-07-01

    The aim of the study was to investigate the distribution of Candida species isolated from urine specimens of hospitalized patients in Akdeniz University Hospital, Antalya, Turkey, as well as their susceptibilities to antifungal agents. A total of 100 patients who had nosocomial candiduria between March 2003 and May 2004 at the facility were included in the study. Organisms were identified by conventional methods and the use of API ID 32C strips. Susceptibilities of the isolates to amphotericin B were determined by Etest, whereas the minimum inhibitory concentration (MIC) values of these same strains to fluconazole, voriconazole and caspofungin were assessed using the broth microdilution method. The most common species recovered was C. albicans 44% of all yeasts, followed by C. tropicalis (20%), C. glabrata (18%), C. krusei (6%), C. famata (5%), C. parapsilosis (4%), C. kefyr (2%) and C. guilliermondii (1%). A total of nine (9%) of the isolates, including five C. krusei and four C. glabrata isolates were susceptible dose-dependent (SDD) to fluconazole. In constrast, only two C. glabrata and one C. krusei isolates were resistant to this antifungal. The voriconazole MICs for all Candida isolates were ≤0.5 μg/ml, except for one C. glabrata isolate with a MIC value of 2 μg/ml. Among all isolates, 94% were susceptible to amphotericin B with MIC values of Candida urinary tract infections.

  9. Treatment of dermatophytosis by a new antifungal agent 'apigenin'.

    Science.gov (United States)

    Singh, Geeta; Kumar, Padma; Joshi, Suresh Chandra

    2014-08-01

    Dermatophytes are the most common causative agents of cutaneous mycosis and remain a major public health problem in spite of the availability of an increasing number of antifungal drugs. It was, therefore considered necessary to pursue the screening of different extracts (compounds) of selected traditional medicinal plants reportedly having antidermatophyte potential. The aim of this study was to isolate and identify specific compound from the most active extract (free flavonoid) of stem of Terminalia chebula of the selected plants to treat dermatophytosis induced on experimental mice. Mice which were experimentally induced with Trichophyton mentagrophytes were grouped in six of five animals each. To treat the lesions on infected mice, two concentrations of isolated apigenin ointment, i.e. 2.5 mg g(-1) (Api I) and 5 mg g(-1) (Api II), and terbinafine (standard) of concentration 5 mg g(-1) were used. Complete recovery from the infection was recorded on 12th day of treatment for reference drug Terbinafine and Api II (5 mg g(-1) ) concentration of ointment, whereas Api I (2.5 mg g(-1) ) ointment showed complete cure on 16th day of treatment. Fungal burden was also calculated by culturing skin scraping from infected mice's of different groups. Apigenin has shown potency as the infected animals recover completely by Api II comparable to the standard drug in 12th day. So Apigenin can be explored as an antifungal agent in the clinical treatment of dermatophytosis in future.

  10. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  11. Antibacterial and antifungal activities of some Mexican medicinal plants.

    Science.gov (United States)

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  12. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review

    Directory of Open Access Journals (Sweden)

    Lluís Palou

    2015-12-01

    Full Text Available According to their origin, major postharvest losses of citrus fruit are caused by weight loss, fungal diseases, physiological disorders, and quarantine pests. Cold storage and postharvest treatments with conventional chemical fungicides, synthetic waxes, or combinations of them are commonly used to minimize postharvest losses. However, the repeated application of these treatments has led to important problems such as health and environmental issues associated with fungicide residues or waxes containing ammoniacal compounds, or the proliferation of resistant pathogenic fungal strains. There is, therefore, an increasing need to find non-polluting alternatives to be used as part of integrated disease management (IDM programs for preservation of fresh citrus fruit. Among them, the development of novel natural edible films and coatings with antimicrobial properties is a technological challenge for the industry and a very active research field worldwide. Chitosan and other edible coatings formulated by adding antifungal agents to composite emulsions based on polysaccharides or proteins and lipids are reviewed in this article. The most important antifungal ingredients are selected for their ability to control major citrus postharvest diseases like green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, and include low-toxicity or natural chemicals such as food additives, generally recognized as safe (GRAS compounds, plant extracts, or essential oils, and biological control agents such as some antagonistic strains of yeasts or bacteria.

  13. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  14. Onychomycosis: Potential of Nail Lacquers in Transungual Delivery of Antifungals

    Directory of Open Access Journals (Sweden)

    Nida Akhtar

    2016-01-01

    Full Text Available Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis.

  15. 56. Synthesis and Prokaryotic Expression of Insect Antifungal Gene (Thanatin)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thanatin of podisus maculiventr is one of the six Insect antifugal peptides that have been found in the recent years. It is an induced peptide composed of 21 amino acids not only exhibits a large antifungal spectrum, but shows antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria as well. The cDNA sequence was designed based on the amino acid sequence of Thanatin. The Thanatin gene was obtained through oligodeoxynucletides synthesis and PCR amplifying. The PCR product was cloned into the pGEM-T Easy vector by means of T-A pairing direct molecular cloning method. The synthesized thanatin gene was proved correct by DNA sequence analysis. The thanatin gene of 87 bp was subcloned into the pET-21 d vector through the linkage of the cohesive ends. The recombinant expression vector pET-21 d-th was constructed. The recombinant expression plasmid pET-21d-th was transformed into E.coli BL21(DE3) and the thanatin gene was expressed in fusion form when induced by IPTG. The transcript activity of the thanatin gene in induced cells was verified by two method of RT-PCR and Dot-blotting. We determined bio-activity of its expression product by agar plate assay. The results showed that the expression products of thanatin gene exhibit antifungal activity against the two pathogenic fungi: Aspergillus fumigatus and Tricholderma riricle.

  16. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance.

    Science.gov (United States)

    Ajesh, K; Sreejith, K

    2012-12-01

    A great number of fungal infections are related to biofilm formation on inert or biological surfaces, which are recalcitrant to most treatments and cause human mortality. Cryptococcus laurentii has been diagnosed as the aetiological pathogen able to cause human infections mainly in immunosuppressed patients and the spectrum of clinical manifestations ranges from skin lesions to fungaemia. The effect of temperature, pH and surface preconditioning on C. laurentii biofilm formation was determined by 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. Scanning electron microscopic (SEM) analysis of C. laurentii biofilms demonstrated surface topographies of profuse growth and dense colonization with extensive polymeric substances around the cells. In this study, we determined the activity of amphotericin B, itraconazole and fluconazole against C. laurentii free-living cells and biofilms. The activity of antifungals tested was greater against free-living cells, but sessile cells fell into the resistant range for these antifungal agents. Extracellular polymeric substances (EPS), comprising the matrix of C. laurentii biofilms, were isolated by ultrasonication. Fourier transform infrared spectroscopy (FT-IR) was performed with ethanol-precipitated and dried samples. Also, the multielement analysis of the EPS was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES).

  17. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  18. Methylxanthine Inhibit Fungal Chitinases and Exhibit Antifungal Activity

    Science.gov (United States)

    Tsirilakis, Kalliope; Kim, Christy; Vicencio, Alfin G.; Andrade, Christopher; Casadevall, Arturo; Goldman, David L.

    2015-01-01

    Chitinases are necessary for fungal cell wall remodeling and cell replication. Methylxanthines have been shown to competitively inhibit family 18 chitinases in vitro. We sought to determine the effects of methylxanthines on fungal chitinases. Fungi demonstrated variable chitinase activity and incubation with methylxanthines (0.5–10 mM) resulted in a dose-dependent decrease in this activity. All fungi tested, except for Candida spp., demonstrated growth inhibition in the presence of methylxanthines at a concentration of 10 mM. India ink staining demonstrated impaired budding and decreased cell size for methylxanthine-treated Cryptococcus neoformans. C. neoformans and Aspergillus fumigatus treated with pentoxifylline also exhibited abnormal cell morphology. In addition, pentoxifylline-treated C. neoformans exhibited increased susceptibility to calcofluor and a leaky melanin phenotype consistent with defective cell wall function. Our data suggest that a variety of fungi express chitinases and that methylxanthines have antifungal properties related to their inhibition of fungal chitinases. Our results highlight the potential utility of targeting chitinases in the development of novel antifungal therapies. PMID:21968902

  19. A novel antifungal protein of Bacillus subtilis B25.

    Science.gov (United States)

    Tan, Zhiqiong; Lin, Baoying; Zhang, Rongyi

    2013-01-01

    Bacillus subtilis B25 was isolated from banana rhizosphere soil. It has been confirmed for B25 to have stronger antagonism against Fusarium oxysporum f.sp.cubense, Additionally B25 has good inhibitory to plant pathogens, including Corynespora cassiicola, Alternaria solani, Botrytis cinerea and Colletotrichum gloeosporioides on potato dextrose agar (PDA) plates. The antagonistic substance can be extracted from cell-free culture broth supernatants by 70% (w/v) (NH4)2 SO4 saturation. Clear blank band was observed between the protein and a pathogen. The examination of antagonistic mechanism under light microscope showed that the antifungal protein of B25 appeared to inhibit pathogens by leading to mycelium and spores tumescence, distortion, abnormality. The isolation procedure comprised ion exchange chromatography on DEAE-Sephadex Fast Flow and gel filtration chromatography on SephadexG-100. The purified antifungal fraction showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The active fraction was identified by NanoLC-ESI-MS/MS The amino acid sequences of 17 peptides segments were obtained. The analysis of the protein suggested that it was a hypothetical protein (gi154685475), with a relative molecular mass of 38708.67 Da and isoelectric point (pI) of 5.63.

  20. Effects of temperature and antibiotics on persistence of antibiotic-resistant bacteria and antibiotic resistance genes in poultry litter

    Science.gov (United States)

    The effect of low, residual concentrations of antibiotics in manure and other environmental matrices is not well understood. It has been hypothesized that antibiotic concentrations below clinical MIC (minimal inhibitory concentrations) are still capable of selecting for resistance. The objective of ...

  1. Helicobacter pylori Antibiotic Resistance: Trends Over Time

    Directory of Open Access Journals (Sweden)

    Raymond G Lahaie

    2000-01-01

    Full Text Available Resistance to antibiotics can be a major problem in the treatment of bacterial infections. As the use of antibiotics increases, bacterial resistance to these agents is rising and in many cases is responsible for the failure of treatment regimens. Although the treatment of Helicobacter pylori infection requires the use of more than one antibiotic to obtain adequate eradication rates, the efficacy of the currently used antibiotic combinations has been shown to be decreased by resistance to one of the antibiotics. The use of antibiotics in regimens for the treatment of H pylori is increasing in many countries, including Canada. This increase is both in the use of these antibiotics alone for the treatment of nongastrointestinal infections and in their use in association with proton pump inhibitors for the treatment of H pylori infection. In several European and Asian countries, where resistance to antibiotics is being monitored, it has been demonstrated that H pylori resistance to metronidazole and to clarithromycin increased throughout the 1990s. Thus far, the data available in Canada do not show increased resistance to either of these antibiotics. As for other antibiotics used in the treatment of H pylori infection, such as tetracycline and amoxicillin, the rate of resistance to these agents is still very low and does not constitute a significant problem. Because the efficacy of the regimens used in the treatment of H pylori infection is compromised by resistance to the antibiotics used, it is important that H pylori resistance rates in Canada and throughout the world continue to be monitored. Only with such reliable data can the most optimal regimens be recommended.

  2. Antifungal peptides: a potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Ng, Siew Mei Samantha; Yap, Yi Yong Alvin; Cheong, Jin Wei Darryl; Ng, Fui Mee; Lau, Qiu Ying; Barkham, Timothy; Teo, Jeanette Woon Pei; Hill, Jeffrey; Chia, Cheng San Brian

    2017-03-01

    Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole-resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane-disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head-to-head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole-resistant C. albicans. The 11-residue peptide, P11-6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time-kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  3. 2010~2012年我院深部抗真菌药使用情况分析%Analysis of deep antifungal drugs in Shidong hospital from 2010 to 2012

    Institute of Scientific and Technical Information of China (English)

    毛亚佩; 李婷; 卫英

    2014-01-01

    Objective To evaluate the utilization of deep antifungal drugs in our hospital,so as to provide evidence for the effective management of medication. Methods The defined daily dose (DDD) was used as the unit.The usage figure and consumption sum of deep antifungal drugs,DDC,DUI and AUD were analyzed in our hospital from 2010 to 2012. Results The kinds, usage figure and consumption sum of deep antifungal drugs were increasing over the 3 years.The consumption sum of Fluconazole was accounted for more than 70% of all deep antifungal drugs in three years.And the antibiotics use densities (AUD) of deep antifungal drugs presented clearly growing trend. Conclusion In order to promote the rational use of deep antifungal drugs,the causes should be further analyzed.%目的:对我院深部抗真菌药物的使用情况进行统计与评价,为临床合理用药和有效管理提供参考。方法使用限定日剂量(DDD)作为分析单位,计算累积DDDs,并以此为基础对2010~2012年我院(二级甲等)住院患者的深部抗真菌药物用药数量与金额、日均费用(DDC)、药物利用指数(DUI)、药物使用强度(AUD)进行统计计算。结果我院深部抗真菌药品种、使用数量和销售金额均呈逐年上升趋势。氟康唑是治疗深部真菌感染的主要药品。深部抗真菌药的用药强度逐年增长趋势明显。结论为促进抗菌药物合理应用,需进一步分析原因,加强监控。

  4. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Science.gov (United States)

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology.

  5. INCIDENCE OF NON-CANDIDA ALBICANS IN PATIENTS WITH URINARY TRACT INFECTION WITH SPECIAL REFERENCE TO SPECIATIO N AND ANTIFUNGAL SUSCEPTIBILITY

    Directory of Open Access Journals (Sweden)

    Ragini Ananth

    2012-10-01

    Full Text Available ABSTRACT: BACKGROUND AND OBJECTIVES: Fungal urinary tract infections have become frequent, as a result of increased use of broad spec trum antibiotics, corticosteroids, immunosuppressive drugs and bladder catheters in acut e care settings. The associated risk factors which are seen in cases of candiduria are: antibiotic therapy, female gender, urinary catheterization, surgical procedure and extended hos pitalization. Candiduria has become a potential source of morbidity and mortality if untre ated. We undertook a prospective study to note the incidence of non-Candida albicans in patien ts with urinary tract infection with special reference to speciation, antifungal susceptibility an d the associated risk factors. METHODS: Candida species isolated from urine samples of patient s with urinary tract infection were subjected to speciation using standard yeast identif ication protocol and CHROM agar. Antifungal Susceptibility testing was done by the disc diffusio n method to amphotericin B and fluconazole. Clinical details and risk factors of the patients we re noted down. RESULTS: Among the 60 culture positive cases, six Candida species which wer e isolated are : C.tropicalis (66.66%, C.albicans (13.33%, C.parapsilosis (8.33%, C.glabr ata (6.66%, C.kefyr (3.33% and C.guilliermondii (1.66% The susceptibility pattern s howed, that of the 60 isolates, 40% were resistant to fluconazole. No resistance was seen to amphotericin B. CONCLUSION: Isolation of non-Candida albicans species was more than Candida a lbicans. Candida tropicalis was the predominant isolate. The following risk factors were noted: 43.33 % of the patients had diabetes mellitus, 30%had history of prolonged antib iotics (cephalosporin and aminoglycosides, 16.66% had underlying renal pathol ogy, 3.33% had post –renal transplant status, 1.66% were on steroids, 1.66%had pregnancy a nd 3.33% had no identifiable risk factors.20% patients had an indwelling catheter in them. The antifungal

  6. Isolation and Purification of a Novel Deca-Antifungal Peptide from Potato (Solanum tuberosum L. cv. Jopung Against Candida albicans

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2012-03-01

    Full Text Available In a previous study, an antifungal protein, AFP-J, was purified from tubers of the potato (Solanum tuberosum cv. L Jopung and by gel filtration and HPLC. In this study, the functional peptide was characterized by partial acid digestion using HCl and HPLC. We obtained three peaks from the AFP-J, the first and third peaks were not active in the tested fungal strain. However, the second peak, which was named Potide-J, was active (MIC; 6.25 μg/mL against Candida albicans. The amino acid sequences were analyzed by automated Edman degradation, and the amino acid sequence of Potide-J was determined to be Ala-Val-Cys-Glu-Asn-Asp-Leu-Asn-Cys-Cys. Mass spectrometry showed that its molecular mass was 1083.1 Da. Finally, we confirmed that a disulfide bond was present between Cys3 and Cys9 or Cys10. Using this structure, Potide-J was synthesized via solid-phase methods. In these experiments, only the linear sequence was shown to display strong activity against Candida albicans. These results suggest that Potide-J may be an excellent candidate compound for the development of commercially applicable antibiotic agents.

  7. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  8. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    Science.gov (United States)

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  9. Acquired antibiotic resistance genes:an overview

    NARCIS (Netherlands)

    Hoek, A.H. van; Mevius, D.; Guerra, B.; Mullany, P.; Robberts, A.P.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  10. Acquired antibiotic resistance genes: an overview

    NARCIS (Netherlands)

    Hoek, van A.H.; Mevius, D.J.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  11. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  12. Interplay between gut microbiota and antibiotics

    NARCIS (Netherlands)

    Jesus Bello Gonzalez, de Teresita

    2016-01-01

    The human body is colonized by a vast number of microorganisms collectively defined as the microbiota. In the gut, the microbiota has important roles in health and disease, and can serve as a host of antibiotic resistance genes. Disturbances in the ecological balance, e.g. by antibiotics, can affect

  13. Optimising Antibiotic Usage to Treat Bacterial Infections

    Science.gov (United States)

    Paterson, Iona K.; Hoyle, Andy; Ochoa, Gabriela; Baker-Austin, Craig; Taylor, Nick G. H.

    2016-11-01

    The increase in antibiotic resistant bacteria poses a threat to the continued use of antibiotics to treat bacterial infections. The overuse and misuse of antibiotics has been identified as a significant driver in the emergence of resistance. Finding optimal treatment regimens is therefore critical in ensuring the prolonged effectiveness of these antibiotics. This study uses mathematical modelling to analyse the effect traditional treatment regimens have on the dynamics of a bacterial infection. Using a novel approach, a genetic algorithm, the study then identifies improved treatment regimens. Using a single antibiotic the genetic algorithm identifies regimens which minimise the amount of antibiotic used while maximising bacterial eradication. Although exact treatments are highly dependent on parameter values and initial bacterial load, a significant common trend is identified throughout the results. A treatment regimen consisting of a high initial dose followed by an extended tapering of doses is found to optimise the use of antibiotics. This consistently improves the success of eradicating infections, uses less antibiotic than traditional regimens and reduces the time to eradication. The use of genetic algorithms to optimise treatment regimens enables an extensive search of possible regimens, with previous regimens directing the search into regions of better performance.

  14. Topical and oral antibiotics for acne vulgaris.

    Science.gov (United States)

    Del Rosso, James Q

    2016-06-01

    Antibiotics, both oral and topical, have been an integral component of the management of acne vulgaris (AV) for approximately 6 decades. Originally thought to be effective for AV due to their ability to inhibit proliferation of Propionibacterium acnes, it is now believed that at least some antibiotics also exert anti-inflammatory effects that provide additional therapeutic benefit. To add, an increase in strains of P acnes and other exposed bacteria that are less sensitive to antibiotics used to treat AV have emerged, with resistance directly correlated geographically with the magnitude of antibiotic use. Although antibiotics still remain part of the therapeutic armamentarium for AV treatment, current recommendations support the following when used to treat AV: 1) monotherapy use should be avoided; 2) use benzoyl peroxide concomitantly to reduce emergence of resistant P acnes strains; 3) oral antibiotics should be used in combination with a topical regimen for moderate-to-severe inflammatory AV; and 4) use oral antibiotics over a limited duration to achieve control of inflammatory AV with an exit plan in place to discontinue their use as soon as possible. When selecting an oral antibiotic to treat AV, potential adverse effects are important to consider.

  15. Antibiotic information application offers nurses quick support

    NARCIS (Netherlands)

    Wentzel, Jobke; Drie-Pierik, Regine; Nijdam, Lars; Geesing, Jos; Sanderman, Robbert; Gemert-Pijnen, van Julia E.W.C.

    2016-01-01

    Background Nurses can be crucial contributors to antibiotic stewardship programs (ASPs), interventions aimed at improving antibiotic use, but nurse empowerment in ASPs adds to their job complexity. Nurses work in complex settings with high cognitive loads, which ask for easily accessible information

  16. Antibiotic information application offers nurses quick support

    NARCIS (Netherlands)

    Wentzel, Jobke; van Drie-Pierik, Regine; Nijdam, Lars; Geesing, Jos; Sanderman, Robbert; van Gemert-Pijnen, Julia E. W. C.

    2016-01-01

    Background: Nurses can be crucial contributors to antibiotic stewardship programs (ASPs), interventions aimed at improving antibiotic use, but nurse empowerment in ASPs adds to their job complexity. Nurses work in complex settings with high cognitive loads, which ask for easily accessible informatio

  17. Repairing the broken market for antibiotic innovation.

    Science.gov (United States)

    Outterson, Kevin; Powers, John H; Daniel, Gregory W; McClellan, Mark B

    2015-02-01

    Multidrug-resistant bacterial diseases pose serious and growing threats to human health. While innovation is important to all areas of health research, it is uniquely important in antibiotics. Resistance destroys the fruit of prior research, making it necessary to constantly innovate to avoid falling back into a pre-antibiotic era. But investment is declining in antibiotics, driven by competition from older antibiotics, the cost and uncertainty of the development process, and limited reimbursement incentives. Good public health practices curb inappropriate antibiotic use, making return on investment challenging in payment systems based on sales volume. We assess the impact of recent initiatives to improve antibiotic innovation, reflecting experience with all sixty-seven new molecular entity antibiotics approved by the Food and Drug Administration since 1980. Our analysis incorporates data and insights derived from several multistakeholder initiatives under way involving governments and the private sector on both sides of the Atlantic. We propose three specific reforms that could revitalize innovations that protect public health, while promoting long-term sustainability: increased incentives for antibiotic research and development, surveillance, and stewardship; greater targeting of incentives to high-priority public health needs, including reimbursement that is delinked from volume of drug use; and enhanced global collaboration, including a global treaty.

  18. Analysis of antibiotic consumption in burn patients

    Science.gov (United States)

    Soleymanzadeh-Moghadam, Somayeh; Azimi, Leila; Amani, Laleh; Rastegar Lari, Aida; Alinejad, Faranak; Rastegar Lari, Abdolaziz

    2015-01-01

    Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used. The results indicated that P. aeruginosa is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR) microorganisms, but it can also decrease the cost of treatment. PMID:26124986

  19. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  20. Antibiotic RX in Hospitals: Proceed with Caution

    Centers for Disease Control (CDC) Podcasts

    2014-03-04

    This podcast is based on the March 2014 CDC Vital Signs report. Antibiotics save lives, but poor prescribing practices can put patients at risk for health problems. Learn how to protect patients by protecting antibiotics.  Created: 3/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/4/2014.

  1. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    Full Text Available BACKGROUND: Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired. METHODOLOGY/PRINCIPAL FINDINGS: To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance. CONCLUSIONS/SIGNIFICANCE: Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  2. Antibiotic-Resistant Bacteria: There is Hope.

    Science.gov (United States)

    Offner, Susan

    1998-01-01

    Argues that reduction in the use of antibiotics would enable antibiotic-sensitive bacteria to flourish. Presents an activity designed to show students how a small, seemingly unimportant difference in doubling time can, over a period of time, make an enormous difference in population size. (DDR)

  3. Snort Sniffle Sneeze: No Antibiotics Please

    Centers for Disease Control (CDC) Podcasts

    2009-09-29

    Antibiotics aren't always the answer for sneezes or sore throats. This podcast discusses ways to feel better without antibiotics.  Created: 9/29/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2009.

  4. Antibiotics: Pharmacists Can Make the Difference

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    In this podcast, a pharmacist counsels a frustrated father about appropriate antibiotic use and symptomatic relief options for his son's cold.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  5. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2014-07-01

    Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs.

  6. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt.

    Science.gov (United States)

    Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knøchel, S

    2015-02-02

    Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated.

  7. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  8. Antimicrobial and Antifungal Activity of Pelargonium roseum Essential Oils

    Directory of Open Access Journals (Sweden)

    Gâlea Carmen

    2014-12-01

    Conclusion: The volatile oils exhibited considerable inhibitory effects against all the organisms under test, in some cases comparable with those of the reference antibiotics. There were no considerable differences between the antimicrobial activities of the oil obtained by distillation and commercially available Pelargonium oils.

  9. Advances in pneumococcal antibiotic resistance.

    Science.gov (United States)

    Song, Jae-Hoon

    2013-10-01

    Antimicrobial resistance and serotypes in Streptococcus pneumoniae have been evolving with the widespread use of antibiotics and the introduction of pneumococcal conjugate vaccines (PCV). Particularly, among various types of antimicrobial resistance, macrolide resistance has most remarkably increased in many parts of the world, which has been reported to be >70% among clinical isolates from Asian countries. Penicillin resistance has dramatically decreased among nonmeningeal isolates due to the changes in resistance breakpoints, although resistance to other β-lactams such as cefuroxime has increased. Multidrug resistance became a serious concern in the treatment of invasive pneumococcal diseases, especially in Asian countries. After PCV7 vaccination, serotype 19A has emerged as an important cause of invasive pneumococcal diseases which was also associated with increasing prevalence of multidrug resistance in pneumococci. Widespread use of PCV13, which covers additional serotypes 3, 6A and 19A, may contribute to reduce the clonal spread of drug-resistant 19A pneumococci.

  10. Retapamulin: A newer topical antibiotic

    Directory of Open Access Journals (Sweden)

    D Dhingra

    2013-01-01

    Full Text Available Impetigo is a common childhood skin infection. There are reports of increasing drug resistance to the currently used topical antibiotics including fusidic acid and mupirocin. Retapamulin is a newer topical agent of pleuromutilin class approved by the Food and Drug Administration for treatment of impetigo in children and has been recently made available in the Indian market. It has been demonstrated to have low potential for the development of antibacterial resistance and a high degree of potency against poly drug resistant Gram-positive bacteria found in skin infections including Staphylococcus aureus strains. The drug is safe owing to low systemic absorption and has only minimal side-effect of local irritation at the site of application.

  11. Antibiotic resistance pattern in uropathogens

    Directory of Open Access Journals (Sweden)

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  12. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  13. Engineering antibiotic production and overcoming bacterial resistance.

    Science.gov (United States)

    Planson, Anne-Gaëlle; Carbonell, Pablo; Grigoras, Ioana; Faulon, Jean-Loup

    2011-07-01

    Progress in DNA technology, analytical methods and computational tools is leading to new developments in synthetic biology and metabolic engineering, enabling new ways to produce molecules of industrial and therapeutic interest. Here, we review recent progress in both antibiotic production and strategies to counteract bacterial resistance to antibiotics. Advances in sequencing and cloning are increasingly enabling the characterization of antibiotic biosynthesis pathways, and new systematic methods for de novo biosynthetic pathway prediction are allowing the exploration of the metabolic chemical space beyond metabolic engineering. Moreover, we survey the computer-assisted design of modular assembly lines in polyketide synthases and non-ribosomal peptide synthases for the development of tailor-made antibiotics. Nowadays, production of novel antibiotic can be tranferred into any chosen chassis by optimizing a host factory through specific strain modifications. These advances in metabolic engineering and synthetic biology are leading to novel strategies for engineering antimicrobial agents with desired specificities.

  14. Pneumonia in immunocompetent patients: combination antibiotic therapy.

    Science.gov (United States)

    Salva, S; Borgatta, B; Rello, J

    2014-04-01

    Pneumonia's burden is still important worldwide not only because of its high incidence and mortality, but also for the elevated costs related to it. Despite the concerted efforts to reduce the incidence of sepsis-related complications, they continue to represent a major human and economic burden. The cornerstone of sepsis management is early appropriate empiric broad spectrum antibiotics, resuscitation, and source control. The association between inappropriate use of antibiotics and increased mortality is the rationale for the use of empiric antibiotic combination therapy in critically ill patients. The aim of this manuscript was to discuss recent literature regarding the management of severe pneumonia, both community-acquired and hospital-acquired/ventilator-associated, in critically ill patients. Use of combination therapy is warranted in severe infections with shock; considerations should be made on the importance of optimal antibiotic administration and adverse reactions, thus providing guidance for a rational use of antibiotics.

  15. Antibiotic Resistance in Pediatric Urinary Tract Infections.

    Science.gov (United States)

    Stultz, Jeremy S; Doern, Christopher D; Godbout, Emily

    2016-12-01

    Urinary tract infections (UTIs) are a common problem in pediatric patients. Resistance to common antibiotic agents appears to be increasing over time, although resistance rates may vary based on geographic region or country. Prior antibiotic exposure is a pertinent risk factor for acquiring resistant organisms during a first UTI and recurrent UTI. Judicious prescribing of antibiotics for common pediatric conditions is needed to prevent additional resistance from occurring. Complex pediatric patients with histories of hospitalizations, prior antibiotic exposure, and recurrent UTIs are also at high risk for acquiring UTIs due to extended spectrum beta-lactamase-producing organisms. Data regarding the impact of in vitro antibiotic susceptibility testing interpretation on UTI treatment outcomes is lacking.

  16. Antibiotic resistance: an editorial review with recommendations.

    Science.gov (United States)

    Rosen, Ted

    2011-07-01

    Within a relatively short period of time after the first antimicrobial drugs were introduced, bacteria began exhibiting varying degrees of resistance. The excessive use (and abuse) of antibiotics in agriculture, and in both human and veterinary medicine, has played a critical causative role in the development of antibiotic resistance, which is now recognized as a global public health threat. Increasing concern over this issue should impact the practice of cutaneous medicine and surgery, as dermatologists can easily adopt new healthcare delivery patterns that might reduce the development of antibiotic resistance and still achieve acceptable treatment outcomes. Dermatologists should seriously consider any and all alternative therapies before committing to an extended course of antibiotic therapy for disease entities that are almost certainly not infectious. Conversely, dermatologists should carefully and closely adhere to dosage and duration recommendations when using antibiotics to treat a bona fide infectious disorder.

  17. Innovation of novel antibiotics: an economic perspective.

    Science.gov (United States)

    McKellar, Michael R; Fendrick, A Mark

    2014-10-15

    Despite the public attention to antibiotic overuse and the specter of antimicrobial-resistant pathogens, current infections necessitate the use of antibiotics. Yet, patients and providers may not fully consider the societal cost associated with inappropriate antimicrobial use and subsequent resistance. Policies intended to limit use to minimize resistance must be balanced with the competing concern of underutilization. It is difficult to determine whether research and development incentives or reducing the costs of bringing new antibiotics through expedited review will be sufficient. Likely, the most effective method would be allowing higher prices for use deemed to be clinically appropriate. The ultimate policy goal is to ensure that antibiotics are used appropriately, with the right patients receiving the right medication at the right time, and that the world has a steady stream of future antibiotics to effectively treat the resistant organisms that will inevitably emerge.

  18. [Allergy to beta-lactam antibiotics].

    Science.gov (United States)

    Comte, D; Petitpierre, S; Spertini, F; Bart, P-A

    2012-04-18

    Beta-lactam antibiotics allergies are common. Up to 10% of the population describe a former allergy to penicillins. However only 10 to 15% of these individuals are actually allergic. In most cases, beta-lactam antibiotics will be avoided and replaced by other antibiotics such as quinolones. This fear of a serious allergic reaction has an economic impact and may lead to the emergence of antibiotic resistance. A thorough allergic work-up can accurately determine true allergic patients. Most of the patients with a proven allergy will be able to tolerate other antibiotics belonging to the beta-lactam family. This article focuses on the management of beta-lactam allergic patients.

  19. Get Smart: Know When Antibiotics Work - Sinus Infection (Sinusitis)

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  20. Get Smart: Know When Antibiotics Work - What You Can Do

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  1. Get Smart: Know When Antibiotics Work - Symptom Relief

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  2. Get Smart: Know When Antibiotics Work - Influenza (Flu)

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  3. Get Smart: Know When Antibiotics Work - Bronchitis (Chest Cold)

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  4. Get Smart: Know When Antibiotics Work - Ear Infections

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  5. Get Smart: Know When Antibiotics Work - Sore Throat

    Science.gov (United States)

    ... Submit Search The CDC Get Smart: Know When Antibiotics Work Note: Javascript is disabled or is not ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary ...

  6. Systems, not pills: The options market for antibiotics seeks to rejuvenate the antibiotic pipeline.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2016-02-01

    Over the past decade, there has been a growing recognition of the increasing growth of antibiotic resistant bacteria and a relative decline in the production of novel antibacterial therapies. The combination of these two forces poses a potentially grave threat to global health, in both developed and developing countries. Current market forces do not provide appropriate incentives to stimulate new antibiotic development, thus we propose a new incentive mechanism: the Options Market for Antibiotics. This mechanism, modelled on the principle of financial call options, allows payers to buy the right, in early stages of development, to purchase antibiotics at a discounted price if and when they ever make it to market approval. This paper demonstrates the effect of such a model on the expected Net Present Value of a typical antibacterial project. As part of an integrated strategy to confront the impending antibiotic crisis, the Options Market for Antibiotics may effectively stimulate corporate and public investment into antibiotic research and development.

  7. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity

    Science.gov (United States)

    Souza, Ana C. O.; Amaral, Andre C.

    2017-01-01

    Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis. PMID:28326065

  8. Antifungal activity of the lemongrass oil and citral against Candida spp.

    Directory of Open Access Journals (Sweden)

    Cristiane de Bona da Silva

    2008-02-01

    Full Text Available Superficial mycoses of the skin are among the most common dermatological infections, and causative organisms include dermatophytic, yeasts, and non-dermatophytic filamentous fungi. The treatment is limited, for many reasons, and new drugs are necessary. Numerous essential oils have been tested for both in vitro and in vivo antifungal activity and some pose much potential as antifungal agents. By using disk diffusion assay, we evaluated the antifungal activity of lemongrass oil and citral against yeasts of Candida species (Candida albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis. This study showed that lemongrass oil and citral have a potent in vitro activity against Candida spp.

  9. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Marcussen, J.

    2015-01-01

    Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles...... to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile...

  10. IN VITRO ANTIFUNGAL ACTIVITY OF ESSENTIAL OILS ON GROWTH OF PHYTOPATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2010-12-01

    Full Text Available Eleven essential oils (clove, rosemary, cinnamon leaf, sage, scots pine, neroli, peppermint, aniseed, caraway, lavander, common thyme were tested for in vitro antifungal activity on twelve plant pathogenic fungi (Fusarium graminearum, F. verticillioides, F. subglutinans, F. oxysporum, F. avenaceum, Diaporthe helianthi, Diaporthe phaseolorum var. caulivora, Phomopsis longicolla, P. viticola, Helminthosporium sativum, Colletotrichum coccodes, Thanatephorus cucumeris. The results indicated that all oils except scots pine and neroli had antifungal activity against some or all tested fungi. The best antifungal activity had common thyme, cinnamon leaf, clove and aniseed oils. When compared to control, scots pine, neroli and sage oils stimulated mycelium growth of some investigated fungi.

  11. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  12. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes.

    Science.gov (United States)

    Roose-Amsaleg, Céline; Laverman, Anniet M

    2016-03-01

    Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.

  13. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation

    Directory of Open Access Journals (Sweden)

    Abdallah Mohamed Elgorban

    2016-01-01

    Full Text Available Silver nanoparticles have a high antimicrobial activity and are broadly utilized for several disinfection purposes including water and materials’ sanitization for medical purposes. There have been comparatively few studies on using silver against plant pathogenic fungi. In this study, silver nanoparticles (Ag NPs were used at concentrations of 0.0, 0.0002, 0.0005, 0.0007, 0.0009, 0.0014 and 0.0019 mol/L. Six different Rhizoctonia solani anastomosis groups (AGs infecting cotton plants were treated in vitro with Ag NPs on Czapek Dox agar (CDA and potato dextrose agar plates. The results showed that various concentrations of Ag NPs have antifungal properties to control R. solani AGs. The obtained results also revealed that strong inhibition of R. solani AGs was noticed on CDA at all concentrations.

  14. [Pharmacology of the antifungals used in the treatment of aspergillosis].

    Science.gov (United States)

    Azanza, José Ramón; Sádaba, Belén; Gómez-Guíu, Almudena

    2014-01-01

    The treatment of invasive aspergillosis requires the use of drugs that characteristically have complex pharmacokinetic properties, the knowledge of which is essential to achieve maximum efficacy with minimal risk to the patient. The lipid-based amphotericin B formulations vary significantly in their pharmacokinetic behaviour, with very high plasma concentrations of the liposomal form, probably related to the presence of cholesterol in their structure. Azoles have a variable absorption profile, particularly in the case of itraconazole and posaconazole, with the latter very dependent on multiple factors. This may also lead to variations in voriconazole, which requires considering the possibility of monitoring plasma concentrations. The aim of this article is to review some of the most relevant aspects of the pharmacology of the antifungals used in the prophylaxis and treatment of the Aspergillus infection. For this reason, it includes the most relevant features of some of the azoles normally prescribed in this infection (itraconazole, posaconazole and voriconazole) and the amphotericin B formulations.

  15. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.

    Science.gov (United States)

    Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2010-06-01

    The antifungal activity of eugenol in a model system against aspergilli (Aspergillus niger, Aspergillus terreus, and Emericella nidulans), penicilli (Penicillium expansum, Penicillium glabrum, and Penicillium italicum), and fusaria (Fusarium oxysporum and Fusarium avenaceum) was investigated. Minimum detection time (time to attain a colony diameter of 1 cm) and the kinetic parameters were evaluated. The effectiveness of the active compound seemed to be strain or genus dependent; 100 mg/liter represented a critical value for P. expansum, P. glabrum, P. italicum, A. niger, and E. nidulans because a further increase of eugenol resulted in fungistatic activity. The radial growth of A. terreus and F. avenaceum was inhibited at 140 mg/liter, and growth of F. oxysporum was completely inhibited at 150 mg/liter.

  16. Polar characterization of antifungal peptides from APD2 Database.

    Science.gov (United States)

    Polanco, Carlos; Samaniego-Mendoza, José Lino; Buhse, Thomas; Castañón-González, Jorge Alberto; Leopold-Sordo, Marili

    2014-11-01

    The increase in the number of pathogens due to fungi that are tolerant to therapies does not grow at the same speed than the advance on new antifungal drugs. In this sense, it is imperative to find anti-fungi peptides that are not detrimental to mammalian cells and have an effective toxicity to fungi. In this work, we use a method called polarity index, to identify anti-fungi peptides with an efficiency of 70 %. This method already published, initially identified selective antibacterial peptides from APD2 Database, and was characterized by developing a comprehensive analysis of the polar dynamics of a peptide from its linear sequence. Discriminating tests showed that in addition to being efficient in this identification, it was also good at rejecting other classifications of peptides found in that same database.

  17. Clinical evaluation of clotrimazole. A broad-spectrum antifungal agent.

    Science.gov (United States)

    Spiekermann, P H; Young, M D

    1976-03-01

    The efficacy and safety of the broad-spectrum, topically applied antifungal agent clotrimazole were evaluated in two double-blind, multicentric trials. Ten investigators reported on a total of 1,361 cases in which a 1% solution or a 1% cream formulation was compared with its respective vehicle. Clotrimazole was therapeutically effective, as confirmed by mycological cure (negative microscopy and culture) and clinical improvement, in tinea pedis, tinea cruris, tinea corporis, pityriasis versicolor, and cutaneous candidasis. Furthermore, species identification established the efficacy of clotrimazole against Trichophyton rubrum, T mentagrophytes, Epidermophyton floccosum, Microsporum canis, Malassezia furfur (Pityrosporum orbiculare), and Candida albicans. Safety was demonstrated by the low incidence of possibly drug-related adverse experiences, namely, 19 (2.7%) of 699 patients who were treated with clotrimazole, of whom four (0.6%) discontinued treatment.

  18. Fosfluconazole for Antifungal Prophylaxis in Very Low Birth Weight Infants

    Directory of Open Access Journals (Sweden)

    Daijiro Takahashi

    2009-01-01

    Full Text Available We conducted a retrospective case series study to evaluate the safety of fosfluconazole prophylaxis for preventing invasive fungal infection in VLBW infants with a central vascular access. Fosfluconazole was administered intravenously at a dose of 6 mg/kg everyday during which time a central venous catheter was placed. A total of 23 infants met the criteria for enrollment in our study. No cases of fungal infection were detected during the central venous catheter placement in the group. None of the infants had an elevated β-D-glucan, and all of them were still alive at discharge. Regarding the liver and renal function, no statistically significant differences were observed before and at the end of fosfluconazole prophylaxis. The results of this study demonstrate that fosfluconazole prophylaxis in preventing invasive fungal infection was well tolerated by VLBW infants. This is a first report to describe antifungal prophylaxis using fosfluconazole for VLBW infants.

  19. Antifungal activity of allylamines against agents of eumycetoma

    Directory of Open Access Journals (Sweden)

    Venugopal Pankajalakshmi

    1993-01-01

    Full Text Available The antifungal activity of the two allylamines naftifine and terbinafine was investigated against 22 strains of eumycetes isolated from cases of eumycetoma by agar dilution. The isolates included Madurella mycetomatis (4, M. Grisea (8, Pyrenochaeta romeroi (2, Exophiala jeanselmei (2 and Leptosphaeria tompkinsii (1 from black grain eumycetomas and Pseudalescheria boydii (3 Acremonium kiliense (1 and A. recifei (1 form pale grain eumycetomas. Terbinafine was more active than naftifine inhibiting 50% (MIC50 and 90% (MIC90 of the black grain eumycetoma agents at 0.5 and 2.5 ?g/ml respectively. The MIC50s and MIC90s of naftifine were 1 and 5 ?g/ml. For pale grain eumycetoma agents, the MIC range for terbinafine and naftifine were ??0.01 - 100 and 0.1 - 100 ?g/ml.

  20. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    was the only tested drug with activity against both growth arrested biofilm and planktonic cells but was found to only kill ~95 % of the cells. By using a collection of barcode tagged deletion mutants, we were identified that defects in protein synthesis, intracellular transport, cell cycle and lipid...... metabolism resulted in increased amphotericin B tolerance in both biofilm and planktonic cells. We furthermore observed that the tolerance level could be enhanced by nutrient starvation and inhibition of the TOR pathway. In conclusion, antifungal tolerance is the combined effect of the physiological state......Fungal infections have become a major problem in the hospital sector in the past decades due to the increased number of immune compromised patients susceptible to mycosis. Most human infections are believed to be associated with biofilm forming cells that are up to 1000-fold more tolerant...

  1. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  2. Antifungal activity of amphotericin B conjugated to carbon nanotubes.

    Science.gov (United States)

    Benincasa, Monica; Pacor, Sabrina; Wu, Wei; Prato, Maurizio; Bianco, Alberto; Gennaro, Renato

    2011-01-25

    Amphotericin B (AMB) has long been considered the most effective drug in the treatment of serious invasive fungal infections. There are, however, major limitations to its use, due to several adverse effects, including acute infusional reactions and, most relevant, a dose-dependent nephrotoxicity. At least some of these effects are attributed to the aggregation of AMB as a result of its poor water solubility. To overcome this problem, reformulated versions of the drug have been developed, including a micellar dispersion of AMB with sodium deoxycholate (AMBD), its encapsulation into liposomes, or its incorporation into lipidic complexes. The development of nanobiotechnologies provides novel potential drug delivery systems that make use of nanomaterials such as functionalized carbon nanotubes (f-CNTs), which are emerging as an innovative and efficient tool for the transport and cellular translocation of therapeutic molecules. In this study, we prepared two conjugates between f-CNTs and AMB. The antifungal activity of these conjugates was tested against a collection of reference and clinical fungal strains, in comparison to that of AMB alone or AMBD. Measured minimum inhibition concentration (MIC) values for f-CNT-AMB conjugates were either comparable to or better than those displayed by AMB and AMBD. Furthermore, AMBD-resistant Candida strains were found to be susceptible to f-CNT-AMB 1. Additional studies, aimed at understanding the mechanism of action of the conjugates, suggest a nonlytic mechanism, since the compounds show a major permeabilizing effect on the tested fungal strains only after extended incubation. Interestingly, the f-CNT-AMB 1 does not show any significant toxic effect on Jurkat cells at antifungal concentrations.

  3. "Practical knowledge" and perceptions of antibiotics and antibiotic resistance among drugsellers in Tanzanian private drugstores

    Directory of Open Access Journals (Sweden)

    Tomson Göran

    2010-09-01

    Full Text Available Abstract Background Studies indicate that antibiotics are sold against regulation and without prescription in private drugstores in rural Tanzania. The objective of the study was to explore and describe antibiotics sale and dispensing practices and link it to drugseller knowledge and perceptions of antibiotics and antibiotic resistance. Methods Exit customers of private drugstores in eight districts were interviewed about the drugstore encounter and drugs bought. Drugsellers filled in a questionnaire with closed- and open-ended questions about antibiotics and resistance. Data were analyzed using mixed quantitative and qualitative methods. Results Of 350 interviewed exit customers, 24% had bought antibiotics. Thirty percent had seen a health worker before coming and almost all of these had a prescription. Antibiotics were dispensed mainly for cough, stomachache, genital complaints and diarrhea but not for malaria or headache. Dispensed drugs were assessed as relevant for the symptoms or disease presented in 83% of all cases and 51% for antibiotics specifically. Non-prescribed drugs were assessed as more relevant than the prescribed. The knowledge level of the drugseller was ranked as high or very high by 75% of the respondents. Seventy-five drugsellers from three districts participated. Seventy-nine percent stated that diseases caused by bacteria can be treated with antibiotics but 24% of these also said that antibiotics can be used for treating viral disease. Most (85% said that STI can be treated with antibiotics while 1% said the same about headache, 4% general weakness and 3% 'all diseases'. Seventy-two percent had heard of antibiotic resistance. When describing what an antibiotic is, the respondents used six different kinds of keywords. Descriptions of what antibiotic resistance is and how it occurs were quite rational from a biomedical point of view with some exceptions. They gave rise to five categories and one theme: Perceiving antibiotic

  4. Persistence of antibiotic resistance in bacterial populations.

    Science.gov (United States)

    Andersson, Dan I; Hughes, Diarmaid

    2011-09-01

    Unfortunately for mankind, it is very likely that the antibiotic resistance problem we have generated during the last 60 years due to the extensive use and misuse of antibiotics is here to stay for the foreseeable future. This view is based on theoretical arguments, mathematical modeling, experiments and clinical interventions, suggesting that even if we could reduce antibiotic use, resistant clones would remain persistent and only slowly (if at all) be outcompeted by their susceptible relatives. In this review, we discuss the multitude of mechanisms and processes that are involved in causing the persistence of chromosomal and plasmid-borne resistance determinants and how we might use them to our advantage to increase the likelihood of reversing the problem. Of particular interest is the recent demonstration that a very low antibiotic concentration can be enriching for resistant bacteria and the implication that antibiotic release into the environment could contribute to the selection for resistance. Several mechanisms are contributing to the stability of antibiotic resistance in bacterial populations and even if antibiotic use is reduced it is likely that most resistance mechanisms will persist for considerable times.

  5. Molecular regulation of antibiotic biosynthesis in streptomyces.

    Science.gov (United States)

    Liu, Gang; Chater, Keith F; Chandra, Govind; Niu, Guoqing; Tan, Huarong

    2013-03-01

    Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.

  6. 脂肽类抗生素及其作用机制%Lipopeptide Antibiotics & Its Action Mechanism

    Institute of Scientific and Technical Information of China (English)

    陈萍; 冯芬; 杨恬然; 辛明秀

    2015-01-01

    脂肽类抗生素是由微生物代谢产生的一类具有很强表面活性的生物活性物质,含有由亲水性氨基酸和疏水性脂肪酸链组成的特殊分子结构,表现出亲水、亲脂两亲性的特性,具有抗菌、抗肿瘤和抗病毒等多种生物学活性,作为抗菌药物和肿瘤抑制剂在医药和临床应用领域具有良好的应用潜力和前景。本文对脂肽类抗生素的结构、生物学功能和作用机制等最新研究进展进行综述。%Lipopeptideantibioticsarekindsofimportantantibacterialmaterialwithstrongsurfaceactivitytypically synthesized by microorganisms,especially by Bacillus. It contains special molecular structure composed of hydrophilic amino acids and hydrophobic fatty acid chains that shows amphipathic features. Lipopeptide antibiotics possesse anti-bacterial,antifungal,antiviral and antitumor activities,and other multiple bio-activities. As antibiotic medicine and tumor inhibition preparations lipopeptide antibiotics have potential application and outlook in the fields of medicines and clinics. Advances in the structure characteristics,biological function and action mechanism were reviewed in this paper.

  7. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater.

    Science.gov (United States)

    Lucas, D; Badia-Fabregat, M; Vicent, T; Caminal, G; Rodríguez-Mozaz, S; Balcázar, J L; Barceló, D

    2016-06-01

    The emergence and spread of antibiotic resistance represents one of the most important public health concerns and has been linked to the widespread use of antibiotics in veterinary and human medicine. The overall elimination of antibiotics in conventional wastewater treatment plants is quite low; therefore, residual amounts of these compounds are continuously discharged to receiving surface waters, which may promote the emergence of antibiotic resistance. In this study, the ability of a fungal treatment as an alternative wastewater treatment for the elimination of forty-seven antibiotics belonging to seven different groups (β-lactams, fluoroquinolones, macrolides, metronidazoles, sulfonamides, tetracyclines, and trimethoprim) was evaluated. 77% of antibiotics were removed after the fungal treatment, which is higher than removal obtained in conventional treatment plants. Moreover, the effect of fungal treatment on the removal of some antibiotic resistance genes (ARGs) was evaluated. The fungal treatment was also efficient in removing ARGs, such as ermB (resistance to macrolides), tetW (resistance to tetracyclines), blaTEM (resistance to β-lactams), sulI (resistance to sulfonamides) and qnrS (reduced susceptibility to fluoroquinolones). However, it was not possible to establish a clear link between concentrations of antibiotics and corresponding ARGs in wastewater, which leads to the conclusion that there are other factors that should be taken into consideration besides the antibiotic concentrations that reach aquatic ecosystems in order to explain the emergence and spread of antibiotic resistance.

  8. Antibiotic surgical prophylaxis increases nasal carriage of antibiotic-resistant staphylococci.

    Science.gov (United States)

    McMurray, Claire L; Hardy, Katherine J; Verlander, Neville Q; Hawkey, Peter M

    2015-12-01

    Staphylococci are a significant cause of hospital-acquired infection. Nasal carriage of Staphylococcus aureus is an important risk factor for infection in surgical patients and coagulase-negative staphylococci (CNS) are a major cause of prosthetic joint infections. The impact that antibiotic surgical prophylaxis has on the nasal carriage of staphylococci has not been studied. Daily nasal swabs were taken from 63 patients who received antibiotic surgical prophylaxis and 16 patients who received no antibiotics. Total aerobic bacterial count, S. aureus and CNS were enumerated by culture from nasal swabs. Representative isolates were typed by staphylococcal interspersed repeat units (SIRU) typing and PFGE, and MICs to nine antibiotics were determined. After antibiotic administration, there was a reduction in S. aureus counts (median - 2.3 log(10)c.f.u. ml(- 1)) in 64.0 % of S. aureus carriers, compared with only a 0.89 log(10)c.f.u. ml(- 1) reduction in 75.0 % of S. aureus carriers who did not receive antibiotics. A greater increase in the nasal carriage rate of meticillin-resistant CNS was observed after antibiotic surgical prophylaxis compared with hospitalization alone, with increases of 16.4 and 4.6 %, respectively. Antibiotic-resistant S. epidermidis carriage rate increased by 16.6 % after antibiotic administration compared with 7.5 % with hospitalization alone. Antibiotic surgical prophylaxis impacts the nasal carriage of both S. aureus and CNS.

  9. Inducing optimal substitution between antibiotics under open access to the resource of antibiotic susceptibility.

    Science.gov (United States)

    Herrmann, Markus; Nkuiya, Bruno

    2016-05-15

    This paper designs a bio-economic model to examine the use of substitute antibiotic drugs (analogs) sold by an industry that has open access to the resource of the antibiotic class's susceptibility (treatment effectiveness). Antibiotics are characterized by different expected recovery rates and production costs, which in conjunction with the class's treatment susceptibility determines their relative effectiveness. Our analysis reveals that the high-quality antibiotic drug loses its comparative advantage over time making the low-quality drug the treatment of last resort in the market equilibrium and the social optimum when antibiotic susceptibility cannot replenish. However, when antibiotic susceptibility is renewable, both antibiotics may be used in the long run, and the comparative advantage of the high-quality drug may be restored in the social optimum that allows lowering infection in the long run. We develop the optimal tax/subsidy scheme that would induce antibiotic producers under open access to behave optimally and account for the social cost of infection and value of antibiotic susceptibility. We show that the welfare loss associated with the uncorrected open-access allocation is highest; when the resource of antibiotic susceptibility is non-renewable, high morbidity costs are incurred by individuals, and low social discount rates apply. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals

    Science.gov (United States)

    The mode of action for the reproductive toxicity of triazole antifungals have been previously characterized by an observed increased in serum testosterone, hepatotoxicity, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these m...

  11. Toxicogenomic Effects Common to Triazole Antifungals and Conserved Between Rats and Humans

    Science.gov (United States)

    The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple time-points and various study d...

  12. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates.

    NARCIS (Netherlands)

    Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Rodriguez-Tudela, J.L.; Donnelly, J.P.; Verweij, P.E.

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (ampho

  13. Anti-fungal activity of Morinda citrifolia (noni extracts against Candida albicans: An in vitro study

    Directory of Open Access Journals (Sweden)

    K Barani

    2014-01-01

    Full Text Available Aim: The aim of this study was to investigate the anti-fungal activity of Morinda citrifolia fruit extract on Candida albicans. Materials and Methods: Juice extract from M. citrifolia fruit was lyophilized and used in anti-fungal testing. Anti-fungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations. The inhibitory effect of M. citrifolia extract on C. albicans was determined by agar culture and applied broth dilution test. Results: M. citrifolia extract at 1000 μg/ml concentration effectively inhibited the growth of C. albicans (16.6 ± 0.3 compared with the positive control - amphotericin B (20.6 ± 0.6. It was found to be a dose-dependent reaction. Conclusion: M. citrifolia fruit extract had an anti-fungal effect on C. albicans and the inhibitory effect varied with concentration.

  14. Study on Mutagenic Breeding of Bacillus Subtilis and Properties of Its Antifungal Substances

    Institute of Scientific and Technical Information of China (English)

    刘静; 姚建铭

    2004-01-01

    Bacillus subtitles JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi,such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our studay. After B. Subtitles JA was implanted by N+ ions,a strain designated as B. Subtitles JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%,the precipitate-enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein.

  15. Hypomycetin - an antifungal, tetracyclic metabolite from Hypomyces aurantius: Production, structure and biosynthesis

    DEFF Research Database (Denmark)

    Breinholt, Jens; Jensen, Georg W.; Kjær, Anders;

    1997-01-01

    As part of a screening programme a new antifungal substance, hypomycetin, has been isolated from the mycophilic fungus Hypomyces aurantius. Its tetracyclic structure, including the absolute configuration, has been established by spectroscopic methods and CD measurements. The biosynthetic pathway ...

  16. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    ), Sinularia leptocladus (soft coral), Elysia grandifolia (Mollusks), Gorgonian sp. 2 and Haliclona sp. exhibited significant (inhibition zone of 3-5 mm) antifungal activity against one or the other strains. However, extracts of A. ilicifolius, Amphiroa sp...

  17. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    Science.gov (United States)

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs.

  18. Current recommendations and importance of antifungal stewardship for the management of invasive candidiasis.

    Science.gov (United States)

    Miyazaki, Taiga; Kohno, Shigeru

    2015-01-01

    Invasive candidiasis can have a major effect on patient prognosis and medical economics. Quickly eliminating the focus of the infection and administering appropriate antifungal therapy are important. Clinical guidelines for invasive candidiasis have been issued in the USA, Europe and recently in Japan. The purpose of this review is to summarize the current recommendations on how to diagnose and treat invasive candidiasis based on the evidence gathered to date and by referencing guidelines from various countries. Echinocandin antifungals play a central role in the prevention and treatment of invasive candidiasis although a recent increase in echinocandin-resistant Candida glabrata is seen as problematic. In the future, promoting the appropriate use of antifungal agents by antifungal stewardship teams will be necessary to suppress adverse effects, appearance of resistant strains and unnecessary medical expenses, as well as improve positive clinical outcomes and prognoses.

  19. Antifungal activity of mango peel and seed extracts against clinically pathogenic and food spoilage yeasts.

    Science.gov (United States)

    Dorta, E; González, M; Lobo, M G; Laich, F

    2015-11-26

    The antioxidant and antifungal (antiyeast) properties of mango (Mangifera indica) peel and seed by-products were investigated. Nine extracts were obtained using three cultivars and two extraction methods. Significant differences between cultivars and extraction methods were detected in their bioactive compounds and antioxidant activity. The antifungal property was determined using agar diffusion and broth micro-dilution assays against 18 yeast species of the genera Candida, Dekkera, Hanseniaspora, Lodderomyces, Metschnikowia, Pichia, Schizosaccharomyces, Saccharomycodes and Zygosaccharomyces. All mango extracts showed antifungal activity. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) values were lower for seed than for peel extracts. MICs and MFCs ranged from values 30 mgGAE/mL, respectively. The multivariate analysis showed a relationship between antifungal activity, the capacity to inhibit lipid peroxidation and total phenol content. These properties were associated with high levels of proanthocyanidins, gallates and gallotannins in the extracts.

  20. Bacteriocins - a viable alternative to antibiotics?

    Science.gov (United States)

    Cotter, Paul D; Ross, R Paul; Hill, Colin

    2013-02-01

    Solutions are urgently required for the growing number of infections caused by antibiotic-resistant bacteria. Bacteriocins, which are antimicrobial peptides produced by certain bacteria, might warrant serious consideration as alternatives to traditional antibiotics. These molecules exhibit significant potency against other bacteria (including antibiotic-resistant strains), are stable and can have narrow or broad activity spectra. Bacteriocins can even be produced in situ in the gut by probiotic bacteria to combat intestinal infections. Although the application of specific bacteriocins might be curtailed by the development of resistance, an understanding of the mechanisms by which such resistance could emerge will enable researchers to develop strategies to minimize this potential problem.